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Wireless sensors networks localization is an ingurtarea that attrac
significant research interest. Localization is adamental problem that must
solved in order to support location-aware applaai The growing demand

location-aware applications requires the develogmeh application-orienteg

localization solutions with appropriate trade dffstween accuracy and costs. T

present thesis seeks to enhance the performancaingble and low-cos
propagation-based localization solutions in dynaimioor environments.

First, an overview of the different approaches ireless sensors networ
localization is provided. Next, sources of receiv@gnal strength variability ar
investigated. Then, the problems of the distangeedédant path loss estimati

caused by the radio channel of dynamic indoor 8dna are empirically analyze

|

Based on these previous theoretical and empiritalyais, the solution uses spatial

and frequency diversity techniques, in additiotinee diversity, in order to create
better estimator of the distance-dependent path byscounteracting the randag
multipath effect. Furthermore, the solution attesnpd account for the rando
shadow fading by using “shadowing-independent” pa$is estimations in order
deduce distances. In order to find the unknown @éngositions based on tf
distance estimates, the solution implements a wedgleast-squares algorithm th

reduces the impact of the distance estimates avrotse location estimate.
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CHAPTER 1

Background on Wireless Sensors
Networks Localization

The application of wireless networked sensorsetart the defense area, providing
capabilities for reconnaissance and surveillance wadl as other tactical
applications. Currently, wireless sensor networkS(\lY is a relevant technology
that provides solutions for multiple “smart envinoents”, including industrial
automation, environment and habitat monitoring, Itheare applications, home
automation and traffic control. Low-cost, low-powand multi-functional sensors
that are small in size and communicate in shotiadies make wireless sensors

networks a suitable technology for large-scaletsmis [51].

Localization, also known as location discovery elf-fcalization, refers to
the ability of a system to deduce the geograpHmedtion of a node, which is a
fundamental problem that must be solved in a sensetwork. Knowing the
locations of the network nodes is crucial in ortiesupport many applications and
protocols. For instance, ambient monitoring appilices require the sensed data to

be stamped with the absolute location. Similartyuator networks perform specific



functions according to the location informatiorkelifor instance the operation of a
crane. Also, traffic-based applications may gererautes based on the location

information.

At the current state, reliable outdoors localizatisystems based on the
Global Positioning System (GPS) have been sucdbssieployed during the last
decade for those systems where the form and ceshar major concerns. But,
solving the localization problem in GPS-less indeovironments continue to be
challenging due to major constraints such as nuerdf-sight (NLOS), short-range

measurements and hostile radio propagation pregerti

1.1 Ouir field of interest

Localization is a fundamental problem that mustsbe/ed in a wireless sensors
network, which is the field of research of the pre@sMaster’s Thesis. The research
seeks to enhance simple and low-cost propagatiseebkcalization solutions for

wireless sensor networks in order to achieve goadktoffs between accuracy and

costs.

1.2 Problem definition

Localization algorithms estimate the locations otles unaware of their locations
by using previous knowledge of the absolute locatiof few nodes and either
range measurements such as distance and bearisgne@&nts, or other network
information such as connectivity maps, proximitjormation, and signal strength
fingerprints. Nodes with known location informati@me calledanchors, whose
locations can be obtained by using a GPS or bylingy them at points with
known coordinates. Nodes that should be localaectalledlinds.

There are certainly many issues that make WSN ikatan a nontrivial
problem. Some of these issues are the costs relategtra localization circuitry
and energy consumption for performing distance @an@earing measurements,
need of anchors, short-range measurements, indeaquesasurements, non-line-of-

sight, anisotropic networks, and security attackepending on the system



requirements and especially on the required logatim accuracy of the application,
the aforementioned issues may not enable the atializ of a cost-effective

solution.

Acknowledging the increasing demand of many ermteraint location-aware
applications, a simple and low-cost solution bagsedhe received signal strength
(RSS) is to be designed. Clearly, enabling loctbmaof resource-constrained
sensors in dynamic indoor environments becomealahallenge due to the special

properties of the radio channel.

The ranging system of the solution uses spatial fnaquency diversity
techniques, in addition to time diversity, in ordercreate a better estimator of the
distance-dependant path loss by counteracting #rmlom multipath effect.
Furthermore, the solution attempts to counteraet riamdom shadow fading by
using “shadowing-independent” path loss estimatfonslistance predictidnAs it
will be notice later on, path loss estimations pegformed online, sidestepping
unpractical offline path loss estimations requirprg-planning effort and errors of
distance estimates caused by such outdated patlestisnations, as shown in [25].
Ultimately, the solution implements a weighted tesguares localization algorithm
that reduces the impact of distance estimatesseomthe location estimate.

The application has been implemented so that itspall data from the
network and performs a centralized computation UdfATLAB™ since this is
enough to validate the designed solution. Here,dlveent application supports
single-hop peer-to-peer networks; however, it canupgraded to support large-
scale multi-hop networks as long as a higher dat&a lbackbone is provided, e.g.,
IEEE 802.11 backbone. Implementing the solutiom idecentralized fashion may

be then subject of a future research.

! Shadow fading and shadow fading are used integeray.
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1.3 Methodology

The work of the present thesis is carried out ur fehases. The first phase consists
of an overall study of WSN localization approackgsting in the literature. Thus,
the first phase identifies the different approacine®/SN localization and justifies

the direction of the developed range-based solution

The second phase consists of an empirical anadysre problems caused by
the radio channel in dynamic indoor environmentsthis phase, a preliminary
measurement campaign in an indoor scenario is neajui his empirical analysis
provides the basis for the proposed counteraciiopgaaches in order to reduce the

distance estimates errors.

Before going further to demonstrate the performasfade proposed ranging
system, the third phase provides a simulative pexdoce analysis of distance-
based localization algorithms, i.e., algorithmsgsilistance information in order to
find the blinds’ locations. Simulations are runngsiMATLAB™ and assume a
certain distribution of the distance estimatesrstroe., distance between estimated
distance and true distance. Then, the third phasiees a localization algorithm

that reduces the impact of distance estimatesseomthe location estimate.

Finally, the fourth phase demonstrates the perfoomaof the designed
propagation-based localization solution. This pheadé help us to validate the
proposed counteracting approaches in order to eedisgtance estimates errors as

well as to give an insight of the localization a@my.

1.4 Thesis outline

Localization is a fundamental problem that mustsbésed in order to support
location-aware applications in wireless sensor actdator networks. As stated in
[3], no localization approach provides universalsiponing services to all
applications. Instead, localization solutions sdobke application-oriented with
appropriate trade offs between accuracy and costs.

Acknowledging the increasing demand of many ermteraint location-aware
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applications, the present research tries to enhdreg@erformance of simple and
low-cost propagation-based localization solutions EEEE 802.15.4 sensors in

dynamic indoor environments, where the cost anch fare major concerns.

Major problems for propagation-based ranging systémindoor situations
are caused by the hostile propagation propertieshefradio channel such as
multipath propagation and shadow fading. Acknowleddhis, the present solution
seeks to mitigate such problems of path loss estims without incurring in

unpractical offline calibrations/estimations.

Once the sources of range errors have been addyemsether important
aspect is the localization algorithm itself. Thare many algorithms that can be
used for calculating unknown sensors’ locationsetlasn distance information.
Different localization algorithms behave differgntespecially in the presence of
range errors. Relevant for the present solutidhes to define a robust localization
algorithm in the presence of range errors.

The reminder of the thesis is structured as follawsChapter 2, an overview
of the different approaches in WSN localizatiorpisvided. In Chapter 3, sources
of RSS variability are first analyzed, and then plagh loss estimation of the present
ranging system is discussed. In Chapter 4, thestobss of localization algorithms
in the presence of range errors is analyzed. Iptéh®, details about the empirical
platform are presented. In Chapter 6, the perfooesrof the proposed ranging
system and of the overall localization solution analyzed. A brief conclusion and

future work is given in Chapter 7.

2 Systems that estimate distances performing RSfistance mappings based on path loss
estimations.



CHAPTER 2

Theoretical Study Localization
Approaches in WSN

In wireless sensors networks there are several adstlintended to solve the
localization problem under different scenarios dod applications with varying
accuracy granularity. The papers [19, 3] presengla@bal overview of the
measurement techniques and approaches in WSN Zatah. Localization
methods can be broadly categorized into two grorgrsgye methods and range-free

methods.

2.1 Range methods

Range methods localize nodes based on distancerapeiring measuremerits.
These methods use a ranging system to deduceaiistand/or angles and then run
a localization algorithm over the range estimatesorder to find the blind’s
locations. Distance information is either deduceamf amplitude measurements,

time measurements or radio interferometry measumsnewhereas, bearing

3 In the literature, the term range is normally usethdicate distance measurements; however, in
this context range is also used to refer to beariagsurements since both imply deducing
information from measurements.



information is either deduced from beamforming measents or radio

interferometry measurements.

The performance of range methods is mainly detexchioy the accuracy of
the distance and/or angle estimates. In fact, & §B] the authors have remarked
that the performance of range-based localizatistesys is limited by the range
errors, and it cannot be significantly improved reuesing complex localization
algorithms. As a rule of thumb, ranging systemgpertforming others require more

complex hardware configurations.

Complex ranging systems are employed for applinatioequiring fine-
grained localization, i.e., localization accuraejatively small with respect to the
radio range, where the form and cost are not megrcerns. Such systems
commonly use propagation-time measurements of lsigm#éh high resolution to
multipath propagation such as acoustic signals2]1or ultra-wideband (UWB)
signals [10, 11]. Lately, radio interferometry tacjues are gaining interest since
they can achieve both accuracy and reach for outddoiations [20], and
apparently for indoor situations as well [21]. Haee interferometry-based
ranging systems do not seem to be viable with thieent sensors platforms since
they typically require more powerful platforms t@ke detailed observations of the
signals.

Acknowledging that a wide variety of applicatiorejuire simple and low-
cost localization systems, propagation-based rangystems have been widely
investigated. Propagation-based localization swmhsti are suitable for WSN
localization since they use the built-in Receivegh8l Strength Indicator (RSSI) of
the sensors radios. However, the accuracy of efaiee-art propagation-based
localization solutions is questionable, especifdlydynamic indoor environments
where the problems of the hostile radio channelsh &s multipath propagation and
shadow fading, further increase the localizatiomorgri.e., distance between

estimated location and true location.

On the other hand, localization systems based anrgemeasurements lack



of popularity due to they require complex antenmafigurations and careful
calibration [19], apart that they do not seem tdpetform time-based ranging
systems of similar complexity. Next, the main featuand problems of the different

range measurements methods are described.

2.1.1 Received signal strength

Signal strength measurements of radio signals atelywsed to estimate distances.
In the ideal case, i.e., free space, isotropicatash, noise-and-interference free, the
received-power change is just determined by th@amie between transmitter and
receiver, referred as distance-dependant signal heseafter. Unfortunately, real
world scenarios are far away from the ideal casethat many sources of RSS
variability have to be addressed in order to obthstance estimates based on the
ideal propagation model. Sources of RSS variabisitg caused by the radio
channel, the radio platform, and the antenna radigatterr:

Major sources of RSS variability are the randomhbaultipath effect and shadow
fading [3]. The multipath effect occurs due to silgnare reflected, diffracted, or
scattered, so that the multipath components afrsabiadd up constructively (signal
is reinforced) and/or destructively (signal is wesaéd) at the receiver, leading to
dramatic changes in the total received power. @nathner hand, shadow fading
occurs when obstructions weaken radio signalsndioar situations, the problems
caused by the radio channel are exacerbated dubeto hostile propagation

properties.

Robust localization systems typically use signalsitvhigh resolution to
multipath components such as acoustic signals aniB Wignals. Unfortunately,
acoustic signals have limited reach whereas spspadtrum techniques require
more bandwidth resources, which are limited in pcac Moreover, in the signal
strength approach for sensors localization, theloanshadow fading of dynamic
indoor situations is not properly addressed. Tloeegfthere is certainly room for

improvements of the signal strength approach foalleation of IEEE 802.15.4

* A more detailed description of the sources of R&ability is provided in Chapter 3.

8



Sensors.

2.1.2 Time of flight

Time measurements of acoustic and radio signalswedely used to estimate
distances. In WSN localization, time-of-flight (TDeasurements of acoustic
signals are commonly the choice to estimate dissaccurately. Since the speed of
acoustic signals is relatively slow (approximatg8 m/s, but changes according to
environmental conditions), their transmission dedag be measured by inexpensive
clocks. Moreover, due to their low speed, reflecgphals have a significant delay
relative to the line-of-sight (LOS) signal, so thttey can be filtered out. Again,
due to their low speed, the TOF approach of acog#ginals sidesteps the difficult
synchronization problem by using the time-differeré-arrival (TDOA) technique,
in which the measured time at the receiver is tapsed time between two signals
transmitted simultaneously by the transmitter: thdio signal, which starts the
counting, and the acoustic signal, which stops dbenting. However, as it is
mention in [3], acoustic signals present three nfiaiitations. First, they attenuate
fast with the distance, and thus, they have limitederage. Second, they require
LOS to obtain the right distance measurement; atiser the measured distance
belongs to a reflected path. Third, human hearabteistic signals are usually not
suitable, and thus, ultrasound signals become hbe&e. Here, ultrasound signals
are unidirectional, and thus, special radiatorgineée arranged in order to achieve
proper coverage, e.g., multiple microphones orreeceflector [3].

As an alternative to the ultrasound-based TOF aubr,oUWB radios can be
used to obtain accurate time measurements dus tugh resolution to multipath
components [10, 11], but their reach is also lichitdere, UWB-based TOF systems
improve the measurements accuracy at the costiofl wpecialized hardware to
achieve sampling rates in GHz, sub-nanosecond synidation and more

bandwidth resources.

On the other hand, distance measurements can elsbtained by measuring
the TOF of radio signals. Since the propagatioredpd radio signals is extremely



high (approximately 3xf0Om/s), precise sub-nanosecond timers are required i
order to measure their TOF. Thus, major sourcesedsurements errors under this
approach are the clock resolution and precisioiftdin order to avoid the difficult
synchronization problem of one-way time measurementound-trip-time
measurements can be used; however, the remotespiogaime has to be filtered
out. In addition, the synchronization problem cdso&ae avoided by measuring
time differences based on time references proviggedew highly synchronized

nodes, which are equipped with precise atomic d@skin the GPS.

In addition to the measurement errors caused byltek, radio-based TOF
measurements are vulnerable to multipath propagafae to their extremely high
speed, the multipath components of a radio sigaahat be resolved in narrow-

band system, thus spread spectrum techniquesaaribe choice.

In [3] the authors conclude that distance measungsnee., RSS and TOF
measurements, either have low-accuracy or shogerarHowever, distance
measurements via radio interferometry techniques baen proposed lately; under
which the low-accuracy and short-range measurempriblems are partially

solved. Interferometry-based ranging is discusséskiction 2.1.4.

2.1.3 Beamforming

Beamforming refers to the use of the anisotropgpéon pattern of an antenna. In
wireless communications, beamforming antennas seel to deduce the direction
of the transmitter. In the common beamforming apphy the decision of the
direction is given by the maximum signal strengtimew the beam of the receiver,
which has a directive antenna, is rotated eleatadlyi or mechanically. A blind’s

location is then approximated based on trianguigbionciples.

Unfortunately, this method is vulnerable to manurses of signal strength
variability caused by the radio channel and thadtaiver. Major sources of error
are the multipath effect and the nonlinearities tioé power amplifier at the
transmitter. In theory, narrow beam antennas walitginish problems caused by
multipath effect, whereas, erroneous bearing infdiom caused by the varying

10



transmitted power could be filtered out by normalzthe RSS measurements of
the directional antenna with RSS measurements raataifrom an extra
omnidirectional antenna at the receiver [19]. Hogrewcomplex narrow-beam
antenna configurations are typically challengingd amt practical for sensors

networks.

On the other hand, by using a minimum of two (lypidally at least four)
stationary antennas with known anisotropic antgpaiderns, the direction of the
transmitter can be determined by comparing theasigimnength received from each
overlapping antenna. This method eludes the prolotewarying signal strength of
absolute measures like in the case of the commoectdie-antenna method.
However, small measurement errors of signal stherdjie to the nonlinearities of
the receiver, typically lead to 10-1feasurement error with four antennaswith

six antennas and 2vith eight antennas [19].

2.1.4 Radio interferometry

Lately, localization systems based on radio interfestry techniques seem to be
promising. Both, distances and bearing informatcam be deduced via radio
interferometry techniques. Seeking to sidestep pghablems of signal strength

measurements, the Radio Interferometric Positiofipgtem (RIPS) [20] estimates
distances by measuring the phase offset betweemtesering radio signals which

propagate at slightly different frequencies, sa,tkize relative phase offset of the
signals received at two different receivers isrecfion of the distances between the
four transceivers. In theory, the RIPS approaclkesi&gps two major problems of
signal strength measurements: the antenna orientptoblem (RIPS enables three-
dimensional localization) and shadow fading; butlaes not address the multipath
effect problem. In [20], the authors argue that Ri&chieves both accuracy and
range in outdoor environments, solving the low-aacy and short-range problems
of RSS and TOF distance measurements. The perfoenaRIPS for the case of

indoor environments is not demonstrated in [20]wéweer, it is expected to be

highly limited in hostile multipath situations.
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On the other hand, bearing information can be dedluwia radio
interferometry techniques by measuring Dopplertshifith the sensors’ radios [21,
22, 23]. The direction of a moving transmitter ¢cenderived from a Doppler shift.
Hence, the location of the transmitter (blind nodaph be approximated when
multiple receivers (anchor nodes) detect the siiff22, 23], the authors report that
the frequency change in the Doppler shifts is taststo multipath interference,
thus, this approach is appropriate even for indsibwations. However, their
experiments were limited to outdoor environmentsti®¢ also that this approach
suits to mobile systems where measurable Dopplés sfan be taken over mobile
nodes. But, in the case of static blinds, the netfemuires a rotation engine in

order to generate measurable shifts.

Here, even thought radio interferometry technigsesm to be promising,
they require complex ranging systems. Ranging basedadio interferometry
measurements typically requires tight synchronimatnd scheduling, high clock
stability, multi-frequency transmission calibratiaand powerful platforms for

making detailed observations on the signals.

2.2 Range-free methods

In light of the costs related to complex rangingteyns, researchers have sought
range-free methods to the localization problem irelss sensor networks [12].
Thus, range-free methods do not perform distancasorements or bearing
measurements; instead, they use other resourcds asicconnectivity maps,
proximity information, or signal strength fingenpis in order to localize blinds.
Thus, any range-free method can be categorized: intmnectivity-based,

proximity-based and fingerprint-based.

Generally speaking, range-free methods seem neblie the fine-grained
localization problem. Range-free methods are misardgpplications with relatively
high error-tolerance in the location informationertde, range-free methods focus

on masking errors through fault tolerance, redungaaggregation or other means.
The performance of range-free methods is mainlgrd@hed by the amount

12



of resources required in terms of number of anchads planning effort; similar to
range methods case where the performance of theimolis given by the

complexity of the ranging system.

The simplest range-free methods seek to solvedhese-grained localization
problem, i.e., localization accuracy in the ordéthe radio range, for large scale
multi-hop networks based on connectivity maps [lIf4, Range-free methods based
on connectivity maps perform rather intuitive digta estimations using the
network topology, thus, their accuracy is limitgdtbe large errors of such intuitive
estimations. Seeking to improve the performanceavinectivity-based methods,
but without performing the difficult ranging proaee, researchers have sought
localization methods based on proximity informatid2, 13, 14, 31]. Proximity
information allows creating location estimatorstsas centers of gravity [12, 13,
14] as well as distance estimators [31]. In genepabximity-based methods
perform satisfactorily in the presence of relavblgh number of anchor nodes
distributed uniformly. Thus, proximity-based metkodre suitable for networks
with densely distributed nodes, most of whose looat are unknown. Trying to
eliminate the effects of the radio channel suchmastipath effect and shadow
fading, localization systems using signal strerfgigerprints have been proposed
[15]. In practice, their suitability to dynamic earonments is rather questionable
since they use signal strength maps of outdatednehaonditions, apart that they
require considerable preplanning effort. Next, tien features and problems of the

different range-free methods are described.

2.2.1 Connectivity-based

Connectivity-based methods perform distance estmst using the network
topology and then find blinds’ locations using tHestance information. Thus,
distances are estimated without using explicit atise measurements such as
amplitude measurements, time measurements or ratiterferometry
measurements. Connectivity-based methods are comrkoown as shortest-path
or distance-vector methods because they estimsti@ndes based on the number of
hops away over the shortest-path and the averaye nange [16, 17]. The average

13



radio range is obtained trough communication betwasgchors by calculating the
average hop-distance based on the anchor-to-amlisiances (deduced from the
anchors’ locations) and the number of hops away thesr corresponding shortest-

paths.

Connectivity-based methods try to alleviate twonmaioblems in large-scale
multi-hop networks, such as short-range measurementl limited number of
anchors, while providing coarse-grained localizatim practice, the suitability of
shortest-path methods is limited by the large erairthe coarse-grained distance
estimates, especially in the case of anisotroptwargs, i.e., non-uniform nodes
distribution. Outliers can be filtered out by using bound constraints distance
estimates as in thepper bound approach [44] for locating sensors in concave

areas.

2.2.2 Proximity-based

The main characteristic of range-free methods upnagimity information is that

the inferred proximity information relies on thesamption that the signal strength
decays monotonically with the distance. Therefollegse methods are also
vulnerable to random variations of the signal gitenthat lead to incoherent

proximity information.

Most range-free methods using proximity informatlonalize a blind inside
the intersection area of the polygons formed byahehor nodes, i.e., center of
gravity [12, 13, 14]. In the literature, such meathoare known as area-based
methods [3]. Most area-based methods deduce prigxiniormation by comparing
RSS measurements as APIT [12] and ROCRSSI [13]. However, a most
sophisticated approach to infer proximity informoatiis used by thkernel-based
learning approach [14]. In the kernel-based learning approach adbignlocalized
in two steps. In the first step, called coarsergrdilocalization, a blind is localized
into some classification areas (regions) by miningza kernel function based on

statistical learning theory, which considers sonmatonically decay of the signal

® Values out of an expected range.
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strength. Then, in the second step, called finergtalocalization, the center of
gravity is calculated, i.e., the intersection oé threas containing the blind node,

which were classified in the first step.

On the other hand, proximity information is als@digo deduce distances as
in the proximity-distance map approach [31]. In this approach, blind-to-anchors
distances can be deduced from the known distarteeebr a pair of anchors when
the blind is close enough to one of the anchorshi way, the approach tries to
avoid outliers as it occurs in with the shortedhpapproaches in the case of

anisotropic networks.

Here, proximity-based methods require relativelsggéganumber of anchor
nodes fairly deployed either to localize nodesdasareas or to deduce distances.
Thus, these methods are suitable for networks @etisely distributed nodes, most

of whose locations are unknown.

2.2.3 Fingerprint-based

Fingerprint-based systems try to eliminate theot$fef the radio channel such as
multipath effect and shadow fading. Fingerprintdzhsystems localize nodes based

on pre-planned site-specific signal strength fipgets, also called RSS maps.

Apparently, fingerprint-based methods like tRADAR system [15] enable
indoors localization. In practice, the applicaliliof these methods to dynamic
indoor situations is rather questionable due to R8S maps obey to different
channel conditions than the actual RSS measurerbeitg used for the mapping.
Moreover, although fingerprint-based methods regsignificantly fewer anchors
to localize blinds compare to the other range-freethods, they require

considerable preplanning effort indeed.

2.3  Hybrid measurements and solutions

Ranging based on hybrid measurements can impraveatburacy of the range
estimates because measurements errors for diffeyees of measurements come

from different sources. Thus, different types ofaswwements lead to at least
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partially independent estimators. Performance imgmeents can be achieved by
using data fusion techniques to create more acecwanad robust estimators out of
independent measurements [19]. Of course, hybridsorements improve the
range accuracy at the cost of more complex rangystems that require complex

hardware configurations and implementations [10].

Similarly to hybrid measurements, hybrid range-dasand range-free
solutions can improve the overall performance @ $lolution while coping with
two main problems in multi-hop networks such asrisrenge measurements and
limited number of anchor nodes. For instance b phaselocalization algorithm
[30] combines range measurements and a shortdstpethod for estimating one-
hop distances and multi-hop distances, respectividig two-phase localization
algorithm can improve the overall performance a Holution. In a similar way,
combining range measurements and the proximitydcg map approach for
estimating one-hop distances and multi-hop dis®nceespectively, can also
improve the overall performance of the solution le/aivoiding outliers in the case
of anisotropic network at the cost of more anchodes than in the two-phase

localization algorithm.

2.4  Solution approach

As stated in [3], no localization approach provides/ersal positioning services to
all applications. Instead, localization solutiot®sld be application-oriented with

appropriate trade offs between accuracy and costs.

Acknowledging the increasing demand of many ermteraint location-aware
applications, simple and low-cost localization $olus need to be designed. It is
clear that radio-based approaches can potentiedlyigee the best cost-performance
trade off since a radio is available on any wirgleede and it is already included in
the power budget. Moreover, among the existing oréddised approaches, the
propagation-based approach remains the simpldstnms of hardware complexity

—sensor radios have an in-built RSSand implementation.

Here, the ranging system of the designed solutsss $patial and frequency
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diversity techniques, in addition to time diversiip order to create a better
estimator of the path loss by counteracting thetipath effect. Furthermore, the
solution attempts to counteract the shadow fading using “shadowing-

independent” path loss curves for distance preaictAs it will be notice later on,

the path loss estimations are performed onlinessepbping unpractical offline path
loss estimations requiring pre-planning effort agmglors of distance estimates
caused by such outdated path loss estimationgnatily, the solution implements
a weighted least-squares localization algorithnt thduces the impact of distance

estimates errors on the location estimate.
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CHAPTER 3

Development of a novel radio-based
ranging system

In the present chapter, sources of received sigtrahgth variability are first
discussed. Then, approaches in order to mitigatprn@moblems of path loss

estimations are proposed.

3.1 Sources of RSS variability

Sources of received signal strength variability dan broadly classified into:
extrinsic and intrinsic. EXxtrinsic sources aresth@aused by the properties of the
wireless channel and the antenna radiation pattenereas intrinsic sources are

those caused by the radio platform.

3.1.1 Extrinsic sources of RSS variability

This category includes sources of variability calbg the radio channel —fading,

interference and noise— and by the antenna radiatttern.
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a) Fading

Major sources of received signal strength varigbiéire caused by the random
fading of the radio channel such as multipath effeed shadow fading. The
multipath effect accounts for the different propéwa styles of a signal in a
wireless communication system such as reflectiaffradtion, and dispersion.
Multiple components of a signal are then receivdanvmultiple communication
paths between transceivers exist. At the recetthermultipath components of the
signal that arrive in phase add up constructivehjlavthe ones that arrive out of
phase add up unconstructively. The total receivadep is determined by the vector
summation of all multipath components of the sigtedding to random dramatic
changes of the total received power. Unfortunateily, IEEE 802.15.4
communications the multipath components are nablvable since all received
multipath components of a symbol arrive within #yenbol time duration, known
as flat fading.

On the other hand, shadow fading occurs when thpagation path between
transmitter and receiver is obstructed by a densg#y bwith large dimensions
relative to the wave-length, so that secondary wasee formed behind the
obstructing body, reaching the receiver. Here,rdr@lom fading of the channel is
the major concern for path loss estimation, whtamalyzed in detail in Section
3.2.

b) Interference and additive noise

Interference and additive nofsean also cause random variations of the received
signal strength. The targeted 2.4 GHz frequencyd dammes many systems for
unlicensed operationgncluding hot technologies such as Wi-Fi and ZigBee
exposing them to interference. Interference is stationary and does not affect
equally to all receivers. The level of interferenat different receivers varies
according to the corresponding path loss towardsiriterferer. As it is shown in

[32], interference becomes a significant source refeived signal strength

8 Also known as termal noise.
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variability in the presence of interferers with tigctivity. Interference cannot be
totally avoided since it is not stationary. Howeuwee carrier sense multiple access
with collision avoidance (CSMA-CA) protocol of theEE 802.15.4 sensors tries to
avoid interference by clearing the channel for graission via its request-to-rend
(RTS) message once it finds the channel idle. Bweldped ranging system further
avoids interference by using a time-based chanopping schedule, so that the
channel is changed every new time frame, as wellyadiscarding measurements

taken over channels that present high activity.

On the other hand, in indoor environments withghesence of machines and
people the additive noise is not necessarily statyp or same at all receivers. By
using 16 receivers placed at different locatiohs,dverall standard deviation of the
measured additive noise was found to be 1.5 dBhéndeveloped ranging system,
the additive noise at each receiver is estimatedabgraging several energy
measurements when the channel is Ydghen, the additive noise affecting the
actual measurements at each receiver is filteredawespondingly. In practice, the

additive noise is a minor source of RSS variability

c) Antenna radiation pattern

The radiation pattern of an antenna describes henahtenna radiates energy out
into space or how it receives energy. Each antbasats own radiation pattern, that
is not uniform, i.e., there are no isotropic ragdiiat Accordingly, antenna gain is
defined as the ratio of maximum-to-average radigtexeption intensity multiplied
by the efficiency of the antenna.

Propagation-based localization systems typicakypase uniform radiation, so
that, the combined gain of the pair wise antensaa constant in the path loss

model for any relative orientation of the sensdumfortunately, there are no

" The channel activity provides a good measure efriterference level of the channel, and it can be
estimated as the average time that the channelirslfto be busy, i.e., detected power level isdrigh
than the maximum expected additive noise levethénpresent solution, high activity was asummed
when the channel is busy more than 30% of the time.

8 The channel is considered to be busy when the®et@ower level is higher than the maximum
expected additive noise level, which in turn degeod the receiver’s sensitivity.
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isotropic radiators. Hence, a propagation- basedliltation system is constrained
to the region where the radiation is uniform. ladty, this can only be achieved for
two-dimensional networks, using omnidirectional esmmas where all of them
present vertical polarization, provided that thenadirectional radiation pattern is
uniform within the azimuth. Thus, the present doluttargets two-dimensional
networks, but it could also be applied to netwonkeere the difference of antenna
heights is small (no more than a meter), provided half wave-length dipoles (or

guarter wave-length monopoles) radiate almost amifpwithin that region [4].

On the other hand, omnidirectional antennas haveetoarefully installed on
the motes platforms, given that the radiation patie affected by the electrical
ground of the PCB and its electrical circuits. 33], the authors show that external
monopoles, mounted a wave-length apart from the ,R@date uniformly within

the azimuth, which has been considered in the ptesdution.

3.1.2 Intrinsic sources of RSS variability

This category includes sources of RSS variabilaysed by the underlying radio
platform such as the nonlinearities of the powepldrar in the transmitter and

sensitivity in the receiver.

Transmitter variability

As it has been demonstrated in [4], different traitiers behave differently even
when they are equally configured. For a certaingmaitter, the actual transmitted
power is close to the configured power level, bott mecessarily exactly equal. In

addition, this inaccuracy in the transmitted powagiies for different transmitters.

One approach to mitigate this problem would be twmalize the RSS
measurements with respect to a single transmiiett, this would require
estimating the inaccuracy in the transmitted povegreach transmitter using a
single receiver under invariant conditions, whichurn implies pre-planning effort.

Thus, the present ranging system does not addre$33S variability caused by the

® Facts of the transmitter’s output power of empiriadio platform are provided in Section 5.2.1.
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transmitter.

Receiver variability

Similar to the transmitter case, different recesvbehave differently even when
they are equally configured, as shown in [4]. Thigans that the RSS value
recorded is not necessarily the same for differeateivers, even when all
parameters affecting RSS variability are kept @mes, which obeys to the varying
receivers’ sensitivity’ The variability of the receivers’ sensitivity che attributed
to shot noise. Here, the shot noise cannot be atdras in the case of the additive
noise of the channel since it first depends ondineent flow when a packet is

received.

Similar to the transmitter case, one solution ttgate this problem would be
performing an offline estimation of the shot noédéeeach receiver by using a single
transmitter under invariant conditions in ordentormalize the RSS measurements
with respect to a single receiver. Because offfisémations/calibrations are not
considered in the present solution, the presemimgnsystem does not address the

RSS variability caused by the receiver.

3.2 Path loss modeling

Path loss modeling in wireless networks localizatseeks to predict the RSS-to-
distance relation determined by the signal fading the antenna radiation pattern.
In this section, we first study the physical laws/grning the line-of-sight signal

propagation. Then, we analyze the problems of paedk estimations in indoor

situation and introduce novel approaches in ordecdunteract major sources of
RSS variability such as multipath effect and shadeing.

3.2.1 Distance-dependant signal loss

The distance-dependant signal loss merely obetiset@ase of line-of-sight signal

propagation. Strictly speaking, line-of-sight sippeopagation is governed by two

10 Facts of the receiver’s sensitivity of the empiticadio platform are provided in Section 5.2.2.
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physical phenomenons such as the inverse-square alav the atmospheric
attenuation. From electromagnetism theory, we krtbat the strength of an
electromagnetic signal, spreading outwards of asalidsotropic radiator, is

inversely proportional to the square of the distafrom it, known as the inverse-
square law. On the other hand, the atmospheriowt®n reduces the intensity of
electromagnetic signals due to absorption or gwadfeof photons in the

atmosphere. Therefore, prediction of the total geam signal intensity involves
both the inverse-square law and estimation of thespheric attenuation over the

path.

The effect of the atmospheric attenuation in reédyi small spaces such as
indoor environments can be neglected since its ainpa the path loss estimation is
minimal, e.g., attenuation is less than 10dB/kmer;hwith basis in the inverse-
square law, which predicts the signal strength sdmtance apart from the ideal
isotropic source, the amount of detected energy by a receitanding some
distance apart from the transmitter is calculatedhle Friis’ transmission equation,
defined as,

p,=p, GG 3.)
(477)° d?
whered is the distance between the transmitter and tbewer, Pr is the available
power at the antenna’s pins (in Wat#),is the nominal transmission power, &gl
andGg are the antenna gains of the transmitter andveceespectively.

The Friis’ equation puts together the distance-ddpet signal loss with the
ability of the receiver’'s antenna to capture thecebmagnetic radiation (antenna
aperture) and the directivity of the transmitteaigtenna to radiate energy into the
space (antenna gain). Notice that equation (3.t)essimplified Friis’ transmission
equation that assumes no impedance mismatchesefladtions, no atmospheric

attenuation and same antennas' polarization.

In our case, the only necessary requirements f@-®Slistance prediction
based on the Friis’ transmission equation are:witngs radio platforms, i.e., same

radio module, connectors, feeding cable and anteimaeach node, and
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omnidirectional antennas presenting the same palions; provided that the
atmospheric attenuation can be neglected in snpdces and losses due to

impedance mismatches are included in the pathelstamation.

3.2.2 Multipath effect

The Friis’ transmission equation predicts the reegipower at a receiver located
some distance apart from the transmitter when ihe &f sight is the unique
propagation path between them. In practice, terabstadio communications
normally presents multipath propagation, i.e., ipldtpropagation paths between
transmitter and receiver, especially in the casendbor environments where the
surrounding surfaces, furniture and people creatdtiple propagation paths
between transceivers. Radio propagation modelstdoestrial communications
acknowledge the effect of multipath propagatiorebyimating a path loss exponent
(n) [49, 34] in the standard Friss’ transmission e¢iguaas follows,
2
PPy e 3

For instance, the path loss exponent is typicatyt® 4 in the two-ray ground
reflection model, which provides accurate signakrgjth prediction when the
distance apart is much larger than the antennehtsei§or convenience, Equation
(3.2) is typically converted to the log-scale, aléofvs,

RS$d] = P, + P, ~10710g,[d] 3(3)

where Pt + Py) is the received power at a reference distanck wof andy is the
path loss exponent.In a typical path loss estimation, where a sqtadf-wise RSS
measurements and distances are gathefd+(Po) and 10y are respectively
determined by the y-intersection and the absolaieevof the slope of the fitted
curve resulting from such set of points, with distas expressed in meters and
converted to the log-scale (x-axis) and receivgaai strengths expressed in dBm

(y-axis), as shown in Figure 3.2.

Unfortunately, in hostile multipath environmentse tipath loss estimation

" Recall that the power unit of Equation (3.3) isulB
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above represents the expected received signalggitrebut a given measurement
would actually present a random multipath bi@s &lso called multipath term, as
follows,
RS$d] =P, + P, -107log,,[d] +a. 3(4)

In a preliminary measurement campaign, the fluabnatof the multipath term were
analyzed® Figure 3.1 shows the scenario of the preliminargasurements

campaign. Figure 3.2 shows a typical RSS-to-digtameve fitting of data collected

in a static indoor situation. In this figure, afdience of around 20 dB between
measured RSS values corresponding to nearly sastande values can be
observed. This occurs due to one received signadiimgorced by the channel and

the other is weakened.

12\Worth to recall that, this preliminary measuremearnpaign was carried out in order to identify
the problems of the path loss estimations in inditoiations.
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Figure 3.2: RSS-to-distance curve fitting (static indoor enmiment)
Counteracting multipath effect

In IEEE 802.15.4 communications where the multipgilmponents of a signal are
not resolvable, canceling out the multipath effectat least averaging it out) is not
as straight forward as averaging some time-indep@ncheasurements, especially
in static environments where measurements takedifferent time epochs are

highly correlated. In other words, measurementseriadt different time epochs are
affected by the same multipath effects in statigagions, as it can be observed in
Figure 3.2"* Therefore, despite time diversity is importantynamic situations, it

is certainly not enough to mitigate the multipatieet.

Here, considering the random nature of the muhigstect as it is discussed
later on, the following can be stated based ors$itzl theory:

Statement 3.1: For a pair of transceivers separated a certaintaliee, if several
RSS measurements over channels presenting indegiendkipath effects could be
taken, a good estimator of the expected receivgrthbstrength can be obtained by
finding the center of the samples distribution.

13n this figure, measurements belonging to a giirn(the ones in circles for instance) differ by
few dB, caused by the nonlinearities of the rad&fprm. However, such measurements present the
same multipath fading, e.g., strong signal or dedmg.

26



Here, themedianof a set of uncorrelated RSS measurements taksreée
two transceivers constitutes a good metric of agentwetter than the arithmetic
mean— given that the multipath effect phenomenomats Gaussian; instead, it
presents Rician distribution when there is dominanapagation along the line of
sight between the transmitter and receiver or Rglyldistribution otherwise [49].
Therefore, the following is assumed:

Assumption 3.1: The median of the distribution of uncorrelated R&&surements
taken between two transceivers separated a certhgtance is an unbiased

estimator of the expected received signal strength.

According to this, equation (3.4) can be restateteims of the median RSS
(RSShedian as follows,

RSQeiald] = B + R, —107log,,[d]. 36)

Finding uncorrelated channels

The present ranging system attempts to find unkzde@ channel in order to obtain
independent (or at least partially independent) RS8feasurements, i.e.,
measurements experiencing different multipath é&ffefor each one-way link via
diversity techniques. In wireless communicationsgibity techniques have been
typically used to exploit the random nature of cagiropagation by finding

independent channels for communication. On the likatéon problem side,

diversity techniques allow to create good estingtof the distance-dependant

signal loss out of RSS measurements taken overrglated channels.

The multipath components of a received signal change with space,
frequency and time. Here, it is known that the lto¢geived power is the vector
summation of the multipath components of a sighmalwireless communications,
the differences of the travelled distances of thdtipath components of a signal
determine the relative phase offset of these commisn which in turn leads to
dramatic changes in the total received power.ntlwa shown that differences in the

travelled distance of2n+1)i. among the multipath components of a signal cause
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them to be flipped in phagéFor an IEEE 802.15.4 radio operating in the 2.4zGH
band, a difference of around 12.5 cm between theelied distances of two

multipath components of a signal causes them fbdped in phase at the receiver.

The total received power will ultimately depend tbe relative phase offsets
of the multipath components of the signal and te&engths at the receiver. Here,
the strengths of the multipath components of aadignd their relative phase offsets
are not only determined by the travelled distan8®benever an incident radio
signal hits a junction between different dielectriedia only a portion of the energy
is reflected and the phase of the signal may lppdll. The amount of reflected
energy and whether the signal is flipped or notethels upon signal polarization,

incident angle, dielectrics, and frequency.

Spatial diversity can be used in order to find cted® presenting statistically
uncorrelated multipath effects. The differenceshef travelled distances among the
multipath components of a signal at two receivetsyse antennas are slightly apart
of each othet® are uncorrelated so that the channels among a gigasmitter and
these two receivers are also uncorrelated. The ngharesponse at these two
receivers will further differ given that the incideangles of reflected paths among a
given transmitter and these two receivers changehnn turn affects the losses of
reflected components of the signal and possibly fieases. Thus, spatial diversity
effectively allows finding uncorrelated channels order to perform RSS

measurements.

Similar as above, frequency diversity can be usedrder to find channels
presenting statistically uncorrelated multipatheet§. Here, the relative phase
offsets of the multipath components of a signal daenge with the frequency given
that the differences of the travelled distanceshef multipath components of the
signal vary when expressed in terms of differrdf In other words, it can be that
the phase offset between two multipath componehts gignal is zero at a given

14 ). stands for the wave length of the carrier &l 1) stands for all positive odd numbers.
151t has been empirically shown that the receivedals are statistically uncorrelated if the

separation between the receiving antennas is jasvéve lengths
% The travelled distance is the same but the relatidzerms of different. changes.
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frequency band, but it is not zero at a differeagtiency band. Moreover, the losses
of reflected components of a signal and possib&irtphases change at different
bands. Thus, frequency diversity allows finding amelated channels in order to

perform RSS measurements.

On the other hand, the time-varying characterigifdbe wireless channel can
also be exploited in order to find statisticallycomrelated channels to perform RSS
measurements. In dynamic situations, the multipathponents of a signal change
at different time epochs due to the free motiopedple or the movement of objects
like mobile cranes. In our case, the coherence tifrite channela measure of the
expected time duration over which the channel'poase is essentially invariant,
determines the necessary time interval betweerctmsecutive RSS measurements
in order to be taken over uncorrelated channelsiristance, it can be shown that in
a typical office environment the multipath compoisenf a signal at a given
receiver, standing in front of an object or persnaving at 1 m/s, change after
around every 100 m/s. Thus, time diversity allowslihg uncorrelated channels in
order to perform RSS measurements under dynamiatgins. Therefore, spatial,
frequency, and time diversity are used in the preselution in order to perform

RSS measurements over uncorrelated channels.

3.2.3 Shadow fading

Despite diversity techniques allow to create goatineators of the expected
received signal strength out of RSS measuremerksentaver uncorrelated
channels, it is strictly necessary to consideretfiect caused by shadowed paths on
the received power change. In dynamic indoor siinat shadow fading is caused
by the free motion of people, the movement of disjdike mobile cranes, or

obstructions like furniture that attenuate the algn

Figure 3.3 shows a typical RSS-to-distance cunimdi of data collected in a
dynamic indoor situation. In this figure, the meadiaf data clearly presents a
shadowing bias respect to the median of data ircéise of static indoor situation
presented in Figure 3.2. This means that the eggdentceived signal strength
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(median RSS) between a pair of transceivers pteseshadowing biasy], also
called shadow fading term, when the propagatioh(patbetween transmitter and

receiver are shadowed, so that equation (3.5ktatexr as follows,
RSScuald] = P + R, —107log,o[d] +¢ . 3(6)

The shadow fading term is generally Gaussian wéto znean and standard
deviations,. Here, the shadow fading is a major source of R&Sliction errors
given that its standard deviation ranges from 4tdBL2 dB depending on the

characteristics of the environment [34].
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Figure 3.3: RSS-to-distance curve fitting (dynamic indoor i)’
Counteracting shadow fading

The present ranging system implements a novel aactipal approach in order to
account for the random shadow fading. The solutitempts to account for the
random shadow fading by using “shadowing-indepetideath loss estimations for
RSS prediction. Unlike cumbersome approaches ssiaffiine calibrations of the
attenuation introduced by static obstacles, thegreranging system incorporates
the shadow fading affecting the observations inpiuh loss estimations, which are

calculated online.

" Dynamic situation data in mustard color and stsitigation data in light blue color.
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The shadow fading affecting the observations changifferent locations but
it generally presents spatial correlation. Baseth) the following can be assumed

when the observations are made at receivers fikdtegerimeter of a convex area,

Assumption 3.2: Measurements taken at a given receiver are affiebtepartially
the same shadow fading during a period of timedioy relative orientation of the
transmitter, which is independent to the shadowinig@daffecting measurements

taken at other receivers placed at different locas.

Considering that RSS measurements taken at anclesrplaced at different
locations experience independent shadow fading, ghesent ranging system
performs anchor-specific path loss estimations rdep to obtain shadowing-
independent path loss estimations, i.e., measursntaken at different anchors are
modeled separately. This means that for a genettic anchor node the RSS
measurements are affected by partially same shadodwas {;) during a period of
time, which in turn means that the expected recksignal strength (median RSS)

also presents this shadowing bias, so that equéBiéih can be restated as follows,
RSS.add]; = P + R, —107log, [d] +4;. (3.7)

Based on this belief above, when the path lossnatibn and the expected
received signal strength (median RSS) are bothulzdbd using measurements
taken at a certain anchor node during the samegefitime, the distance estimates
deduced from such estimations accounting for thedeW fading affecting the
observations are assumed to be unbiased estinfaties wue distances. Therefore,
the present ranging considers sev&ranhchor nodes to be deployed at the perimeter
of a convex area so that a set of pair-wise RSSsuanements and their
corresponding known anchor-to-anchor distances lwanobtained in order to
perform anchor-specific path loss estimations, whErs + Py + w;) and 10y are
respectively determined by the y-intersection dreldbsolute value of the slope of
the fitted curves resulting from such set of paifdisen, distances are deduced by

mapping the expected received signal strength @neRiSS) between each blind-

18 Seven anchor nodes were used in the demonstgésented in Chapter 6.
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to-anchor and the corresponding anchor-specific |oes estimation.
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CHAPTER 4

Distance-based localization
algorithms

Once the sources of range errors have been addraess¢her important aspect is
the localization algorithm itself. There are mangoaithms that can be used for
calculating the unknown sensors’ locations basedligtance information. Such
algorithms are known as distance-based localizatadgorithms. Different

localization algorithms behave differently, espbygian the presence of range
errors. Relevant for the present solution is thendéfine a robust localization

algorithm in the presence of range errors.

Distance-based localization algorithms can be Hyoadtegorized into: tri-
lateration and optimization. The tri-lateration e is the most basic and intuitive
method that has its basis in geometry principldsgs Tnethod finds out a blind
location by calculating the intersection of threeleor-centered circumferences
recall that the two-dimensional solution is conegde The tri-lateration method
achieves perfect localization in the presence ofeperanging, but it is the worst
performing in the presence of range errors sincigiferences do not intersect on

a common point.
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4.1 Optimization

Distance-based optimization algorithms approximate blind's location by
minimizing a cost function associated to the distgainformation. Optimization
algorithms may demand significant computation reses, which depend on the
numerical method used to solve the optimizatiorblenm, e.g., Newton-Raphson
method is the most well-known method for real-vdlfenctions.

Optimization problems can also include constrai@isnstraints can improve
the convergence of the algorithm. For instancetha localization problem case,
geometry-based constraints can reduce the impacngfe errors on the location
estimate [26]. Also, bounding the fitted distaneathin an expected range can also
improve the performance of the algorithm [9]. Hoeewonstrained optimization
problems commonly demand high computation resouraed may lead to
unacceptable convergence times, as shown in [8hdrpresent solution, we focus
in unconstrained optimization problems and leave tonstrained optimization
problem for future research. Among the most popofdimmization algorithms there

are: multilateration, bounding-box, maximum likeldd and global optimization.

Multilateration

The multilateration approach has its basis in tiateration method, but it first
provides a more flexible framework in the preseateange errors. Unlike the tri-
lateration method, which tries to find a blind’sé&ion whose distances to anchors
are exactly equal to the corresponding estimatsthuices, i.e., distances obtained
from the ranging system, the multilateration applhoaims to find a blind’s location
that minimizes the differences between fitted disés and estimated distances. In
the multilateration approach, all estimated dis¢égnare equally fitted based on the
belief that they have the same error distributibimus, the multilateration approach
finds out the optimal location that is close to ttree location with a high
probability [3].
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Bounding-box

This method, also known asiin-max, is popular due to its implementation
simplicity. In the bounding-box algorithm, a blimdaws a pair of horizontal lines
and a pair of vertical lines around each anchosuoch a way that the minimum
distance between each line and the anchor locatprals the distance estimate
[24]. This algorithm does not achieve perfect Iaalon even in the presence of

perfect ranging.

Maximum likelihood

The maximum likelihood localization technique issed on classical statistical
inference theory [26]. This algorithm finds out &ds location in which the
probability of receiving the received power matmithin an expected offset is
maximized. This probability is based on the sta@tdistribution of the range
errors, thus, the maximum likelihood algorithm mmes the variance of the
localization error as the number of observations, anchor-originated beacons,

grows to infinity.

Global optimization

Global optimization algorithms try to solve two mairoblems in large-scale multi-
hop networks such as incomplete ranging, due tetshonge measurements, and
limited number of anchors [7, 8, 9]. In the abseatanchors, global optimization

algorithms compute the relative sensors' locations.

In the global optimization approach, all availabistance information is used,
i.e., a distance is estimated and used to locaessors as long as it can be
measured, due to not all blinds have enough sudiagranchors within their radio
range for localizing themselves. Therefore, thesghods also use blind-to-blind
distance information to assist the localizationgess. Unfortunately, using blind-
to-blind distance information may cause the algonito calculate a wrong network
map, since the network graph is not fully anchoeed thus, it can have multiple

realizations [19].
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As an alternative to the global optimization appigaesearchers have sought
recursive methods to overcome both, the incompketging problem and limited
number of anchors problem, in large-scale multi-imgbworks. In the recursive
methods, a blind whose location is accurately deitegd becomes a new converted
anchor. Converted anchors are then used to refemther not yet localized blinds
in the network. Hence, the localization processpapgates from the area that is
closer to the start-up anchors to the area thamascessible to them. However,

localization errors cumulate towards the last lizeal blinds under this approach.

4.2  Localization algorithm approach

Relevant for the present solution is to define @liaation algorithm that reduces
the impact of distance estimates errors on thetilmtastimate. Additionally, we

also seek for trade offs between performance antptExity.

In [24], the authors found that the bounding-bogoakthm provides good
trade off between performance and complexity; hamewt certainly does not
counteract the impact of distance estimates eonrthe location estimate. On the
other hand, the maximum likelihood algorithm trieseduce the impact of distance
estimates errors on the location estimate at thst ob high complexity [24].
Acknowledging such trade offs, the present solutimplements the Weighted
Least-Squares (WLS) algorithm [8], which providesimpler framework than the
maximum likelihood algorithm while reducing the ieqt of distance estimates
errors on the location estimate better than thedstal distance fitting approaches as

it is explained in Section 4.4.1.

On the other hand, even thought the present saldib@s not attempt to solve
the global optimization problem, the WLS algoritlean be used to solve the global
optimization problem in the present centralized lempentation in case the solution

needs to be upgraded to support large-scale muyitiAletworks.
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4.3 Problem statement

Before going further to study the least-squaresragh, we need to define the
generic localization problem. Let’'s consider a ratwof N nodes embedded in the
m dimensional Euclidean space. In the Euclidean spghealistance between nodes
i andj is given by,

d; = D([xi e ])=Hxi =X, H 4.0)
whereD denotes the Euclidean Distance Matrix (EDM)denotes the coordinate
vector of node, and ||| denotes the Euclidean norm. The Euclidean ndra o

vectorv = {vy, Vo, ... , in}, Wherem denotes the dimension of the Euclidean space,

is defined as follows,

M=l + v+ .2)

The Euclidean distance matribD) is then defined as th&l-by-N symmetric
nonnegative matrix with zeros in the main diagooamposed by all pair-wise
distances of the network graph. The distance estinh@tween nodes and |

obtained from the ranging systesndenoted by;.

We also define a connectivity matri€), wherec;; is a binary value 1/0 that
represents the existence/non-existence of a linkvd® nodesi and j, i.e.,
existence/non-existence of a distance estimate, Atsxnectivity levels defined as
the average number of nodes within a radio rangelafér refer tcompletenesas
the ratio between the number of existing distarstenates and the total number of
edges of the fully connected network graph. Thet@completenessefers to the

complement of such ratio.

4.4  Least-squares optimization

Least-squares optimization is an algorithm whicloved fitting data based on a
certain criterion (cost function) by approximatitigg least value of the summation
of the squares of the cost function. In the presatition, the weighted least-
squares [8] algorithm is implemented. The perforoeanf the algorithm will be
compared with a standard least-squares data fitipgroach such as metric
Multidimensional Scaling.
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Multidimensional Scaling (MDS) [27] is a set wfethods used to produce a
representation of dissimilarities in a small numhsr dimensions. In WSN
localization, MDS allows the mapping of the netwofitom the distance
information. Among the different varieties of MD®etric-MDS is typically used
to solve the global optimization problem in the gmece of incomplete and
inaccurate ranging, as shown in [7]. Metric-MDS Iviae referred just as MDS

hereafter.

Localization problem formulation

MDS and WLS both belong to the nonlinear least-segiaptimization family. The
MDS approach aims to find a blind’s location thatnmmizes the differences

between fitted distances and estimated distansds]laws,

min ij (cfi’j - D([X’Xj ]))2 43)

P
where X is them-by-N matrix of vector coordinates of the approximatecations
(referred as locations estimates later on). Sintdathe multilateration approach, in
the distance fitting approach above all estimatisthdces are fitted equally based
on the belief that they have the same errors digion. In fact, when only anchor-
to-blind distance information is used, the MDS rebkes the multilateration
approach. However, distance estimates do not redlgsbave the same errors
distribution, not at least in the case of propamabased ranging where the distance
estimate error is proportional to the estimatedadise [36], as shown later on.
Acknowledging this, the WLS approach introduceseigits function that accounts
for varying errors distributions of distance estiesd® This approach showed to

reduce the impact of distance estimates errore@iotation estimate [8].

On the other hand, the WLS algorithm not only idtrces the aforementioned
weights function, but it also provides a differdiiting criterion respect to the
standard least-squares distance fitting approach as MDS. Here, the WLS aims
to find a blind’s location that minimizes the ditmces between fitted distances

squaresand estimated distanceguares as shown below,

19 A detailed description of the weights functiompisvided in the next section.
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min ¥ h, (&7 -0 % . 44)

Xop™N
whereh;; represents the weight of the correspondinglistance estimate. In [47],
the authors argue that this distance fitting apghioguarantees that the matrix of
fitted distances is a Euclidean distance matrixeé@tt In [8], the authors argue that
this fitting approach is robust to severe incongess apart that it does not
demand significant computational resources sinceallibws using Newtown

methods. However, a performance comparison of thé Wespect to a standard
least-squares fitting approaches, such as the MiaS, not been provided. In
Section 4.6, the performance of the MDS and WL&én compared via extensive

simulations.

4.5 Weights function

The weights function is intended to weight the dbation of each distance
estimate for minimizing the cost function. In thesance of optimality theory, and
considering other techniques that calculate weidpaised only on intuition as in
[48], where weights are proportional to the numbkhops away in the network
that corresponds to the estimated distance, thghigefunction proposed 6] is
used in the present solution. Under this weightgtion, each entry of the weights
matrix is proportional to the relevance of the esponding entry of the matrix of
distance estimates. The matrix of weights is matimed based on two
independent factors: the confidence on the distastienatesHp), and the impact
that each edge has on the rigidity of the netwaeaply Hc) as follows,

H=H_,*H., (4.5)
where the product above implies element-wise mlidagon. Notice that the matrix

of weights is a symmetric nonnegative matrix.

Confidence matrix (Hp)

The confidencematrix measures the confidence on the distancemass d;;
obtained from the ranging system. Each entry ofcthrdidence matrix is calculated

as follows,
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(4.6)

hy :Q[_ (a+pi'j)WJ—Q[(a_pi'j)WJ

o ZW@, 2[]?6% '

so that™. represents the probability that the distance eddd);, conditioned to
the amount of offset;;, is within a rangex close to the true distandg; where .
is the sample standard deviation &f computed from the available K;;
measurements samples, dpgk) is the Gaussian Q-function over a valueéefined

as follows,

Q(x) = %jex;{— u?jdu. 4.7)

In [46], the authors do not provide an optimalibedry for settingx in equation
(4.6), instead it is only mentioned that betteruaacy can be achieved on average

for small values oé at the price of larger variané@.

Notice that the offset;; allows accounting for varying errors distributionis
distance estimates. The errors distributions ofdiseance estimates depends on the
accuracy of the prediction of the received signadngth expressed in dBm. Even
after any efforts to counteract the sources ofivedesignal strength variability, the
prediction of the received signal strength willimbately be affected by some
generally Gaussian random errey s follows,

RSS cqeionld] = RSG,c[d] + £, (4.8)

where RSGredicion represents thdRSQiegian in equation (3.7). This error in the
received signal strength prediction will lead to a random distanamatstierror

proportional to the estimated distance as follows,

5= dt,uelo[lo”j , (4.9)
wherey denotes the path loss exponent as defined in iequg.2). The equation
above relates to the proportional distance estimatar of a particular estimated

distance, so that the expected proportional erfdh® distance estimates is given

by,

“The authors in [46] useequal to 0.1 m and 1 m, but in the present solutiervalue was set to 1
m acknowledging the large errors of propagatioredasnging.
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Elo] = dt,ueE{ex;{g 'Ogloﬂ =d, ex;{1 (Mj J | (4.10)
107 2| 10

whereg, is for the resulting standard error of the cuntnfy for the corresponding
path loss estimation. Finally, the offsgt; conditioning the accuracy of the

estimated distanc#; is also proportional to the estimated distanceisnmtfined as

P = d,,[l—ex{—%(%,fwj N 4(11)

Structural matrix (H ¢)

follows,

The structuramatrix relates to the impact that the presenceratesef each edge
has on the overall structure of the network grapbardless of how good or bad the
distance is estimated. The structuradtrix measures then the relevance that each
edge has on the rigidity of the network graph.

In [46], the impact that the presence/absence oédge has on the overall
structure of the network graph is estimated by watmng the amount of
perturbation that the deletion of the edgg)(has on the spectrum of the graph.

This perturbation is calculated as shown below,

e -ns | 4.02)
A |
where j|| denotes the Euclidean norm ang and Ag, are the vectors of

eigenvalues of the representation matrices of tbe-perturbed graplG, and
perturbed graphG, respectively. The representation matrix considieby the
authors in [2] is theignless Laplaciamatrix,

LLe+cC, (4.13)
where® is a diagonal matrix where each entry of the maagahal is equal to the
number of links that the node corresponding touhéerlying entry has with other

nodes in the actual network a@ds the connectivity matrix.

From the above, we finally arrive at,
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Z-I’

", O max@)’ 4.44)

wherethe sub-index refers to the edge connecting nodep @ndA = {4, ... , T}

is the set of calculated perturbations, whigierepresents all existing links in the

network.

4.6  Simulative performance analysis

In the present simulative analysis performed inaldb™ environment, we seek to
determine the validity of the WLS distance fittirgpproach and the weights

function.

In order to realize the following simulations, ateen scenario and the errors
distributions of the distance estimates have tagsimed. Thus, a 10x10 squared-
meter room for a range of 7-35 randomly and idaficdistributed nodes is
considered. The minimum number of anchor nodeslj is considered, whema is
the dimensions of the solution. The radio rarigeeig set to 8.5 m, so that more than
70% of the inter-node distances are always detected a partially connected
network is considered. The distance estimates anergted using equation (4.9),
where the standard deviation of the predictionreofahe received signal strength
(s,) is set to 6 dB and the path loss exponeitt¢ 1.64** The mean distance
estimates errors of such model was observed torhevhen the maximum error is

bounded to half of the radio range, which is inalation with real cases [2, 3].

For convenience, the performance of the algoritenseasured in terms of

the mean relative error of tiigted distancesas shown below,

_ Zi<j

D([xi,xj])—D([ii,f(j]X' 0L jUg, 4.15)
(M - AR

whereq is defined as the set of indexes of location vsctd the anchordyl refers
to the number of combinations (i, 5,i*j (M equals toN(N-1)/2), andA refers to

the number edges connecting the anchor nddlegjgals tan(m+1)/2).

L This reference values are based on empirical atitins in [24].
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4.6.1 Simulations results

As it can be noticed, all figures obtained from #ir@ulations present a remarkable
breakpoint alN equals to 15. This behavior is explained by thé taat a blind node
can be localized more accurately as the numberefdreance points grows to
infinity. In the simulation scenario, the assumemtles distribution (independent
normal distributions centered at the origin forteagis) leads to high completeness
ratio in the presence of few nodes, but then tai® rdecreases as the number of
nodes increases, until it stabilizes to around to%¥pleteness fax higher than 15
nodes. Hence, the distance fitting errors growl iNviégquals to 15 nodes due to the
decreasing completeness ratios, but the distattoegfierrors start then to reduce

due to the connectivity level increases gradually.

Least-Squares optimization

In the first set of simulations, corresponding igufe 4.1, the performance between
WLS and MDS is compared. Heréy;j of the WLS cost function (equation (4.4)) is
given by the ¢;) entry of the connectivity matrix(), so that only existing
distances estimates given the network connectasigyactually fitted and the non-
existing distance estimates are shunned down innthemization of the cost
function. This approach before is also used inrtiieimization of the MDS cost
function, so that the performance of these twoeddht distance fitting criterions

can be compared under the same conditidns.

It can be noticed that both distance fitting apph#s lead to similar
performance on average, where MDS outperforms byral 1% only. Although in
[8] it is argued that WLS is more robust than MDSthe presence of severe
incompletenesghere is nothing said about robustness in the poesef distance
estimates errors. Despite we do not focus on tbenpleteness problem, this could
be alleviated by forming local maps with good cartivity model on which the
locations are estimated, so that these local magpthan aligned together based on

their common nodes, as it is done in [10]. Morevaht for the present solution

22 Notations like for instance MDS(C) in the figurasthe present chapter mean that the MDS
algorithm with the matrix of weights C was used andn.
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becomes robustness in the presence of distancea¢ss errors, where the WLS

and MDS fitting approaches perform similarly.
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Figure 4.1 Performance comparison between MDS and WLS

On the other hand, it was observed that the WLSrdkgn converges faster
than the MDS algorithm, where the convergence toh¢his first is less than a
second on average. In the present study, the satysibf the algorithms with
respect to the parametersandy affecting the errors distribution of the distance
estimates according to equation (4.9) is not amalyNevertheless, as a rule of
thumb, the distance fitting accuracy, and in tima localization accuracy, increases
as the errors of the distance estimates decreasels,according to the errors
distribution of the distance estimates under treeived signal strength approach
(equation (4.9)), the errors of the distance edemalecreases as and/or 1

decreases and vice versa.

Weights function

In the second set of simulations, correspondingFigures 4.2 and 4.3, the
connectivity matrix C), the confidence matrixp), and the matrix of weightd]

are evaluated. Figures 4.2 and 4.3 respectivelwghe performance of the MDS
and WLS algorithm when different matrices of wegghte used. It can be observed
that the matricesHp and H lead to roughly 5% gain on average over the
connectivity matrixC. However, this gain increases as the connectigitgl, and in
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turn the number of reference points, grows to ityfin

In [46], it is shown that this gain is around 25%dar different conditions.
Nevertheless, after performing extensive simulatidhis gain could not be
achieved under the assumed scenario and errombdigins of the distance
estimates. Of course, the achieved gain increaseth@a number of available
samples for each distance estimakg; (in equation (4.6)) grows to infinity;
however, in the present simulations the numbewail@ble samplesK;) was set to

20 as it would most likely be in practiée.

On the other hand, as stated in [46] and as italaa be observed from
Figures 4.2 and 4.3, the structural mathic) is less relevant than the confidence
matrix Hp) since matrice$ip andH both achieve almost the same gain over the

connectivity matrixC.

0.22

—— MDS(C)
—— MDS(Hd)

Mean Relative Error

number of nodes
Figure 4.2: Performance comparison of the matrices of weightdgCand H over the
MDS algorithm

% The sensitivity of the different parameters in treghts function of equation (4.6) is discussed in
[46].
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Figure 4.3: Performance comparison of the matrices of weightdgCand H over the
WLS algorithm

Conclusions

It is clear that the weights function reduces tng@act of distance estimates errors
on the location estimate and that the achieved gwreases as the number of
available samples for each distance estimate gtowusfinity. On the other hand,
even thought MDS and WLS distance fitting approacheovide similar distance
fitting accuracy, the present solution implemerte WLS algorithm since it
converges faster and becomes an asset in the peesésevere incompleteness in

case the solution needs to be upgraded to sugvge-Ecale multi-hop networks.
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CHAPTER 5

Empirical platform

Before going further to the empirical demonstratmithe proposed solution in
Chapter 6, it is necessary to revise some reledatdils of the targeted IEEE
802.15.4 standard compliant motes. Sensinodeharmotes used by the Wireless
Sensor Group at Aalto University. The present daramonsists on a small
description of the IEEE 802.15.4 Standard [43] tr@dSensinodes motes [41].

5.1 The IEEE 802.15.4 Standard

The IEEE 802.15.4 standard provides the specifinatiof the Physical Layer
(PHY) and Media Access Control (MAC) for Low-Rateiréless Personal Area
Networks (LR-WPANSs). LR-WPAN targets low-rate, lgwower and low-cost
applications by providing reliable short-range coumnsations.

In the standard, two types of network node arengeffi a full-function device
(FFD) or a reduced-function device (RFD). The FEBs either act as coordinators
or as normal devices. Every WPAN needs at leastFBD to work as the
coordinator of the network. Whereas, the RFDs caanbas coordinators and they

can only be connected to one FFD at a time. RFBsrarely used for very simple

a7



applications that require minimum capabilities.

5.1.1 Network topology

In IEEE 802.15.4 networks, nodes can be arrangtad a@nstar or a peer-to-peer

topology, as shown in Figure 5.1.

Star Topology Peer-to-Peer Topology

\T/ [\ >y

PAN
/ 0 \ Coordinator
[ ]

@ Full Function Device
O Reduced Function Device
<«<—> Communication Flow

Figure 5.1: Network topologie¥

PAN
Coordinator O

In the star topology, one node acts as the networkroller, known as the
PAN coordinator. The controller is mainly controli and routing the
communication between nodes in the network, butait also have other roles
according to the application strategy. In a stapotogy, reliability of

communications merely depends on the coordinator.

In the peer-to-peer topology, networks nodes comaoait® in a mesh-like
fashion as long as connectivity exists, where comoation paths could be of
multiple hops, i.e., ad-hoc. Thus, communicatioaquire self-organization and

management. Routing a message is then more confipierore reliable.

A star topology is typically used for applicationgh defined communication
patterns such as home automation, computer peslshdrealthcare applications,
toys and games; whereas, a peer-to-peer topologyseas in applications with
undefined communication patterns such as wireless® networks for ambient

and habitat monitoring, traffic control and induetcontrol and monitoring.

Localization solutions generally assume peer-ta-peenmunications, so that

4 Figure 5.1 has been taken from the IEEE 802.1t&Adard specifications [43].
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any node-to-node information can be obtained ag &snconnectivity exists.

5.1.2 Layers

The IEEE 802.15.4 standard defines specific attebwf the physical layer (PHY)
and the medium access control (MAC) sublayer [4je physical layer is
responsible for managing the physical transceivdrereas the median access
control sublayer is responsible for handling altess to the physical radio channel.

Relevant for the present solution is the interaysinterference.

Three possible unlicensed frequency bands areetkfi®68 MHz band, 915
MHz band and 2.4 GHz band. IEEE 802.15.4 systemghsn subjected to inter-
system interference. The first band is used in geirallowing one communication
channel (868.0-868.6 MHz). The second band is usédbrth America, allowing
up to ten channels (902-928 MHz). The targeted&# band is used worldwide,
providing 16 radio channels for unlicensed opersiocAdjacent channels are 5
MHz apart, ranging from 2405 MHz up to 2480 MHz.

The 2.4 GHz frequency band homes many systemsnf@ensed operations,
including hot technologies such as Wi-Fi and ZigBeéere this last is in
compliance with the IEEE 802.15.4 standard. HereFWthannels may overlap
with ZigBee channels even though they do not skamee carriers. Therefore, apart
from the CSMA-CA protocol of the IEEE 802.15.4 sanss which tries to avoid
interference by clearing the channel for transmoissiia its RTS message once it
finds the channel idle, a time-based channel hgppohedule is used in the solution

to further avoid interference.

5.1.3 Application side

When designing applications for wireless sensowoeks major issues are power

consumption and scalability.

Sensor networks are often used for monitoring 8dna where access is
difficult, hazardous or expensive. Lifetime of thetwork elements must be then

maximized in order to avoid maintenance operatidiisments lifetime depend
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mainly on the batteries lifetime as long as themelets are used in the correct
conditions [42]. Therefore, power-aware applicasi@hould be developed in order

to maximize the batteries lifetime.

In the IEEE 802.15.4 standard, device power manageim addressed via the
sleep mode. Then, the time the application spendsleep mode should be
maximized. In event-driven applications, the slggprval would ultimately depend
on the frequency of the events occurrence. Thea, dleep interval of the
localization application will depend on how ofteargets need to be localized,

which in turn depends on their movement speed.

Another important aspect that affects the powersaoption and determines
the scalability of the application indeed is theoammt of traffic the application
generates. Here, decentralized approaches genswallg better than centralized
approaches. However, the main goal of the presesid is to mitigate the problems
of propagation-based localization solutions causethe radio channel of dynamic
indoor environments; thus, a centralized solutias heen implemented to validate

the present design.

Implementing the solution in a distributed fashmoay be subject of a future
research. However, the present centralized implétien can be upgraded to
support large-scale networks as long as a highter idaée backbone is provided,
e.g., |IEEE 802.11 backbone. Then, the large-scalalization problem would be
reduced either to align local maps together, inghesence of sufficient anchors

surrounding each blind, or to solve a global optation problem otherwise.

5.2 Sensinodes

Sensinodes provides low-power wireless modules uigg in sensor networks.
Sensinodes have the NanoStack™ protocol stackishambedded networking
software supporting low-power IP-based applicationening on top of IEEE
802.15.4 radios and operating at the 2.4 GHz frequband [41].

In the experiments, the U100 micro.2420 sensinsdased (see figure 5.2),
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which is a fully operable standalone communicatioade with accessible
connectors for integration of sensors and elem¢di§. It has the MSP430
microcontroller and IEEE 802.15.4 compliant CC24a0io transceiver [40], both
provided by Chipcon. The radio allows 250 kbps data and a transmission range

of 100 m with its on-board antenna.

Figure 5.2: U100 micro.2420 sensinode

The microcontroller and radio can be programmedh Witth, the FreeRTOS
[38] and TinyOS [39] operating systems, which avetgble, open source, real-time
operating systems.

In FreeRTOS applications are written in C prograngrianguage, whereas in
TinyOS applications are written in NesC [45], whisha programming language
targeting networked embedded systems that hasags n C. In addition, task
scheduling in TinyOS does not allow threads, wherBeeeRTOS allows pre-
emptive and multi-threading task scheduling, itasks are served at real time

according to their priority.

5.2.1 Output power

In the CC2420 radio chip, the output power leveklsd radio transmitter can be
controlled by configuring the TXCTRL.PA_LEVEL retgs. Table 5.1 shows the
output power for different TXCTRL.PA_LEVEL valuesNotice that the
TXCTRL.PA_LEVEL register consist of 5 bits, thug, 8onfigurable output power

levels are possible. However, the output powerlgewveTable 5.1 are the only ones
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specified in the CC2420 radio chip specificatiof@][

PA_LEVEL | Output Power [dBm]
31 0
27 -1
23 -3
19 -5
15 -7
11 -10
7 -15
3 -25

Table 5.1: Output power settings @ 2.45 GHz
Output power variability

As before mentioned in Section 3.1.2, the actualdmitted power is close to the
configured power level but not necessarily exaettyial. Furthermore, different
transmitters behave differently even when theycardigured in the same way. In
[4], the overall standard deviation of the transeditpower inaccuracy was found to
be 2.24 dB. The results were obtained using a eimgteiver and 9 different

transmitters, where the CC2420 radio chip was used.

5.2.2 RSSI / Energy detection

The CC2420 radio chip provides an RSSI (Receivega&iStrength Indicator) for
energy detection of the channel, which value carebd from the RSSI.RSSI_VAL
register. In compliant to the IEEE 802.15.4 speaiibns, the RSSI is always

averaged over 8 symbol periods (429.

Figure 5.3 shows a typical RSSI register value input power curve. In
figure 5.3, one can notice that, in accordance he €C2420 radio chip
specifications [40], the RSSI register value hasféset of roughly -45 as follows:

RFpowe(dBM) = —45 + RSSkygister value 5.1
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Figure 5.3: Typical RSSI value vs. input power

Energy detection procedures

There are two types of procedures for energy detecénergy detection at packet

reception and continuous energy detection.

In the first type, the measured RSSI is averagest twe 8 symbol periods
following the SFD (Start of Frame Delimiter) of theceived packet. The measured
RSSI value is then appended to the second lastdiytiee received packet. This
value needs to be handled by the application fokimgaany distance estimations

based on the received signal strength.

In the second type, the RSSI value is continuogslgulated and updated
every symbol period while the radio is enabled.sTinppdated RSSI value can be
read from the RSSI.RSSI_VAL register. In fact, tesigned application performs

noise sensing by reading the aforementioned registe

Energy detection variability

Energy detection with the CC2420 radio chip is Vargar as it can be observed in
figure 5.3, but not accurate with respect to the wower. In fact, the typical energy
detection linearity and accuracy with the CC2420laahip are + 3 dB and + 6 dB,
respectively [40].
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Moreover, the nonlinearities in the energy detectiary for different
receivers. In other words, the RSSI value recoidatbt necessarily the same for
different receivers even if all other parametefsaing RSS variability are kept the
same. In [4], the overall standard deviation of émergy detection inaccuracy for
packet reception was found to be 1.86 dB. The tesudre obtained using a single
transmitter and 5 different receivers, where th42D radio chip was used.
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CHAPTER 6

Solution demonstration

In the present chapter, the performance of theeptefocalization solution is
demonstrated. Here, before going further to analyme results of the solution
demonstration, we first review how the localizatiapplication works and the
empirical set-up considered for the experiment.nThiee empirical set-up and the

results are

6.1 Creating the localization application

The localization application has been implementethat it first pulls data from the
network and then performs a centralized computatging Matlab™ since this is
enough to validate the designed solution. This mehat the actual estimations of
distances and locations are centrally calculatekr athe necessary energy

measurements (RSSI values) for such estimationgudliesd from the network.

The localization application performs a round oérgy measurements every
time blinds’ need to be localized, so that the p#bss estimations and
corresponding distance estimations are performetineonbased on energy

measurements taken during the same period of tinoeder to sidestep unpractical
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offline path loss estimations requiring pre-plamnieffort and errors of distance
estimates caused by such outdated path loss esimmaNotice that the path loss
estimations are calculated using the well-know antt-anchor distances and the
corresponding energy measurements, then the atetodind energy measurements
are mapped to distances using those path loss astia so that the blinds’
locations can be finally estimated based on thichanto-blind distance

information?®

During a round of energy measurements each anchdr kdind node
broadcasts beacons based on a time schedule intoreth avoid collisions and
enable time diversity for energy measurements.b8acons are needed to perform
energy measurements and they contain two fieddarce IDand packet number
which are used for the centralized processing efdata. Each anchor and blind
node broadcasts the same number of beacons, ooenbeghin a time frame. In
every next time frame the radio channel is chartgetthe next channel of a fixed
sequence of four channels (given as input to thaliwation application) in order to
both enable frequency diversity for energy measergmand reduce the impact of
radio interference. Each network node representtua-node i.e., two radio
modules and antennas, where the two antennasaedph wave length apart (12.5
cm approximately) of each other in order to enatpatial diversity for energy
measurements. Finally, each node measures theyeoktbe channel after every

packet reception in order to estimate the additiviee at each receiver.

Localization entities

In accordance to this above, localization requinese entities:

* Workstation: A workstation supporting a Matlab™ environment venthe
estimations of the distances and locations areopegd using the energy
measurements pulled from the network and the wedlkn locations of the

anchor nodes given as input to the application. Sthece code is included

% The ranging system and localization algorithmsexqgain in detail in Chapter 3 and 4,
respectively.
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in Appendix- A.

* Measuring node: A device that performs energy measurements during a
measurements round. A measuring node can be athemchor node (a
stationary device with a well-known location) orbdnd node (a device
which location needs to be calculated). The meagurode is programmed

in C language and its source code is included ipefpix- B.

* Sink node: A device attached to the workstation that initiedizthe
measurements round and acts as a gateway for thsunteg nodes. After
the measurements round ends the sink node coll@ots passes on
measurements data from each measuring node to &tl@alVM application
on the workstation via serial communication. Theksiode can be used as
an anchor node when its location is well-known &int has been
implemented so that it performs energy measuremeahtsng the
measurements round. The sink node is programméti language and its

source code is included in Appendix- C.

6.2 Empirical set-up

The present experiment was carried out in a typglgalmic indoor situation with

the presence of furniture and mobile objects. Fasiex monitoring, the selected
indoor scenario is a 13x9 squared-meters room ie #hectrical and

Communications Department of Aalto University, shoin Figure 6.2 (left side).

All nodes were deployed 1.3 m from the floor refex® where the ceiling is at 3 m.
Seven anchor nodes deployed as shown in Figurgigt side) were used.

As before mentioned, the U100 micro.2420 sensinadeused as the
ubiquitous device for the empirical demonstratidntloe solution. Each radio
module was equipped with an external monopole aatenounted a wave length
apart from the PCB, as shown in Figure 6.1, in otdereduce the impact of the

electrical components and ground of the PCB oratitenna radiation pattern.
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Figure 6.1 Empirical scenario (left side), Anchor nodes dgpient (right side)

Figure 6.2 External monopole antenna

Parameters configuration

An important aspect of the experiment becomes #rarpeters configuration such
as the output power, time interval between consezlteacons, channel hopping
sequence, and number of beacons that each noddcheta. The CC2420 radio
module supports a range of discrete power setfiogs -25 dBm until 0 dBm. In
the present experiment, the output power is sef WBmM since measurements are
blurred by the background noise when the outputgsas/too low, e.g., -25 dBm,
or too much reflections are generated when theubuyipwer is too high, e.g., O
dBm. Here, setting up the output power to -7 dBromadd to achieve a radio range
of about 15 m, on average. Notice that, in dynamiloor environments the radio
range is typically reduced due to multipath eff@etl shadow fading and it can not

be accurately determined.

When setting the time interval between consecuiaecons, it is important to
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consider the time coherence of the channel in dalenable time diversity for RSS
measurements. Each beacon is then transmitted eesitytime coherence of the
channel. In a typical office room, where the maximmotion speed a person is
around 1 m/s, the time coherence of the channdlelsw 100 ms. Thus, the

following experiment uses 100 ms as the time imtlervetween consecutive
beacons. On the other hand, seeking to enable dnegudiversity for RSS

measurements while avoiding interference, the oblamopping sequence was
chosen so that any two consecutive channels irffdinechannel sequence are at
least four carriers apart of each other, as follof2410, 2435, 2455, 2480) MHz.
Finally, in the present experiment, each node hrastd 20 beacons every time
blinds need to be localized, which provides a megini number of samples for

distance estimations.

Parameters Value
Output power -7 dBm
Time interval between consecutive beagons 100 ms
Channel hopping sequence (2410, 2435, 2455, 248») M
Number of beacons per node 20

Table 6.1: Parameters values used in the experiment

6.3 Results analysis

Once the implemented localization algorithm showedreduce the impact of
distance estimates errors on the location estinmat€hapter 4, our aim in this
section is to validate the use of diversity teches in order to obtain good
estimators of the path loss and the use of angbexisc path loss estimations in
order to account for the independent shadow fadifiecting RSS measurements
taken at different anchor nodes. At the end of s$eetion, an insight of the

localization accuracy is provided.

6.3.1 Counteracting multipath effect

The first part of the experiment, correspondind-tgures 6.4 and 6.5, provides a

comparison of the path loss estimation accuracynwtie proposed diversity

59



techniques, such as frequency and spatial diveraity used to perform RSS

measurements with respect to the case when divégesitiniques are not used.

It can be observed that the accuracy of the path dstimation improves i.e.,
median of data follows the fitted curve better, wiieequency and spatial diversity
are used to perform RSS measurements, which cabhetier noticed at large
distance values. In fact, the standard error ofpiulr loss curve fitting is halved
with respect to the case when diversity techniguesot used. In consequence, the
distance estimates errors are also reduced whesrsdiv techniques are used to
obtain RSS measurements. As the standard fittirog & halved, based on equation
(12) it can be shown that the achieved average mmithe distance estimates

accuracy is exponentially proportional to the acbéestandard fitting error.
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Figure 6.4 RSS-to-distance curve fitting when spatial, freroey, and time diversity
techniques are used to obtain RSS measurements

-20 ‘ ‘
Measured samples ||
Path loss model

-30

40/

—— Median of samples 4

50

-60

-70

-80

Received Power [dBm]

90

100 | | | | | |
0.2 0 02 0.4 0.6 0.8 1 12

distance log-scale [m]
Figure 6.5 RSS-to-distance curve fitting when only time dgity is used to obtain RSS
measurements
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6.3.2 Counteracting shadow fading

The second part of the experiment, corresponding-igure 6.6, provides a
comparison of the accuracy of the path loss esiimatvhen anchor-specific path
loss estimations are performed with respect to ¢hse when ashadowing-

dependentpath loss estimation is performed, i.e., RSS nreasents taken at
different receivers, whose observations are aftebieindependent shadow fading,

are used to perform a single overall path lossnedion.

Figure 6.6 shows the standard error of #iidowing-dependergath loss
curve fitting (bar number 0) together with the stard errors of the anchor-specific
path loss curves fittings (bars number 1-7). It b@nobserved that the standard
error of the path loss curve fitting is on averagduced by about 25% when
anchor-specific path loss estimations are perfornhed¢onsequence, the distance
estimates errors are also reduced when anchorfisppeth loss estimations are
used to deduce distances, provided that the theiseations are performed using
RSS measurements taken at a certain receiver, @tclad the perimeter of a

convex area, within a period of time when the clehmessentially invariant.

The present ranging system showed to achieve 1.2yarage accuracy on
the distance estimates. This error can be genedalizterms of the radio range, so
that the average distance estimates accuracy ist &% of the radio range,

according to our estimation of the radio range.

Standard error [dB]

Curve

Figure 6.6: Standard error of the curve fittings
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6.3.3 Location estimate

In the present section we look at the accuracyheflocation estimate. Here, the
actual localization accuracy of the solution mayywaith the number of anchor

nodes used, the radio range, and the propagatamaateristics of the environment.

In the experiment, a blind was placed at 20 dffiédocations for finding its
location. Figure 6.7 shows the Cumulative Distritmit Function (CDF) of the
absolute localization error, where the averageliloai#zon error was observed to be
around 2.1 m. This error can be generalized indeshthe radio range, so that the
average localization accuracy is about 14% of #wior range according to our
estimation of the radio range. Nevertheless, prapag-based ranging may lead to
unpredictable results as shown in Figure 6.7, whagalization errors about half of

the radio range can be observed.
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Figure 6.7. CDF of the absolute localization error
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

Acknowledging the increasing demand of many embrant location-aware
applications, the present research enhances tfampance of simple and low-cost
propagation-based localization solutions for weslsensors networks in dynamic

indoor situations, where the cost and form are majacerns.

The present solution then implements practical ramcel methods in order to
counteract the two major sources of distance estsnerrors under the propagation-
based approach such as multipath effect and shéaldiwg. The use of diversity
techniques showed to halve the standard erroreoéstimations of the path loss, on
average, which in turn reduces the distance estsnatrors. Moreover, the use of
anchor-specific path loss estimations in order tooant for the independent
shadow fading affecting the observations at differanchor nodes showed to
reduce the standard error of the estimations ofpidu loss by about 25%, on
average, which in turn reduces the distance estsratrors. The achieved average

distance estimates accuracy is about 10% of thi® rathge when seven anchor
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nodes are used.

On the other hand, the solution implements a narsitained optimization
algorithm, such as the weighted least-squaresitiigarin order to find out blinds’
locations. This algorithm showed to reduce the ichp the distance estimates
errors on the location estimate, where the achiegead on the distance fitting
accuracy increases as the number of beacons growsfihity. The achieved
average localization accuracy is about 14% of #tkorrange when seven anchor
nodes are used. It can be concluded that propaglasised localization solutions
can lead to unpredictable results in hostile sibmat apart that they are limited to
the region where the radiated power is uniform; éwev, they can provide

localization services to many error-tolerant apilmns under good situations.

7.2  Future work

It is clear that the present ranging system doasteoact major problems of

distance estimation caused by the radio channdi ascthe multipath effect and
shadow fading, enhancing the performance of singpld low-cost propagation

based localization solutions. However, unpredietaiglsults were observed under
hostile situations. Here, it would be interestimgdetermine the bounds of both
distance estimates errors and localization erroideu hostile situations such as
highly scattered environments with metallic bodiesl obstacles moving around.

Also, the present solution implements a non-comstth localization
algorithm; however, as discussed in Chapter 4,dridfcalization accuracy can be
achieved when the locations solution is constralmethe properties of the network
graph and/or additional information like for instarthe expected range of the fitted
distances. Thus, it would be interesting to evaluabnstrained localization
problems in order to reduce the impact of distaggt@nates errors on the location

estimate.

Finally, the present centralized implementation bagn used in order to
validate the designed solution. However, even thbagme upgrading directions of

the present solution are discussed throughoutesd in case the solution needs to
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support large-scale multi-hop networks, it would imeresting to asses the
improvements and challenges of a possible decedaimplementation of the

solution.
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Appendix

A. Matlab™ source code on the workstation

%Energy measurements and additional data are pulled from the
%network

[DATA, Xblind,BOUNDdistance]=energy_measurements();

%The next function calculates the estimated locatio n of the blind
%node(LOCATIONS) as well as the distance estimates errors and
%localization errors(ERRORS)

[LOCATIONS ERRORS]=localize(DATA,Xblind,BOUNDdistan ce)

function  [DATA,Xblind,BOUNDdistance]=energy measurements()
clear all ;

try

PRINT_COMMAND=70;

EXIT_COMMAND=80;

ERASE_MEMORY=90;

%INPUT CONFIGURATION DATA
%serial port communication

com_number=input( 'COM PORT NUMBER: ' ,'s" );
%labels the measurements round

round_code=input( 'ROUND CODE: " );
%total number of measuring nodes

nodes_num=input( 'NUMBER OF NODES: ' );
%defines the measuring nodes to be localized

Nblinds_=input( 'Number of blinds: ' );

%number of broadcast packets per measuring node
PACKETS_NUM-=input( 'NUMBER OF PACKETS TO BROADCAST: ");
%time interval between consecutive beacons

TX_int=input( "TRANSMISSION INTERVAL [ms]: ' );
%control channel
Radio_Channel=input( 'CONTROL CHANNEL [11,26]:" );
%output power
Transmission_power=input( "TRANSMITTING POWER [0-100%]: ' );

%number of channel hops
hop_num=input( 'CHANNEL HOP SEQUENCE LENGTH: ');
%bounds the minimum value of a distance estimate
BOUNDdistance_min=input( 'Minimum distance estimate [m]: ' );
%bounds the maximum value of a distance estimate
BOUNDdistance_max=input( 'Maximum distance estimate [m]: ' );
%for convinience only once blind node was considere d, and its
%true locations is required to compute the loca lization error
blind_x=input( "True blind location (x-axis): ' ;
blind_y=input( "True blind location (y-axis): '

);
)

Xblind = [blind_x,blind_y];

Nblinds=Nblinds_;
BOUNDdistance.min=BOUNDdistance_min;
BOUNDdistance.max=BOUNDdistance_max;
nodes_number=nodes_num;
PACKETS_NUMBER=PACKETS_NUM;
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TX interval=TX_int;
Radio_Ch=Radio_Channel;
TX_power=Transmission_power;
Round=round_code;
hop=hop_num;

%channel hopping sequence

for i=1:hop

seq(i) = input([ 'CHANNEL " num2str(i)
SEQUENCE: ']);

end

CONFIG.round=Round;
CONFIG.num_nodes=nodes_num,;
CONFIG.num_packets=PACKETS_NUM;
CONFIG.tx_int=TX _int;
CONFIG.radio_ch=Radio_Channel;
CONFIG.TX_power=Transmission_powetr;
CONFIG.channels_to_hop=hop;
CONFIG.hop_sequence=seq;

AVR_RSSI_matrix=zeros(nodes_num,nodes_num);
RPR_matrix=zeros(nodes_num,nodes_num);
data_mat = zeros((nodes_num - 1) * PACKETS_NUM,
data_poll = zeros((nodes_num - 1) * PACKETS_NUM

packets_numberLS=mod(PACKETS_NUMBER,255);
packets_numberMS=floor(PACKETS_NUMBER/255);
TX_intervalLS=mod(TX_interval,255);
TX_intervalMS=floor(TX_interval/255);

comstring=strcat( 'COM'" ,com_number);
com_port=comstring;

baudrate=115200;

uart_timeout=10;

warning off MATLAB:serial:fscanf:unsuccessfulRead

s=serial(com_port);

set(s, '‘BaudRate' ,baudrate);

set(s, ‘Timeout' ,uart_timeout);

s.Flowcontrol= 'software’ ;
s.BytesAvailableFcnMode = 'terminator’ ;

disp( '‘before opening port' );
fopen(s);

disp( 'after opening port' );
pause(5);

configuration(1)=nodes_number;
configuration(2)=packets_numberLS;
configuration(3)=packets_numberMsS;
configuration(4)=TX _intervalLS;
configuration(5)=TX_intervalMS;
configuration(6)=Radio_Ch;
configuration(7)=TX_power;
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configuration(8)=hop;
for i=1:hop
configuration(8 + i) = seq(i);
end

for i=1:length(configuration)
fwrite(s,configuration(i), 'uint8' );
end

%passing on configuration parameters to sink node
TF=0;
while TF~=1
out=fscanf(s);
if out~=0
out
end
TF=strncmp(out, 'CONFIG PARAMATERS',10);
end
disp( 'CONFIGURATION DONE");

TF=0;
while TF~=1
out=fscanf(s);
if out~=0
out
end
TF=strncmp(out, 'MEMORY ALLOCATED,10);
end
disp( 'MEMORY ALLOCATION DONE);

TF=0;
while TF~=1
out=fscanf(s);
if out~=0
out
end
TF=strncmp(out, 'START APPLICATION MESSAGE' ,10);
end
disp( 'APPLICATION START' ); 9%measurments round started

TF=0;
while TF~=1
out=fscanf(s);
if out~=0
out
end
TF=strncmp(out, 'ROUND COMPLETED10);
end
disp( 'ROUND COMPLETED); %measurements round ended

%PULLING MEASUREMENTS FROM MEASURING NODES
exit=0;
while exit~=1

disp( 'NODE TO POLL?" );
disp( 'Enter the number of the node to poll:' );
disp( 'Press p to print the results of the sink node'
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disp( 'Press e to exit:' );

disp( 'Press r to erase memory' );
command=input( st )
pause(l);

if (command~= 'e' & command~='p' & command~="" )
command=str2num(command);
fwrite(s,command, 'uint8' );

TFprinted=0;
TFresults=0;
row = 1,
while TFprinted~=1
out=fscanf(s);

TFprinted=strncmp(out, 'POLL PRINTED" ,8);
TFresults=strncmp(out, 'DATA' ,5);
if TFresults
out
numbers=regexp(out, "(\d|[-D* , 'match’ );
node_from=str2double(char(numbe rs(1)));
packet_number=str2double(char(n umbers(2)));
RSSI=str2double(char(numbers(3) );
LQI=str2double(char(numbers(4)) );
noise=str2double(char(numbers(5 N);

data_poll(row,1) = node_from;

data_poll(row,2) = packet_numbe r;
data_poll(row,3) = RSSI;

data_poll(row,4) = LQI;

data_poll(row,5) = noise;

row = row + 1;
end
end
DATA{command + 1}=sortrows(data_poll,[1 2));
data_poll = zeros((nodes_num - 1) * PAC KETS_NUM, 5);
disp( 'POLL PRINTED' );

elseif (command== 'p' )
fwrite(s,PRINT_COMMAND, uint8'  );

TFprint=0;
TFresults=0;
line = 1;

while TFprint~=1
out=fscanf(s);

TFprint=strncmp(out, 'PRINT COMPLETED' ,10);
TFresults=strncmp(out, 'DATA' ,5);
if TFresults
out
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numbers=regexp(out, ‘(\d[[-D* , 'match' );

node_from=str2double(char(numbe rs(1)));
packet_number=str2double(char(n umbers(2)));
RSSI=str2double(char(numbers(3) );
LQI=str2double(char(numbers(4)) ;
noise=str2double(char(numbers(5 N);

data_mat(line,1) = node_from;

data_mat(line,2) = packet_numbe r;
data_mat(line,3) = RSSI;

data_mat(line,4) = LQI;

data_mat(line,5) = noise;

line = line + 1;

end
end
DATA{2}=sortrows(data_mat,[1 2]);
disp( 'PRINT COMPLETED' );

elseif (command=="T" )
disp( ‘erase command'  );
fwrite(s,ERASE_MEMORY, uint8'  );
TF=0;
while TF~=1
out=fscanf(s);
if out~=0
out
end
TF=strncmp(out, 'Flash memory erased' ,10);
end
disp( 'Flash memory erased' );

elseif (command=='e' )
fwrite(s,EXIT_COMMAND, 'uint8' )
TF=0;
while TF~=1
out=fscanf(s);
if out~=0
out
end
TF=strncmp(out, 'EXIT POLLING' ,10);
end
disp( 'EXIT POLLING' );
exit=1;
end
end
DATA{1}=CONFIG;
fclose(s);
catch ME
DATA{1}=CONFIG;
fclose(s);
end
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function  [LOCATIONS ERRORS]=localize(DATA,Xblind,BOUNDdista nce)

CONFIG=DATA{1};

full TABLE=DATA(2:end);

for i=1:CONFIG.num_nodes
fullTABLE{i}=sortrows(full TABLE({i},[1 2]);

end

%PARAMETERS
%Well-known anchors locations (true blinds location
%for error calculation at the end)

Xnodes =[

0.5000 1.9600

0.5000 4.9000

5.3200 8.2600

6.3000 8.2600

12.1800 5.7400

12.1800 3.9200

5.8800 0.5000];

Xnodes=[Xblind;Xnodes];
%initial guess of blinds locations
for i=1:Nblinds

X0blinds(i,:) = rand(1,2).*[max(Xnodes(:,1)),ma
end
%number of measuring nodes
N=CONFIG.num_nodes/2;
%number of blinds
Nblinds=length(X0blinds(:,1));
%reference frequency
fo=2405 + 5*(CONFIG.hop_sequence(1)-11);
%expected accuracy range of the distance estimates
%location estimation, i.e., distance fitting)
alpha_m=1;
%expected standard error of the received signal str
%(used for curves fittings of the path loss)
alpha_dBm=3;
%maximum expeceted additive noise
max_additive_noise=-93;
%threshold for maximum allowed channel activity
interference_tresh=0.3;
%Euclidean distance matrix

D = pdist(Xnodes, ‘euclidean’ );
EDM=zeros(N);
c=0;
for i=1:N-1
for j=i+1:N
c=c+1,
EDM(i.j)=D(c);
end
end

EDM = EDM + EDM’,

%taking packet drops away
TABLE=cell(1,CONFIG.num_nodes);
drop=1;

for i=1:CONFIG.num_nodes

for j=1:(CONFIG.num_nodes-1)*CONFIG.num_packets
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if (fullTABLE{i}(j,1)==0)
drop=drop+1;
else
break ;
end
end
TABLE{i}=full TABLE{i}(drop:end,:);
drop=1;
end

%setting channels with high activity and estimating
%at each  measuring node
activity=zeros(1,CONFIG.channels_to_hop);
num_noise_samples=zeros(1,CONFIG.channels_to_hop);
NOISE=cell(1,CONFIG.num_nodes);
for i=1:CONFIG.num_nodes
NOISE{i}=[];
for j=1:length(TABLE{i}(;,1))
packet_num=TABLE({i}(j,2);
noise=TABLE{i}(j,5);

if (mod(packet_num,CONFIG.channels_to _hop)==0)

hop=CONFIG.channels_to_hop;
else
hop=mod(packet_num,CONFIG.channels_to_h
end
num_noise_samples(hop)=num_noise_samples(ho
if (noise > max_additive_noise)
activity(hop)=activity(hop)+1;
else
NOISE{i}=[NOISE({i},noise];
end
end
end
node_add_noise=zeros(1,CONFIG.num_nodes);
for i=1:CONFIG.num_nodes
node_add_noise(i)=mean(NOISE{i});
end
check_interference=ones(1,CONFIG.channels_to_hop);
for i=1:CONFIG.channels_to_hop
if ((activity(i)/num_noise_samples(i)) > interference_
check_interference(i)=0;
end
end

%normalizing measurements obtained at different fre

%respect to the reference frequency and filtering additive noise

%out of measurements
TABLEnormalized=cell(1,CONFIG.num_nodes);
for i=1:CONFIG.num_nodes
TABLEnormalized{i}=zeros(length(TABLE{i}(:,1)),
for j=1l:length(TABLE{i}(:,1))
TABLEnormalized{i}(j,1)=TABLE{i}(j,1);
noise=TABLE{i}(j,5);
rssi=TABLE{i}(j,3);
packet_ num=TABLE{i}(j,2);

if (mod(packet_num,CONFIG.channels_to_hop)==0)

hop=CONFIG.channels_to_hop;
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else
hop=mod(packet_num,CONFIG.channels_to_h op);
end
f=2405 + 5*(CONFIG.hop_sequence(hop)-11);
if (noise < max_additive_noise &&
check_interference(hop)==1)
TABLEnormalized{i}(j,2)=10*log10(107(rs si/10)-
10"(node_add_noise(i)/10))-20*log10(fo/f);
else
TABLEnormalized{i}(j,2)=0;
end
end
end

%tagging measurements obtained from the two antenna s (having
%different node-IDs) of a dual node under single node tags
RSSI=[];
DISTANCE_log=[];
MEASUREMENTS=cell(1,N);
c=0;
for i=1:2:CONFIG.num_nodes-1
c=c+1,
MEASUREMENTS{c}=[TABLEnormalized{i}; TABLEnormal ized{i+1}];
MEASUREMENTS{c}=sortrows(MEASUREMENTS{c},[1]);
sourcelD=0;
for ID=1:2:CONFIG.num_nodes-1
sourcelD=sourcelD+1,
for j=1:length(MEASUREMENTS{c}(;,1))
if (MEASUREMENTS{c}(j,1)==ID||[MEASUREMENTS{c}(j,1)==ID +1)
MEASUREMENTS{c}(j,1)=sourcelD;
if (MEASUREMENTS{c}(j,2)~=0)
RSSI=[RSSI,MEASUREMENTS{c}(j,2)];
DISTANCE_log=[DISTANCE_log,log10(EDM(c,source
ID)I;
end
end
end
end
end

%separating measurements taken at different anchor nodes into
%different matrices and computing the median of samples, weigt hs,
%and corresponding log-distances
RANGEdata=cell(1,N);
for i=1:N
c=0;
temp=[];
count=1,;
for j=1:length(MEASUREMENTS{i}(;,1))
if (MEASUREMENTS{i}(j,1) > 0)
sourcelD=MEASUREMENTS{i}(j,1);
if (L(i,sourcelD)~=0)
temp=[temp,MEASUREMENTS{i}(j,2)];
if (MEASUREMENTS{i}(j,2)==0)
count=count+1;
end
if (j~=length(MEASUREMENTS{i}(:,1)))
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if (MEASUREMENTS{i}(j+1,1)~=sourcelD)
c=c+1;
RANGEdata{i}(1,c)=log10(EDM (i,sourcelD));
temp=sort(temp);
temp=temp(1:end-count);
RANGEdata{i}(2,c)=median(te mp);
RANGEdata{i}(3,c)=gfunc(-
alpha_dBm*sqrt(length(temp))/(2*std(temp)))-
gfunc(alpha_dBm*sqgrt(length(temp))/(2*std(temp)));
median_rssi(i,sourcelD)=RAN GEdata{i}(2,c);
TEMP{i,sourcelD}=temp;
temp=[];
count=1,
end
else

c=c+1,;

RANGEdata{i}(1,c)=log10(EDM(i,s ourcelD));

temp=sort(temp);

temp=temp(1:end-count);

RANGEdata{i}(2,c)=median(temp);

RANGEdata{i}(3,c)=gfunc(-
alpha_dBm*sqrt(length(temp))/(2*std(temp)))-
gfunc(alpha_dBm*sqgrt(length(temp))/(2*std(temp)));

median_rssi(i,sourcelD)=RANGEda ta{i}(2,c);

TEMP{i,sourcelD}=temp;

end
end
end
end
end

%ANCHOR-SPECIFIC PATH LOSS ESTIMATIONS
NODESparameters=[(1:N)',zeros(N,3)];
templ1=[];
temp2=[];
temp3=[];
for i=1L:N
if (size(RANGEdata{i})>[2,2])
logDV = RANGEdata{i}(1,);
rssi_estimates = RANGEdata{i}(2,:);
fitweigth = RANGEdata{i}(3,:);

ok = isfinite(logDV) & isfinite(rssi_estim ates);
if ~all( ok_)
warning( '‘GenerateMFile:IgnoringNansAndInfs'
‘Ignoring NaNs and Infs in data' );
end
ft_ = fittype( 'polyl" );
fo =
fitoptions( 'method’ , 'LinearLeastSquares' , 'Robust’ ,'On" );
set(fo_, ‘Weight' | fitweigth(ok ));
[cf_gof ]=fit(logDV(ok_),rssi_estimates(o k),ft_fo)
if (gf_.rsquare<0)
fo_=
fitoptions( 'method’ , 'LinearLeastSquares' , 'Robust’ , 'Off" );
set(fo_, ‘Weight' | fitweigth(ok ));
[cf_gf ]=fit(logDV(ok ),rssi_estimat es(ok ),ft_,fo )

end
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if (of_.rsquare<0)
[cf_of ]=fit(logDV(ok_),rssi_estimat
end
NODESparameters(i,2)=cf_.p2;
NODESparameters(i,3)=-cf_.p1/10;
NODESparameters(i,4)=gf_.rmse;
templ=[templ,RANGEdata{i}(1,:)];
temp2=[temp2,RANGEdata{i}(2,:)];
temp3=[temp3,RANGEdata{i}(3,:)];
end
end

%Global path loss estimation (needed to compensate
of observations in the anchor-specific path loss es
logDV = temp1(:);

rssi_estimates = temp2(’);

fitweigth = temp3(:);

ok = isfinite(logDV) & isfinite(rssi_estimates);

if ~all(ok_)
warning( '‘GenerateMFile:IgnoringNansAndInfs'
'Ignoring NaNs and Infs in data' )i
end
ft_ = fittype( 'polyl" );
fo_ = fitoptions( 'method’ , 'LinearLeastSquares'

set(fo_, 'Weight' fitweigth(ok ));
[cf_gof ]=fit(logDV(ok ),rssi_estimates(ok ),ft ,
if (gf_.rsquare<0)

fo_ = fitoptions( 'method’ , 'LinearLeastSquares'

set(fo_, ‘Weight' | fitweigth(ok ));

[cf_of ] = fit(logDV(ok_),rssi_estimates(ok ),
end
if (gf_.rsquare<0)

[cf_of ]=fit(logDV(ok_),rssi_estimates(ok ),
end
GLOBALpar.A=cf_.p2;
GLOBALpar.n=-cf_.p1/10;
GLOBALpar.rmse=gf_.rmse;

%DISTANCE ESTIMATION (RSSI-to-distance mapping base
%specific path loss estimations)
DISTANCEmatrix=EDM;
H=ones(size(EDM));
for i=1:length(EDM)
H(i,i)=0;
end
for i=Nblinds+1:N
A=0.25*GLOBALpar.A + 0.75*NODESparameters(i,2);
n=0.5*GLOBALpar.n + 0.5*NODESparameters(i,3);
rmse=0.25*GLOBALpar.rmse + 0.75*NODESparameters
B=-10*n;
for k=1:Nblinds
median_rssi(i,k)=0.75*median_rssi(i,k) +
0.25*median_rssi(k,i);
if (BOUNDdistance~=0)
DISTANCEmatrix(i,k)=max(BOUNDdistance.m
107 ((median_rssi(i,k)-A)/B));
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DISTANCEmatrix(i,k)=min(BOUNDdistance.m
DISTANCEmatrix(i,k));
else
DISTANCEmatrix(i,k)=10"((median_rssi(i,
end

DISTANCEmatrix(k,i)=DISTANCEmatrix(i,k);

%calculating weigths for distance fitting
distance_samples=10.~((TEMP{i,k}-A)/B);
offset=DISTANCEmatrix(i,k)*(1-exp(-

(1/2)*((rmse*log(10))/(10*n))*2));

H(i,k)=qgfunc(-
abs(alpha_m-+offset)*sqrt(length(distance_samples))/
samples)))-gfunc(abs(alpha_m-
offset)*sqrt(length(distance_samples))/(2*std(dista

H(k,i)=H(i,k);

end
end

%calculating distance estimates errors

temp=[];

for i=Nblinds+1:N
for k=1:Nblinds
distance_error=abs(EDM(i,k)-DISTANCEmatrix(
temp=[temp,distance_error];
end

end

RANGEerror.mean=mean(temp);

RANGEerror.max=max(temp);

%LOCATION ESTIMATION (weigthed least-squares optimi

X=Xnodes;
X(1:Nblinds,:)=XO0blinds;
x0=[];
for i=1:N

for j=1:2

X0 = [x0; X((-1) * N +i)];

end
end
DISTANCEvector=DISTANCEmatrix(find(tril(ones(N),-1)
H_=H(find(tril(ones(N),-1)))’;
options = optimset( '‘Jacobian’ ,'on' );
[Xestimate,resnorm] =
Isgnonlin(@ (x)Jwls(x,DISTANCEvector,H_,N,2),x0,-
inffones(N*2,1),inffones(N*2,1),options);
LOCATIONS=zeros(N,2);

for i=1:2
for j=1:N
LOCATIONS(j,i) = [Xestimate((j-1) * 2 + i)]
end

end

%calculating location estimate errors

temp=[];

for k=1:Nblinds
localization_error=pdist([LOCATIONS(k,:);Xnodes
temp=[temp,localization_error];
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end
LOCALIZATIONerror.mean=mean(temp);
LOCALIZATIONerror.max=max(temp);

ERROR(1)=RANGEgerror;
ERROR(2)=LOCALIZATIONerror;

function  [F J]= Jwlis(x,D,H,N,m)
Xmatrix=zeros(N,m);
for i=1l:m
for j=1:N
Xmatrix(j,i) = [x((-1) * m +i)];
end
end

%calculating vector of non-redundant equations usin g the weigthed
%least-squares cost function
F=(H .* (D.”2 - (pdist(Xmatrix, ‘euclidean’ )."2));

%calculating the Jacobian
templ = zeros(length(D),m*N);

for v=1:N
c=0;
temp=zeros(length(D),m);
for i=1:N
for j=i+1:N
c=c+1,;
if (v==i & v~=1:m+1)
temp(c,:)=-2*H(c)*(Xmatrix(v,:)-Xma trix(j,:));
end
if (v==) & v—==1:m+1)
temp(c,:)=-2*H(c)*(Xmatrix(v,:)-Xma trix(i,:));
end
end
end
templ(;,m*v-(m-1):m*v)=temp;
end
J=templ;
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B. C-source code on the measuring node

/* Created by: JS */
/* Revised by: JV */

[F**** file main.c *****/

/* Standard includes. */
#include <stdlib.h>
#include <signal.h>
#include <string.h>

/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "bus.h"
#include "gpio.h"
#include "debug.h"
#include "socket.h"
#include "rf.nh"

#include "buffer.h"
#include "flash.h"

[* tasks declaration */
static void Node( void *pvParameters );

/* Constants declaration */

uint8 t NODE_ID =3; //1is ONLY for the sink node!
uint8_t BROADCAST PACKET =23;

uint8_t START_APPLICATION =1;

uint8_ t POLL =40;
uint8_t POLL_ANSWER =50;
uint8 tICS = ;I ms

#define PRINT_COMMAND 70
#define ERASE_MEMORY 90

/* Variables declaration */

uintl6_t PACKETS_NUMBER ;
uint8_t RADIO_CHANNEL ;
uint8_t TX_POWER ;

uintle_t TX interval ;

uint8_t TX intervallLS ;
uint8_t TX intervalMS ;
uint8_t packets _numberLS ;
uint8_t packets _numberMS ;
int8_t byte ;

uint8_t nodes_number ;
uintl6_t pac_counter ;

uint8_t TX_NODE_ID ;

int8_t RSSI_packet ;

int8_t noise ;

uint8_t not_started ;

uint8_t not_polled ;

uint8_t current_radio_channel ;
uint8_t data [ 1;  11252B + 1B = 42 packet + idx
uint8_t rec_packet_counter ;
uintl6 tj ;

uint32_t ADD ;

uint32_t ADD_print ;

uintl6_t packet_number ;
uint8_t packet_numLS ;

uint8_t packet numMS ;

uint8_t last_page ;

uint8_t content ;
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uint8_t LQI_packet ;

uint8_t  *channel_seq ;

uint8_t next ;

uint8_t hop_num ;

uintl6 ti ;

portTickType start_tx_time ;
portTickType stop_tx_time ;
portTickType recorded_time ;
portTickType wait_tiempo ;
portTickType wait_tiempo_temp ;
portTickType tiempo_to_TX ;
portTickType wait_to_change ;
portTickType wait_to_change_temp ;
portTickType time_to_change ;
uint8_t distance ;

uint8_t distance_to_last ;
uint8_t first_reference ;

uint8_t check ;

/* Sockets declaration */
socket t *Radio_Socket =0;

/* Buffers declaration */
buffer_t *R_Buffer ;
buffer_t *T Buffer ;

/* Ports definition */
#define BROADCAST_PORT_NUM 20

/* Addresses declaration */
sockaddr_t Broadcast_Add =

ADDR_802_15 4 _PAN_LONG
{ 1 ’ ) ]

BROADCAST PORT NUM
3

/* main */
int  main( void )

/* Initializes the leds */

LED_INIT ();

if (bus_init ()== pdFALSE)
{

/* Initializes the debug window */

debug_init  ( );

stack_init 0;

[* Creates the tasks */

xTaskCreate ( Node, "NODE", configMAXIMUM_STACK_SIZE , NULL,( tskIDLE_PR
IORITY + 0)/(

xTaskHandle *) NULL);

[* Starts the scheduler */

vTaskStartScheduler 0;

return ;

}

/* Measuring node Task */
static void Node (void *pvParameters )

{

/* wait user input */
LED2_ON);
byte =- 1;
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debug ("NODE WAITING FOR COMMAND\An" );
byte = debug_read_blocking (5000);
LED2_OFH);

/*pulls measurmrnets data via serial communication when the
measuring node is attached
to the workstation*/

if (byte == PRINT_COMMAND
{
last_page =0;
ADD_print =0;
while (last_page = 1)
if (flash_read (ADD_print , data , sizeof (data ))== pdTRUB
{

content =data [ O];
if (content ==255)

debug ("PRINT COMPLETED\N\n" );
last page =1;

else

{
for (j=0; j<=(uintl6_t )( content -1)* 6; | =j +6)

TX_NODE_ID = data [] +1];

packet numLS = data [] +2];

packet numMS = data [] +3];

packet number = packet numLS +( packet_ humMS <<8);
RSSI_packet = data [ +4];

LQI_packet = data [] +5];

noise = data [ +6];

vTaskDelay (20);

}

} }
ADD_print =ADD_print +256;

[*erase memory*/

else if (byte == ERASE_MEMORY

{
debug ( "Starting bulk erase\r\n” );
while  (flash_bulk _erase 0= pdTRUE

debug ("." );
vTaskDelay (10);

debug ( "Flash memory erased\r\n” );
/I end of user input

/* ACTUAL PROGRAM FOR ENERGY MEASUREMENTS AND FORASSING DATA ON
REQUEST*/
else
{
Radio_Socket =socket (MODULE_CUDR);
socket _bind (Radio_Socket ,& Broadcast Add );
for ()
{

[*CONFIGURATION PHASE*/

/linitial radio and memory settings

rf_power_set (RF_DEFAULT_POWER

current_radio_channel =rf_channel_set (RF_DEFAULT_CHANNBL
while  (flash_bulk _erase 0= pdTRUE
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debug (.
vTaskDeIay ( );

[*measuring node waits configuration parameters fro m sink
node*/

not_started =

while ( not_: started )

{
R_Buffer =socket read (Radio_Socket , 0);
if (R_Buffer ==0)
{
else
if  (‘buffer_pull_uint8 (R_Buffer )== START_APPLICATION
{
nodes_number = buffer_pull_uint8 ( R_Buffer );
packets_numberLS = buffer_pull_uint8 ( R_Buffer );
packets_numberMS = buffer_pull_uint8 ( R_Buffer );
PACKETS NUMBER
packets_numberLS +( packets_numberMS <<8);
TX intervalLS = buffer_pull_uint8 ( R_Buffer );
TX intervalMS = buffer_pull_uint8 ( R_Buffer );
TX interval = TX_ intervalLS +( TX_intervalMS <<8);
RADIO_CHANNEL= buffer_pull_uint8 ( R_Buffer );
TX _POWER= bhuffer ~_pull_uint8 ( R_Buffer );
hop_num = buffer_pull_uint8 ( R_Buffer );
channel_seq =(uint8 t *)
malloc (hop_num*sizeof (uint8_t ));
for (i=0; i<hop_num; i++)
channel_seq [i]=0;
}
for (i=0; i<hop_num; i++)
{
channel_seq [i]= buffer_pull_uint8 ( R_Buffer );
not_started = 0;
}
socket_buffer_free ( R_Buffer );
R_Buffer =0;
}
/lupdate radio settings
current_radio_channel =rf_channel_set (channel_seq [ 0]);

rf_power_set (TX POWER

*MEASUREMENTS PHASE: packet handling for the measu rments
round (sink node initilizes the measurements round) */
wait_tiempo =(( nodes_number -1)* TX interval +

ICS)/ portTICK_RATE_MS;

wait_to_change = nodes_number -NODE_ID * TX interval +
(1CS/ 2))/

portTICK_RATE_MS ;

1 =Y,

ADD=0;

rec_packet_counter ;

packet_number =0;

pac_counter = O;

next =1;

first_reference = 0;

check = 0;
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for (;;)
if (first_reference && pac_counter <= PACKETS_NUMBER

/* check if time to transmit expired*/
if (xTaskGetTickCount ()> tiempo_to_TX )

T_Buffer =socket buffer_get ( Radio_Socket );
if (T_Buffer )
{

buffer_push_uint8 (T_Buffer , BROADCAST_PACKET
buffer_push_uint8 ( T_Buffer , NODE_ID;
buffer_push_uint8 (T_Buffer ,( pac_counter >>8));
buffer_push_uint8 ( T_Buffer , pac_counter );

if

(socket _sendto (Radio_Socket ,& Broadcast Add , T_Buffe
ry== pdTRUE

T Buffer = 0;
else

socket_buffer_free ( T_Buffer );
T Buffer = 0;

}
}
pac_counter ++;
/* update time to transmit and time to change the

channel*/

recorded_time = XxTaskGetTickCount  ();

tiempo_to_TX = recorded_time + wait_tiempo ;
time_to_change = recorded_time + wait_to_change ;
check =1;

}

/* check if time to change the channel expired*/
if (xTaskGetTickCount ()> time_to_change && hop_num >

&& check )
{
check = 0;
current_radio_channel =rf_channel_set (channel_seq [ next
next ++;
if (next > hop_num - 1)
next = 0;
}
}
}
[* check if a beacon has been received*/
R_Buffer =socket read (Radio_Socket , 0);
if (R_Buffer ==
{
else
if  (‘buffer_pull_uint8 (R_Buffer )== BROADCAST_PACKET
{
[*for estimation of the additive noise and channel
activity*/
noise = rf_analyze rssi 0;

/I data operations
rec_packet_counter ++;
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TX_NODE_ID = buffer_pull_uint8 ( R_Buffer );

packet numMS = buffer_pull_uint8 ( R_Buffer );
packet numLS = buffer_pull_uint8 ( R_Buffer );
packet number = packet numLS +( packet_numMS <<8);

RSSI_packet = R_Buffer ->options . rf _dbm ;
LQI_packet = R_Buffer ->options .rf Igi ;

if (first_reference == 0) /[*when first beacon of the
measurements round is received*/
{

recorded_time = XxTaskGetTickCount ();

/lupdate time to transmit
if (TX_NODE_ID < NODE_ID
{

pac_counter = packet_number ;

distance = NODE_ID - TX_NODE_IDQ

wait_tiempo_temp =( distance *

TX interval )/ portTICK_RATE_MS ;

tiempo_to_TX = recorded_time + wait_tiempo_temp

else
{
pac_counter = packet number + 1;
distance = ( nodes_number + NODE_ID -
TX_NODE_IDQ
wait_tiempo_temp =(( distance -1)* TX interval +
ICS)/
portTICK_RATE_MS ;
tiempo_to TX = recorded_time + wait_tiempo_temp

/I update time to change the channel

distance_to_last = nodes_number— TX NODE_IDQ
wait_to_change_temp = ( distance_to_last *
TX_interval + ( ICS/ 2))/

portTICK_RATE_MS ;

time_to_change = recorded_time +
wait_to_change_temp ;

first_reference = 1;

check =1;

/ldata operations;

data [(( rec_packet_counter -1)* 6)+ 1]= TX_NODE_IDQ
data [(( rec_packet_counter - 1)* 6)+ 2]= packet_numLS ;
data [(( rec_packet_counter - 1)* 6)+ 3]= packet_numMS ;
data [(( rec_packet_counter - 1)* 6)+ 4]= RSSI_packet ;
data [(( rec_packet_counter - 1)* 6)+ 5]= LQI_packet ;
data [(( rec_packet_counter - 1)* 6)+ 6]= noise ;

if (rec_packet_counter ==42)

data [ O]= rec_packet_counter ;
if (flash_write (ADD data , sizeof (data ))== pdTRUB

flash_write_wait 0;
}
ADD=ADD+ ;
rec_packet_counter =0;
}
socket_buffer_free ( R_Buffer );
R_Buffer =0;

}

[* exit loop if the measurements round has ended*/
if (pac_counter > PACKETS_NUMBER& ( xTaskGetTickCount () -
recorded_time )* portTICK_RATE_MS > ( nodes_number -
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NODE_ID* TX_interval + )
if (rec_packet_counter I=0)

data [ O]= rec_packet_counter ;
if (flash_write (ADD data , sizeof (data ))== pdTRUB

flash_write_wait 0;

}
ADD-ADD

rec_packet_counter
break ;

} // end of measurements phase

/* POLLING PHASE: sink node collects measurements f rom
measuring nodes*/

/Ireset buffers and radio

if (T_Buffer )

socket_buffer_free ( T_Buffer );
T Buffer = 0;

i}f ( R_Buffer )

socket_buffer_free ( R_Buffer );
R_Buffer = 0;

}

vTaskDelay ( ;

socket close (Radio_Socket );

Radio_Socket =socket (MODULE_CUDR);

socket_bind (Radio_Socket ,& Broadcast Add );
current_radio_channel =rf_channel_set ( RADIO_CHANNEL.
rf_power_set (RF_DEFAULT_POWER

Il waiting for poll request
not_polled = 1;
while  (not_polled )

R_Buffer =socket read (Radio_Socket |, );
if (R_Buffer ==
{
}
else
if  (‘buffer_pull_uint8 (R_Buffer )== POLL &&
buffer_pull_uint8 (R_Buffer )== NODE_ID
{
last_page =0;
ADD_print =
while (last_page = 1)
if (flash_read (ADD_print , data , sizeof (data ))==
pdTRUB
{
content =data [ O];
if (content ==
last_page =1;
else
{
for (j=0; j<=(uintl6_t )( content -1)* 6; j=j+6)
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}

}

TX_NODE_ID = data [ +1];
packet_numLS = data [j +2];
packet_numMS = data [ +3];

packet number =

packet_numLS +( packet_nhumMS <<8);
RSSI_packet = data [ +4];

LQI _packet = data [] +5];

noise = data [ +6];

T_Buffer =socket_buffer_get (Radio_Socket );
if (T_Buffer )

{

buffer_push_uint8 (T_Buffer , POLL_ANSWER
buffer_push_uint8 (T_Buffer , NODE_ID;
buffer_push_uint8 (T_Buffer , TX_NODE_ID;
buffer_push_uint8 ( T_Buffer

packet numLS );

buffer_push_uint8 ( T_Buffer

packet numMS);

buffer_push_uint8 (T_Buffer , RSSI_packet );
buffer_push_uint8 ( T_Buffer , LQI_packet );
buffer_push_uint8 ( T_Buffer , noise )

if (socket sendto (Radio_Socket ,& Broadcast_
Add, T_Buffer )== pdTRUBE

T Buffer = 0;

}

else
socket_buffer_free ( T_Buffer );
T Buffer =

}
vTaskDelay (20);

}
ADD_print =ADD_print + ;

socket_buffer_free ( R_Buffer );

}
} /lend of polling phase
free (channel_seq );
} I/ back to configuration phase
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C. C-source code on the sink node

/* Created by: JS */
/* Revised by: JV */

[***** file main.c *****/

/* Standard includes. */
#include <stdlib.h>
#include <signal.h>
#include <string.h>

/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "bus.h"
#include "gpio.h"
#include "debug.h”
#include "socket.h"
#include "rf.h"

#include "buffer.h"
#include "flash.h"
#include <sys/inttypes.h>
#include "control_message.h"

[* tasks declaration */
static void Sink_Node (void *pvParameters );

/* Constants declaration */

uint8 t NODE_ID =1; //1is ONLY for the sink node!
uint8_t BROADCAST_PACKET =23;

uint8_t START_APPLICATION =1;

uint8_ t POLL =40;

uint8_t POLL_ANSWER =50;

uint8_ tICS  =200; /I ms

#define PRINT_COMMAND 70

#define EXIT_COMMAND 80

#define ERASE_MEMORY 90

/* Variables declaration */

uintl6_t PACKETS_NUMBER ;
uint8_t RADIO_CHANNEL

uint8_t TX_POWER ;

uintl6_t TX interval ;

uint8_t TX intervalLS ;
uint8_t TX intervalMS ;
uint8_t packets_numberLS ;
uint8_t packets _numberMS ;
uint8_t configuration [ 10];
uint8_tx

uint8_tt ;

uint8_t exit_condition ;
int8_t byte ;

uint8_t nodes_number ;
uintl6_t TX pac_counter ;
uint8_t TX_NODE_ID ;

uint8_t node_id ;

uint8_ti ;

int8_t RSSI_packet ;

int8_t noise ;

uint8_t current_radio_channel ;
int8_t data [ 253]; /I 252B + 1B = 42 packet + idx
uint8_t rec_packet_counter ;
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uintl6 tj ;

uint32_tADD

uint32_t ADD_print ;

uintl6_t packet_number ;
uint8_t packet_numLS ;

uint8_t packet_ numMS ;

uint8_t last_page ;

uint8_t content ;

uint8_t LQI_packet ;

uintl6_t castMS ;

uint8_t poll_completed ;
uint8_t next ;

uint8_t hop_num ;

portTickType recorded_time ;
portTickType wait_tiempo ;
portTickType tiempo_to_TX ;
portTickType wait_to_change ;
portTickType time_to_change ;
uint8_t distance ;

uint8_t check ;

/* Sockets declaration */
socket t *Radio_Socket =0;

/* Buffers declaration */
buffer_t *T_Buffer ;
buffer_t *R_Buffer ;

/* Ports definition */
#define BROADCAST_ PORT_NUM 20

/* Addresses declaration */
sockaddr_t Broadcast_Add =

ADDR_802_15 4 _PAN_LONG
{ 1 ’ ’ ]

: : : : h
BROADCAST_PORT_NUM
2
[*function that passes on own (not collected) measu rements data to
workstation*/
static void print_data (void )
{
last_page =0;
ADD_print =0;
debug ( "print command received\r\n” );
while (last_page !'= 1)
if (flash_read (ADD_print , data , sizeof (data ))== pdTRUB
{
content =data [ O];
if (content ==
debug ("PRINT COMPLETED\N\n" );
last_page =1;
else
for (j=0; j<=(uintl6_t )( content -1)* 6; | =j+6)
{
TX_NODE_ID = data [ +1];
packet numLS = data [] +2];
packet numMS = data [] +3];
packet number = packet numLS +( packet_ humMS <<8);
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RSSI_packet = data [j +4];
LQI_packet = data [ +5];
noise = data [j +6];
vTaskDelay (20);
}
}

}
ADD_print =ADD_print + ;
}
}

[* main */
int  main( void )

/* Initializes the leds */

LED_INIT ();

if (bus_init ()== pdFALSE)
{

/* Initializes the debug window */

debug_init  ( );

stack_init 0;

[* Creates the tasks */

xTaskCreate ( Sink_Node , "SINKNODE", configMAXIMUM_STACK_SIZE , NULL,( t
skIDLE_PRIORITY + 0),(

xTaskHandle *) NULL);

[* Starts the scheduler */

vTaskStartScheduler 0;

return ;
}
/* Sink node Task */
static void Sink_Node (void *pvParameters )
{
/[*CONFIGURATION PHASE: sink node receives configura tion
parameters from workstation and passes them on to t he network*/
LED1_ON);
vTaskDelay ( );
LED1_OFR);
for (x=0; x<(sizeof (configuration ) X++)
configuration [x]= ;
}
LED2_ON);
for (x=0; x<8; x++) /lreceive 7 parameters from workstation
byte =- 1;
while (byte ==- 1)
byte = debug_read_ blocking ( );
configuration [x]= byte ;
}
LED2_OFR);
nodes_number = configuration [ O];
packets numberLS = configuration [1];
packets_numberMS = configuration [ 2];
TX intervalLS = configuration [ 3]
TX intervalMS = configuration [ 4];

RADIO_CHANNEL= configuration [ 5];
TX_POWER= configuration [ 6];

hop_num = configuration [ 7];

castMS = ( uintl6_t ) TX intervalMS ;
TX_interval = TX_ intervalLS  +( castMS * );
castMS = ( uintl6_t ) packets_numberMS ;
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PACKETS_NUMBER packets_numberLS +( castMS * );

debug ( "CONFIG PARAMETERSY);

uint8_t  *channel_seq ;

channel_seq =(uint8_t *) malloc (hop_num*sizeof (uint8_t ));
for (i=0; i<hop_num; i++)

channel_seq [i]=0;

}
debug ("MEMORY ALLOCATED\AN" );

LED2_ON);
for (x=0; x<hop_num; x++) /[*Receive hop_num parameters from
workstation (channel hops)*/
{
byte =- 1;
while (byte ==- 1)
byte = debug_read_ blocking ( );
channel_seq [x]= byte ;
} }
LED2_OFR);
while  (flash_bulk_erase 0!'= pdTRUB
debug ("." );

vTaskDelay (10);

/Iradio settings for control channel

Radio_Socket =socket (MODULE_CUDR);
socket bind (Radio_Socket ,& Broadcast Add );
rf_power_set (RF_DEFAULT_POWEBR

current_radio_channel =rf_channel_set (RF_DEFAULT_CHANNBL
/* Broadcast 3 START_APPLICATION packets (packet co ntains
configuration parameters)*/

for (t=1; t<=3; t++)

T_Buffer =socket_buffer_get (Radio_Socket );
if (T_Buffer )
{

buffer_push_uint8 ( T_Buffer
buffer_push_uint8 ( T_Buffer
buffer_push_uint8 ( T_Buffer
buffer_push_uint8 ( T_Buffer
buffer_push_uint8 ( T_Buffer
buffer_push_uint8 ( T_Buffer
buffer_push_uint8 ( T_Buffer
buffer_push_uint8 ( T_Buffer
buffer_push_uint8 ( T_Buffer
for (x=0; x<hop_num; x++)

START_APPLICATION);
nodes_number );
packets_numberLS );
packets_numberMS );
TX intervalLS ),

TX intervalMS );
RADIO_CHANNEL
TX_POWER
hop_num);

buffer_push_uint8 (T_Buffer , channel_seq [Xx]);
}
if (socket sendto (Radio_Socket ,& Broadcast Add , T_Buffer )==
pdTRUB
{
else

socket_buffer_free ( T_Buffer );
T Buffer = 0;

) %/TaskDeIay( );

}
debug ("START APPLICATION MESSAGE TX\r\n" ); /* end of the
configuration phase*/

94



*MEASUREMENTS PHASE: sink node initiates measureme nts round*/
/Ireset radio for energy measurements

current_radio_channel =rf_channel_set (channel_seq [ 0]);
rf_power_set (TX_POWER

/* initialize the measurements round (sends first b eacon)*/
TX pac_counter = 1;

vTaskDelay (50);

T_Buffer =socket_buffer_get ( Radio_Socket );

if (T_Buffer )

{

buffer_push_uint8 (T_Buffer , BROADCAST_PACKET
buffer_push_uint8 (T_Buffer , NODE_ID;

buffer_push_uint8 (T_Buffer ,( TX pac_counter >>38)); [/ MS
buffer_push_uint8 (T_Buffer , TX_pac_counter ); //LS

if (socket sendto (Radio_Socket ,& Broadcast Add , T_Buffer )==
pdTRUB

{

else

socket_buffer_free ( T_Buffer );
T Buffer = 0;
}
}

/* packet hadling for the measurements round */

1 =Y

ADDG=0;
rec_packet_counter =0;
TX pac_counter = 2;

next =1;

check =1;

recorded_time = XxTaskGetTickCount ();

last_rec = recorded_time ;

wait_tiempo =(( nodes_number -1)* TX interval +
ICS)/ portTICK_RATE_MS ;

tiempo_to TX = recorded_time + wait_tiempo
wait_to_change =(( nodes_number -1)* TX interval +
ICS/ 2)/ portTICK_RATE_MS ;

time_to_change = recorded_time + wait_to_change ;

for ()
{

/I check if time to transmit expired
if (xTaskGetTickCount ()> tiempo_to_ TX && TX_ pac_counter <=
PACKETS_NUMBER

T_Buffer =socket_buffer_get (Radio_Socket );
if  (T_Buffer )
{

buffer_push_uint8 (T_Buffer , BROADCAST_PACKET
buffer_push_uint8 (T_Buffer , NODE_ID;

buffer_push_uint8 (T_Buffer , ( TX_pac_counter >>8));
buffer_push_uint8 (T_Buffer , TX_pac_counter );

if (socket sendto (Radio_Socket ,& Broadcast Add , T Buffer )==
pdTRUB

T Buffer = 0;
else
socket_buffer_free ( T_Buffer );

T Buffer = 0;
}
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TX_pac_counter ++;
[/l update time to transmit

recorded_time = XxTaskGetTickCount  ();

tiempo_to TX = recorded_time + wait_tiempo ;
time_to_change = recorded_time + wait_to_change ;
check =1;

}

/I check if time to change the channel expired
if (xTaskGetTickCount ()> time_to_change && TX_pac_counter <=
PACKETS_NUMBER& check && hop_num > 1)

{
check =0;
current_radio_channel =rf_channel_set (channel_seq [ next ]);
next ++;
if (next > hop_num - 1)
next = 0;
}
}
Il check if a beacon has been received
R_Buffer =socket read (Radio_Socket , 0);
if (R_Buffer ==
{
}
else
if  (buffer_pull_uint8 (R_Buffer ) == BROADCAST_PACKET
{
/lfor estimation of the additive noise and channel
activity
noise = rf_analyze rssi 0;
/I data operations
rec_packet_counter ++;
TX_NODE_ID = buffer_pull_uint8 ( R_Buffer );
packet numMS = buffer_pull_uint8 ( R_Buffer );
packet numLS = buffer_pull_uint8 ( R_Buffer );
packet number = packet numLS +( packet_humMS <<8);
RSSI_packet = R_Buffer ->options . rf_dbm ;
LQI_packet = R_Buffer ->options .rf Igi ;
data [(( rec_packet_counter -1)* 6)+ 1]= TX_NODE_IDQ
data [(( rec_packet _counter - 1)* 6)+ 2]= packet_numLS ;
data [(( rec_packet_counter - 1)* 6)+ 3]= packet_numMS ;
data [(( rec_packet_counter - 1)* 6)+ 4]= RSSI_packet ;
data [(( rec_packet _counter - 1)* 6)+ 5]= LQI_packet ;
data [(( rec_packet_counter - 1)* 6)+ 6]= noise ;
if (rec_packet_counter ==42)
data [ O]= rec_packet_counter ;
if (flash_write (ADD data , sizeof (data ))== pdTRUB
flash_write_wait 0;
}
ADDB-ADDr ;
rec_packet_counter =0;
}
socket_buffer_free ( R_Buffer );
R_Buffer =0;
}

/I exit loop if measurements round ended
if (TX pac_counter > PACKETS _NUMBER& ( xTaskGetTickCount () -
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recorded_time )* portTICK_RATE_MS > ( nodes_number -
NODE_ID* TX interval + )

if (rec_packet_counter 1= 0)

data [ O]= rec_packet_counter ;
if  (flash_write (ADD data , sizeof (data ))== pdTRUB

flash_write_wait 0;

}
ADD=ADD+256;

rec_packet_counter :
break ;

} // end of measurements phase
debug ("ROUND COMPLETED\r\n");

/*POLLING PHASE: sink node collests measurements fr om the
network*/

/Ireset buffers and radio

if (T_Buffer )

socket_buffer_free ( T_Buffer );
T Buffer = 0;

i}f ( R_Buffer )

socket_buffer_free ( R_Buffer );
R_Buffer = 0;

socket_close (Radio_Socket );

Radio_Socket =socket (MODULE_CUDR);

socket bind (Radio_Socket ,& Broadcast Add );
current_radio_channel =rf_channel_set ( RADIO_CHANNE)L
rf_power_set (RF_DEFAULT_POWEBR

/* polling procedure */
exit_condition =0;
while  (‘exit_condition I=1)

LED2_ON);
byte =- 1;
while (byte ==- 1)

byte = debug_read_ blocking ( );
node_id = byte ;

I}_ED2_OFF{);
?Witch (byte )

case PRINT_COMMAND // PRINT_COMMAND
print_data  ();
break ;

case ERASE_MEMORY// ERASE_MEMORY
debug ( "Starting bulk erase\r\n” );
while  (flash_bulk_erase 0= pdTRUB

debug ("." );
vTaskDelay ( 10);

debug ( "Flash memory erased\r\n” );

break ;
case EXIT_COMMAND // EXIT_COMMAND
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exit_condition =1;
break ;
default
debug_printf  ("Polling node %d\r\n" , node_id );
/*Send POLL packet*/
T_Buffer =socket_buffer_get (Radio_Socket );
if (T_Buffer )
{

buffer_push_uint8 ( T_Buffer , POLL);
buffer_push_uint8 ( T_Buffer , node_id );
if (socket sendto (Radio_Socket ,& Broadcast Add , T_Buffer )

== pdTRUB
{
}
else
socket_buffer_free ( T_Buffer );
T Buffer =0;
}
poll_completed = 0;
while  (poll_ completed I= 1)
R_Buffer =socket read (Radio_Socket |, );
if (R_Buffer ==
poll_ completed
debug ( "POLL PRINTED\r\n );
else
{
if  (‘buffer_pull_uint8 (R_Buffer )== POLL_ANSWER
TX_NODE_ID = buffer_pull_uint8 ( R_Buffer );
if (TX_NODE_ID == node_id )
{
TX_NODE_ID = buffer __pull_uint8 ( R_Buffer );
packet_numLS = buffer_pull_uint8 ( R_Buffer );
packet numMS = buffer __pull_uint8 ( R_Buffer );
packet_number = packet_numLS +( packet_numMS <<8);
RSSI_packet = buffer_pull_uint8 ( R_Buffer );
LQI_packet buffer __pull_uint8 ( R_Buffer );
noise = buffer_pull_umt8 ( R_Buffer );
} }
socket_buffer_free ( R_Buffer );
R_Buffer =0;
}
break ;
} // end of polling phase and back to configuration p hase

free (channel seq );
debug ("EXIT POLLING\\n" ),
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