

Aalto University

School of Science and Technology

Faculty of Electronics, Communications and Automation

Degree Programme of Communications Engineering

Markku Pekka Mikael Laine

XFormsDB—An XForms-Based Framework for

Simplifying Web Application Development

Master’s Thesis

Helsinki, Finland, January 20, 2010

Supervisor: Professor Petri Vuorimaa, D.Sc. (Tech.)

Instructor: Mikko Honkala, D.Sc. (Tech.)

i

Aalto University

School of Science and Technology

Faculty of Electronics, Communications and Automation

Degree Programme of Communications Engineering

ABSTRACT OF THE

MASTER’S THESIS

Author: Markku Pekka Mikael Laine

Title: XFormsDB—An XForms-Based Framework for Simplifying

Web Application Development

Number of pages: xx + 161 Date: January 20, 2010

Language: English

Professorship: Interactive Digital Media and Contents Production

Code: T-111

Supervisor: Professor Petri Vuorimaa, D.Sc. (Tech.)

Instructor: Mikko Honkala, D.Sc. (Tech.)

The nature of the World Wide Web is constantly changing to meet the increasing

demands of its users. While this trend towards more useful interactive services and

applications has improved the utility and the user experience of the Web, it has also

made the development of Web applications much more complex.

The main objective of this Thesis was to study how Web application development

could be simplified by means of declarative programming. An extension that

seamlessly integrates common server-side functionalities to the XForms markup

language is proposed and its feasibility and capabilities are validated with a proof-

of-concept implementation, called the XFormsDB framework, and two sample Web

applications.

The results show that useful, highly interactive multi-user Web applications can be

authored quickly and easily in a single document and under a single programming

model using the XFormsDB framework.

Keywords: XFormsDB, XForms, XRX, XML, framework, WWW, Web,

database, declarative

ii

Aalto-yliopisto

Teknillinen korkeakoulu

Elektroniikan, tietoliikenteen ja automaation tiedekunta

Tietoliikennetekniikan koulutusohjelma

DIPLOMITYÖN

TIIVISTELMÄ

Tekijä: Markku Pekka Mikael Laine

Työn nimi: XFormsDB – XForms-pohjainen ohjelmistokehys

helpottamaan WWW-sovellusten kehittämistä

Sivumäärä: xx + 161 Päivämäärä: 20. tammikuuta 2010

Julkaisukieli: englanti

Professuuri: Vuorovaikutteinen digitaalinen media ja sisällöntuotanto

Koodi: T-111

Työn valvoja: Professori Petri Vuorimaa, TkT

Työn ohjaaja: TkT Mikko Honkala

WWW:n luonne muuttuu jatkuvasti vastatakseen paremmin käyttäjien kasvavia

tarpeita. Vaikka tämä kehitys kohti hyödyllisempiä vuorovaikutteisia palveluita ja

sovelluksia on parantanut WWW:n käyttö- ja käyttäjäkokemusta, niin se on myös

samalla tehnyt WWW-sovellusten kehittämisestä paljon monimutkaisempaa.

Tämän työn päätavoitteena oli tutkia, miten WWW-sovellusten kehittämistä

voitaisiin helpottaa deklaratiivisen ohjelmoinnin keinoin. Työssä esitetään

laajennus, jonka avulla yleisimmät palvelinpään toiminnallisuudet voidaan

saumattomasti liittää osaksi XForms-merkintäkieltä. Myös laajennuksen

käyttökelpoisuus ja mahdollisuudet validoidaan prototyyppitoteutuksen, nimeltään

XFormsDB-ohjelmistokehys, ja kahden WWW-esimerkkisovelluksen avulla.

Tulokset osoittavat, että XFormsDB-ohjelmistokehyksen avulla voidaan kirjoittaa

hyödyllisiä, erittäin vuorovaikutteisia monen käyttäjän WWW-sovelluksia nopeasti

ja helposti vain yhtä dokumenttia ja yhtä ohjelmointimallia käyttäen.

Avainsanat: XFormsDB, XForms, XRX, XML, ohjelmistokehys, WWW,

Web, tietokanta, deklaratiivinen

iii

Acknowledgments

I would like to thank the following persons:

Dr. Mikko Honkala and Oskari Koskimies at NRC for suggesting such an

interesting Master’s Thesis topic and for sharing their invaluable expertise in

XForms and related technologies. I would also like to express a special thank

you to Dr. Mikko Honkala, my Thesis advisor, for his great guidance and

support.

Professor Petri Vuorimaa at the Aalto University for pushing XFormsDB forward

as well as for guiding and supervising my Thesis. In addition, I would like to

thank all my co-workers at the Web Services research group—especially Pia

Ojanen and Kalle Säilä for the laughs and the development of the XFormsDB

framework, respectively.

Associate Professor Emilia Mendes for giving me an opportunity to join her

research group at the University of Auckland, New Zealand for a couple of

months. What a wonderful experience that was!

Friends and family for their endless help and support during my studies. I love you

all, you are the ones who inspire me and make the life worth living.

Jenni Antikainen, to whom I am deeply grateful for always being there for me

during all these years. I love you so much!!! ♥

iv

This research was conducted as part of TIVIT’s Flexible Services program and its

Ecosystem Design and Evolution (EDEN) project, and was funded by the Finnish

Funding Agency for Technology and Innovation (Tekes) and Nokia Research Center

(NRC).

Helsinki, Finland, January 20, 2010

Markku Laine

markku.laine@gmail.com

v

Table of Contents

Abstract of the Master’s Thesis ... i

Diplomityön tiivistelmä .. ii

Acknowledgments .. iii

Table of Contents .. v

Abbreviations and Terms ... ix

List of Tables ... xiv

List of Figures .. xvi

List of Listings ... xviii

1 Introduction ... 1

1.1 Organization of the Thesis .. 4

2 XML and Web Technologies .. 5

2.1 XML ... 5

2.1.1 XSLT .. 7

2.2 (X)HTML ... 9

2.2.1 Interaction Model ... 10

2.3 AJAX .. 12

2.3.1 Interaction Model ... 12

2.4 XForms ... 14

2.4.1 Architecture .. 15

2.4.2 Interaction Model ... 17

vi

2.4.3 Implementations ... 18

2.4.4 Extending XForms.. 21

3 XML and Databases ... 24

3.1 Classification of XML Documents ... 24

3.1.1 Data-Centric XML Documents .. 25

3.1.2 Document-Centric XML Documents 26

3.1.3 Hybrid XML Documents .. 26

3.2 Options for XML Document Storage ... 27

3.2.1 Relational Databases .. 27

3.2.2 XML Enabled Databases .. 28

3.2.3 Native XML Databases .. 29

3.3 Interfaces between XML Documents and Databases 30

3.3.1 Mappings .. 30

3.3.2 Vendor-Specific XML Extensions ... 33

3.3.3 SQL-Based Query Languages .. 34

3.3.4 XML Query Languages .. 35

3.3.5 Middleware ... 37

3.4 Summary ... 39

4 Research Aims ... 42

4.1 Research Objectives and Scope .. 42

4.2 Research Questions ... 43

4.3 Research Strategy ... 45

5 Design of the XFormsDB Markup Language ... 46

5.1 Requirements .. 46

5.2 Namespace for XFormsDB... 51

5.3 The xformsdb:instance Element ... 51

5.3.1 The state Request ... 52

5.3.2 The login Request ... 52

5.3.3 The logout Request ... 54

vii

5.3.4 The user Request .. 54

5.3.5 The query Request .. 54

5.3.6 The file Request .. 58

5.3.7 The cookie Request... 61

5.4 The xformsdb:submission Element ... 61

5.5 The xformsdb-request-error Event ... 63

5.6 The xformsdb:secview Element .. 63

5.7 The xformsdb:include Element ... 65

5.8 The xformsdb_users.xml Document ... 66

5.9 The xformsdb_files.xml Document ... 67

5.10 Security Considerations .. 69

5.11 Summary ... 69

6 Implementation of the XFormsDB Framework ... 73

6.1 Requirements .. 73

6.2 Development Environment ... 76

6.3 High-Level Architecture ... 77

6.4 Modules and Tiers .. 79

6.5 Web Application Directory Structure ... 82

6.6 Web Page Components ... 83

6.7 Handling Requests and Responses ... 84

6.8 Transformation Processes ... 85

6.8.1 XHTML+XFormsDB to XHTML+XForms 1.1 86

6.8.2 XHTML+XForms 1.1 to (X)HTML+CSS+JavaScript or

Plain (X)HTML+CSS ... 88

6.9 Data Synchronization.. 90

6.10 Session Management .. 91

6.11 Error Handling .. 92

6.12 Configuration .. 93

6.13 Summary ... 94

7 Sample Web Applications .. 97

viii

7.1 About Measurements .. 97

7.2 Personal Information Management (PIM): Contacts 98

7.2.1 Overview .. 98

7.2.2 Conceptual Web Site Diagram ... 98

7.2.3 User Interface ... 99

7.2.4 Architecture .. 101

7.2.5 Queries .. 102

7.2.6 XML Data ... 103

7.2.7 Metrics .. 103

7.2.8 Analysis .. 105

7.3 Blog... 106

7.3.1 Overview .. 106

7.3.2 Conceptual Web Site Diagram ... 107

7.3.3 User Interface: Public ... 107

7.3.4 User Interface: Administration ... 109

7.3.5 Architecture .. 111

7.3.6 Queries .. 111

7.3.7 XML Data ... 114

7.3.8 Metrics .. 115

7.3.9 Analysis .. 118

8 Conclusions .. 120

8.1 Research Objectives Revisited ... 120

8.2 Main Contributions ... 121

8.3 Results .. 121

8.4 Future Work .. 122

Bibliography .. 124

Appendix A: Syntax Definitions and Usage Examples of the XFormsDB

Markup Language .. 139

Appendix B: Decision Tree Diagram of the xformsdb:secview Element 158

Appendix C: XFormsDB Packages .. 160

ix

Abbreviations and Terms

ACID Atomicity, Consistency, Isolation, and Durability (database

transaction properties)

AJAX Asynchronous JavaScript and XML

ANSI American National Standards Institute

API Application Programming Interface

AVT Attribute Value Template

base64 An encoding method

cookie A small piece of data stored in the user’s user agent

CSS Cascading Style Sheets

CSV Comma Separated Values

DHTML Dynamic HTML

DOM Document Object Model

DSL Digital Subscriber Line

DTD Document Type Definition

x

ECMAScript A scripting language

FLWOR For, Let, Where, Order By, Return (XQuery)

FR Framework Requirement

Framework A re-usable design for a software system

hex An encoding method

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

Internet A global, public computer network

Intranet A private computer network

ISO International Organization for Standardization

J2EE Java 2 Platform, Enterprise Edition

JAR Java Archive

Java An object-oriented programming language

JavaScript A scripting language

JDBC Java Database Connectivity

JDK Java Development Kit

JPEG Joint Photographic Experts Group

JSP JavaServer Pages

LR Language Requirement

xi

MB Megabyte

MD Message Digest

Middleware A software that connects software components or

applications

MIME Multipurpose Internet Mail Extensions

MIP Model Item Property

MVC Model-View-Controller (architecture)

NXD Native XML Database

OQL Object Query Language

ORM Object-Relational Mapping

PCDATA Parsed Character Data

PDF Portable Document Format

PIM Personal Information Management

Plug-in A software extension that enables added capabilities

PoC Proof of Concept

RAM Random Access Memory

RIA Rich Internet Application

RDB Relational Database

RDBMS Relational Database Management System

RE Requirements Engineering

REST Representational State Transfer

xii

RTF Rich Text Format

SAX Simple API for XML

SE Software Engineering

Servlet A Java program running on a Web server

SGML Standard Generalized Markup Language

SHA Secure Hash Algorithm

SQL Structured Query Language

SQL/XML SQL-based extensions for using XML in conjunction with

SQL

SSL Secure Sockets Layer

SVG Scalable Vector Graphics

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

User agent A software component (e.g., Web browser) running in the

user’s device

W3C World Wide Web Consortium

WAR Web Archive

Web World Wide Web

WS Web Services

WWW World Wide Web

xiii

XFA XML Forms Architecture

XFDL Extensible Forms Description Language

XEDB XML Enabled Database

XForms An XML application representing the next generation of

forms for the Web

XFormsDB An XForms-based framework for simplifying Web

application development

XHR XMLHttpRequest (AJAX)

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XMLNS XML Namespace

XML-RPC XML-Remote Procedure Call

XML Schema Defines the structure, content, and semantics of an XML

document

XPath XML Path Language

XQJ XQuery API for Java

XQL XML Query Language

XQuery XML Query

XQueryX XML Syntax for XQuery

XRX XForms/REST/XQuery (architecture)

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

xiv

List of Tables

Table 1: Comparison of XForms implementations against a set of

evaluation criteria. "+" means that a particular evaluation

criterion does not have any negative effects on a particular

XForms implementation, whereas "–" means the opposite. 20

Table 2: Comparison of XForms implementations against a set of XForms

extensions. "+" means that a particular XForms extension suits

well to be used with a particular XForms implementation,

whereas "–" means the opposite. .. 23

Table 3: Comparison of databases against XML document types. "+"

means that a particular XML document type suits well to be used

with a particular database, whereas "–" means the opposite. 40

Table 4: Comparison of databases against a set of interfaces. "+" means

that a particular interface suits well to be used with a particular

database, whereas "–" means the opposite. .. 41

Table 5: Requirements for the XFormsDB markup language 47

Table 6: Attributes of the xformsdb:login element associated with the

login request.. 53

Table 7: Attributes of the xformsdb:var element associated with the login

request ... 53

Table 8: Attributes of the xformsdb:query element associated with the

query request ... 55

Table 9: Attributes of the xformsdb:expression element associated with the

query request ... 56

Table 10: Attributes of the xformsdb:xmlns element associated with the

query request ... 56

xv

Table 11: Attributes of the xformsdb:var element associated with the query

request ... 57

Table 12: Attributes of the xformsdb:secvar element associated with the

query request ... 57

Table 13: Attributes of the xformsdb:var element associated with the file

request ... 59

Table 14: Attributes of the xformsdb:secvar element associated with the file

request ... 60

Table 15: Required attributes of the xformsdb:file element(s) for each

operation associated with the file request ... 60

Table 16: Extension attributes for the xformsdb:submission element 62

Table 17: Attributes of the xformsdb:secview element ... 64

Table 18: Attributes of the xformsdb:include element ... 65

Table 19: Attributes of the xformsdb:user element .. 66

Table 20: Attributes of the xformsdb:file element .. 67

Table 21: The XFormsDB markup language requirements and related work

in this Thesis ... 70

Table 22: Requirements for the XFormsDB framework 74

Table 23: Settings of the XFormsDB configuration file (conf.xml) 93

Table 24: The XFormsDB framework requirements and related work in this

Thesis .. 94

Table 25: PIM queries ... 102

Table 26: PIM component metrics .. 104

Table 27: PIM response size metrics .. 105

Table 28: PIM response time metrics ... 105

Table 29: Blog queries .. 112

Table 30: Blog component metrics ... 116

Table 31: Blog response size metrics.. 117

Table 32: Blog response time metrics ... 118

Table 33: XFormsDB packages .. 160

xvi

List of Figures

Figure 1: Listing 1 as an XML DOM node tree ... 7

Figure 2: XSLT transformation process ... 8

Figure 3: (X)HTML interaction model .. 11

Figure 4: AJAX interaction model ... 13

Figure 5: XForms architecture ... 16

Figure 6: XForms interaction model .. 17

Figure 7: DataDirect XQuery architecture [125] ... 38

Figure 8: XFormsDB updating process with data synchronization...................... 58

Figure 9: XFormsDB high-level architecture... 79

Figure 10: XFormsDB modules and tiers .. 81

Figure 11: XFormsDB Web application directory structure 82

Figure 12: XFormsDB Web page main components ... 84

Figure 13: Transformation processes within the XFormsDB framework 85

Figure 14: XFormsDB transformation process .. 87

Figure 15: XForms transformation process [74] .. 89

Figure 16: Data synchronization process: a three-way merge for XML

documents ... 90

Figure 17: PIM conceptual Web site diagram .. 99

Figure 18: The user interface of the PIM Web application in the initial state,

in which all contacts are in the list state ... 100

Figure 19: The user interface of the PIM Web application, in which contacts

are in different states ... 101

xvii

Figure 20: Blog conceptual Web site diagram ... 107

Figure 21: The user interface of the Public area of the Blog Web application

in the view posts of the month state.. 108

Figure 22: The user interface of the Public area of the Blog Web application

in the view post state... 109

Figure 23: The user interface of the Administration area of the Blog Web

application in the manage comments state ... 110

Figure 24: Decision tree diagram of the xformsdb:secview element 159

xviii

List of Listings

Listing 1: A well-formed XML document .. 6

Listing 2: An XSLT stylesheet .. 9

Listing 3: The result of the transformation ... 9

Listing 4: An XHTML+XForms document .. 15

Listing 5: A data-centric XML document ... 25

Listing 6: A document-centric XML document .. 26

Listing 7: A hybrid XML document ... 27

Listing 8: A table-based mapping for a single table ... 31

Listing 9: An object-relational mapping ... 32

Listing 10: An SQL/XML statement... 35

Listing 11: An XPath expression .. 35

Listing 12: A FLWOR expression .. 37

Listing 13: A snippet of the example XML document used in PIM 103

Listing 14: A snippet of the example XML document used in Blog 115

Listing 15: Definition of the xformsdb:instance element 139

Listing 16: Example of use of the state request for storing a Web

application’s state information in an XFormsDB implementation 140

Listing 17: Example of use of the state request for retrieving a Web

application’s state information from an XFormsDB

implementation ... 141

Listing 18: Example of an XML response indicating a successful completion

of the state request .. 141

xix

Listing 19: Example of use of the login request taken from a /login.xformsdb

Web page .. 142

Listing 20: Example of an XML response indicating a successful completion

of the login request ... 143

Listing 21: Example of an XML response of the login request indicating an

incorrect username and password combination 143

Listing 22: Example of use of the logout request ... 143

Listing 23: Example of an XML response indicating a successful completion

of the logout request ... 144

Listing 24: Example of use of the user request ... 144

Listing 25: Example of an XML response of the user request containing

information about the currently logged-in user 145

Listing 26: Example of an XML response of the user request indicating that

an XFormsDB implementation does not hold a logged-in user in

the session ... 145

Listing 27: Example of use of the query request for retrieving data from a

data source with XQuery .. 146

Listing 28: Example of an XML response of the query request containing the

course information .. 147

Listing 29: Example of use of the query request for updating data in a data

source with XPath ... 148

Listing 30: Example of an XML response of the query request containing the

updated course information .. 149

Listing 31: Example of use of the file request for retrieving the metadata

about all public files associated with a Web application 150

Listing 32: Example of an XML response of the file request containing the

metadata about all public files associated with a Web application 151

Listing 33: Example of use of the file request for uploading files 152

Listing 34: Example of an XML response of the file request containing the

metadata about the uploaded files... 153

Listing 35: Example of use of the cookie request ... 154

Listing 36: Example of an XML response of the cookie request indicating

that cookies are enabled on the browser ... 154

Listing 37: Example of an XML response of the cookie request indicating

that cookies are not enabled on the browser 155

Listing 38: Definition of the xformsdb:submission element 155

xx

Listing 39: Example of a detailed error (appended) from an XFormsDB

implementation ... 155

Listing 40: Example of a detailed error (an XHTML document) from an

XFormsDB implementation.. 156

Listing 41: Definition of the xformsdb:secview elements for showing/hiding

the part of a Web page .. 156

Listing 42: Definition of the xformsdb:include element for including a

navigation ... 156

Listing 43: Definition of the structure of the xformsdb_users.xml document....... 157

Listing 44: Definition of the structure of the xformsdb_files.xml document 157

1

Chapter 1

Introduction

The role of the World Wide Web (WWW or Web) is constantly increasing in our

everyday lives as more and more useful interactive services and applications are

becoming available through the Web. These new generation applications, called Rich

Internet Applications (RIA) [129], are not only highly interactive and provide

multimedia contents, but also offer users the opportunity to communicate and

collaborate with the responsiveness of desktop applications [128, 130].

This march towards RIAs has improved the utility and the user experience of the

Web, but it has also significantly increased the complexity of developing Web

applications. Cardone et al. list three main reasons for the complexity. First, dynamic

Web pages are often generated on the fly, which makes application source code

harder to understand and debugging more difficult. Second, dynamic Web pages

often contain a mixture of markup languages, client-side scripting code, and server-

side function calls, which makes application source code nearly unreadable and

difficult to maintain. Third, the high number of tools, technologies, and techniques

used in developing Web applications makes those applications complicated to design

and fragile to deploy and run. [2] Other important reasons for the complexity of

developing Web applications include: dependence on tool support, complex and

tangled application structure that mixes application logic with User Interface (UI)

CHAPTER 1: INTRODUCTION

2

details as well as portability issues related to significant differences between

browsers, browser versions, and experience gained with particular technologies and

tools [131].

Even though these problems could be solved, there still exist some hurdles to

overcome related to traditional Web application development. First, the difference in

programming model in different tiers and the partition of application functionality

across different tiers has several drawbacks especially from the developer’s point of

view. Second, even limited offline support is hard to accomplish. Third, multi-user

support such as data synchronization and transactions need to be considered

separately for each application. [3, 9]

One way of simplifying Web application development and reducing the skill set

needed by developers is to unify the client-side and server-side programming under a

single programming model [132]. This single programming model could be based on

server-side concepts, in which both the user interface and application logic is

programmed using a server-side programming language [4, 6] and the data source is

integrated to the application logic using an object to data source schema mapping [7,

8]. Alternatively, it could be based on client-side concepts, such as using JavaScript

[66] as a common language for the whole application, i.e., extending JavaScript with

server-side functionalities [132]. When developing real-life Web applications,

however, designing and implementing a user interface almost always requires human

involvement and judgment, whereas most of the server-side functionalities can be

handled by a generic server-side component. Therefore, using client-side concepts as

the basis for this single programming model is preferable.

The next question is whether this single programming model should be based on

declarative programming, which describes what should be done, or imperative

programming, which describes how things should be done. Schmitz gives three

primary reasons in favor of declarative programming over imperative programming.

First, the bulk of Web content authors are not programmers so script or code is not an

option for them. Second, creating interoperable authoring tools for non-declarative

languages is nearly impossible. Third, without standard, declarative languages, the

authoring and publishing environment becomes fragmented, which ultimately hurts

the adoption and deployment in the marketplace. Furthermore, the use of declarative

CHAPTER 1: INTRODUCTION

3

programming provides a higher semantic level as well as is more secure, since the

syntax is bounded. [5] Imperative programming languages, on the other hand, have

more expressive power, but are generally harder to author and understand [19, 133].

In summary, in order to utilize the pre-existing skill set of Web content authors and

to ease the adaptation of the new authoring paradigm, this single programming model

should be based on declarative programming, which is much more accessible to Web

content authors, who are used to HyperText Markup Language (HTML) [47] and

Cascading Style Sheets (CSS) [53].

One conceptually promising approach in this direction that has emerged in the recent

years is the XForms/REST/XQuery (XRX) architecture [30], which is based on the

combination of three standards: XForms (on the client side) [35], Representational

State Transfer ((REST) interfaces) [78], and XQuery (on the server side) [116]. XRX

provides a simple and elegant zero translation Web application architecture that uses

Extensible Markup Language (XML) [17] to store data in all tiers. eXist-db [69], for

instance, offers a good example of how to develop end-to-end Web applications

using the XRX architecture. Its approach is to use XQuery as a page template

language, somewhat similar to JavaServer Pages (JSP) [135], and to provide

common server-side functionalities through XQuery extension modules. Even though

this approach allows Web content authors to stay within the XML world, it does not

integrate seamlessly with XForms on the client side. Orbeon Forms [72], on the other

hand, has extended XForms with UI controls and convenience features, but due to its

internal Model-View-Controller (MVC) based architecture [34], all common server-

side tasks are handled separately by its XML processors. Thus, what is needed is a

way to naturally integrate server-side functionalities with the XForms markup

language, which would also make it possible to develop entire Web applications

using a single document.

This Thesis focuses on addressing the aforementioned issues by taking the idea

proposed by Birbeck [134] to the next level, and presenting a powerful and

extensible XRX framework, XFormsDB, to allow for the rapid development of

useful, highly interactive multi-user Web applications. The Web applications that use

the framework rely on a generic server-side component, which provides the

integration services to heterogeneous data sources as well as common server-side

functionalities through an extension to the XForms markup language.

CHAPTER 1: INTRODUCTION

4

1.1 Organization of the Thesis

The rest of the Thesis is organized as follows. Chapter 2 introduces common

concepts of Web technologies with a focus on XML and XForms technologies.

Chapter 3 gives a high-level overview of how to use XML with different types of

databases. Together these two Chapters constitute the literature review, which gives

background and motivation for the actual research conducted in this Thesis.

The second part of the Thesis starts by presenting the aims of this research, including

research objectives and questions, research methods used, and scope of the research.

Next, in Chapter 5, an extension to the XForms markup language is designed to meet

the research goals. Then, in Chapter 6 and Chapter 7, a proof-of-concept

implementation and two sample Web applications using the implementation were

developed to validate the feasibility of the extension. Finally, in Chapter 8, the

conclusions on the work done are drawn and suggestions for future work are

presented.

5

Chapter 2

XML and Web Technologies

In this Chapter, an introduction to XML and Web technologies which are relevant to

this Thesis is given. The basics of XML and its related technologies (DTD, XML

Schema, DOM, the concept of XML parsers, and XSLT) are described. In addition,

the evolution process of Web development techniques from (X)HTML to XForms is

presented, paying particular attention to the XForms standard and how the

technology can be extended and utilized with various browsers, including Internet

Explorer
1
, Firefox

2
, and Safari

3
.

2.1 XML

Extensible Markup Language (XML) [17], The World Wide Web Consortium

(W3C)’s [126] Recommendation since February 1998, is a meta-language for

describing data objects called XML documents. XML is a simplified subset of

Standard Generalized Markup Language (SGML, ISO 8879:1986(E)) [60], which

thus means that XML documents are also conforming SGML documents.

1
 Internet Explorer, Web browser,

http://www.microsoft.com/uk/windows/products/winfamily/ie/default.mspx
2
 Firefox, Web browser, http://www.mozilla.com/firefox

3
 Safari, Web browser, http://www.apple.com/safari/

CHAPTER 2: XML AND WEB TECHNOLOGIES

6

Similar to SGML, XML was designed to be a standard way of describing data for

any purpose and to be used as a data exchange format on the Web and elsewhere.

Thanks to the simple and interoperable nature of XML as well as its associated

powerful standards and processing tools available, the technology has been adopted

widely within the information technology industry—especially on the server side and

in the form of Web Services (WS) [64].

XML documents are composed of storage units called entities, which contain either

parsed or unparsed data. Parsed entity contains either character data or markup,

whereas unparsed entity may contain text or other type of data, such as images or

video. Markup encodes a description of the document’s storage layout and logical

structure.

Unlike HTML, another widely used markup language on the Web, XML does not

use a set of predefined tags but allows the author to define their own tags. XML

documents, however, cannot be constructed arbitrarily but they must be written

according to the XML specification. An XML document that conforms to the XML

specification is called well-formed. The structure and constraints on the contents of

an XML document can optionally be defined, for instance, by Document Type

Definition (DTD) [17] or its XML-based successor, XML Schema [61]. An XML

document that complies with a particular DTD/XML Schema, in addition to being

well-formed, is said to be valid. An example of a simple well-formed XML document

is shown in Listing 1.

Listing 1: A well-formed XML document

<?xml version="1.0" encoding="UTF-8"?>

<message>

 <from>john.doe@example.com</from>

 <to>jane.doe@example.com</to>

 <subject>This is the subject</subject>

 <body type="text/plain">

 This is the body of an email message.

 </body>

</message>

CHAPTER 2: XML AND WEB TECHNOLOGIES

7

In order to process and validate XML documents, an XML parser, also known as

XML processor, is needed. An XML parser is a software component that reads and

analyzes XML documents, after which it makes the information from those XML

documents available to applications and programming languages, usually through a

known Application Programming Interface (API), such as the W3C’s Document

Object Model (DOM) [62] or the SAX Project’s Simple API for XML (SAX) [63].

The most important difference between DOM and SAX is that DOM maps an XML

document into an internal, in-memory tree structure (cf. Figure 1), whereas SAX

presents an XML document as a serialized event stream.

Figure 1: Listing 1 as an XML DOM node tree

2.1.1 XSLT

Extensible Stylesheet Language Transformations (XSLT) [56] is an XML-based

stylesheet language which is designed to transform well-formed XML documents

into some other forms, most commonly HTML, Extensible HyperText Markup

Language (XHTML) [49], or another XML format [54]. The expressive power of

XSLT is remarkable, since it is Turing complete, i.e., it is capable of performing any

computational task [55]. XSLT has been a W3C Recommendation since November

1999 and it is the most important part of the Extensible Stylesheet Language (XSL)

[57] family.

Figure 2 illustrates the XSLT transformation process, showing how an XML input,

XSLT stylesheet, XSLT processor (e.g., Saxon [58]), and result tree are related to

each other. In general, an XSLT processor takes two input files: an XML document

CHAPTER 2: XML AND WEB TECHNOLOGIES

8

and an XSLT stylesheet. The XSLT processor then interprets and applies a set of

declarative, template-based processing instructions found in the XSLT stylesheet to

the XML document and finally outputs a new document called a result tree.

Figure 2: XSLT transformation process

XSLT transformation process can occur either on the client side or on the server side;

although server-side transformations are dominant because not all browsers come

with a built-in XSLT processor.

In the example below, an XSLT stylesheet (cf. Listing 2) is applied to the XML

document, which was introduced in the previous Section (cf. Listing 1), and the

result of the transformation is shown in Listing 3.

CHAPTER 2: XML AND WEB TECHNOLOGIES

9

Listing 2: An XSLT stylesheet

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" version="1.0" />

 <xsl:template match="/">

 <emails>

 <xsl:for-each select="message/from | message/to">

 <xsl:sort select="." />

 <email><xsl:value-of select="." /></email>

 </xsl:for-each>

 </emails>

 </xsl:template>

</xsl:stylesheet>

Listing 3: The result of the transformation

<?xml version="1.0" encoding="UTF-8"?>

<emails>

 <email>jane.doe@example.com</email>

 <email>john.doe@example.com</email>

</emails>

2.2 (X)HTML

HTML

HyperText Markup Language (HTML) [47], which is based on SGML, is the

primary markup language for creating Web pages on the Web. Its fundamental

purpose is to provide a semantic description of the content and establish a document

structure using hierarchical elements, such as headings, paragraphs, and lists. The

first version of HTML was developed from the prototype written by Tim Berners-

Lee at CERN in 1992 [45, 46]. The current versions of HTML in use today are

defined in the W3C’s HTML 4.01 Recommendation [47] and HTML 5 Working

Draft [107].

CHAPTER 2: XML AND WEB TECHNOLOGIES

10

XHTML

“Extensible HyperText Markup Language (XHTML) is a family of current

and future document types and modules that reproduce, subset, and extend

HTML, reformulated in XML. XHTML Family document types are all XML-

based, and ultimately are designed to work in conjunction with XML-based

user agents.” [48]

XHTML 1.0 [49] is a reformulation of HTML 4.01 according to the stricter syntax

rules of XML. The elements are the same as in HTML, but there are some

restrictions for document markup, such as all elements and attributes must be in

lowercase. XHTML Basic [50], XHTML 1.1 [51], and XHTML 2.0 [52] again are

module-based versions of XHTML, each one containing a certain set of modules

targeted for special purposes, such as limited devices like mobile phones. The

advantages of using XHTML over HTML are that XHTML is easier to author and

maintain as well as it can be processed using a wide variety of XML tools, such as

XSLT.

In both HTML and XHTML, the appearance of Web pages’ content can be

controlled through the use of Cascading Style Sheets (CSS) [53], which is a W3C

standard for the visual presentation of Web pages. Unlike XSLT, CSS is not a

Turing-complete language. However, this can be seen more as an advantage rather

than a shortcoming, since CSS is easily analyzed and yet powerful enough for the

purpose. [59]

2.2.1 Interaction Model

In the traditional (X)HMTL interaction model [41], which is illustrated in Figure 3,

certain user actions in the interface (e.g., submitting an HTML form or clicking on a

hyperlink) trigger an Hypertext Transfer Protocol (Secure) (HTTP(S)) [65] request to

a server. The server processes the request (e.g., validates the submitted form data

which is sent as name/value pairs) and then responds to the client by sending the

result—normally in the form of a new (X)HTML document to be displayed within

the browser.

http://www.w3.org/XML/

CHAPTER 2: XML AND WEB TECHNOLOGIES

11

The problem with this approach is that further user actions in the interface are

suspended during the time the request is being processed on the server side.

Furthermore, the approach wastes bandwidth because the entire Web page must be

re-sent even if only part of it needs to be changed.

Figure 3: (X)HTML interaction model

CHAPTER 2: XML AND WEB TECHNOLOGIES

12

2.3 AJAX

Asynchronous JavaScript and XML (AJAX), a term coined in 2005, is the Web

development technique of the moment for creating richer and more interactive Web

applications. AJAX is not a technology itself, but a combination of several existing

technologies [41]:

 XHTML and CSS for standards-based presentation

 DOM for dynamic display and interaction

 XML and XSLT for data interchange and manipulation

 XMLHttpRequest (XHR) [42] for asynchronous data retrieval

 ECMAScript [66] (e.g., JavaScript) for binding everything together

The AJAX technique, and especially the XMLHttpRequest object, is supported by

most common browsers, but with some differences in implementation. These

differences, however, can be eliminated by using an abstraction library, such as

Prototype JavaScript framework [43].

2.3.1 Interaction Model

In the AJAX interaction model [41], asynchronous submission, and other typical

tasks such as serialization, deserialization, validation, and interaction, can all be

executed on the client side by an AJAX engine, as depicted in Figure 4. The AJAX

engine, which consists of an ECMAScript library, communicates with the user

interface through DOM Level 2 Events [13] and ECMAScript handlers; and with the

server by making asynchronous, behind the scenes, submissions using XML.

The advantage of using AJAX is that it eliminates the start-stop-start nature of

interaction, which thus fixes the interaction problem existing in (X)HTML and its

successor Dynamic HTML (DHTML) models. On the other hand, using AJAX

brings on new problems, such as browser compatibility and accessibility issues as

well as the need for browsers to support ECMAScript. However, some of these

CHAPTER 2: XML AND WEB TECHNOLOGIES

13

problems (e.g., browser compatibility) will probably be fixed in the near future,

whereas, for instance, AJAX accessibility issues will probably never be overcome.

As a result, it is advised to develop two versions of a Web application; a version

which uses AJAX and another version which does not use AJAX at all.

Google Suggest
1
, for example, is a simple AJAX-based Web application, which uses

AJAX to offer search term suggestions as you type.

Figure 4: AJAX interaction model

1
 Google Suggest, Web application, http://www.google.com/webhp?complete=1&hl=en

CHAPTER 2: XML AND WEB TECHNOLOGIES

14

2.4 XForms

XForms [35], which has been a W3C Recommendation since October 2003, is an

XML-based forms technology and the successor to HTML forms. The design of

XForms is based on former form technologies, such as Extensible Forms Description

Language (XFDL) [37] and XML Forms Architecture (XFA) [38, 39], as well as

conducting an in-depth analysis of HTML forms. The following list summarizes the

primary benefits of using XForms:

 Separates data, logic, and presentation

 Integrates seamlessly with other XML technologies

 Platform, device, and modality independent

 Accommodates form component reuse

 Improves user experience: richer user interface and advanced forms logic

 Stores and transports data in XML documents

 Reduces or eliminates the need for scripting

 Will serve as the forms standard in XHTML 2.0

 Eases authoring of complex forms

 Fosters strong data type validation

The latest version of XForms, XForms 1.1 W3C Recommendation [40], refines the

standard by adding several new features to the language, such as new and improved

action handlers as well as more powerful action processing facilities for executing

conditional actions and iterations, which all are essential for manipulating data

arbitrarily. Thanks to these refinements, the information processing power of

XForms 1.1 is now Turing complete.

Listing 4 shows a simple XHTML+XForms document which prints out the well-

known phrase ―Hello World!‖ to a browser window.

CHAPTER 2: XML AND WEB TECHNOLOGIES

15

Listing 4: An XHTML+XForms document

<?xml version="1.0" encoding="UTF-8"?>

<html xml:lang="en" lang="en"

 xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xforms="http://www.w3.org/2002/xforms">

 <head>

 <title>XForms in XHTML</title>

 <xforms:model>

 <xforms:instance id="data-instance">

 <data xmlns="">

 <phrase>Hello World!</phrase>

 </data>

 </xforms:instance>

 </xforms:model>

 </head>

 <body>

 <xforms:output ref="instance('data-instance')/phrase" />

 </body>

</html>

2.4.1 Architecture

An XForms form uses the MVC architectural pattern that clearly separates the

presentation from the data and logic of a form. The main pieces of an XForms form

are illustrated in Figure 5.

CHAPTER 2: XML AND WEB TECHNOLOGIES

16

Figure 5: XForms architecture

Instance Data Defines the XML document template for data to be collected in a

form. The initial content and structure of the XML document can be

dynamically modified afterwards through user interactions.

XForms Model Declaratively defines the non-visual part of a form, i.e., the

data and logic of a form. The data part is composed of one or more Instance

Data definitions, whose structures and constraints can be defined using XML

Schema. The logic part embodies data submission definitions and Model Item

Properties (MIP) written in XML Path Language (XPath) [110]. The MIPs

define dynamic calculations and constraints on Instance Data nodes (e.g.,

dependencies among various Instance Data nodes), which are not possible to

define with XML Schema.

XForms User Interface “The XForms User Interface provides a standard set

of visual controls that are targeted toward replacing today’s XHTML form

controls. These form controls are directly usable inside XHTML and other

XML documents, like SVG.” [33]

The XForms UI controls are bound to Instance Data nodes, which allow the

separation of presentation and data.

CHAPTER 2: XML AND WEB TECHNOLOGIES

17

XForms Submit Protocol Defines how XForms sends and receives Instance

Data as well as how the data is being serialized. In general, the data is

transferred to and from a server, but XForms also allows saving the data to

local files, which can be reused later.

2.4.2 Interaction Model

The XForms interaction model clearly separates the user interface logic from the

application logic, and thus reduces the need for round trips to the server as well as

improves the user experience, since all of the user interface logic can be executed on

the client side by an XForms processor.

Unlike in the AJAX interaction model, the user interface logic in the XForms

interaction model is described declaratively, which raises the semantic level and

allows adaptation to different devices and contexts [19].

The XForms language also allows asynchronous submission of forms (e.g., Instance

Data in the XML format) to the server (cf. Figure 6), which enables the user

interface to remain responsive, while the request is being processed on the server

side.

Figure 6: XForms interaction model

CHAPTER 2: XML AND WEB TECHNOLOGIES

18

2.4.3 Implementations

Most common browsers still do not provide native XForms support, even though the

W3C issued XForms as a W3C Recommendation as early as 2003.

Fortunately, supporting XForms natively in browsers is not the only option to use the

XForms technology with existing browsers. Honkala has categorized the different

XForms implementations into four groups [19]:

Native browser support Requested XHTML+XForms documents are sent to

the user agent (e.g., browser) as static documents. The user agent is able to

interpret and display the documents as such without requiring installation of

additional software or plug-ins, or document transformations. In addition, the

user agent allows XML to be used as the serialization format of instance data.

For instance, X-Smiles [23, 24] supports XForms natively and it is one of the

three XForms implementations referenced in the W3C XForms 1.0

Implementation Report [25].

Browser plug-in Since most common browsers have a rich plug-in interface, it

opens the door for vendors to implement XForms as a browser plug-in, such

as Mozilla XForms Project [26] and formsPlayer [27]. The browser plug-in

needs to be installed on the user agent only once, after which the browser

works as it would support XForms natively.

Another option for vendors is to utilize a popular plug-in already installed on

most user agents. For instance, DENG [28] is a Flash-based XForms

processor, which runs on any browser that has the Flash plug-in installed.

AJAX implementation Requested XHTML+XForms documents are sent to

the user agent as static documents as in options 1 and 2. In addition, an

XForms AJAX implementation, which translates XForms controls to and

from standard (X)HTML controls on the client side, is sent along with the

XHTML+XForms documents. This approach, which is demonstrated by

FormFaces [29], does not require installation of additional software or plug-

ins neither on the client side nor on the server side.

CHAPTER 2: XML AND WEB TECHNOLOGIES

19

Server-side transformation Requested XHTML+XForms documents are

transformed into plain (X)HTML+CSS or (X)HTML+CSS+ECMAScript on

the server side before sending them to the user agent. Submissions are

performed using either plain (X)HTML form submissions, in which the

submitted form data is transformed to XML on the server side, or AJAX,

respectively. This approach does not require installation of additional

software or plug-ins on the user agent. On the server side, however,

additional software (e.g., Orbeon Forms [72] or Chiba [31]) needs to be

installed.

In the case of AJAXForms [32], which is a mixture of XForms server-side

transformation and XForms AJAX implementation, the requested

XHTML+XForms documents are first transformed on the server side, after

which the XForms implementation works similar to XForms AJAX

implementations.

The different XForms implementations are compared against a set of evaluation

criteria, which is expanded from Honkala’s Thesis (PhD) [19], as shown in Table 1.

As can be seen, none of the XForms implementations is superior to others, and the

choice between the different XForms implementations has to be made on the grounds

of the project’s main criteria. For instance, one of the main requirements of any

common Web application is full cross-browser compatibility, which can be achieved

only by using either an XForms AJAX implementation or an XForms server-side

transformation. For a mobile phone manufacturer, however, browser independence is

not an issue, but user interface latency and bandwidth consumption are the primary

concern.

CHAPTER 2: XML AND WEB TECHNOLOGIES

20

Table 1: Comparison of XForms implementations against a set of evaluation

criteria. "+" means that a particular evaluation criterion does not have

any negative effects on a particular XForms implementation, whereas "–

" means the opposite.

Evaluation

criterion

XForms

implemen-

tation

C
li

en
t-

si
d

e
in

st
a
ll

a
ti

o
n

B
ro

w
se

r
in

d
ep

en
d

en
t

E
C

M
A

S
cr

ip
t

in
d

ep
en

d
en

t

S
er

v
er

-s
id

e
in

st
a
ll

a
ti

o
n

S
er

v
er

-s
id

e
te

ch
n

o
lo

g
y
 i

n
d

ep
en

d
en

t

O
ff

li
n

e
su

p
p

o
rt

U
se

r
In

te
rf

a
ce

 l
a
te

n
cy

B
a
n

d
w

id
th

 c
o
n

su
m

p
ti

o
n

A
m

o
u

n
t

o
f

tr
u

st
ed

 c
o

m
p

o
n

en
ts

Native browser

support
+ – + + + + + + +

Browser

plug-in
– – + + + + + + –

AJAX

implementation
+ + – + + + + / – – +

Server-side

transformation
+ + + / – – – – – – +

CHAPTER 2: XML AND WEB TECHNOLOGIES

21

2.4.4 Extending XForms

Traditional HTML forms offer a limited amount of options for extensibility, whereas

XForms has been explicitly designed with extensibility in mind. The following list

contains distinct ways to extend XForms [18]:

Script One of the goals of XForms is to eliminate the need for a great deal of

scripting. However, it would not be wise to replace an entire scripting

language with declarative markup. Therefore, XForms provides a set of

functions for accessing and updating Instance Data (a DOM document)

through scripting
1
.

New data types and libraries XForms incorporates W3C XML Schema data

types and allows users to define their own application-specific data types,

such as an email data type.

XPath extension functions XForms supports the use of XPath extension functions,

which are defined using an XML namespace prefix. For example, eXforms

[20] provides a set of useful functions to extend an XForms processor in a

uniform way.

However, the downside of using this extension approach is that the XPath

engine must implement the defined XPath extension functions, or otherwise

an error is raised. Therefore, this extension approach is best suited to be used

with XForms AJAX implementations or XForms server-side transformations.

New form controls XForms allows users to define their own application-specific

form controls. However, the XForms processor must understand the special

form controls in order to work properly that practically restricts the use of this

extension approach to XForms AJAX implementations and XForms server-

side transformations.

1
 XForms implementations, however, are not required to be based on the DOM.

CHAPTER 2: XML AND WEB TECHNOLOGIES

22

XForms Actions Similar to new form controls, XForms allows users to define

their own application-specific XForms Actions (e.g., a digital signature [21])

with the same XForms implementation restriction issues.

Custom events In addition to DOM-defined events and XForms-defined

events, XForms provides a means for users to define their own application-

specific events. The application-specific events can be sent off using the

xforms:dispatch element and observed similar to other events.

New serialization formats An XForms processor can be extended to support new

serialization formats by implementing the feature to be supported. The

serialization format to be used is determined by both the method attribute and

the URI Scheme used in the action attribute of the xforms:submission

element.

Table 2 provides a summary of the distinct XForms extensions, which were

described above, and how well they are suited to be used with different XForms

implementations. As can be seen, both XForms AJAX implementation and XForms

server-side transformation can be extended in all ways without requiring any updates

to the user agent.

CHAPTER 2: XML AND WEB TECHNOLOGIES

23

Table 2: Comparison of XForms implementations against a set of XForms

extensions. "+" means that a particular XForms extension suits well to

be used with a particular XForms implementation, whereas "–" means

the opposite.

XForms

extension

XForms

implemen-

tation

S
cr

ip
t

N
ew

 d
a
ta

 t
y
p

es
 a

n
d

 l
ib

ra
ri

es

X
P

a
th

 e
x
te

n
si

o
n

 f
u

n
ct

io
n

s

N
ew

 f
o

rm
 c

o
n

tr
o
ls

X
F

o
rm

s
A

ct
io

n
s

C
u

st
o
m

 e
v
en

ts

N
ew

 s
e
ri

a
li

za
ti

o
n

 f
o
rm

a
ts

Native browser

support
+ + – – – + –

Browser

plug-in
+ + – – – + –

AJAX

implementation
+ + + + + + +

Server-side

transformation
+ + + + + + +

24

Chapter 3

XML and Databases

Chapter 2 covered the fundamentals of XML and Web technologies, paying

particular attention to frontend technologies—especially to the XForms technology.

In this Chapter, the discussion on XML is continued from a backend perspective and

a high-level overview of how to use XML with databases is given. First, the

classification of XML documents based on their characteristics is discussed. After

that, options for storing XML documents in different types of databases are

examined. Finally, interfaces between XML documents and databases are presented.

3.1 Classification of XML Documents

XML documents are usually classified into three groups according to their content,

structure, and supposed use: data-centric XML documents, document-centric XML

documents, and hybrid XML documents. Characterizing and classifying XML

documents to be used is essential as it determines what kind of database to use.

CHAPTER 3: XML AND DATABASES

25

3.1.1 Data-Centric XML Documents

In data-centric XML documents, XML is used as an interchange format for data that

is designed to be processed by a machine, rather than to be read by a human. As

examples of data-centric XML documents may be mentioned flight schedules, stock

quotes, and scientific data.

In his article, Bourret defines the characteristics of data-centric XML documents to

be as follows [86]:

 Fairly regular structure

 Fine-grained data

 Little or no mixed content

 The order of sibling elements and PCDATA is generally not significant

As the example data-centric XML document in Listing 5 shows, changing the order

of sibling elements does not change the meaning of the document.

Listing 5: A data-centric XML document

<?xml version="1.0" encoding="UTF-8"?>

<note>

 <what>Research Group Meeting</what>

 <when>Friday August 28, 2009</when>

 <where>B122</where>

</note>

CHAPTER 3: XML AND DATABASES

26

3.1.2 Document-Centric XML Documents

In document-centric XML documents, documents are usually designed for human

consumption and written by hand in XML
1
. Examples are books, user guides, and

almost any XHTML document.

The characteristics of document-centric XML documents are [86]:

 Less regular or irregular structure

 Larger grained data

 Lots of mixed content

 The order of sibling elements and PCDATA is almost always significant

As can be seen from Listing 6, the order of sibling elements is now very important

for the meaning of the document.

Listing 6: A document-centric XML document

<?xml version="1.0" encoding="UTF-8"?>

<note>

 Hi all, <what>Research Group Meeting</what> will be held on

 <when>Friday August 28, 2009</when> in room <where>B122</where>.

</note>

3.1.3 Hybrid XML Documents

Sometimes the distinction between data-centric XML documents and document-

centric XML documents is not entirely clear. An XML document might contain

characteristics of both XML document types (cf. Listing 7), in which case the

document is said to be a hybrid XML document.

1
 Documents can also be written in other formats, such as Rich Text Format (RTF) or SGML, which

are then converted to XML.

CHAPTER 3: XML AND DATABASES

27

Listing 7: A hybrid XML document

<?xml version="1.0" encoding="UTF-8"?>

<message>

 <from>john.doe@example.com</from>

 <to>jane.doe@example.com</to>

 <subject>This is the subject</subject>

 <body type="text/plain">

 <note>

 Hi all, <what>Research Group Meeting</what> will be held on

 <when>Friday August 28, 2009</when> in room

 <where>B122</where>.

 </note>

 </body>

</message>

3.2 Options for XML Document Storage

The primary options for persistent data storage include databases and file systems. In

this Section, the focus is on examining different types of databases only, as they

provide multi-user support and assure Atomicity, Consistency, Isolation, and

Durability (ACID) properties [36] as well as are the most popular data storage option

for Web applications. Below, the following databases are examined in detail:

Relational Databases (RDB), XML Enabled Databases (XEDB), and Native XML

Databases (NXD).

3.2.1 Relational Databases

Relational Databases (RDB) are the most popular form of data storage in the world.

As the name implies, they are based on a relational model, introduced by E.F. Codd

at IBM Research Laboratory in 1970 [93].

In a Relational Database Management System (RDBMS), data is organized into two-

dimensional tables (relations), consisting of rows (tuples) and columns (attributes), in

which each cell (intersection of row and column) of the table contains only one

simple value. The data stored in a RDBMS can be retrieved and manipulated by

CHAPTER 3: XML AND DATABASES

28

using Structured Query Language (SQL) [94]. SQL is a comprehensive language for

controlling and interacting with a RDBMS, and it is both an American National

Standards Institute (ANSI) [95] and International Organization for Standardization

(ISO) [96] standard.

The main problem with relational databases is that they are rigid because their only

data structure is tables. In addition, they work only with limited, simple data types,

such as integers, and thus have troubles handling complex and user-defined data

types, such as XML. [97] Therefore, in order to transfer data between XML

documents and relational databases an appropriate mapping procedure or a

middleware must be used (cf. Section 3.3.1 and Section 3.3.5, respectively).

3.2.2 XML Enabled Databases

XML Enabled Databases (XEDB) are databases (e.g., relational databases) that have

extended the basic database functionality to include XML data management

capabilities. The extensions allow, among others, transferring data between XML

documents and the internal model of a database without one having to worry about

the difficulties of implementing a mapping layer or embedding a middleware oneself,

as is often the case with relational databases when dealing with XML data.

XML:DB Initiative [75] has defined an XEDB as follows:

“A database that has an added XML mapping layer provided either by the

database vendor or a third party. This mapping layer manages the storage

and retrieval of XML data. Data that is mapped into the database is mapped

into application specific formats and the original XML meta-data and

structure may be lost. Data retrieved as XML is NOT guaranteed to have

originated in XML form. Data manipulation may occur via either XML

specific technologies (e.g., XPath, XSL-T, DOM or SAX) or other database

technologies (e.g., SQL). The fundamental unit of storage in an XEDB is

implementation dependent.” [87]

Similarly to relational databases, XEDBs are best suited for handling data-centric

XML documents. In addition, XEDBs are also capable of handling document-centric

CHAPTER 3: XML AND DATABASES

29

and hybrid XML documents, but only if the database provides a native XML storage

and retrieval technology as well. [92]

All major database vendors, such as Oracle [91], IBM DB2 [90], and Microsoft SQL

Server [89], have comprehensive XML support in their databases (cf. Section 3.3.2).

3.2.3 Native XML Databases

Native XML Databases (NXD) were created especially to overcome the

shortcomings of relational databases when dealing with document-centric or hybrid

XML documents.

The formal definition from XML:DB Initiative states that a NXD:

 “Defines a (logical) model for an XML document -- as opposed to the data

in that document -- and stores and retrieves documents according to that

model. At a minimum, the model must include elements, attributes,

PCDATA, and document order. Examples of such models are the XPath

data model, the XML Infoset, and the models implied by the DOM and the

events in SAX 1.0.” [87]

 “Has an XML document as its fundamental unit of (logical) storage, just as

a relational database has a row in a table as its fundamental unit of

(logical) storage.” [87]

 “Is not required to have any particular underlying physical storage model.

For example, it can be built on a relational, hierarchical, or object-oriented

database, or use a proprietary storage format such as indexed, compressed

files.” [87]

Examples of NXDs are Software AG’s commercial Tamino [88] and Wolfgang

Meier’s open source eXist-db [69].

The key advantage of using NXDs over other databases when dealing with

document-centric or hybrid XML documents is that no data is lost, because no

conversion is required between XML documents and the internal model of a

CHAPTER 3: XML AND DATABASES

30

database. In addition, NXDs are better suited for querying and integrating data as

well as handling schema changes and schemaless data.

Finally, NXDs generally support the same basic features as other databases, such as

multi-user access, transactions, and locking—at least at the level of entire

documents.

3.3 Interfaces between XML Documents and

Databases

Most Web applications have persistent data of some sort and they use XML at some

point during the process of transferring the data from a persistent data storage (e.g.,

database) to the Web application and vice versa. In this Section, five distinct

approaches with code samples are presented for transferring data between XML

documents and databases. In addition, an extensive middleware product called

DataDirect XQuery is presented as a case example.

3.3.1 Mappings

The idea behind mappings is to map XML document schemas (e.g., DTDs or XML

Schemas) to database schemas. Mappings are performed on element types, attributes,

and text. In consequence of this, mappings almost always omit the physical and

logical structure of an XML document, which thus makes them in general a poor

choice for other than data-centric XML documents.

The main advantage of mappings is that they provide for a database-independent

solution. They are also often used with XSLT in order to exactly match the structure

expected.

CHAPTER 3: XML AND DATABASES

31

Several methods have been proposed for mapping XML document schemas to

database schemas. In his article, Bourret presents two commonly used mapping

methods [86]:

 Table-based mapping

 Object-relational mapping (ORM)

Table-based mapping

Table-based mapping is a very simple mapping method, in which the XML

document is modeled as a single table (cf. Listing 8) or a set of tables. It is widely

implemented and used, for instance, by many middleware components for

transferring data between XML documents and relational databases. This simple

mapping method, however, has several disadvantages, such as it works only with a

subset of XML documents, cannot handle mixed content at all, and does not preserve

physical nor logical structure.

Listing 8: A table-based mapping for a single table

<?xml version="1.0" encoding="UTF-8"?>

<event>

 ...

 <row>

 <title>Research Group Meeting</title>

 <date>Friday August 28, 2009</date>

 <location>B122</location>

 </row>

 ...

</event>

 <=>

 Table: event

┌────────────────────────┬────────────────────────┬────────────────┐

│ title │ date │ location │

├────────────────────────┼────────────────────────┼────────────────┤

│ ... │ ... │ ... │

│ Research Group Meeting │ Friday August 28, 2009 │ B122 │

│ ... │ ... │ ... │

└────────────────────────┴────────────────────────┴────────────────┘

CHAPTER 3: XML AND DATABASES

32

Object-relational mapping (ORM)

Object-relational mapping (ORM) is a more sophisticated mapping method used by

some middleware components and all XML enabled databases, in which the XML

document is first modeled as a tree of objects and then the objects are mapped to a

database (cf. Listing 9). ORM works for all XML documents, although it handles

mixed content inefficiently and does not preserve physical nor logical structure.

Because of this, ORM is a poor choice for document-centric XML documents.

Listing 9: An object-relational mapping

<?xml version="1.0" encoding="UTF-8"?>

<event>

 <title>Research Group Meeting</title>

 <date>Friday August 28, 2009</date>

 <location>B122</location>

</event>

 <=>

Object event {

 title = "Research Group Meeting";

 date = "Friday August 28, 2009";

 location = "B122";

}

 <=>

 Table: event

┌────────────────────────┬────────────────────────┬────────────────┐

│ title │ date │ location │

├────────────────────────┼────────────────────────┼────────────────┤

│ ... │ ... │ ... │

│ Research Group Meeting │ Friday August 28, 2009 │ B122 │

│ ... │ ... │ ... │

└────────────────────────┴────────────────────────┴────────────────┘

Unlike the name implies, ORM can also be used with non-relational databases, such

as object-oriented and hierarchical databases. Therefore, a more appropriate name for

the mapping method would be object-based mapping [86].

CHAPTER 3: XML AND DATABASES

33

Alternative mapping methods

In addition to the aforementioned mapping methods, several other more advanced

mapping methods have been proposed, such as the Edge and Attribute methods. In

the Edge method, all elements and attributes with their values as well as parent-child

relationships are stored as tuples in a single table called the Edge table. In the

Attribute method, a similar table is created for each element or attribute name in the

XML document. The Edge method performs poorly for heavy queries due to many

joins with the large Edge table, whereas the Attribute method does not have this

problem, because only relevant data is processed. [108]

3.3.2 Vendor-Specific XML Extensions

All major database vendors provide comprehensive XML support in one way or

another. For instance, some databases implement a mapping layer or embed a

middleware, whereas other databases provide XML extensions to SQL or support an

XML query language. Furthermore, some non-native XML databases even provide

native XML storage, and thus blur the line between native XML databases and XML

enabled databases. Regardless of the used approaches, vendor-specific XML

extensions are not an option when a database-independent solution is needed. [92]

In some cases, however, it might be justifiable to use vendor-specific XML

extensions. For instance, when a company’s software needs to be extended with

XML data management capabilities and the software already runs atop an XML

enabled database.

Finally, vendor-specific XML extensions have an effect on the following

functionalities in a database, which must be taken into account when specifying

software requirements: storage technology, indexing, flexibility, mapping, query

language, updates, and performance.

CHAPTER 3: XML AND DATABASES

34

3.3.3 SQL-Based Query Languages

SQL-based query languages use modified SELECT statements, whose results are

transformed to XML. A number of proprietary SQL-based query languages exist

and—as might be guessed—the solutions differ and are even based on different

approaches. [86]

SQL/XML

In early 2000, an informal group of companies called SQLX [99] began to

standardize XML extensions to SQL—the work which eventually led to the

emergence of SQL/XML [98].

SQL/XML is an ANSI and ISO standard that provides XML extensions to SQL

which, among others, include: (1) XML publishing functions, (2) the XML data type,

and (3) mapping rules. By means of these extensions, it is possible to store XML

documents in SQL database (e.g., relational database), to query those documents

using XPath and XQuery, and to construct XML documents from existing SQL data

(e.g., relational data). [99]

For a SQL programmer, SQL/XML is easy to learn because it is SQL-centric and it

involves only a few additions to the familiar SQL language [101]. Another benefit of

SQL/XML is that it can be used with traditional database APIs, such as Java

Database Connectivity (JDBC) [100].

SQL/XML is supported by Oracle and IBM DB2, but not by Microsoft SQL Server.

However, database-independent implementations of SQL/XML are also available,

which can be used with any major relational database. [101]

Listing 10 shows a simple SQL/XML statement which is executed against the

relational data presented in Listing 9. The result of the query is the XML document

presented in Listing 5.

CHAPTER 3: XML AND DATABASES

35

Listing 10: An SQL/XML statement

SELECT XMLELEMENT(NAME "note",

 XMLELEMENT(NAME "what", e.title),

 XMLELEMENT(NAME "when", e.date)

 XMLELEMENT(NAME "where", e.location),

)

FROM event e

WHERE e.title = "Research Group Meeting"

3.3.4 XML Query Languages

XPath

XML Path Language (XPath) [110], which is one of the W3C’s core XML

Recommendations, is an expression language for addressing parts of an XML

document. XPath gets its name from its use of a path expression, which provides a

means for navigating through the hierarchical structure of an XML document. In

addition to path expressions, XPath encompasses a library of standard functions and

operators.

The latest version, XPath 2.0, is widely implemented and used, either on its own or

embedded in a host language, such as XSLT or XQuery.

Listing 11 shows a simple XPath expression which is executed against the virtual

XML view of relational data presented in Listing 9. The result of the query is an

event element that has a title with the value "Research Group Meeting".

Listing 11: An XPath expression

/event[title = "Research Group Meeting"]

XQuery

XQuery [116], a W3C Recommendation since January 2007, is a Turing complete

XML query language applicable across all data sources that can be viewed as XML.

It is derived from an XML query language called Quilt [111], which in turn was

CHAPTER 3: XML AND DATABASES

36

influenced by several other languages, including XPath, XQL [112], XML-QL [113],

SQL, and OQL [114].

XQuery and XPath are very closely related because XQuery 1.0 is an extension of

XPath 2.0 and they both share the same data model [115] as well as the same set of

functions and operators [118]. Because of this, any expression that is valid in both

languages evaluates to the same value using both languages.

What makes XQuery much more powerful than XPath is that it overcomes the

limitations of XPath (e.g., lack of grouping, sorting, and cross document joins) by

providing a feature called a FLWOR expression, in which FLWOR stands for "for,

let, where, order by, and return", the keywords used in the expression:

 The for clause iterates one or more variables over its binding sequence

 The optional let clause binds one or more variables to the result of its

associated expression, without iteration

 The optional where clause serves as a filter for the tuples of variable

bindings generated by the for and let clauses

 The optional order by clause contains one or more ordering specifications

for reordering the tuples of variable bindings generated by the for and let

clauses that satisfy the condition in the where clause

 The return clause forms the result of a FLWOR expression. It is evaluated

once for each tuple of variable bindings generated by the for and let clauses

that satisfy the condition in the where clause

Listing 12 shows a simple FLWOR expression which is executed against the virtual

XML view of relational data presented in Listing 9. The result of the query is the

XML document presented in Listing 5.

CHAPTER 3: XML AND DATABASES

37

Listing 12: A FLWOR expression

for $event in /event[title = "Research Group Meeting"]

 return <note>

 <what>{ $event/title }</what>

 <when>{ $event/date }</when>

 <where>{ $event/location }</where>

 </note>

As can be seen from the above example, a FLWOR expression allows selecting and

filtering XML data based on specific criteria as well as transforming the data into

another XML vocabulary or structure. In addition, both built-in and user-defined

functions can be used in FLWOR expressions, for example, for manipulating strings

and dates as well as performing mathematical calculations.

One of the main design goals of XQuery was that it would use and share appropriate

W3C Recommendations as much as possible, such as XML, Namespaces [124], and

XML Schema. In addition, there are several peripheral standards that complement

XQuery: XSLT 2.0 and XQuery 1.0 Serialization [117], XML Syntax for XQuery

1.0 (XQueryX) [119], XQuery Update Facility 1.0 [120], XQuery and XPath Full

Text 1.0 [121], XQuery Scripting Extension 1.0 [122], and XQuery API for Java

(XQJ) [123].

For a SQL programmer, XQuery requires more learning than SQL/XML because the

language is new. For an XML programmer, however, the language is likely to be

more natural because it is XML-centric and it fits cleanly into the XML world.

XQuery is widely implemented and supported by native XML databases as well as

all major XML enabled database vendors.

3.3.5 Middleware

Middleware is a lightweight software component, which is commonly used for

transferring data between data-centric XML documents and relational databases.

Although middleware is usually used with relational databases, some middleware

CHAPTER 3: XML AND DATABASES

38

products exist, which can be used for accessing data stored in other types of

databases as well. [22]

Case example: DataDirect XQuery

DataDirect XQuery [125] is a commercial middleware component that provides both

database and platform independent solution for querying and updating XML,

relational data, legacy flat file data formats (e.g., Comma Separated Values (CSV)),

or a combination of data sources.

The main benefit of DataDirect XQuery is that it uses a single query language—

XQuery through XQJ—for accessing various data sources, including all major

relational databases. An interesting detail about DataDirect XQuery is that if a

relational database is queried, it decomposes the XQuery expression into highly

optimized SQL statements in order to minimize the amount of data needed to be

moved out of the database.

Figure 7: DataDirect XQuery architecture [125]

CHAPTER 3: XML AND DATABASES

39

3.4 Summary

This Chapter covered the fundamentals of how to use XML with databases. The

main conclusion is that the characteristics of XML documents define what kind of

database should be used for storing the data. Relational databases and XML enabled

databases, for instance, do not suit well for storing either document-centric XML

documents or hybrid XML documents, as their fundamental unit of (logical) storage

differs from XML, which in turn may result in lost of data. In addition, if data-centric

XML documents need to be stored in relational databases, an appropriate mapping

procedure or a middleware must be used. A detailed comparison of databases against

XML document types and a set of interfaces are provided in Table 3 and Table 4.

CHAPTER 3: XML AND DATABASES

40

Table 3: Comparison of databases against XML document types. "+" means that

a particular XML document type suits well to be used with a particular

database, whereas "–" means the opposite.

XML

document

type

Database

D
a
ta

-c
en

tr
ic

 X
M

L
 d

o
cu

m
en

ts

D
o
cu

m
en

t-
ce

n
tr

ic
 X

M
L

 d
o
cu

m
en

ts

H
y
b

ri
d

 X
M

L
 d

o
cu

m
en

ts

Relational

Databases (RDB)
+ – –

XML Enabled

Databases (XEDB)
+ + / – + / –

Native XML

Databases (NXD)
+ + +

CHAPTER 3: XML AND DATABASES

41

Table 4: Comparison of databases against a set of interfaces. "+" means that a

particular interface suits well to be used with a particular database,

whereas "–" means the opposite.

Interface

Database
M

a
p

p
in

g
s

V
en

d
o
r-

sp
ec

if
ic

 X
M

L
 e

x
te

n
si

o
n

s

S
Q

L
-b

a
se

d
 q

u
er

y
 l

a
n

g
u

a
g
es

X
M

L
 q

u
er

y
 l

a
n

g
u

a
g
es

M
id

d
le

w
a
re

Relational

Databases (RDB)
+ – – – +

XML Enabled

Databases (XEDB)
+ + + + / – +

Native XML

Databases (NXD)
+ – – + +

42

Chapter 4

Research Aims

4.1 Research Objectives and Scope

The main research objectives of this Thesis have been divided into two distinct parts.

In the first part, the objective is to design an extension to the XForms markup

language, which enables software developers and even non-programmers to build

useful, highly interactive multi-user Web applications quickly and easily using

purely declarative languages. The objective of the second part is to validate the

feasibility of the designed extension by implementing a proof-of-concept prototype

called the XFormsDB framework, which supports all the features of the designed

extension. In addition, the reliability and usefulness of the framework has to be tested

by developing useful real-life Web applications.

However, it must be emphasized that the goal of this Thesis is limited to

implementing a working prototype of the framework, not a framework ready for

production. Therefore, the efficiency and performance issues of the implementation

are out of the scope, although they can be optimized for the final product. The

framework will be designed taking non-programmers into account. However, the

efficiency and feasibility will not be analyzed by extensive usability tests due to

limited resources of the project.

CHAPTER 4: RESEARCH AIMS

43

4.2 Research Questions

The main research questions of this Thesis are the following:

Q1: Is it possible to extend the XForms markup language in such a way that

users can build useful, highly interactive multi-user Web applications

quickly and easily using purely declarative languages?

XForms provides a declarative markup language for authoring highly

interactive, form-based Web applications. The architecture of XForms

promotes building modular software by separating application logic, data,

and presentation into distinct modules, and thus making XForms highly

suitable for Web application development under a single model.

However, XForms was not intended as an end-to-end solution, but rather

simply a client-side technology to be used with a separate server-side

component. In general, a server-side component is mainly used for accessing

a data source. By examining typical Web applications more closely, it can be

noted that almost all of the functionality the server-side component provides

for the client-side component is related to the data source access in one way

or another: authentication and access control define what parts of the data

source the user is allowed to access, session management provides the

context and authorization for data source queries, and multi-user support is

implemented by data source transactions. [9]

What if all the aforementioned functionalities could be defined in XForms?

Does it mean that a server-side component can completely be left out and

entire Web applications could be authored using a single document? These

research questions are further discussed in Chapter 5 and Chapter 6 along

with a proposed solution.

CHAPTER 4: RESEARCH AIMS

44

Q2: How the extension can be kept simple enough, so that even non-

programmers are capable of utilizing it?

Even if a solution for extending the XForms markup language with server-

side functionalities exists, it still might be too complex to be used by non-

programmers. On the other hand, if the extension is too simple, it might not

be expressive enough for advanced users, such as software developers. Could

the extension be flexible enough to be used by both software developers and

non-programmers?

From the author’s point of view, there are several points which define the

complexity of the extension, including suitability into the XForms

programming model, intuitiveness in use, and possibility to use ready-made

components authored by other users. Can these issues be solved, and thus

resulting an extension which is both simple and flexible to use by all types of

authors? These research questions are closely related to Q1 and are also

discussed in Chapter 5 and Chapter 6.

Q3: By what means should the feasibility of the extension be validated?

For making good research, it is not enough just to present results, but the

results also need to be backed up with clean and convincing evidences. On

what should these evidences be based on? How can they be determined?

Conceivably, the most obvious way to validate the designed extension is to

implement it. On the other hand, the implementation only verifies that the

designed extension is technically implementable; it does not validate the

feasibility of the extension when authoring Web applications. Thus, a more

extensive set of validation techniques is needed. Chapter 6 and Chapter 7

focus on the validation problem, whereas Chapter 8 evaluates the work as a

whole.

CHAPTER 4: RESEARCH AIMS

45

4.3 Research Strategy

Based on the research objectives and scope as well as research questions presented

above, an appropriate research strategy for solving the research problem needs to be

found.

Shaw discusses the characteristics of good research in the area of Software

Engineering (SE) and presents distinct research strategies based on the examination

of several research papers. The presented research strategies have been constructed

by selecting suitable combinations of the different types of research questions,

results, and validation techniques. [10]

The research strategy of this Thesis is formed by following the guidance provided by

the aforementioned paper and it can be recognized as a combination of the following

types: method or means of development or feasibility (research questions), notation

or tool (research results), and example (validation techniques). The recognized

research strategy was also found among the research papers examined by Shaw, and

thereby verifies the reliability of the selected research strategy [10].

46

Chapter 5

Design of the XFormsDB Markup

Language

This Chapter describes the XFormsDB markup language, which was designed to

meet the research objectives and to answer the research questions Q1 and Q2

presented in Chapter 4. The Chapter starts by collecting the list of requirements for

the XFormsDB markup language. Then, all features as well as elements and

attributes of the XFormsDB markup language are described in detail. Finally,

evaluation of the designed language with respect to the requirements is carried out.

The complete syntax definitions and usage examples of the XFormsDB markup

language are given in Appendix A.

5.1 Requirements

In Requirements Engineering (RE), the requirements for a system describe the

services provided by the system and its operational constraints. According to

Sommerville, requirements are categorized into two different levels of detail as

follows: user requirements and system requirements. The level of detail to be used

depends on the type of reader to whom the specification is targeted at. For instance,

system end-users and contractor managers need a high-level statement of the

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

47

requirements, whereas software developers need a more detailed description of the

requirements. [1]

Software system requirements are often classified into three categories: functional

requirements, non-functional requirements, and domain requirements [1]. In general,

requirements for markup languages are functional requirements and they are derived

from usage scenarios [11, 12]. Therefore, usage scenarios were also used as the basis

for deriving a detailed list of the main functional as well as non-functional

requirements for the XFormsDB markup language (hereinafter referred to as the

Language Requirements, LR) presented in Table 5.

Table 5: Requirements for the XFormsDB markup language

ID Requirement

LR1 The syntax and processing model of the XFormsDB markup

language must be similar to XForms.

XForms uses declarative markup for describing operations in form-

based Web applications. Thus, in order to naturally integrate the

XFormsDB extension to XForms, the syntax and processing model

of the XFormsDB markup language must resemble XForms.

LR2 The architecture of the XFormsDB markup language must be

easily extensible.

Web applications and user needs are constantly evolving, whereupon

requirements for enhancements and new features often emerge over

time. Therefore, the architecture of the XFormsDB markup language

must provide a means for adding new features (XFormsDB-related

requests) to the language while retaining the same processing model.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

48

LR3 XFormsDB-related requests must be able to be executed multiple

times and at any point in the lifetime of a form.

XForms interaction model allows asynchronous communication with

the server, meaning that submissions can take place multiple times

and at any point in the lifetime of a form. Submitting XFormsDB-

related requests must fulfill the same conditions.

LR4 The XFormsDB markup language must provide a means for

notifying XFormsDB-related request errors including detailed

error messages.

Inevitably, problems can happen during XFormsDB-related request

processing. In such situations, a notification with a detailed,

understandable error message must be provided, for example ―Failed

to connect to data source‖.

LR5 The XFormsDB markup language must provide a means for

facilitating modularity in XHTML+XFormsDB documents.

The level of XHTML+XFormsDB documents can vary from simple

to extremely complex. Authoring of complex documents is also a

time-consuming and error-prone operation. It must be possible to

reuse ready-made components (e.g., user interface parts and queries)

to decrease authoring errors and to speed up form authoring.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

49

LR6 The XFormsDB markup language must provide a means for

maintaining state in XFormsDB Web applications.

In general, dynamic user interfaces need to keep track of the state

information of a Web application in order to work properly. In the

case of XForms, the state information of a Web application is stored

into instance(s) and the user interface is dynamically presented

according to that data. This approach, however, can be utilized only

when the Web application consists of a single XHTML+XForms

document, because XForms does not provide a means for passing

information (e.g., instance data) between XHTML+XForms

documents. For this reason, a mechanism for passing state

information between XHTML+XFormsDB documents must be

provided.

LR7 The XFormsDB markup language must provide a uniform API

for connecting to different types of data sources.

Each data source has a unique way of establishing a connection to the

system. Therefore, in order to uniform the way of establishing a

connection to a data source, an abstraction layer on the language

level must be provided.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

50

LR8 The XFormsDB markup language must provide a mechanism for

authentication and access control.

Most Web applications require an authentication mechanism to

verify the identity of a user and to restrict user access to certain parts

of the Web application, such as administration interface.

In general, user authentication in Web applications is accomplished

by one of the three mechanisms: HTTP authentication, Secure

Sockets Layer (SSL) certificates, or form-based credentials [15].

However, none of these mechanisms integrate perfectly with the

XForms programming model or they have significant shortcomings,

such as poor user experience, complex to implement, lack of logout,

no encryption/security, or require server-side programming.

XForms 1.1 addresses some of the shortcomings described above by

indirectly supporting Basic and Digest authentication with HTTP(S)

but does not really provide a comprehensive and easy-to-use solution

to overcome all of the problems related to authentication [16]. For

this reason, the XFormsDB markup language must provide a simple

way for form authors to authenticate users and to handle common

tasks related to access control.

LR9 The XFormsDB markup language must support a standardized

query language applicable across different types of XML data

sources.

XForms is designed to gather and process data in the XML format

and it is intended to be used with other XML technologies. Because

of this, the query language must be intended to be used with other

XML technologies as well. Moreover, it should be standardized and

widely supported to ensure its usefulness across a number of users as

well as different products, such as middleware and database systems.

In addition, the XFormsDB markup language must also provide a

means for binding parameters to external variables used in query

expressions.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

51

LR10 The XFormsDB markup language must provide a means for

supporting multi-user concurrency.

In multi-user Web applications, users’ interactions can easily

conflict. For instance, several users may try to perform updates

simultaneously. Because query languages do not provide a built-in,

easy-to-use solution to this problem, a different approach for

supporting multi-user concurrency must be provided.

LR11 Security issues must be considered carefully in the design of the

XFormsDB markup language.

In traditional Web applications, sensitive information (e.g., query

expressions and data source configurations) is processed on the

server-side to ensure that the sensitive information is neither exposed

to nor cannot be altered by malicious clients. It is highly important

that XHTML+XForms documents, which are sent to the client, do

not either expose or allow unauthorized altering of sensitive

information.

5.2 Namespace for XFormsDB

The namespace Uniform Resource Identifier (URI) for XFormsDB is

http://www.tml.tkk.fi/2007/xformsdb and the namespace prefix associated with it is

xformsdb, which is used throughout this Thesis. This, however, is only a convention

meaning that any namespace prefix for XFormsDB may be used in practice.

5.3 The xformsdb:instance Element

The xformsdb:instance element is a new element that acts as a wrapper for all

XFormsDB-related requests to be submitted. The benefit of using a wrapper around

requests is that it enables adding new requests to the XFormsDB markup language

without requiring any changes to the request submission process.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

52

The functionality of the xformsdb:instance element is identical to the

xforms:instance element with the exception that only certain parts of the instance

data, depending on the type of the request, are allowed to be altered.

The different types of requests are described in detail in the following Subsections.

5.3.1 The state Request

The state request provides a means for passing a Web application’s state information

from one XHTML+XFormsDB document to another. An instance containing a Web

application’s state information can be stored in an XFormsDB implementation for

the duration of the session and it can be later retrieved either by the same or different

XHTML+XFormsDB documents.

The xformsdb:state Element

Required child element of the xformsdb:instance element specifying only the name

of the request.

5.3.2 The login Request

The login request enables a user to authenticate to a Web application, after which the

user can access to restricted parts of the Web application. The user authentication is

performed by submitting a username and password combination to an XFormsDB

implementation, which checks the privileges of the user against a realm (cf. Section

5.8) and stores the user’s credentials to its credentials store for future reference upon

a successful login.

The xformsdb:login Element

Required child element of the xformsdb:instance element that wraps two

xformsdb:var elements; one for the username variable and the other for the password

variable.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

53

Table 6: Attributes of the xformsdb:login element associated with the login

request

Attribute Description

datasrc Optional attribute specifying the ID of a data source

configuration to be used by an XFormsDB

implementation for connecting to the data source

(realm). In the absence of this attribute, the default data

source configuration of an XFormsDB implementation

is used.

doc Optional attribute specifying the name of an XML

document for limiting authentication queries of a data

source connection to a single xformsdb_users.xml

document. Useful when a data source connection points

to a collection of documents. Default value is an empty

string.

The xformsdb:var Element

Two required child elements of the xformsdb:login element; one having username

and the other one having password as the value of the name attribute of this element.

The values of these elements are bound to the corresponding xforms:input and

xforms:secret form controls of a login form.

Table 7: Attributes of the xformsdb:var element associated with the login request

Attribute Description

name Required attribute specifying the name (username or

password) of a variable to which the form control

(correspondingly xforms:input and xforms:secret) of a

login form is bound to. Default value is an empty string.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

54

5.3.3 The logout Request

The logout request enables a user to exit a Web application, after which the user

cannot access to restricted parts of the Web application. As a result of a successful

logout, an XFormsDB implementation removes the user’s credentials from its

credentials store as well as all other user-related information from the session.

The xformsdb:logout Element

Required child element of the xformsdb:instance element specifying only the name

of the request.

5.3.4 The user Request

The user request provides a means for extracting information about the currently

logged-in user, such as username and roles the user belongs to.

The xformsdb:user Element

Required child element of the xformsdb:instance element specifying only the name

of the request.

5.3.5 The query Request

The query request defines a query to be executed against a data source upon a

corresponding submission is dispatched. The query expression can be written either

using XQuery or XPath, which are both W3C-defined standards for querying

collections of XML data. In addition, the query can be parameterized, too.

XQuery expressions are used for retrieving data, creating new structures (e.g., joins),

and updating data without data synchronization. XPath expressions, on the other

hand, provide much simpler but less powerful means for retrieving and updating data

(an XML fragment) with data synchronization.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

55

The xformsdb:query Element

Required child element of the xformsdb:instance element that wraps necessary

elements for specifying a query.

Table 8: Attributes of the xformsdb:query element associated with the query

request

Attribute Description

datasrc Optional attribute specifying the ID of a data source

configuration to be used by an XFormsDB

implementation for connecting to the data source. In the

absence of this attribute, the default data source

configuration of an XFormsDB implementation is used.

doc Optional attribute specifying the name of an XML

document for limiting queries of a data source

connection to a single XML document. Useful when a

data source connection points to a collection of

documents. Default value is an empty string.

The xformsdb:expression Element

Required child element of the xformsdb:query element containing a query expression

either in XQuery (select and all expression types) or XPath (a combination of select

and update expression types). The query expression can be written either inline in

this element or to an external file referenced by the resource attribute.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

56

Table 9: Attributes of the xformsdb:expression element associated with the query

request

Attribute Description

resource Optional attribute indicating the URI of an XQuery or

XPath expression. Behavior of relative URIs in links is

determined by the host language, i.e., the form. Default

value is an empty string.

The xformsdb:xmlns Element

Optional child element of the xformsdb:query element declaring an XML Namespace

that is used in a query expression (XPath).

Table 10: Attributes of the xformsdb:xmlns element associated with the query

request

Attribute Description

prefix Required attribute specifying the prefix of an XML

Namespace. Default value is an empty string.

uri Required attribute specifying the URI of an XML

Namespace. Default value is an empty string.

The xformsdb:var Element

Optional child element(s) of the xformsdb:query element, whose value is linked to an

external variable declared in an XQuery expression or used in an XPath expression.

The variable in the XQuery or XPath expression must have the same name as the one

specified in the name attribute of this element.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

57

Table 11: Attributes of the xformsdb:var element associated with the query

request

Attribute Description

name Required attribute specifying the name of an external

variable declared in an XQuery expression or used in an

XPath expression. Default value is an empty string.

The xformsdb:secvar Element

Optional child element(s) of the xformsdb:query element, which securely links the

username or the space-separated list of the role names of the currently logged-in user

to the external variable (username or roles, respectively) declared in an XQuery

expression or used in an XPath expression. The variable in the XQuery or XPath

expression must have the same name (username or roles) as the one specified in the

name attribute of this element. The value of this element is not allowed to, and

cannot, be altered because it is securely set on the server side by an XFormsDB

implementation.

Table 12: Attributes of the xformsdb:secvar element associated with the query

request

Attribute Description

name Required attribute specifying the name (username or

roles) of a secured, external variable (username or roles)

declared in an XQuery expression or used in an XPath

expression. Default value is an empty string.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

58

Synchronized updates

XFormsDB provides a simple and elegant way for updating and synchronizing data

to be stored in a data source. The updating process with data synchronization

includes two steps. In the first step, an XML fragment is retrieved from a data source

using an XPath expression pointing to the root element of the XML fragment to be

updated. The retrieved XML fragment can then be altered including deleting and

inserting nodes, after which in the second step, the altered XML fragment is

submitted back to be stored in the data source using the same XPath expression as

before. Finally, an XFormsDB implementation returns the stored XML fragment,

which may contain changes made by other clients, upon a successful submission.

Figure 8: XFormsDB updating process with data synchronization

5.3.6 The file Request

The file request enables the users of a Web application to manage (select, update,

insert/upload, delete, and download) files stored either within the Web application or

to another location on the server. The Multipurpose Internet Mail Extensions

(MIME) type of a file to be managed can be anything ranging from a Joint

Photographic Experts Group (JPEG) image to a Portable Document Format (PDF)

application.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

59

The xformsdb:file Element

Required child element of the xformsdb:instance element that wraps necessary

elements for performing a desired operation on one or more files.

The xformsdb:var Element

Optional child element of the xformsdb:file element, whose value (username, the

space-separated list of file IDs, or the space-separated list of role names) is linked to

an appropriate variable used by the file request to filter the list of files to be selected.

Table 13: Attributes of the xformsdb:var element associated with the file request

Attribute Description

name Required attribute specifying the name (username, ids or

roles) of a variable used by the file request to filter the

list of files to be selected. Default value is an empty

string.

The xformsdb:secvar Element

Optional child element of the xformsdb:file element, whose value (username of the

currently logged-in user or the roles of the currently logged-in user) is securely

linked to an appropriate variable used by the file request to filter the list of files to be

selected. The value of this element is not allowed to, and cannot, be altered because

it is securely set on the server side by an XFormsDB implementation.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

60

Table 14: Attributes of the xformsdb:secvar element associated with the file

request

Attribute Description

name Required attribute specifying the name (username or

roles) of a secured variable used by the file request to

filter the list of files to be selected. Default value is an

empty string.

Operations on files

XFormsDB provides four operations for managing files. The select operation enables

retrieving the metadata about files including the URI from which the file can be

downloaded. The insert, delete, and update operations, however, differ from the

select operation and the idea behind them is similar to each other. In each operation,

required information about the files is submitted to an XFormsDB implementation

within an appropriate wrapper element (either <xformsdb:insert>,

<xformsdb:delete>, or <xformsdb:update>, respectively) to ensure that an undesired

operation is not executed by mistake. As a result of a successful submission, the

XFormsDB implementation returns the metadata about files associated with the

performed operation in the structure described in Section 5.9.

Table 15: Required attributes of the xformsdb:file element(s) for each operation

associated with the file request

Operation Required attributes

select None. All files will be selected if filtering has not been

used.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

61

insert displayname, roles, filename, mediatype, filesize,

comment, and creator. Values for the filename,

mediatype, and filesize attributes are automatically set

by an xforms:upload element, which is bound to the

aforementioned attributes.

delete id

update displayname, roles, filename, mediatype, filesize,

comment, creator, created, lastmodifier, lastmodified,

id, and download. Replacing values for the filename,

mediatype, and filesize attributes are automatically set

by an xforms:upload element, which is bound to the

aforementioned attributes. Furthermore, replacing values

for the id, lastmodified, and download attributes must be

ignored by an XFormsDB implementation.

5.3.7 The cookie Request

The cookie request provides a means for checking browser support for cookies.

The xformsdb:cookie Element

Required child element of the xformsdb:instance element specifying only the name

of the request.

5.4 The xformsdb:submission Element

The xformsdb:submission element is a new element that adds functionality to submit

XFormsDB-related requests, such as the query requests. The requests can be

submitted multiple times and at any point in the lifetime of a form.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

62

The functionality and the processing model of the xformsdb:submission element is

identical to the xforms:submission element. In addition, the element supports

extension attributes, which have been described below.

Table 16: Extension attributes for the xformsdb:submission element

Attribute Description

requestinstance Required attribute specifying the xformsdb:instance

element containing an XFormsDB-related request to be

submitted. The default value is a reference to the first

occurrence of the xformsdb:instance element.

statetype Optional attribute specifying the type of the state

request, whose legal values are: get (default) and set.

expressiontype Optional attribute specifying the type of the query

request, whose legal values are: all (default), select, and

update.

filetype Optional attribute specifying the type of the file request,

whose legal values are: select (default), update, insert,

and delete.

attachmentinstance Optional attribute specifying the instance to be sent as

an attachment along with: (1) the state request (set), (2)

the query request (update), and (3) the file request

(update, insert, and delete). The attachment instance

contains the data to be updated, inserted, or deleted—

depending on the request. When the attribute is absent,

defaults to the value of the instance attribute.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

63

5.5 The xformsdb-request-error Event

The xformsdb-request-error event is a new, notification-typed event that is

dispatched as an indication of a failure of an XFormsDB-related request submission

and/or execution process. For instance, if an error occurs in establishing a connection

to a data source or in executing a query expression. The event can be caught by,

similarly to other events, XForms event handlers (XForms Actions) that use the

events system defined in DOM Level 2 Events [13] and XML Events [14].

The properties of the xformsdb-request-error event have the following values:

 Target element: xformsdb:submission

 Bubbles: Yes

 Cancelable: Yes

 Context info: None

 Default action: None; notification event only

In addition to the dispatched xformsdb-request-error event, a detailed error from an

XFormsDB implementation is made available. Generally, the error is appended into

the root node of the first child element of the xformsdb:instance element, which

submitted the XFormsDB-related request. However, in case the replace attribute of

the xformsdb:submission element has the value all, the error is included in an

XHTML document returned after the submission to guarantee that the error can be

displayed in XHTML browsers which do not necessarily support plain XML

documents.

5.6 The xformsdb:secview Element

The xformsdb:secview element is a new element that enables showing/hiding a part

of a Web page based on the roles of a user. For instance, a Web page may show a

login form for users who have not logged in yet, whereas for logged-in users the

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

64

Web page may show a username and a logout button in the exact same area on the

Web page.

Before an XFormsDB implementation sends a Web page to the client, it must go

through all the xformsdb:secview elements on the Web page and check whether or

not the current user has rights to access the content inside those particular

xformsdb:secview elements. In case the current user meets all the conditions set,

then, and only then, the content is exposed to the user.

In the absence of the underlying attributes, the content inside the particular

xformsdb:secview element is shown only for users who have not logged in yet. A

detailed decision tree diagram of the xformsdb:secview element is presented in

Appendix B.

Table 17: Attributes of the xformsdb:secview element

Attribute Description

roles Optional attribute specifying the space-separated list of

role names associated with the part of a Web page. A

user must belong to any of the listed roles in order to

access the content inside the particular

xformsdb:secview element on the Web page.

allroles Optional attribute specifying the space-separated list of

role names associated with the part of a Web page. A

user must belong to all of the listed roles in order to

access the content inside the particular

xformsdb:secview element on the Web page.

noroles Optional attribute specifying the space-separated list of

role names associated with the part of a Web page. A

user must not belong to any of the listed roles in order to

access the content inside the particular

xformsdb:secview element on the Web page.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

65

noallroles Optional attribute specifying the space-separated list of

role names associated with the part of a Web page. A

user must not belong to all of the listed roles in order to

access the content inside the particular

xformsdb:secview element on the Web page.

5.7 The xformsdb:include Element

The xformsdb:include element is a new element that provides an inclusion

mechanism to facilitate modularity. By means of the xformsdb:include element, it is

possible to build large XML documents out of several well-formed XML documents.

The idea behind the xformsdb:include element is similar to XInclude [102] with the

difference that it is much simpler.

The processing of the xformsdb:include elements is recursive, i.e., an included XML

document can itself include another XML document.

Table 18: Attributes of the xformsdb:include element

Attribute Description

resource Required attribute indicating the URI of an external

XML document to be included. Behavior of relative

URIs in links is determined by the host language, i.e.,

the form. Default value is an empty string.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

66

5.8 The xformsdb_users.xml Document

The xformsdb_users.xml document is the data source (realm) of usernames and

passwords that identify valid users of a Web application, plus an enumeration of the

list of roles associated with each valid user. A particular user can have any number of

roles associated with their username.

Updating, inserting, and deleting users is described in Section 5.3.5.

The xformsdb:users Element

Required element that wraps all xformsdb:user elements, i.e., it identifies valid users

of a Web application.

The xformsdb:user Element

Required child element of the xformsdb:users element, which identifies a valid user

of a Web application.

Table 19: Attributes of the xformsdb:user element

Attribute Description

username Required attribute specifying the username of a user,

which is used for logging into a Web application. Each

user must have a unique username within the Web

application.

password Required attribute specifying the password of a user,

which is used for logging into a web application. A

password can be either in clear text or hashed (supported

cryptographic hashing algorithms: SHA-512, SHA-384,

SHA-256, SHA-1, and MD-5; supported encoding

methods: hex and base64).

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

67

roles Required attribute specifying the space-separated list of

role names associated with a user.

anyAttribute Foreign attributes are allowed on this element.

5.9 The xformsdb_files.xml Document

The xformsdb_files.xml document contains the metadata about files associated with a

Web application, such as display name and file size. The actual files, which are

uploaded by the users of the Web application, on the other hand are stored either

within the Web application or to another location on the server.

Updating, inserting, and deleting files is described in Section 5.3.6.

The xformsdb:files Element

Required element that wraps all xformsdb:file elements, i.e., it contains the metadata

about files associated with a Web application.

The xformsdb:file Element

Required child element of the xformsdb:files element, which contains the metadata

about a file associated with a Web application.

Table 20: Attributes of the xformsdb:file element

Attribute Description

displayname Required attribute specifying the display name of a file.

roles Required attribute specifying the space-separated list of

role names associated with a file.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

68

filename Required attribute specifying the name (set

automatically by an xforms:upload element) of a file.

mediatype Required attribute specifying the MIME type (set

automatically by an xforms:upload element) of a file.

filesize Required attribute specifying the size (set automatically

by an xforms:upload element) of a file.

comment Required attribute specifying the free form comment

associated with a file.

creator Required attribute specifying the creator (username) of a

file.

created Required attribute specifying the creation date

(generated automatically by an XFormsDB

implementation) of a file in the xs:dateTime format.

lastmodifier Required attribute specifying the last modifier

(username) of a file.

lastmodified Required attribute specifying the last modified date

(generated automatically by an XFormsDB

implementation) of a file in the xs:dateTime format.

id Required attribute specifying the ID of a file, which is

used for locating files form the file system on the server.

Each file must have a unique ID (generated

automatically by an XFormsDB implementation) within

a Web application.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

69

download Additional attribute pointing to the URI from which a

file can be downloaded. The attribute is not stored in the

xformsdb:file element but added automatically by an

XFormsDB implementation when the metadata of the

file is retrieved. In case a user does not have rights to

download the file, the XFormsDB implementation must

show an error message.

anyAttribute Foreign attributes are allowed on this element.

5.10 Security Considerations

It must be noted that for security reasons, sensitive information (e.g., query

expressions and data source configurations) should never be exposed to the client in

their original form. An XFormsDB implementation must take care of this issue, for

example, by replacing query expressions and data source configurations with opaque

reference IDs in order to prevent malicious clients from rewriting the query

expressions and stealing the data source configurations.

In addition, redirecting to a (or the same) Web page is in most cases required upon a

successful login and logout in order to generate a new view with up-to-date access

rights for a user.

Finally, a two second pause should be applied by an XFormsDB implementation

after each attempt to download a file using an incorrect Uniform Resource Locator

(URL) in order to secure file downloads against malicious clients.

5.11 Summary

In this Chapter, the requirements and design of the XFormsDB markup language

have been presented. Finally, the XFormsDB markup language is evaluated with

respect to the requirements, whose results are presented in Table 21.

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

70

Table 21: The XFormsDB markup language requirements and related work in this

Thesis

Requirement Related work in this Thesis Section

LR1: The syntax and processing

model of the XFormsDB markup

language must be similar to

XForms.

The syntax and processing

model of the XFormsDB

markup language resembles

XForms.

5.2 –

5.10

LR2: The architecture of the

XFormsDB markup language must

be easily extensible.

New XFormsDB-related

requests can be added to the

language without requiring

any changes to the request

submission process.

5.3

LR3: XFormsDB-related requests

must be able to be executed

multiple times and at any point in

the lifetime of a form.

The xformsdb:submission

element addresses this

requirement.

5.4

LR4: The XFormsDB markup

language must provide a means for

notifying XFormsDB-related

request errors including detailed

error messages.

The xformsdb-request-error

event along with a detailed

error message is made

available upon an

unsuccessful submission.

5.5

LR5: The XFormsDB markup

language must provide a means for

facilitating modularity in

XHTML+XFormsDB documents.

The xformsdb:include

element makes possible to

build large XML documents

out of several well-formed

XML documents.

5.7

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

71

LR6: The XFormsDB markup

language must provide a means for

maintaining state in XFormsDB

Web applications.

This requirement is

addressed by the state

request.

5.3.1

LR7: The XFormsDB markup

language must provide a uniform

API for connecting to different

types of data sources.

The datasrc and doc

attributes provide an

abstraction layer on the

language level.

5.3.2 and

5.3.5

LR8: The XFormsDB markup

language must provide a

mechanism for authentication and

access control.

Authentication is addressed

by the login, logout, and user

requests, whereas access

control is addressed by the

xformsdb:secview element

together with the

xformsdb_users.xml

document.

5.3.2,

5.3.3,

5.3.4,

5.6,

and

5.8

LR9: The XFormsDB markup

language must support a

standardized query language

applicable across different types of

XML data sources.

The XFormsDB markup

language supports both

XQuery and XPath.

5.3.5

LR10: The XFormsDB markup

language must provide a means for

supporting multi-user concurrency.

Updating data to be stored in

a data source can be done

either with or without data

synchronization.

5.3.5

CHAPTER 5: DESIGN OF THE XFORMSDB MARKUP LANGUAGE

72

LR11: Security issues must be

considered carefully in the design

of the XFormsDB markup

language.

Security issues are addressed

throughout the design of the

XFormsDB markup

language and summarized in

the second-to-last Section of

this Chapter.

5.10

73

Chapter 6

Implementation of the XFormsDB

Framework

This Chapter describes the XFormsDB framework, which is a Proof-of-Concept

(PoC) implementation to confirm the feasibility of the XFormsDB markup language.

The Chapter starts by specifying the main requirements for the XFormsDB

framework. Then, the architecture and features of the framework are described in

detail. Finally, evaluation of the implemented framework with respect to the

requirements is carried out.

6.1 Requirements

A detailed list of the main functional and non-functional requirements for the

XFormsDB framework (hereinafter referred to as the Framework Requirements, FR)

is presented in Table 22. The framework requirements were primarily derived from

typical usage scenarios and technical specifications.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

74

Table 22: Requirements for the XFormsDB framework

ID Requirement

FR1 The XFormsDB framework must implement the XFormsDB

markup language.

The XFormsDB framework must support the XFormsDB markup

language, i.e., offer all the features specified by the language. This is

the main requirement for the framework.

FR2 The XFormsDB framework must be able to support different

types of user agents simultaneously.

Obviously, today’s user agents are not yet able to interpret the syntax

of the XFormsDB markup language, and thus are not capable of

processing authored XHTML+XFormsDB documents as such.

Therefore, the documents must be transformed into other formats

(e.g., (X)HTML+CSS+JavaScript) viewable by different types of

user agents.

FR3 The XFormsDB framework must be able to support different

types of data sources simultaneously.

Persistent data can be stored in various databases (e.g., native XML

databases or relational databases) and formats (e.g., XML or

relational data). Because of this, the XFormsDB framework must

provide a means for XFormsDB Web applications to access various

data sources.

FR4 The architecture of the XFormsDB framework must be divided

into logical tiers.

The user interface, business logic, and data must be separated. In

addition, the framework must be build in a modular way, which

allows replacing or adding components (modules) without affecting

the rest of the system.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

75

FR5 The XFormsDB framework must support various Web standards

and technologies.

In general, Web content authors use open standards (e.g., (X)HTML

and CSS) in Web application development. Each standard has its

own special purpose, for instance, (X)HTML is for document

structure and CSS is for presentation.

In order to utilize the pre-existing skill set of the bulk of Web content

authors, the XFormsDB framework must not preclude the use of any

open standard.

FR6 The XFormsDB framework must provide transaction support

and data synchronization capabilities.

Web applications are typically accessed concurrently by multiple

users over a network, such as the Internet or an intranet. In general,

when two or more users make updates to the same data fragment

simultaneously, the updates made by the last user override the

updates made by the previous users. In some cases, this is not

acceptable, and therefore, the framework must perform data

synchronization before committing an update transaction.

FR7 The XFormsDB framework must be able to manage sessions

between the client side and the server side regardless of the user

agent used or its settings.

HTTP(S) is a stateless protocol, but Web applications often need to

maintain session state for every user. Typically, this is achieved by

using cookies—small pieces of data stored in user agents. In some

cases, however, the use of cookies might not be possible. Therefore,

in addition to cookies, an alternative way for managing sessions must

be provided.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

76

FR8 The XFormsDB framework must be able to handle, report, and

log errors.

Error handling is an essential part of every application. In case of an

error (e.g., conflict in data synchronization), an appropriate error

message must be sent to the user agent and the error must be logged

for future reference.

FR9 The XFormsDB framework must be highly customizable but yet

easy to install and configure.

Different users have different needs and preferences. In addition, not

all users possess advanced computer skills. Therefore, the installation

and configuration of the framework must be as easy as possible but

yet be flexible enough to suit for advanced users as well.

6.2 Development Environment

The run-time and development environment of The XFormsDB framework consists

of several open-source application software and libraries. The main software used

are:

Apache Ant 1.6.5 and Ant-Contrib 1.0b3 Apache Ant [67] is a Java-based build

tool. It is a platform-independent replacement for the make tool used for

automating build tasks, such as compiling Java classes and deploying Web

applications. The Ant-Contrib project [80] extends the functionality of

Apache Ant by providing a collection of additional tasks.

Apache Tomcat 5.5.27 Apache Tomcat [68] is a servlet container

implementing the Java Servlet and JavaServer Pages (JSP) specifications

from Sun Microsystems, Inc. In this project, Apache Tomcat is used as a Web

server for hosting Java 2 Platform, Enterprise Edition (J2EE) Web

applications.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

77

Eclipse IDE for Java EE Developers 3.4.0 with Subclipse 1.2.4 Eclipse [81] is a

collection of open source projects focused on building an open development

platform comprised of extensible frameworks, tools, and runtimes for

building, deploying, and managing software across the lifecycle. In this

project, Eclipse IDE extended with the Subclipse plug-in [82] is used for

developing J2EE Web applications.

eXist-db 1.2.4-rev8072-20080802 eXist-db [69] is a native XML database with

broad support for standards, technologies, and APIs, including XQuery +

update extensions, REST, and XML:DB API [75]. It is written in the Java

language and it runs on most major platforms. In addition, eXist-db supports

different alternatives for server deployment, ranging from a standalone server

process to a Web application.

3DM 0.1.5beta1 3DM [70, 85] is a middleware for performing three-way

merging and differencing of XML documents. The XFormsDB framework

utilizes 3DM in updates that require data synchronization.

Orbeon Forms dev-post-3.7.1.200910160000-development
1
 Orbeon Forms

[72] is a J2EE based framework for building XML-centric Web applications.

The XFormsDB framework utilizes AJAX-based Orbeon Forms XForms

processor
2
 in order to support standard Web browsers, including Internet

Explorer, Firefox, and Safari.

In addition, Java Development Kit (JDK) 1.5.0 [71] or later is required.

6.3 High-Level Architecture

The high-level architecture of the XFormsDB framework is illustrated in Figure 9.

As the figure shows, several XFormsDB Web applications can reside and run

simultaneously on a single Web server without interfering each other. The Web

1
 This version contains important bug fixes necessary for the XFormsDB framework to work properly.

2
 In fact, XForms processing is shared between a light client-side module and a heavier server-side

module that rely on the AJAX technique.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

78

applications rely on a generic server-side component (XFormsDB processor), which

interprets authored XHTML+XFormsDB documents and provides the integration

services to heterogeneous data sources. In addition to the XFormsDB Web

applications, the Web server also hosts a server-side implementation of XForms

called Orbeon Forms, which contains an XForms processor and is running as a

separate Web application on the Web server.

The benefits of integrating the Orbeon Forms XForms processor with XFormsDB

Web applications using the separate deployment mode instead of the other option,

the integrated deployment mode, are: (1) several XFormsDB Web applications can

utilize the same instance of the Orbeon Forms XForms processor, (2) easier upgrades

of both XFormsDB Web applications and Orbeon Forms, (3) prevents situations

where different versions of Java Archive (JAR) files could conflict, and (4) cleaner

application architecture, which allows changing Orbeon Forms to another XForms

implementation more easily if needed. [73]

On the client side, the XFormsDB framework supports three main types of user

agents
1
: user agents with XForms 1.1 support, user agents with AJAX support, and

user agents with plain (X)HTML support. All the main types of user agents can be

supported simultaneously by providing a dedicated version of a Web page for each

type of user agent. The detection of the type of user agent (and possibly redirection)

is performed on the client side.

For storing persistent data, two different types of XML-based data sources are

supported: XML documents and eXist-db (NXD). In the case of XML documents,

the XFormsDB framework uses Saxon’s implementation of XQuery and XQuery

API for Java (XQJ) for executing XQuery expressions, whereas in the case of eXist-

db (NXD), XML:DB API (which is implemented over XML-RPC [76]) is used for

talking to the remote database engine and executing XQuery expressions. By using,

for instance, a middleware described in Section 3.3.5, support for other types of data

sources (e.g., relational databases) could be easily added as well (cf. dashed lines in

Figure 9 and Figure 10).

1
 User agents supporting XForms 1.1 can be further subdivided into those that support JavaScript and

those that do not support JavaScript. In addition, the XFormsDB framework is also capable of serving

XHTML+XFormsDB documents as such.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

79

Figure 9: XFormsDB high-level architecture

Installation

Currently, the XFormsDB framework’s one-click installer deploys eXist-db (NXD)

as a separate Web application on the same Web server rather than as a standalone

server, which makes the installation process of the XFormsDB framework as a whole

much easier in a development environment. In a production environment, however,

the standalone deployment is recommended, since it is more reliable and efficient

than the Web application setup [77].

6.4 Modules and Tiers

The architecture of the XFormsDB framework (cf. Figure 10) can be divided into

five logical tiers: client tier, presentation tier, application server tier, integration

service tier, and data tier [83].

The Client Tier represents different types of user agents. Its purpose is to render the

presentation prepared by the Presentation Tier as well as to react to the input from

the user and relay it to the Presentation Tier.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

80

The Presentation Tier is responsible for the preparation of the output to the Client

Tier. It handles all incoming requests submitted by the user and transforms requested

XHTML+XFormsDB documents into a dedicated version for each type of user agent

(cf. Section 6.8).

The Application Server Tier is in charge of executing the business logic of the

XFormsDB framework. It manages XFormsDB-related requests and their results as

well as performs data synchronization (cf. Section 6.9).

The Integration Service Tier provides an interface for the Application Server Tier to

perform the data access operations. It applies the logic needed to extract data from

the Data Tier using the XQuery language. Communication with the Data Tier is

accomplished with a standard API, such as XQJ.

The Data Tier stores application data in a persistent store, such as eXist-db (NXD).

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

81

Figure 10: XFormsDB modules and tiers

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

82

6.5 Web Application Directory Structure

Figure 11 shows the directory structure of an XFormsDB Web application. It is

based on the standard directory structure of a J2EE Web application because

XFormsDB is a J2EE based framework.

Figure 11: XFormsDB Web application directory structure

The META-INF directory contains the context.xml file, which allows forwarding

requests to other Web applications, i.e., Orbeon Forms. The contents of this directory

cannot be publicly accessed.

The WEB-INF directory contains the web.xml deployment descriptor file and the

XFormsDB configuration file called conf.xml (cf. Section 6.12). The classes and lib

subdirectories contain all the class, JAR, and resource files required by the Web

application, including extension servlets written by the author of the Web

application. The contents of this directory cannot be publicly accessed.

The root directory contains all the static files and additional subdirectories that make

up the Web site.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

83

Standalone versus Lite

There are two different deployment options for XFormsDB Web applications:

Standalone and Lite. Standalone XFormsDB Web applications contain all the

common class, JAR, and resource files required for running on any servlet container.

Lite XFormsDB Web applications, however, do not contain these files, and therefore

are significantly smaller in size and can only run on servlet containers supporting

XFormsDB, i.e., servlet containers that make these files available to all deployed

Web applications. As can be seen, both deployment options have benefits and

drawbacks, and therefore usage must be assessed on a case by case basis.

6.6 Web Page Components

XFormsDB Web pages are authored using various Web standards and technologies,

each with its own special purpose. The main Web standards and technologies used

are:

 XHTML for document structure

 XForms for user interaction

 XFormsDB for data access and common server-side tasks

 XML for data model and interchange

 CSS for visual layout and presentation

 XQuery and XPath for querying data

 JavaScript for animation and additional user interaction

The relationships between the main Web standards and technologies used in

XFormsDB Web pages are illustrated in Figure 12. The XHTML and XForms Web

standards—including the XFormsDB technology—together form the base of a Web

page. Other Web standards are included to the Web page either using inline style or

adding a reference to an external file containing the definitions.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

84

The benefits of making definitions into external files instead of using inline style are

that it promotes component reuse and eases their maintenance. In addition, authoring

of difficult components (e.g., complex query expressions) can be assigned to experts,

after which those components can be easily shared with other non-expert authors.

Figure 12: XFormsDB Web page main components

6.7 Handling Requests and Responses

In order to control and manage the handling of HTTP(S) requests in a centralized

manner, the XFormsDB framework applies the Front Controller pattern (Servlet

Front Strategy) [127]. The XFormsDBServlet class, which acts as the front controller,

manages the handling of all requests, including authentication and authorization,

delegating business processing, managing the choice of an appropriate view, and

handling errors.

The process of handling a request is started by retrieving the HTTP(S) request

parameters of interest (id, expressiontype, statetype, filetype, and replacetype). Then,

the handling of the request is forwarded to an appropriate request handler based on

the HTTP(S) request method (get or post), the HTTP(S) request content type (null or

application/xml), and the file extension of the requested URL (*.xformsdb,

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

85

*.xformsdbdownload, *.xformsdbupload, or other non-XFormsDB related file

extension). Furthermore, if the HTTP(S) request method is post, then the content of

the HTTP(S) request is analyzed as well. Finally, the response is written or, in case

of a conditional get request that matches the condition, a 304 Not Modified header is

sent back to the client in the response.

6.8 Transformation Processes

The XFormsDB framework uses two separate server-side transformation processes

(cf. Figure 13) to transform authored XHTML+XFormsDB documents (*.xformsdb)

into other formats viewable by different types of user agents.

The benefit of implementing both the XFormsDB language and the XForms

language as separate server-side transformations, rather than implementing native

support for the XFormsDB language in an open-source browser supporting XForms

natively, such as X-Smiles browser [23, 24], is that the solution is not tied down to a

single browser, but offers full cross-browser compatibility.

Figure 13: Transformation processes within the XFormsDB framework

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

86

6.8.1 XHTML+XFormsDB to XHTML+XForms 1.1

In the first transformation process, an authored XHTML+XFormsDB document is

transformed into XHTML+XForms 1.1 compliant markup. The transformation

process, which is performed by the XFormsDBTransformer class, is divided into

seven main phases and it comprises four XSLT transformations altogether, as

illustrated in Figure 14.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

87

Figure 14: XFormsDB transformation process

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

88

In the first XSLT transformation (xformsdb_include.xsl), external XML documents

(reusable XML fragments) are included in the main XHTML+XFormsDB document.

The second XSLT transformation (xformsdb_secview.xsl) filters out those parts of

the included document the user does not have access rights to, i.e., carries out

authorization based on the roles of the user. The next XSLT transformation

(xformsdb_extract.xsl) extracts data from the filtered document for validation and

updating purposes. The updated data is then stored in the session for future reference.

Finally in the last XSLT transformation (xformsdb_xforms.xsl), the filtered document

is transformed into XHTML+XForms 1.1 compliant markup.

In addition, the following utility instances are automatically added to the document:

xformsdb-response-proxy-instance-x Acts as a response proxy for all the

responses of XFormsDB-related requests. Added to each XForms model, in

which "x" means the position of the XForms model within the document.

xformsdb-request-base-uri-instance Contains HTTP request base URI, for

example, http://localhost:8080/blog. Added to the first XForms model only.

xformsdb-request-headers-instance Contains HTTP request headers.

Added to the first XForms model only.

xformsdb-request-parameters-instance Contains HTTP request parameters,

i.e., URL parameters. Added to the first XForms model only.

xformsdb-state-instance Contains Web application’s state information, i.e.,

XFormsDB state. Added to the first XForms model only.

6.8.2 XHTML+XForms 1.1 to (X)HTML+CSS+JavaScript or

Plain (X)HTML+CSS

In the second transformation process, the output of the previous transformation

process, i.e., XHTML+XForms 1.1 compliant markup, is transformed into

(X)HTML+CSS+JavaScript or plain (X)HTML+CSS, depending on the

configuration. The transformation process is performed on the server side using a

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

89

third-party software, an AJAX-based XForms implementation called Orbeon Forms

XForms processor (cf. OPS XForms Engine in Figure 15).

The transformation process as well as its position between the XFormsDB

framework (XFormsDB Web applications) and user agents is illustrated and

described in detail in Figure 15.

Figure 15: XForms transformation process [74]

The rationale behind plain (X)HTML+CSS support is to allow targeting user agents

that either do not support JavaScript or have JavaScript disabled, such as old

browsers and low-end mobile phones.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

90

6.9 Data Synchronization

The XFormsDB framework includes built-in support for performing synchronized

updates as specified in Section 5.3.5. To accomplish data synchronization, the

XFormsDB framework uses 3DM [85], a middleware for performing three-way

merging of XML documents, which is able to detect and handle update, insert, and

delete operations as well as moves and copies of entire subtrees. Furthermore, the

aforementioned operations can be performed without the use of unique element

identifiers, i.e., XML documents can be used as such.

To illustrate how 3DM works, consider the merging example shown in Figure 16. In

the example, T0 is referred to as the original version, T1 as the altered version, T2 as

the current version stored in the data source, and Tm as the merged version. Blue

color indicates that the node has been either updated (marked with an apostrophe),

inserted, or moved, whereas white color indicates that the node has remained

unaltered.

Figure 16: Data synchronization process: a three-way merge for XML documents

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

91

In case the data synchronization process fails (e.g., merge conflict), an appropriate

error message is reported back to the form, which handles the error on a case by case

basis.

Even though the solution for performing synchronized updates in the XFormsDB

framework has many advantages (e.g., simple and elegant), it has a few

disadvantages that need to be taken into account. For example, in some cases large

XML fragments need to be transmitted back and forth just to perform a simple insert

or delete operation. In addition, an XML fragment that needs to be updated might

expose sensitive information to the client side.

6.10 Session Management

The stateless nature of HTTP(S) forces developers to find other ways for managing

sessions between the client side and the server side. The most popular way is through

the use of session identifiers, in which a session identifier (a unique session ID) is

transmitted back to the server with every HTTP(S) request.

There are three ways available to both allocate and receive session ID information,

each having its advantages and disadvantages [84]:

 Cookies

 URL rewriting

 Hidden form variables

The XFormsDB framework supports two out of the three ways for managing

sessions: cookies (default) and URL rewriting (can also be used as default).

The rationale behind URL rewriting support is to allow targeting user agents that

either do not support cookies or have cookies disabled, such as low-end mobile

phones. In addition, URL rewriting allows multiple simultaneous sessions for a

single user, i.e., it makes possible running two or more instances of the same Web

application and/or widget within the same user agent instance.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

92

6.11 Error Handling

The XFormsDB framework implements error handling as specified in Section 5.5. In

case of an error, an appropriate error message with error code and error description is

sent to the user agent. The format of the error message is either XML (cf. Listing 39)

or XHTML (cf. Listing 40), depending on the request.

The error descriptions sent by the XFormsDB framework are kept a bit vague on

purpose due to security reasons. Furthermore, they are not internationalized (in

English only) because the XFormsDB framework is a general-purpose software.

Therefore, XFormsDB Web applications usually display own specific, and possibly

internationalized, error descriptions along with the sent error code when an error

occurs.

In addition to the sent error message, the following information about the occurred

error is written to a log file on the server in order to trace the problem to its source

and to determine why the error occurred:

 Date and time

 Error code

 Error description

 Full Java exception stack trace

 Logged in user

 HTTP(S) request URL

 HTTP(S) request headers of the latest (get or post) request

 HTTP(S) request headers of the latest get request

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

93

6.12 Configuration

The main configuration file for the XFormsDB framework is called conf.xml, which

is loaded from the WEB-INF directory of the XFormsDB Web application. Table 23

describes how the system can be configured and lists all the customizable settings.

Table 23: Settings of the XFormsDB configuration file (conf.xml)

Setting Description

MIME mapping The MIME mappings (extension and MIME type) that

are used to transform XHTML+XFormsDB documents

into XHTML+XForms 1.1 compliant markup.

Encoding The character encoding that is used in input (e.g., query

files) and output files throughout the XFormsDB Web

application.

Data source The predefined data source configurations that are used

for connecting to the data source.

Files metadata The predefined data source configuration that is used for

connecting to the files metadata data source.

Files folder The files folder that is used for storing uploaded files.

3DM conflict level The conflict level of the three-way XML merging tool

that is used for updating data (an XML fragment) with

data synchronization.

Security file The security files (extension) that are used for protecting

files from clients.

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

94

The web.xml deployment descriptor file, which is also loaded from the same

directory, contains the rest of the XFormsDB Web application settings, such as

Orbeon Forms XForms processor related settings, session timeout, MIME mappings,

and welcome files.

All of the settings in both configuration files default to reasonable values, thus

making the XFormsDB framework ready to work "out-of-the-box".

6.13 Summary

This Chapter presented the requirements and implementation of the XFormsDB

framework, including the architecture and features of the framework. Finally, the

XFormsDB framework is evaluated with respect to the requirements, whose results

are presented in Table 24.

Table 24: The XFormsDB framework requirements and related work in this

Thesis

Requirement Related work in this Thesis Section

FR1: The XFormsDB framework

must implement the XFormsDB

markup language.

The XFormsDB framework

conforms to the XFormsDB

markup language.

6.3 –

6.12

FR2: The XFormsDB framework

must be able to support different

types of user agents

simultaneously.

User agents supporting

XForms 1.1, AJAX, and

plain (X)HTML can be used

on the client tier.

6.3,

6.4,

and

6.8

FR3: The XFormsDB framework

must be able to support different

types of data sources

simultaneously.

Currently, XML documents

and eXist-db (NXD) are

supported for storing

persistent data.

6.3

and

6.4

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

95

FR4: The architecture of the

XFormsDB framework must be

divided into logical tiers.

The XFormsDB framework

is based on a modular

architecture, which separates

presentation, business logic,

and data.

6.3

and

6.4

FR5: The XFormsDB framework

must support various Web

standards and technologies.

The XFormsDB framework

does not preclude the use of

any open standard.

6.5

and

6.6

FR6: The XFormsDB framework

must provide transaction support

and data synchronization

capabilities.

The XFormsDB framework

includes a built-in support

for performing synchronized

updates.

6.9

FR7: The XFormsDB framework

must be able to manage sessions

between the client side and the

server side regardless of the user

agent used or its settings.

Cookies and URL rewriting

are supported for managing

sessions.

6.10

FR8: The XFormsDB framework

must be able to handle, report, and

log errors.

In case of an error, an

appropriate error message

with error code and error

description is sent to the user

agent. In addition, detailed

information about the

occurred error is written to a

log file on the server.

6.11

CHAPTER 6: IMPLEMENTATION OF THE XFORMSDB FRAMEWORK

96

FR9: The XFormsDB framework

must be highly customizable but

yet easy to install and configure.

The configuration settings

are extensive and default to

reasonable values. The

XFormsDB framework

works "out-of-the-box" and

can be installed by running a

single install script.

6.3

and

6.12

97

Chapter 7

Sample Web Applications

This Chapter describes two sample Web applications in detail, which were developed

to validate the feasibility of the XFormsDB framework presented in Chapter 6 as

well as to answer the research question Q3 presented in Chapter 4.

The first sample Web application, PIM: Contacts, is a toy example motivated by

reality and the second sample Web application, Blog, is a real-life Web application

of today. Both of these two example types as validation techniques are also

mentioned by Shaw [10].

7.1 About Measurements

The following metrics were measured for both Web applications in order to

determine the amount of work required to develop each Web application and the

performance of each Web application: component metrics, response size metrics, and

response time metrics.

The component metrics were measured so that the files of each Web application were

formatted in a way that each line contained only one piece of a component (e.g.,

element’s start or end tag, content, or comment), after which the number of lines,

elements, attributes, and rules used were calculated separately for each component.

CHAPTER 7: SAMPLE WEB APPLICATIONS

98

The component metrics, however, do not tell the truth about the performance of a

Web application. Therefore, two accurate, state-of-the-art tools were used for

measuring performance related metrics of each Web application: (1) Charles [103], a

web debugging proxy application and (2) Episodes [104, 105], a web performance

measurement framework. Charles was used to measure the response size metrics and

to throttle bandwidth, whereas Episodes was used to measure the response time

metrics. The response time metrics were measured by calculating the average Web

page load time of ten tests.

The performance measurements were made over a simulated DSL connection (1000

kbps/1000 kbps, round-trip latency 40 ms) using Firefox 2.0.0.20 running on

iMac8.1 2.4 GHz Intel Core 2 Duo with 4 GB RAM client machine. The server

machine, on which the Web applications were running, was configured to compress

(gzip [106]) all text responses, including JavaScript and CSS files.

7.2 Personal Information Management (PIM):

Contacts

7.2.1 Overview

Personal Information Management (PIM): Contacts is a simple Web application for

storing, browsing, and managing information about your personal contacts, such as

names, addresses, phone numbers, and e-mail addresses.

PIM was developed as a toy example, although inspired by real-life systems, to test

capabilities and ease of use of the XFormsDB framework as well as how easily

certain user interface functions (e.g., sorting data and changing the language of the

user interface) can be authored by using the framework.

7.2.2 Conceptual Web Site Diagram

The structure of the PIM Web site is illustrated in Figure 17. The Web site comprises

of only a single Web page (Contacts; Home page) that contains a list of contacts and

CHAPTER 7: SAMPLE WEB APPLICATIONS

99

actions (A.1–A.4 and C.1–C.2), primarily for managing the contacts. Each contact

within the Web page can be set to an individual state (B.1–B.4) without reloading the

whole Web page.

The goal of having only a single Web page with multiple contact states, instead of

having separate Web pages for each contact state, is to improve the overall user

experience and usability of the Web site, i.e., by allowing users to manage their

contacts without interruptions.

Figure 17: PIM conceptual Web site diagram

7.2.3 User Interface

Figure 18 shows the user interface of the PIM Web application in its initial state. In

this state, all contacts are in the list state and sorted by name in ascending order. The

default language of the user interface is English.

The language menu is located in the top right corner, which provides three different

options for the user interface language: Finnish, Swedish, and English.

CHAPTER 7: SAMPLE WEB APPLICATIONS

100

All contacts are listed in the Contacts table, which is located in the middle section of

the Web page. Detailed information about a certain contact can be viewed by

clicking the name of the contact. Contact information can be modified or removed by

clicking the Edit or Delete link, respectively. By clicking the arrow icon next to the

Name column, contacts can be sorted by name either in ascending or descending

order depending on the previous state. The total number of contacts is displayed in

the bottom left corner of the Contacts table.

Figure 19 shows the user interface after some of the contact information have been

modified and the changes have been successfully saved to the database.

Finally, it should be noted that all the aforementioned actions can be carried out

without reloading the whole Web page.

Figure 18: The user interface of the PIM Web application in the initial state, in

which all contacts are in the list state

CHAPTER 7: SAMPLE WEB APPLICATIONS

101

Figure 19: The user interface of the PIM Web application, in which contacts are in

different states

7.2.4 Architecture

The PIM Web application was developed by using the XFormsDB framework. The

framework was configured so that it makes use of both the mandatory XFormsDB

CHAPTER 7: SAMPLE WEB APPLICATIONS

102

transformation process and the optional AJAX-based Orbeon Forms XForms Engine

in order to transform the Web page it consists of into the form of

(X)HTML+JavaScript+CSS, which is viewable by most common browsers. For

storing persistent data, eXist-db (NXD) was configured to be used.

The Web page, from which the whole PIM Web application basically consists of,

was authored purely declaratively
1
 using the XHTML+XFormsDB markup

languages. In addition to the standard functions provided by XForms, the Web page

uses a few XForms extension functions (e.g., for data sorting) implemented by

Orbeon Forms. The visual appearance of the user interface was tweaked by using

external CSS files. Data templates were modeled in external XML files. Finally, the

data query used within the PIM Web application was written in XPath and stored to a

secured external file.

7.2.5 Queries

The PIM Web application contains only one simple query, which is aimed both for

retrieving PIM data from and updating PIM data into eXist-db as a whole. The query

relies solely on the features defined in the XPath 2.0 specification. The properties of

the query are described in detail in Table 25.

Table 25: PIM queries

Property Value

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_and_update_pim.xpath

Select and update PIM data.

XPath, simple

no

eXist-db (NXD), remote

medium

1
 Excluding the JavaScript code that was needed to instrument the Web page with Episodes timers.

CHAPTER 7: SAMPLE WEB APPLICATIONS

103

7.2.6 XML Data

Listing 13 shows a snippet of the example XML document (PIM data) stored in the

database. The data in the XML document has a regular structure (data-centric) and it

mainly consists of a sequence of contact elements, each identified with a unique ID.

Listing 13: A snippet of the example XML document used in PIM

<?xml version="1.0" encoding="UTF-8"?>

<root>

 <pim>

 <contacts>

 <contact id="faadfab7b61a0781c12374202c9765c3">

 <name>Markku Laine</name>

 <title>Research assistant</title>

 <company>Helsinki University of Technology</company>

 <street>Konemiehentie 2</street>

 <city>Espoo</city>

 <state></state>

 <zip>02150</zip>

 <country>Finland</country>

 <telephone></telephone>

 <fax></fax>

 <mobilephone>+358 50 555 3333</mobilephone>

 <email>markku.laine@tml.hut.fi</email>

 </contact>

 ...

 </contacts>

 </pim>

</root>

7.2.7 Metrics

The component metrics of the PIM Web application are presented in Table 26. As

can be seen from the results, the number of lines that was needed for modeling the

database template and connecting XForms to the database was extremely low,

whereas the number of lines that was needed for authoring the structure, layout, and

logic of the Web application was rather high. In addition, it must be noted that the

CHAPTER 7: SAMPLE WEB APPLICATIONS

104

code was by no means optimized and it included a vast repetitive section of code

(over 300 lines) due to alternating table rows.

Table 26: PIM component metrics

Component Lines Elements Attributes Rules

XHTML

CSS

JavaScript

XForms

Instance Data

XFormsDB

XPath

Database Template

Comment

Empty

Miscellaneous

Total

386

194

30

443

143

9

1

6

93

30

12

1347

202

0

0

329

132

5

0

3

0

0

3

674

196

0

0

390

27

14

0

0

0

0

2

629

0

33

0

0

0

0

0

0

0

0

0

33

Table 27 and Table 28 show the performance metrics of the PIM Web application.

The measurements were made with both empty cache and primed cache. The total

Web page weight was 92% less and the average Web page load time was 44% faster

on subsequent page views.

CHAPTER 7: SAMPLE WEB APPLICATIONS

105

Table 27: PIM response size metrics

 Empty Cache Primed Cache

Requests Size

(kB)

 Requests Size (kB)

index.xformsdb

 HTML

 JavaScript

 CSS

 Image

 Total

1

3

3

10

17

12.2

111.1

6.4

24.7

154.3

 1

2

2

7

12

12.2

0.0

0.0

0.8

13.0

Table 28: PIM response time metrics

 Empty Cache Primed Cache

Time (s) Time (s)

index.xformsdb

 Backend

 Frontend

 Total

1.6

0.6

2.2

 0.8

0.5

1.3

The sizes of the Web Archive (WAR) files were 37.9 kB (Lite version) and 17.6 MB

(Standalone version).

7.2.8 Analysis

PIM toy example clearly demonstrated the feasibility and capabilities of the

XFormsDB framework by proving that common Web application functions (e.g.,

internationalization, sorting data, and database access) can be authored purely

CHAPTER 7: SAMPLE WEB APPLICATIONS

106

declaratively—does not require users to write any client-side scripting or server-side

programming code at all.

Overall, developing the PIM Web application went easily without facing any serious

problems. Internationalization of the user interface was accomplished fairly simply

and rapidly by using conditional XPath expressions in XForms output form controls.

In addition, another task that turned out extremely well was connecting XForms to

the database, which was realized by utilizing XFormsDB features.

However, regardless of the success of the PIM Web application, the development

process raised several issues that could be improved. Firstly, the current XForms

standard lacks of many useful functions, such as sorting node sets. These functions

are usually implemented as extensions by XForms implementations but they should

be added to the XForms standard to ensure a unified authoring syntax. Secondly,

both XHTML and XForms should provide support for Attribute Value Templates

(AVT), i.e., allowing the inclusion of XPath expressions within attributes. This way

the amount of repetitive code could be reduced significantly as there would not be

the need for defining separate sections for each condition anymore. Finally, the

update-typed query request of XFormsDB should be enhanced. At the moment, an

XPath expression used for updating must point to the root element of the XML

fragment to be updated which might result in large XML fragments even if only few

nodes needs to be updated.

7.3 Blog

7.3.1 Overview

Blog is an online journal or diary Web tool for publishing personal contents, such as

news, thoughts, comments, and experiences. It is a slightly simplified version of

publicly available blog software.

Blog was developed to test how well the XFormsDB framework suits for authoring

popular real-life Web applications of today, containing multiple Web pages and

CHAPTER 7: SAMPLE WEB APPLICATIONS

107

complex data source queries. Mobile and widget versions of the Web application also

exist but they have been excluded from the description.

7.3.2 Conceptual Web Site Diagram

The structure of the Blog Web site is illustrated in Figure 20. The Web site has been

divided into two main areas: Public (B.1) and Administration (B.2).

In the Public area, users are allowed to browse through archives and read published

posts as well as leave their comments on the posts. The Administration area, on the

other hand, is controlled by limited access policy via the Login Web page (A.1). The

area contains necessary tools for managing published posts and comments. Both the

Public area and the Administration area consist of multiple page states (C.1–C.2 and

C.3–C.5).

Figure 20: Blog conceptual Web site diagram

7.3.3 User Interface: Public

The user interface of the Public area is shown in Figure 21. The navigation takes

place through the archive menu located on the right-hand side, which is created

dynamically to list all months containing posts. The content part on the left-hand side

is also created dynamically according to selected archive month and post.

CHAPTER 7: SAMPLE WEB APPLICATIONS

108

The Web page by itself contains two page states in which the navigation between the

states is carried out without reloading the whole Web page. For instance, Figure 22

shows the Public area in the view post state, which displays a single post with

comments on it as well as the form for adding new comments.

Figure 21: The user interface of the Public area of the Blog Web application in the

view posts of the month state

CHAPTER 7: SAMPLE WEB APPLICATIONS

109

Figure 22: The user interface of the Public area of the Blog Web application in the

view post state

7.3.4 User Interface: Administration

The user interface of the Administration area follows the same layout principles as

the Public area which thus eases navigation through the Web site. The navigation,

which is located on the right-hand side, has been divided according to the three main

CHAPTER 7: SAMPLE WEB APPLICATIONS

110

tasks: write a post, manage posts, and manage comments. Depending on the selected

task, appropriate tools for browsing, viewing, adding, editing, and deleting posts or

comments are provided in the content part.

Figure 23 shows how comments can be smoothly managed, even without using a

full-page refresh, using the tools in the Administration area.

Figure 23: The user interface of the Administration area of the Blog Web

application in the manage comments state

CHAPTER 7: SAMPLE WEB APPLICATIONS

111

7.3.5 Architecture

The Blog Web application was developed using the XFormsDB framework with

eXist-db (NXD) as the backend data source for the application. In addition, AJAX-

based Orbeon Forms XForms Engine was used to provide support for browsers

without XForms 1.1 support.

The Web pages of the Blog Web application were authored using the following Web

standards and technologies: XHTML, XForms with Orbeon Forms extensions,

XFormsDB, XML, XQuery, XPath, CSS, and JavaScript
1
. XML, XQuery, and CSS

definitions were placed each in a separate file to maximize maintainability and

reusability of components. In addition, configurable security files were used to

protect sensitive information contained in XQuery and XPath files from malicious

clients.

7.3.6 Queries

The queries used within the Blog Web application vary from simple XPath-based

queries to complex XQuery-based queries utilizing external variables and functions

defined in the FunctX XQuery Function Library [79]. The primary purpose of use of

the queries is for selecting and updating posts and comments stored in eXist-db.

Table 29 describes the properties of the queries used in detail.

1
 JavaScript was used only for instrumenting the Web pages with Episodes timers.

CHAPTER 7: SAMPLE WEB APPLICATIONS

112

Table 29: Blog queries

Property Value

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_and_update_comments.xpath

Select and update comments of a post.

XPath, simple

yes

eXist-db (NXD), remote

medium

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_and_update_posts.xpath

Select and update posts.

XPath, simple

no

eXist (NXD), remote

large

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_comment_archives.xq

Create a monthly list of archived comments.

XQuery, complex

no

eXist-db (NXD), remote

small

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_comment.xq

Select a comment of a post.

XQuery, intermediate

yes

eXist-db (NXD), remote

small

CHAPTER 7: SAMPLE WEB APPLICATIONS

113

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_manage_comments.xq

Select filtered comments of all posts of a month.

XQuery, complex

yes

eXist-db (NXD), remote

medium

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_manage_posts.xq

Select filtered posts of a month.

XQuery, complex

yes

eXist-db (NXD), remote

medium

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_post_archives.xq

Create a monthly list of archived posts.

XQuery, complex

no

eXist-db (NXD), remote

small

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_post.xq

Select a post.

XQuery, intermediate

yes

eXist-db (NXD), remote

medium

Name

Description

Type and complexity

External variables

Type of data source

Result set size (XML)

select_posts.xq

Select posts of a month.

XQuery, complex

yes

eXist-db (NXD), remote

medium

CHAPTER 7: SAMPLE WEB APPLICATIONS

114

7.3.7 XML Data

The Blog Web application uses two XML documents, blog.xml (cf. Listing 14) and

xformsdb_users.xml, to store all the data needed. Spreading the data across more

XML documents would also have been an option, but it would have resulted in

considerably more complex queries.

The XML documents were designed with data-centric XML in mind, because the

XML documents were meant for machine consumption only. Each post and comment

element within blog.xml contains a required attribute called id, which identifies the

element in question.

CHAPTER 7: SAMPLE WEB APPLICATIONS

115

Listing 14: A snippet of the example XML document used in Blog

<?xml version="1.0" encoding="UTF-8"?>

<root>

 <blog>

 <posts>

 <post id="08f865da2048e660daf7dbac35d7ba2a">

 <headline>Master’s Thesis</headline>

 <creationtime>2007-04-15</creationtime>

 <content>Comments on my Master’s Thesis.</content>

 <author>Markku Laine</author>

 <comments>

 <comment id="6e75a5517cef0f8d45cfbc280d1acd53">

 <creationtime>2007-09-27</creationtime>

 <content>

 A thorough comparison of related XRX-based

 end-to-end solutions needs to be done.

 </content>

 <author>Markku Laine</author>

 </comment>

 <comment id="83ce80c6cba003108283294928155335">

 <creationtime>2007-10-04</creationtime>

 <content>

 The XFormsDB framework should be properly evaluated

 with real users and case studies at some point.

 </content>

 <author>Emilia Mendes</author>

 </comment>

 </comments>

 </post>

 ...

 </posts>

 </blog>

</root>

7.3.8 Metrics

Table 30 shows the component metrics of the Blog Web application. Compared to

the PIM Web application, the amount of work needed on CSS and XForms has

increased significantly, which can be explained by more stylish layout and a wealth

CHAPTER 7: SAMPLE WEB APPLICATIONS

116

of dynamic features on the Web site. In addition, the amount of XFormsDB and

XQuery & XPath code is much higher due to the use of multiple queries.

Table 30: Blog component metrics

Component Lines Elements Attributes Rules

XHTML

CSS

JavaScript

XForms

Instance Data

XFormsDB

XQuery and XPath

Database Template

Comment

Empty

Miscellaneous

Total

413

627

66

936

156

123

122

10

305

113

10

2881

229

0

0

703

131

73

0

5

0

0

0

1141

268

0

0

817

31

165

0

1

0

0

6

1288

0

116

0

0

0

0

0

0

0

0

0

116

The performance metrics of the Blog Web application are shown in Table 31 and

Table 32. The measurements were made with both empty cache and primed cache.

The total Web page weight was reduced by 99% and the average Web page load time

was reduced by 41-49% on subsequent page views.

CHAPTER 7: SAMPLE WEB APPLICATIONS

117

Table 31: Blog response size metrics

 Empty Cache Primed Cache

Requests Size

(kB)

 Requests Size (kB)

index.xformsdb

 HTML

 JavaScript

 CSS

 Image

 Total

1

3

3

10

17

3.2

111.0

8.6

363.9

486.8

 1

2

2

7

12

3.2

0.0

0.0

0.8

4.1

login.xformsdb

 HTML

 JavaScript

 CSS

 Image

 Total

1

3

3

9

16

2.3

111.0

8.6

363.8

485.7

 1

2

2

6

11

2.3

0.0

0.0

0.8

3.2

admin/index.xformsdb

 HTML

 JavaScript

 CSS

 Image

 Total

1

3

3

12

19

4.6

111.0

8.6

364.3

488.6

 1

2

2

9

14

4.6

0.0

0.0

0.8

5.5

CHAPTER 7: SAMPLE WEB APPLICATIONS

118

Table 32: Blog response time metrics

 Empty Cache Primed Cache

Time (s) Time (s)

index.xformsdb

 Backend

 Frontend

 Total

1.6

0.6

2.1

 0.7

0.5

1.2

login.xformsdb

 Backend

 Frontend

 Total

1.4

0.6

2.0

 0.5

0.5

1.0

admin/index.xformsdb

 Backend

 Frontend

 Total

1.7

0.6

2.3

 0.9

0.5

1.4

The sizes of the WAR files were 406.1 kB (Lite version) and 17.9 MB (Standalone

version).

7.3.9 Analysis

The feasibility of the XFormsDB framework for developing popular real-life Web

applications of today was clearly demonstrated by the success of the Blog Web

application. Below are listed the salient observations and issues that were raised

during the development process of the Blog Web application.

CHAPTER 7: SAMPLE WEB APPLICATIONS

119

Firstly, the size of an individual Web page should be kept relatively low, since Web

pages become progressively more complex to maintain as the number of lines and

user interface views on a Web page increases. Secondly, transaction support should

be improved. At the moment, transactions are a bit cumbersome because they cannot

be grouped—the next request can be reliably submitted only after the previous one

has been successfully executed. Finally, the validation proved how easily ready-

made functions and queries can be taken in use, which therefore eases Web

application development for non-programmers.

120

Chapter 8

Conclusions

In this Chapter, the research objectives of this Thesis are revisited, after which the

main contributions of this Thesis are summarized, the results of the research based

on the theoretical and empirical validation techniques are presented, and the main

conclusions are drawn. Finally, some possible directions for the future work are

discussed.

8.1 Research Objectives Revisited

Before presenting the research results, it is worthwhile to revisit the research

objectives of this Thesis as stated in Chapter 4. The main research questions were:

Q1: Is it possible to extend the XForms markup language in such a way that users

can build useful, highly interactive multi-user Web applications quickly and

easily using purely declarative languages?

Q2: How the extension can be kept simple enough, so that even non-programmers

are capable of utilizing it?

CHAPTER 8: CONCLUSIONS

121

Q3: By what means should the feasibility of the extension be validated?

In order to meet the research objectives and to answer the aforementioned research

questions, a thorough review of the literature and related work was conducted. Then,

requirements for an extension to the XForms markup language were derived and an

extension called the XFormsDB markup language was designed. Finally, the

feasibility of the designed extension was validated by developing a proof-of-concept

implementation, called the XFormsDB framework, and two sample Web applications

using the implementation.

8.2 Main Contributions

The main contributions of this Thesis can be summarized as follows:

 Design of a workable declarative language, the XFormsDB markup

language, for developing multi-user Web applications (including a workable

combination of XForms and XQuery), which has been partially designed by

the Author

 Implementation of a workable prototype, the XFormsDB framework, whose

sole implementer the Author has been

 Validation of the designed language and the implemented prototype using

two sample Web applications, Personal Information Management (PIM):

Contacts and Blog, which have been entirely developed by the Author

8.3 Results

The XFormsDB markup language proves that the XForms markup language can be

naturally extended to include common server-side functionalities, such as data source

access as well as authentication and access control. New server-side functionalities

can also be easily added to the XFormsDB markup language if necessary, since this

requirement has been already taken into account during the design of the language.

CHAPTER 8: CONCLUSIONS

122

For users who are already familiar with XForms, the XFormsDB markup language is

most likely relatively easy to learn because the syntax and processing model of the

language is similar to XForms as well as it involves only a few additions. The

language also takes into account users with varying skills and capabilities, among

others, by supporting novice users with the possibility to use ready-made

components authored by other users as well as by providing a simple and elegant

way for performing synchronized updates. However, for users who are not familiar

with the declarative style of programming the learning curve might prove to be

somewhat steep mainly due to XForms and other XML technologies it is dependent

upon.

The XFormsDB framework in turn verified that the XFormsDB markup language is

technically implementable as well as that Web applications which utilize the

framework are capable of supporting most common browsers and heterogeneous data

sources. The two sample Web applications, which were developed using the

XFormsDB framework, clearly demonstrated the feasibility and capabilities of the

framework by proving that useful, highly interactive multi-user Web applications can

be authored quickly and easily using purely declarative languages. From the end

user’s point of view, the performance and responsiveness of the applications were

very good, especially when considering that neither the framework nor the

applications have been optimized.

All in all, the results show that there are no major issues with this new authoring

paradigm. The XFormsDB framework proved to be an extremely powerful XRX

framework, which allows for the rapid development of entire Web applications using

a single document and under a single programming model. Therefore, its use can be

highly recommended—especially for non-programmers—if the application scope is

within declarative languages.

8.4 Future Work

There are several interesting directions for future work that one could pursue based

on the work presented in this Thesis. First of all, the development of XFormsDB

Web applications could be further simplified by refining the syntax of the

CHAPTER 8: CONCLUSIONS

123

XFormsDB markup language and by implementing support for a subset of XML

Binding Language (XBL) 2.0 [44] on the server side, which would allow the use of

highly reusable components containing XFormsDB markup in Web applications. It

would be also interesting to study whether a Web-based visual tool for developing

XFormsDB Web applications would make the technology accessible to non-technical

users as well.

From the end user’s point of view, the possibility of being able to use an existing

account to sign in to XFormsDB Web applications would be greatly appreciated.

Therefore, adding built-in support for OpenID [109] authentication would be very

beneficial.

In addition, current transaction support should be improved to support grouping of

synchronized updates. Finally, improving the performance of the framework through

caching is also something that has to be looked into.

The development of the XFormsDB framework will continue during the year 2010

and it is planned to be released as an open source project later this spring.

124

Bibliography

[1] Sommerville, I. Software Engineering. 8th ed. Pearson Education Limited,

Essex, England: Addison-Wesley, 2007. p. 840. ISBN 0-321-31379-8.

[2] Cardone, R., Soroker, D., and Tiwari, A. Using XForms to Simplify Web

Programming. In: Proceedings of the 14th International Conference on World

Wide Web. Chiba, Japan. May 10-14, 2005. New York, NY, USA: ACM

Press, 2005. p. 215-224. ISBN: 1-59593-046-9.

[3] Yang, F., Gupta, N., Gerner, N., Qi, X., Demers, A., Gehrke, J., and

Shanmugasundaram, J. Performance Engineering of Web Applications: A

Unified Platform for Data Driven Web Applications with Automatic Client-

Server Partitioning. In: Proceedings of the 16th International Conference on

World Wide Web. Banff, Alberta, Canada. May 8-12, 2007. New York, NY,

USA: ACM Press, 2007. p. 341-350. ISBN: 978-1-59593-654-7.

[4] Google. [Online]. Google Web Toolkit – Google Code. [Cited January 20,

2010]. Available at:

 http://code.google.com/webtoolkit/

[5] Schmitz, P. The SMIL 2.0 Timing and Synchronization Model: Using Time

in Documents. In: Technical Report MSR-TR-2001-01. Microsoft Research,

Microsoft Corporation. Jan 2, 2001. Redmond, WA 98052: One Microsoft

Way, 2001.

[6] NextApp, Inc. [Online]. Echo Web Framework | Developer information for

creating AJAX web applications using the Echo2 and Echo3 frameworks.

[Cited January 20, 2010]. Available at:

 http://echo.nextapp.com/site/

BIBLIOGRAPHY

125

[7] Red Hat, Inc. [Online]. hibernate.org – Hibernate. [Cited January 20, 2010].

Available at:

 http://www.hibernate.org/

[8] The Apache Software Foundation. [Online]. Welcome to XMLBeans. [Cited

January 20, 2010]. Available at:

 http://xmlbeans.apache.org/

[9] Honkala, M., Koskimies, O., and Laine, M. Connecting XForms to

Databases: An Extension to the XForms Markup Language. In: Position

Paper for W3C Workshop on Declarative Models of Distributed Web

Applications. Dublin, Ireland. June 5-6, 2007.

[10] Shaw, M. What Makes Good Research in Software Engineering? In:

International Journal on Software Tools for Technology Transfer (STTT),

2002. Vol. 4:1. p. 1-7. ISSN 1433-2779.

[11] Malhotra, A. and Maloney, M. [Online]. XML Schema Requirements. W3C

Note 15 February 1999. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/NOTE-xml-schema-req

[12] Heflin, J. [Online]. OWL Web Ontology Language Use Cases and

Requirements. W3C Recommendation 10 February 2004. [Cited January 20,

2010]. Available at:

 http://www.w3.org/TR/webont-req/

[13] Pixley, T. [Online]. Document Object Model (DOM) Level 2 Events

Specification. Version 1.0. W3C Recommendation 13 November, 2000.

[Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/DOM-Level-2-Events/

[14] McCarron, S., Pemberton, S., and Raman, T.V. [Online]. XML Events. An

Events Syntax for XML. W3C Recommendation 14 October 2003. [Cited

January 20, 2010]. Available at:

 http://www.w3.org/TR/xml-events/

[15] Lawrence, S. and Leach, P. [Online]. User Agent Authentication Forms.

W3C Note – 03 Feb 1999. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/NOTE-authentform

[16] W3C. [Online]. HTTP Authentication – W3C XForms Group Wiki (Public).

[Cited January 20, 2010]. Available at:

 http://www.w3.org/MarkUp/Forms/wiki/HTTP_Authentication

BIBLIOGRAPHY

126

[17] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., and

Cowan, J. [Online]. Extensible Markup Language (XML) 1.1 (Second

Edition). W3C Recommendation 16 August 2006, edited in place 29

September 2006. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xml11/

[18] Dubinko, M. XForms Essentials. O´Reilly & Associates, Inc., Sebastopol,

CA, the United States of America: O´Reilly, 2003. p. 215. ISBN: 0-596-

00369-2.

[19] Honkala, M. Web User Interaction – A Declarative Approach based on

XForms. Thesis (PhD). Telecommunications Software and Multimedia

Laboratory, Helsinki University of Technology. Espoo: Otamedia Oy, 2006.

2006. p. 81. ISBN: 951-22-8565-7.

[20] eXforms. [Online]. eXforms – Extend the power of XForms. [Cited January

20, 2010]. Available at:

 http://www.exforms.org/

[21] Honkala, M. and Vuorimaa, P. Secure Web Forms with Client-Side

Signatures. In: Proceedings of the 5th International Conference on Web

Engineering, ICWE 2005. Sydney, Australia. July 27-29, 2005. Berlin /

Heidelberg, Germany: SpringerLink, 2005. p. 340-351. ISBN: 978-3-540-

27996-9.

[22] Bourret, R. [Online]. rpbourret.com – XML Database Products: Middleware.

[Cited January 20, 2010]. Available at:

 http://www.rpbourret.com/xml/ProdsMiddleware.htm

[23] Honkala, M. and Vuorimaa, P. XForms in X-Smiles. In: Journal of World

Wide Web, 2001. Vol. 4:3. p. 151-166. ISSN: 1386-145X.

[24] X-Smiles.org et al. [Online]. X-Smiles.org. [Cited January 20, 2010].

Available at:

 http://www.xsmiles.org/

[25] Michel, T. [Online]. XForms Implementation Report. [Cited January 20,

2010]. Available at:

 http://www.w3.org/MarkUp/Forms/Test/ImplementationReport.html

[26] mozilla.org. [Online]. Mozilla XForms Project. [Cited January 20, 2010].

Available at:

 http://www.mozilla.org/projects/xforms/

BIBLIOGRAPHY

127

[27] x-port.net Ltd. [Online]. XForms processor from formsPlayer | standards.

innovation. [Cited January 20, 2010]. Available at:

 http://www.formsplayer.com/

[28] côdeazur brazil. [Online]. DENG – The Modular XML Browser Engine –

CSS 3 plus XHTML, SVG, XForms, XFrames, RSS and more. [Cited

January 20, 2010]. Available at:

 http://deng.com.br/

[29] Progeny Systems Corporation. [Online]. FormFaces.com. [Cited January 20,

2010]. Available at:

 http://www.formfaces.com/

[30] McCreary, D. [Online]. Dr. Data Dictionary: Introducing the XRX

Architecture: XForms/REST/XQuery. December 14, 2007. [Cited January 20,

2010]. Available at:

 http://datadictionary.blogspot.com/2007/12/introducing-xrx-architecture.html

[31] Chiba. [Online]. Chiba Home. [Cited January 20, 2010]. Available at:

 http://www.chiba-project.org/chiba/

[32] AJAXForms S.L. [Online]. AJAXForms – Home. [Cited January 20, 2010].

Available at:

 http://ajaxforms.sourceforge.net/

[33] Pemberton, S. and Boyer, J. [Online]. The Forms Working Group. [Cited

January 20, 2010]. Available at:

 http://www.w3.org/MarkUp/Forms/

[34] Krasner, G.E. and pope, S.T. A Cookbook for using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. In: Journal of Object-

Oriented Programming, August/September 1988. Vol. 1:3. p. 26-49. ISSN:

0896-8438.

[35] Dubinko, M., Klotz, Jr., L.L., Merrick, R., and Raman, T.V. [Online].

XForms 1.0. W3C Recommendation 14 October 2003. [Cited January 20,

2010]. Available at:

 http://www.w3.org/TR/2003/REC-xforms-20031014/

[36] Gray, J. and Reuter, A. Transaction processing: concepts and techniques.

Morgan Kaufmann Publishers, Inc., San Francisco, CA, the United States of

America: Morgan Kaufmann Publishers, Inc., 1993. p. 1070. ISBN: 1-55860-

190-2.

BIBLIOGRAPHY

128

[37] Boyer, J., Bray, T., and Gordon, M. [Online]. Extensible Forms Description

Language (XFDL) 4.0. W3C Note, September 2, 1998. [Cited January 20,

2010]. Available at:

 http://www.w3.org/TR/NOTE-XFDL

[38] McKenzie, G.F., Devitt, R., McDougall, R., Miller, A., Neilson, A., and

Tardif, M. [Online]. XFA-Template. Version 1.0. [Cited January 20, 2010].

Available at:

 http://www.w3.org/1999/05/XFA/xfa-template

[39] McKenzie, G.F., Tardif, M., Devitt, R., McDougall, R., Miller, A., and

Neilson, A. [Online]. XFA-FormCalc. Version 1.0. [Cited January 20, 2010].

Available at:

 http://www.w3.org/1999/05/XFA/xfa-formcalc-19990614

[40] Boyer, J.M. [Online]. XForms 1.1. W3C Recommendation 20 October 2009.

[Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xforms11/

[41] Garrett, J.J., Adaptive Path. [Online]. adaptive path >> ajax: a new approach

to web applications. February 18, 2005. [Cited January 20, 2010]. Available

at:

 http://www.adaptivepath.com/ideas/essays/archives/000385.php

[42] van Kesteren, A. [Online]. XMLHttpRequest. W3C Working Draft 19

November 2009. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/XMLHttpRequest/

[43] Prototype Core Team. [Online]. Prototype JavaScript framework: Easy Ajax

and DOM manipulation for dynamic web applications. [Cited January 20,

2010]. Available at:

 http://www.prototypejs.org/

[44] Hickson, I. [Online]. XML Binding Language (XBL) 2.0. W3C Candidate

Recommendation 16 March 2007. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xbl/

 [45] Connolly, D. [Online]. HyperText Mark-up Language. [Cited January 20,

2010]. Available at:

 http://www.w3.org/History/19921103-

hypertext/hypertext/WWW/MarkUp/MarkUp.html

[46] Raggett, D., Lam, J., Alexander, I., and Kmiec, M. Raggett on HTML 4. 2nd

ed. Reading, Mass.: Addison-Wesley, 1998. p. 437. ISBN: 0-201-17805-2.

BIBLIOGRAPHY

129

[47] Raggett, D., le Hors, A., and Jacobs, I. [Online]. HTML 4.01 Specification.

W3C Recommendation 24 December 1999. [Cited January 20, 2010].

Available at:

 http://www.w3.org/TR/html401/

[48] W3C. [Online]. W3C XHTML2 Working Group Home Page. [Cited January

20, 2010]. Available at:

 http://www.w3.org/MarkUp/

[49] W3C. [Online]. XHTML
TM

 1.0 The Extensible HyperText Markup Language

(Second Edition). A Reformulation of HTML 4 in XML 1.0. W3C

Recommendation 26 January 2000, revised 1 August 2002. [Cited January

20, 2010]. Available at:

 http://www.w3.org/TR/xhtml1/

[50] Baker, M., Ishikawa, M., Matsui, S., Stark, P., Wugofski, T., and Yamakami,

T. [Online]. XHTML
TM

 Basic 1.1. W3C Recommendation 29 July 2008.

[Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xhtml-basic/

[51] Altheim, M. and McCarron, S. [Online]. XHTML
TM

 1.1 – Module-based

XHTML. W3C Recommendation 31 May 2001. [Cited January 20, 2010].

Available at:

 http://www.w3.org/TR/xhtml11/

[52] Axelsson, J., Birbeck, M., Dubinko, M., Epperson, B., Ishikawa, M.,

McCarron, S., Navarro, A., and Pemberton, S. [Online]. XHTML
TM

 2.0.

W3C Working Draft 26 July 2006. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xhtml2/

[53] Bos, B., Çelik, T., Hickson, I., and Wium Lie, H. [Online]. Cascading Style

Sheets, Level 2 Revision 1 (CSS 2.1) Specification. W3C Candidate

Recommendation 08 September 2009. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/CSS2/

[54] Burke, E.M. Java
TM

 and XSLT. O´Reilly & Associates, Inc., Sebastopol, CA,

the United States of America: O´Reilly, 2001. p. 510. ISBN: 0-596-00143-6.

[55] Kepser, S. A Simple Proof for the Turing-Completeness of XSLT and

XQuery. In: Proceedings of Extreme Markup Languages 2004. Montréal,

Québec, Canada. 2004.

BIBLIOGRAPHY

130

[56] Kay, M. [Online]. XSL Transformations (XSLT) Version 2.0. W3C

Recommendation 23 January 2007. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xslt20/

[57] W3C [Online]. The Extensible Stylesheet Language Family (XSL). [Cited

January 20, 2010]. Available at:

 http://www.w3.org/Style/XSL/

[58] Kay, M. [Online]. The SAXON XSLT and XQuery Processor. [Cited January

20, 2010]. Available at:

 http://saxon.sourceforge.net/

[59] Berners-Lee, T. and Mendelsohn, N. [Online]. The Rule of Least Power.

TAG Finding 23 February 2006. [Cited January 20, 2010]. Available at:

 http://www.w3.org/2001/tag/doc/leastPower.html

[60] International Organization for Standardization. [Online]. ISO 8879:1986 –

Information processing -- Text and office systems -- Standard Generalized

Markup Language (SGML). [Cited January 20, 2010]. Available at:

 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnu

mber=16387

[61] Fallside, D.C. and Walmsley, P. [Online]. XML Schema Part 0: Primer

Second Edition. W3C Recommendation 28 October 2004. [Cited January 20,

2010]. Available at:

 http://www.w3.org/TR/xmlschema-0/

[62] W3C. [Online]. W3C Document Object Model. [Cited January 20, 2010].

Available at:

 http://www.w3.org/DOM/

[63] The SAX Project. [Online]. SAX. [Cited January 20, 2010]. Available at:

 http://www.saxproject.org/

[64] W3C. [Online]. Web Services @ W3C. [Cited January 20, 2010]. Available

at:

 http://www.w3.org/2002/ws/

[65] W3C. [Online]. HTTP – Hypertext Transfer Protocol Overview. [Cited

January 20, 2010]. Available at:

 http://www.w3.org/Protocols/

BIBLIOGRAPHY

131

[66] Ecma international. [Online]. ECMAScript Language Specification. Standard

ECMA-262. 5
th

 Edition / December 2009. [Cited January 20, 2010].

Available at:

 http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-

262.pdf

[67] The Apache Software Foundation. [Online]. Apache Ant – Welcome. [Cited

January 20, 2010]. Available at:

 http://ant.apache.org/

[68] The Apache Software Foundation. [Online]. Apache Tomcat – Welcome!

[Cited January 20, 2010]. Available at:

 http://tomcat.apache.org/

[69] The eXist Project. [Online]. eXist-db Open Source Native XML Database.

[Cited January 20, 2010]. Available at:

 http://www.exist-db.org/

[70] Lindholm, T. [Online]. BerliOS Developer: Project Summary – 3DM XML

diff and merge tool. [Cited January 20, 2010]. Available at:

 http://developer.berlios.de/projects/tdm/

[71] Sun Microsystems, Inc. [Online]. Java SE Technologies at a Glance. [Cited

January 20, 2010]. Available at:

 http://java.sun.com/javase/technologies/index.jsp

[72] Orbeon, Inc. [Online]. Orbeon Forms – Web Forms for the Enterprise, Done

the Right Way. [Cited January 20, 2010]. Available at:

 http://www.orbeon.com/

[73] Orbeon, Inc. [Online]. XForms – Using the Orbeon Forms XForms Engine

with Java Applications (forms). [Cited January 20, 2010]. Available at:

 http://wiki.orbeon.com/forms/doc/developer-guide/xforms-with-java-

applications

[74] Bruchez, E., Orbeon, Inc. [Online]. XTech 2006: XForms: an Alternative to

Ajax? In: XTech 2006: ―Building Web 2.0‖. Amsterdam, The Netherlands.

May 16-19, 2006. [Cited January 20, 2010]. Available at:

 http://xtech06.usefulinc.com/schedule/paper/133

[75] The XML:DB Initiative. [Online]. XML:DB Initiative: Enterprise

Technologies for XML Databases. [Cited January 20, 2010]. Available at:

 http://xmldb-org.sourceforge.net/

BIBLIOGRAPHY

132

[76] Winer, D. [Online]. XML-RPC Specification. Tue, Jun 15, 1999. [Cited

January 20, 2010]. Available at:

 http://www.xmlrpc.com/spec

[77] The eXist Project. [Online]. Database Deployment. [Cited January 20, 2010].

Available at:

 http://www.exist-db.org/deployment.html

[78] Fielding, R.T. Architectural Styles and the Design of Network-based

Software Architectures. Thesis (PhD). Information and Computer Science,

University of California, Irwine, 2000.

[79] Datypic. [Online]. FunctX XQuery Functions: Hundreds of useful examples.

[Cited January 20, 2010]. Available at:

 http://www.xqueryfunctions.com/

[80] Ant-Contrib Project. [Online]. Ant-Contrib Tasks. [Cited January 20, 2010].

Available at:

 http://ant-contrib.sourceforge.net/

[81] Eclipse Foundation, Inc. [Online]. Eclipse.org home. [Cited January 20,

2010]. Available at:

 http://www.eclipse.org/

[82] Tigris.org. [Online]. subclipse.tigris.org. [Cited January 20, 2010]. Available

at:

 http://subclipse.tigris.org/

[83] Sun Microsystems, Inc. [Online]. Scaling The N-Tier Architecture. White

Paper. Sun Microsystems, Inc. September 2000. [Cited January 20, 2010].

Available at:

 http://www.sun.com/software/whitepapers/wp-ntier/wp-ntier.pdf

[84] Sun Microsystems, Inc. [Online]. Questions and Answers – Session state in

the client tier. [Cited January 20, 2010]. Available at:

 http://java.sun.com/blueprints/qanda/client_tier/session_state.html

[85] Lindholm, T. A Three-way Merge for XML Documents. In: Proceedings of

the 2004 ACM Symposium on Document Engineering, DocEng’04.

Milwaukee, Wisconsin, USA. October 28-30, 2004. New York, NY, USA:

ACM, 2004. p. 1-10. ISBN: 1-58113-938-1.

BIBLIOGRAPHY

133

[86] Bourret, R. [Online]. rpbourret.com – XML and Databases. [Cited January

20, 2010]. Available at:

 http://www.rpbourret.com/xml/XMLAndDatabases.htm

[87] The XML:DB Initiative. [Online]. Frequently Asked Questions About

XML:DB. [Cited January 20, 2010]. Available at:

 http://xmldb-org.sourceforge.net/faqs.html

[88] Software AG. [Online]. Tamino – The XML Database. [Cited January 20,

2010]. Available at:

 http://www.softwareag.com/Corporate/products/wm/tamino/default.asp

[89] Microsoft Corporation. [Online]. SQL Server 2008 Overview, data platform,

store data | Microsoft. [Cited January 20, 2010]. Available at:

 http://www.microsoft.com/sqlserver/2008/en/us/default.aspx

[90] IBM Corporation. [Online]. IBM – DB2 – Data server – database software –

database management – open source. [Cited January 20, 2010]. Available at:

 http://www-01.ibm.com/software/data/db2/

[91] Oracle Corporation. [Online]. Database 11g | Oracle Database 11g | Oracle.

[Cited January 20, 2010]. Available at:

 http://www.oracle.com/us/products/database/index.htm

[92] Bourret, R. [Online]. rpbourret.com – XML Database Products: XML-

Enabled Databases. [Cited January 20, 2010]. Available at:

 http://www.rpbourret.com/xml/ProdsXMLEnabled.htm

[93] Codd, E.F. A Relational Model of Data for Large Shared Data Banks. In:

Communications of the ACM. New York, NY, USA: ACM, 1970. Vol. 13:6.

p. 377-387. ISSN: 0001-0782. [doi:

http://doi.acm.org/10.1145/362384.362685].

[94] Digital Equipment Corporation. [Online]. Information Technology –

Database Language SQL (Proposed revised text of DIS 9075), July 1992.

[Cited January 20, 2010]. Available at:

 http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

[95] American National Standards Institute. [Online]. American National

Standards Institute – ANSI. [Cited January 20, 2010]. Available at:

 http://www.ansi.org/

BIBLIOGRAPHY

134

[96] International Organization for Standardization. [Online]. ISO – International

Organization for Standardization. [Cited January 20, 2010]. Available at:

 http://www.iso.org/iso/home.htm

[97] Leavitt, N. [Online]. Whatever Happened to Object-Oriented Databases? In:

Computer. Los Alamitos, CA, USA: IEEE Computer Society Press, 2000.

Vol. 33:8. p. 16-19. ISSN: 0018-9162. [Cited January 20, 2010]. Available at:

 http://www.leavcom.com/pdf/DBpdf.pdf

[98] ISO. [Online]. Information Technology – Database Languages SQL – Part

14: XML-Related Specifications (SQL/XML), July 2005. [Cited January 20,

2010]. Available at:

 http://www.sqlx.org/SQL-XML-documents/5FCD-14-XML-2004-07.pdf

[99] SQLX.org. [Online]. Definition of SQLX.org and SQL/XML. [Cited January

20, 2010]. Available at:

 http://www.sqlx.org/SQL-XML-definition/SQL-XML-definition.html

[100] Sun Microsystems, Inc. [Online]. Java SE Technologies – Database. [Cited

January 20, 2010]. Available at:

 http://java.sun.com/javase/technologies/database/

[101] Progress Software Corporation. [Online]. SQL/XML Tutorial. [Cited January

20, 2010]. Available at:

 http://www.stylusstudio.com/sqlxml_tutorial.html

[102] Marsh, J., Orchard, D., and Veillard, D. [Online]. XML Inclusions (XInclude)

Version 1.0 (Second Edition). W3C Recommendation 15 November 2006.

[Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xinclude/

[103] XK72 Ltd. [Online]. Charles Web Debugging Proxy • HTTP Monitor / HTTP

Proxy / HTTPS & SSL Proxy / Reverse Proxy. [Cited January 20, 2010].

Available at:

 http://www.charlesproxy.com/

[104] Souders, S. [Online]. Episodes. [Cited January 20, 2010]. Available at:

 http://stevesouders.com/episodes/

[105] Souders, S. [Online]. Episodes: a Framework for Measuring Web Page Load

Times. White Paper. Google. July 2008. [Cited January 20, 2010]. Available

at:

 http://stevesouders.com/episodes/paper.php

BIBLIOGRAPHY

135

[106] GNU Project. [Online]. The gzip home page. [Cited January 20, 2010].

Available at:

 http://www.gzip.org/

[107] Hickson, I. and Hyatt, D. [Online]. HTML 5. A vocabulary and associated

APIs for HTML and XHTML. W3C Working Draft 25 August 2009. [Cited

January 20, 2010]. Available at:

 http://www.w3.org/TR/html5/

[108] Florescu, D. and Kossmann, D. A Performance Evaluation of Alternative

Mapping Schemes for Storing XML Data in a Relational Database. In:

Technical Report No 3680, INRIA. May, 1999. ISSN: 0249-6399.

[109] OpenID Foundation. [Online]. OpenID Foundation website. [Cited January

20, 2010]. Available at:

 http://openid.net/

[110] Berglund, A., Boag, S., Chamberlin, D., Fernández, M., Kay, M., Robie, J.,

and Siméon, J. [Online]. XML Path Language (XPath) 2.0. W3C

Recommendation 23 January 2007. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xpath20/

[111] Chamberlin, D., Robie, J., and Florescu, D. Quilt: An XML Query Language

for Heterogeneous Data Sources. In: Proceedings of WebDB 2000

Conference, in Lecture Notes in Computer Science, Springer-Verlag, 2000.

 [112] Robie, J., Lapp, J., and Schach, D. [Online]. XML Query Language (XQL).

[Cited January 20, 2010]. Available at:

 http://www.w3.org/TandS/QL/QL98/pp/xql.html

[113] Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D. [Online].

XML-QL_ A Query Language for XML. Submission to the World Wide Web

Consortium 19-August-1998. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/NOTE-xml-ql/

 [114] Cattell, R.G.G., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C.,

Schadow, O, Stanienda, T., and Velez, F. The Object Data Management

Standard: ODMG 3.0. Morgan Kaufmann Publishers, Inc., San Francisco,

CA, the United States of America: Morgan Kaufmann Publishers, Inc., 2000.

p. 300. ISBN: 1-55860-647-5.

BIBLIOGRAPHY

136

[115] Fernández, M., Malhotra, A., Marsh, J., Nagy, M., and Walsh, N. [Online].

XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C Recommendation 23

January 2007. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xpath-datamodel/

[116] Boag, S., Chamberlin, D., Fernández, M., Florescu, D., Robie, J., and

Siméon, J. [Online]. XQuery 1.0: An XML Query Language. W3C

Recommendation 23 January 2007. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xquery/

[117] Boag, S., Kay, M., Tong, J., Walsh, N., and Zongaro, H. [Online]. XSLT 2.0

and XQuery 1.0 Serialization. W3C Recommendation 23 January 2007.

[Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xslt-xquery-serialization/

[118] Malhotra, A., Melton, J., and Walsh, N. [Online]. XQuery 1.0 and XPath 2.0

Functions and Operators. W3C Recommendation 23 January 2007. [Cited

January 20, 2010]. Available at:

 http://www.w3.org/TR/xpath-functions/

[119] Melton, J. and Muralidhar, S. [Online]. XML Syntax for XQuery 1.0

(XQueryX). W3C Recommendation 23 January 2007. [Cited January 20,

2010]. Available at:

 http://www.w3.org/TR/xqueryx/

[120] Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Robie, J., and Siméon, J.

[Online]. XQuery Update Facility 1.0. W3C Candidate Recommendation 09

June 2009. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xquery-update-10/

[121] Amer-Yahia, S., Botev, C., Buxton, S., Case, P., Doerre, J., Dyck, M.,

Holstege, M., Melton, J., Rys, M., and Shanmugasundaram, J. [Online].

XQuery and XPath Full Text 1.0. W3C Candidate Recommendation 09 July

2009. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xpath-full-text-10/

[122] Chamberlin, D., Engovatov, D., Florescu, D., Ghelli, G., Melton, J., Siméon,

J., and Snelson, J. [Online]. XQuery Scripting Extension 1.0. W3C Working

Draft 3 December 2008. [Cited January 20, 2010]. Available at:

 http://www.w3.org/TR/xquery-sx-10/

BIBLIOGRAPHY

137

[123] Melton, J. and Van Cappellen, M. [Online]. XQuery API for Java
TM

 (XQJ)

1.0 Specification (Final Release). March, 2009. [Cited January 20, 2010].

Available at:

 http://jcp.org/aboutJava/communityprocess/final/jsr225/index.html

[124] Bray, T., Hollander, D., Layman, A., and Tobin, R. [Online]. Namespaces in

XML 1.1 (Second Edition). W3C Recommendation 16 August 2006. [Cited

January 20, 2010]. Available at:

 http://www.w3.org/TR/xml-names11/

[125] Progress Software Corporation. [Online]. DataDirect XQuery Product

Overview. [Cited January 20, 2010]. Available at:

 http://www.xquery.com/xquery/

[126] W3C. [Online]. World Wide Web Consortium (W3C). [Cited January 20,

2010]. Available at:

 http://www.w3.org/

[127] Sun Microsystems, Inc. [Online]. Core J2EE Patterns – Front Controller.

[Cited January 20, 2010]. Available at:

 http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html

[128] Jazayeri, M. Some Trends in Web Application Development. In: Future of

Software Engineering (FOSE’07). Washington, DC, USA: IEEE Computer

Society, 2007. p. 199-213. ISBN: 0-7695-2829-5.

[129] Duhl, J. [Online]. Rich Internet Applications. White Paper. November 2003.

[Cited January 20, 2010]. Available at:

 http://www.adobe.com/platform/whitepapers/idc_impact_of_rias.pdf

[130] Preciado, J.C., Linaje, M., Sánchez, F., and Comai, S. Necessity of

methodologies to model Rich Internet Applications. In: Proceedings of the

Seventh IEEE International Symposium on Web Site Evolution (WSE’05).

IEEE Computer Society, 2005. p. 7-13. DOI: 10.1109/WSE.2005.10.

[131] Mikkonen, T. and Taivalsaari, A. [Online]. Web Applications – Spaghetti

Code for the 21st Century. Technical Report. Sun Microsystems, Inc. June

2007. [Cited January 20, 2010]. Available at:

 http://research.sun.com/techrep/2007/smli_tr-2007-166.pdf

[132] Kuusteri, J. and Mikkonen, T. Partitioning Web Applications Between the

Server and the Client. In: Proceedings of the 2009 ACM symposium on

Applied Computing (SAC’09). Honolulu, Hawaii, USA. March 8-12, 2009.

p. 647-652. ISBN: 978-1-60558-166-8.

BIBLIOGRAPHY

138

[133] Lloyd, J.W. [Online]. Declarative Programming in Escher. Technical Report.

University of Bristol, Bristol, UK. June 1995. [Cited January 20, 2010].

Available at:

 http://www.cs.bris.ac.uk/Publications/Papers/1000073.pdf

[134] Birbeck, M. [Online]. Application of XML Access: XForms and XQuery, via

REST. Presentation. [Cited January 20, 2010]. Available at:

 http://www.w3c.rl.ac.uk/pastevents/XML_Access_Languages/Mark/xforms-

xquery.html

[135] Sun Microsystems, Inc. [Online]. JavaServer Pages Technology. [Cited

January 20, 2010]. Available at:

 http://java.sun.com/products/jsp/

139

Appendix A

Syntax Definitions and Usage Examples

of the XFormsDB Markup Language

For the simplicity of the underlying examples, all XML Namespace declarations

have been left out.

Listing 15: Definition of the xformsdb:instance element

<!-- XFormsDB request instance -->

<xformsdb:instance id="xformsdb-request-instance">

 <!-- Actions defined by the form author -->

</xformsdb:instance>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

140

Listing 16: Example of use of the state request for storing a Web application’s state

information in an XFormsDB implementation

<!-- State instance -->

<xforms:instance id="state-instance">

 <ui xmlns="">

 <language>en</language>

 <text-size>medium</text-size>

 </ui>

</xforms:instance>

<!-- State request instance -->

<xformsdb:instance id="state-request-instance">

 <xformsdb:state />

</xformsdb:instance>

<!-- Set state request submission -->

<xformsdb:submission id="set-state-request-submission"

 replace="instance" instance="state-instance"

 requestinstance="state-request-instance" statetype="set"

 attachmentinstance="state-instance">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-set-state-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show a success message -->

 <xforms:toggle case="success-set-state-case" />

 </xforms:action>

</xformsdb:submission>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

141

Listing 17: Example of use of the state request for retrieving a Web application’s

state information from an XFormsDB implementation

<!-- State instance -->

<xforms:instance id="state-instance">

 <dummy xmlns="" />

</xforms:instance>

<!-- State request instance -->

<xformsdb:instance id="state-request-instance">

 <xformsdb:state />

</xformsdb:instance>

<!-- Get state request submission -->

<xformsdb:submission id="get-state-request-submission"

 replace="instance" instance="state-instance"

 requestinstance="state-request-instance" statetype="get">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-get-state-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show a success message -->

 <xforms:toggle case="success-get-state-case" />

 </xforms:action>

</xformsdb:submission>

Listing 18: Example of an XML response indicating a successful completion of the

state request

<?xml version="1.0" encoding="UTF-8"?>

<ui>

 <language>en</language>

 <text-size>medium</text-size>

</ui>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

142

Listing 19: Example of use of the login request taken from a /login.xformsdb Web

page

<!-- User instance -->

<xforms:instance id="user-instance">

 <dummy xmlns="" />

</xforms:instance>

<!-- Login request instance -->

<xformsdb:instance id="login-request-instance">

 <xformsdb:login datasrc="realm-data-source"

 doc="xformsdb_users.xml">

 <xformsdb:var name="username" />

 <xformsdb:var name="password" />

 </xformsdb:login>

</xformsdb:instance>

<!-- Login request submission -->

<xformsdb:submission id="login-request-submission"

 replace="instance" instance="user-instance"

 requestinstance="login-request-instance">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-login-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show an incorrect message -->

 <xforms:toggle if="not(exists(

 instance('user-instance')/@username))"

 case="incorrect-login-case" />

 <!-- Show a success message -->

 <xforms:toggle if="exists(

 instance('user-instance')/@username)"

 case="success-login-case" />

 <!-- Redirect the user to /admin/index.xformsdb

 upon a successful login -->

 <xforms:load if="exists(

 instance('user-instance')/@username)"

 resource="/admin/index.xformsdb" />

 </xforms:action>

</xformsdb:submission>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

143

Listing 20: Example of an XML response indicating a successful completion of the

login request

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:user username="administrator" roles="user admin" />

Listing 21: Example of an XML response of the login request indicating an

incorrect username and password combination

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:user />

Listing 22: Example of use of the logout request

<!-- User instance -->

<xforms:instance id="user-instance">

 <dummy xmlns="" />

</xforms:instance>

<!-- Logout request instance -->

<xformsdb:instance id="logout-request-instance">

 <xformsdb:logout />

</xformsdb:instance>

<!-- Logout request submission -->

<xformsdb:submission id="logout-request-submission"

 replace="instance" instance="user-instance"

 requestinstance="logout-request-instance">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-logout-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show a success message -->

 <xforms:toggle case="success-logout-case" />

 <!-- Redirect the user to the home page

 upon a successful logout -->

 <xforms:load resource="/index.xformsdb" />

 </xforms:action>

</xformsdb:submission>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

144

Listing 23: Example of an XML response indicating a successful completion of the

logout request

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:user />

Listing 24: Example of use of the user request

<!-- User instance -->

<xforms:instance id="user-instance">

 <dummy xmlns="" />

</xforms:instance>

<!-- User request instance -->

<xformsdb:instance id="user-request-instance">

 <xformsdb:user />

</xformsdb:instance>

<!-- User request submission -->

<xformsdb:submission id="user-request-submission"

 replace="instance" instance="user-instance"

 requestinstance="user-request-instance">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-user-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show an empty message -->

 <xforms:toggle if="not(exists(

 instance('user-instance')/@username))"

 case="empty-user-case" />

 <!-- Show a success message -->

 <xforms:toggle if="exists(

 instance('user-instance')/@username)"

 case="success-user-case" />

 </xforms:action>

</xformsdb:submission>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

145

Listing 25: Example of an XML response of the user request containing

information about the currently logged-in user

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:user username="administrator" roles="user admin" />

Listing 26: Example of an XML response of the user request indicating that an

XFormsDB implementation does not hold a logged-in user in the

session

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:user />

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

146

Listing 27: Example of use of the query request for retrieving data from a data

source with XQuery

<!-- Course instance -->

<xforms:instance id="course-instance">

 <dummy xmlns="" />

</xforms:instance>

<!-- Select course request instance -->

<xformsdb:instance id="select-course-request-instance">

 <xformsdb:query datasrc="courses-data-source" doc="courses.xml">

 <xformsdb:expression>

 <![CDATA[

 xquery version "1.0" encoding "UTF-8";

 (: Declare namespaces :)

 declare namespace studies = "http://www.tkk.fi/2009/studies";

 (: Declare external variables :)

 declare variable $code as xs:string external;

 (: Select course :)

 for $course in /root/studies:courses/studies:course

 where

 $course/studies:code = $code

 return

 $course

]]>

 </xformsdb:expression>

 <xformsdb:var name="code" />

 </xformsdb:query>

</xformsdb:instance>

<!-- Select course request submission -->

<xformsdb:submission id="select-course-request-submission"

 replace="instance" instance="course-instance"

 requestinstance="select-course-request-instance"

 expressiontype="select">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-select-course-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

147

 <!-- Show a success message -->

 <xforms:toggle case="success-select-course-case" />

 </xforms:action>

</xformsdb:submission>

Listing 28: Example of an XML response of the query request containing the

course information

<?xml version="1.0" encoding="UTF-8"?>

<studies:course>

 <studies:code>T-111.5360</studies:code>

 <studies:name>WWW Applications</studies:name>

 <studies:credits>4</studies:credits>

 <studies:overview>

 The focus of the course is on new Web technologies.

 </studies:overview>

</studies:course>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

148

Listing 29: Example of use of the query request for updating data in a data source

with XPath

<!-- Course instance -->

<xforms:instance id="course-instance">

 <dummy xmlns="" />

</xforms:instance>

<!-- Select and update course request instance -->

<xformsdb:instance id="select-and-update-course-request-instance">

 <xformsdb:query datasrc="courses-data-source" doc="courses.xml">

 <xformsdb:expression>

 /root/studies:courses/studies:course[studies:code = $code]

 </xformsdb:expression>

 <xformsdb:xmlns prefix="studies"

 uri="http://www.tkk.fi/2009/studies" />

 <xformsdb:var name="code" />

 </xformsdb:query>

</xformsdb:instance>

<!-- Select course request submission -->

<xformsdb:submission id="select-course-request-submission"

 replace="instance" instance="course-instance"

 requestinstance="select-and-update-course-request-instance"

 expressiontype="select">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-select-course-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show a success message -->

 <xforms:toggle case="success-select-course-case" />

 </xforms:action>

</xformsdb:submission>

<!-- Update course request submission -->

<xformsdb:submission id="update-course-request-submission"

 replace="instance" instance="course-instance"

 requestinstance="select-and-update-course-request-instance"

 expressiontype="update"

 attachmentinstance="course-instance">

 <!-- Actions defined by the form author -->

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

149

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-update-course-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show a success message -->

 <xforms:toggle case="success-update-course-case" />

 </xforms:action>

</xformsdb:submission>

Listing 30: Example of an XML response of the query request containing the

updated course information

<?xml version="1.0" encoding="UTF-8"?>

<studies:course>

 <studies:code>T-111.5360</studies:code>

 <studies:name>WWW Applications</studies:name>

 <studies:credits>4</studies:credits>

 <studies:overview>

 The focus of the course is on both new and upcoming Web

 technologies.

 </studies:overview>

</studies:course>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

150

Listing 31: Example of use of the file request for retrieving the metadata about all

public files associated with a Web application

<!-- Files instance -->

<xforms:instance id="files-instance">

 <dummy xmlns="" />

</xforms:instance>

<!-- Select/Update/Insert/Delete files request instance -->

<xformsdb:instance id="suid-files-request-instance">

 <xformsdb:file>

 <!-- All public files -->

 <xformsdb:var name="roles" />

 </xformsdb:file>

</xformsdb:instance>

<!-- Select files request submission -->

<xformsdb:submission id="select-files-request-submission"

 replace="instance" instance="files-instance"

 requestinstance="suid-files-request-instance" filetype="select">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-select-files-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show an empty message -->

 <xforms:toggle if="count(

 instance('files-instance')/xformsdb:file) = 0"

 case="empty-select-files-case" />

 <!-- Show a success message -->

 <xforms:toggle if="count(

 instance('files-instance')/xformsdb:file) > 0"

 case="success-select-files-case" />

 </xforms:action>

</xformsdb:submission>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

151

Listing 32: Example of an XML response of the file request containing the

metadata about all public files associated with a Web application

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:files>

 <xformsdb:file displayname="API for XFormsDB 1.0" roles=""

 filename="api_for_xformsdb_1-0.pdf" mediatype="application/pdf"

 filesize="144941" comment="Editor’s Draft"

 creator="Markku Laine" created="2009-01-27T17:04:55.310+02:00"

 lastmodifier="Markku Laine"

 lastmodified="2009-02-16T10:52:21.280+02:00"

 id="50641f86-572e-4913-ade2-a8df24f16158"

 download="http://localhost:8080/tutorial/

 selectfilesbyroles.xformsdbdownload?id=50641f86-572e-4913-ade2-

 a8df24f16158" />

 <xformsdb:file displayname="Lecture: XFormsDB" roles=""

 filename="lecture_xformsdb.pdf" mediatype="application/pdf"

 filesize="728504" comment="Held on January 27, 2009"

 creator="Markku Laine" created="2009-01-27T17:04:55.390+02:00"

 lastmodifier="" lastmodified=""

 id="f40e4173-be44-4b73-889a-2ca3ee3ae3bb"

 download="http://localhost:8080/tutorial/

 selectfilesbyroles.xformsdbdownload?id=f40e4173-be44-4b73-889a-

 2ca3ee3ae3bb" />

</xformsdb:files>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

152

Listing 33: Example of use of the file request for uploading files

<!-- Insert files instance -->

<xforms:instance id="insert-files-instance">

 <xformsdb:insert>

 <xformsdb:file displayname="" roles=""

 filename="" mediatype="" filesize=""

 comment="" creator="" />

 <xformsdb:file displayname="" roles=""

 filename="" mediatype="" filesize=""

 comment="" creator="" />

 </xformsdb:insert>

</xforms:instance>

<!-- Select/Update/Insert/Delete files request instance -->

<xformsdb:instance id="suid-files-request-instance">

 <xformsdb:file />

</xformsdb:instance>

<!-- Insert files request submission -->

<xformsdb:submission id="insert-files-request-submission"

 replace="instance" instance="insert-files-instance"

 requestinstance="suid-files-request-instance" filetype="insert"

 attachmentinstance="insert-files-instance">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-insert-files-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show a success message -->

 <xforms:toggle case="success-insert-files-case" />

 </xforms:action>

</xformsdb:submission>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

153

Listing 34: Example of an XML response of the file request containing the

metadata about the uploaded files

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:insert inserted="50641f86-572e-4913-ade2-a8df24f16158

 f40e4173-be44-4b73-889a-2ca3ee3ae3bb">

 <xformsdb:file displayname="API for XFormsDB 1.0" roles=""

 filename="api_for_xformsdb_1-0.pdf" mediatype="application/pdf"

 filesize="144941" comment="Editor’s Draft"

 creator="Markku Laine" created="2009-01-27T17:04:55.310+02:00"

 lastmodifier="" lastmodified=""

 id="50641f86-572e-4913-ade2-a8df24f16158"

 download="http://localhost:8080/tutorial/

 selectfilesbyroles.xformsdbdownload?id=50641f86-572e-4913-ade2-

 a8df24f16158" />

 <xformsdb:file displayname="Lecture: XFormsDB" roles=""

 filename="lecture_xformsdb.pdf" mediatype="application/pdf"

 filesize="728504" comment="Held on January 27, 2009"

 creator="Markku Laine" created="2009-01-27T17:04:55.390+02:00"

 lastmodifier="" lastmodified=""

 id="f40e4173-be44-4b73-889a-2ca3ee3ae3bb"

 download="http://localhost:8080/tutorial/

 selectfilesbyroles.xformsdbdownload?id=f40e4173-be44-4b73-889a-

 2ca3ee3ae3bb" />

</xformsdb:insert>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

154

Listing 35: Example of use of the cookie request

<!-- Cookie instance -->

<xforms:instance id="cookie-instance">

 <dummy xmlns="" />

</xforms:instance>

<!-- Cookie request instance -->

<xformsdb:instance id="cookie-request-instance">

 <xformsdb:cookie />

</xformsdb:instance>

<!-- Cookie request submission -->

<xformsdb:submission id="cookie-request-submission"

 replace="instance" instance="cookie-instance"

 requestinstance="cookie-request-instance">

 <!-- Actions defined by the form author -->

 <xforms:action ev:event="xformsdb-request-error">

 <!-- Show an error message -->

 <xforms:toggle case="error-cookie-case" />

 </xforms:action>

 <xforms:action ev:event="xforms-submit-done">

 <!-- Show an empty message -->

 <xforms:toggle if="string-length(

 instance('cookie-instance')) = 0"

 case="empty-cookie-case" />

 <!-- Show a success message -->

 <xforms:toggle if="string-length(

 instance('cookie-instance')) > 0"

 case="success-cookie-case" />

 </xforms:action>

</xformsdb:submission>

Listing 36: Example of an XML response of the cookie request indicating that

cookies are enabled on the browser

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:cookie>JSESSIONID</xformsdb:cookie>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

155

Listing 37: Example of an XML response of the cookie request indicating that

cookies are not enabled on the browser

<?xml version="1.0" encoding="UTF-8"?>

<xformsdb:cookie />

Listing 38: Definition of the xformsdb:submission element

<!-- XFormsDB request submission -->

<xformsdb:submission id="xformsdb-request-submission"

 replace="instance" instance="xforms-instance"

 requestinstance="xformsdb-request-instance">

 <!-- Actions defined by the form author -->

</xformsdb:submission>

Listing 39: Example of a detailed error (appended) from an XFormsDB

implementation

<!-- Cookie request instance -->

<xformsdb:instance id="cookie-request-instance">

 <xformsdb:cookie>

 <!-- Detailed error (appended) from the XFormsDB

 implementation -->

 <xformsdb:error>

 <xformsdb:code>33001</xformsdb:code>

 <xformsdb:description>

 Failed to check browser support for cookies.

 </xformsdb:description>

 </xformsdb:error>

 </xformsdb:cookie>

</xformsdb:instance>

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

156

Listing 40: Example of a detailed error (an XHTML document) from an

XFormsDB implementation

<?xml version="1.0" encoding="UTF-8"?>

<html>

 <head>

 <title>XFormsDB Error</title>

 </head>

 <body>

 <h1>XFormsDB Error</h1>

 <p>Error code: 33001</p>

 <p>Error description: Failed to check browser support for

cookies.</p>

 </body>

</html>

Listing 41: Definition of the xformsdb:secview elements for showing/hiding the part

of a Web page

<!-- XFormsDB security view for non-logged in users -->

<xformsdb:secview>

 <!-- Actions and/or UI defined by the form author -->

</xformsdb:secview>

<!-- XFormsDB security view for logged-in users having the roles:

 user AND admin, but not having the role: moderator -->

<xformsdb:secview allroles="user admin" noroles="moderator">

 <!-- Actions and/or UI defined by the form author -->

</xformsdb:secview>

Listing 42: Definition of the xformsdb:include element for including a navigation

<!-- Include navigation -->

<xformsdb:include resource="xinc/navigation.xinc" />

APPENDIX A: SYNTAX DEFINITIONS AND USAGE EXAMPLES OF THE

XFORMSDB MARKUP LANGUAGE

157

Listing 43: Definition of the structure of the xformsdb_users.xml document

<?xml version="1.0" encoding="UTF-8"?>

<root>

 <xformsdb:users>

 <xformsdb:user username="administrator"

 password="1224CFEC67D8695D4C9AD7B5777E61C4"

 roles="user admin" />

 <xformsdb:user username="student"

 password="1CA18BE3E542DA8D52A9E5B4E4931FC3"

 roles="user" />

 </xformsdb:users>

</root>

Listing 44: Definition of the structure of the xformsdb_files.xml document

<?xml version="1.0" encoding="UTF-8"?>

<root>

 <xformsdb:files>

 <xformsdb:file displayname="API for XFormsDB 1.0" roles=""

 filename="api_for_xformsdb_1-0.pdf"

 mediatype="application/pdf"

 filesize="144941" comment="Editor’s Draft"

 creator="Markku Laine" created="2009-01-27T17:04:55.310+02:00"

 lastmodifier="Markku Laine"

 lastmodified="2009-02-16T10:52:21.280+02:00"

 id="50641f86-572e-4913-ade2-a8df24f16158" />

 <xformsdb:file displayname="Lecture: XFormsDB" roles=""

 filename="lecture_xformsdb.pdf"

 mediatype="application/pdf"

 filesize="728504" comment="Held on January 27, 2009"

 creator="Markku Laine" created="2009-01-27T17:04:55.390+02:00"

 lastmodifier="" lastmodified=""

 id="f40e4173-be44-4b73-889a-2ca3ee3ae3bb" />

 </xformsdb:files>

</root>

158

Appendix B

Decision Tree Diagram of the

xformsdb:secview Element

APPENDIX B: DECISION TREE DIAGRAM OF THE XFORMSDB:SECVIEW

ELEMENT

159

Figure 24: Decision tree diagram of the xformsdb:secview element

160

Appendix C

XFormsDB Packages

Table 33: XFormsDB packages

Package Description

fi.tkk.tml.xformsdb.core Provides constants used throughout the

application.

fi.tkk.tml.xformsdb.dao Provides interfaces and classes for accessing

data stored in various data sources.

fi.tkk.tml.xformsdb.error Provides classes for dealing with errors.

fi.tkk.tml.xformsdb.handler Provides classes for handling various tasks,

such as writing responses.

fi.tkk.tml.xformsdb.manager Provides classes for managing session related

data.

fi.tkk.tml.xformsdb.merger Provides the class for performing the three-way

merging of XML documents.

APPENDIX C: XFORMSDB PACKAGES

161

fi.tkk.tml.xformsdb.resource Provides DTD, entity, XQuery expression, and

XSLT transformation resources used within the

application.

fi.tkk.tml.xformsdb.servlet Provides the main servlet class of the

application.

fi.tkk.tml.xformsdb.tdm Provides classes for overriding some classes

defined within the 3dm.jar package.

fi.tkk.tml.xformsdb.transformer Provides classes for transforming data defined

within XHTML+XFormsDB documents.

fi.tkk.tml.xformsdb.util Provides utility classes.

fi.tkk.tml.xformsdb.xml Provides classes for dealing with XML

documents.

