
AALTO UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY
Faculty of Electronics, Communications and Automation

Miika Aho

Automatic Software Update of an Optical Measurement Device

Master's Thesis submitted for the degree of Master of Science in Technology
Espoo, May 28, 2010

Supervisor: Docent Timo O. Korhonen

Instructor: Tuomas Jylhä, M. Sc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AALTO UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY Abstract of the Master's Thesis

Author: Miika Aho

Name of the thesis: Automatic Software Update of an Optical Measurement Device

Date: May 28, 2010

Number of pages: 9 + 66

Faculty: Faculty of Electronics, Communications and Automation

Professorship: S-72 Communications

Supervisor: Docent Timo Korhonen

Instructor: M. Sc. Tuomas Jylhä

Abstract text:

An automated software update system was developed for eliminating most customer-side

human errors associated with manual file replacement and related operations. A future version

is intended to automate in-house update package building process to eliminate many supplier

side human errors in configuring the update file package before it is sent to the customer.

The product to be updated is a measurement software delivered to customer factories. Any

hardware issues are not dealt with in this project. This software provided by Mapvision Oy runs

an optical measurement hardware also provided by the same company. The purpose of the

software and hardware combination is optical measurement for quality control of industrial

products.

Substantial savings are expected to be gained by deploying this update system. This is largely

due to the fact that the customers are situated typically abroad – sometimes also on different

continents. As a result Mapvision personnel need to fly to these locations to implement the

current strategy of manual updates. The automated system would reduce travel cost,

accommodation cost, extra salary for work days in foreign countries and total work time of an

individual software update. The above effects are expected to occur when Mapvision personnel

would no longer have to perform the extra work of manually installing software at a customer

factory.

Keywords: Software update, software automation, usability, heuristic evaluation, remote
desktop

i

AALTO-YLIOPISTO

TEKNILLINEN KORKEAKOULU Diplomityön tiivistelmä

Tekijä: Miika Aho

Työn nimi: Optisen mittalaitteen automaattinen ohjelmistopäivitys

Päivämäärä: 28.5.2010

Sivumäärä: 9 + 66

Tiedekunta: Elektroniikan, tietoliikenteen ja automaation tiedekunta

Professuuri: S-72 Tietoliikenne

Työn valvoja: Dosentti Timo Korhonen

Työn ohjaaja: DI Tuomas Jylhä

Tiivistelmäteksti:
Tässä työssä kehitettiin automatisoitu ohjelmistopäivitysjärjestelmä, jolla eliminoidaan inhimillisiä

virheitä asiakkaan toimitiloissa suoritettavasta tiedostojen korvauksesta ja muista

päivitystoimenpiteistä. Jatkoversioiden on tarkoitus jatkaa tätä virheiden poistoa

automatisoimalla myös päivityspaketin muodostaminen ennen sen lähettämistä asiakkaalle.

Päivitystoimenpiteen kohde on mittausohjelmisto, joka on toimitettu asiakasyritysten tehtaisiin.

Laitteiston päivitys ei kuulu tämän projektin piiriin. Ohjelmisto on Mapvision Oy:n tuote ja toimii

teollisessa käytössä olevassa optinen mittalaitteessa, joka on saman yrityksen toimittama.

Laitteiston ja ohjelmiston käyttötarkoitus on teollisten tuotteiden laadunvalvonta optisilla

mittauksilla.

Työssä kehitetystä järjestelmästä odotetaan huomattavia kustannussäästöjä aikaisempaan

toimintamalliin verrattuna. Tämä johtuu pääasiassa siitä tilanteesta, että asiakkaat sijaitsevat

tyypillisesti ulkomailla – osa myös muilla mantereilla. Seurauksena tästä Mapvision joutuu

lennättämään työntekijöitään näihin kohteisiin päivittämään tiedostoja käsin, koska

tämänhetkinen ratkaisu ei sisällä muita keinoja. Asiakkaan tiloissa tapahtuvan

ohjelmistopäivityksen automatisointi vähentäisi matkustuskuluja, majoituskuluja, menoja

päivärahoina ja yhteen päivitykseen kuluvaa kokonaisaikaa. Näitä etuja odotetaan käsityön

vähentämisestä ja työn siirtämisestä pois asiakkaan tiloista.

Avainsanat: Ohjelmistopäivitys, ohjelmistoautomaatio, käytettävyys, heuristinen arviointi,

etätyöpöytä

ii

Preface
It is a complex task to successfully integrate an update software with an existing target

software to be updated and the staff of the system supplier company and the staff of the

customer company. In addition this should happen in a cost-effective way with minimal

human errors in system development and system application tasks. Paying attention to the

usability of these products in supplier offices and in customer environment is a useful in

shaping a usage process which will serve the needs of both supplier and customer.

Thinking oriented towards problem solving is something I often find interesting.

Programming and more generally product development is a practical field of employment

where this is useful if not often necessary. Mapvision Oy provided me with an opportunity

to carry out a project employing interesting problem solving tasks and thus I found it a good

choice for my master's thesis.

My job application had approximately four general areas of interest I found most preferable

when searching for a thesis work project. The remote automatic update of an industrial

measurement device got three hits out of four – remote operation, programming and

automation – and the choice was easy to accept the job offered.

I would like to express my thanks to Mapvision Oy staff for providing a pleasant work

environment in which to develop this graduation work. I found the people most friendly and

helpful both in casual conversation and when discussing work matters.

Espoo, May 28, 2010

Miika Aho

iii

Table of contents
1 Introduction.. 1

1.1 Thesis concept map...1

1.2 The system to be updated..2

1.3 Historical review... 5

1.4 Research questions...5

2 Theory.. 6

2.2 Usability... 6

2.2.1 Potential benefits of usability..7

2.2.2 Usability goals..8

2.2.3 User profiling..9

2.2.4 Heuristics... 10

2.2.5 User studies...13

2.2.6 User tests... 13

2.2.7 Pluralistic walk-through..14

2.2.8 Cognitive walk-through..14

2.2.9 Formal usability inspection...14

2.2.10 Feature inspection...15

2.2.11 Consistency inspection..15

2.2.12 Standards inspection...15

2.2.13 About usability in current research and industry..16

2.3 Software automation..20

2.3.1 Requirements of automation..20

2.3.1.1 Environment check..20

2.3.1.2 Standardized file structure...20

2.3.1.3 Correct preset files and parameter lists...21

2.4 Remote connection..21

2.4.1 Chosen system..22

2.4.2 Security.. 22

2.4.3 Requirements for network access..22

iv

3 User centric design work flow..23

3.1 Chosen methods..23

3.1.1 Initial problem definition...23

3.1.2 Stakeholder meetings..23

3.1.2.1 Key functionality to support user needs...25

3.1.3 Typical use scenarios..25

3.1.3.1 Local update..25

3.1.3.1.1 Configuration...26

3.1.3.1.2 Local procedures...28

3.1.3.2 Remote update..29

3.1.3.2.1 Preparations..30

3.1.3.2.2 Connecting...30

3.1.3.2.3 Using the connection...30

3.1.4 Concept definition..31

3.1.5 Expert user group definition...33

3.1.6 Local user group definition...33

3.1.7 Expert interface building..34

3.1.8 Preventing users from updating the wrong computer...34

3.1.9 Addition, deletion and replacement of files...36

3.1.10 Addition, deletion and replacement of parameters...36

3.1.11 Local interface building..36

3.1.12 Expert user group prototype testing...37

3.1.12.1 Practicality of early prototypes...37

3.1.13 Local user group prototype testing...37

3.1.14 Remote connection testing...38

3.1.15 Manual writing..38

3.2 Applied heuristics...38

3.2.1 Applied Nielsen's heuristics...39

3.2.2 Applied Gerhardt-Powals’ cognitive engineering principles.......................................42

3.2.3 Solution evaluation...47

3.3 Alternate methods..47

3.3.1 Theory.. 47

3.3.1.1 Usability Testing...47

3.3.1.2 Task Analysis...48

3.3.1.3 Think aloud protocol...48

v

3.3.1.4 Contextual inquiry..49

3.3.2 Application... 50

3.3.2.1 Expert side automation..50

4 Experimental application..50

4.1 Offline update...51

4.1.1 File list.. 52

4.1.2 Parameter list...53

4.1.3 Environment test programming..54

4.1.4 File writing programming..55

4.1.5 Parameter writing programming...56

4.1.6 Report generation..56

4.2 Online update...56

4.2.1 Network settings..57

4.2.2 Chosen connection program..57

4.2.3 Task sequence...57

4.3 Potential future improvements...58

5 Discussion.. 60

6 References... 63

vi

Key concepts

- Update:

Computers. to incorporate new or more accurate information in (a

database, program, procedure, etc.).

(update, n.d.)

- Automation:

1. The automatic operation or control of equipment, a process,

or a system.

2. The techniques and equipment used to achieve automatic

operation or control.

3. The condition of being automatically controlled or operated

(automation, n.d.)

- Usability:

The effectiveness, efficiency, and satisfaction with which users can

achieve tasks in a particular environment of a product. High

usability means a system is: easy to learn and remember; efficient,

visually pleasing and fun to use; and quick to recover from errors.

(usability, n.d.)

vii

- Benchmarking:

A standard by which something can be measured or judged:

"Inflation . . . is a great distorter of seemingly fixed economic ideas

and benchmarks" (Benjamin M. Friedman).

(benchmarking, n.d.)

-State-of-the-art:

n. The highest level of development, as of a device, technique, or

scientific field, achieved at a particular time: "Forty or fifty years ago

the state of the art in radio was represented by crackling noises

coming from a console of . . . Aztec-temple shape" (New Yorker).

(state of the art, n.d.)

-User interface

(UI) The aspects of a computer system or program which can be

seen (or heard or otherwise perceived) by the human user, and the

commands and mechanisms the user uses to control its operation

and input data.

A graphical user interface emphasises the use of pictures for output

and a pointing device such as a mouse for input and control

whereas a command line interface requires the user to type textual

commands and input at a keyboard and produces a single stream

of text as output.

A user interface contrasts with, but is typically built on top of, an

Application Program Interface (API).

viii

(user interface, n.d.)

-Interface:

Computer Science

 1. The point of interaction or communication between a

computer and any other entity, such as a printer or human

operator.

 2. The layout of an application's graphic or textual controls in

conjunction with the way the application responds to user activity:

an interface whose icons were hard to remember.

(interface, n.d.)

-Remote control:

n.

 1. The control of an activity, process, or machine from a

distance, as by radioed instructions or coded signals.

 2. A device used to control an apparatus or machine from a

distance.

(remote control, n.d.)

ix

1 Introduction

1.1 Thesis concept map

This diagram is intended to illustrate the surrounding logical structure of this

thesis work. The work context is sketched in a tree structure. The root or starting

node of every tree is situated at the upper left corner of the respective colored

rectangle. Each crossroads of straight lines represents a branch in the tree. Also

each straight line ends in a node representing an individual topic related to this

thesis work or it's related concepts.

1

1.2 The system to be updated

The current system targeted for a software update by this project is a

combination of standard PC hardware, a standard Windows operating system,

special optical measurement hardware and special software.

2

Image 1: Thesis concept map

The PC hardware is selected mainly by cost. It's main goal is to serve as a

platform on which to run a standard operating system and also to connect some

external hardware to the custom software. Other functions are executed by

custom means.

The operating system in use is standard Windows XP. It merely serves as a link

between the PC hardware and the custom control software. No need to specially

customize the operating system are known.

The custom control software is the only target of this update solution. The control

software is the most sophisticated component of this Mapvision product. It serves

both to control the relatively simple custom measurement hardware, to analyze

the results obtained from the measurement hardware and to deliver the results to

the customer user.

The software developed in this project is divided into two parts. The office side

software is referred to as packager. This is the component that is used to

produce the update package which is then delivered to the customer factory

employee. The other software component is referred to as patcher. This is the

software that runs the package and thus executes the final patching operation at

the customer side factory computer.

3

4

Image 2: The causal relationships of the major factors influencing current

Mapvision update process development.

1.3 Historical review

Updating the measurement software of industrial measurement computers has

been a recurring demand for Mapvision operations. The need for this has come

from various causes. However the solution is always accessing the target

computer to alter the software. This practice in turn has sent Mapvision staff onto

repeated on-site calls to foreign countries.

The need to frequently travel across the different continents places an obvious

and undesirable burden of cost to the company's expenses. This is caused

mainly by financing the air travel of the relevant Mapvision employees and

providing hotel accommodation near the target site. Another significant source of

expense is the extra work time needed by the practice of visiting the production

sites frequently. The added travel time and the noisy and otherwise

uncomfortable work environment of a factory floor may also be considered

undesirable factors by company employees. Thus removing or reducing the use

of this practice may have a desirable effect on subjective work experience.

1.4 Research questions

The central research questions for this project are improving three important

attributes in a software update operation. The first question is finding out how

Mapvision could reduce the time spent by the customer. The customer staff is

currently waiting for a software update to their measurement computer for an

unnecessarily long time. This is due to the fact that a Mapvision sales person or

a technical employee has to personally travel to the target customer site.

The second question is studying how they can reduce the cost of a software

update which currently involves sending Mapvision personnel to foreign factories

by plane. This is a considerable waste of money in the long run.
5

The final one is looking into how the staff involved in software updates can

reduce human errors happening in a very noisy and distracting factory floor

environment. Currently a Mapvision representative sent to a customer factory is

not enjoying calm working conditions. This would be preferred given the

technically complex nature of the system he or she is expected to reconfigure for

production service.

2 Theory

Some general purpose concepts relevant to this project are defined here.

2.1

2.2 Usability

“The practice of designing usable products is called usability engineering.1 The

book User-centered system design by Donald Norman and Stephen Draper [1] is

a pioneering work. John Gould and his colleagues also worked with usability

methodologies in the 1980s [2]. Dennis Wixon and Karen Holtzblatt at Digital

Equipment developed Contextual Inquiry and later on Contextual Design [3];

Carroll and Mack [4] were also early contributors. Later, various UCD

methodologies were proposed e.g. by [5–10]. The standard ISO 13407 [11] is a

widely used general reference for usability engineering.” (Jokela, 2005)

Heuristic evaluation and cognitive walkthrough are studied to be the most

actively used and also most frequently researched methods. Pluralistic

walkthrough and formal usability inspection methods appear to have been either

6

cannibalized into other techniques or mostly abandoned by users of practical

development applications. (Hollingsed, 2007)

Usability inspection is a general purpose concept for certain cost effective

strategies for analyzing proposed user interfaces to find problems in practical

usability. These are rather informal approaches and easy to use. (Nielsen, 1995)

2.2.1 Potential benefits of usability

One definition of usability is the success of a targeted user in being able to use

7

Image 3: A user-centric product development process diagram. (Jokela,

2005)

the product in a targeted environment and use situation. Investment in usability

engineering can:

− Raise sales volumes

− Produce an increased amount of satisfied users

− Lower costs related to development

− Decrease costs caused by product support functions

According to the Usability Professionals' Association Business benefits of

usability include:

− Increased productivity

− Decreased training and support costs

− Increased sales and revenues

− Reduced development time and costs

− Reduced maintenance costs

− Increased customer satisfaction

(Usability Professionals' Association, n.d.)

2.2.2 Usability goals

Usability goals are preferably quantifiable measures chosen before testing a

product, prototype or concept with typical users. The goals may be divided to four

categories: Performance, accuracy, recall and emotional response. By

measuring the system before any improvements are implemented one can gain a

control test result. Next usability problems are observed and hypothesized

solutions are implemented. Now one can run the experiments again and

compare the new results to the original control results and look for improvement

in the test score.

− Performance

8

A quantity describing the resources a user expends accomplishing a given task.

This may be measured in continuous time or discrete steps with the user

interface.

− Accuracy

A measure of the amount of mistakes a user made when trying to perform the

given task. It is also often relevant if the mistakes made caused the task to fail or

could be corrected with appropriate information and/or methods.

− Recall

A description about how much the user remembers about performing the task

immediately after the performance or after a significantly long time without using

the system.

− Emotional response

The subjective experiences of the user about the system. The user may feel

nervous, happy or something else. It may also be valuable to know the way the

user would praise, criticize etc the system to other people.

(usability testing, n.d.)

2.2.3 User profiling

User profiling is the act of dividing the projected users into groups. The dividing

criteria should be meaningful to the usability assessing project. One should

choose the criteria so that they affect the users' ability to use revelant products.

The products being developed or evaluated are of course relevant. Also other

products may be relevant if they could affect the usability of the evaluated

product when used with it. Also such products may be relevant which employ

user interface solutions which may be productively used in near future versions

9

of the evaluated product.

2.2.4 Heuristics

Heuristic evaluation is conducted by usability engineers examining whether or

not the elements of the proposed user interface conform to generally accepted

design guidelines. These principles or rules of thumb are called the heuristics.

(Nielsen, 1995)

A study compared usability issues found in a user survey against the issues

found by applying usability heuristics to the same system. The results showed

that 91% of the issues found in the user survey were found in the heuristic

evaluation by using competent evaluators. The tested system was an e-learning

application. These results estimate heuristic evaluation to be a useful tool for

cost-effective searching of usability problems. (Ssemugabi, 2007)

Nielsen's widely used heuristics (Nielsen, 1994) are listed by their original terms,

with descriptions.

− Visibility of system status

The system should always keep users informed about what is going on, through

appropriate feedback within reasonable time.

− Match between system and the real world

The system should speak the users' language, with words, phrases and

concepts familiar to the user, rather than system-oriented terms. Follow real-

world conventions, making information appear in a natural and logical order.

− User control and freedom

Users often choose system functions by mistake and will need a clearly marked

10

"emergency exit" to leave the unwanted state without having to go through an

extended dialogue. Support undo and redo.

− Consistency and standards

Users should not have to wonder whether different words, situations, or actions

mean the same thing. Follow platform conventions.

− Error prevention

Even better than good error messages is a careful design which prevents a

problem from occurring in the first place. Either eliminate error-prone conditions

or check for them and present users with a confirmation option before they

commit to the action.

− Recognition rather than recall

Minimize the user's memory load by making objects, actions, and options visible.

The user should not have to remember information from one part of the dialogue

to another. Instructions for use of the system should be visible or easily

retrievable whenever appropriate.

− Flexibility and efficiency of use

Accelerators -- unseen by the novice user -- may often speed up the interaction

for the expert user such that the system can cater to both inexperienced and

experienced users. Allow users to tailor frequent actions.

− Aesthetic and minimalist design

Dialogues should not contain information which is irrelevant or rarely needed.

Every extra unit of information in a dialogue competes with the relevant units of

information and diminishes their relative visibility.

− Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no codes), precisely

11

indicate the problem, and constructively suggest a solution.

− Help and documentation

Even though it is better if the system can be used without documentation, it may

be necessary to provide help and documentation. Any such information should

be easy to search, focused on the user's task, list concrete steps to be carried

out, and not be too large.

Gerhardt-Powals’ cognitive engineering principles aim at the much same goals

as Nielsen's and can be considered an alternative set of rules of thumb.

− Automate unwanted workload

- free cognitive resources for high-level tasks

- eliminate mental calculations, estimations, comparisons, and

unnecessary thinking

− Reduce uncertainty

- display data in a manner that is clear and obvious

− Fuse data

- reduce cognitive load by bringing together lower level data into

a higher-level summation

− Present new information with meaningful aids to interpretation

- use a familiar framework, making it easier to absorb

- use everyday terms, metaphors, etc

− Use names that are conceptually related to function

- Context-dependent

- Attempt to improve recall and recognition
12

- Group data in consistently meaningful ways to decrease search

time

− Limit data-driven tasks

- Reduce the time spent assimilating raw data

- Make appropriate use of color and graphics

− Include in the displays only that information needed by the user at a
given time

− Provide multiple coding of data when appropriate

− Practice judicious redundancy

2.2.5 User studies

User studies refers specifically to studies focusing on users. This should not be

confused with other studies in usability engineering. More specifically user

studies do not especially look into a usable system, tasks, goals or other aspects

of usability engineering. Studying users may be done by employing interviews,

queries, observations in a typical use environment or other methods of research.

The goal of user studies is to establish useful understanding about the needs,

desires, skills, relevant pre-existing knowledge, other abilities, preferences etc of

the potential users.

2.2.6 User tests

User tests are controlled experiments using a functional prototype of the system

under development. Real sample users are given tasks to accomplish by using

the system. Their activities are monitored and preferably recorded for any later

analysis. The developers or special usability experts then compare the chosen

usability goals against real achieved performance of the product when used by
13

representatives of the chosen user profiles.

2.2.7 Pluralistic walk-through

Pluralistic walk-throughs are a type of user tests. They involve real sample users,

developers and other stake holders. A meeting is held between members of the

aforementioned parties. A use scenario is walked through by using drafts,

screen shots or other samples of user interface elements. All steps are discussed

between the participants. (Nielsen, 1995)

2.2.8 Cognitive walk-through

A cognitive walk-through is a rather ambitious enterprise. Here a target user is

modeled as a machine like system. This system is considered having input data,

memory content, previously known strategies for problem solving and output

methods. In a cognitive walk-through developers simulate a target users actions.

The user's current goals and relevant memory content are explicitly modeled.

This information is used to estimate whether or not the user has the needed

information at the right time to carry out the current task. (Nielsen, 1995)

2.2.9 Formal usability inspection

A formal usability inspection is divided into six steps. The roles in this process

are strictly divided. The high level strategy is an effort to combine to other

usability evaluation methods. These are a heuristic evaluation and a simple

version of a cognitive walkthroughs. (Nielsen, 1995)

14

2.2.10 Feature inspection

A feature inspection revolves around the features of the proposed product like

the name suggests. In a feature inspection the needed features for a given user

task are listed. This is repeated for each user task that is chosen for evaluation.

The lists are checked for certain potential problem sources. Long sequences are

both wasting the user's time and increasing the probability of a human error.

Awkward steps introduce mistakes by the user. Steps that would be unnatural for

the chosen users or steps that would need knowledge or experience that the

target users are not expected to possess both lower the probability of the user to

try these steps. (Nielsen, 1995)

2.2.11 Consistency inspection

A consistency inspection collects developers from several projects. They then

compare a suggested system's interface to their projects. The goal is to check

whether or not the interface in question handles similar tasks in same ways as

the other systems' solutions. This increases the likelihood that a given user will

recognize the new system's interface elements and practices. Many users have

previous experiences with other systems where these same choices may have

been made in system design. (Nielsen, 1995)

2.2.12 Standards inspection

A standards inspection requires a special expert on a specific user interface

standard. The expert goes through the proposed user interface material. During

the course of this examination he or she is inspecting all elements and

functionality for compliance with the interface standard he or she is familiar with.

If several standards are to be inspected a group of experts may be required to

15

carry out the inspection. (Nielsen, 1995)

2.2.13 About usability in current research and industry

A study looked into the deployment of usability in software development

organizations. It found that 29 out of 39 studied groups performed some method

of usability evaluation. The most influential problems hindering usability

evaluation were a working understanding the field of usability, allocation of

resources and the mindset of developers. (Bak, 2008)

16

17

Image 4: A depiction of a user centric project flow.

(Jokela, 2005)

The issue of time consumption in the development process has a novel advocate

for a future solution. A study looked into the compatibility of current usability

evaluation methods with possibilities for automating parts of the evaluation

process. Future research may provide a viable alternative for completely manual

usability testing. (Ivory, 2001)

In an organization which uses different staff for usability evaluation and product

development the input from evaluators to developers may be in the form of

usability problems or redesign suggestions. A study was made to estimate the

relative usefulness of usability problems and design proposals to developers.

The results reported the redesign ideas to provide more utility for the developers

than usability problems. Usability issues were seen largely useful for choosing

the relative priorities of redesign work. Also none of the participating developers

found in the end that they would have wanted to receive only redesign proposals

or only usability issues. (Hornbæk, 2005)

Choosing practical usability evaluation methods for a given project may yield very

different choices from different developers. The factors to be considered include

resource allocation and expected and required accuracy of the results. The

mutual complementary and convergence of heuristic evaluation and user testing

were confirmed to certain extent in a study. The paper in question compared the

effectiveness of heuristic evaluation and usability testing. It was not however

found out in the study whether or not the usability problems reported resulted in

corresponding problems in actual use of the system. (Law, 2002)

Evaluating an interface with users and evaluating without users have traditionally

been two rather distinct processes. This has been reflected in resource

consumption in the design procedures and depending on the system potentially

in results. An effort to bridge the gap has been made by applying psychological

models of human thinking processes and behavioral patterns. These have been

18

used to produce a model of a user attempting to accomplish a given task with the

given user interface. This way one could possibly evaluate a user interface

without users and get results very similar to user tests. The proposed strategy is

called metaphors of human thinking or MOT.

“The metaphors concern habit, the stream of thought, awareness, association,

he relation between utterances and thought, and knowing.” (Frøkjær, 2008)

MOT is most importantly designed to combine a psychological model with

thinking metaphors. This is an attempt to uncover relevant new pit holes in

sequences of interface actions. These interface issues are expected to match

sufficiently well with actual problems found with real users. The efficiency of MOT

was tested in three experiments. The first of these experiments demonstrated

that the usability issues found by using MOT are more serious than those found

with heuristic evaluation. Also the problems found with MOT were found to be

more complex to repair. Additionally the problems uncover with MOT were

deemed more likely to affect experienced users. In the second experiment MOT

was found to find more usability issues than cognitive walkthrough. It also

covered a wider range of a reference collection of usability problems. The

participants of the experiment reported preferring using MOT over cognitive

walkthrough. An important reason for this was that the scope of MOT appeared

to be wider. In the third experiment MOT, cognitive walkthrough and think aloud

testing. It targeted non-traditional user interfaces. Although the participants

preferred using think aloud testing it found few problems uncovered by the other

two tested methods. In contrast MOT identified more usability issues than the

other two tested techniques. Considering the usability problems found in the

experiments applied to system design MOT succeeded better than the control

strategies and the results it produced were comparable to think aloud testing.

(Frøkjær, 2008)

19

2.3 Software automation

Software automation refers to programs developed to remove a costly, time

consuming and error-prone human agent from a wanted process and replace the

human with a cheaper, faster and more accurate computer program. Generally

automation is the fourth step in grand scale work development – first being bare

hands, second non powered tools, third mechanization by engines and fourth

automation by adding some logic control system, typically electronics.

2.3.1 Requirements of automation

2.3.1.1 Environment check

The customer’s PC must be checked for the preset attributes to ensure that the

user has the right update package in the right computer. This is done by verifying

the existence of the measurement software installation directory, the

measurement software revision number and it’s license validity. All of the above

checks are individually optional and chosen at Mapvision offices before delivery

of update package to customer factory.

2.3.1.2 Standardized file structure

To be able to perform a controlled software update the wanted update

instructions must be saved in some standardized form. An XML format list was

chosen for this purpose. The customer-side part of the update software may then

follow the preset instructions. Deviations from the normal file structure would be

likely to cause problems in the update process. The file structure is preferred by

Mapvision staff to remain out of outside hands to avoid unwanted tampering with

systems.

20

The customer side system briefly described at chapter 1.2 (the target system of

the update process) must also conform to the expected folder structure. Similarly

the expected files must be found in the expected locations. Any missing files will

not be searched for by the update software. This would likely be unproductive as

any files in unexpected locations would likely not function as expected.

2.3.1.3 Correct preset files and parameter lists

The preset files containing all the update instructions control the entire update

process. Thus the integrity of the preset files and other options is a recognized

error sensitive factor. It is planned to be automated in future versions of the

update software. This is to remove many human errors and to reduce time

consumption and memory load of the human operator. This part of automation

was however decided to be excluded from the 1.0 version of the update software.

The main reason for this decision was to fit the software development project and

the master’s thesis project to a practical and reasonably controllable time span.

2.4 Remote connection

The goal for using the remote connection is to provide an option to transfer and

run the entire update process and retrieve the update result report data without

using customer personnel. A customer company may choose this option if they

do not wish to be bothered by taking part in update processes. They essentially

only need to open the connection for Mapvision personnel. Also work time may

be saved by using the same system for future software updates. Then the same

network details need not be explained every time.

21

2.4.1 Chosen system

A Windows XP remote desktop software is to be run over an off-the-shelf VPN

software. This was chosen as a readily available option. Also the financial impact

was expected to be low. There was already in-house expertise on this piece of

VPN software. This all contributed to a relatively easy decision in favor of this

solution.

2.4.2 Security

Sufficient encryption is provided by the chosen underlying VPN software

OpenVPN. By employing built-in security features (essentially encryption of

transmitted data) we saved plenty of development time and increased the

confidence level in the solution. This is considered as opposed to developing

one's own remote connection and encryption software. Even with a modest set of

features this would have imposed a significant delay to the already stretched time

table.

2.4.3 Requirements for network access

The VPN software and remote desktop software require certain ports and

connections protocols to be set to allowed state on both connecting computers.

This is personally negotiated with a customer technical representative to agree

an acceptable set of open access. Some customers are expected to allow

different port access than others. Hence one provides customization to the

customary set of ports suggestion.

22

3 User centric design work flow

3.1 Chosen methods

3.1.1 Initial problem definition

The goal of the project was to build a Windows program to automate the update

procedure of an optical measurement computer in a Windows environment. The

update was divided into two parts. The offline part consists of a program that will

update files and parameters based on a pre-defined list. The list is chosen at

Mapvision offices. The online part consists of creating an internet connection

between Mapvision office and the measurement computer at the customer

factory. Although the target computer of the update will usually be in routine

production use it was not deemed necessary to perform the update with the

target software running. This could be accomplished amongst others by adding a

redundant computer to handle the measuring operations during the software

update process. (Wei, 2003)

3.1.2 Stakeholder meetings

Several stakeholder meetings were held during the process of this project. The

participants were among others the business manager, the project supervisor, a

technical assistant, the developer and projected future users from Mapvision

technical staff and sales staff.

The main objectives were quite clear from the beginning on – the system to be

developed is expected to reduce the time spent for software updates into

customer computers, reduce the financial cost and time spent for dispatching

Mapvision staff to overseas customer factories to manually perform Mapvision
23

software updates and minimizing the number of human errors in the update

process. The manual update strategy consists of using standard Windows tools

for placing new files onto the customer measurement computer's hard drive and

individually changing parameters in existing files. No fixed measurable conditions

were set for the successfulness of the development project. The project is

considered a success on the grounds that the system was functioning without

any noticeable major technical or human related difficulties in limited office tests.

Other stakeholders should be identified as customer factory managers, whose

preference for this product is indirectly influenced by it’s usability by the factory

floor personnel. Also all Mapvision personnel should be considered indirect

stakeholders as the usability of this product affects Mapvision sales in the long

run.

The main high-level requirements from stakeholder meetings were a fast update

process and checking for correct environment before performing any changes to

the target computer to avoid accidentally manipulating the customer’s local

software environment into a random inoperable state as a result of using the

wrong update package file. More specific stakeholder requirements were the

necessary software development to contain an entire update package in one

standalone file to accommodate the needed ease of use at the customer

organization in a typical offline update case without any online connection, and

finally the option to offer an offline connection alternative to any customers willing

to allow the direct use of their measurement computer over a secure VPN

connection.

The technical and environmental requirements that arose during these meetings

were the need to implement all update functions from start to finish by using only

standard PC hardware running Windows XP as the common operating system.

The physical environment is either a typical office space in the first step of the

24

update – the setup of the package file. In the latter part the environment is the

factory floor at customer facilities. Here the user will be in an unavoidably noisy

environment caused by loud production machinery and typically surrounded by

complex distraction with the factory operating around him. This in part adds to

the need to keep the customer user interface extremely simple.

3.1.2.1 Key functionality to support user needs

The key functionality to support user needs is in the setup part a diverse but

straightforward access to any parts of the update package the user is setting up.

The key functionality at the customer side is in a way the opposite of this: the

software is programmed to run the update process autonomously once it is

started by the local customer user and the user is not asked for any information,

all input is limited to the expert user interface at Mapvision offices.

3.1.3 Typical use scenarios

The most common projected use cases are planned to be a “basic” local update

process and a remote update process which is done from Mapvision

headquarters. These are described in more detail in following paragraphs.

3.1.3.1 Local update

The local update scenario represents a typical situation where the customer

organization has not granted Mapvision a permission to access the measurement

computer directly through a computer network or has not connected the

measurement computer into a computer network. Both of these cases may be

the result of the customer company either deeming these actions unnecessary or

choosing to avoid them because of carefulness with information security in

25

networks. Thus it is necessary to access the measurement computer indirectly

with the help of a local customer employee carrying the update file into the

measurement computer and carrying the report file back from the measurement

computer to be emailed to Mapvision staff.

3.1.3.1.1 Configuration

At first an expert user belonging to Mapvision staff collects the relevant new

versions of the updatable files and parameters onto his or her computer. The

user then runs the Patcher software to build the update package file. The user

interface is focused on a tree structure that describes the chronological steps that

will take place in the customer side update process. A central part of this tree is

the collection of file update operations. The user will configure these operations

to add, remove or/and replace any files in the customer side measurement

software installation path. This step consists of browsing the hard drive of the

office computer for the new file versions and selecting them individually into the

file lists of the Patcher software. The expert user also sets the target file paths on

the target computer for each new updatable file. The user writes the parameter

paths and names and their new values in the cases of parameter creations and

replacements. In cases of parameter deletions only parameter paths and names

are entered. The user may select to activate any number of the three available

environment check procedures – checking the validity of the license of the

measurement software to be updated, checking the software revision of the

measurement software and checking the existence of the expected installation

path of the measurement software. An expert user is offered an option to run any

arbitrary number of external command lines during the customer side update

process. These command lines are inserted into the desired chronological slot

between other update steps in the graphical user interface of the Patcher

program. The user may want to order the return of the entire file environment of

the measurement software at the customer side measurement computer. This
26

can be selected to happen before the update process, after the update process

or both of these times.

Finally the expert user clicks a button to instruct the program to create the self-

extracting compressed file to be delivered to the customer. This file contains all

updatable files and other needed utility files as a single stand-alone executable

application.

27

Image 5: Command line branch of the settings tree at the left side of the window.
Command line settings at the right side of the window. This software was
developed using an integrated development environment (IDE). This application
was written in C++. The basic user interface design was based on wishes from
Mapvision staff.

3.1.3.1.2 Local procedures

The expert user then emails the newly generated update package file to a local

customer user. The customer user moves the file onto the local measurement

computer via a memory stick or other media of choice. He then simply clicks on

the update executable file and the entire update process runs on the

measurement computer without any need to interact with the local user. The

update software displays progress information on the screen so that the local

user may observe that the update process is indeed taking place instead of any

software crash or other malfunction. The flow of information is a strict one way

process as the local user is isolated from affecting the outcome of the update

program running on the measurement computer. The update package generates

a report file describing the actual steps executed in the update process. When

every update step is finished, the update executable informs the local user that

the process is complete and asks the user to return the update report file to

Mapvision staff via email. The local user moves the report file onto the memory

stick used earlier and emails the report file back to Mapvision headquarters.

28

3.1.3.2 Remote update

The remotely executed update scenario is much akin to the local one. Actually

the remote scenario contains most parts the locally executed update scenario as

internal steps of the remote process. The additional parts are involved in

accessing the customer computer from Mapvision offices or another remote site,

thus avoiding bothering the customer users with potentially repeating update

tasks.

29

Image 6: Return operations branch of the settings tree at the left side of the

window. Return operations settings at the right side of the window.

3.1.3.2.1 Preparations

The first stage is generating the current update package file in the same manner

as described in the local update scenario immediately above. The other

preparatory phase is acquiring the relevant network access from the local

network administration staff of the customer organization. Once the network

admission has been negotiated and secured and the necessary connection data

has been delivered in form of usernames, passwords, network ports and

addresses, the actual remote connecting may be initiated.

3.1.3.2.2 Connecting

The expert user is situated for instance at Mapvision offices for the duration of

the entire update process. There he or she clicks on the connection opening

button of the VPN software and enters the connection data in the appropriate

fields. After a short delay the VPN program informs the expert user of a

successfully opened connection. Then the user may open the Remote Desktop

Connections utility delivered along with Windows XP. The user again enters

relevant connection data and the software forms a remote desktop connection

operating on top of the VPN connection.

3.1.3.2.3 Using the connection

Having the active pair of piled connections the expert user is now at a position to

replace the local user by conducting his or her role of copying the update

package file onto the target customer computer over the remote desktop

connection.

Finally the underlying VPN connection is ended by the user and thus the remote

update process comes to a stop. The expert user can now open the returned

30

report file and evaluate the successfulness of the update process, the content of

which does not lie within the scope of this paper.

3.1.4 Concept definition

At first an executable update package file is generated at Mapvision office using

the packaging program developed during this project. The Mapvision staff user

adds all wanted update operations using a graphical Windows interface. The

main update work is divided to complete files and individual parameters inside

files. Each of these is divided to adding a file, removing a file, and replacing a file,

and the same three for parameters. The user may also activate the environment

checks to help ensure the correct file will be executed in the correct customer

computer.

Next the package file is sent to the customer using email or a remote desktop

software over a VPN connection. The customer user then simply starts the

received program on the target measurement computer and the program runs

the entire update procedure without any input from the user. The user is then

asked by the program to send the generated report file back to Mapvision by

email. Update operations are logged into the report file for later inspection. In the

case of the remote connection the customer user is not needed at all – the

update package file is sent and executed by a Mapvision user and the report file

is retrieved over the same connection.

31

By using appropriate functionality conditions studied by Murarka et. al. to analyze

the inter-thread dependencies of the target software during the update sequence

one could according to the writers ensure the avoidance of deadlocks. By this

method a running multithread program could be updated without interrupting the

running concurrent target programs. This would ensure the termination of the

update program as well as the continued normal operation of the target programs

as opposed to potential deadlocking threads caused by the update process.

(Murarka, 2008)

32

Image 7: The process reference tab selected. The tab displays the chronological

progression of the client side of the update process.

3.1.5 Expert user group definition

The chosen expert user group consists of Mapvision staff relevant to software

updates. This includes field sales personnel and office technical personnel, both

of which are groups frequently setting up or executing manual software updates

to customer measurement computers. They have sufficient technical knowledge

to choose and replace individual files and parameters manually, as is done so far

without this automated update system. Due to the low number of members in this

group, all of them can also be specially trained to use the update configuration

program at Mapvision offices.

A study suggests a measurable difference between usability preferences

between Danish and Chinese users: Danish users valued effectiveness,

efficiency and lack of frustration more than Chinese users. Chinese users

reacted more to visual appearance, satisfaction and fun than their Danish

counterparts (Frandsen-Thorlacius, 2009). The statistical differences of

preference between domestic and foreign user groups might influence design

decisions. However the available data provides information only on differences

between Danish and Chinese users. Meaningful application of this data would

not appear reliable.

3.1.6 Local user group definition

The chosen local user group consists of customer technical personnel. The main

goal and motivation for this group using the system is to achieve a quick success

in the update process with minimal time and effort diverted out of the usual day to

day responsibilities. There is no reason to expect the local customer staff to have

any special interest in the update process and thus the safest assumption is to

expect them to consider it a somewhat alien product seemingly unconnected to

usual work tasks. This group must be expected to have little to no understanding

33

of the inner functionality relevant to updating the measurement software. This is

the reason to use the local users mainly only for starting the update program file.

They are deliberately kept out of the inner functionality of the update process to

avoid human errors and to reduce the need to train personnel. They however are

expected to possess basic Windows using knowledge, more specifically moving

the update program file to the target computer, starting it and sending the report

file by email to Mapvision. This should not be a problem for almost any technical

staff.

3.1.7 Expert interface building

The core functionality of the update process if the ability to perform file additions,

file deletions, file replacements, parameter additions, parameter deletions and

parameter replacements. The expert interface has separate lists for all of the

above operations. Also the individual environment checks are activated and

deactivated here, and their expected correct values are defined. This piece of the

software provides maximal access to all settings of an update process. An expert

user must have quick access to any supported features without having to

manually edit files in any memorized way. This access is only found in the expert

user interface.

3.1.8 Preventing users from updating the wrong computer

From discussions with the probable future expert users of the update system, it

has been found that accidentally updating the wrong measurement computer -

i.e. using the wrong update package - has happened quite easily. This causes

confusion, a need for trouble shooting and extra work load when it happens.

Thus this is a very undesirable scenario. To address this need the update system

now has a built-in safeguard to help ensure that the running update package is

34

intended for the computer running it. This is called the environment check and it

is contained in every update package.

One of the important factors to be checked for would be whether or not the target

software is still up and running or has it been properly shut down for the duration

of the update procedure. This matter was not chosen as one of the environment

check targets. It is assumed that either the customer's local technical staff is

shutting the target software down or Mapvision staff shuts it down remotely if the

customer has chosen to allow a remote connection all the way to the target

measurement computer. This question however easy to take care off could still

35

Image 8: Environment check branch of the settings tree at the left side of the

window. Revision check settings at the right side of the window.

be evaded by integrating appropriate software components into both the update

software and the target software. For instance by applying a software system

called dynamic C++ classes one could allow for controlled run-time updates of

C++ software. (Myrén, 2001) Such techniques do not come free from the

development time consumption point of view however. Lacking a sufficiently

disruptive problem this solution newer came to a phase of implementation.

3.1.9 Addition, deletion and replacement of files

The file operations are the most influential part of an update process. Parameters

may be used for example to store camera calibration data. While also

parameters change the behavior of the measurement process the file operations

may override the files containing the parameters. An expert user can exercise

this control by choosing which files to add, delete or replace. He or she will also

provide the path to the new file for addition and replacement. The user may

choose to write the path with the file name, to copy and paste it from another

program or press the supplied “browse” button to click the target file with a

mouse.

3.1.10 Addition, deletion and replacement of parameters

The expert user can choose which parameters to add, delete or replace. He or

she will also provide a new value for parameter addition and replacement.

3.1.11 Local interface building

Local interface design is guided by a reach for extreme simplicity to eliminate any

realistic possibility for the local user to influence the outcome of the update

procedure. This is performed by allowing the local user no control beyond the

36

choice to start the update program. The user is shown progress data during the

update process and a completion notice after it, but no input is taken from the

user at any point.

3.1.12 Expert user group prototype testing

The test version of the expert setup system is planned to be tested by a sample

of Mapvision technical and sales staff in the future. Outcomes of the tests are

estimated by the success rate of using the system to create a functional update

package. Implementation of this did not fit the time table of the thesis

employment time.

3.1.12.1 Practicality of early prototypes

Early prototypes containing expert side automation were developed and

demonstrated and received feedback to postpone the expert side automation to a

future version due to time constraints and currently unclear technical solutions.

The expert side automation was removed for this version, and prototyping the

user interface was decided to be executed at the time of completion of a

functional test version of the core technical solution as the user interface was

considered to be quick to change when needed when the underlying update

functionality was at an operational state.

3.1.13 Local user group prototype testing

The local user group is typically located far outside Finland. For this reason it

was decided that a controlled experiment was better executed at Mapvision office

by using office personnel to simulate customer staff. To get more accurate

results it would be preferable to eventually conduct studies with actual customer

37

staff in customer environments. People not familiar with the measurement

system should be chosen in an effort to avoid a bias of expertise. Also this

experiment did not fit into the time table of the thesis work employment and

should thus be carried out in the future.

3.1.14 Remote connection testing

The VPN connection was tested first between two computers in Mapvision office.

This produced a working remote desktop connection and did fit into the time table

of the thesis work employment. The next step should be connecting between a

computer at a home internet connection and a computer at Mapvision office. The

final test should be a connection between a computer in Mapvision office and a

real customer computer in actual customer premises.

3.1.15 Manual writing

The manual will be written for Mapvision use only, as the customer users are

instructed to start the update application each time an update is needed.

Necessary instructions are provided by the update program at run time. Local

customer users are not expected to remember anything about the update system

at the time of the next update operation. Recognition is preferred over recall.

(Nielsen, 1994)

3.2 Applied heuristics

This section discusses the practical application of the aforementioned heuristic

evaluation strategies. Both sets of heuristic models are applied separately to the

developed system.

38

3.2.1 Applied Nielsen's heuristics

− Visibility of system status

The packager program displays all selected options as they are chosen by the

user. This is however limited to the user selected sub set of options due to

screen size limitations.

The patcher program updates process status information onto the screen in real

time as events take place.

− Match between system and the real world

Packager options are organized and named after prevailing technical terms.

These are taken from currently used production software. This is the one which

current users are familiar with.

Patcher announcements are worded in simplistic, relatively non-technical

phrases. The need for this difference between use of language in the office

software and factory software comes from the steep gap of technical

understanding of the product. Factory users are expected to be much less

familiar with it.

− User control and freedom

All packager options are directly and individually erasable and changeable.

These reversing controls are placed next to them in the graphical user interface.

The update package itself can be re-opened for editing once it has been ordered

saved by the user.

Patcher doesn't support any direct undo or redo functions. The factory side non-

expert user is intentionally restricted to running pre-scripted update packages.

The factory side user is not allowed to make any update operations on his or her

own discretion.

39

− Consistency and standards

Packager offers the user selected options as radio buttons and editable lists as

expected from a Windows based configuration application. When the user is

happy about his or her choices he or she clicks the packaging button and is

informed of the results of the final packaging operation.

Patcher functions in the manner expected from everyday installation and

patching programs. It displays actions taken by the patching program and their

results in real time. Sub-topics of the patching process are divided into separate

windows which are opened and then closed as they become relevant and

obsolete in the patching process.

− Error prevention

The state of the customer side computer is unknown to the expert side

application. This prevents the recognition of error prone actions. The user cannot

be warned or prohibited from making mistakes in the packaging phase.

The customer side application checks that the preset environment check

variables match those in the system running the update patch. This is intended to

reduce the chance of accidentally updating the wrong computer.

− Recognition rather than recall

The packager user is not expected to enter any information into sequential

dialogs. All input is taken before any dialogs are displayed.

The patcher user is not allowed to enter any input in any phase of the update

sequence. Thus no information is expected to be carried by the user from one

dialog to a subsequent dialog.

− Flexibility and efficiency of use

One does not expect to see frequently recurring file replacements with identical

file names or other similar update trends which would offer potential accelerators
40

for frequent users. However a packager user may still configure and save an

update package in any frequently used basic configuration for future opening use

should such a trend emerge.

Efficiency of patcher use appears sufficient and flexibility an irrelevant concept

given that patcher usage is composed of running a single program file and giving

the single result file back to the sender.

− Aesthetic and minimalist design

The packager graphical interface offers the conventional names of the options to

be chosen. The user is informed of the completion of the packaging process. Any

other information is provided in the separate manual.

The user of the patcher application is informed of the individual steps in the

update sequence. This information is visualized by updating relevant event lists

in appropriate windows. Finally the user is asked to return the result file to the

sender of the patcher program file. This target person is the Mapvision employee

who provided the file in the first place.

− Help users recognize, diagnose, and recover from errors

The packager application doesn't use error codes. Any information provided is

displayed in plain language.

The patcher application doesn't expect the customer user to respond to errors.

Any error situations are reported to a separate log which is returned to Mapvision

for later analyzis. No error codes are used here either.

− Help and documentation

Any searching within the packager documentation is done by the users word

processor of choice. This documentation specifically describes typical tasks to be

carried out by the office user. The documentation focuses on the planned tasks

targeted at the Mapvision staff user. The documentation lists explicitly described

41

steps for the user to carry out. This process of completing the steps is aimed

directly at completing the planned tasks with the developed software. The

supplied documentation is written to stay within a practical length that can be

read by the user when performing the tasks. It is intended as a help material that

is read fast enough to serve as a reference when needed. No separate training

classes are expected to be needed.

Patcher does not come with separate documentation. The customer side user is

instructed by a Mapvision contact person to run the supplied patcher program on

the target computer and return the resulting file. Separate written documentation

for this purpose is considered redundant. One could include a simple help file

with the patcher program but this might also act as a distraction.

3.2.2 Applied Gerhardt-Powals’ cognitive engineering principles

− Automate unwanted workload

The packager program doesn't expect the user to make other input than choose

the settings, parameters and input files for the update package. This does not

require mental calculations, estimations or other such easily automated cognitive

tasks. A potential candidate for future versions is automating the input of

automatically detected software environment changes into the update package.

This would eliminate much of the manual configuration process in the packager

program.

The overwhelming majority of tasks associated with the patcher program has

been automated. All steps excluding the manual starting of the patcher program

and manual returning of the result file have been automated. The main goal of

this practice is however not reducing customer user's workload but eliminating

42

human errors when inputting data at the target computer.

− Reduce uncertainty

The data displayed by packager changes when the user changes it. Most of the

time the user sees the same text he or she has entered manually. The rest of the

data is composed of the multiple choice options also directly selected by the

user. Thus the presentation of the relevant data would appear to be in a simple

and clear form for the same user.

Patcher displays progress data in terms of accomplished or failed update steps.

The steps are displayed in text form as lists. The lists are updated in real time as

the update sequence proceeds to the next step. This approach is chosen as a

natural way of informing the user that the update process is still running and a

potentially present expert user may follow the progress of any points of interest.

An alternative approach might incorporate some manner of graphical

visualization of the update process. This was not deemed necessary nor an

economical use of development resources.

− Fuse data

Any data to fuse would consist of file operations or parameter operations. They

are fused in the sense of grouping them to additions, deletions and

replacements. Further fusion of file and parameter operations into meaningful

groups would require high level modeling of the target software system. Such

functionality was not implemented nor considered productive in this case.

The data displayed by patcher is fused into relevant separate windows by topic.

This is also a typical solution in commercial update software.

− Present new information with meaningful aids to interpretation

Data and terms presented by packager is known by the expert user. For instance

setting files and parameters is a concept understood by the user in the first place.

43

Otherwise he or she would not know what the purpose of the developed

application is.

The goal of patcher displaying progress data to a customer user is showing that

the update process is still underway and not for instance complete or hasn't

crashed. Therefore the user is not required to understand the progress data in

any detail. A large portion of it is still probably understood however as most of the

terms used a familiar from a general purpose Windows environment. Again any

possibly present expert user is already familiar with the technical terms used.

Otherwise he or she would not understand the work to be carried out with or

without the terms used.

− Use names that are conceptually related to function

Names or terms used by packager are selected to match their counterparts in the

environment outside the update process. Any renaming of concepts is avoided.

Packager doesn't group the package data in the temporal order in which the data

has been entered. All packager data is grouped by it's function. For example

external command lines in a particular time slot of the update sequence and file

additions are grouped in two distinct lists. Inside these lists the user added

actions are listed in the entered order.

Patcher uses the same terms as applied in packager. Any considerable change

in naming conventions would not only be counter-productive for most users but a

separate redundant authoring operation.

Patcher groups displayed data in a chronological order. This is chosen to present

the real time progress of the update process. Inside the chronological lists the

individual update actions are grouped into functionally related sets. An example

of this practice is displaying all parameter replacements as a single continuous

lists within the main action list. This is a consequence of displaying individual

update actions as they actually occur in the target computer running the update

44

program in question.

− Limit data-driven tasks

Packager groups raw data by function. This is expected to help the user identify

types of entries used. Coloring the data entries in a useful way would be difficult

as they are already grouped by the same criteria that the coloring would use –

their function. Coloring the repeating functional keywords in the data might be

helpful though.

Patcher handles data in the same manner as packager. Coloring might be

practical for example as a separation between different parts of the update

process. For instance the displayed update events could be colored differently

according to their category. For example file deletion event entries could be

displayed in a different color from parameter additions. Another possibility would

be coloring the update event texts according to the outcome. Such as coloring

successful actions green with failed actions presented in a red font.

The update progress visualization of patcher is text based. Graphics could be

used to make events easier to absorb, especially for the less technical customer

side users. However producing and displaying graphics was not considered a

desirable time investment within the development activities. At least this was the

case with this first version of this update software.

− Include in the displays only that information needed by the user at a given
time

The patcher real time update event announcement lists are somewhat

unnecessary for most customer users. They usually do not need to know the

specific steps in the patching process. They are however chosen to be displayed.

This provides the customer user a feedback that tells him or her that the patching

process is actually making progress in discreet visualized steps. Otherwise the

user might easily begin suspecting whether the process has crashed or slowed

down to defectively low rate of progress.
45

For an occasionally present Mapvision side expert user the patcher progress

data does actually show whether the update process is making expected

progress. Otherwise he or she may choose to commence debugging actions to

find what has caused any unexpected progress data.

− Provide multiple coding of data when appropriate

Packager uses one set of terms for needed concepts. Most of the terms or

names used are direct copies of the names already in use in manual updates. A

future release of the packaging software may add alternative names or

descriptions for the same concepts if it is considered useful. For example the

environment check terms could be described in more detail as this is a concept

not familiar from manual updating practices.

Patcher applies the same technical terminology as packager. As the technical

goals to be achieved are the same there is little need for separate terms.

− Practice judicious redundancy

Packager displays for example file deletions or parameter replacements only in

their respective lists. Displaying them in other context than their own lists has not

been needed for the functionality of the software. For example individual file or

parameter operations are not displayed in any dialog boxes or status reports.

Thus a conflict of choosing between displaying the single operation and

displaying the entire list of functionally related operations does not appear to

arise in this application.

Patcher functions much in the same sense as packager also in this respect. The

primary difference is that patcher displays the file and parameter operations and

external command lines combined into the same list. The same situation with

packager about the lack of the aforementioned conflict also stands here.

46

3.2.3 Solution evaluation

Most of the heuristic evaluation requirements were met in the chosen technical

solutions – that is the two programs developed. Further usability evaluation might

reveal more potential usability issues which could be met with potential solutions.

This software is however designed from the ground up to a very small and

selected group of users. Every user is always individually instructed to use the

software. The emergence of a new user is an infrequent event. The product is

not released to any kind of mass market or other groups of untrained users. Also

the time constraints of the project were met and thus no further evaluation

operations such as user tests are possible.

3.3 Alternate methods

This part discusses general purpose user centric design methods. In addition

some notable attempted applications and technical solutions are described.

These belong to a group that was not considered relevant to the final

implementation stage of this development project.

3.3.1 Theory

3.3.1.1 Usability Testing

Usability testing was considered a useful method for evaluating the usability of

the resulting update system. Unfortunately due to time constraints imposed by a

tight schedule this method was not implemented.

Usability testing is a usability evaluation method which specifically uses actual

47

potential users. This is a clear difference from usability inspection methods which

use usability experts to evaluate the system. The users are selected to represent

the different user profiles deemed relevant to the product. As such the user

sample's success at using the system is an excellent point to use as reference

when judging usability.

A usability test would be planned around a set of tasks. The users would be

instructed to carry out these tasks with the proposed system. The success of the

users would be judged based on some predefined criteria. This could be time

spent, ratio of successfully completed tasks to all given tasks, subjective

satisfaction etc. The results would be a set of numbers - for example “80 % of

given tasks successfully completed”.

3.3.1.2 Task Analysis

A task analysis is a strategy for modeling a given task by describing many of it's

attributes explicitly and structuring it from smaller sub units – that is

psychological and mechanical actions. The attributes described may be step

durations, task frequency, task complexity, changes in the environment,

equipment or any other relevant observations.

The resulting model may take the form of a hierarchical presentation with

attributes and sub tasks forming nested structures. Results gathered from a task

analysis may be applied for example to process improvement, automation,

training or equipment selection. (task analysis, n.d.)

3.3.1.3 Think aloud protocol

As the name suggests the think aloud protocol is designed so that test users

48

think aloud as they try to accomplish given tasks using the proposed system. The

people acting as test users are instructed to always say aloud what they watch,

think, try to do, feel.

As opposed to observing the outcome of the effort to complete a task, the

researchers have the opportunity to observe the individual steps taken to reach

the goal. Video and audio recording is considered useful for analyzing the test

later on. The think aloud protocol is used in usability engineering, psychology and

social sciences.

3.3.1.4 Contextual inquiry

A contextual inquiry would most practically be conducted at an early phase of a

product development process. The reason for this is that a contextual inquiry is a

learning strategy for understanding a user's habitual way of trying to reach some

goal in a work activity or in other context. This information can then be

incorporated into a product development plan.

This learning method may be described as an extreme short time master-

apprentice relationship. The user is the master who already knows how he or she

is usually performs the activities being studied. The usability researcher takes a

passive by-stander role. The initiative should be kept at the hands of the master

with the apprentice trying his or her best not to interfere with the process.

Interviewing the user may be conducted during the task execution or after it.

49

3.3.2 Application

3.3.2.1 Expert side automation

Initial feedback from stakeholder representatives called for extensive automation

of the expert side functionality. More specifically this concept was projected to

incorporate version tracking of available potentially updateable files and

automatic generation of an update package suggestion. This suggestion was

then planned to be evaluated be an expert user who would accept or dismiss any

or all individual file and parameter update operations. A functional prototype of

this system was developed and as it was evaluated it was deemed mostly

operational but too time consuming to be incorporated into the rest of the

relevant systems in time to fit the accepted timeline for this entire update

automation project. With this in mind the project organization decided to place

the expert automation functionality outside the scope of this research and

development project.

4 Experimental application

This part describes the practical execution of the earlier needs, observations and

plans. Probably the most distinctive feature of the implemented software update

system is it's ability to directly modify individual parameter values inside files. The

goal is to prevent transferring the entire new file and deleting the entire old file if it

is not strictly necessary. By applying this method any customer made changes in

these files will be preserved through the software update process. The direct

parameter update is done to files of a known Mapvision format. Aside from this

solution the overarching scheme of the designed program set is quite

straightforward. The packager program is used to prescribe a list of update

50

actions. The implementation of the patcher program then runs this previously

prescribed list of actions at the client computer side. Besides the direct

parameter operations these lists of actions are composed most importantly of file

additions and deletions.

4.1 Offline update

Offline update refers to the action of producing an update package at Mapvision

offices or elsewhere by an expert user and then sending the update package to

the customer staff typically by email and having them run the package at the

target computer. After this the update report is returned to Mapvision by email by

the customer staff.

Here an offline update as a term refers to an offline operation in relation to a

telecommunication link. That is, an offline update does not use a

telecommunication link. This is differentiated from the use of the term “offline

update” meaning stopping the target process for the duration of the update. In

this sense all update operation in this project would be “offline updates”. An

online update in the sense of keeping the target software online would be

possible amongst other ways by adapting the flow of data types from one running

process to another. By using special software tools the update software would be

able to keep the data flow between different running processes functional even

when the data definitions change during the update. (Yajnik, 1997)

51

4.1.1 File list

Files to be updated are stored in a data file divided into three lists by the

operation type. Consequently file additions, deletions and replacements are

executed as separate sequences. These three sequences always occur in the

same mutual order. Thus one cannot mix parts of these lists to take place in an

arbitrary order in time. As software update operations don't typically require files

to be added, removed or replaced in any particular order this is not expected to

52

Image 9: The main screen of the Packager configuration interface intended for

the purpose of producing and optionally later editing existing update package

files. Such a file is then sent to a customer representative to be run at the

targeted measurement computer.

be any type of a problem.

4.1.2 Parameter list

Parameters to be updated are stored in a data file divided into three lists by the

operation type. Thus parameter addition, deletions and replacement are

performed as separate sequences like their file operation counterparts. The

same logic applies as with file operations – parameters can be updated in any

mutual order without causing any errors in the result of the update.

53

Image 10: File manipulation branch of the main settings tree user interface at the

left side of the window. File replacements at the right side of the window.

4.1.3 Environment test programming

The customer environment – the measurement computer file system – can be

tested in three ways. The measurement software installation main path is

confirmed to exist. The software’s version is checked. Also the measurement

software’s license is checked for validity. All of these read values are compared

to the expected values defined at Mapvision office at update setup time. If any of

the chosen checks fails, the update package is assumed to be in the wrong

computer and the update process is not run.

54

Image 11: The parameter operations branch of the main settings tree at the left

side of the window. Parameter additions at the right side of the window.

4.1.4 File writing programming

The names and locations of files to be added, deleted and replaced are saved at

a specific data file which is included in the final update package. For additions

and replacements also the files themselves are included in the package. The

client side executable then reads these file instructions and performs

corresponding file system manipulations by standard .NET Windows commands.

Any unexpected file events are recorded in the update log. For example missing

targets of file deletions are reported to the expert user opening the log.

55

Image 12: Environment check branch of the main settings three at the left side of

the window. Main path settings at the right side of the window.

4.1.5 Parameter writing programming

The names of parameters and their location by the containing file and location

inside this file are recorded at the data file included in the final update package.

This is implemented the same way the file data is. In contrast to file operations,

the parameter values are included in the data file instead of the new files in file

operations. The client side executable reads these parameter instructions and

calls corresponding parameter management operations from included in-house

developed software.

4.1.6 Report generation

As the client side part of the update process runs, a text file is composed to

report all actions taken by the update program. Also the success or failure of

each individual action is recorded for later analysis by Mapvision staff. This is

expected to confirm the success of all parts of an update operation. Alternatively

reports of any failed parts of an update are expected to help in an investigation to

uncovering the cause of a failed update.

4.2 Online update

An online update consists of all the parts of the offline update, performed by

Mapvision staff remotely over a VPN connection. A remote update consist of

network related tasks followed by a standard offline update over the network

connection. The offline part of an online update is essentially the same process

as a standalone offline update. The same tasks are involved and they take place

over the network connection by using the remote desktop system.

56

4.2.1 Network settings

Some ports and connection protocols must be set to the allowed mode by using

Windows settings in both connecting computers and also by the network

component in both the Mapvision end and the customer end. This is a required

part of any online update as any denied port or missing protocol at the route

would block the connection. These case specific settings are expected to be

negotiated with the customer technical staff over the phone or by email well prior

to the actual update task. A typical set off ports are planned to be offered to

customers who may then choose their own preferences if this is not readily

acceptable to them.

4.2.2 Chosen connection program

The chosen connection program is a secure VPN application. This is provided by

the close Mapvision associate company Ideal Engineering. Technical expertise is

easily accessible and any support is very close when needed. Also the core

functionality expected from the connecting program is provided.

4.2.3 Task sequence

The following steps are carried out by an expert user performing an online

update remote from Mapvision offices:

1. Connection establishment

- The needed network settings must be negotiated with customer IT staff.

2. Sending an offline updater

- The entire update package file is sent over the remote desktop connection.

57

3. Running an offline updater

- The update file is executed exactly the same way as in the case of an offline

update. It is simply started by using the remote desktop software.

4. Report retrieval

- Once the entire update process is complete – regardless of the success or

failure of any of it’s parts – a report file is transferred back to Mapvision office

over the same remote desktop connection.

5. Connection closing

- Once the report file is securely retrieved, the connection may be closed and the

entire update process is complete.

4.3 Potential future improvements

There was user interest to have the packager input automated. Currently typical

expert users in Mapvision headquarters make manual changes to a local copy of

the customer measuring software. Then the changed file names or parameters

are input manually into packager as file operations or parameter operations. The

changes are done to correct any problems encountered by the user or to add

new measured products for example. In other words in the proposed concept the

software would watch the relevant folder structure for manual file changes during

all upgrade operations in Mapvision headquarters. When the expert user was

done with the manual changes he or she would click the software to list all

changes found into lists in packager. These would then be used as default

settings for this particular instance of the packager software. The user would then

be able to leave all the changes as they were detected by packager or remove or

edit any of them.

58

A potential future upgrade could be a graphical and auditory presentation of the

customer side update process progress to make the visualization more

approachable. This might be especially compatible with the customer side users

as they have little knowledge of the meaning of the displayed text based status

information. The productivity of this investment of work time is however

debatable as the customer side user is not expected to actually do anything with

the progress information he or she received during the patching procedures. This

upgrade might however improve the subjective feeling towards the product.

As the product is targeted specifically towards updating a certain industrial

production software it may become desirable to implement some method of

running the update while the target software remains running. This would reduce

the average downtime of the system by eliminating the systematic need to shut

down the target software for the duration of the update. One can duplicate an

executable target software into two identical programs and modify it so that it

runs normally with or without it's redundant copy. Thus one can shut down and

restart the copies one at a time for updating purposes. This way the system

remains in active service during an update operation. (Ssu, 2000)

59

Image 13: (A). State of the art in software updating compared vs. this thesis

work.

5 Discussion

The main research questions for this project were reducing the time spent by a

customer waiting for a software update, reducing human errors in the

environment of a noisy and distracting factory floor and reducing the money

60

Image 14: (B). State of the art in software updating compared vs. this thesis

work.

Image 15: (C). State of the art in software updating compared vs. this thesis

work.

spent by Mapvision to perform a software update. In the course of this project

these questions have received functional answers that will be discussed in this

section.

The time spent by the customer has been reduced by removing Mapvision

personnel from the customer work site. With the new software it is no longer

necessary to wait for the arrival of a human updater to the customer location.

Earlier the arrival often took several days by plane, car or other means of human

transportation. With the new system an update file package is sent by email or

other means practically instantaneously as compared to the previous solution.

Human errors occurring as a consequence of the loud and distracting factory

environment have in all realistic likelihood been mostly eliminated, as the tasks

remaining to be accomplished at the factory are reduced to extreme simplicity

being composed of running an executable file and copying the result file back.

The money spent by Mapvision in the course of a single software update

targeted to customer production facilities has been traditionally mainly the sum of

travel costs and a few day's salary for the work by an individual Mapvision

employee including the foreign work additions to the traveling employees salary.

Now with the new system the travel costs are expected to be in most cases

eliminated as Mapvision employees are no longer sent to most software update

target sites. In some special cases the local presence of a Mapvision employee

may be required if any surprising conditions arise from. Also the salaries should

be lower than before, as only work in Mapvision offices is required without the

time spent for traveling.

The developed system performed to expectations of Mapvision staff and is

expected to enter installation and update service in the near future. With the

need to save time in update operations emerging constantly the system is

considered a welcomed solution to the problem.
61

Image List
Image 1: Thesis concept map...2

Image 2: The causal relationships of the major factors influencing current

Mapvision update process development..4

Image 3: A user-centric product development process diagram. (Jokela, 2005)...7

Image 4: A depiction of a user centric project flow. (Jokela, 2005)......................17

Image 5: Command line branch of the settings tree at the left side of the window.

Command line settings at the right side of the window. This software was

developed using an integrated development environment (IDE). This application

was written in C++. The basic user interface design was based on wishes from

Mapvision staff..27

Image 6: Return operations branch of the settings tree at the left side of the

window. Return operations settings at the right side of the window.....................29

Image 7: The process reference tab selected. The tab displays the chronological

progression of the client side of the update process..32

Image 8: Environment check branch of the settings tree at the left side of the

window. Revision check settings at the right side of the window.........................35

Image 9: The main screen of the Packager configuration interface intended for

the purpose of producing and optionally later editing existing update package

files. Such a file is then sent to a customer representative to be run at the

targeted measurement computer..52

Image 10: File manipulation branch of the main settings tree user interface at the

left side of the window. File replacements at the right side of the window...........53

Image 11: The parameter operations branch of the main settings tree at the left

side of the window. Parameter additions at the right side of the window.............54

Image 12: Environment check branch of the main settings three at the left side of

the window. Main path settings at the right side of the window............................55

62

Image 13: (A). State of the art in software updating compared vs. this thesis

work...59

Image 14: (B). State of the art in software updating compared vs. this thesis

work...60

Image 15: (C). State of the art in software updating compared vs. this thesis

work...60

6 References

[1] Nielsen, Jakob (1994). Usability Engineering. San Diego: Academic Press.

pp. 115–148. ISBN 0-12-518406-9.

[2] Jokela, Timo (2005). Methods for quantitative usability requirements: a

case study on the development of the user interface of a mobile phone. Jussi

Koivumaa, Jani Pirkola, Petri Salminen, Niina Kantola

[3] Ssemugabi, Samuel (2007). A Comparative Study of Two Usability

Evaluation Methods Using a Web-Based E-Learning Application. School of

Information Technology Walter Sisulu University. Ruth de Villiers, School of

Computing University of South Africa.

[4] Bak, Jakob Otkjær (2008). Obstacles to Usability Evaluation in Practice:

A Survey of Software Development Organizations. TARGIT A/S, Aalborgvej 94,

DK-9800 Hjørring Denmark, Kim Nguyen, Logica, Fredrik Bajers Vej 1, DK-9220

Aalborg East, Denmark, Peter Risgaard, EUCNORD, Hånbækvej 50, DK-9900

Frederikshavn, Denmark, Jan Stage, Aalborg University, Department of

Computer Science DK-9220 Aalborg East, Denmark

63

[5] Ivory, Melody Y. (2001). The State of the Art in Automating Usability

Evaluation of User Interfaces, University of California, Berkeley. Marti A. Hearst

[6] Hornbæk, Kasper (2005). Comparing Usability Problems and Redesign

Proposals as Input to Practical Systems Development. Department of

Computing, University of Copenhagen. Copenhagen. Denmark. Erik Frøkjær

[7] Frandsen-Thorlacius, Olaf (2009). Non-Universal Usability? A Survey of

How Usability is Understood by Chinese and Danish Users. Department of

Computer Science. University of Copenhagen. Copenhagen. Denmark. Morten

Hertzum. Computer Science. Roskilde University. Roskilde. Denmark. Torkil

Clemmensen. Copenhagen Business School. Department of Informatics.

Denmark

[8] Hollingsed, Tasha (2007). Usability inspection methods after 15 years of

research and practice. ACM New York, NY, USA. Novick, David G.

[9] Nielsen, Jacob (1995). Usability Inspection Methods. CHI Companion 95,

Denver, Colorado, USA.

[10] Law, Lai-Chong (2002). Complementarity and Convergence of Heuristic

Evaluation and Usability Test: A Case Study of UNIVERSAL Brokerage Platform.

NordiChi. Denmark. Ebba Thora Hvannberg.

[11] Frøkjær, Erik. and Hornbæk, Kasper. (2008). Metaphors of Human

Thinking for Usability Inspection and Design. ACM Trans. Comput.-Hum.

Interact.

[12] Wei, Wen-Kang. (2003). Implementation of Nonstop Software Update for

64

Client-Server Applications. Proceedings of the 27th Annual International

Computer Software and Applications Conference (COMPSAC’03).

[13] Ssu, Kuo-Feng. (2000). Online Non-stop Software Update Using

Replicated Execution Blocks. IEEE Xplore.

[14] Murarka, Yogesh. (2008). Correctness of Request Executions in Online

Updates of Concurrent Object Oriented Programs. 2008 15th Asia-Pacific

Software Engineering Conference

[15] Yajnik, Shalini. (1997). STL: A Tool for On-line Software Update and

Rejuvenation. Eighth International Symposium on Software Reliability

Engineering (ISSRE '97).

[16] Myrén, Henrik. (2001). Run-Time Upgradable Software in a Large Real-

Time Telecommunication System. IEEE Xplore.

[17] automation. (n.d.). The American Heritage® Dictionary of the English

Language, Fourth Edition. Retrieved September 20, 2009, from Dictionary.com

website: http://dictionary.reference.com/browse/Automation

[18] usability. (n.d.). The Free On-line Dictionary of Computing. Retrieved

September 20, 2009, from Dictionary.com website:

http://dictionary.reference.com/browse/usability

[19] update. (n.d.). Dictionary.com Unabridged (v 1.1). Retrieved September

21, 2009, from Dictionary.com website:

http://dictionary.reference.com/browse/update

[20] benchmarking. (n.d.). The American Heritage® Dictionary of the English

65

Language, Fourth Edition. Retrieved September 21, 2009, from Dictionary.com

website: http://dictionary.reference.com/browse/benchmarking

[21] state of the art. (n.d.). The American Heritage® Dictionary of the English

Language, Fourth Edition. Retrieved September 22, 2009, from Dictionary.com

website: http://dictionary.reference.com/browse/state of the art

[22] user interface. (n.d.). The Free On-line Dictionary of Computing. Retrieved

September 22, 2009, from Dictionary.com website:

http://dictionary.reference.com/browse/user interface

[23] interface. (n.d.). The American Heritage® Dictionary of the English

Language, Fourth Edition. Retrieved September 22, 2009, from Dictionary.com

website: http://dictionary.reference.com/browse/interface

[24] remote control. (n.d.). The American Heritage® Dictionary of the English

Language, Fourth Edition. Retrieved September 22, 2009, from Dictionary.com

website: http://dictionary.reference.com/browse/remote control

[25] usability testing. (n.d.) Wikipedia. Retrieved February 12, 2010.

http://en.wikipedia.org/wiki/Usability_testing

[26] task analysis. (n.d.) Wikipedia. Retrieved February 12, 2010.

http://en.wikipedia.org/wiki/Task_analysis

[27] Usability Professionals' Association. (n.d.) Usability Professionals'

Association. Resources: Usability in the Real World. 140 N. Bloomingdale Road

Bloomingdale, IL 60108-1017. Tel: +1.630.980.4997. Fax: +1.630.351.8490

66

	1 Introduction
	1.1 Thesis concept map
	1.2 The system to be updated
	1.3 Historical review
	1.4 Research questions

	2 Theory
	2.2 Usability
	2.2.1 Potential benefits of usability
	2.2.2 Usability goals
	2.2.3 User profiling
	2.2.4 Heuristics
	2.2.5 User studies
	2.2.6 User tests
	2.2.7 Pluralistic walk-through
	2.2.8 Cognitive walk-through
	2.2.9 Formal usability inspection
	2.2.10 Feature inspection
	2.2.11 Consistency inspection
	2.2.12 Standards inspection
	2.2.13 About usability in current research and industry

	2.3 Software automation
	2.3.1 Requirements of automation
	2.3.1.1 Environment check
	2.3.1.2 Standardized file structure
	2.3.1.3 Correct preset files and parameter lists

	2.4 Remote connection
	2.4.1 Chosen system
	2.4.2 Security
	2.4.3 Requirements for network access

	3 User centric design work flow
	3.1 Chosen methods
	3.1.1 Initial problem definition
	3.1.2 Stakeholder meetings
	3.1.2.1 Key functionality to support user needs

	3.1.3 Typical use scenarios
	3.1.3.1 Local update
	3.1.3.1.1 Configuration
	3.1.3.1.2 Local procedures

	3.1.3.2 Remote update
	3.1.3.2.1 Preparations
	3.1.3.2.2 Connecting
	3.1.3.2.3 Using the connection

	3.1.4 Concept definition
	3.1.5 Expert user group definition
	3.1.6 Local user group definition
	3.1.7 Expert interface building
	3.1.8 Preventing users from updating the wrong computer
	3.1.9 Addition, deletion and replacement of files
	3.1.10 Addition, deletion and replacement of parameters
	3.1.11 Local interface building
	3.1.12 Expert user group prototype testing
	3.1.12.1 Practicality of early prototypes

	3.1.13 Local user group prototype testing
	3.1.14 Remote connection testing
	3.1.15 Manual writing

	3.2 Applied heuristics
	3.2.1 Applied Nielsen's heuristics
	3.2.2 Applied Gerhardt-Powals’ cognitive engineering principles
	3.2.3 Solution evaluation

	3.3 Alternate methods
	3.3.1 Theory
	3.3.1.1 Usability Testing
	3.3.1.2 Task Analysis
	3.3.1.3 Think aloud protocol
	3.3.1.4 Contextual inquiry

	3.3.2 Application
	3.3.2.1 Expert side automation

	4 Experimental application
	4.1 Offline update
	4.1.1 File list
	4.1.2 Parameter list
	4.1.3 Environment test programming
	4.1.4 File writing programming
	4.1.5 Parameter writing programming
	4.1.6 Report generation

	4.2 Online update
	4.2.1 Network settings
	4.2.2 Chosen connection program
	4.2.3 Task sequence

	4.3 Potential future improvements

	5 Discussion
	6 References

