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Tiivistelmä:

Työn tavoitteena oli kehittää algoritmi aivosähkökäyrän häiriöiden reaaliaikaiseen poistamiseen. Työ oli osa uuden 
laitteen kehitysprojektia, jossa pyritään vähentämään tietyntyyppisiin aivosähkökäyrämittauksiin kuluvaa aikaa ja 
helpottamaan mittausten suorittamista. Mittaukset tehtiin laitteen kahdeksankanavaisella prototyypillä.

Artefaktojen ominaispiirteet määritettiin kokeellisesti. Tärkeimmiksi häiriölähteiksi todettiin silmien räpäytykset, 
silmien liikkeet, pään liikuttaminen sekä purenta. Ensisijaisesti häiriöiden tunnistamisessa käytettiin laskennallisesti 
kevyitä virtuaalikanavamenetelmiä, jotka hyödynsivät havaittuja piirteitä. Menetelmiä kehitettiin edelleen useiden 
koemittausten avulla. Myöhemmissä versioissa algoritmi saatiin mukautumaan erilaisiin mittaustilanteisiin ja 
muutoksiin mittauksen kuluessa.

Lopullinen algoritmi on huomattavasti tehokkaampi ja luotettavampi kuin aiemmin käytetyt reaaliaikaiset menetelmät. 
Aiemmat menetelmät ovat perustuneet yksittäiseen raja-arvoon ja niiden hylkäysprosentit ovat korkeintaan 80% 
käytettäessä samoja kriteereitä kuin tässä työssä. Viimeisimmissä suorituskykykokeissa algoritmi tunnisti ja hylkäsi 
noin 99% artefaktoista ja hylkäyksistä yli 98% oli oikeaan osuneita. Kokeessa käytettiin useita koehenkilöitä ja 
mittaustilanne oli mahdollisimman tarkasti laitteen todellista käyttötilannetta jäljittelevä. Tämä osoittaa, että algoritmi 
on erittäin tehokas ja pystyy mukautumaan sopivaksi kullekin koehenkilölle normaaleissa mittaustilanteissa.

Lopullisessa muodossaan kahdeksankanavainen algoritmi soveltuu mainiosti projektissa kehitettävän laitteen 
häiriönpoistoalgoritmiksi. Se on tehokas, luotettava ja laskennallisesti verraten kevyt. Mikäli laitteesta kehitetään 
jatkossa versio, jossa häiriönpoisto tapahtuu sulautetulla prosessorilla, on kehitetty algoritmi varteenotettava ehdokas 
toteutukseksi. Myös muunlaiset aivosähkökäyrälaitteet ovat potentiaalisia sovelluskohteita algoritmille, sillä 
häiriönpoisto on eräs niiden yleisimmistä heikkouksista.
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Abstract:

The purpose of the work was to develop an online algorithm for electroencephalograph (EEG) artefact removal. The 
work was part of a project developing a novel device for easier and faster recording of event related potentials (ERPs). 
A prototype of the device was used in the recordings involved in the development of the algorithm.

The properties of the artefacts were studied experimentally. Most important artefact sources turned out to be blinks, 
eye movements, head movements, and jaw muscle activations. The primary methods used in artefact detection were 
several virtual channel methods that are computationally light and take advantage of the experimentally determined 
properties. Several developments were made to the methods with the aid of further experimental data. In later versions 
adaptive features were introduced to the algorithm, allowing it to adjust to changes in measurement conditions without 
outside interruption.

The final version of the algorithm is more powerful and robust than other online solutions. Earlier solutions have 
relied on a single potential threshold and have reached only 80% accuracy at best when assessed using the same 
criteria as the algorithm presented here. In the latest performance tests the algorithm detected and rejected 
approximately 99% of all artefacts, with over 98% of the rejections being correct. Several test subjects were used in 
the tests and the recording set-up closely mimicked the set-up where such a device would be used in reality. The tests 
prove that the algorithm is very powerful and can adapt to different subjects under ordinary but not necessarily 
identical conditions.

In the final version presented in this work the eight channel algorithm is well suited to remove the artefacts present in 
the data measured by the device. It is powerful, reliable, and efficient compared to the alternatives. If the device is 
developed to include an embedded processor for artefact rejection the algorithm is a good candidate for 
implementation. The algorithm could also be of use in other EEG applications after some minor modifications, 
because artefact detection is one of the most common weaknesses of the devices.
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List of abbreviations and acronyms
CT Computer tomography

EEG Electroencephalogram

ERP Event related potential

fMRI Functional magnetic resonance imaging

ICA Independent component analysis

MEG Magnetoencephalogram

MMN Mismatch negativity

PCA Principal component analysis



Glossary and disambiguation
Algorithm A combination of methods and other procedures that is designed to clean 

EEG recordings of artefacts and noise.

Artefact Anything besides brain activity that influences the electric potentials recorded 
by the device.

Artefactual A sample that is recorded whenever an artefact is present is artefactual.

Benchmark Accuracy, precision, recall, sensitivity or specificity. Different measures of 
how well a method or an algorithm has removed the artefacts.

Bite Jaw muscle activity. Does not necessarily cause any movement, but if it can 
be registered on the electrodes it is a bite.

Detector A synonym for a method.

Method A detector for a single artefact type.

Noise Background brain activity that influences the electrode potentials. Can also 
contain some electronic noise due to the electrode connections. Both sources 
have wide enough frequency bands and reasonably uniform power spectra, so 
noise can be considered approximately white.

Recording An EEG recording session or the resulting data set.

Saccade A rapid eye movement. Unless otherwise specified a horizontal saccade. One 
of the artefact types.

Sample Potentials recorded during a single timestep. A sample contains a single 
potential value from each channel.

Thresholding Repeatedly comparing a value that changes during a recording to a threshold. 

Timestep Time between recorded samples. The inverse of the sampling frequency. The 
device used has a timestep of 5ms.

Virtual channel A re-referenced and mathematically modified EEG channel.



1. Introduction

1.1. Background

Measuring ‘brainwaves’ is a feat that people believe is easy for any modern day practitioner of 
medicine. In its current state, however, electroencephalogram (EEG) is being slowly replaced by the 
magnetoencephalogram (MEG),  functional  magnetic  resonance  imaging  (fMRI),  and  computer 
tomography (CT) [17, 18]. These techniques provide high resolution images of the brain instead of 
the handful of one-dimensional signals that EEG records. There are downsides too – the devices are 
expensive, they take a lot of space, special expertise is needed to operate them, and in the case of 
CT the subject also receives a large x-ray dose [19]. Even if costs are ignored the dimensions of the 
data are not the only reason why the popularity of EEG is diminishing – if EEG could pinpoint the 
location of a tumour [20] or reliably and quickly tell why a patient is unconscious it would be used 
a lot more than today. The main problem with EEG is the unreliability of the recording [1-3].

There are two main shortcomings in EEG. First,  the signal  source is  impossible  to locate with 
certainty. Second, to make things worse even that signal is entirely drowned in noise. Because EEG 
is measured on the scalp and the brain is electrically active in all parts it is impossible to reliably 
pinpoint  the  sources  of  the  measured  potentials.  More  importantly,  it  is  impossible  to  find  an 
explicit solution to a problem where there can be several active sources inside a volume with mostly 
uniform conductivity (The inverse source problem [8, 9]). Based on these problems, it would be 
easy to think that EEG is not worth it these days when more accurate tests are available, but there 
are ways to solve these problems and when used correctly EEG can still be invaluable because it is 
a cheap and easy way to peer inside the working brain.

Event  related  potential  (ERP)  is  a  characteristic  EEG waveform that  is  the  result  of  the  brain 
processing  a  given  stimulus  [4].  They  are  useful  because  they  provide  a  way  to  reduce  the 
background noise that is a big problem in all EEG use. Measuring the response of one group of 
neurons to a stimulus is like trying to ask a question from someone standing on the other side of a 
football field – when the field is full of yelling and screaming people all trying to get their own 
messages across to each other. Fortunately it is known that, in a sense, the brain can be quite simple 
at  times  and  always  answers  almost  identically  to  a  simple  question.  So  to  continue  with  the 
analogy,  it  is  possible  to  ask the  question a  hundred  times  and record the  response  plus  some 
random noise  each  time.  Then all  the  recordings  are  summed and the  answer is  heard  clearly 
enough when it is amplified hundred-fold and the other voices are not.

ERPs have been used and studied extensively and one successful example is Mismatch negativity 
(MMN). MMN is elicited when the brain detects a change in the incoming stimulus [7, 12]. When 
the brain expects a standard stimulus and receives a deviant instead the response is very different 
even if the difference between the two is barely recognizable. Most research into MMN phenomena 
has used auditory stimuli. This is understandable, because it is easy to alter an auditory stimulus in 
many subtle ways (duration, pitch, volume, interval etc.), the test subject can quite reliably either 
focus on or leave unattended auditory stimuli (with the help of visual stimuli to capture attention), 
and the stimulus rate can be kept high enough to keep the test situation short. MMN is also used in 
language studies, where the stimuli are words or syllables [5]. The clinical uses of MMN include 
detecting speech perception problems in infants, predicting coma outcome, and assessing the state 
of schizophrenics [6].

Although the noise can be handled pretty well in ERP studies through averaging, sudden artefacts 
[21] can ruin the results if they are not removed. Artefacts are hard to avoid and their impact on the 
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average waveform is significant. Averaging can be used to some extent to reduce artefact impact, 
but eventually the data quality without artefact removal reaches a maximum and that maximum is 
not very high assuming normal artefact density. This is why artefact removal in EEG recordings is 
an area of interest for modern researchers – as it has been for the last fifty years.

1.2. Ongoing research project

This master’s thesis was made as a part of a project which aims to improve the clinical applicability 
of ERP recordings through the development of the instrumentation and means of adaptive signal 
processing. Currently, a prototype system is has been developed and the signal processing platform 
is under development.

The prototype system developed in  the  project  uses  eight  channel  electrodes  and the sampling 
frequency of 200Hz, which means that activity up to 100Hz can be accurately measured (Nyquist 
theorem [11]).  The  data  are  provided  as  a  real-time  data  stream that  is  transmitted  through  a 
wireless connection to the analysis computer. In a typical recording set-up, the signals are recorded 
from Right mastoid (upper neck, about five cm below inion and to the right), right temporal near 
location F8, right frontal Fp2, forehead Fz, central Cz, left frontal Fp1, left temporal F7, and left 
mastoid (see figure 1).

1.3. Research objectives

The purpose of this thesis was to develop an algorithm to reject artefacts in real-time during the 
recording of EEG. The first research objective was to design a reasonable online algorithm that can 
process the data while they are collected. Second objective was to achieve adaptivity, making the 
algorithm respond to changing measurement conditions.

The algorithm cannot be very processor intensive as it has to be feasible online. Most notably any 
methods  incorporating  principal  component  analysis  (PCA) or  independent  component  analysis 
(ICA) are too heavy for the device. Fortunately, most of the simple artefact detection and noise 
removal methods do not require a lot of processor time. It is therefore possible to simultaneously 
use  many of  the  simpler  methods at  each  time step even on an embedded processor  if  that  is 
necessary.

The main constraint of the algorithms presented in this work is to process the raw data faster than 
the samples are acquired. This means that the algorithms must be able to process over 200 samples 
per second on average. If the development of such algorithms was successful they could be of use in 
other similar applications as well.
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Figure 1: The international 10-20 electrode placement system

Figure 2: A characteristic blink waveform seen on the eight electrodes. The frontal channels also 
show some vertical saccades mainly in the 938-939s interval.
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2. Preparation of the data and post-processing
Before the real task of artefact detection there are some preliminary tasks to be taken care of. Most 
importantly the meandering baseline must be corrected. After the data have been recorded the noise 
must be removed. There are several methods to remove the residual noise left after the averaging. In 
this case, wavelet filtering is used.

2.1. Baseline offset

Sometimes all channels are not originally normalized to have zero mean, which is not optimal. It is 
necessary  to  remove  the  baseline  offset  for  wavelet  filtering  purposes  as  well.  Removing  the 
baseline can be as simple as removing the mean of the latest window of samples or using a highpass 
filter with a passband starting from below 1Hz. Different methods have different drawbacks and 
strengths and the right way to remove the baseline effectively without influencing the data is not a 
trivial choice.

2.2. Baseline correction methods

Removing the baseline offset is one of the first things that are done in almost any kind of signal 
processing. It makes analysing the data using many mathematical tools possible. It also removes 
one variable from the differences between recordings – an important step because it is necessary to 
be able to compare test subjects for the test to have any applicability.

One very basic method for baseline removal is to take the average of a moving window. In this case 
due to the needs of the online artefact rejection the length of the window is limited to one hundred 
samples. The mean for each channel is calculated from the samples and then subtracted from the 
50th sample that is currently being processed. This method very effectively removes the baseline, 
because if  the baseline changes rapidly the new baseline is  completely removed after  just  100 
samples. On the other hand many interesting or important phenomena can be lost as well as the 
baseline removal removes low frequency events as well. For example if the subject looks to the side 
and keeps looking there for more than half a second the change will no longer be visible on the 
baseline-corrected data.  This can be either advantageous or not depending on how the baseline 
corrected data are used.

For continuous EEG it would be reasonable to use a longer average than the one hundred sample 
segment mean. In online analysis a longer window is not often viable as it slows down the data 
processing.  Because  the  baseline  changes  are  usually  quite  slow  the  current  baseline  can  be 
approximated rather well using only the samples preceding the sample that is being processed and 
extrapolating.  This  way the baseline variance is  smaller,  but  the method reacts  more slowly to 
changes in the mean. The number of samples used with the method was empirically set  to ten 
thousand, which corresponds to fifty seconds, so during a 15 minute recording where there is one 
rapid baseline shift and several slower changes the baseline correction works well a little over 14 
minutes and fails slightly or more for about fifty seconds. This method is used by the algorithms 
when the recorded data is not divided into epochs.

When the data are divided into epochs that are to be averaged the usual way to handle baseline 
correction  is  to  take  the  average  of  the  prestimulus  interval  –  the  time  before  the  stimulus  is 
presented to the subject. In this case the prestimulus interval is 42 samples or 210ms long so the 
average is a slightly less accurate approximation of the true baseline than the one hundred sample 
average. There should be no relevant activity during the prestimulus interval, however, so the signal 
consists of baseline and noise only. This can be a very important detail when the signal to noise 
ratio (SNR) is calculated. Also, if the prestimulus interval consistently contains some waveform the 
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experimental set-up should be revised, possibly moving the stimuli further apart to avoid overlap 
from  the  previous  evoked  potential  and  the  prestimulus  interval  of  the  next.  This  method  is 
obviously unusable if the experiment does not use stimuli or cannot accurately time them. In ERP 
recordings  prestimulus interval  average is  the most  common method of baseline removal.  This 
method is used by the algorithms when the data are divided into epochs.

It is sometimes viable to use a butterworth filter [15] or some other non-ideal highpass filter [16] for 
baseline correction. The advantages of the method are the simplicity and universally adopted nature 
of the IIR filtering methods. At its best a butterworth filter will cause minimal passband ripple and 
remove the  baseline equally from all  segments  where  it  is  applied.  It  will  not  affect  any high 
frequency details if properly used, but slow waves can be slightly deformed by the filter.

2.3. Rapid baseline shifts

If an electrode moves a little it might change the conductivity and therefore cause a rapid change in 
the potential. When this happens it should be detected and the baseline should adjust accordingly. 
This is one of the artefacts that can cause the most trouble if it is not rejected, because if an epoch 
where one channel is baseline shifted a lot moves the resulting average by a significant amount.

2.4. Noise removal

Once the data have been cleaned of the most obvious artefacts the background noise still needs to 
be  minimized  without  influencing  the  shape  of  the  responses  too  much.  Wavelet  filtering  was 
chosen as the method of choice, because simple averaging was not effective enough in preserving 
the  waveforms  [14].  The  accepted  epochs  are  first  averaged,  and  the  resulting  waveforms  are 
wavelet filtered to reduce the noise even more. If the filtering would be done for each epoch before 
averaging it would alter the shape of the response more, because there would be  more noise in the 
filtered sequences and the more noise there is the less reliable the filtered results are. 

Figure 3: The shape of the wavelet function and scaling function of a Daubechies 4 wavelet.

2.5. The Daubechies 4 wavelet

The wavelet function used in the noise removal method is Daubechies 4, which is a generic wavelet 
reasonably shaped for ERP filtering. It retains most of the low and medium frequency components 
of  the  signal,  preserves  the  peak  shape of  the  waveforms  rather  well  and  does  not  reduce the 
amplitude. Figure 3 shows the shapes of the wavelet function that covers most of the spectrum and 
the scaling function used to cover the lowest frequencies.

13



2.6. Multilevel wavelet decomposition and reconstruction

Multilevel  wavelet  decomposition  divides  the  data  into  frequency  components.  The  lowest 
frequency component is called the approximation while the rest are called detail levels from highest 
to lowest. In this case when 200Hz data are decomposed using 8-level wavelet decomposition the 
approximation consists of the 0-2Hz data, the 7th detail level contains the 2-4Hz band, the 6th detail 
level the 4-8Hz band, and so on until the 1st detail level, which spans from 128Hz to 256Hz, which 
clearly cannot contain any reliable information because of aliasing effects that make it impossible to 
accurately detect any activity above 100Hz when using a 200Hz sampling rate.

After discarding some of these components the remaining detail levels and the approximation level 
are  used  in  the  reconstruction,  which  is  simply  the  inverse  process  of  the  decomposition, 
substituting  zero-vectors  for  the  discarded  frequency  components.  This  method  relies  on 
predetermined thresholds for accepting the coefficients for each detail level. If the thresholds are 
too low most of the noise is left in the data, but on the other hand if the thresholds are too high most 
of the information is lost and only the occasional artefactual spike is included in the filtered data – 
far from the ideal outcome. Of course the highest frequency detail levels can be rejected outright, 
because even if  there were some non-artefactual events at  those frequencies they would not be 
interesting as the MMN phenomena are low to medium frequency events.

2.7. Adaptive hard thresholding

The technique where wavelet coefficients are either accepted as is, or rejected completely is called 
hard thresholding. In adaptive hard thresholding the threshold is based on some measure of the data 
or the coefficients and it is periodically recalculated. The advantages of this method are many, as it 
can, for example, allow all of the approximation and detail levels 7 and 6 to pass, let through the 
above-median half of each intermediate detail levels coefficients, and reject the rest. This way no 
matter  how  noisy  the  raw  data  are  the  filtered  data  contain  about  the  same  amount  of  each 
frequency band and different recordings are easier to compare.

Table 1: Overview of the observed artefact characteristics

Artefact type Highest amplitude channels Other information
Blink Frontal positive, mastoid negative Fast, uniformly shaped

Horizontal saccade Temporal, depends on direction

Bite Mastoid, temporal Duration and amplitude vary a lot

Muscle Depends on the active muscle, most 
often mastoid, temporal, and frontal

Duration and amplitude vary a lot

Tongue movement Not noticeable

Opening and closing 
the mouth

Not noticeable

Turning the head As a large muscle artefact and several 
saccades

Eyes seek focal points during the 
head turn, causing the saccades

14



3. Artefact characteristics
There are plenty of different artefacts in an EEG recording, even when everything is well prepared. 
Finding and removing these artefacts is a challenging task that is started by identifying the different 
types of artefacts.

3.1. Experiment to determine artefact properties 

An experiment was conducted in order to have some first-hand information of the artefacts. A test 
subject repeated a sequence of opening and closing his mouth, biting, blinking, looking from side to 
side, and moving his tongue up and down. The resulting EEG recording was carefully analysed and 
each artefact was located if possible. These labelled data were later used as a test data set for the 
artefact  detection  methods.  Roughly  35% of  the  samples  were  artefact-free,  which  means  the 
artefact density was much higher than in an ordinary recording. In addition to density,  also the 
artefact  strength  differs  from normal.  Intentionally  caused  artefacts  are  generally  stronger  than 
naturally occurring artefacts, because it is difficult to mimic the unconscious small movements that 
normally contaminate the recordings. These factors make it a little harder to use the experimental 
data in designing the artefact removal methods, but it is still worth it. Table 1 lists the different 
artefact types and the information about them gained through the experiment.

3.2. Ocular artefacts

Artefacts  related  to  eye  movements  can  be  very  large  and  thereby  cause  large  errors  in  the 
averaging process if they are not caught by the filters. The eye movements are also physiologically 
very fast, although they cannot compete with the electrical artefacts that are understandably even 
faster.

3.2.1. Blinking

Eye blinks affect the electrode potentials, because the eye is an electric dipole and closing the eyelid 
forms a conductive pathway from the positive cornea to the forehead [13]. A blink is fast, taking 
approximately 120-200ms, and there is generally relatively little variability in the artefact waveform 
even between subjects. A blink shows as a large v-shaped dip on channels below and behind the eye 
and inversely a positive artefact on the forehead channels. Figure 2 shows a blink surrounded by 
some non-artefactual activity on all eight channels. 

3.2.2. Horizontal saccades

A horizontal saccade (rapid eye movement) causes a symmetric change to the potentials on the left 
and right hemisphere electrodes. If a subject looks to the left all the left-hand-side electrodes show a 
rise in potential and all the right-hand-side electrodes show a decline of the same magnitude. The 
changes are at their largest on the temporal electrodes, because they are closest to the eyes in the 
direction of movement of the eye dipole. See figure 5 for an example of a horizontal saccade as it is 
seen on different channels.

3.2.3. Vertical saccades

A vertical saccade is a lot harder to catch than horizontal, because there are no symmetric electrodes 
above and below the eye to provide an easy way to check if there are inverse changes on different 
sides. To make things worse a quick glance up can seem almost like a blink on the electrodes, but 
the duration varies a lot more and the shape of the waveform is far from standardized. Fortunately, 
vertical saccades are rare and usually very small compared to horizontal – people do not look up or 
down as often as they glance to the sides. Some vertical saccades can be seen on figure 2.
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3.3. Myographic artefacts

Muscle-related artefacts are usually characterized by large amplitude and variance. They do not 
have as clear waveform shapes or as clearly defined directions as ocular artefacts, but in some cases 
they can be easier to find and remove because they can be orders of magnitude larger in amplitude 
than normal brain activity.

3.3.1. Biting

The jaw muscles are some of the strongest muscles in the human body and when they are active it 
really shows. A moderate bite will increase the activity on all channels tenfold as the muscle-related 
electric activity drowns the brain activity for a moment. Fortunately this makes large bite-artefacts 
easy to spot as the variance can be measured and used as an indicator. Unfortunately it is hard to 
draw the line where small increases in amplitude become artefactual as it is obviously possible to 
contract the jaw muscles ”just a little” instead of actually biting – for example, if the subject is tense 
or intensely concentrating on the test he or she can subconsciously bite enough to double the noise 
level  on mastoid channels even if  there are no outward signs of tension.  This way the muscle 
activity can be even smaller than the background brain activity and thus not as simple to detect. 
Figure 4 shows a strong bite that continues to disrupt the potentials for over ten seconds after the 
subject has seemingly relaxed. It is important to take into account in artefact removal the time it 
takes for the channel baselines to readjust.

3.3.2. Other head and neck muscle artefacts

The tongue is a large muscle relatively close to the recording and reference electrodes. It would be 
easy to assume that speaking or otherwise moving the tongue would cause large artefacts. This, 
however,  is  not  the  case.  Moving  the  tongue  while  other  muscles  are  relaxed  does  not  show 
markedly on the electrodes. Neck muscles, on the other hand, are directly underneath the mastoid 
electrodes so moving the head in almost any way always increases mastoid variance and can cause 
other  artefacts  as  well.  Figure  6  shows a  small  muscle  artefact  that  also  shows up  on  the  Fz 
electrode.

3.3.3. Heartbeat and other muscle-based activity in other parts of the body

Heart is a constantly active strong muscle that causes a strong enough electric potential on the skin 
to be measured – the EKG is an old and well established clinical tool. It is therefore reasonable to 
assume that the heart causes changes in scalp potential as well, which it does. The choice of the 
reference electrode is the key here. If the reference electrode was placed on the wrist, ankle or chest 
the distance and direction to heart would be quite different than the distance and direction from the 
recording electrodes to heart. This would cause the heartbeat to show on the channels, similar to an 
EKG waveform. When the reference electrode is close to the recording electrodes the heart artefact 
is minimized. The same logic applies to all other distant muscle activity. They do cause potential 
changes,  but  the  changes  to  the  reference  electrode  are  similar  and  thus  the  overall  effect  is 
minimal. If, at some point, the device is developed further and the noise levels can be reduced 
significantly,  or  additional  processor  power  becomes  available  so  the  blind  source  separation 
techniques can be implemented these artefacts can become visible and thereby removable.
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Figure 4: A strong bite. All channels are heavily affected.

Figure 5: Two horizontal saccades in opposite directions during a bite. The temporal channels show 
sharp changes where the other channels are not as heavily affected by the horizontal movement.
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Figure 6: Some small scalp muscle activity during an otherwise clean epoch. It is evident that most 
of the activity is seen on Fz and at the mastoids. This might indicate a frown or raised eyebrows.

3.4. Equipment-related artefacts

There are many things that can go wrong in an EEG recording. Applying the electrodes can be 
difficult and they will invariably have different impedances even though the differences are kept at 
a minimum. To improve the connections varying amounts of a conductive electrode paste is used. 
The paste is an excellent conductor when it is moist, but it is impossible to keep it from drying, at 
least to some degree. This can go so far as to detach an electrode even though it has not moved at 
all. It is of course possible that electrodes move a little when the subject moves and even a small 
movement can affect the electrode connection greatly. This is one of the reasons patients are asked 
to remain as still as possible during an EEG experiment. The only thing that can be done if an 
electrode  is  completely detached  is  to  reattach  the  electrode  and restart  the  experiment.  If  the 
electrode paste dries significantly the amount of noise on a channel will increase, which must be 
taken into account if the experiment takes time.

A spike artefact is another type of artefact that can be caused by electrode movement, but also by 
faulty components or other electronics-related reasons. A spike is a very short, very high amplitude 
disturbance. They are often easy to remove using a simple amplitude threshold to reject samples 
where the amplitude goes over the threshold.
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4. Artefact Detection

This chapter presents the methods used in the early versions of the algorithm to detect and remove 
artefacts from EEG data in real-time. The starting point was a technique called amplitude threshold, 
which means rejecting the samples where the absolute value of the potential for any channel is 
above a predetermined threshold – for example 75μV. This will reject the most severe artefacts, but 
lets through a lot of undesired data, because the threshold cannot be set very low in order to avoid 
rejecting all data. The methods described in this chapter can be used to improve the detection and 
rejection  of  specific  artefact  types.  When  they  are  combined  they  should  improve  the  overall 
artefact rejection percentages.

Most of the methods use virtual channels to improve the sensitivity of the detectors and to reduce 
the number of false positives. Virtual channel refers to a re-referenced and mathematically modified 
EEG channel. Instead of being directly recorded, it is computed from recorded data using simple 
operations like averaging or subtracting. Virtual channels give the ability to reinforce waveforms 
that are the hallmarks of specific artefact types and therefore make it easier to detect those artefacts. 
They also help in noise reduction, because it is possible to average two electrodes that are placed 
symmetrically or close to each other. This way the influence of background activity on the virtual 
channel is less than what it would be on a single directly recorded channel.

All artefact detection methods require thresholds to which the electrode potentials or virtual channel 
values  are  compared.  The  thresholds  in  this  chapter  were  selected  based  on  the  experiment 
described in section 3.1. Once reasonable thresholds had been established the methods were tested 
on  the  test  data  set  to  find  out  how  well  they  performed.  Adaptive  bite  and  muscle  artefact 
thresholds are discussed in sections 4.3.2 and 4.4.3.

4.1. Eye blinks

The blink detection methods use a virtual vertical dipole channel, which is calculated by taking the 
average of the mastoid channels and subtracting the frontal channel average. The dipole channel 
was chosen because it takes advantage of both the averaging that removes some noise from the 
channel pairs and the fact that blinks show up as negative changes on mastoid channels and positive 
changes on frontal channels. The overall blink effect is larger on the virtual channel than on either 
the mastoid average or the frontal average alone.

4.1.1. Simple virtual channel threshold

The simplest way to detect artefacts is to set a predetermined threshold and reject each sample 
where the potential or the absolute value of the potential crosses the threshold. In the case of blinks 
this is a viable method, but it provides no way to differentiate between blinks and other types of 
artefacts. It also detects only the very peaks of blink artefacts, even though that is often enough 
when whole epochs are rejected if any artefacts are present. It is still possible for the onset of the 
artefact to be accepted if it occurs at the very end of an epoch, or similarly for the diminishing late 
part of the blink to cause trouble in the beginning of an epoch.

4.1.2. “Difference of long and short averages” – method

An improved method for blink detection is to measure a slightly longer segment of virtual channel 
data – one hundred samples in this case – and then take a long and short average around the data 
point that is to be classified. An average of the one hundred samples is a smooth curve that follows 
the long duration effects of the channel, but generally stays closer to zero than the raw data. The 
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short average is calculated for 30 samples around the data point to be classified, which corresponds 
to 150ms. This means that most of the noise is removed, but the average still reacts quickly to most 
changes, including blinks.

A blink is clearly visible on the difference of the long and short averages. Before the blink starts 
there is a small dip below zero, then a rapid large rise, and finally an equally rapid decline back 
below zero once the blink is over. This method is used by setting a suitable threshold that mostly 
just the blinks cross and rejecting the samples during which this happens. All slower artefacts cause 
the  shorter  average  to  follow the  longer  average  closely and do not  cause  the  threshold  to  be 
crossed. The method is not foolproof – sometimes a bite or muscle activity causes so fast changes in 
the vertical dipole that the threshold is crossed and those samples get falsely rejected as blinks. This 
is largely inconsequential when only rejecting the artefactual samples counts, but when striving to 
classify the artefacts as well as possible it should be avoided. Finally, the need to correctly classify 
blinks will be extremely important if the algorithm is revised to include online blink compensation. 
For that to happen, the compensation must become viable without specialized EOG electrodes or 
prohibitive computing power requirements.

4.2. Horizontal saccades

Horizontal saccades are easy to detect, because they affect the difference between symmetrically 
located electrodes. The effect is at its largest on the temporal electrodes, so a virtual channel that is 
formed by subtracting the left temporal channel from the right is excellent for detecting saccades.

4.2.1. “Squared difference and threshold” – method

Simplest saccade detection method is to just take the square or the absolute value of the virtual 
channel and then reject samples where this value crosses a predetermined threshold. The method 
removes the ability to differentiate between saccades to the left and to the right, but that is rarely 
relevant. The correct choice between taking the second power or not depends largely on whether the 
other  methods  use  the  magnitude  by  which  a  classification  is  made  as  a  tool  for  classifying 
artefacts. If the saccade detection method is compared to other methods that do not use the second 
power then using the squared value can cause events to be falsely labelled as saccades even when 
they strongly exhibit the properties of other artefact types. For example an event where the muscle 
threshold is exceeded tenfold can cause the saccade threshold to be exceeded fivefold. Such an 
event can be classified as a saccade if the saccade channel is squared, as a muscle artefact if both 
detectors use absolute values, or as both if such comparisons are not used.

4.2.2. “Smoothed absolute value of difference and threshold” – method

A slight improvement on the method described above, the point of this method is to take an average 
of the absolute values of one hundred virtual channel values around the point of interest and then 
classify the data point as artefactual if the average crosses a predetermined threshold. This removes 
most of the spikiness of the previous method that can easily classify five consecutive samples as 
‘rejected–clean–rejected–clean–rejected’, which does not usually represent the actual physiological 
facts. This method can also classify as artefactual the moment when the eyes are looking straight 
ahead when the subject swiftly shifts their gaze from one side to the other.

4.3. Bites

Removing bite artefacts is more difficult than removing ocular artefacts, because the artefact lacks a 
clear waveform or a simple amplitude threshold that would always indicate its presence. It is also 
one of the strongest artefact types so it is necessary to have a best possible method for removing 
epochs contaminated by biting from the data, even if the method borders on overly sensitive.
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The jaw muscle activity detection methods presented here rely on variance estimates. Variance can 
be calculated for any signal, but not for single values. This means using a moving window of some 
sort if data from only one channel are to be included in the calculation. The requirement is not 
really  a  problem as  most  of  the  other  methods  also  require  a  moving window for  calculating 
averages.

4.3.1. Simple mastoid variance threshold

This method uses the one hundred latest samples from mastoid channels and calculates the variance 
for both of them when categorizing the 50th latest sample. The average variance of the channels is 
compared against a threshold and if it is exceeded the sample is rejected. A hundred samples are 
definitely enough to get a reliable estimate for the variance, but it makes it impossible to accurately 
estimate the onset and end of the artefact. The larger problem is the large variability in the bite 
amplitudes. The variance threshold should be set as low as possible, but if it is set too low some 
recordings could be entirely rejected because the connections are not good enough. The better the 
electrode connections and the more relaxed the subject the lower the background noise levels are 
and the lower the threshold can be without causing trouble. Unfortunately in an online recording the 
background noise level cannot be predetermined and the threshold must be left quite high – just in 
case everything does not go optimally.

4.3.2. Adaptive threshold method

A natural expansion of the simple threshold method is to adaptively move the threshold if needed. 
This method is otherwise identical to the simple mastoid variance technique, but the threshold is 
moved up or down if the average variance of the accepted samples becomes too high or too low 
compared to it. This way the same method can be used for all recordings without any adjustments 
and all bite classifications will be comparable. It is noteworthy that this increases the number of 
false positives slightly, but the few additional detected bites make it worth it. The method can be 
adjusted by setting the minimum and maximum levels of the threshold compared to the average 
variance. If the levels are set higher the number of rejections decreases, which might decrease the 
number of false positives, but could also cause some real jaw muscle activity to go undetected.

4.4. Other muscle activity

The virtual dipole channel presented earlier as a method of blink detection is used in muscle activity 
detection as well. If the subject turns his or her head or there is other activity in the head or neck 
muscles the dipole channel amplitude increases.

4.4.1. Simple dipole magnitude threshold

Once again the simple yet surprisingly effective method is to monitor the absolute value of the 
dipole and compare it to a predetermined threshold. The problem with the approach is that it is 
prone  to  alternate  between  short  rejected  and  accepted  segments.  It  also  cannot  properly 
differentiate  between blinks,  vertical  saccades,  and  muscle  artefacts.  It  is  in  any case better  to 
monitor the absolute value of the virtual channel than the absolute values of each of the separate 
channels, because the lower noise level causes less false positives.

4.4.2. “Smoothed virtual channel absolute value and threshold” – method

As the  name would  suggest,  this  improvement  on  the  previous  method  consists  of  taking  the 
absolute value of the virtual channel values and averaging over a time window – in this case the 
usual 100 samples. One of the advantages of this approach is that the blinks are no longer often 
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misclassified as muscle activity as well, because they are so short. Also, the beginning and the end 
of each artefact are usually included in the rejection, which improves the quality of the accepted 
epochs. One remaining problem with the method is that there are countless different muscle artefact 
types that all produce different sizes and shapes of artefacts. The predetermined threshold faces the 
same kind of problems as in the case of bite detection methods – the changes between subjects and 
changing conditions during recording cannot be taken into account.

4.4.3. Adaptive muscle artefact detection

Adaptivity is added to the above method similarly to the adaptivity for the variance threshold used 
in bite classification. In this case the threshold is adjusted if the average vertical dipole magnitude 
for accepted samples changes too much, but otherwise the principles described earlier apply.

4.5. Rapid baseline shift detection

Sometimes  the  baseline  on one or  all  of  the  channels  changes  rapidly.  This  can  be  caused  by 
anything that causes spike type artefacts or electrode connection problems. The shift is a strong 
artefact so it is troublesome if the detectors do not catch it, but mostly the difference between the 
old  and  the  new baseline  is  so  large  that  at  least  the  bite  and  muscle  artefact  thresholds  are 
exceeded. If the shift happens on the Cz or Fz channels it can go undetected a lot easier. This is why 
a simple baseline shift detection method was incorporated in the system. It calculates a mean of the 
one hundred sample window and of a two hundred sample window including the latest hundred. If 
the difference between the two is very large samples are rejected until the difference returns to 
normal.
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4.6. Performance testing

This section covers the performance of both the methods described in this chapter (summarized in 
table 2) and the algorithms formed by combining them (summarized in table 3). Baseline removal 
methods and rapid baseline shift detection are not compared, because there were no rapid baseline 
shifts in the test data and the baseline wander was minimal. Different noise removal methods are 
not compared, because noise is removed after artefacts have been rejected and it would thereby not 
affect the percentages at all.

Table 2: Comparing the performance of artefact removal methods. Accuracy is the fraction of 
correctly classified samples out of all samples. Precision is the fraction of correctly classified 
artefactual samples. Recall is the fraction of true artefacts out of rejected samples.

Blink removal method Accuracy Precision Recall Notes

Simple virtual channel thresholding 89,8% 47,6% 19,4% 2 / 77 blinks were 
missed entirely

Difference of long and short averages 89,6% 68,4% 23,6% 2 / 77 blinks were 
missed entirely

Saccade removal method Accuracy Precision Recall Notes

Squared difference and threshold 68,7% 60,4% 50,7% many false positives 

Smoothed absolute value of difference 
and threshold

77,2% 88,3% 59,6% no saccades missed

Bite and muscle removal methods Accuracy Precision Recall Notes

Simple mastoid variance and dipole 
magnitude thresholds

69,3% 76,7% 59,8%

Simple mastoid variance threshold and 
smoothed absolute value of dipole 
magnitude threshold 

69,5% 78,4% 59,7%

Adaptive methods 68,6% 79,6% 58,6%

Table 3: Combined results of three progressively more advanced algorithms. The percentage of 
samples in the test data set that were not rejected is listed in the second column. Precision is the 
fraction of correctly classified samples out of the samples classified as artefactual. Accuracy is the 
fraction of correctly classified samples, both artefactual and clean. Sensitivity is the rejected 
fraction of artefactual samples and specificity is the fraction of clean samples that was not rejected.

Methods Accepted Precision Accuracy Sensitivity
Algorithm 1: All use simple thresholds, bite from 
average mastoid variance, others use virtual 
channels

33.0% 70.2% 70.4% 83.0%

Algorithm 2: Smoothed virtual channels, bite still 
simple threshold

33.3% 74.8% 76.5% 88.1%

Algorithm 3: Adaptive bite and muscle thresholds 
added to algorithm 2

33.5% 75.1% 76.7% 88.1%
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The blink results show that even though simple virtual channel peak detection is effective in finding 
most  of  the  blinks  it  also  gives  a  lot  of  false  positives.  It  can  also  be  sensitive  to  electrode 
connections and the small personal variations in blinks between subjects unless it is recalibrated for 
each subject. In this case the threshold was set after the recording and an attempt was made to make 
sure it was low enough to detect most blinks and not low enough to reject an inordinate amount of 
samples. Of course, this would not be feasible in a real online recording device, but for purposes of 
comparison  it  was  a  necessity.  The  difference  of  long  and  short  averages  method  has  similar 
accuracy and recall, but one key difference is the duration of a single rejection, which is usually 
double or triple the number of samples compared to the simple threshold for any given blink. This 
makes the length of the rejections match the duration of the true blinks much better. There are still 
too many false positives, but as they are all longer the actual number of false rejections is less than 
half the number of falsely rejected events in simple thresholding.

Saccade detection methods have a clear winner – the smoothed rejection method is superior on all 
the scales. This is partly due to the wider rejections, which means fewer artefactual samples in the 
start and end of a saccade slip through. The most important reason why smoothing improves the 
method is because all the tiny differences between temporal channels are not saccades. When an 
average over one hundred samples is taken, these minor differences in background activity do not 
cause rejections but the true saccades and some other sizeable events do. The difference between 
the two methods is best seen in figures 7 and 8. Shown on the figures is a short sequence from the 
test data set, containing two saccades and a bite. The most striking difference between the two is the 
number of rejections and the shape of each rejection curve. Most of the rejections by the simple 
thresholding  method  are  short  spikes,  many  of  which  are  false  positives,  while  the  smoothed 
method only fails in that it mislabels the bite as a saccade.

Bite and muscle detection methods have been grouped together because it would be inconvenient 
trying to separate  the two types of muscle  artefacts  when the indicators used in them partially 
overlap. Every time mastoid variance increases when the subject bites the vertical dipole values also 
fluctuate more, which causes the muscle artefact detectors to fire more often as well. The simple 
threshold methods used together provide a reasonable result in this case. There are some problems 
with spikiness, false positives and false negatives, but generally the results are far from terrible. The 
smooth version of muscle artefact detection slightly reduces false positives and improves all three 
benchmarks a little. When adaptivity is added to the methods the changes seem minor in light of 
these  values,  but  the  main  advantage  is  that  the  manual  process  of  searching  for  the  correct 
threshold becomes unnecessary. In this recording where all thresholds are set manually close to 
optimal  the advantage of an automatically adjusting threshold all  but  disappears.  However,  the 
results show that the adaptation is efficient and finds a good threshold value rather quickly.

In addition to the method specific results  some overall  results  are of interest.  Table  3 lists  the 
methods used in three different versions of the artefact removal algorithm and the results from using 
the test data set as a performance measure. A sample is considered correctly labelled if it is clean 
and it is not rejected by any detector or if it is artefactual and rejected by at least one detector. This 
way even if the correct detector fails to notice the artefact but some other detector rejects the sample 
by accident the end result is counted as a correct classification.

The results clearly indicate that with better methods the combined performance is also better. There 
is a marked difference between algorithms 1 and 2. All the benchmarks indicate that algorithm 2 
performs better than its predecessor, which proves that averaging the virtual channels over time is 
an improvement that reduces the number of artefacts in the accepted data. As the only difference 
between algorithms 2 and 3 is the way the threshold values for bites and muscle artefacts are set it is 
natural  that  the results  are very similar.  The only real  difference between the algorithms is  the 
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amount of work involved. Algorithm 2 has two threshold values that need to be carefully balanced 
between too few rejections and too many false positives,  while algorithm 3 does the balancing 
automatically during the recording.

The methods do not provide exactly identical fractions of rejected samples. This makes comparing 
them to each other difficult, as the test data set only has a certain number of samples labelled to 
contain  each  type  of  artefacts.  These  results  reflect  a  situation  where  each  algorithm accepts 
between  33-34% of  the  samples  in  the  test  data  set.  Narrowing down the  overall  ratio  makes 
comparing  the  overall  results  more  reliable.  It  does  not  necessarily  mean  that  the  individual 
methods are rejecting similar shares of samples. For instance, if one algorithm had a blink detector 
that rejects half the samples the other methods can only cause the rejection of up to 17% of all 
samples. Another algorithm could reject only 10% of the samples as blinks and have 57% left to 
share between the other methods. Obviously the example is exaggerated, but it should be kept in 
mind that the overall acceptance ratio does not tell the whole truth. Table 2 shows evidence of the 
balancing of the methods in this study. Special care was taken to ensure that any improvements to 
the results did not come at the cost of reducing the performance of methods that were not being 
assessed. As an example, algorithms 2 and 3 use the same methods for blink and saccade detection, 
so the thresholds for those detectors must be equal for the bite and muscle artefact detection results 
to be comparable.

4.7. Developmental aspects

It is evident that more advanced methods provide better overall results in all artefact categories. 
Even the most basic methods often detect an artefact at its peak amplitude or during the highest 
variance window, but the more sophisticated methods can often correctly classify the artefact from 
the beginning to the end. This is relevant, because the performance of the methods is estimated by 
comparing the classifications they provide to manual sample-by-sample classifications. The manual 
classifications are far from perfect, but they give an adequate meter to estimate the performance of 
the methods.

Of course, there are some shortcomings in all of the methods. When the methods are used together 
there are many types of artefact waveforms that are classified simultaneously into several different 
artefact categories. This shows that the method specificity is not very good. It would be ideal if each 
artefact waveform would always be classified into the correct category. With these methods most 
strong artefact  waveforms trigger all  the detectors,  raising questions about the reliability of the 
methods. More reliable classifications could allow the implementation of artefact compensation for 
some artefact types. The problem with the compensation methods is that they often require heavy 
computations and in the worst case they could remove brain activity-based waveforms as well. If 
successfully implemented, however, such compensation would shorten the recordings as a higher 
percentage of the data could be used.

In their current state, none of the methods use the Cz channel for artefact detection. This leads to the 
question if the channel is actually needed, and if it is not, how much time can be saved if it is 
removed. In reality removing one channel is not a very large improvement, but if several channels 
could be removed the savings in preparation time could become remarkable. The losses in artefact 
detection reliability would lengthen the recording, but the whole test might still be over sooner.
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Figure 7: Absolute value of temporal difference and threshold - method. X-axis is scaled so that 1 
is the threshold for rejection.

Figure  8: Smoothed absolute value of temporal difference and threshold - method. The X-axis 
scaling is the same as above.
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5. Further developments

This chapter builds on the results of the methods described in the previous chapter. It focuses on 
two  possible  ways  to  improve  the  overall  efficiency  of  the  device.  Section  5.1  focuses  on 
developments to improve the reliability of the methods. Section 5.2 discusses the possible ways to 
reduce the preparation time before each recording. The better the artefact rejection algorithm the 
less time the recording takes.  And the less time the recording takes  the more time is  spent on 
preparations compared to actually recording. This makes both approaches valid and necessary.

5.1. Improvement of reliability

In this  section the best  methods presented in the previous chapter are refined in  an attempt to 
improve the reliability of the rejections. More reliable rejections allow the thresholds to be set lower 
to detect even smaller artefacts without fear of too many false positives. This improves the quality 
of the data and shortens the recording as less data are needed to make the results reliable.

5.1.1. Improved blink detection method

This blink detection method is similar to the “difference of long and short averages” – method 
presented in the previous chapter, but it incorporates several extra criteria that must also be met for 
a sample to be rejected. First, the duration of the middle wave is relevant, because natural blinks are 
always quite standard in length. The maximum number of blink samples and the maximum zero-to-
zero time can be used to limit the length of the artefacts classified as blinks. This way the events 
that are shorter or longer than a blink can be easily classified into a different artefact category. Such 
artefacts are usually muscle activity or spike artefacts. This method requires the muscle artefact 
detection method to be adjusted accordingly, so that if an artefact is not classified as a blink but still 
crosses the blink threshold it must be rejected as it is obviously not brain activity.

5.1.2. Improved saccade detection method 

One problem with the earlier saccade detection methods was that they do not actually detect eye 
movements but rather eye direction. In a recording situation the subject can be sitting slightly to the 
side of the screen or not directly facing it. In such case both the head and the eyes are naturally 
turned slightly towards the screen to minimize the stretching of muscles. The slight asymmetry and 
tension in the neck is not entirely unimportant, but the eye direction is far more relevant for the 
saccade rejection methods. This method adds an adaptive mean value for the temporal difference 
channel. The smoothed temporal difference channel is then compared to the mean instead of always 
assuming the neutral eye direction is straight ahead (zero difference). When calculating the mean 
any samples that have been labelled as artefactual are ignored. This way the reliability of the gaze 
direction is considerably better. Through testing the number of samples included in calculating this 
eye direction variable was set at two thousand, corresponding to ten seconds in time. This number 
allows the method to react quickly enough to changes in the subject’s posture, but is not prone to 
excessive fluctuations.

5.1.3. Improved bite detection method

Mastoid variance is not all that changes when a subject is biting. The single sample variance across 
channels  also  increases  dramatically and the  temporal  channel  variance  increases  slightly even 
before the bite has truly started, then peaks in the middle of a bite and eventually quiets down over 
several  seconds  once  the  bite  is  over.  These  properties,  combined  with  the  knowledge  that 
horizontal saccades cause temporal variance increase but do not affect mastoid variance or sample 
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variance much, make it easier to distinguish between the different types of artefacts.
The  two  alternate  criteria  for  sample  rejection  in  this  method  are:  Either  the  average  mastoid 
variance and the  average temporal  variance are  over  their  respective thresholds,  or  the  sample 
variance is above its threshold and the smooth temporal difference channel is below the saccade 
threshold or relatively less above it than the sample variance is above its own threshold. These 
criteria combined allow the method to identify the artefact onset and end points much better than 
the mastoid variance threshold method alone can. The criteria also make separating bite and saccade 
artefacts possible while improving the reliability of the methods.

5.1.4. Other improvements

After strong artefacts the channel baselines take a while to readjust,  as was shown on figure 4, 
which can cause trouble if samples are accepted too soon after such an artefact. The artefacts also 
tend  to  start  quickly and quiet  down relatively slowly.  Both  of  these  factors  give  a  reason to 
question the fully symmetric artefact detection methods that make no difference between before the 
artefact and after it. The simplest solution is to extend the rejection period after the last sample that 
crosses the threshold. This extension should reflect the nature of the artefact – so a blink has a 
shorter extension than a bite, for instance. Experimenting with the length of the extensions led to 
the following lengths: blink – 10 samples, bite – 30 samples, saccade – 60 samples, and muscle – 
none. It could be possible to develop this aspect of the rejection algorithm further by taking into 
account the strength of the artefact in determining the minimum number of samples rejected after it. 
For muscle artefacts the extension would be unnecessary, because the virtual channel averaging is 
sufficiently robust in rejecting the tail ends of muscle artefacts.

The  methods  are  also  made  to  work  together  by  adding  interdependencies  to  the  algorithm. 
Basically this means two things. First, the relative amount by which a threshold is crossed is taken 
into account when classifying the artefacts. For example if a sample barely triggers the saccade 
detector, but also crosses the bite threshold tenfold it would only be classified as a bite, because that 
would be the dominant artefact  type.  Second, when the first  way of reducing overlap fails  the 
situation can be analysed and in some cases the correct rejections can be found. Some artefacts 
always  cause  many  rejections,  some  of  which  are  unnecessary.  The  shapes  and  sizes  of  the 
rejections are similar as long as the artefact waveforms in question are relatively standard. Knowing 
this, the correct classification can be applied after the artefact detection methods have done their 
work. This approach depends on well known and defined artefact characteristics. For example, a 
large  blink  causes  a  small  muscle  rejection  when  the  amplitude  is  at  its  highest.  With  this 
information it is possible to search the rejections for sequences containing first a blink rejection, 
then both a high blink rejection and a low muscle rejection, and finally a blink rejection. When such 
a sequence is found the muscle rejection is removed, which improves muscle artefact detection 
reliability when there are fewer false positives caused by blinks.

5.2. Improvement of efficiency

Another way to improve the overall efficiency of an EEG recording is to minimize the preparation 
time. This includes reducing the number of electrodes, simplifying the process of attaching them to 
the skin and removing any unnecessary hold-ups in the recording procedure. These changes can all 
influence  the  methods.  The  number  and  locations  of  the  recorded  channels  influence  how the 
artefacts can be detected, and is therefore central to all methods of artefact removal. All of the 
methods presented can, in principle, be adjusted to work with only three channels if the channels are 
correctly selected. This algorithm was tested using the mastoid channels and a forehead channel 
near Fz.

Blink detection was easily adapted to only one forehead channel. The vertical dipole channel values 
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did not change radically when frontal channel average was replaced with Fz. Noise level increased 
slightly, but the blink detection method has a built-in noise reduction in the form of averaging. 
Saccade  detection faced larger  problems as  the temporal  channels  had to  be  replaced with the 
mastoids that are much further away from the eyes. In practice the larger saccades were still strong 
enough to be reliably detected,  but the error rate increased slightly.  Bite detection was actually 
improved  by using  the  frontal  channel  variance  and single  sample  variance  in  addition  to  the 
average mastoid variance. These three measures were monitored as has been described in section 
5.1.3. Finally, muscle artefact detection used the same virtual channel as blink detection. Increased 
noise influences muscle artefact detection even less than blink detection due to the longer average 
used in the method.

The tests on the three-channel version were conducted using the same test data set as with all other 
algorithms. The data were pre-processed by removing five of the eight recorded channels, so the 
remaining data faithfully simulate a recording with only three electrodes. All of the improvements 
to the basic methods discussed in section 5.1 that  were possible to implement using only three 
channels were incorporated in the three-channel algorithm. If the improvements were considerable 
this would allow the three-channel version to outperform the basic eight channel methods, which 
would warrant further development of the three-channel algorithms.

Attaching the electrodes more quickly would speed up the whole process somewhat, but would 
cause increased noise in the recordings and an increased chance of electrode detachment. It was not 
tested at this time, even through simulation, because noise removal or noise level normalization 
before artefact detection would require new methods outside the scope of this work. Currently the 
most time consuming preparation necessary is attaching the electrodes and testing the connection 
impedances. If the number of electrodes was reduced by five the time would be approximately 
halved, from ten to five minutes. If the number of extra epochs that could be recorded in that time is 
taken into account it might be acceptable to have a slightly lower artefact removal performance.
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4.3. Performance testing

The performance of each new method is summarized on table 4. Both new algorithms achieved 
success,  as  can  be  seen  on  table  5.  Table  6  shows the  artefact  detection  rates  of  a  set  of  test 
recordings using algorithm 4.

Table 4: Artefact type specific results of the new algorithms compared to algorithm 3. The highest 
value for each artefact type and benchmark combination has been emphasized.

Algorithm 3: Best basic methods Accuracy Precision Recall Notes

Blink detection 89,6% 68,4% 23,6% 2 / 77 missed blinks

Saccade detection 77,2% 88,3% 59,6%

Muscle and bite detection 68,6% 79,6% 58,6%

Algorithm 4: Improved methods Accuracy Precision Recall Notes

Improved blink detection 89,9% 74,6% 25,1% One missed blink

Improved saccade detection 83,0% 89,1% 67,8%

Improved muscle and bite detection 75,3% 80,8% 66,3%

Algorithm 5: three-channel versions Accuracy Precision Recall Notes

Improved blink detection 89,9% 61,8% 22,8% 11 missed blinks

Improved saccade detection 76,4% 78,1% 59,9%

Improved muscle and bite detection 74,9% 73,1% 68,1% Few false positives

Table 5: Overall performance of the new algorithms. See table 3 for details of the benchmarks.

Algorithm Accepted Precision Accuracy Sensitivity Specificity

Algorithm 3 33.5% 75.1% 76.7% 88.1% 61.7%

Algorithm 4 33.9% 79.6% 82.2% 92.7% 68.8%

Algorithm 5 33.6% 76.0% 77.9% 89.1% 63.2%

Table 6: Results of applying algorithm 4 to three evaluation recordings

Recording Correct 
detections

False 
detections

Undetected 
artefacts

Percentage of 
artefacts detected

Percentage of 
correct detections

Evaluation 1 1038 45 12 98,9% 95,8%
Evaluation 2 519 2 5 99,0% 99,6%
Evaluation 3 1145 6 3 99,7% 99,5%
Total 2702 53 20 99,3% 98,1%

Comparing the improved methods used in algorithm 4 to the best earlier method of each category 
(tables 4 and 5), it is evident that there are many improvements. All the benchmarks have improved, 
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which is an excellent result. Part of the success is explained by the better artefact type identification 
– as there are fewer samples that are mistakenly classified into several categories the accuracy and 
recall  of  the  individual  methods  increases.  The  rest  is  explained  by  the  methodological 
improvements.  Bite  detection  has  improved  dramatically  as  other  measures  besides  mastoid 
variance have been included in the process. Likewise, saccade detection is a lot more reliable and 
produces a lot less false positives when it is based on eye direction change monitoring instead of 
just the eye direction. Blink detection gains most from removing extra false positives at samples 
where another stronger artefact is present. There are still many false blink detections, but they are 
unavoidable as long as the goal of the methods is to catch each blink if at all possible.

The results for the methods using only three recorded channels are also interesting. Blink detection 
suffers from the loss of frontal channels – which is evident in the precision result. It is much harder 
to detect a blink when the distance from the eyes to the electrode doubles. The two electrodes in the 
eight  channel  version  helped  reduce  noise  in  blink  detection  through  averaging,  which  is  not 
possible using just one forehead electrode. The increased noise is seen as many false positives, and 
to keep the fraction of rejected samples within reason the rejection threshold had to be raised. Blink 
detection accuracy is still very good, though, which means there are not too many falsely rejected 
samples compared to the other algorithms. Saccade detection faces similar problems; two dedicated 
temporal electrodes has become two virtual channels dependant on the difference of the mastoid 
potentials. Mastoids are a lot further away from the eyes than the temporal electrodes, so the effect 
of eye movements on them is not as large. This is evident in how much worse all the benchmarks 
are compared to even algorithm 3. The overall results for the three channel version are positive, 
however, as supported by the percentages on table 5. The muscle artefact detection method works 
better than in algorithms 1-3. This can be credited to the performance gains brought by adding 
sample variance and temporal channel variance monitoring to the method. In this case the temporal 
variance is replaced with the frontal channel variance, but the overall effect seems to be almost as 
good as in the eight channel version. The three-channel method is not as accurate or precise, but it 
does not suffer from as many false rejections as the eight-channel version.

All the algorithms have comparable running times of around two minutes when used on the test 
data set. That means they perform approximately three times faster than necessary on a slightly 
dated  PC  (dual  core  2.2GHz  processor)  running  the  algorithms  in  Matlab.  The  time  includes 
running several non-critical parts such as plotting the results, but it gives a good approximation of 
how fast  the algorithms  are.  If  the  computational  costs  were too high  the algorithms  could be 
rewritten in C or some other programming language. This will be a necessary improvement if the 
algorithms are to be used in an embedded system in the future.

The combined improved methods in algorithm 4 are clearly superior to the old methods in this light 
as well. All benchmarks have improved approximately five percentage units, which is remarkable 
given the far from perfect manual classification the algorithms are compared to. The performance of 
the combined three-channel versions of the improved methods in algorithm 5 is also surprisingly 
good.  The  blink  and  saccade  detectors  left  a  lot  to  be  hoped  for,  but  the  overall  results  are 
consistently better than the relatively good earlier methods. One of the reasons why this is the case 
is because blinks are very short in duration, so the number of blink contaminated samples in the test 
data set is but a fraction of the muscle or saccade contaminated samples. This does not explain the 
difference completely as saccade performance was poor as well. It would seem that the results for 
algorithm 5 should be interpreted as a success on the part of the new bite detectors.

Comparing the results of this work to the results in literature would have been impossible without a 
shared performance measure. To that end, three controlled recordings were conducted. Artefacts in 
the data were manually located to compare the results of algorithm 4 to other generally tested online 
algorithms. Table 6 lists the percentages based on artefacts, not single samples. Most of the artefacts 
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were blinks or saccades, with some muscle activity and a few bites in all of the recordings.

The results are encouraging as they show that the detectors work well on unintentionally caused 
artefacts. They also show that there are a lot less false positives in the real recordings than in the test 
data set. This phenomenon could be due to the difficulty of manually categorizing blinks that occur 
during other artefacts, and as the test data set was almost entirely filled with intentional artefacts the 
only parts where the artefacts were easy to find were the parts where they were intentional. The 
intentionally introduced artefacts are usually stronger than natural  unintentional artefacts, which 
makes them easier to detect manually. Computational methods also find intentional artefacts very 
easily, but the length of the artefacts is generally more difficult to assess, which could cause false 
positives if the results are tallied sample by sample, but would not affect the count of detected 
artefacts. One final difficulty for the automatic methods comes from the frequency of the artefacts. 
Ordinarily, a test subject blinks between two and thirty times a minute during an EEG recording, but 
in the test data set there are segments with more than three blinks per second. In this light it is 
understandable that an algorithm that missed one blink out of seventy seven difficult ones that were 
manually labelled would not miss many when they are naturally shaped and separated by artefact-
free segments.

5.4. On optimization

The trade-off between finding a higher percentage of the artefacts and having less false positives is 
a matter of optimization. The drop in data quality caused by one undetected artefact is compared to 
an additional 3.55 seconds of measurement. 3.55 seconds, because every fifth stimulus on average 
is  a  deviant,  and  there  are  so  many more  standard  epochs  that  a  few small  artefacts  will  not 
seriously  affect  the  standard  waveform.  Thereby,  for  each  undetected  artefact  there  is  a  20% 
probability of it reducing the quality of the deviant waveform average. Similarly, for each false 
positive there is a 20% probability of the rejection happening during a deviant epoch. When that 
happens the recording lasts five epochs longer on average as the number of clean epochs needed for 
averaging is approximately constant. Five epochs equals 3.55 seconds. Generally, it takes several 
averaged clean epochs to reduce one artefact to the level of background noise. Exactly how many 
clean epochs depends on many complex aspects (how large is an average undetected artefact of 
each type, how many epochs are needed for reliable noise removal, how long does the electrode 
paste last without drying on average, and so on).

On the subject of the current state of the three-channel algorithm. Eleven missed blinks are too 
many, even considering that the test data set contains a lot of very difficult-to-detect blinks that are 
close to  each other.  The  saccade detector  also requires  some further  development  if  the  three-
channel method is to be used in real recordings. However, these results are a good start, because the 
methods  used  were  just  conversions  of  methods  designed  for  eight  channels.  With  further 
development and more accurate assessment of the possible gains through reducing the number of 
channels new methods could be developed specifically for it.  That way it  might be possible to 
improve  the  algorithm to  such  a  degree  that  the  three-channel  device  could  become  a  viable 
competitor to the current set-up. Finding the optimal locations for the three electrodes is also an 
open question – and one that is more complicated than it would seem at first. There is a fine balance 
between finding the clinically interesting information and finding the artefacts if the number of 
electrodes is severely restricted.
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6. Summary and conclusions

The purpose of this work was to find a solution to the problem of rejecting EEG artefacts in real 
time. The key limitation that was constantly kept in mind was that the algorithm had to be light 
enough to be run by an embedded processor in some future version of the system being built in the 
main  project.  The  purpose  was  fulfilled  using  adaptive  methods  that  are  ready to  use  without 
preparation or calibration. The final version of the algorithm was developed through step-by-step 
improvements to simple artefact detection methods. First, the relevant artefact types were identified. 
Preliminary testing agreed with the literature: muscle artefacts, blinks and eye movements were the 
most important artefact sources. Second, a way to separate the artefacts from the data was selected. 
Virtual channel approach was a logical choice. It is light enough and provides good results. After 
that the improvements followed a process of identifying a problem with the existing method and 
then attempting to fix it with a simple solution.

The development of the different methods was not always as smooth as it could have been. There 
were plenty of unnamed methods that were tested and found lacking. Some of the methods ended 
up working for completely other artefact type than the one they were first tried on. Some methods 
worked, but not in the way that was expected. There were methods that seemed to work on one data 
set but not on all of them. Some of these offered insights into what would later be developed into a 
working method, but others were archived as curiosities at best. Overall there was always a clear 
sense of progress and development. There are many little details in this work that have not, to my 
knowledge, been published before. None of the methods can be claimed to be entirely novel, but the 
final algorithms are effective and could perhaps be of interest to those who work in the field of 
online EEG artefact rejection.

Compared to the previous work in this field, the performance of the algorithms was surprisingly 
good. the majority of the EEG signal processing is done offline and lighter methods of this type 
have  not  been  developed  much.  Most  published  results  using  specialized  EOG  channels  and 
computationally heavy algorithms achieve near perfect blink compensation and good eye movement 
compensation. This means that no matter how the subject moves his or her eyes the potentials are 
unaffected. The problem with such methods is the possibility that they can remove both artefactual 
waveforms and brain activity of the frontal lobes from the data. The results of such methods are also 
difficult  to  compare  to  artefact  rejection  methods.  There  are  very  few  published  results  of 
computationally light artefact rejection, none of which use a moving window to reduce noise and 
improve the percentage of correct detections. It would seem that the reliability of the final algorithm 
version is closer to the reliability of the heavy algorithms that use specific channels for artefact 
detection than to the most common amplitude threshold approach.

Regarding the further development of the three-channel version, the future is wide open. Every 
detail  is  open  for  further  testing  and  development  starting  from  the  very  basics  of  electrode 
placement and even the number of electrodes.  If a fourth electrode would improve the artefact 
detection  performance  a  lot  then  it  could  be  a  worthy addition.  Finding  an  optimal  placement 
scheme for three or four electrodes would be a project in itself.

In  addition  to  further  methodological  improvements  that  are  certainly  possible  it  would  be 
reasonable to attempt to reduce the computational cost of the algorithms. Through simplifications 
and translation to a more efficient programming language the program could be made much lighter. 
That would eventually reduce the cost of the device when a smaller embedded processor would 
suffice.  It  might  also  be possible  to  combine  some of  the  many vector  operations  into  matrix 
operations to save time. Optimizing the rate at which the adaptive thresholds are checked could 
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bring further savings, as could stretching the intervals between other supporting operations like the 
eye direction assessment.

The algorithms are working better than expected. For the purposes of the project, they are at least 
adequate on all accounts. In some cases they surpass the performance of any similar algorithms by a 
large margin. That makes the work a resounding success.
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