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Wireless sensors networks localization is an important area that attracts 

significant research interest. Localization is a fundamental problem that must be 

solved in order to support location-aware applications. The growing demand of 

location-aware applications requires the development of application-oriented 

localization solutions with appropriate trade offs between accuracy and costs. The 

present thesis seeks to enhance the performance of simple and low-cost 

propagation-based localization solutions in dynamic indoor environments. 

First, an overview of the different approaches in wireless sensors networks 

localization is provided. Next, sources of received signal strength variability are 

investigated. Then, the problems of the distance-dependant path loss estimation 

caused by the radio channel of dynamic indoor situations are empirically analyzed. 

Based on these previous theoretical and empirical analysis, the solution uses spatial 

and frequency diversity techniques, in addition to time diversity, in order to create a 

better estimator of the distance-dependent path loss by counteracting the random 

multipath effect. Furthermore, the solution attempts to account for the random 

shadow fading by using “shadowing-independent” path loss estimations in order to 

deduce distances. In order to find the unknown sensor’s positions based on the 

distance estimates, the solution implements a weighted least-squares algorithm that 

reduces the impact of the distance estimates errors on the location estimate.  

Keywords: Localization, path loss, received signal strength, wireless sensors networks, 

multipath effect, shadow fading, optimization, range 
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CHAPTER 1 
 

Background on Wireless Sensors 
Networks Localization 

 
The application of wireless networked sensors started in the defense area, providing 

capabilities for reconnaissance and surveillance as well as other tactical 

applications. Currently, wireless sensor network (WSN) is a relevant technology 

that provides solutions for multiple “smart environments”, including industrial 

automation, environment and habitat monitoring, healthcare applications, home 

automation and traffic control. Low-cost, low-power and multi-functional sensors 

that are small in size and communicate in short distances make wireless sensors 

networks a suitable technology for large-scale solutions [51]. 

Localization, also known as location discovery or self-localization, refers to 

the ability of a system to deduce the geographical location of a node, which is a 

fundamental problem that must be solved in a sensors network. Knowing the 

locations of the network nodes is crucial in order to support many applications and 

protocols. For instance, ambient monitoring applications require the sensed data to 

be stamped with the absolute location. Similarly, actuator networks perform specific 
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functions according to the location information, like for instance the operation of a 

crane. Also, traffic-based applications may generate routes based on the location 

information.  

At the current state, reliable outdoors localization systems based on the 

Global Positioning System (GPS) have been successfully deployed during the last 

decade for those systems where the form and cost are not major concerns. But, 

solving the localization problem in GPS-less indoor environments continue to be 

challenging due to major constraints such as non-line-of-sight (NLOS), short-range 

measurements and hostile radio propagation properties. 

1.1 Our field of interest 

Localization is a fundamental problem that must be solved in a wireless sensors 

network, which is the field of research of the present Master’s Thesis. The research 

seeks to enhance simple and low-cost propagation-based localization solutions for 

wireless sensor networks in order to achieve good trade offs between accuracy and 

costs.  

1.2 Problem definition 

Localization algorithms estimate the locations of nodes unaware of their locations 

by using previous knowledge of the absolute locations of few nodes and either 

range measurements such as distance and bearing measurements, or other network 

information such as connectivity maps, proximity information, and signal strength 

fingerprints. Nodes with known location information are called anchors, whose 

locations can be obtained by using a GPS or by installing them at points with 

known coordinates.  Nodes that should be localized are called blinds. 

There are certainly many issues that make WSN localization a nontrivial 

problem. Some of these issues are the costs related to extra localization circuitry 

and energy consumption for performing distance and/or bearing measurements, 

need of anchors, short-range measurements, inaccurate measurements, non-line-of-

sight, anisotropic networks, and security attacks. Depending on the system 
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requirements and especially on the required localization accuracy of the application, 

the aforementioned issues may not enable the realization of a cost-effective 

solution. 

Acknowledging the increasing demand of many error-tolerant location-aware 

applications, a simple and low-cost solution based on the received signal strength 

(RSS) is to be designed. Clearly, enabling localization of resource-constrained 

sensors in dynamic indoor environments becomes a real challenge due to the special 

properties of the radio channel.  

The ranging system of the solution uses spatial and frequency diversity 

techniques, in addition to time diversity, in order to create a better estimator of the 

distance-dependant path loss by counteracting the random multipath effect. 

Furthermore, the solution attempts to counteract the random shadow fading by 

using “shadowing-independent” path loss estimations for distance prediction1. As it 

will be notice later on, path loss estimations are performed online, sidestepping 

unpractical offline path loss estimations requiring pre-planning effort and errors of 

distance estimates caused by such outdated path loss estimations, as shown in [25]. 

Ultimately, the solution implements a weighted least-squares localization algorithm 

that reduces the impact of distance estimates errors on the location estimate. 

The application has been implemented so that it pulls all data from the 

network and performs a centralized computation using MATLAB™ since this is 

enough to validate the designed solution. Here, the current application supports 

single-hop peer-to-peer networks; however, it can be upgraded to support large-

scale multi-hop networks as long as a higher data rate backbone is provided, e.g., 

IEEE 802.11 backbone. Implementing the solution in a decentralized fashion may 

be then subject of a future research. 

 

                                                 
1 Shadow fading and shadow fading are used interchangeably. 
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1.3 Methodology 

The work of the present thesis is carried out in four phases. The first phase consists 

of an overall study of WSN localization approaches existing in the literature. Thus, 

the first phase identifies the different approaches in WSN localization and justifies 

the direction of the developed range-based solution.  

The second phase consists of an empirical analysis of the problems caused by 

the radio channel in dynamic indoor environments. In this phase, a preliminary 

measurement campaign in an indoor scenario is required. This empirical analysis 

provides the basis for the proposed counteracting approaches in order to reduce the 

distance estimates errors.  

Before going further to demonstrate the performance of the proposed ranging 

system, the third phase provides a simulative performance analysis of distance-

based localization algorithms, i.e., algorithms using distance information in order to 

find the blinds’ locations. Simulations are run using MATLAB™ and assume a 

certain distribution of the distance estimates errors, i.e., distance between estimated 

distance and true distance. Then, the third phase defines a localization algorithm 

that reduces the impact of distance estimates errors on the location estimate.  

Finally, the fourth phase demonstrates the performance of the designed 

propagation-based localization solution. This phase will help us to validate the 

proposed counteracting approaches in order to reduce distance estimates errors as 

well as to give an insight of the localization accuracy. 

1.4 Thesis outline 

Localization is a fundamental problem that must be solved in order to support 

location-aware applications in wireless sensor and actuator networks. As stated in 

[3], no localization approach provides universal positioning services to all 

applications. Instead, localization solutions should be application-oriented with 

appropriate trade offs between accuracy and costs.  

Acknowledging the increasing demand of many error-tolerant location-aware 
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applications, the present research tries to enhance the performance of simple and 

low-cost propagation-based localization solutions for IEEE 802.15.4 sensors in 

dynamic indoor environments, where the cost and form are major concerns.  

Major problems for propagation-based ranging systems2 in indoor situations 

are caused by the hostile propagation properties of the radio channel such as 

multipath propagation and shadow fading. Acknowledging this, the present solution 

seeks to mitigate such problems of path loss estimations without incurring in 

unpractical offline calibrations/estimations.  

Once the sources of range errors have been addressed, another important 

aspect is the localization algorithm itself. There are many algorithms that can be 

used for calculating unknown sensors’ locations based on distance information. 

Different localization algorithms behave differently, especially in the presence of 

range errors. Relevant for the present solution is then to define a robust localization 

algorithm in the presence of range errors. 

The reminder of the thesis is structured as follows. In Chapter 2, an overview 

of the different approaches in WSN localization is provided. In Chapter 3, sources 

of RSS variability are first analyzed, and then the path loss estimation of the present 

ranging system is discussed. In Chapter 4, the robustness of localization algorithms 

in the presence of range errors is analyzed. In Chapter 5, details about the empirical 

platform are presented. In Chapter 6, the performances of the proposed ranging 

system and of the overall localization solution are analyzed. A brief conclusion and 

future work is given in Chapter 7. 

                                                 
2 Systems that estimate distances performing RSS-to-distance mappings based on path loss 
estimations. 
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CHAPTER 2 
 

Theoretical Study Localization 
Approaches in WSN 

 
In wireless sensors networks there are several methods intended to solve the 

localization problem under different scenarios and for applications with varying 

accuracy granularity. The papers [19, 3] present a global overview of the 

measurement techniques and approaches in WSN localization. Localization 

methods can be broadly categorized into two groups: range methods and range-free 

methods.  

2.1 Range methods 

Range methods localize nodes based on distance and/or bearing measurements.3 

These methods use a ranging system to deduce distances and/or angles and then run 

a localization algorithm over the range estimates in order to find the blind’s 

locations. Distance information is either deduced from amplitude measurements, 

time measurements or radio interferometry measurements; whereas, bearing 
                                                 
3 In the literature, the term range is normally used to indicate distance measurements; however, in 
this context range is also used to refer to bearing measurements since both imply deducing 
information from measurements. 
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information is either deduced from beamforming measurements or radio 

interferometry measurements.  

The performance of range methods is mainly determined by the accuracy of 

the distance and/or angle estimates. In fact, in [28, 29] the authors have remarked 

that the performance of range-based localization systems is limited by the range 

errors, and it cannot be significantly improved even using complex localization 

algorithms. As a rule of thumb, ranging systems outperforming others require more 

complex hardware configurations.  

Complex ranging systems are employed for applications requiring fine-

grained localization, i.e., localization accuracy relatively small with respect to the 

radio range, where the form and cost are not major concerns. Such systems 

commonly use propagation-time measurements of signals with high resolution to 

multipath propagation such as acoustic signals [1, 2] or ultra-wideband (UWB) 

signals [10, 11]. Lately, radio interferometry techniques are gaining interest since 

they can achieve both accuracy and reach for outdoor situations [20], and 

apparently for indoor situations as well [21]. However, interferometry-based 

ranging systems do not seem to be viable with the current sensors platforms since 

they typically require more powerful platforms to make detailed observations of the 

signals.  

Acknowledging that a wide variety of applications require simple and low-

cost localization systems, propagation-based ranging systems have been widely 

investigated. Propagation-based localization solutions are suitable for WSN 

localization since they use the built-in Received Signal Strength Indicator (RSSI) of 

the sensors radios. However, the accuracy of state-of-the-art propagation-based 

localization solutions is questionable, especially for dynamic indoor environments 

where the problems of the hostile radio channels, such as multipath propagation and 

shadow fading, further increase the localization error, i.e., distance between 

estimated location and true location. 

On the other hand, localization systems based on bearing measurements lack 
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of popularity due to they require complex antenna configurations and careful 

calibration [19], apart that they do not seem to outperform time-based ranging 

systems of similar complexity. Next, the main features and problems of the different 

range measurements methods are described. 

2.1.1 Received signal strength 

Signal strength measurements of radio signals are widely used to estimate distances. 

In the ideal case, i.e., free space, isotropic radiation, noise-and-interference free, the 

received-power change is just determined by the distance between transmitter and 

receiver, referred as distance-dependant signal loss hereafter. Unfortunately, real 

world scenarios are far away from the ideal case, so that many sources of RSS 

variability have to be addressed in order to obtain distance estimates based on the 

ideal propagation model. Sources of RSS variability are caused by the radio 

channel, the radio platform, and the antenna radiation pattern.4  

Major sources of RSS variability are the random both multipath effect and shadow 

fading [3]. The multipath effect occurs due to signals are reflected, diffracted, or 

scattered, so that the multipath components of a signal add up constructively (signal 

is reinforced) and/or destructively (signal is weakened) at the receiver, leading to 

dramatic changes in the total received power. On the other hand, shadow fading 

occurs when obstructions weaken radio signals. In indoor situations, the problems 

caused by the radio channel are exacerbated due to their hostile propagation 

properties.  

Robust localization systems typically use signals whit high resolution to 

multipath components such as acoustic signals and UWB signals. Unfortunately, 

acoustic signals have limited reach whereas spread spectrum techniques require 

more bandwidth resources, which are limited in practice. Moreover, in the signal 

strength approach for sensors localization, the random shadow fading of dynamic 

indoor situations is not properly addressed. Therefore, there is certainly room for 

improvements of the signal strength approach for localization of IEEE 802.15.4 

                                                 
4 A more detailed description of the sources of RSS variability is provided in Chapter 3. 
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sensors.  

2.1.2 Time of flight 

Time measurements of acoustic and radio signals are widely used to estimate 

distances. In WSN localization, time-of-flight (TOF) measurements of acoustic 

signals are commonly the choice to estimate distances accurately. Since the speed of 

acoustic signals is relatively slow (approximately 343 m/s, but changes according to 

environmental conditions), their transmission delay can be measured by inexpensive 

clocks. Moreover, due to their low speed, reflected signals have a significant delay 

relative to the line-of-sight (LOS) signal, so that, they can be filtered out. Again, 

due to their low speed, the TOF approach of acoustic signals sidesteps the difficult 

synchronization problem by using the time-difference-of-arrival (TDOA) technique, 

in which the measured time at the receiver is the elapsed time between two signals 

transmitted simultaneously by the transmitter: the radio signal, which starts the 

counting, and the acoustic signal, which stops the counting. However, as it is 

mention in [3], acoustic signals present three main limitations. First, they attenuate 

fast with the distance, and thus, they have limited coverage. Second, they require 

LOS to obtain the right distance measurement; otherwise, the measured distance 

belongs to a reflected path. Third, human hearable acoustic signals are usually not 

suitable, and thus, ultrasound signals become the choice. Here, ultrasound signals 

are unidirectional, and thus, special radiators need to be arranged in order to achieve 

proper coverage, e.g., multiple microphones or a cone reflector [3].    

As an alternative to the ultrasound-based TOF approach, UWB radios can be 

used to obtain accurate time measurements due to its high resolution to multipath 

components [10, 11], but their reach is also limited. Here, UWB-based TOF systems 

improve the measurements accuracy at the cost of using specialized hardware to 

achieve sampling rates in GHz, sub-nanosecond synchronization and more 

bandwidth resources.   

On the other hand, distance measurements can also be obtained by measuring 

the TOF of radio signals. Since the propagation speed of radio signals is extremely 
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high (approximately 3x108 m/s), precise sub-nanosecond timers are required in 

order to measure their TOF. Thus, major sources of measurements errors under this 

approach are the clock resolution and precision (drift). In order to avoid the difficult 

synchronization problem of one-way time measurements, round-trip-time 

measurements can be used; however, the remote processing time has to be filtered 

out. In addition, the synchronization problem can also be avoided by measuring 

time differences based on time references provided by few highly synchronized 

nodes, which are equipped with precise atomic clocks as in the GPS. 

In addition to the measurement errors caused by the clock, radio-based TOF 

measurements are vulnerable to multipath propagation. Due to their extremely high 

speed, the multipath components of a radio signal cannot be resolved in narrow-

band system, thus spread spectrum techniques arise as the choice.  

In [3] the authors conclude that distance measurements, i.e., RSS and TOF 

measurements, either have low-accuracy or short-range. However, distance 

measurements via radio interferometry techniques have been proposed lately; under 

which the low-accuracy and short-range measurements problems are partially 

solved. Interferometry-based ranging is discussed in Section 2.1.4. 

2.1.3 Beamforming 

Beamforming refers to the use of the anisotropy reception pattern of an antenna. In 

wireless communications, beamforming antennas are used to deduce the direction 

of the transmitter. In the common beamforming approach, the decision of the 

direction is given by the maximum signal strength when the beam of the receiver, 

which has a directive antenna, is rotated electronically or mechanically. A blind’s 

location is then approximated based on triangulation principles.   

Unfortunately, this method is vulnerable to many sources of signal strength 

variability caused by the radio channel and the transceiver. Major sources of error 

are the multipath effect and the nonlinearities of the power amplifier at the 

transmitter. In theory, narrow beam antennas would diminish problems caused by 

multipath effect, whereas, erroneous bearing information caused by the varying 
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transmitted power could be filtered out by normalizing the RSS measurements of 

the directional antenna with RSS measurements obtained from an extra 

omnidirectional antenna at the receiver [19]. However, complex narrow-beam 

antenna configurations are typically challenging and not practical for sensors 

networks.  

On the other hand, by using a minimum of two (but typically at least four) 

stationary antennas with known anisotropic antenna patterns, the direction of the 

transmitter can be determined by comparing the signal strength received from each 

overlapping antenna. This method eludes the problem of varying signal strength of 

absolute measures like in the case of the common directive-antenna method.  

However, small measurement errors of signal strength, due to the nonlinearities of 

the receiver, typically lead to 10-15° measurement error with four antennas, 5° with 

six antennas and 2° with eight antennas [19]. 

2.1.4 Radio interferometry  

Lately, localization systems based on radio interferometry techniques seem to be 

promising. Both, distances and bearing information can be deduced via radio 

interferometry techniques. Seeking to sidestep the problems of signal strength 

measurements, the Radio Interferometric Positioning System (RIPS) [20] estimates 

distances by measuring the phase offset between two interfering radio signals which 

propagate at slightly different frequencies, so that, the relative phase offset of the 

signals received at two different receivers is a function of the distances between the 

four transceivers. In theory, the RIPS approach sidesteps two major problems of 

signal strength measurements: the antenna orientation problem (RIPS enables three-

dimensional localization) and shadow fading; but, it does not address the multipath 

effect problem. In [20], the authors argue that RIPS achieves both accuracy and 

range in outdoor environments, solving the low-accuracy and short-range problems 

of RSS and TOF distance measurements. The performance of RIPS for the case of 

indoor environments is not demonstrated in [20]; however, it is expected to be 

highly limited in hostile multipath situations. 
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On the other hand, bearing information can be deduced via radio 

interferometry techniques by measuring Doppler shifts with the sensors’ radios [21, 

22, 23]. The direction of a moving transmitter can be derived from a Doppler shift. 

Hence, the location of the transmitter (blind node) can be approximated when 

multiple receivers (anchor nodes) detect the shift. In [22, 23], the authors report that 

the frequency change in the Doppler shifts is resistant to multipath interference, 

thus, this approach is appropriate even for indoor situations. However, their 

experiments were limited to outdoor environments. Notice also that this approach 

suits to mobile systems where measurable Doppler shifts can be taken over mobile 

nodes. But, in the case of static blinds, the method requires a rotation engine in 

order to generate measurable shifts.  

Here, even thought radio interferometry techniques seem to be promising, 

they require complex ranging systems. Ranging based on radio interferometry 

measurements typically requires tight synchronization and scheduling, high clock 

stability, multi-frequency transmission calibration and powerful platforms for 

making detailed observations on the signals.     

2.2 Range-free methods 

In light of the costs related to complex ranging systems, researchers have sought 

range-free methods to the localization problem in wireless sensor networks [12]. 

Thus, range-free methods do not perform distance measurements or bearing 

measurements; instead, they use other resources such as connectivity maps, 

proximity information, or signal strength fingerprints in order to localize blinds. 

Thus, any range-free method can be categorized into: connectivity-based, 

proximity-based and fingerprint-based.  

Generally speaking, range-free methods seem not to solve the fine-grained 

localization problem. Range-free methods are meant for applications with relatively 

high error-tolerance in the location information. Hence, range-free methods focus 

on masking errors through fault tolerance, redundancy, aggregation or other means. 

The performance of range-free methods is mainly determined by the amount 
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of resources required in terms of number of anchors and planning effort; similar to 

range methods case where the performance of the solution is given by the 

complexity of the ranging system.  

The simplest range-free methods seek to solve the coarse-grained localization 

problem, i.e., localization accuracy in the order of the radio range, for large scale 

multi-hop networks based on connectivity maps [16, 17]. Range-free methods based 

on connectivity maps perform rather intuitive distance estimations using the 

network topology, thus, their accuracy is limited by the large errors of such intuitive 

estimations. Seeking to improve the performance of connectivity-based methods, 

but without performing the difficult ranging procedure, researchers have sought 

localization methods based on proximity information [12, 13, 14, 31]. Proximity 

information allows creating location estimators such as centers of gravity [12, 13, 

14] as well as distance estimators [31]. In general, proximity-based methods 

perform satisfactorily in the presence of relatively high number of anchor nodes 

distributed uniformly. Thus, proximity-based methods are suitable for networks 

with densely distributed nodes, most of whose locations are unknown. Trying to 

eliminate the effects of the radio channel such as multipath effect and shadow 

fading, localization systems using signal strength fingerprints have been proposed 

[15]. In practice, their suitability to dynamic environments is rather questionable 

since they use signal strength maps of outdated channel conditions, apart that they 

require considerable preplanning effort. Next, the main features and problems of the 

different range-free methods are described.    

2.2.1 Connectivity-based  

Connectivity-based methods perform distance estimations using the network 

topology and then find blinds’ locations using the distance information. Thus, 

distances are estimated without using explicit distance measurements such as 

amplitude measurements, time measurements or radio interferometry 

measurements. Connectivity-based methods are commonly known as shortest-path 

or distance-vector methods because they estimate distances based on the number of 

hops away over the shortest-path and the average radio range [16, 17]. The average 
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radio range is obtained trough communication between anchors by calculating the 

average hop-distance based on the anchor-to-anchor distances (deduced from the 

anchors’ locations) and the number of hops away over their corresponding shortest-

paths.  

Connectivity-based methods try to alleviate two main problems in large-scale 

multi-hop networks, such as short-range measurements and limited number of 

anchors, while providing coarse-grained localization. In practice, the suitability of 

shortest-path methods is limited by the large errors of the coarse-grained distance 

estimates, especially in the case of anisotropic networks, i.e., non-uniform nodes 

distribution. Outliers5 can be filtered out by using bound constraints for distance 

estimates as in the upper bound approach [44] for locating sensors in concave 

areas.   

2.2.2 Proximity-based 

The main characteristic of range-free methods using proximity information is that 

the inferred proximity information relies on the assumption that the signal strength 

decays monotonically with the distance. Therefore, these methods are also 

vulnerable to random variations of the signal strength that lead to incoherent 

proximity information. 

Most range-free methods using proximity information localize a blind inside 

the intersection area of the polygons formed by the anchor nodes, i.e., center of 

gravity [12, 13, 14]. In the literature, such methods are known as area-based 

methods [3]. Most area-based methods deduce proximity information by comparing 

RSS measurements as in APIT  [12] and ROCRSSI [13]. However, a most 

sophisticated approach to infer proximity information is used by the kernel-based 

learning approach [14]. In the kernel-based learning approach a blind is localized 

in two steps. In the first step, called coarse-grained localization, a blind is localized 

into some classification areas (regions) by minimizing a kernel function based on 

statistical learning theory, which considers some monotonically decay of the signal 

                                                 
5 Values out of an expected range. 
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strength. Then, in the second step, called fine-grained localization, the center of 

gravity is calculated, i.e., the intersection of the areas containing the blind node, 

which were classified in the first step. 

On the other hand, proximity information is also used to deduce distances as 

in the proximity-distance map approach [31]. In this approach, blind-to-anchors 

distances can be deduced from the known distance between a pair of anchors when 

the blind is close enough to one of the anchors. In this way, the approach tries to 

avoid outliers as it occurs in with the shortest-path approaches in the case of 

anisotropic networks.  

Here, proximity-based methods require relatively large number of anchor 

nodes fairly deployed either to localize nodes inside areas or to deduce distances. 

Thus, these methods are suitable for networks with densely distributed nodes, most 

of whose locations are unknown. 

2.2.3 Fingerprint-based 

Fingerprint-based systems try to eliminate the effects of the radio channel such as 

multipath effect and shadow fading. Fingerprint-based systems localize nodes based 

on pre-planned site-specific signal strength fingerprints, also called RSS maps.  

Apparently, fingerprint-based methods like the RADAR  system [15] enable 

indoors localization. In practice, the applicability of these methods to dynamic 

indoor situations is rather questionable due to the RSS maps obey to different 

channel conditions than the actual RSS measurements being used for the mapping. 

Moreover, although fingerprint-based methods require significantly fewer anchors 

to localize blinds compare to the other range-free methods, they require 

considerable preplanning effort indeed.   

2.3 Hybrid measurements and solutions 

Ranging based on hybrid measurements can improve the accuracy of the range 

estimates because measurements errors for different types of measurements come 

from different sources. Thus, different types of measurements lead to at least 
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partially independent estimators. Performance improvements can be achieved by 

using data fusion techniques to create more accurate and robust estimators out of 

independent measurements [19]. Of course, hybrid measurements improve the 

range accuracy at the cost of more complex ranging systems that require complex 

hardware configurations and implementations [10].  

Similarly to hybrid measurements, hybrid range-based and range-free 

solutions can improve the overall performance of the solution while coping with 

two main problems in multi-hop networks such as short-range measurements and 

limited number of anchor nodes. For instance, the two-phase localization algorithm 

[30] combines range measurements and a shortest-path method for estimating one-

hop distances and multi-hop distances, respectively. The two-phase localization 

algorithm can improve the overall performance of the solution. In a similar way, 

combining range measurements and the proximity-distance map approach for 

estimating one-hop distances and multi-hop distances, respectively, can also 

improve the overall performance of the solution while avoiding outliers in the case 

of anisotropic network at the cost of more anchor nodes than in the two-phase 

localization algorithm.     

2.4 Solution approach 

As stated in [3], no localization approach provides universal positioning services to 

all applications. Instead, localization solutions should be application-oriented with 

appropriate trade offs between accuracy and costs.  

Acknowledging the increasing demand of many error-tolerant location-aware 

applications, simple and low-cost localization solutions need to be designed. It is 

clear that radio-based approaches can potentially provide the best cost-performance 

trade off since a radio is available on any wireless node and it is already included in 

the power budget. Moreover, among the existing radio-based approaches, the 

propagation-based approach remains the simplest in terms of hardware complexity 

—sensor radios have an in-built RSSI— and implementation.  

Here, the ranging system of the designed solution uses spatial and frequency 
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diversity techniques, in addition to time diversity, in order to create a better 

estimator of the path loss by counteracting the multipath effect. Furthermore, the 

solution attempts to counteract the shadow fading by using “shadowing-

independent” path loss curves for distance prediction. As it will be notice later on, 

the path loss estimations are performed online, sidestepping unpractical offline path 

loss estimations requiring pre-planning effort and errors of distance estimates 

caused by such outdated path loss estimations. Ultimately, the solution implements 

a weighted least-squares localization algorithm that reduces the impact of distance 

estimates errors on the location estimate. 
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CHAPTER 3 
 

Development of a novel radio-based 
ranging system  

 
In the present chapter, sources of received signal strength variability are first 

discussed. Then, approaches in order to mitigate major problems of path loss 

estimations are proposed.  

3.1 Sources of RSS variability  

Sources of received signal strength variability can be broadly classified into: 

extrinsic and intrinsic.  Extrinsic sources are those caused by the properties of the 

wireless channel and the antenna radiation pattern, whereas intrinsic sources are 

those caused by the radio platform.  

3.1.1 Extrinsic sources of RSS variability 

This category includes sources of variability caused by the radio channel —fading, 

interference and noise— and by the antenna radiation pattern. 
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a) Fading 

Major sources of received signal strength variability are caused by the random 

fading of the radio channel such as multipath effect and shadow fading. The 

multipath effect accounts for the different propagation styles of a signal in a 

wireless communication system such as reflection, diffraction, and dispersion. 

Multiple components of a signal are then received when multiple communication 

paths between transceivers exist. At the receiver, the multipath components of the 

signal that arrive in phase add up constructively while the ones that arrive out of 

phase add up unconstructively. The total received power is determined by the vector 

summation of all multipath components of the signal, leading to random dramatic 

changes of the total received power. Unfortunately, in IEEE 802.15.4 

communications the multipath components are not resolvable since all received 

multipath components of a symbol arrive within the symbol time duration, known 

as flat fading.  

On the other hand, shadow fading occurs when the propagation path between 

transmitter and receiver is obstructed by a dense body with large dimensions 

relative to the wave-length, so that secondary waves are formed behind the 

obstructing body, reaching the receiver. Here, the random fading of the channel is 

the major concern for path loss estimation, which is analyzed in detail in Section 

3.2.  

b) Interference and additive noise  

Interference and additive noise6 can also cause random variations of the received 

signal strength. The targeted 2.4 GHz frequency band homes many systems for 

unlicensed operations, including hot technologies such as Wi-Fi and ZigBee, 

exposing them to interference. Interference is non-stationary and does not affect 

equally to all receivers. The level of interference at different receivers varies 

according to the corresponding path loss towards the interferer. As it is shown in 

[32], interference becomes a significant source of received signal strength 

                                                 
6 Also known as termal noise. 
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variability in the presence of interferers with high activity. Interference cannot be 

totally avoided since it is not stationary. However, the carrier sense multiple access 

with collision avoidance (CSMA-CA) protocol of the IEEE 802.15.4 sensors tries to 

avoid interference by clearing the channel for transmission via its request-to-rend 

(RTS) message once it finds the channel idle. The developed ranging system further 

avoids interference by using a time-based channel hopping schedule, so that the 

channel is changed every new time frame, as well as by discarding measurements 

taken over channels that present high activity.7    

On the other hand, in indoor environments with the presence of machines and 

people the additive noise is not necessarily stationary or same at all receivers. By 

using 16 receivers placed at different locations, the overall standard deviation of the 

measured additive noise was found to be 1.5 dB. In the developed ranging system, 

the additive noise at each receiver is estimated by averaging several energy 

measurements when the channel is idle.8 Then, the additive noise affecting the 

actual measurements at each receiver is filtered out correspondingly. In practice, the 

additive noise is a minor source of RSS variability. 

c) Antenna radiation pattern  

The radiation pattern of an antenna describes how the antenna radiates energy out 

into space or how it receives energy. Each antenna has its own radiation pattern, that 

is not uniform, i.e., there are no isotropic radiators. Accordingly, antenna gain is 

defined as the ratio of maximum-to-average radiation/reception intensity multiplied 

by the efficiency of the antenna. 

Propagation-based localization systems typically assume uniform radiation, so 

that, the combined gain of the pair wise antennas is a constant in the path loss 

model for any relative orientation of the sensors. Unfortunately, there are no 

                                                 
7 The channel activity provides a good measure of the interference level of the channel, and it can be 
estimated as the average time that the channel is found to be busy, i.e., detected power level is higher 
than the maximum expected additive noise level. In the present solution, high activity was asummed 
when the channel is busy more than 30% of the time.     
8 The channel is considered to be busy when the detected power level is higher than the maximum 
expected additive noise level, which in turn depends on the receiver’s sensitivity. 
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isotropic radiators. Hence, a propagation- based localization system is constrained 

to the region where the radiation is uniform. In theory, this can only be achieved for 

two-dimensional networks, using omnidirectional antennas where all of them 

present vertical polarization, provided that the omnidirectional radiation pattern is 

uniform within the azimuth. Thus, the present solution targets two-dimensional 

networks, but it could also be applied to networks where the difference of antenna 

heights is small (no more than a meter), provided that half wave-length dipoles (or 

quarter wave-length monopoles) radiate almost uniformly within that region [4].   

On the other hand, omnidirectional antennas have to be carefully installed on 

the motes platforms, given that the radiation pattern is affected by the electrical 

ground of the PCB and its electrical circuits. In [33], the authors show that external 

monopoles, mounted a wave-length apart from the PCB, radiate uniformly within 

the azimuth, which has been considered in the present solution.   

3.1.2 Intrinsic sources of RSS variability 

This category includes sources of RSS variability caused by the underlying radio 

platform such as the nonlinearities of the power amplifier in the transmitter and 

sensitivity in the receiver.  

Transmitter variability 

As it has been demonstrated in [4], different transmitters behave differently even 

when they are equally configured. For a certain transmitter, the actual transmitted 

power is close to the configured power level, but not necessarily exactly equal. In 

addition, this inaccuracy in the transmitted power varies for different transmitters.9  

One approach to mitigate this problem would be to normalize the RSS 

measurements with respect to a single transmitter. But, this would require 

estimating the inaccuracy in the transmitted power for each transmitter using a 

single receiver under invariant conditions, which in turn implies pre-planning effort. 

Thus, the present ranging system does not address the RSS variability caused by the 

                                                 
9 Facts of the transmitter’s output power of empirical radio platform are provided in Section 5.2.1. 
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transmitter.  

Receiver variability 

Similar to the transmitter case, different receivers behave differently even when 

they are equally configured, as shown in [4]. This means that the RSS value 

recorded is not necessarily the same for different receivers, even when all 

parameters affecting RSS variability are kept the same, which obeys to the varying 

receivers’ sensitivity.10 The variability of the receivers’ sensitivity can be attributed 

to shot noise. Here, the shot noise cannot be estimated as in the case of the additive 

noise of the channel since it first depends on the current flow when a packet is 

received.  

Similar to the transmitter case, one solution to mitigate this problem would be 

performing an offline estimation of the shot noise at each receiver by using a single 

transmitter under invariant conditions in order to normalize the RSS measurements 

with respect to a single receiver. Because offline estimations/calibrations are not 

considered in the present solution, the present ranging system does not address the 

RSS variability caused by the receiver. 

3.2  Path loss modeling 

Path loss modeling in wireless networks localization seeks to predict the RSS-to-

distance relation determined by the signal fading and the antenna radiation pattern. 

In this section, we first study the physical laws governing the line-of-sight signal 

propagation. Then, we analyze the problems of path loss estimations in indoor 

situation and introduce novel approaches in order to counteract major sources of 

RSS variability such as multipath effect and shadow fading. 

3.2.1  Distance-dependant signal loss 

The distance-dependant signal loss merely obeys to the case of line-of-sight signal 

propagation. Strictly speaking, line-of-sight signal propagation is governed by two 

                                                 
10 Facts of the receiver’s sensitivity of the empirical radio platform are provided in Section 5.2.2. 
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physical phenomenons such as the inverse-square law and the atmospheric 

attenuation. From electromagnetism theory, we know that the strength of an 

electromagnetic signal, spreading outwards of an ideal isotropic radiator, is 

inversely proportional to the square of the distance from it, known as the inverse-

square law. On the other hand, the atmospheric attenuation reduces the intensity of 

electromagnetic signals due to absorption or scattering of photons in the 

atmosphere. Therefore, prediction of the total change in signal intensity involves 

both the inverse-square law and estimation of the atmospheric attenuation over the 

path.  

The effect of the atmospheric attenuation in relatively small spaces such as 

indoor environments can be neglected since its impact on the path loss estimation is 

minimal, e.g., attenuation is less than 10dB/km. Then, with basis in the inverse-

square law, which predicts the signal strength some distance apart from the ideal 

isotropic source, the amount of detected energy by a receiver standing some 

distance apart from the transmitter is calculated by the Friis’ transmission equation, 

defined as,  

( ) 22
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λ= ,                                                  (3.1) 

where d is the distance between the transmitter and the receiver, PR is the available 

power at the antenna’s pins (in Watts), PT is the nominal transmission power, and GT 

and GR are the antenna gains of the transmitter and receiver, respectively.  

The Friis’ equation puts together the distance-dependant signal loss with the 

ability of the receiver’s antenna to capture the electromagnetic radiation (antenna 

aperture) and the directivity of the transmitter’s antenna to radiate energy into the 

space (antenna gain). Notice that equation (3.1) is the simplified Friis’ transmission 

equation that assumes no impedance mismatches and reflections, no atmospheric 

attenuation and same antennas' polarization. 

In our case, the only necessary requirements for RSS-to-distance prediction 

based on the Friis’ transmission equation are: ubiquitous radio platforms, i.e., same 

radio module, connectors, feeding cable and antenna in each node, and 
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omnidirectional antennas presenting the same polarizations; provided that the 

atmospheric attenuation can be neglected in small spaces and losses due to 

impedance mismatches are included in the path loss estimation.  

3.2.2 Multipath effect 

The Friis’ transmission equation predicts the received power at a receiver located 

some distance apart from the transmitter when the line of sight is the unique 

propagation path between them. In practice, terrestrial radio communications 

normally presents multipath propagation, i.e., multiple propagation paths between 

transmitter and receiver, especially in the case of indoor environments where the 

surrounding surfaces, furniture and people create multiple propagation paths 

between transceivers. Radio propagation models for terrestrial communications 

acknowledge the effect of multipath propagation by estimating a path loss exponent 

(n) [49, 34] in the standard Friss’ transmission equation as follows, 
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                                                (3.2) 

 
For instance, the path loss exponent is typically set to 4 in the two-ray ground 

reflection model, which provides accurate signal strength prediction when the 

distance apart is much larger than the antenna heights. For convenience, Equation 

(3.2) is typically converted to the log-scale, as follows, 

][log10][ 100 dPPdRSS T η−+= ,                                 (3.3) 

where (PT + P0) is the received power at a reference distance of 1 m and η is the 

path loss exponent.11 In a typical path loss estimation, where a set of pair-wise RSS 

measurements and distances are gathered, (PT + P0) and 10η are respectively 

determined by the y-intersection and the absolute value of the slope of the fitted 

curve resulting from such set of points, with distances expressed in meters and 

converted to the log-scale (x-axis) and received signal strengths expressed in dBm 

(y-axis), as shown in Figure 3.2.  

Unfortunately, in hostile multipath environments the path loss estimation 

                                                 
11 Recall that the power unit of Equation (3.3) is dBm.  
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above represents the expected received signal strength, but a given measurement 

would actually present a random multipath bias (α), also called multipath term, as 

follows, 

αη +−+= ][log10][ 100 dPPdRSS T .                           (3.4) 

In a preliminary measurement campaign, the fluctuations of the multipath term were 

analyzed.12 Figure 3.1 shows the scenario of the preliminary measurements 

campaign. Figure 3.2 shows a typical RSS-to-distance curve fitting of data collected 

in a static indoor situation. In this figure, a difference of around 20 dB between 

measured RSS values corresponding to nearly same distance values can be 

observed. This occurs due to one received signal is reinforced by the channel and 

the other is weakened.  

 

 
Figure 3.1: Scenario of the preliminary measurements campaign 

 

                                                 
12 Worth to recall that, this preliminary measurement campaign was carried out in order to identify 
the problems of the path loss estimations in indoor situations. 
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Figure 3.2: RSS-to-distance curve fitting (static indoor environment) 

Counteracting multipath effect 

In IEEE 802.15.4 communications where the multipath components of a signal are 

not resolvable, canceling out the multipath effect (or at least averaging it out) is not 

as straight forward as averaging some time-independent measurements, especially 

in static environments where measurements taken at different time epochs are 

highly correlated. In other words, measurements taken at different time epochs are 

affected by the same multipath effects in static situations, as it can be observed in 

Figure 3.2.13 Therefore, despite time diversity is important in dynamic situations, it 

is certainly not enough to mitigate the multipath effect. 

Here, considering the random nature of the multipath effect as it is discussed 

later on, the following can be stated based on statistical theory: 

Statement 3.1: For a pair of transceivers separated a certain distance, if several 

RSS measurements over channels presenting independent multipath effects could be 

taken, a good estimator of the expected received signal strength can be obtained by 

finding the center of the samples distribution. 

                                                 
13 In this figure, measurements belonging to a given link (the ones in circles for instance) differ by 
few dB, caused by the nonlinearities of the radio platform. However, such measurements present the 
same multipath fading, e.g., strong signal or deep fading.  
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Here, the median of a set of uncorrelated RSS measurements taken between 

two transceivers constitutes a good metric of center –better than the arithmetic 

mean– given that the multipath effect phenomenon is not Gaussian; instead, it 

presents Rician distribution when there is dominant propagation along the line of 

sight between the transmitter and receiver or Rayleigh distribution otherwise [49]. 

Therefore, the following is assumed: 

Assumption 3.1: The median of the distribution of uncorrelated RSS measurements 

taken between two transceivers separated a certain distance is an unbiased 

estimator of the expected received signal strength.  

According to this, equation (3.4) can be restated in terms of the median RSS 

(RSSmedian) as follows,  

][log10][ 100 dPPdRSS Tmedian η−+= .                                  (3.5) 

Finding uncorrelated channels 

The present ranging system attempts to find uncorrelated channel in order to obtain 

independent (or at least partially independent) RSS measurements, i.e., 

measurements experiencing different multipath effects, for each one-way link via 

diversity techniques. In wireless communications, diversity techniques have been 

typically used to exploit the random nature of radio propagation by finding 

independent channels for communication. On the localization problem side, 

diversity techniques allow to create good estimators of the distance-dependant 

signal loss out of RSS measurements taken over uncorrelated channels. 

The multipath components of a received signal can change with space, 

frequency and time. Here, it is known that the total received power is the vector 

summation of the multipath components of a signal. In wireless communications, 

the differences of the travelled distances of the multipath components of a signal 

determine the relative phase offset of these components, which in turn leads to 

dramatic changes in the total received power. It can be shown that differences in the 

travelled distance of (2n+1)λc among the multipath components of a signal cause 
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them to be flipped in phase.14 For an IEEE 802.15.4 radio operating in the 2.4 GHz 

band, a difference of around 12.5 cm between the travelled distances of two 

multipath components of a signal causes them to be flipped in phase at the receiver.  

The total received power will ultimately depend on the relative phase offsets 

of the multipath components of the signal and their strengths at the receiver. Here, 

the strengths of the multipath components of a signal and their relative phase offsets 

are not only determined by the travelled distances. Whenever an incident radio 

signal hits a junction between different dielectric media only a portion of the energy 

is reflected and the phase of the signal may be flipped. The amount of reflected 

energy and whether the signal is flipped or not depends upon signal polarization, 

incident angle, dielectrics, and frequency. 

Spatial diversity can be used in order to find channels presenting statistically 

uncorrelated multipath effects. The differences of the travelled distances among the 

multipath components of a signal at two receivers, whose antennas are slightly apart 

of each other,15 are uncorrelated so that the channels among a given transmitter and 

these two receivers are also uncorrelated. The channel response at these two 

receivers will further differ given that the incident angles of reflected paths among a 

given transmitter and these two receivers change, which in turn affects the losses of 

reflected components of the signal and possibly their phases. Thus, spatial diversity 

effectively allows finding uncorrelated channels in order to perform RSS 

measurements. 

Similar as above, frequency diversity can be used in order to find channels 

presenting statistically uncorrelated multipath effects. Here, the relative phase 

offsets of the multipath components of a signal can change with the frequency given 

that the differences of the travelled distances of the multipath components of the 

signal vary when expressed in terms of different λc.
16 In other words, it can be that 

the phase offset between two multipath components of a signal is zero at a given 

                                                 
14 λc stands for the wave length of the carrier and (2n+1) stands for all positive odd numbers. 
15 It has been empirically shown that the received signals are statistically uncorrelated if the 
separation between the receiving antennas is just 0.4 wave lengths. 
16 The travelled distance is the same but the relation in terms of different λc changes. 
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frequency band, but it is not zero at a different frequency band. Moreover, the losses 

of reflected components of a signal and possibly their phases change at different 

bands. Thus, frequency diversity allows finding uncorrelated channels in order to 

perform RSS measurements.   

On the other hand, the time-varying characteristics of the wireless channel can 

also be exploited in order to find statistically uncorrelated channels to perform RSS 

measurements. In dynamic situations, the multipath components of a signal change 

at different time epochs due to the free motion of people or the movement of objects 

like mobile cranes. In our case, the coherence time of the channel, a measure of the 

expected time duration over which the channel’s response is essentially invariant, 

determines the necessary time interval between two consecutive RSS measurements 

in order to be taken over uncorrelated channels. For instance, it can be shown that in 

a typical office environment the multipath components of a signal at a given 

receiver, standing in front of an object or person moving at 1 m/s, change after 

around every 100 m/s. Thus, time diversity allows finding uncorrelated channels in 

order to perform RSS measurements under dynamic situations. Therefore, spatial, 

frequency, and time diversity are used in the present solution in order to perform 

RSS measurements over uncorrelated channels. 

3.2.3 Shadow fading 

Despite diversity techniques allow to create good estimators of the expected 

received signal strength out of RSS measurements taken over uncorrelated 

channels, it is strictly necessary to consider the effect caused by shadowed paths on 

the received power change. In dynamic indoor situations, shadow fading is caused 

by the free motion of people, the movement of objects like mobile cranes, or 

obstructions like furniture that attenuate the signal.  

Figure 3.3 shows a typical RSS-to-distance curve fitting of data collected in a 

dynamic indoor situation. In this figure, the median of data clearly presents a 

shadowing bias respect to the median of data in the case of static indoor situation 

presented in Figure 3.2. This means that the expected received signal strength 
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(median RSS)  between a pair of transceivers presents a shadowing bias (ψ), also 

called shadow fading term, when the propagation path(s) between transmitter and 

receiver are shadowed, so that equation (3.5) is restated as follows, 

ψη +−+= ][log10][ 100 dPPdRSS Tmedian .                              (3.6) 

The shadow fading term is generally Gaussian with zero mean and standard 

deviation σψ. Here, the shadow fading is a major source of RSS prediction errors 

given that its standard deviation ranges from 4 dB to 12 dB depending on the 

characteristics of the environment [34].  
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Figure 3.3: RSS-to-distance curve fitting (dynamic indoor situation)17 

Counteracting shadow fading  

The present ranging system implements a novel and practical approach in order to 

account for the random shadow fading. The solution attempts to account for the 

random shadow fading by using “shadowing-independent” path loss estimations for 

RSS prediction. Unlike cumbersome approaches such as offline calibrations of the 

attenuation introduced by static obstacles, the present ranging system incorporates 

the shadow fading affecting the observations in the path loss estimations, which are 

calculated online.  

                                                 
17 Dynamic situation data in mustard color and static situation data in light blue color. 
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The shadow fading affecting the observations change at different locations but 

it generally presents spatial correlation. Based on this, the following can be assumed 

when the observations are made at receivers fixed at the perimeter of a convex area, 

Assumption 3.2: Measurements taken at a given receiver are affected by partially 

the same shadow fading during a period of time for any relative orientation of the 

transmitter, which is independent to the shadow fading affecting measurements 

taken at other receivers placed at different locations.  

Considering that RSS measurements taken at anchor nodes placed at different 

locations experience independent shadow fading, the present ranging system 

performs anchor-specific path loss estimations in order to obtain shadowing-

independent path loss estimations, i.e., measurements taken at different anchors are 

modeled separately. This means that for a generic i-th anchor node the RSS 

measurements are affected by partially same shadowing bias (ψi) during a period of 

time, which in turn means that the expected received signal strength (median RSS) 

also presents this shadowing bias, so that equation (3.6) can be restated as follows,     

iTimedian dPPdRSS ψη +−+= ][log10][ 100 .                            (3.7) 

Based on this belief above, when the path loss estimation and the expected 

received signal strength (median RSS) are both calculated using measurements 

taken at a certain anchor node during the same period of time, the distance estimates 

deduced from such estimations accounting for the shadow fading affecting the 

observations are assumed to be unbiased estimates of the true distances. Therefore, 

the present ranging considers several18 anchor nodes to be deployed at the perimeter 

of a convex area so that a set of pair-wise RSS measurements and their 

corresponding known anchor-to-anchor distances can be obtained in order to 

perform anchor-specific path loss estimations, where (PT + P0 + ψi) and 10η are 

respectively determined by the y-intersection and the absolute value of the slope of 

the fitted curves resulting from such set of points. Then, distances are deduced by 

mapping the expected received signal strength (median RSS) between each blind-

                                                 
18 Seven anchor nodes were used in the demonstration presented in Chapter 6. 
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to-anchor and the corresponding anchor-specific path loss estimation.  
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CHAPTER 4 
 

Distance-based localization 
algorithms  

 
Once the sources of range errors have been addressed another important aspect is 

the localization algorithm itself. There are many algorithms that can be used for 

calculating the unknown sensors’ locations based on distance information. Such 

algorithms are known as distance-based localization algorithms. Different 

localization algorithms behave differently, especially in the presence of range 

errors. Relevant for the present solution is then to define a robust localization 

algorithm in the presence of range errors.    

Distance-based localization algorithms can be broadly categorized into: tri-

lateration and optimization. The tri-lateration method is the most basic and intuitive 

method that has its basis in geometry principles. This method finds out a blind 

location by calculating the intersection of three anchor-centered circumferences —

recall that the two-dimensional solution is considered. The tri-lateration method 

achieves perfect localization in the presence of perfect ranging, but it is the worst 

performing in the presence of range errors since circumferences do not intersect on 

a common point.   
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4.1 Optimization 

Distance-based optimization algorithms approximate a blind's location by 

minimizing a cost function associated to the distance information. Optimization 

algorithms may demand significant computation resources, which depend on the 

numerical method used to solve the optimization problem, e.g., Newton-Raphson 

method is the most well-known method for real-valued functions. 

Optimization problems can also include constraints. Constraints can improve 

the convergence of the algorithm. For instance, in the localization problem case, 

geometry-based constraints can reduce the impact of range errors on the location 

estimate [26]. Also, bounding the fitted distances within an expected range can also 

improve the performance of the algorithm [9]. However, constrained optimization 

problems commonly demand high computation resources and may lead to 

unacceptable convergence times, as shown in [8]. In the present solution, we focus 

in unconstrained optimization problems and leave the constrained optimization 

problem for future research. Among the most popular optimization algorithms there 

are: multilateration, bounding-box, maximum likelihood and global optimization.  

Multilateration 

The multilateration approach has its basis in the tri-lateration method, but it first 

provides a more flexible framework in the presence of range errors. Unlike the tri-

lateration method, which tries to find a blind’s location whose distances to anchors 

are exactly equal to the corresponding estimated distances, i.e., distances obtained 

from the ranging system, the multilateration approach aims to find a blind’s location 

that minimizes the differences between fitted distances and estimated distances. In 

the multilateration approach, all estimated distances are equally fitted based on the 

belief that they have the same error distribution. Thus, the multilateration approach 

finds out the optimal location that is close to the true location with a high 

probability [3]. 
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Bounding-box 

This method, also known as min-max, is popular due to its implementation 

simplicity. In the bounding-box algorithm, a blind draws a pair of horizontal lines 

and a pair of vertical lines around each anchor, in such a way that the minimum 

distance between each line and the anchor location equals the distance estimate 

[24]. This algorithm does not achieve perfect localization even in the presence of 

perfect ranging.  

Maximum likelihood 

The maximum likelihood localization technique is based on classical statistical 

inference theory [26]. This algorithm finds out a bind's location in which the 

probability of receiving the received power matrix within an expected offset is 

maximized. This probability is based on the statistical distribution of the range 

errors, thus, the maximum likelihood algorithm minimizes the variance of the 

localization error as the number of observations, i.e, anchor-originated beacons, 

grows to infinity.  

Global optimization 

Global optimization algorithms try to solve two main problems in large-scale multi-

hop networks such as incomplete ranging, due to short-range measurements, and 

limited number of anchors [7, 8, 9]. In the absence of anchors, global optimization 

algorithms compute the relative sensors' locations.  

In the global optimization approach, all available distance information is used, 

i.e., a distance is estimated and used to localize sensors as long as it can be 

measured, due to not all blinds have enough surrounding anchors within their radio 

range for localizing themselves. Therefore, these methods also use blind-to-blind 

distance information to assist the localization process. Unfortunately, using blind-

to-blind distance information may cause the algorithm to calculate a wrong network 

map, since the network graph is not fully anchored, and thus, it can have multiple 

realizations [19]. 
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As an alternative to the global optimization approach, researchers have sought 

recursive methods to overcome both, the incomplete ranging problem and limited 

number of anchors problem, in large-scale multi-hop networks. In the recursive 

methods, a blind whose location is accurately determined becomes a new converted 

anchor. Converted anchors are then used to reference other not yet localized blinds 

in the network. Hence, the localization process propagates from the area that is 

closer to the start-up anchors to the area that is inaccessible to them. However, 

localization errors cumulate towards the last localized blinds under this approach.  

4.2 Localization algorithm approach 

Relevant for the present solution is to define a localization algorithm that reduces 

the impact of distance estimates errors on the location estimate. Additionally, we 

also seek for trade offs between performance and complexity. 

In [24], the authors found that the bounding-box algorithm provides good 

trade off between performance and complexity; however, it certainly does not 

counteract the impact of distance estimates errors on the location estimate. On the 

other hand, the maximum likelihood algorithm tries to reduce the impact of distance 

estimates errors on the location estimate at the cost of high complexity [24]. 

Acknowledging such trade offs, the present solution implements the Weighted 

Least-Squares (WLS) algorithm [8], which provides a simpler framework than the 

maximum likelihood algorithm while reducing the impact of distance estimates 

errors on the location estimate better than the standard distance fitting approaches as 

it is explained in Section 4.4.1.  

On the other hand, even thought the present solution does not attempt to solve 

the global optimization problem, the WLS algorithm can be used to solve the global 

optimization problem in the present centralized implementation in case the solution 

needs to be upgraded to support large-scale multi-hop networks.  
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4.3 Problem statement 

Before going further to study the least-squares approach, we need to define the 

generic localization problem. Let’s consider a network of N nodes embedded in the 

m dimensional Euclidean space. In the Euclidean space, the distance between nodes 

i and j is given by, 

[ ]( ) jijiji xxxxDd −== ,, ,                                       (4.1) 

where D denotes the Euclidean Distance Matrix (EDM), xi denotes the coordinate 

vector of node i, and ||• || denotes the Euclidean norm. The Euclidean norm of a 

vector v = {v1, v2, … , vm}, where m denotes the dimension of the Euclidean space, 

is defined as follows,  

22

2

2

1 mvvvv +⋅⋅⋅++=  .                                    (4.2)                                     

The Euclidean distance matrix (D) is then defined as the N-by-N symmetric 

nonnegative matrix with zeros in the main diagonal composed by all pair-wise 

distances of the network graph. The distance estimate between nodes i and j 

obtained from the ranging system is denoted by δi,j.  

We also define a connectivity matrix (C), where ci,j is a binary value 1/0 that 

represents the existence/non-existence of a link between nodes i and j, i.e., 

existence/non-existence of a distance estimate. Also, connectivity level is defined as 

the average number of nodes within a radio range. We later refer to completeness as 

the ratio between the number of existing distance estimates and the total number of 

edges of the fully connected network graph. The term incompleteness refers to the 

complement of such ratio. 

4.4 Least-squares optimization 

Least-squares optimization is an algorithm which allows fitting data based on a 

certain criterion (cost function) by approximating the least value of the summation 

of the squares of the cost function. In the present solution, the weighted least-

squares [8] algorithm is implemented. The performance of the algorithm will be 

compared with a standard least-squares data fitting approach such as metric 

Multidimensional Scaling. 
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Multidimensional Scaling (MDS) [27] is a set of methods used to produce a 

representation of dissimilarities in a small number of dimensions. In WSN 

localization, MDS allows the mapping of the network from the distance 

information. Among the different varieties of MDS, metric-MDS is typically used 

to solve the global optimization problem in the presence of incomplete and 

inaccurate ranging, as shown in [7]. Metric-MDS will be referred just as MDS 

hereafter.  

Localization problem formulation 

MDS and WLS both belong to the nonlinear least-squares optimization family. The 

MDS approach aims to find a blind’s location that minimizes the differences 

between fitted distances and estimated distances, as follows, 
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where X
)

is the m-by-N matrix of vector coordinates of the approximated locations 

(referred as locations estimates later on). Similar to the multilateration approach, in 

the distance fitting approach above all estimated distances are fitted equally based 

on the belief that they have the same errors distribution. In fact, when only anchor-

to-blind distance information is used, the MDS resembles the multilateration 

approach. However, distance estimates do not necessarily have the same errors 

distribution, not at least in the case of propagation-based ranging where the distance 

estimate error is proportional to the estimated distance [36], as shown later on. 

Acknowledging this, the WLS approach introduces a weights function that accounts 

for varying errors distributions of distance estimates.19 This approach showed to 

reduce the impact of distance estimates errors on the location estimate [8].  

On the other hand, the WLS algorithm not only introduces the aforementioned 

weights function, but it also provides a different fitting criterion respect to the 

standard least-squares distance fitting approach such as MDS. Here, the WLS aims 

to find a blind’s location that minimizes the differences between fitted distances 

squares and estimated distances squares, as shown below, 

                                                 
19 A detailed description of the weights function is provided in the next section. 
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where hi,j represents the weight of the corresponding δi,j distance estimate. In [47], 

the authors argue that this distance fitting approach guarantees that the matrix of 

fitted distances is a Euclidean distance matrix indeed. In [8], the authors argue that 

this fitting approach is robust to severe incompleteness apart that it does not 

demand significant computational resources since it allows using Newtown 

methods. However, a performance comparison of the WLS respect to a standard 

least-squares fitting approaches, such as the MDS, has not been provided. In 

Section 4.6, the performance of the MDS and WLS is then compared via extensive 

simulations.  

4.5 Weights function 

The weights function is intended to weight the contribution of each distance 

estimate for minimizing the cost function. In the absence of optimality theory, and 

considering other techniques that calculate weights based only on intuition as in 

[48], where weights are proportional to the number of hops away in the network 

that corresponds to the estimated distance, the weights function proposed in [46] is 

used in the present solution. Under this weights function, each entry of the weights 

matrix is proportional to the relevance of the corresponding entry of the matrix of 

distance estimates. The matrix of weights is mathematized based on two 

independent factors: the confidence on the distance estimates (HD), and the impact 

that each edge has on the rigidity of the network graph (HC) as follows, 

CD HHH •= ,                                                  (4.5) 

where the product above implies element-wise multiplication. Notice that the matrix 

of weights is a symmetric nonnegative matrix. 

Confidence matrix (HD) 

The confidence matrix measures the confidence on the distances estimates δi,j 

obtained from the ranging system. Each entry of the confidence matrix is calculated 

as follows, 
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so that jiDh
,  represents the probability that the distance estimate δi,j, conditioned to 

the amount of offset ρi,j, is within a range α close to the true distance di,j; where ji ,δσ)
 

is the sample standard deviation of δi,j computed from the available  Ki,j 

measurements samples, and Q(x) is the Gaussian Q-function over a value x defined 

as follows, 
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In [46], the authors do not provide an optimality theory for setting α in equation 

(4.6), instead it is only mentioned that better accuracy can be achieved on average 

for small values of α at the price of larger variance.20  

Notice that the offset ρi,j allows accounting for varying errors distributions of 

distance estimates. The errors distributions of the distance estimates depends on the 

accuracy of the prediction of the received signal strength expressed in dBm. Even 

after any efforts to counteract the sources of received signal strength variability, the 

prediction of the received signal strength will ultimately be affected by some 

generally Gaussian random error (ε) as follows, 

ε+= ][][ dRSSdRSS trueprediction ,                                    (4.8) 

where RSSprediction represents the RSSmedian in equation (3.7). This error in the 

received signal strength prediction will lead to a random distance estimate error 

proportional to the estimated distance as follows, 
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= η
ε

δ 1010trued  ,                                          (4.9) 
where η denotes the path loss exponent as defined in equation (3.2). The equation 

above relates to the proportional distance estimate error of a particular estimated 

distance, so that the expected proportional error of the distance estimates is given 

by, 

                                                 
20 The authors in [46] use α equal to 0.1 m and 1 m, but in the present solution the value was set to 1 
m acknowledging the large errors of propagation-based ranging. 
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where σε is for the resulting standard error of the curve fitting for the corresponding 

path loss estimation. Finally, the offset ρi,j conditioning the accuracy of the 

estimated distance δi,j is also proportional to the estimated distance and is defined as 

follows, 
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Structural matrix (H C) 

The structural matrix relates to the impact that the presence/absence of each edge 

has on the overall structure of the network graph, regardless of how good or bad the 

distance is estimated. The structural matrix measures then the relevance that each 

edge has on the rigidity of the network graph. 

In [46], the impact that the presence/absence of an edge has on the overall 

structure of the network graph is estimated by calculating the amount of 

perturbation that the deletion of the edge (i, j) has on the spectrum of the graph. 

This perturbation is calculated as shown below, 

,
G

GpG

Λ

Λ−Λ
≅τ                                             (4.12) 

where ||• || denotes the Euclidean norm and ΛG and ΛGp are the vectors of 

eigenvalues of the representation matrices of the non-perturbed graph Gp and 

perturbed graph G, respectively. The representation matrix considered by the 

authors in [2] is the signless Laplacian matrix, 

L ≅  Θ + C,                                             (4.13) 

where Θ is a diagonal matrix where each entry of the main diagonal is equal to the 

number of links that the node corresponding to the underlying entry has with other 

nodes in the actual network and C is the connectivity matrix. 

From the above, we finally arrive at, 
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where the sub-index r refers to the edge connecting nodes (i, j) and ∆ = {τ1, … , τ|E|} 

is the set of calculated perturbations, where |E| represents all existing links in the 

network.  

4.6 Simulative performance analysis 

In the present simulative analysis performed in a Matlab™ environment, we seek to 

determine the validity of the WLS distance fitting approach and the weights 

function. 

In order to realize the following simulations, a certain scenario and the errors 

distributions of the distance estimates have to be assumed. Thus, a 10x10 squared-

meter room for a range of 7-35 randomly and identically distributed nodes is 

considered. The minimum number of anchor nodes (m+1) is considered, where m is 

the dimensions of the solution. The radio range (R) is set to 8.5 m, so that more than 

70% of the inter-node distances are always detected, i.e., a partially connected 

network is considered. The distance estimates are generated using equation (4.9), 

where the standard deviation of the prediction error of the received signal strength 

(σε) is set to 6 dB and the path loss exponent (η) to 1.64.21 The mean distance 

estimates errors of such model was observed to be 4 m when the maximum error is 

bounded to half of the radio range, which is in conciliation with real cases [2, 3]. 

For convenience, the performance of the algorithms is measured in terms of 

the mean relative error of the fitted distances, as shown below, 
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where q is defined as the set of indexes of location vectors of the anchors, M refers 

to the number of combinations (i, j) ∀ i ≠ j (M equals to N(N-1)/2 ), and A refers to 

the number edges connecting the anchor nodes (A equals to m(m+1)/2 ).  

                                                 
21 This reference values are based on empirical estimations in [24].  
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4.6.1 Simulations results 

As it can be noticed, all figures obtained from the simulations present a remarkable 

breakpoint at N equals to 15. This behavior is explained by the fact that a blind node 

can be localized more accurately as the number of reference points grows to 

infinity. In the simulation scenario, the assumed nodes distribution (independent 

normal distributions centered at the origin for each axis) leads to high completeness 

ratio in the presence of few nodes, but then this ratio decreases as the number of 

nodes increases, until it stabilizes to around 75% completeness for N higher than 15 

nodes. Hence, the distance fitting errors grow until N equals to 15 nodes due to the 

decreasing completeness ratios, but the distance fitting errors start then to reduce 

due to the connectivity level increases gradually. 

Least-Squares optimization 

In the first set of simulations, corresponding to Figure 4.1, the performance between 

WLS and MDS is compared. Here, (hi,j) of the WLS cost function (equation (4.4)) is 

given by the (ci,j) entry of the connectivity matrix (C), so that only existing 

distances estimates given the network connectivity are actually fitted and the non-

existing distance estimates are shunned down in the minimization of the cost 

function. This approach before is also used in the minimization of the MDS cost 

function, so that the performance of these two different distance fitting criterions 

can be compared under the same conditions.22 

It can be noticed that both distance fitting approaches lead to similar 

performance on average, where MDS outperforms by around 1% only. Although in 

[8] it is argued that WLS is more robust than MDS in the presence of severe 

incompleteness, there is nothing said about robustness in the presence of distance 

estimates errors. Despite we do not focus on the incompleteness problem, this could 

be alleviated by forming local maps with good connectivity model on which the 

locations are estimated, so that these local maps are then aligned together based on 

their common nodes, as it is done in [10]. More relevant for the present solution 
                                                 
22 Notations like for instance MDS(C) in the figures of the present chapter mean that the MDS 
algorithm with the matrix of weights C was used and so on.  
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becomes robustness in the presence of distance estimates errors, where the WLS 

and MDS fitting approaches perform similarly. 
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Figure 4.1: Performance comparison between MDS and WLS 

 

On the other hand, it was observed that the WLS algorithm converges faster 

than the MDS algorithm, where the convergence time of this first is less than a 

second on average. In the present study, the sensitivity of the algorithms with 

respect to the parameters σε and η affecting the errors distribution of the distance 

estimates according to equation (4.9) is not analyzed. Nevertheless, as a rule of 

thumb, the distance fitting accuracy, and in turn the localization accuracy, increases 

as the errors of the distance estimates decreases, and according to the errors 

distribution of the distance estimates under the received signal strength approach 

(equation (4.9)), the errors of the distance estimates decreases as σε and/or 1/η 

decreases and vice versa.     

Weights function 

In the second set of simulations, corresponding to Figures 4.2 and 4.3, the 

connectivity matrix (C), the confidence matrix (HD), and the matrix of weights (H) 

are evaluated. Figures 4.2 and 4.3 respectively show the performance of the MDS 

and WLS algorithm when different matrices of weights are used. It can be observed 

that the matrices HD and H lead to roughly 5% gain on average over the 

connectivity matrix C. However, this gain increases as the connectivity level, and in 
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turn the number of reference points, grows to infinity.  

In [46], it is shown that this gain is around 25% under different conditions. 

Nevertheless, after performing extensive simulations this gain could not be 

achieved under the assumed scenario and errors distributions of the distance 

estimates. Of course, the achieved gain increases as the number of available 

samples for each distance estimate (Ki,j in equation (4.6)) grows to infinity; 

however, in the present simulations the number of available samples (Ki,j) was set to 

20 as it would most likely be in practice.23   

On the other hand, as stated in [46] and as it can also be observed from 

Figures 4.2 and 4.3, the structural matrix (HC) is less relevant than the confidence 

matrix (HD) since matrices HD and H both achieve almost the same gain over the 

connectivity matrix C.       
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Figure 4.2: Performance comparison of the matrices of weights C, HD, and H over the 

MDS algorithm 

                                                 
23 The sensitivity of the different parameters in the weights function of equation (4.6) is discussed in 
[46]. 
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Figure 4.3: Performance comparison of the matrices of weights C, HD, and H over the 

WLS algorithm 

Conclusions 

It is clear that the weights function reduces the impact of distance estimates errors 

on the location estimate and that the achieved gain increases as the number of 

available samples for each distance estimate grows to infinity. On the other hand, 

even thought MDS and WLS distance fitting approaches provide similar distance 

fitting accuracy, the present solution implements the WLS algorithm since it 

converges faster and becomes an asset in the presence of severe incompleteness in 

case the solution needs to be upgraded to support large-scale multi-hop networks.  
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CHAPTER 5 
 

Empirical platform 

 
Before going further to the empirical demonstration of the proposed solution in 

Chapter 6, it is necessary to revise some relevant details of the targeted IEEE 

802.15.4 standard compliant motes. Sensinodes are the motes used by the Wireless 

Sensor Group at Aalto University. The present chapter consists on a small 

description of the IEEE 802.15.4 Standard [43] and the Sensinodes motes [41]. 

5.1 The IEEE 802.15.4 Standard  

The IEEE 802.15.4 standard provides the specifications of the Physical Layer 

(PHY) and Media Access Control (MAC) for Low-Rate Wireless Personal Area 

Networks (LR-WPANs). LR-WPAN targets low-rate, low-power and low-cost 

applications by providing reliable short-range communications.   

In the standard, two types of network node are defined: a full-function device 

(FFD) or a reduced-function device (RFD). The FFDs can either act as coordinators 

or as normal devices. Every WPAN needs at least an FFD to work as the 

coordinator of the network. Whereas, the RFDs cannot act as coordinators and they 

can only be connected to one FFD at a time. RFDs are merely used for very simple 
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applications that require minimum capabilities.  

5.1.1 Network topology 

In IEEE 802.15.4 networks, nodes can be arranged into a star or a peer-to-peer 

topology, as shown in Figure 5.1. 

 
Figure 5.1: Network topologies24 

 

In the star topology, one node acts as the network controller, known as the 

PAN coordinator. The controller is mainly controlling and routing the 

communication between nodes in the network, but it can also have other roles 

according to the application strategy. In a star topology, reliability of 

communications merely depends on the coordinator.  

In the peer-to-peer topology, networks nodes communicate in a mesh-like 

fashion as long as connectivity exists, where communication paths could be of 

multiple hops, i.e., ad-hoc. Thus, communications require self-organization and 

management. Routing a message is then more complex, but more reliable. 

A star topology is typically used for applications with defined communication 

patterns such as home automation, computer peripherals, healthcare applications, 

toys and games; whereas, a peer-to-peer topology is used in applications with 

undefined communication patterns such as wireless sensor networks for ambient 

and habitat monitoring, traffic control and industrial control and monitoring. 

Localization solutions generally assume peer-to-peer communications, so that 

                                                 
24 Figure 5.1 has been taken from the IEEE 802.15.4 Standard specifications [43]. 
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any node-to-node information can be obtained as long as connectivity exists. 

5.1.2 Layers 

The IEEE 802.15.4 standard defines specific attributes of the physical layer (PHY) 

and the medium access control (MAC) sublayer [43]. The physical layer is 

responsible for managing the physical transceiver, whereas the median access 

control sublayer is responsible for handling all access to the physical radio channel. 

Relevant for the present solution is the inter-system interference. 

Three possible unlicensed frequency bands are defined: 868 MHz band, 915 

MHz band and 2.4 GHz band. IEEE 802.15.4 systems are then subjected to inter-

system interference. The first band is used in Europe, allowing one communication 

channel (868.0-868.6 MHz). The second band is used in North America, allowing 

up to ten channels (902-928 MHz). The targeted 2.4 GHz band is used worldwide, 

providing 16 radio channels for unlicensed operations. Adjacent channels are 5 

MHz apart, ranging from 2405 MHz up to 2480 MHz.  

The 2.4 GHz frequency band homes many systems for unlicensed operations, 

including hot technologies such as Wi-Fi and ZigBee, where this last is in 

compliance with the IEEE 802.15.4 standard. Here, Wi-Fi channels may overlap 

with ZigBee channels even though they do not share same carriers. Therefore, apart 

from the CSMA-CA protocol of the IEEE 802.15.4 sensors, which tries to avoid 

interference by clearing the channel for transmission via its RTS message once it 

finds the channel idle, a time-based channel hopping schedule is used in the solution 

to further avoid interference.  

5.1.3 Application side 

When designing applications for wireless sensor networks major issues are power 

consumption and scalability.  

Sensor networks are often used for monitoring situations where access is 

difficult, hazardous or expensive. Lifetime of the network elements must be then 

maximized in order to avoid maintenance operations. Elements lifetime depend 
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mainly on the batteries lifetime as long as the elements are used in the correct 

conditions [42]. Therefore, power-aware applications should be developed in order 

to maximize the batteries lifetime. 

In the IEEE 802.15.4 standard, device power management is addressed via the 

sleep mode. Then, the time the application spends in sleep mode should be 

maximized. In event-driven applications, the sleep interval would ultimately depend 

on the frequency of the events occurrence. Then, the sleep interval of the 

localization application will depend on how often targets need to be localized, 

which in turn depends on their movement speed.    

Another important aspect that affects the power consumption and determines 

the scalability of the application indeed is the amount of traffic the application 

generates. Here, decentralized approaches generally scale better than centralized 

approaches. However, the main goal of the present thesis is to mitigate the problems 

of propagation-based localization solutions caused by the radio channel of dynamic 

indoor environments; thus, a centralized solution has been implemented to validate 

the present design.  

Implementing the solution in a distributed fashion may be subject of a future 

research. However, the present centralized implementation can be upgraded to 

support large-scale networks as long as a higher data rate backbone is provided, 

e.g., IEEE 802.11 backbone. Then, the large-scale localization problem would be 

reduced either to align local maps together, in the presence of sufficient anchors 

surrounding each blind, or to solve a global optimization problem otherwise. 

5.2 Sensinodes  

Sensinodes provides low-power wireless modules for use in sensor networks. 

Sensinodes have the NanoStack™ protocol stack that is embedded networking 

software supporting low-power IP-based applications running on top of IEEE 

802.15.4 radios and operating at the 2.4 GHz frequency band [41]. 

In the experiments, the U100 micro.2420 sensinode is used (see figure 5.2), 
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which is a fully operable standalone communication node with accessible 

connectors for integration of sensors and elements [37]. It has the MSP430 

microcontroller and IEEE 802.15.4 compliant CC2420 radio transceiver [40], both 

provided by Chipcon. The radio allows 250 kbps data rate and a transmission range 

of 100 m with its on-board antenna.  

 
Figure 5.2: U100 micro.2420 sensinode 

 

The microcontroller and radio can be programmed with both, the FreeRTOS 

[38] and TinyOS [39] operating systems, which are portable, open source, real-time 

operating systems. 

In FreeRTOS applications are written in C programming language, whereas in 

TinyOS applications are written in NesC [45], which is a programming language 

targeting networked embedded systems that has its basis in C. In addition, task 

scheduling in TinyOS does not allow threads, whereas FreeRTOS allows pre-

emptive and multi-threading task scheduling, i.e., tasks are served at real time 

according to their priority.  

5.2.1 Output power  

In the CC2420 radio chip, the output power level of the radio transmitter can be 

controlled by configuring the TXCTRL.PA_LEVEL register. Table 5.1 shows the 

output power for different TXCTRL.PA_LEVEL values. Notice that the 

TXCTRL.PA_LEVEL register consist of 5 bits, thus, 32 configurable output power 

levels are possible. However, the output power levels in Table 5.1 are the only ones 
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specified in the CC2420 radio chip specifications [40]. 

PA_LEVEL Output Power [dBm] 

31 0 

27 -1 

23 -3 

19 -5 

15 -7 

11 -10 

7 -15 

3 -25 
 

Table 5.1: Output power settings @ 2.45 GHz 

Output power variability 

As before mentioned in Section 3.1.2, the actual transmitted power is close to the 

configured power level but not necessarily exactly equal. Furthermore, different 

transmitters behave differently even when they are configured in the same way. In 

[4], the overall standard deviation of the transmitted power inaccuracy was found to 

be 2.24 dB. The results were obtained using a single receiver and 9 different 

transmitters, where the CC2420 radio chip was used. 

5.2.2 RSSI / Energy detection 

The CC2420 radio chip provides an RSSI (Received Signal Strength Indicator) for 

energy detection of the channel, which value can be read from the RSSI.RSSI_VAL 

register. In compliant to the IEEE 802.15.4 specifications, the RSSI is always 

averaged over 8 symbol periods (128 µs). 

Figure 5.3 shows a typical RSSI register value vs. input power curve. In 

figure 5.3, one can notice that, in accordance to the CC2420 radio chip 

specifications [40], the RSSI register value has an offset of roughly -45 as follows: 

RFpower(dBm) = −45 + RSSIregister_value                                           5.1 
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Figure 5.3: Typical RSSI value vs. input power 

Energy detection procedures  

There are two types of procedures for energy detection: energy detection at packet 

reception and continuous energy detection.  

In the first type, the measured RSSI is averaged over the 8 symbol periods 

following the SFD (Start of Frame Delimiter) of the received packet. The measured 

RSSI value is then appended to the second last byte of the received packet. This 

value needs to be handled by the application for making any distance estimations 

based on the received signal strength.  

In the second type, the RSSI value is continuously calculated and updated 

every symbol period while the radio is enabled. This updated RSSI value can be 

read from the RSSI.RSSI_VAL register. In fact, the designed application performs 

noise sensing by reading the aforementioned register.  

Energy detection variability 

Energy detection with the CC2420 radio chip is very linear as it can be observed in 

figure 5.3, but not accurate with respect to the true power. In fact, the typical energy 

detection linearity and accuracy with the CC2420 radio chip are ± 3 dB and ± 6 dB, 

respectively [40].  
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Moreover, the nonlinearities in the energy detection vary for different 

receivers. In other words, the RSSI value recorded is not necessarily the same for 

different receivers even if all other parameters affecting RSS variability are kept the 

same. In [4], the overall standard deviation of the energy detection inaccuracy for 

packet reception was found to be 1.86 dB. The results were obtained using a single 

transmitter and 5 different receivers, where the CC2420 radio chip was used. 
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CHAPTER 6 
 

Solution demonstration 

 
In the present chapter, the performance of the present localization solution is 

demonstrated. Here, before going further to analyze the results of the solution 

demonstration, we first review how the localization application works and the 

empirical set-up considered for the experiment. Then, the empirical set-up and the 

results are  

6.1 Creating the localization application  

The localization application has been implemented so that it first pulls data from the 

network and then performs a centralized computation using Matlab™ since this is 

enough to validate the designed solution. This means that the actual estimations of 

distances and locations are centrally calculated after the necessary energy 

measurements (RSSI values) for such estimations are pulled from the network.  

The localization application performs a round of energy measurements every 

time blinds’ need to be localized, so that the path loss estimations and 

corresponding distance estimations are performed online based on energy 

measurements taken during the same period of time in order to sidestep unpractical 
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offline path loss estimations requiring pre-planning effort and errors of distance 

estimates caused by such outdated path loss estimations. Notice that the path loss 

estimations are calculated using the well-know anchor-to-anchor distances and the 

corresponding energy measurements, then the anchor-to-blind energy measurements 

are mapped to distances using those path loss estimations so that the blinds’ 

locations can be finally estimated based on this anchor-to-blind distance 

information.25  

During a round of energy measurements each anchor and blind node 

broadcasts beacons based on a time schedule in order to both avoid collisions and 

enable time diversity for energy measurements. So, beacons are needed to perform 

energy measurements and they contain two fields: source ID and packet number, 

which are used for the centralized processing of the data. Each anchor and blind 

node broadcasts the same number of beacons, one beacon within a time frame. In 

every next time frame the radio channel is changed to the next channel of a fixed 

sequence of four channels (given as input to the localization application) in order to 

both enable frequency diversity for energy measurements and reduce the impact of 

radio interference. Each network node represents a dual-node, i.e., two radio 

modules and antennas, where the two antennas are placed a wave length apart (12.5 

cm approximately) of each other in order to enable spatial diversity for energy 

measurements. Finally, each node measures the energy of the channel after every 

packet reception in order to estimate the additive noise at each receiver.  

Localization entities 

In accordance to this above, localization requires three entities: 

• Workstation:  A workstation supporting a Matlab™ environment where the 

estimations of the distances and locations are performed using the energy 

measurements pulled from the network and the well-known locations of the 

anchor nodes given as input to the application. The source code is included 

                                                 
25 The ranging system and localization algorithms are explain in detail in Chapter 3 and 4, 
respectively. 
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in Appendix- A. 

• Measuring node: A device that performs energy measurements during a 

measurements round. A measuring node can be either an anchor node (a 

stationary device with a well-known location) or a blind node (a device 

which location needs to be calculated). The measuring node is programmed 

in C language and its source code is included in Appendix- B. 

• Sink node: A device attached to the workstation that initializes the 

measurements round and acts as a gateway for the measuring nodes. After 

the measurements round ends the sink node collects and passes on 

measurements data from each measuring node to the Matlab™ application 

on the workstation via serial communication. The sink node can be used as 

an anchor node when its location is well-known since it has been 

implemented so that it performs energy measurements during the 

measurements round. The sink node is programmed in C language and its 

source code is included in Appendix- C. 

6.2 Empirical set-up  

The present experiment was carried out in a typical dynamic indoor situation with 

the presence of furniture and mobile objects. For easier monitoring, the selected 

indoor scenario is a 13x9 squared-meters room in the Electrical and 

Communications Department of Aalto University, shown in Figure 6.2 (left side). 

All nodes were deployed 1.3 m from the floor reference, where the ceiling is at 3 m. 

Seven anchor nodes deployed as shown in Figure 6.2 (right side) were used. 

As before mentioned, the U100 micro.2420 sensinode is used as the 

ubiquitous device for the empirical demonstration of the solution. Each radio 

module was equipped with an external monopole antenna mounted a wave length 

apart from the PCB, as shown in Figure 6.1, in order to reduce the impact of the 

electrical components and ground of the PCB on the antenna radiation pattern. 
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Figure 6.1: Empirical scenario (left side), Anchor nodes deployment (right side) 

 
Figure 6.2: External monopole antenna 

Parameters configuration  

An important aspect of the experiment becomes the parameters configuration such 

as the output power, time interval between consecutive beacons, channel hopping 

sequence, and number of beacons that each node broadcasts. The CC2420 radio 

module supports a range of discrete power settings from -25 dBm until 0 dBm. In 

the present experiment, the output power is set to -7 dBm since measurements are 

blurred by the background noise when the output power is too low, e.g., -25 dBm, 

or too much reflections are generated when the output power is too high, e.g., 0 

dBm. Here, setting up the output power to -7 dBm showed to achieve a radio range 

of about 15 m, on average. Notice that, in dynamic indoor environments the radio 

range is typically reduced due to multipath effect and shadow fading and it can not 

be accurately determined.  

When setting the time interval between consecutive beacons, it is important to 
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consider the time coherence of the channel in order to enable time diversity for RSS 

measurements. Each beacon is then transmitted every next time coherence of the 

channel. In a typical office room, where the maximum motion speed a person is 

around 1 m/s, the time coherence of the channel is below 100 ms. Thus, the 

following experiment uses 100 ms as the time interval between consecutive 

beacons. On the other hand, seeking to enable frequency diversity for RSS 

measurements while avoiding interference, the channel hopping sequence was 

chosen so that any two consecutive channels in the four-channel sequence are at 

least four carriers apart of each other, as follows: (2410, 2435, 2455, 2480) MHz. 

Finally, in the present experiment, each node broadcasts 20 beacons every time 

blinds need to be localized, which provides a meaningful number of samples for 

distance estimations.  

Parameters Value 
Output power -7 dBm 

Time interval between consecutive beacons 100 ms 

Channel hopping sequence (2410, 2435, 2455, 2480) MHz 

Number of beacons per node 20 

 

Table 6.1: Parameters values used in the experiment 

6.3 Results analysis 

Once the implemented localization algorithm showed to reduce the impact of 

distance estimates errors on the location estimate in Chapter 4, our aim in this 

section is to validate the use of diversity techniques in order to obtain good 

estimators of the path loss and the use of anchor-specific path loss estimations in 

order to account for the independent shadow fading affecting RSS measurements 

taken at different anchor nodes. At the end of the section, an insight of the 

localization accuracy is provided. 

6.3.1 Counteracting multipath effect 

The first part of the experiment, corresponding to Figures 6.4 and 6.5, provides a 

comparison of the path loss estimation accuracy when the proposed diversity 
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techniques, such as frequency and spatial diversity, are used to perform RSS 

measurements with respect to the case when diversity techniques are not used.  

It can be observed that the accuracy of the path loss estimation improves i.e., 

median of data follows the fitted curve better, when frequency and spatial diversity 

are used to perform RSS measurements, which can be better noticed at large 

distance values. In fact, the standard error of the path loss curve fitting is halved 

with respect to the case when diversity techniques are not used. In consequence, the 

distance estimates errors are also reduced when diversity techniques are used to 

obtain RSS measurements. As the standard fitting error is halved, based on equation 

(12) it can be shown that the achieved average gain in the distance estimates 

accuracy is exponentially proportional to the achieved standard fitting error. 

 
Figure 6.4: RSS-to-distance curve fitting when spatial, frequency, and time diversity 

techniques are used to obtain RSS measurements 

 
Figure 6.5: RSS-to-distance curve fitting when only time diversity is used to obtain RSS 

measurements 
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6.3.2 Counteracting shadow fading 

The second part of the experiment, corresponding to Figure 6.6, provides a 

comparison of the accuracy of the path loss estimation when anchor-specific path 

loss estimations are performed with respect to the case when a shadowing-

dependent path loss estimation is performed, i.e., RSS measurements taken at 

different receivers, whose observations are affected by independent shadow fading, 

are used to perform a single overall path loss estimation. 

Figure 6.6 shows the standard error of the shadowing-dependent path loss 

curve fitting (bar number 0) together with the standard errors of the anchor-specific 

path loss curves fittings (bars number 1-7). It can be observed that the standard 

error of the path loss curve fitting is on average reduced by about 25% when 

anchor-specific path loss estimations are performed. In consequence, the distance 

estimates errors are also reduced when anchor-specific path loss estimations are 

used to deduce distances, provided that the those estimations are performed using 

RSS measurements taken at a certain receiver, anchored at the perimeter of a 

convex area, within a period of time when the channel is essentially invariant. 

The present ranging system showed to achieve 1.25 m average accuracy on 

the distance estimates. This error can be generalized in terms of the radio range, so 

that the average distance estimates accuracy is about 8% of the radio range, 

according to our estimation of the radio range.  

 
Figure 6.6: Standard error of the curve fittings 
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6.3.3 Location estimate 

In the present section we look at the accuracy of the location estimate. Here, the 

actual localization accuracy of the solution may vary with the number of anchor 

nodes used, the radio range, and the propagation characteristics of the environment. 

 In the experiment, a blind was placed at 20 different locations for finding its 

location. Figure 6.7 shows the Cumulative Distribution Function (CDF) of the 

absolute localization error, where the average localization error was observed to be 

around 2.1 m. This error can be generalized in terms of the radio range, so that the 

average localization accuracy is about 14% of the radio range according to our 

estimation of the radio range. Nevertheless, propagation-based ranging may lead to 

unpredictable results as shown in Figure 6.7, where localization errors about half of 

the radio range can be observed. 
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Figure 6.7: CDF of the absolute localization error 
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CHAPTER 7 
 

Conclusions and Future Work 

 

7.1 Conclusions 

Acknowledging the increasing demand of many error-tolerant location-aware 

applications, the present research enhances the performance of simple and low-cost 

propagation-based localization solutions for wireless sensors networks in dynamic 

indoor situations, where the cost and form are major concerns. 

The present solution then implements practical and novel methods in order to 

counteract the two major sources of distance estimates errors under the propagation-

based approach such as multipath effect and shadow fading. The use of diversity 

techniques showed to halve the standard error of the estimations of the path loss, on 

average, which in turn reduces the distance estimates errors. Moreover, the use of 

anchor-specific path loss estimations in order to account for the independent 

shadow fading affecting the observations at different anchor nodes showed to 

reduce the standard error of the estimations of the path loss by about 25%, on 

average, which in turn reduces the distance estimates errors. The achieved average 

distance estimates accuracy is about 10% of the radio range when seven anchor 
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nodes are used.  

On the other hand, the solution implements a non-constrained optimization 

algorithm, such as the weighted least-squares algorithm, in order to find out blinds’ 

locations. This algorithm showed to reduce the impact of the distance estimates 

errors on the location estimate, where the achieved gain on the distance fitting 

accuracy increases as the number of beacons grows to infinity. The achieved 

average localization accuracy is about 14% of the radio range when seven anchor 

nodes are used. It can be concluded that propagation-based localization solutions 

can lead to unpredictable results in hostile situations, apart that they are limited to 

the region where the radiated power is uniform; however, they can provide 

localization services to many error-tolerant applications under good situations. 

7.2 Future work 

It is clear that the present ranging system does counteract major problems of 

distance estimation caused by the radio channel such as the multipath effect and 

shadow fading, enhancing the performance of simple and low-cost propagation 

based localization solutions. However, unpredictable results were observed under 

hostile situations. Here, it would be interesting to determine the bounds of both 

distance estimates errors and localization errors under hostile situations such as 

highly scattered environments with metallic bodies and obstacles moving around. 

Also, the present solution implements a non-constrained localization 

algorithm; however, as discussed in Chapter 4, higher localization accuracy can be 

achieved when the locations solution is constrained by the properties of the network 

graph and/or additional information like for instance the expected range of the fitted 

distances. Thus, it would be interesting to evaluate constrained localization 

problems in order to reduce the impact of distance estimates errors on the location 

estimate. 

Finally, the present centralized implementation has been used in order to 

validate the designed solution. However, even thought some upgrading directions of 

the present solution are discussed throughout the thesis in case the solution needs to 
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support large-scale multi-hop networks, it would be interesting to asses the 

improvements and challenges of a possible decentralized implementation of the 

solution. 
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Appendix 
 
A. Matlab™ source code on the workstation  
 
%Energy measurements and additional data are pulled  from the 
%network  
[DATA,Xblind,BOUNDdistance]=energy_measurements();  
%The next function calculates the estimated locatio n of the blind 
%node(LOCATIONS) as well as the distance estimates errors and 
%localization errors(ERRORS)  
[LOCATIONS ERRORS]=localize(DATA,Xblind,BOUNDdistan ce) 
 
function  [DATA,Xblind,BOUNDdistance]=energy_measurements()  
clear all ;  
try  
    PRINT_COMMAND=70;  
    EXIT_COMMAND=80;  
    ERASE_MEMORY=90;  
     
    %INPUT CONFIGURATION DATA 
    %serial port communication  
    com_number=input( 'COM PORT NUMBER: ' , 's' );  
    %labels the measurements round  
    round_code=input( 'ROUND CODE: ' );  
    %total number of measuring nodes  
    nodes_num=input( 'NUMBER OF NODES: ' );  
    %defines the measuring nodes to be localized  
    Nblinds_=input( 'Number of blinds: ' );  
    %number of broadcast packets per measuring node  
    PACKETS_NUM=input( 'NUMBER OF PACKETS TO BROADCAST: ' );  
    %time interval between consecutive beacons  
    TX_int=input( 'TRANSMISSION INTERVAL [ms]: ' );  
    %control channel  
    Radio_Channel=input( 'CONTROL CHANNEL [11,26]: ' );  
    %output power  
    Transmission_power=input( 'TRANSMITTING POWER [0-100%]: ' );  
    %number of channel hops  
    hop_num=input( 'CHANNEL HOP SEQUENCE LENGTH: ' );  
    %bounds the minimum value of a distance estimate  
    BOUNDdistance_min=input( 'Minimum distance estimate [m]: ' );  
    %bounds the maximum value of a distance estimate  
    BOUNDdistance_max=input( 'Maximum distance estimate [m]: ' );  
    %for convinience only once blind node was considere d, and its 
    %true locations is required to compute the loca lization error  
    blind_x=input( 'True blind location (x-axis): ' );  
    blind_y=input( 'True blind location (y-axis): ' );  
     
    Xblind = [blind_x,blind_y];  
    Nblinds=Nblinds_;  
    BOUNDdistance.min=BOUNDdistance_min;  
    BOUNDdistance.max=BOUNDdistance_max;  
    nodes_number=nodes_num;  
    PACKETS_NUMBER=PACKETS_NUM; 
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    TX_interval=TX_int;  
    Radio_Ch=Radio_Channel;  
    TX_power=Transmission_power;  
    Round=round_code;  
    hop=hop_num;  
     
    %channel hopping sequence  
    for  i=1:hop  
        seq(i) = input([ 'CHANNEL '  num2str(i) ' IN HOPPING 
SEQUENCE: ' ]);  
    end  
  
    CONFIG.round=Round;  
    CONFIG.num_nodes=nodes_num;  
    CONFIG.num_packets=PACKETS_NUM;  
    CONFIG.tx_int=TX_int;  
    CONFIG.radio_ch=Radio_Channel;  
    CONFIG.TX_power=Transmission_power;  
    CONFIG.channels_to_hop=hop;  
    CONFIG.hop_sequence=seq;  
  
    AVR_RSSI_matrix=zeros(nodes_num,nodes_num);  
    RPR_matrix=zeros(nodes_num,nodes_num);  
    data_mat = zeros((nodes_num - 1) * PACKETS_NUM,  5);  
    data_poll = zeros((nodes_num - 1) * PACKETS_NUM , 5);  
  
    packets_numberLS=mod(PACKETS_NUMBER,255);  
    packets_numberMS=floor(PACKETS_NUMBER/255);  
    TX_intervalLS=mod(TX_interval,255);  
    TX_intervalMS=floor(TX_interval/255);  
  
    comstring=strcat( 'COM' ,com_number);  
    com_port=comstring;  
    baudrate=115200;  
    uart_timeout=10;  
  
    warning off  MATLAB:serial:fscanf:unsuccessfulRead  
  
    s=serial(com_port);  
    set(s, 'BaudRate' ,baudrate);  
    set(s, 'Timeout' ,uart_timeout);  
    s.Flowcontrol= 'software' ;  
    s.BytesAvailableFcnMode = 'terminator' ;  
  
    disp( 'before opening port' );  
    fopen(s);  
    disp( 'after opening port' );  
    pause(5);  
  
    configuration(1)=nodes_number;  
    configuration(2)=packets_numberLS;  
    configuration(3)=packets_numberMS;  
    configuration(4)=TX_intervalLS;  
    configuration(5)=TX_intervalMS;  
    configuration(6)=Radio_Ch;  
    configuration(7)=TX_power;  
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    configuration(8)=hop;  
    for  i=1:hop  
        configuration(8 + i) = seq(i);  
    end  
  
    for  i=1:length(configuration)  
        fwrite(s,configuration(i), 'uint8' );  
    end  
     
    %passing on configuration parameters to sink node  
    TF=0;  
    while  TF~=1  
        out=fscanf(s);  
        if  out~=0  
            out  
        end  
        TF=strncmp(out, 'CONFIG PARAMATERS',10);  
    end  
    disp( 'CONFIGURATION DONE');  
  
    TF=0;  
    while  TF~=1  
        out=fscanf(s);  
        if  out~=0  
            out  
        end  
        TF=strncmp(out, 'MEMORY ALLOCATED',10);  
    end  
    disp( 'MEMORY ALLOCATION DONE');  
  
    TF=0;  
    while  TF~=1  
        out=fscanf(s);  
        if  out~=0  
            out  
        end  
        TF=strncmp(out, 'START APPLICATION MESSAGE' ,10);  
    end  
    disp( 'APPLICATION START' ); %measurments round started  
  
    TF=0;  
    while  TF~=1  
        out=fscanf(s);  
        if  out~=0  
            out  
        end  
        TF=strncmp(out, 'ROUND COMPLETED',10);  
    end  
    disp( 'ROUND COMPLETED'); %measurements round ended  
  
    %PULLING MEASUREMENTS FROM MEASURING NODES 
    exit=0;  
    while  exit~=1  
        disp( 'NODE TO POLL?' );  
        disp( 'Enter the number of the node to poll:' );  
        disp( 'Press p to print the results of the sink node' );  
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        disp( 'Press e to exit:' );  
        disp( 'Press r to erase memory' );  
        command=input( '' , 's' );  
        pause(1);  
  
        if   (command~= 'e'  & command~= 'p'  & command~= 'r' )  
            command=str2num(command);  
            fwrite(s,command, 'uint8' );  
  
            TFprinted=0;  
            TFresults=0;  
            row = 1;  
            while  TFprinted~=1  
                out=fscanf(s);  
  
                TFprinted=strncmp(out, 'POLL PRINTED' ,8);  
                TFresults=strncmp(out, 'DATA' ,5);  
  
                if  TFresults  
                    out  
                    numbers=regexp(out, '(\d|[-])*' , 'match' );  
                    node_from=str2double(char(numbe rs(1)));  
                    packet_number=str2double(char(n umbers(2)));  
                    RSSI=str2double(char(numbers(3) ));  
                    LQI=str2double(char(numbers(4)) );  
                    noise=str2double(char(numbers(5 )));  
  
                    data_poll(row,1) = node_from;  
                    data_poll(row,2) = packet_numbe r;  
                    data_poll(row,3) = RSSI;  
                    data_poll(row,4) = LQI;  
                    data_poll(row,5) = noise;  
  
                    row = row + 1;  
                end  
            end  
            DATA{command + 1}=sortrows(data_poll,[1  2]);  
            data_poll = zeros((nodes_num - 1) * PAC KETS_NUM, 5);  
            disp( 'POLL PRINTED' );  
  
        elseif  (command== 'p' )  
            fwrite(s,PRINT_COMMAND, 'uint8' );  
  
            TFprint=0;  
            TFresults=0;  
            line = 1;  
  
            while  TFprint~=1  
                out=fscanf(s);  
  
                TFprint=strncmp(out, 'PRINT COMPLETED' ,10);  
                TFresults=strncmp(out, 'DATA' ,5);  
  
                if  TFresults  
                    out  
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                    numbers=regexp(out, '(\d|[-])*' , 'match' );  
                    node_from=str2double(char(numbe rs(1)));  
                    packet_number=str2double(char(n umbers(2)));  
                    RSSI=str2double(char(numbers(3) ));  
                    LQI=str2double(char(numbers(4)) );  
                    noise=str2double(char(numbers(5 )));  
  
                    data_mat(line,1) = node_from;  
                    data_mat(line,2) = packet_numbe r;  
                    data_mat(line,3) = RSSI;  
                    data_mat(line,4) = LQI;  
                    data_mat(line,5) = noise;  
  
                    line = line + 1;  
  
                end  
            end  
            DATA{2}=sortrows(data_mat,[1 2]);  
            disp( 'PRINT COMPLETED' );  
  
        elseif  (command== 'r' )  
            disp( 'erase command' );  
            fwrite(s,ERASE_MEMORY, 'uint8' );  
            TF=0;  
            while  TF~=1  
                out=fscanf(s);  
                if  out~=0  
                    out  
                end  
                TF=strncmp(out, 'Flash memory erased' ,10);  
            end  
            disp( 'Flash memory erased' );  
  
        elseif  (command== 'e' )  
            fwrite(s,EXIT_COMMAND, 'uint8' )  
            TF=0;  
            while  TF~=1  
                out=fscanf(s);  
                if  out~=0  
                    out  
                end  
                TF=strncmp(out, 'EXIT POLLING' ,10);  
            end  
            disp( 'EXIT POLLING' );  
            exit=1;  
        end  
    end  
    DATA{1}=CONFIG;  
    fclose(s);  
catch  ME 
    DATA{1}=CONFIG;  
    fclose(s);          
end 
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function  [LOCATIONS ERRORS]=localize(DATA,Xblind,BOUNDdista nce)  
  
CONFIG=DATA{1};  
fullTABLE=DATA(2:end);  
for  i=1:CONFIG.num_nodes  
    fullTABLE{i}=sortrows(fullTABLE{i},[1 2]);  
end  
  
%PARAMETERS 
%Well-known anchors locations (true blinds location s are appended  
%for error calculation at the end)  
    Xnodes =[  
    0.5000    1.9600  
    0.5000    4.9000  
    5.3200    8.2600  
    6.3000    8.2600  
   12.1800    5.7400  
   12.1800    3.9200  
    5.8800    0.5000];  
    Xnodes=[Xblind;Xnodes];  
%initial guess of blinds locations  
for  i=1:Nblinds  
    X0blinds(i,:) = rand(1,2).*[max(Xnodes(:,1)),ma x(Xnodes(:,2))];  
end  
%number of measuring nodes  
N=CONFIG.num_nodes/2;  
%number of blinds  
Nblinds=length(X0blinds(:,1));   
%reference frequency  
fo=2405 + 5*(CONFIG.hop_sequence(1)-11);  
%expected accuracy range of the distance estimates (used for  
%location estimation, i.e., distance fitting)  
alpha_m=1;  
%expected standard error of the received signal str ength estimates  
%(used for curves fittings of the path loss)  
alpha_dBm=3;      
%maximum expeceted additive noise  
max_additive_noise=-93;  
%threshold for maximum allowed channel activity  
interference_tresh=0.3;   
%Euclidean distance matrix  
D = pdist(Xnodes, 'euclidean' );  
EDM=zeros(N);  
c=0;  
for  i=1:N-1  
    for  j=i+1:N  
        c=c+1;  
        EDM(i,j)=D(c);  
    end  
end  
EDM = EDM + EDM';  
         
%taking packet drops away  
TABLE=cell(1,CONFIG.num_nodes);  
drop=1;  
for  i=1:CONFIG.num_nodes  
    for  j=1:(CONFIG.num_nodes-1)*CONFIG.num_packets  
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        if (fullTABLE{i}(j,1)==0)  
            drop=drop+1;  
        else  
            break ;  
        end  
    end  
    TABLE{i}=fullTABLE{i}(drop:end,:);  
    drop=1;  
end  
  
%setting channels with high activity and estimating  additive noise  
%at each  measuring node  
activity=zeros(1,CONFIG.channels_to_hop);  
num_noise_samples=zeros(1,CONFIG.channels_to_hop);  
NOISE=cell(1,CONFIG.num_nodes);  
for  i=1:CONFIG.num_nodes  
    NOISE{i}=[];  
    for  j=1:length(TABLE{i}(:,1))  
        packet_num=TABLE{i}(j,2);  
        noise=TABLE{i}(j,5);  
        if  (mod(packet_num,CONFIG.channels_to_hop)==0)  
            hop=CONFIG.channels_to_hop;  
        else  
            hop=mod(packet_num,CONFIG.channels_to_h op);  
        end  
        num_noise_samples(hop)=num_noise_samples(ho p)+1;  
        if (noise > max_additive_noise)  
            activity(hop)=activity(hop)+1;  
        else  
            NOISE{i}=[NOISE{i},noise];  
        end  
    end  
end  
node_add_noise=zeros(1,CONFIG.num_nodes);  
for  i=1:CONFIG.num_nodes  
    node_add_noise(i)=mean(NOISE{i});  
end   
check_interference=ones(1,CONFIG.channels_to_hop);  
for  i=1:CONFIG.channels_to_hop  
    if ((activity(i)/num_noise_samples(i)) > interference_ tresh)  
        check_interference(i)=0;  
    end  
end  
  
%normalizing measurements obtained at different fre quencies with  
%respect to the  reference frequency and filtering additive noise 
%out of measurements  
TABLEnormalized=cell(1,CONFIG.num_nodes);  
for  i=1:CONFIG.num_nodes  
    TABLEnormalized{i}=zeros(length(TABLE{i}(:,1)), 2);  
    for  j=1:length(TABLE{i}(:,1))  
        TABLEnormalized{i}(j,1)=TABLE{i}(j,1);  
        noise=TABLE{i}(j,5);  
        rssi=TABLE{i}(j,3);  
        packet_num=TABLE{i}(j,2);  
        if  (mod(packet_num,CONFIG.channels_to_hop)==0)  
            hop=CONFIG.channels_to_hop;  
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        else  
            hop=mod(packet_num,CONFIG.channels_to_h op);  
        end  
        f=2405 + 5*(CONFIG.hop_sequence(hop)-11);  
        if (noise < max_additive_noise && 
check_interference(hop)==1)  
            TABLEnormalized{i}(j,2)=10*log10(10^(rs si/10)-
10^(node_add_noise(i)/10))-20*log10(fo/f);  
        else  
            TABLEnormalized{i}(j,2)=0;  
        end  
    end  
end  
  
%tagging measurements obtained from the two antenna s (having  
%different  node-IDs) of a dual node under single node tags  
RSSI=[];  
DISTANCE_log=[];  
MEASUREMENTS=cell(1,N);  
c=0;  
for  i=1:2:CONFIG.num_nodes-1  
    c=c+1;  
    MEASUREMENTS{c}=[TABLEnormalized{i};TABLEnormal ized{i+1}];  
    MEASUREMENTS{c}=sortrows(MEASUREMENTS{c},[1]);  
    sourceID=0;  
    for  ID=1:2:CONFIG.num_nodes-1  
        sourceID=sourceID+1;  
        for  j=1:length(MEASUREMENTS{c}(:,1))  
           if (MEASUREMENTS{c}(j,1)==ID||MEASUREMENTS{c}(j,1)==ID +1)  
                MEASUREMENTS{c}(j,1)=sourceID;  
                if (MEASUREMENTS{c}(j,2)~=0)  

RSSI=[RSSI,MEASUREMENTS{c}(j,2)];  
DISTANCE_log=[DISTANCE_log,log10(EDM(c,source
ID))]; 

                end  
            end  
        end  
    end  
end  
  
%separating measurements taken at different anchor nodes into  
%different  matrices and computing the median of samples, weigt hs,  
%and corresponding  log-distances  
RANGEdata=cell(1,N);  
for  i=1:N  
    c=0;  
    temp=[];  
    count=1;  
    for  j=1:length(MEASUREMENTS{i}(:,1))  
        if  (MEASUREMENTS{i}(j,1) > 0)  
            sourceID=MEASUREMENTS{i}(j,1);          
            if (L(i,sourceID)~=0)  
                temp=[temp,MEASUREMENTS{i}(j,2)];  
                if (MEASUREMENTS{i}(j,2)==0)  
                    count=count+1;  
                end  
                if (j~=length(MEASUREMENTS{i}(:,1)))  
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                    if (MEASUREMENTS{i}(j+1,1)~=sourceID)  
                        c=c+1;  
                        RANGEdata{i}(1,c)=log10(EDM (i,sourceID));  
                        temp=sort(temp);  
                        temp=temp(1:end-count);  
                        RANGEdata{i}(2,c)=median(te mp);  
                        RANGEdata{i}(3,c)=qfunc(-
alpha_dBm*sqrt(length(temp))/(2*std(temp)))-
qfunc(alpha_dBm*sqrt(length(temp))/(2*std(temp)));  
                        median_rssi(i,sourceID)=RAN GEdata{i}(2,c);  
                        TEMP{i,sourceID}=temp;  
                        temp=[];  
                        count=1;  
                    end  
                else   
                    c=c+1;  
                    RANGEdata{i}(1,c)=log10(EDM(i,s ourceID));  
                    temp=sort(temp);  
                    temp=temp(1:end-count);  
                    RANGEdata{i}(2,c)=median(temp);  
                    RANGEdata{i}(3,c)=qfunc(-
alpha_dBm*sqrt(length(temp))/(2*std(temp)))-
qfunc(alpha_dBm*sqrt(length(temp))/(2*std(temp)));  
                    median_rssi(i,sourceID)=RANGEda ta{i}(2,c);  
                    TEMP{i,sourceID}=temp;  
                end  
            end  
        end  
    end  
end  
  
%ANCHOR-SPECIFIC PATH LOSS ESTIMATIONS 
NODESparameters=[(1:N)',zeros(N,3)];  
temp1=[];  
temp2=[];  
temp3=[];  
for  i=1:N  
    if  (size(RANGEdata{i})>[2,2])  
        logDV = RANGEdata{i}(1,:);  
        rssi_estimates = RANGEdata{i}(2,:);  
        fitweigth = RANGEdata{i}(3,:);  
        ok_ = isfinite(logDV) & isfinite(rssi_estim ates);  
        if  ~all( ok_ )  
            warning( 'GenerateMFile:IgnoringNansAndInfs' , ...  
                'Ignoring NaNs and Infs in data'  );  
        end  
        ft_ = fittype( 'poly1' );  
        fo_ = 
fitoptions( 'method' , 'LinearLeastSquares' , 'Robust' , 'On' );  
        set(fo_, 'Weight' ,fitweigth(ok_));  
        [cf_ gf_] = fit(logDV(ok_),rssi_estimates(o k_),ft_,fo_)  
        if  (gf_.rsquare<0)  
            fo_ = 
fitoptions( 'method' , 'LinearLeastSquares' , 'Robust' , 'Off' );  
            set(fo_, 'Weight' ,fitweigth(ok_));  
            [cf_ gf_] = fit(logDV(ok_),rssi_estimat es(ok_),ft_,fo_)  
        end  
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        if  (gf_.rsquare<0)  
            [cf_ gf_] = fit(logDV(ok_),rssi_estimat es(ok_),ft_)  
        end  
        NODESparameters(i,2)=cf_.p2;  
        NODESparameters(i,3)=-cf_.p1/10;  
        NODESparameters(i,4)=gf_.rmse;  
        temp1=[temp1,RANGEdata{i}(1,:)];  
        temp2=[temp2,RANGEdata{i}(2,:)];  
        temp3=[temp3,RANGEdata{i}(3,:)];  
    end  
end  
  
%Global path loss estimation (needed to compensate the small number 
of observations in the anchor-specific path loss es timations)  
logDV = temp1(:);  
rssi_estimates = temp2(:);  
fitweigth = temp3(:);  
ok_ = isfinite(logDV) & isfinite(rssi_estimates);  
if  ~all( ok_ )  
     warning( 'GenerateMFile:IgnoringNansAndInfs' , ...  
         'Ignoring NaNs and Infs in data'  );  
end  
ft_ = fittype( 'poly1' );  
fo_ = fitoptions( 'method' , 'LinearLeastSquares' , 'Robust' , 'On' );  
set(fo_, 'Weight' ,fitweigth(ok_));  
[cf_ gf_] = fit(logDV(ok_),rssi_estimates(ok_),ft_, fo_)  
if  (gf_.rsquare<0)  
    fo_ = fitoptions( 'method' , 'LinearLeastSquares' , 'Robust' , 'Off' );  
    set(fo_, 'Weight' ,fitweigth(ok_));  
    [cf_ gf_] = fit(logDV(ok_),rssi_estimates(ok_), ft_,fo_)  
end  
if  (gf_.rsquare<0)  
    [cf_ gf_] = fit(logDV(ok_),rssi_estimates(ok_), ft_)  
end          
GLOBALpar.A=cf_.p2;  
GLOBALpar.n=-cf_.p1/10;  
GLOBALpar.rmse=gf_.rmse;  
  
%DISTANCE ESTIMATION (RSSI-to-distance mapping base d on the anchor- 
%specific  path loss estimations)  
DISTANCEmatrix=EDM;  
H=ones(size(EDM));  
for  i=1:length(EDM)  
    H(i,i)=0;  
end  
for  i=Nblinds+1:N  
    A=0.25*GLOBALpar.A + 0.75*NODESparameters(i,2);  
    n=0.5*GLOBALpar.n + 0.5*NODESparameters(i,3);  
    rmse=0.25*GLOBALpar.rmse + 0.75*NODESparameters (i,4);  
    B=-10*n;  
    for  k=1:Nblinds  
        median_rssi(i,k)=0.75*median_rssi(i,k) + 
0.25*median_rssi(k,i);  
        if (BOUNDdistance~=0)  
            DISTANCEmatrix(i,k)=max(BOUNDdistance.m in, 
10^((median_rssi(i,k)-A)/B));  
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            DISTANCEmatrix(i,k)=min(BOUNDdistance.m ax, 
DISTANCEmatrix(i,k));  
        else  
            DISTANCEmatrix(i,k)=10^((median_rssi(i, k)-A)/B);  
        end  
        DISTANCEmatrix(k,i)=DISTANCEmatrix(i,k);  
        %calculating weigths for distance fitting  
        distance_samples=10.^((TEMP{i,k}-A)/B);  
        offset=DISTANCEmatrix(i,k)*(1-exp(-
(1/2)*((rmse*log(10))/(10*n))^2));  
        H(i,k)=qfunc(-
abs(alpha_m+offset)*sqrt(length(distance_samples))/ (2*std(distance_
samples)))-qfunc(abs(alpha_m-
offset)*sqrt(length(distance_samples))/(2*std(dista nce_samples)));;  
        H(k,i)=H(i,k);  
    end  
end  
  
%calculating distance estimates errors  
temp=[];  
for  i=Nblinds+1:N  
    for  k=1:Nblinds  
        distance_error=abs(EDM(i,k)-DISTANCEmatrix( i,k));  
        temp=[temp,distance_error];  
    end  
end  
RANGEerror.mean=mean(temp);  
RANGEerror.max=max(temp);  
  
%LOCATION ESTIMATION (weigthed least-squares optimi zation)  
  
X=Xnodes;  
X(1:Nblinds,:)=X0blinds;  
x0=[];  
for  i=1:N  
    for  j=1:2  
        x0 = [x0; X((j-1) * N + i)];  
    end  
end  
DISTANCEvector=DISTANCEmatrix(find(tril(ones(N),-1) ))';  
H_=H(find(tril(ones(N),-1)))';  
options = optimset( 'Jacobian' , 'on' );  
[Xestimate,resnorm] = 
lsqnonlin(@(x)Jwls(x,DISTANCEvector,H_,N,2),x0,-
inf*ones(N*2,1),inf*ones(N*2,1),options);  
LOCATIONS=zeros(N,2);  
for  i=1:2  
    for  j=1:N  
        LOCATIONS(j,i) = [Xestimate((j-1) * 2 + i)] ;  
    end  
end  
  
%calculating location estimate errors  
temp=[];  
for  k=1:Nblinds  
    localization_error=pdist([LOCATIONS(k,:);Xnodes (k,:)]);  
    temp=[temp,localization_error];  
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end  
LOCALIZATIONerror.mean=mean(temp);  
LOCALIZATIONerror.max=max(temp);  
  
ERROR(1)=RANGEerror;  
ERROR(2)=LOCALIZATIONerror;  
 
 
function  [F J]= Jwls(x,D,H,N,m)  
Xmatrix=zeros(N,m);  
for  i=1:m  
    for  j=1:N  
        Xmatrix(j,i) = [x((j-1) * m + i)];  
    end  
end  
  
%calculating vector of non-redundant equations usin g the weigthed  
%least-squares cost function  
F = (H .* (D.^2 - (pdist(Xmatrix, 'euclidean' )).^2))';  
  
%calculating the Jacobian  
temp1 = zeros(length(D),m*N);  
for  v=1:N  
    c=0;  
    temp=zeros(length(D),m);  
    for  i=1:N  
        for  j=i+1:N  
            c=c+1;  
            if  (v==i & v~=1:m+1)  
                temp(c,:)=-2*H(c)*(Xmatrix(v,:)-Xma trix(j,:));  
            end  
            if  (v==j & v~=1:m+1)  
                temp(c,:)=-2*H(c)*(Xmatrix(v,:)-Xma trix(i,:));  
            end  
        end  
    end  
    temp1(:,m*v-(m-1):m*v)=temp;  
end  
J=temp1; 
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B. C-source code on the measuring node 
 
/* Created by: JS */ 
/* Revised by: JV */ 
 
/***** file main.c *****/ 
 
/* Standard includes. */ 
#include <stdlib.h> 
#include <signal.h> 
#include <string.h> 
/* Scheduler includes. */ 
#include "FreeRTOS.h" 
#include "task.h" 
#include "queue.h" 
#include "bus.h" 
#include "gpio.h" 
#include "debug.h" 
#include "socket.h" 
#include "rf.h" 
#include "buffer.h" 
#include "flash.h" 
 
/* tasks declaration */ 
static void Node( void * pvParameters ); 
 
/* Constants declaration */ 
uint8_t NODE_ID =3; //1 is ONLY for the sink node! 
uint8_t BROADCAST_PACKET =23; 
uint8_t START_APPLICATION =1; 
uint8_t POLL =40; 
uint8_t POLL_ANSWER =50; 
uint8_t ICS =200 ; // ms 
#define PRINT_COMMAND 70 
#define ERASE_MEMORY 90 
 
/* Variables declaration */ 
uint16_t PACKETS_NUMBER ; 
uint8_t RADIO_CHANNEL ; 
uint8_t TX_POWER ; 
uint16_t TX_interval ; 
uint8_t TX_intervalLS ; 
uint8_t TX_intervalMS ; 
uint8_t packets_numberLS ; 
uint8_t packets_numberMS ; 
int8_t byte ; 
uint8_t nodes_number ; 
uint16_t pac_counter ; 
uint8_t TX_NODE_ID ; 
int8_t RSSI_packet ; 
int8_t noise ; 
uint8_t not_started ; 
uint8_t not_polled ; 
uint8_t current_radio_channel ; 
uint8_t data [ 253 ]; // 252B + 1B = 42 packet + idx 
uint8_t rec_packet_counter ; 
uint16_t j ; 
uint32_t ADD ; 
uint32_t ADD_print ; 
uint16_t packet_number ; 
uint8_t packet_numLS ; 
uint8_t packet_numMS ; 
uint8_t last_page ; 
uint8_t content ; 
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uint8_t LQI_packet ; 
uint8_t * channel_seq ; 
uint8_t next ; 
uint8_t hop_num ; 
uint16_t i ; 
portTickType start_tx_time ; 
portTickType stop_tx_time ; 
portTickType recorded_time ; 
portTickType wait_tiempo ; 
portTickType wait_tiempo_temp ; 
portTickType tiempo_to_TX ; 
portTickType wait_to_change ; 
portTickType wait_to_change_temp ; 
portTickType time_to_change ; 
uint8_t distance ; 
uint8_t distance_to_last ; 
uint8_t first_reference ; 
uint8_t check ; 
 
/* Sockets declaration */ 
socket_t * Radio_Socket =0; 
 
/* Buffers declaration */ 
buffer_t * R_Buffer ; 
buffer_t * T_Buffer ; 
 
/* Ports definition */ 
#define BROADCAST_PORT_NUM 20 
 
/* Addresses declaration */ 
sockaddr_t Broadcast_Add = 
{ 

ADDR_802_15_4_PAN_LONG, 
{ 0xFF, 0xFF, 0xFF, 0xFF, 
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, 
BROADCAST_PORT_NUM 

}; 
 
/* main */ 
int main ( void ) 
{ 

/* Initializes the leds */ 
LED_INIT (); 
if ( bus_init () == pdFALSE) 
{ 
} 
/* Initializes the debug window */ 
debug_init ( 115200 ); 
stack_init (); 
/* Creates the tasks */ 
xTaskCreate ( Node, "NODE", configMAXIMUM_STACK_SIZE , NULL,( tskIDLE_PR
IORITY + 0),( 
xTaskHandle * ) NULL); 
/* Starts the scheduler */ 
vTaskStartScheduler (); 
return 0; 

} 
 
/* Measuring node Task */ 
static void Node ( void * pvParameters ) 
{ 
 

/* wait user input */ 
LED2_ON(); 
byte = - 1; 
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debug ( "NODE WAITING FOR COMMAND\r\n" ); 
byte = debug_read_blocking ( 5000 ); 
LED2_OFF(); 
 
/*pulls measurmrnets data via serial communication when the 
measuring node is attached 
to the workstation*/ 
if ( byte == PRINT_COMMAND) 
{ 

last_page =0; 
ADD_print =0; 
while ( last_page != 1) 
{ 

if ( flash_read ( ADD_print , data , sizeof ( data )) == pdTRUE) 
{ 

content =data [ 0]; 
if ( content ==255 ) 
{ 

debug ( "PRINT COMPLETED\r\n" ); 
last_page =1; 

} 
else 
{ 

for ( j =0; j <=( uint16_t )( content - 1)* 6; j =j +6) 
{ 
TX_NODE_ID = data [ j +1]; 
packet_numLS = data [ j +2]; 
packet_numMS = data [ j +3]; 
packet_number = packet_numLS +( packet_numMS <<8); 
RSSI_packet = data [ j +4]; 
LQI_packet = data [ j +5]; 
noise = data [ j +6]; 
vTaskDelay ( 20); 
} 

} 
} 
ADD_print =ADD_print +256 ; 

} 
} 
/*erase memory*/ 
else if ( byte == ERASE_MEMORY) 
{ 

debug ( "Starting bulk erase\r\n" ); 
while ( flash_bulk_erase () != pdTRUE) 
{ 

debug ( "." ); 
vTaskDelay ( 10); 

} 
debug ( "Flash memory erased\r\n" ); 

} 
// end of user input 

 
/* ACTUAL PROGRAM FOR ENERGY MEASUREMENTS AND FOR PASSING DATA ON 
REQUEST*/ 
else 
{ 

Radio_Socket =socket ( MODULE_CUDP, 0); 
socket_bind ( Radio_Socket ,& Broadcast_Add ); 
for (;;) 
{ 

/*CONFIGURATION PHASE*/ 
//initial radio and memory settings 
rf_power_set ( RF_DEFAULT_POWER); 
current_radio_channel =rf_channel_set ( RF_DEFAULT_CHANNEL); 
while ( flash_bulk_erase () != pdTRUE) 
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{ 
debug ( "." ); 
vTaskDelay ( 10); 

} 
/*measuring node waits configuration parameters fro m sink 
node*/ 
not_started = 1; 
while ( not_started ) 
{ 

R_Buffer =socket_read ( Radio_Socket , 0); 
if ( R_Buffer ==0) 
{ 
} 
else 
{ 

if ( buffer_pull_uint8 ( R_Buffer ) == START_APPLICATION) 
{ 

nodes_number = buffer_pull_uint8 ( R_Buffer ); 
packets_numberLS = buffer_pull_uint8 ( R_Buffer ); 
packets_numberMS = buffer_pull_uint8 ( R_Buffer ); 
PACKETS_NUMBER = 
packets_numberLS +( packets_numberMS <<8); 
TX_intervalLS = buffer_pull_uint8 ( R_Buffer ); 
TX_intervalMS = buffer_pull_uint8 ( R_Buffer ); 
TX_interval = TX_intervalLS +( TX_intervalMS <<8); 
RADIO_CHANNEL = buffer_pull_uint8 ( R_Buffer ); 
TX_POWER = buffer_pull_uint8 ( R_Buffer ); 
hop_num = buffer_pull_uint8 ( R_Buffer ); 
channel_seq =( uint8_t *) 
malloc ( hop_num* sizeof ( uint8_t )); 
for ( i =0; i <hop_num; i ++) 
{ 

channel_seq [ i ]= 0; 
} 
for ( i =0; i <hop_num; i ++) 
{ 

channel_seq [ i ] = buffer_pull_uint8 ( R_Buffer ); 
} 
not_started = 0; 

} 
socket_buffer_free ( R_Buffer ); 
R_Buffer =0; 

} 
} 
//update radio settings 
current_radio_channel =rf_channel_set ( channel_seq [ 0]); 
rf_power_set ( TX_POWER); 
 
 
/*MEASUREMENTS PHASE: packet handling for the measu rments 
round (sink node initilizes the measurements round) */ 
wait_tiempo = (( nodes_number - 1) * TX_interval + 
ICS)/ portTICK_RATE_MS ; 
wait_to_change = (( nodes_number - NODE_ID) * TX_interval + 
( ICS / 2))/ 
portTICK_RATE_MS ; 
j =0; 
ADD=0; 
rec_packet_counter =0; 
packet_number =0; 
pac_counter = 0; 
next =1; 
first_reference = 0; 
check = 0; 
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for (;;) 
{ 

if ( first_reference && pac_counter <= PACKETS_NUMBER) 
{ 

/* check if time to transmit expired*/ 
if ( xTaskGetTickCount () > tiempo_to_TX ) 
{ 

T_Buffer =socket_buffer_get ( Radio_Socket ); 
if ( T_Buffer ) 
{ 

buffer_push_uint8 ( T_Buffer , BROADCAST_PACKET); 
buffer_push_uint8 ( T_Buffer , NODE_ID); 
buffer_push_uint8 ( T_Buffer , ( pac_counter >>8)); 
buffer_push_uint8 ( T_Buffer , pac_counter ); 
if 
( socket_sendto ( Radio_Socket ,& Broadcast_Add , T_Buffe
r ) == pdTRUE) 
{ 

T_Buffer = 0; 
} 
else 
{ 

socket_buffer_free ( T_Buffer ); 
T_Buffer = 0; 

} 
} 
pac_counter ++; 
/* update time to transmit and time to change the 
channel*/ 
recorded_time = xTaskGetTickCount (); 
tiempo_to_TX = recorded_time + wait_tiempo ; 
time_to_change = recorded_time + wait_to_change ; 
check =1; 

} 
 
/* check if time to change the channel expired*/ 
if ( xTaskGetTickCount () > time_to_change && hop_num > 1 
&& check ) 
{ 

check = 0; 
current_radio_channel =rf_channel_set ( channel_seq [ next
]); 
next ++; 
if ( next > hop_num - 1) 
{ 

next = 0; 
} 

} 
} 

 
/* check if a beacon has been received*/ 
R_Buffer =socket_read ( Radio_Socket , 0); 
if ( R_Buffer ==0) 
{ 
} 
else 
{ 

if ( buffer_pull_uint8 ( R_Buffer ) == BROADCAST_PACKET) 
{ 

/*for estimation of the additive noise and channel 
activity*/ 
noise = rf_analyze_rssi (); 
 
// data operations 
rec_packet_counter ++; 
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TX_NODE_ID = buffer_pull_uint8 ( R_Buffer ); 
packet_numMS = buffer_pull_uint8 ( R_Buffer ); 
packet_numLS = buffer_pull_uint8 ( R_Buffer ); 
packet_number = packet_numLS +( packet_numMS <<8); 
RSSI_packet = R_Buffer -> options . rf_dbm ; 
LQI_packet = R_Buffer -> options . rf_lqi ; 
 
if ( first_reference == 0) /*when first beacon of the 
measurements round is received*/ 
{ 

recorded_time = xTaskGetTickCount (); 
//update time to transmit 
if ( TX_NODE_ID < NODE_ID) 
{ 

pac_counter = packet_number ; 
distance = NODE_ID - TX_NODE_ID; 
wait_tiempo_temp = ( distance * 
TX_interval )/ portTICK_RATE_MS ; 
tiempo_to_TX = recorded_time + wait_tiempo_temp ; 

} 
else 
{ 

pac_counter = packet_number + 1; 
distance = ( nodes_number + NODE_ID) - 
TX_NODE_ID; 
wait_tiempo_temp = (( distance - 1) * TX_interval + 
ICS)/ 
portTICK_RATE_MS ; 
tiempo_to_TX = recorded_time + wait_tiempo_temp ; 

} 
// update time to change the channel 
distance_to_last = nodes_number –  TX_NODE_ID; 
wait_to_change_temp = ( distance_to_last * 
TX_interval + ( ICS / 2))/ 
portTICK_RATE_MS ; 
time_to_change = recorded_time + 
wait_to_change_temp ; 
first_reference = 1; 
check =1; 

} 
//data operations; 
data [(( rec_packet_counter - 1)* 6)+ 1]= TX_NODE_ID; 
data [(( rec_packet_counter - 1)* 6)+ 2]= packet_numLS ; 
data [(( rec_packet_counter - 1)* 6)+ 3]= packet_numMS ; 
data [(( rec_packet_counter - 1)* 6)+ 4]= RSSI_packet ; 
data [(( rec_packet_counter - 1)* 6)+ 5]= LQI_packet ; 
data [(( rec_packet_counter - 1)* 6)+ 6]= noise ; 
if ( rec_packet_counter ==42) 
{ 

data [ 0]= rec_packet_counter ; 
if ( flash_write ( ADD, data , sizeof ( data ))== pdTRUE) 
{ 

flash_write_wait (); 
} 
ADD=ADD+256 ; 
rec_packet_counter =0; 

} 
} 
socket_buffer_free ( R_Buffer ); 
R_Buffer =0; 

} 
 

/* exit loop if the measurements round has ended*/ 
if ( pac_counter > PACKETS_NUMBER && ( xTaskGetTickCount () - 
recorded_time )* portTICK_RATE_MS > ( nodes_number -
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NODE_ID)* TX_interval + 200 ) 
{ 

if ( rec_packet_counter != 0) 
{ 

data [ 0]= rec_packet_counter ; 
if ( flash_write ( ADD, data , sizeof ( data ))== pdTRUE) 
{ 

flash_write_wait (); 
} 
ADD=ADD+256 ; 

} 
rec_packet_counter =0; 
break ; 

} 
} // end of measurements phase 

 
 

/* POLLING PHASE: sink node collects measurements f rom 
measuring nodes*/ 
//reset buffers and radio 
if ( T_Buffer ) 
{ 

socket_buffer_free ( T_Buffer ); 
T_Buffer = 0; 

} 
if ( R_Buffer ) 
{ 

socket_buffer_free ( R_Buffer ); 
R_Buffer = 0; 

} 
vTaskDelay ( 50); 
socket_close ( Radio_Socket ); 
Radio_Socket =socket ( MODULE_CUDP, 0); 
socket_bind ( Radio_Socket ,& Broadcast_Add ); 
current_radio_channel =rf_channel_set ( RADIO_CHANNEL); 
rf_power_set ( RF_DEFAULT_POWER); 
 
// waiting for poll request 
not_polled = 1; 
while ( not_polled ) 
{ 

R_Buffer =socket_read ( Radio_Socket , 5000 ); 
if ( R_Buffer ==0) 
{ 
} 
else 
{ 

if ( buffer_pull_uint8 ( R_Buffer ) == POLL && 
buffer_pull_uint8 ( R_Buffer ) == NODE_ID) 
{ 

last_page =0; 
ADD_print =0 
while ( last_page != 1) 
{ 

if ( flash_read ( ADD_print , data , sizeof ( data )) == 
pdTRUE) 

{ 
content =data [ 0]; 
if ( content ==255 ) 
{ 

last_page =1; 
} 
else 
{ 

for ( j =0; j <=( uint16_t )( content - 1)* 6; j =j +6) 
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{ 
TX_NODE_ID = data [ j +1]; 
packet_numLS = data [ j +2]; 
packet_numMS = data [ j +3]; 
packet_number = 
packet_numLS +( packet_numMS <<8); 
RSSI_packet = data [ j +4]; 
LQI_packet = data [ j +5]; 
noise = data [ j +6]; 
T_Buffer =socket_buffer_get ( Radio_Socket ); 
if ( T_Buffer ) 
{ 

buffer_push_uint8 ( T_Buffer , POLL_ANSWER); 
buffer_push_uint8 ( T_Buffer , NODE_ID); 
buffer_push_uint8 ( T_Buffer , TX_NODE_ID); 
buffer_push_uint8 ( T_Buffer , 
packet_numLS ); 
buffer_push_uint8 ( T_Buffer , 
packet_numMS ); 
buffer_push_uint8 ( T_Buffer , RSSI_packet ); 
buffer_push_uint8 ( T_Buffer , LQI_packet ); 
buffer_push_uint8 ( T_Buffer , noise ); 
if ( socket_sendto ( Radio_Socket ,& Broadcast_
Add, T_Buffer ) == pdTRUE) 
{ 

T_Buffer = 0; 
} 
else 
{ 

socket_buffer_free ( T_Buffer ); 
T_Buffer = 0; 

} 
} 
vTaskDelay ( 20); 

} 
} 

} 
ADD_print =ADD_print +256 ; 

} 
not_polled = 0; 

} 
socket_buffer_free ( R_Buffer ); 
R_Buffer =0; 

} 
} //end of polling phase 
free ( channel_seq ); 

} // back to configuration phase 
} 

} 
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C.  C-source code on the sink node 

 
/* Created by: JS */ 
/* Revised by: JV */ 
 
/***** file main.c *****/ 
 
/* Standard includes. */ 
#include <stdlib.h> 
#include <signal.h> 
#include <string.h> 
 
/* Scheduler includes. */ 
#include "FreeRTOS.h" 
#include "task.h" 
#include "queue.h" 
#include "bus.h" 
#include "gpio.h" 
#include "debug.h" 
#include "socket.h" 
#include "rf.h" 
#include "buffer.h" 
#include "flash.h" 
#include <sys/inttypes.h> 
#include "control_message.h" 
 
/* tasks declaration */ 
static void Sink_Node ( void * pvParameters ); 
 
/* Constants declaration */ 
uint8_t NODE_ID =1; //1 is ONLY for the sink node! 
uint8_t BROADCAST_PACKET =23; 
uint8_t START_APPLICATION =1; 
uint8_t POLL =40; 
uint8_t POLL_ANSWER =50; 
uint8_t ICS =200 ; // ms 
#define PRINT_COMMAND 70 
#define EXIT_COMMAND 80 
#define ERASE_MEMORY 90 
 
/* Variables declaration */ 
uint16_t PACKETS_NUMBER ; 
uint8_t RADIO_CHANNEL ; 
uint8_t TX_POWER ; 
uint16_t TX_interval ; 
uint8_t TX_intervalLS ; 
uint8_t TX_intervalMS ; 
uint8_t packets_numberLS ; 
uint8_t packets_numberMS ; 
uint8_t configuration [ 10]; 
uint8_t x ; 
uint8_t t ; 
uint8_t exit_condition ; 
int8_t byte ; 
uint8_t nodes_number ; 
uint16_t TX_pac_counter ; 
uint8_t TX_NODE_ID ; 
uint8_t node_id ; 
uint8_t i ; 
int8_t RSSI_packet ; 
int8_t noise ; 
uint8_t current_radio_channel ; 
int8_t data [ 253 ]; // 252B + 1B = 42 packet + idx 
uint8_t rec_packet_counter ; 
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uint16_t j ; 
uint32_t ADD ; 
uint32_t ADD_print ; 
uint16_t packet_number ; 
uint8_t packet_numLS ; 
uint8_t packet_numMS ; 
uint8_t last_page ; 
uint8_t content ; 
uint8_t LQI_packet ; 
uint16_t castMS ; 
uint8_t poll_completed ; 
uint8_t next ; 
uint8_t hop_num ; 
portTickType recorded_time ; 
portTickType wait_tiempo ; 
portTickType tiempo_to_TX ; 
portTickType wait_to_change ; 
portTickType time_to_change ; 
uint8_t distance ; 
uint8_t check ; 
 
/* Sockets declaration */ 
socket_t * Radio_Socket =0; 
 
/* Buffers declaration */ 
buffer_t * T_Buffer ; 
buffer_t * R_Buffer ; 
 
/* Ports definition */ 
#define BROADCAST_PORT_NUM 20 
 
/* Addresses declaration */ 
sockaddr_t Broadcast_Add = 
{ 

ADDR_802_15_4_PAN_LONG, 
{ 0xFF, 0xFF, 0xFF, 0xFF, 
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, 
BROADCAST_PORT_NUM 

}; 
 
/*function that passes on own (not collected) measu rements data to 
workstation*/ 
static void print_data ( void ) 
{ 

last_page =0; 
ADD_print =0; 
debug ( "print command received\r\n" ); 
while ( last_page != 1) 
{ 

if ( flash_read ( ADD_print , data , sizeof ( data )) == pdTRUE) 
{ 

content =data [ 0]; 
if ( content ==255 ) 
{ 

debug ( "PRINT COMPLETED\r\n" ); 
last_page =1; 

} 
else 
{ 

for ( j =0; j <=( uint16_t )( content - 1)* 6; j =j +6) 
{ 

TX_NODE_ID = data [ j +1]; 
packet_numLS = data [ j +2]; 
packet_numMS = data [ j +3]; 
packet_number = packet_numLS +( packet_numMS <<8); 
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RSSI_packet = data [ j +4]; 
LQI_packet = data [ j +5]; 
noise = data [ j +6]; 
vTaskDelay ( 20); 

} 
} 

} 
ADD_print =ADD_print +256 ; 

} 
} 
 
/* main */ 
int main ( void ) 
{ 

/* Initializes the leds */ 
LED_INIT (); 
if ( bus_init () == pdFALSE) 
{ 
} 
/* Initializes the debug window */ 
debug_init ( 115200 ); 
stack_init (); 
/* Creates the tasks */ 
xTaskCreate ( Sink_Node , "SINKNODE", configMAXIMUM_STACK_SIZE , NULL,( t
skIDLE_PRIORITY + 0),( 
xTaskHandle * ) NULL); 
/* Starts the scheduler */ 
vTaskStartScheduler (); 
return 0; 

} 
 
/* Sink node Task */ 
static void Sink_Node ( void * pvParameters ) 
{ 

/*CONFIGURATION PHASE: sink node receives configura tion 
parameters from workstation and passes them on to t he network*/ 
LED1_ON(); 
vTaskDelay ( 1000 ); 
LED1_OFF(); 
for ( x=0; x<( sizeof ( configuration )); x++) 
{ 

configuration [ x] = 0; 
} 
LED2_ON(); 
for ( x=0; x<8; x++) //receive 7 parameters from workstation 
{ 

byte = - 1; 
while ( byte == - 1) 
{ 

byte = debug_read_blocking ( 1000 ); 
configuration [ x] = byte ; 

} 
} 
LED2_OFF(); 
nodes_number = configuration [ 0]; 
packets_numberLS = configuration [ 1]; 
packets_numberMS = configuration [ 2]; 
TX_intervalLS = configuration [ 3]; 
TX_intervalMS = configuration [ 4]; 
RADIO_CHANNEL = configuration [ 5]; 
TX_POWER = configuration [ 6]; 
hop_num = configuration [ 7]; 
castMS = ( uint16_t ) TX_intervalMS ; 
TX_interval = TX_intervalLS +( castMS * 255 ); 
castMS = ( uint16_t ) packets_numberMS ; 
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PACKETS_NUMBER = packets_numberLS +( castMS * 255 ); 
debug ( "CONFIG PARAMETERS"); 
uint8_t * channel_seq ; 
channel_seq =( uint8_t *) malloc ( hop_num* sizeof ( uint8_t )); 
for ( i =0; i <hop_num; i ++) 
{ 

channel_seq [ i ]= 0; 
} 
debug ( "MEMORY ALLOCATED\r\n" ); 
LED2_ON(); 
for ( x=0; x<hop_num; x++) /*Receive hop_num parameters from 
workstation (channel hops)*/ 
{ 

byte = - 1; 
while ( byte == - 1) 
{ 

byte = debug_read_blocking ( 1000 ); 
channel_seq [ x] = byte ; 

} 
} 
LED2_OFF(); 
while ( flash_bulk_erase () != pdTRUE) 
{ 

debug ( "." ); 
vTaskDelay ( 10); 

} 
//radio settings for control channel 
Radio_Socket =socket ( MODULE_CUDP, 0); 
socket_bind ( Radio_Socket ,& Broadcast_Add ); 
rf_power_set ( RF_DEFAULT_POWER); 
current_radio_channel =rf_channel_set ( RF_DEFAULT_CHANNEL); 
/* Broadcast 3 START_APPLICATION packets (packet co ntains 
configuration parameters)*/ 
for ( t =1; t <=3; t ++) 
{ 

T_Buffer =socket_buffer_get ( Radio_Socket ); 
if ( T_Buffer ) 
{ 

buffer_push_uint8 ( T_Buffer , START_APPLICATION); 
buffer_push_uint8 ( T_Buffer , nodes_number ); 
buffer_push_uint8 ( T_Buffer , packets_numberLS ); 
buffer_push_uint8 ( T_Buffer , packets_numberMS ); 
buffer_push_uint8 ( T_Buffer , TX_intervalLS ); 
buffer_push_uint8 ( T_Buffer , TX_intervalMS ); 
buffer_push_uint8 ( T_Buffer , RADIO_CHANNEL); 
buffer_push_uint8 ( T_Buffer , TX_POWER); 
buffer_push_uint8 ( T_Buffer , hop_num); 
for ( x=0; x<hop_num; x++) 
{ 

buffer_push_uint8 ( T_Buffer , channel_seq [ x]); 
} 
if ( socket_sendto ( Radio_Socket ,& Broadcast_Add , T_Buffer ) == 
pdTRUE) 
{ 
} 
else 
{ 

socket_buffer_free ( T_Buffer ); 
T_Buffer = 0; 

} 
vTaskDelay ( 10); 

} 
} 
debug ( "START APPLICATION MESSAGE TX\r\n" ); /* end of the 
configuration phase*/ 
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/*MEASUREMENTS PHASE: sink node initiates measureme nts round*/ 
//reset radio for energy measurements 
current_radio_channel =rf_channel_set ( channel_seq [ 0]); 
rf_power_set ( TX_POWER); 
 
/* initialize the measurements round (sends first b eacon)*/ 
TX_pac_counter = 1; 
vTaskDelay ( 50); 
T_Buffer =socket_buffer_get ( Radio_Socket ); 
if ( T_Buffer ) 
{ 

buffer_push_uint8 ( T_Buffer , BROADCAST_PACKET); 
buffer_push_uint8 ( T_Buffer , NODE_ID); 
buffer_push_uint8 ( T_Buffer , ( TX_pac_counter >>8)); // MS 
buffer_push_uint8 ( T_Buffer , TX_pac_counter ); // LS 
if ( socket_sendto ( Radio_Socket ,& Broadcast_Add , T_Buffer ) == 
pdTRUE) 
{ 
} 
else 
{ 

socket_buffer_free ( T_Buffer ); 
T_Buffer = 0; 

} 
} 
 
/* packet hadling for the measurements round */ 
j =0; 
ADD=0; 
rec_packet_counter =0; 
TX_pac_counter = 2; 
next =1; 
check =1; 
recorded_time = xTaskGetTickCount (); 
last_rec = recorded_time ; 
wait_tiempo = (( nodes_number - 1) * TX_interval + 
ICS)/ portTICK_RATE_MS ; 
tiempo_to_TX = recorded_time + wait_tiempo ; 
wait_to_change = (( nodes_number - 1) * TX_interval + 
ICS / 2)/ portTICK_RATE_MS ; 
time_to_change = recorded_time + wait_to_change ; 
 
for (;;) 
{ 

// check if time to transmit expired 
if ( xTaskGetTickCount () > tiempo_to_TX && TX_pac_counter <= 
PACKETS_NUMBER) 
{ 

T_Buffer =socket_buffer_get ( Radio_Socket ); 
if ( T_Buffer ) 
{ 

buffer_push_uint8 ( T_Buffer , BROADCAST_PACKET); 
buffer_push_uint8 ( T_Buffer , NODE_ID); 
buffer_push_uint8 ( T_Buffer , ( TX_pac_counter >>8)); 
buffer_push_uint8 ( T_Buffer , TX_pac_counter ); 
if ( socket_sendto ( Radio_Socket ,& Broadcast_Add , T_Buffer ) == 
pdTRUE) 
{ 

T_Buffer = 0; 
} 
else 
{ 

socket_buffer_free ( T_Buffer ); 
T_Buffer = 0; 

} 
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} 
TX_pac_counter ++; 
// update time to transmit 
recorded_time = xTaskGetTickCount (); 
tiempo_to_TX = recorded_time + wait_tiempo ; 
time_to_change = recorded_time + wait_to_change ; 
check =1; 

} 
 
// check if time to change the channel expired 
if ( xTaskGetTickCount () > time_to_change && TX_pac_counter <= 
PACKETS_NUMBER && check && hop_num > 1) 
{ 

check =0; 
current_radio_channel =rf_channel_set ( channel_seq [ next ]); 
next ++; 
if ( next > hop_num - 1) 
{ 

next = 0; 
} 

} 
 
// check if a beacon has been received 
R_Buffer =socket_read ( Radio_Socket , 0); 
if ( R_Buffer ==0) 
{ 
} 
else 
{ 

if ( buffer_pull_uint8 ( R_Buffer ) == BROADCAST_PACKET) 
{ 

//for estimation of the additive noise and channel 
activity 
noise = rf_analyze_rssi (); 
// data operations 
rec_packet_counter ++; 
TX_NODE_ID = buffer_pull_uint8 ( R_Buffer ); 
packet_numMS = buffer_pull_uint8 ( R_Buffer ); 
packet_numLS = buffer_pull_uint8 ( R_Buffer ); 
packet_number = packet_numLS +( packet_numMS <<8); 
RSSI_packet = R_Buffer -> options . rf_dbm ; 
LQI_packet = R_Buffer -> options . rf_lqi ; 
data [(( rec_packet_counter - 1)* 6)+ 1]= TX_NODE_ID; 
data [(( rec_packet_counter - 1)* 6)+ 2]= packet_numLS ; 
data [(( rec_packet_counter - 1)* 6)+ 3]= packet_numMS ; 
data [(( rec_packet_counter - 1)* 6)+ 4]= RSSI_packet ; 
data [(( rec_packet_counter - 1)* 6)+ 5]= LQI_packet ; 
data [(( rec_packet_counter - 1)* 6)+ 6]= noise ; 
if ( rec_packet_counter ==42) 
{ 

data [ 0]= rec_packet_counter ; 
if ( flash_write ( ADD, data , sizeof ( data ))== pdTRUE) 
{ 

flash_write_wait (); 
} 
ADD=ADD+256 ; 
rec_packet_counter =0; 

} 
} 
socket_buffer_free ( R_Buffer ); 
R_Buffer =0; 

} 
 
// exit loop if measurements round ended 
if ( TX_pac_counter > PACKETS_NUMBER && ( xTaskGetTickCount () - 
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recorded_time )* portTICK_RATE_MS > ( nodes_number -
NODE_ID)* TX_interval + 200 ) 
{ 

if ( rec_packet_counter != 0) 
{ 

data [ 0]= rec_packet_counter ; 
if ( flash_write ( ADD, data , sizeof ( data ))== pdTRUE) 
{ 

flash_write_wait (); 
} 
ADD=ADD+256 ; 

} 
rec_packet_counter =0; 
break ; 

} 
} // end of measurements phase 
debug ( "ROUND COMPLETED\r\n" ); 
 
 
/*POLLING PHASE: sink node collests measurements fr om the 
network*/ 
//reset buffers and radio 
if ( T_Buffer ) 
{ 

socket_buffer_free ( T_Buffer ); 
T_Buffer = 0; 

} 
if ( R_Buffer ) 
{ 

socket_buffer_free ( R_Buffer ); 
R_Buffer = 0; 

} 
socket_close ( Radio_Socket ); 
Radio_Socket =socket ( MODULE_CUDP, 0); 
socket_bind ( Radio_Socket ,& Broadcast_Add ); 
current_radio_channel =rf_channel_set ( RADIO_CHANNEL); 
rf_power_set ( RF_DEFAULT_POWER); 
 
/* polling procedure */ 
exit_condition =0; 
while ( exit_condition != 1) 
{ 

LED2_ON(); 
byte = - 1; 
while ( byte == - 1) 
{ 

byte = debug_read_blocking ( 1000 ); 
node_id = byte ; 

} 
LED2_OFF(); 
switch ( byte ) 
{ 

case PRINT_COMMAND: // PRINT_COMMAND 
print_data (); 
break ; 

case ERASE_MEMORY: // ERASE_MEMORY 
debug ( "Starting bulk erase\r\n" ); 
while ( flash_bulk_erase () != pdTRUE) 
{ 

debug ( "." ); 
vTaskDelay ( 10); 

} 
debug ( "Flash memory erased\r\n" ); 
break ; 

case EXIT_COMMAND: // EXIT_COMMAND 
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exit_condition =1; 
break ; 

default : 
debug_printf ( "Polling node %d\r\n" , node_id ); 
/*Send POLL packet*/ 
T_Buffer =socket_buffer_get ( Radio_Socket ); 
if ( T_Buffer ) 
{ 

buffer_push_uint8 ( T_Buffer , POLL); 
buffer_push_uint8 ( T_Buffer , node_id ); 
if ( socket_sendto ( Radio_Socket ,& Broadcast_Add , T_Buffer ) 
== pdTRUE) 
{ 
} 
else 
{ 

socket_buffer_free ( T_Buffer ); 
T_Buffer =0; 

} 
} 
poll_completed = 0; 
while ( poll_completed != 1) 
{ 

R_Buffer =socket_read ( Radio_Socket , 2000 ); 
if ( R_Buffer ==0) 
{ 

poll_completed = 1; 
debug ( "POLL PRINTED\r\n" ); 

} 
else 
{ 

if ( buffer_pull_uint8 ( R_Buffer ) == POLL_ANSWER) 
{ 

TX_NODE_ID = buffer_pull_uint8 ( R_Buffer ); 
if ( TX_NODE_ID == node_id ) 
{ 

TX_NODE_ID = buffer_pull_uint8 ( R_Buffer ); 
packet_numLS = buffer_pull_uint8 ( R_Buffer ); 
packet_numMS = buffer_pull_uint8 ( R_Buffer ); 
packet_number = packet_numLS +( packet_numMS <<8); 
RSSI_packet = buffer_pull_uint8 ( R_Buffer ); 
LQI_packet = buffer_pull_uint8 ( R_Buffer ); 
noise = buffer_pull_uint8 ( R_Buffer ); 

} 
} 
socket_buffer_free ( R_Buffer ); 
R_Buffer =0; 

} 
} 
break ; 

} 
} // end of polling phase and back to configuration p hase  
free ( channel_seq ); 
debug ( "EXIT POLLING\r\n" ); 

}  
 
 


