
 

HELSINKI UNIVERSITY OF TECHNOLOGY 
Department of Communications and Networking 
Networking Laboratory 
 
 
 
 
 
 
 
 
 
 
 

Simo Sibakov 
 

Simulating a Mobile Peer-to-Peer Network  
 
 
 
 
 
 
 
 
 
 
 
Master’s thesis submitted in partial fulfillment of the requirements for the degree of 
Master of Science in Technology. 
 
Espoo, 23th November, 2009 
 
 
Supervisor: Professor Raimo Kantola 
Instructor: Lic.Sc.(Tech.) Nicklas Beijar 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

HELSINKI UNIVERSITY 
OF TECHNOLOGY              

 ABSTRACT OF THE 
MASTER’S THESIS 

Author:                         

Name of the Thesis: 

Simo Johannes Sibakov 

Simulating a Mobile Peer-to-Peer Network  

Date:  November 23th, 2009                Number of Pages:  x + 101 

Faculty: Faculty of Electronics, Communications and Automation 

Department:                 Department of Communications and Networking 

Professorship:  S-38  

Supervisor:                   

Instructor: 

Professor Raimo Kantola 

Lic.Sc.(Tech.) Nicklas Beijar                   

Peer-to-peer (P2P) applications have become available for portable devices as the 
processing power and the storage capacity of the devices as well as the network 
bandwidth have increased. The traditional P2P applications have been considered too 
heavy for mobile usage. New, lightweight P2P protocols are needed for mobile P2P 
applications. P2P Session Initiation Protocol (P2PSIP) is a protocol under 
development that provides the session establishment functions of SIP in a serverless 
fashion.  
 
The main objective of this thesis was to simulate a P2PSIP overlay network operating 
with Resource Location And Delivery (RELOAD) peer protocol and study its 
bandwidth consumption, lookup overhead and lookup success rate. The effect of 
churn, the process of nodes arriving to the overlay and leaving it, on these results was 
also one of our concerns. We study if this kind of network is applicable to be 
implemented on top of current mobile telephone networks. This study compares the 
performance of two distributed hash table (DHT) algorithms, Chord and Kademlia. 
The simulations were carried out with OverSim overlay network simulator 
implemented in the C++ programming language. 
 
This study shows that P2PSIP network’s bandwidth usage is low enough to operate on 
top of the 2G mobile telephone networks.  Kademlia uses more bandwidth than Chord 
but it has a shorter lookup delay and a higher lookup success rate than Chord. The 
results show that with the parameter settings used in our study the lookup success rates 
are in general too low for many applications to give them a satisfying quality of 
service. 
Keywords: Peer-to-Peer, Simulation, P2PSIP, RELOAD, Chord, Kademlia 



 

TEKNILLINEN 
KORKEAKOULU                

 DIPLOMITYÖN 
TIIVISTELMÄ 

Tekijä:                         

Työn nimi: 

Simo Johannes Sibakov 

Mobiilin vertaisverkon tutkiminen simuloimalla  

Päivämäärä:  23.11.2009                    Sivuja:  x + 101 

Tiedekunta:                 Elektroniikan, tietoliikenteen ja automaation tiedekunta 

Laitos: Tietoliikenne- ja tietoverkkotekniikan laitos 

Professuuri: S-38 

Työn valvoja:               

Työn ohjaaja: 

Professori Raimo Kantola 

TkL Nicklas Beijar                   

Vertaisverkkosovellukset (P2P-sovellukset) ovat saapuneet kannettaviin laitteisiin, 
kun laitteiden prosessoriteho, tallennuskapasiteetti sekä matkapuhelinverkkojen 
kaistanleveys on kasvanut. Perinteiset P2P-sovellukset ovat liian raskaita 
mobiilikäyttöön. Uusia, kevyempiä vertaisverkkoprotokollia tarvitaan 
mahdollistamaan P2P-sovellusten toiminta mobiiliympäristössä. P2P Session Initiation 
Protocol (P2PSIP) on kehitteillä oleva protokolla, jonka avulla SIP protokollan 
yhteydenmuodostus toteutetaan ilman palvelimia. 
 
Tämän työn tavoitteena oli simuloinnin avulla tutkia Resource Location and Delivery 
(RELOAD) vertaisprotokollaa käyttävää P2PSIP päällysverkkoa. Tarkastelun 
kohteena olivat erityisesti kaistanleveyden tarve, hakujen kustannukset sekä hakujen 
onnistuminen. Myös solmujen päällysverkkoon liittymisestä ja päällysverkosta 
poistumisesta aiheutuvat vaikutukset tuloksiin olivat mielenkiinnon kohteina. Tämä 
työ vertailee kahden hajautetun tiivistetaulualgoritmin, Chordin ja Kademlian, 
suorituskykyä. Simulaatiot on suoritettu C++ ohjelmointikielellä toteutetulla OverSim- 
päällysverkkosimulaattorilla. 
 
Tämä työ osoittaa, että 2G-matkapuhelinverkon kaistanleveys on riittävä P2PSIP-
päällysverkon tarpeisiin. Kademliaa käytettäessä kaistanleveys on suurempi, mutta 
hakujen viive pienempi ja onnistumisprosentti suurempi kuin Chordia käytettäessä. 
Tulokset osoittavat, että tässä työssä käytetyillä parametreilla hakujen 
onnistumisprosentti on monille sovelluksille liian alhainen eikä mahdollista niille 
tyydyttävää palvelun laatua. 
 
Avainsanat: Vertaisverkko, Simulointi, P2PSIP, Chord, Kademlia 

 



 

 

Acknowledgements 
 
 
This Master’s thesis has been written at the Department of Communications and 
Networking of Helsinki University of Technology. The thesis is part of a larger 
DECICOM project concentrating on mobile peer-to-peer research. 
 
I would like to thank my instructor Nicklas Beijar for his well-informed comments and 
guidance throughout my work. I would also like to thank my supervisor, Professor 
Raimo Kantola, for sharing his views on mobile peer-to-peer and academic writing. 
 
 
 
 
 
Espoo, November 23, 2009 
 
 
Simo Sibakov 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table of Contents 
 

LIST OF FIGURES VI 

LIST OF TABLES VIII  

LIST OF ABBREVIATIONS IX  

1   INTRODUCTION 1 

1.1 SCOPE OF THE THESIS 2 

1.2 OUTLINE OF THE THESIS 2 

2   P2P NETWORKING PRINCIPLES 3 

2.1 GENERAL INFORMATION ABOUT P2P NETWORKS 3 
2.1.1 THE OVERLAY CONCEPT 3 
2.1.2 UNSTRUCTURED ARCHITECTURES 3 
2.1.3 STRUCTURED ARCHITECTURES 7 
2.1.4 INDEXES 7 

2.2 ROUTING IN P2P NETWORKS 8 
2.2.1 ITERATIVE ROUTING 8 
2.2.2 RECURSIVE ROUTING 9 

2.3 DISTRIBUTED HASH TABLES 12 
2.3.1 GENERAL 12 
2.3.2 CHORD 14 
2.3.3 KADEMLIA 17 

3   SIP AND P2PSIP 22 

3.1 SIP 22 
3.1.1 SIP ENTITIES 23 
3.1.2 SIP MESSAGES 24 
3.1.3 LOCATION SERVICE FUNCTION 26 
3.1.4 SIP SESSION SETUP 27 

3.2 P2PSIP 28 
3.2.1 HIGH LEVEL DESCRIPTION 29 
3.2.2 REFERENCE MODEL 30 
3.2.3 RELOAD 32 

4   SIMULATION OF P2P NETWORKS 43 

4.1 GENERAL 43 
4.1.1 DISCRETE-EVENT SIMULATION 44 

4.2 CHURN 45 

4.3 OVERSIM 46 



 

 

4.4 DISTRIBUTIONS USED IN THE SIMULATIONS 47 

5 SIMULATION SETUP 49 

5.1 SIMULATION ENVIRONMENT 49 

5.2 MODIFICATIONS TO THE OVERSIM CODE 49 

5.3 OVERSIM CLASSES 50 

5.4 MODELLING OF MESSAGES 51 

5.5 FIXED PARAMETERS 52 

5.6 INPUT PARAMETERS 53 

5.7 OUTPUT PARAMETERS 55 

5.8 COLLECTING THE STATISTICS 57 

6   RESULTS 58 

6.1 OVERALL BANDWIDTH USAGE 58 

6.2 MAINTENANCE TRAFFIC BANDWIDTH USAGE 59 

6.3 NUMBER OF HOPS FOR LOOKUP 61 

6.4 LOOKUP MESSAGE OVERHEAD 62 

6.5 LOOKUP DELAY 63 

6.6 KEY DISTRIBUTION 63 

6.7 LOOKUP SUCCESS RATE 66 

7   DISCUSSION 68 

7.1 DIFFERENCES IN MAINTENANCE TRAFFIC VOLUME FOR CHORD 68 

7.2 DIFFERENCES IN KEY DISTRIBUTION 70 

7.3 LOOKUP SUCCESS RATES 72 

7.4. COMPARISON WITH OTHER SIMULATION STUDIES 72 

7.5 APPLICABILITY FOR MOBILE TELEPHONE NETWORKS 73 

8 CONCLUSIONS 76 

8.1 MAIN RESULTS 76 

8.2 WORKING WITH OVERSIM 77 

8.3 FUTURE RESEARCH 77 

REFERENCES 78 

APPENDICES 83 

A TABULATED RESULTS 83 



 

 

B MYCLASS.H 86 

C MYCLASS.CC 88 

D ADDITIONS TO OVERSIM CODE 92 

E OVERSIM PARAMETER FILES 93 
DEFAULT.INI 93 
OMNETPP.INI 100 

F TRENDLINE FIGURES OF MAINTENANCE TRAFFIC 101 



List of Figures 

 
Figure 1 – Lookup in the centralized P2P network architecture....................................... 4 
Figure 2 – Lookup in the decentralized P2P network architecture................................... 5 
Figure 3 – Lookup in the hybrid P2P network architecture.............................................. 6 
Figure 4 – Iterative routing ............................................................................................... 9 
Figure 5 – Symmetric recursive routing ........................................................................... 9 
Figure 6 - Direct response recursive routing .................................................................. 10 
Figure 7 – Chord identifier ring with three nodes and three keys .................................. 14 
Figure 8 - Chord’s lookup process.  Node 17 looking for key 13 .................................. 17 
Figure 9 – XOR-metric ................................................................................................... 18 
Figure 10 – Subtree model used in Kademlia................................................................. 18 
Figure 11 – Kademlia’s lookup process ......................................................................... 21 
Figure 12 – Registration of a SIP URI and user localisation with the public URI......... 27 
Figure 13 - SIP Session setup and tear down.................................................................. 28 
Figure 14 - P2PSIP Reference Model............................................................................. 31 
Figure 15 - Data storage model of P2PSIP..................................................................... 33 
Figure 16 - Joining Peer discovering its Admitting Peer................................................ 38 
Figure 17 – Joining Peer populating its neighbor table .................................................. 39 
Figure 18 – Joining Peer populating its last finger table entry ....................................... 40 
Figure 19 – Joining Peer receiving the data items it will be responsible for from the 
Admitting Peer................................................................................................................ 41 
Figure 20 – SIP Registration Data types......................................................................... 42 
Figure 21 – OverSim architecture [Bau07]..................................................................... 46 
Figure 22 – cdf (a) and pdf (b) of the Exponential distribution [web3] ......................... 47 
Figure 23 – cdf (a) and pdf (b) of the Weibull distribution [web3]................................ 48 
Figure 24 – OverSim libraries and modified classes ...................................................... 51 
Figure 25 – Mean overall traffic received per node........................................................ 59 
Figure 26 – Mean maintenance traffic received per node .............................................. 60 
Figure 27 – Hops per lookup .......................................................................................... 61 
Figure 28 – Overhead caused by the lookup messages .................................................. 62 
Figure 29 – Delay of the lookup process ........................................................................ 63 
Figure 30 – Number of keys in the network ................................................................... 64 
Figure 31 – Distribution of keys ..................................................................................... 65 
Figure 32 – Maximum number of keys stored in a single node ..................................... 66 
Figure 33 – Lookup success rates ................................................................................... 67 



 

 

Figure 34 – FixFingers procedure with iterative Chord..................................................68 
Figure 35 – FixFingers procedure with recursive Chord ................................................69 
Figure 36 – Key storage, updating and TTL values ........................................................70 
Figure 37 – Extrapolation curves for maintenance bandwidth usage .............................74 
Figure 38 – Extrapolation curves for overall bandwidth usage.......................................74 



 

 

List of Tables 
 
Table 1 – Architectural comparison of unstructured P2P networks [Leh06] ................... 6 
Table 2 – RELOAD’s Kind IDs [Jen+08] ...................................................................... 32 
Table 3 – Maintenance message sizes ............................................................................ 51 
Table 4 – Parameters from default.ini ............................................................................ 52 
Table 5 – A Sample setting for a run from omnetpp.ini ................................................. 53 
Table 6 - Input parameters for the simulations ............................................................... 53 
Table 7 – Determination of FETCH message interval ................................................... 55 
Table 8 – Theoretical maximum bandwidths for mobile telephone networks [Leh06].. 75 



 

 

List of Abbreviations 
 
 
3GPP  3rd Generation Partnership Project 

AP  Admitting Peer 

CDF  Cumulative Distribution Function 

CPU  Central Processing Unit 

DHT  Distributed Hash Table 

EDGE  Enhanced Data rates for GSM Evolution 

EWMA  Exponential Weighted Moving Average 

GPRS  General Packet Radio Service 

GSM  Global System for Mobile communications 

HSCSD  High-Speed Circuit-Switched Data 

HSDPA  High-Speed Downlink Packet Access 

HSUPA  High-Speed Uplink Packet Access 

HTTP  Hypertext Transfer Protocol 

HTTPS  HTTP Secure 

IANA  Internet Assigned Numbers Authority 

ICE  Interactive Connectivity Establishment 

IETF  Internet Engineering Task Force 

IMS  IP Multimedia Subsystem 

IP  Internet Protocol 

JP  Joining Peer 

NAT  Network Address Translation 

RELOAD  Resource Location And Delivery  

P2P  Peer-to-Peer 

P2PSIP  Peer-to-peer SIP 

PDF  Probability Density Function 

PP  Predecessor Peer 

RAM  Random Access Memory 

RFC  Request For Comments 

RTT  Round-Trip Time 

SDP  Session Description Protocol 

SHA-1  Secure Hash Algorithm 1 

SHA-256  Secure Hash Algorithm 256 



 

 

SIP  Session Initiation Protocol 

SMS  Short Message Service 

STUN  Session Traversal Utilities for NAT 

TLS  Transport Layer Security 

TTL  Time To Live 

TURN  Traversal Using Relay NAT 

UA  User Agent 

UAC  User Agent Client 

UAS  User Agent Server 

UDP  User Datagram Protocol 

URI  Uniform Resource Identifier 

WCDMA  Wideband Code Division Multiple Access 

WG  Working Group 



 
 

1 

 

1   Introduction 
 
 
Peer-to-Peer (P2P) networks have been a target of an intense study ever since the first 
file sharing applications arrived in the late 1990’s. P2P has been mainly perceived as a 
technique for illegal file sharing over the internet. Recently also its commercial 
potential has been discovered and new commercial applications using P2P technique are 
starting to emerge. 
 
P2P research has concentrated on making the P2P systems independent of any 
centralized elements but still scalable and efficient in bandwidth usage and load 
balancing. The latest trend in P2P research is to study the possibilities to use P2P 
technique in mobile devices. The mobile environment requires different features than 
the traditional P2P protocols that have been running on desktop and laptop 
environments. 
 
The traditional P2P applications have been considered too heavy for mobile usage, 
demanding too much bandwidth to work effectively in the mobile environment. P2P 
Applications are becoming available also for portable devices and because of the limited 
bandwidth in mobile telephone networks, the bandwidth usage is an important factor 
and an essential question for a study. 
 
Session Initiation Protocol (SIP) is a lightweight client-server protocol that needs some 
modifications to work in a pure P2P manner. A new protocol, P2PSIP, is under 
development to enable SIP functionality without any centralized entities. This thesis 
examines P2PSIP, particularly one of the proposed peer protocols, Resource Location 
And Delivery (RELOAD), and tries to investigate if P2PSIP is applicable to mobile 
telephone networks used today.  
 
This study aims to answer the following questions: How much bandwidth is needed for 
P2PSIP to work properly. How much overhead and delay is there in the key lookup 
process? How does the process of nodes continuously arriving to the network and 
leaving it affect these output parameters? Which distributed hash table (DHT) algorithm 
works best with P2PSIP?  
 



1     Introduction 

 

2 

The research methods used in this thesis are literary research that covers the techniques 
essential for P2P overlay network simulations. We try to keep the level of details 
reasonable without compromising the intelligibility of the study. The actual research is 
carried out by simulating a P2PSIP network with the OverSim overlay network 
simulator. This requires some programming work to model the desired features of 
RELOAD into the simulator and to prepare the simulation scenarios. This study 
contains altogether 57 different simulation scenarios. The input parameters in this study 
are selected to make the scenarios describe communication composed of phone calls 
and short message service (SMS) messages. The parameter selection makes this study 
different from the other studies that have mostly been investigating file sharing 
scenarios. The work simulates two DHT algorithms Chord and Kademlia in both 
iterative and recursive routing mode. The DHT algorithms are tested as they are 
configured by default in OverSim and they are not tuned or developed in any way. 

1.1 Scope of the thesis 
In this thesis we study a peer-to-peer network operating over a mobile telephone 
network. The P2P protocol used in our study is P2PSIP. The P2PSIP network under 
study contains only peers with equal functionalities and responsibilities in the overlay. 
P2PSIP clients are left outside of the study. Only the parts of the RELOAD protocol 
that are relevant from a bandwidth usage perspective are modeled to OverSim. Minor 
details are bypassed because of the rather inaccurate nature of the RELOAD draft that is 
the main source of information for the protocol.  
 

1.2 Outline of the thesis 
This thesis consists of a theory part, Chapters 2–4, which gives the essential information 
for a reader to understand the phenomenon studied in the thesis. These chapters give a 
compact presentation about the theories behind the Overlay networking techniques in 
the form of a literary research. After the technical background information, Chapter 5 
then presents the simulation setup used in this study. The simulation environment as 
well as the input and output parameters are introduced. In Chapter 6 we present the 
results that are divided in seven categories according to the output parameters 
introduced in Chapter 5. The discussion part of the thesis covers the results and the 
factors affecting them as well as comparison with similar studies in Chapter 7. Three 
interesting phenomenon about the results are pointed out. Extrapolation of the results is 
also presented. Chapter 8 concludes the thesis with the main findings and presents 
proposals for future research. 
 



 

3 

 

2   P2P networking principles 
 
 
This Chapter presents the overlay network concept and the different P2P architectures 
used in P2P networks. We discuss the alternatives for the routing mode selection and 
present an introduction on the distributed hash table algorithms used in this study.  
 

2.1 General information about P2P networks 
P2P-overlays can be roughly divided on the grounds of the degree of centralization and 
the structure of the overlay as well as by the type of index used in the overlay. These 
characteristics affect the scalability and the resilience of the overlay, the bandwidth 
usage and the search coverage.    
 
2.1.1 The Overlay concept 
 
Overlay networks are built on top of one or more existing networks. P2P overlay 
networks run on top of the IP network. The links in the overlay network are virtual and 
they can correspond to a path with many physical links. The purpose of the P2P overlay 
networks is to implement services that are not available in the underlying IP network. 
 
Because of the virtual nature of the links between the peers, the topology of the P2P 
overlay network also differs from the IP network it is built on. The overlay network 
topology is determined by a specific algorithm that defines which peers should have a 
virtual link between each other. [Sep07]  
 
The peers look for resources in the P2P network. The resource may be a multimedia file 
or as in the P2PSIP case a text file containing a contact address. Once the resource is 
found, usually a session of some sort is established between the holder of the resource 
and the requester.  
 
2.1.2 Unstructured architectures 
 
Centralized 
The first-generation P2P networks had a centralized network architecture. In these kinds 
of networks the query works in a client-server fashion. Figure 1 illustrates the lookup 



2     P2P networking principles 

    

4 

process. The requesting peer sends the query to the server pool (phase 1) which holds 
the information about the connected peers and their resources. The server pool then 
performs the search for the requested resources (2) and responds with the address of the 
peer holding the requested resource (3). Only the actual data transfer is made directly 
between the peers (4). [Har+04] 

1
3

4

2

A

B

 
Figure 1 – Lookup in the centralized P2P network architecture 

 
 
 
 
Decentralized 
The first-generation networks need maintenance for the servers, do not scale well and 
are vulnerable because of their server-centricity. The second generation of P2P 
networks tried to improve these drawbacks. The solution was to build a serverless 
network, where every peer has equal functionality and responsibilities for routing the 
messages. This kind of network architecture is called decentralized. Searches in 
decentralized networks are done in a broadcast manner with a flooding algorithm where 
the query messages have a Time To Live (TTL) field defining the number of hops the 
query message can travel. An example of the lookup process in a decentralized P2P 
network is depicted in Figure 2. Peer A initiates a lookup and the requests are flooded in 
the network with the TTL field value of 2 in the first message. The requested resource is 
found in peer B. [Har+04] 
 
As we can see from Figure 2, only four messages (phases 1-4) are needed to complete 
the lookup. However, the lookup sends lots of additional messages that do not reach any 



2     P2P networking principles 

 

5

peer holding the desired resource. In large networks with thousands of peers this 
approach does not scale well because of the amounts of excess traffic it produces. The 
lookup process is also slow, because when queries are flooded only the neighbor peers 
can be contacted using one routing hop. To reach a more distant peer, the number of 
hops becomes very large. Some decentralized P2P networks also use random walk 
queries where the targets of the query messages are chosen in random. This improves 
the search efficiency but even with random walk it still remains lower than in the first 
generation P2P networks [Gka+04]. 
 

A

B

TTL = 2

TTL = 1

TTL = 0

2

1

4

3
5

Response

Data transfer

Query messages

 
Figure 2 – Lookup in the decentralized P2P network architecture 

 
 
 
Hybrid 
Although the purely decentralized networks managed to fix many of the problems the 
first-generation P2P networks were facing, the lack of any centralized servers 
introduced new issues with overhead. The second generation P2P networks generated 
enormous amounts of network traffic as the lookups were done in a broadcast manner. 
The third generation P2P networks attacked these problems with a hybrid network 
architecture. In this solution, some peers act as super-peers that have more functionality 
than the ordinary peers. The super-peers have the same functionalities as the servers in 
the centralized P2P networks. Only the super-peers participate in the peer and resource 
lookup. Each peer uses one super-peer as a gateway to the P2P network. [Har+04] 
 
Figure 3 illustrates the lookup process in a hybrid P2P network. As can be seen, from 
the perspective of an ordinary peer the hybrid architecture is similar to the centralized 
architecture (Figure 1). The difference is that in the hybrid architecture the super-peers 



2     P2P networking principles 

    

6 

perform the search for the requested resources (phases 2-5) instead of the server pool 
that was responsible for that function in the first generation P2P networks. [Har+04]  

A

B

1

5

4

2

3
7

6

 
Figure 3 – Lookup in the hybrid P2P network architecture 

 
The different P2P network architectures are compared by Lehtinen [Leh06]. This 
comparison is presented in Table 1. The table equates the servers of the 1st generation 
architecture with the super-peers of the 3rd generation architecture when comparing the 
signaling overhead. As we can see from the table, every generation has its advantages. 
The best choice of architecture depends on what the P2P network will be used for and 
who will be using it. If some entity wants to be in control of the network, decentralized 
architecture is out of the question. For centralized and hybrid networks an operator 
control can be included because of their dependency of servers or super-peers. [Leh06] 
 
 

Table 1 – Architectural comparison of unstructured P2P networks [Leh06] 

Architecture 
Decentralized 

(2nd gen.) 
Hybrid 

(3rd gen.) 
Centralized   

(1st gen.) 
Scalability Low Very High Medium 
Signaling overhead in super-peer - High Very High 
Signaling overhead in ordinary peer High Low Low 
Resiliency Very High Medium Low 
Operator control Low High Very High 
Search coverage Medium High Very High 
 
Decentralized and hybrid unstructured P2P networks cannot give any guarantees about 
finding a desired resource from the network with a limited amount of hops at a given 



2     P2P networking principles 

 

7

moment even if the resource exists in the network. This is due to the fact that the 
network does not know where to look for a given resource. A desired resource can 
reside in any peer and the holder of this information can be any of the super-peers (in 
the hybrid architecture case). Because of this, the amount of hops needed to reach the 
target peer cannot be predicted. The routing costs can become very high regardless of 
the success of the lookup. The structured P2P network architectures discussed next, 
greatly improve these features.  [Ris+07] 
 
2.1.3 Structured architectures 
In structured P2P architectures the network topology is strictly determined by an 
algorithm. The peer is given an identifier when it joins the network. The identifier 
defines the logical location of the peer in the overlay and thereby also the set of other 
peers it connects to. The resources that are stored in the network also get identifiers. 
With these identifiers the address of the node holding that resource can be found. The 
algorithms that are used for these purposes are called Distributed Hash Tables (see 
chapter 2.3).  
 
Peer and content lookup is efficient in the structured P2P networks because the search 
mechanisms can be made simple, as based on the identifier being searched the querying 
node already has an idea of the location of the searched resource. Structured 
architectures can guarantee location of a given target within a bounded number of hops. 
This guarantee holds also for queries for resources that do not exist in the network. The 
non-existence can also be verified within the same bounded number of hops. [Ris+07] 
 
The structured P2P networks have been criticized for their inability to handle churn and 
for the lack of support for keyword searches. According to [Cha+03] the keyword 
search is considered to be an important feature as the complete file name of the searched 
object is rarely known by the users of standard file sharing systems. The line between 
unstructured and structured architectures is becoming more blurry as most unstructured 
P2P networks these days have some structure built in. [Ris+07] 
 
2.1.4 Indexes 
Index is “a collection of terms with pointers to places where information about 
documents can be bound” as stated in [RFC4981]. P2P networks use local, centralized 
and distributed indexes. 
 



2     P2P networking principles 

    

8 

Local indexes 
When local indexes are used, each peer only keeps references to data it retains itself. 
Peers do not receive references for data that other peers are storing. Only local indexes 
are used in decentralized P2P network architecture (Figure 2). Search process with local 
indexes is based on flooded queries. Rich queries are enabled as key word search can be 
used. Local indexes are good if there are many replicas of the data items existing in the 
network. In finding a data item which exists only in a single peer in the network, local 
indexes are very inefficient and the discovery of that item can not be guaranteed. 
 
Centralized indexes   
In P2P networks using centralized indexes all references to the stored items are kept in a 
server (or server pool) to which peers can connect. There are three levels of 
centralization in this index category. Networks with unchained servers cannot provide 
the peers any information about the indexes in other servers so peers can exchange data 
only with the peers that share the same server with them. In networks using chained 
servers a query will be forwarded to other servers if the index is not found from the 
server the requesting peer is connected to. There are also full replication networks, in 
which all servers keep a complete index of the data stored in all of the peers. Figure 1 
illustrates a network with centralized indexes. 
 
Distributed indexes 
Most P2P designs today use distributed indexes, in which the references to the stored 
items are located at several nodes. Chord (Section 2.3.2) and Kademlia (Section 2.3.3) 
are examples of P2P architectures with distributed indexes. The number of nodes a 
given data item is stored in depends on the number of replicas used in the system. 
 
 

2.2 Routing in P2P networks 
 
2.2.1 Iterative routing 
In iterative routing an intermediate node receiving a query message, returns a response 
message that includes the information about the next hop node. The responsibility of 
actually contacting the next hop remains with the initiating node. Iterative routing is 
illustrated in Figure 4 where nodes are arranged in a ring shape as in the Chord protocol 
(Section 2.3.2). The initiating node monitors the routing process and decides how long 
it wants to wait for a response message before it considers the queried node absent. For 



2     P2P networking principles 

 

9

a lookup path of N nodes 2N – 1 messages are needed for reaching the target node. 
[Kun05]    
 

6

1

2
3

4

5

I

P

D

7

The position of the 
requested key

I

P

D

Initiating node

Predecessor node

Destination node

 
Figure 4 – Iterative routing 

 
2.2.2 Recursive routing 
Figure 5 depicts the same lookup process done in a recursive manner. The intermediate 
nodes simply forward the query to the next hop node without informing the initiating 
node. This means that the initiating node has no control over the routing after it has sent 
the first query message. There are different versions of recursive routing, in which the 
routing of the response message from the destination node to the initiating node varies. 
These include symmetric recursive (Figure 5), forward-only and direct response. For a 
lookup path of N nodes recursive routing needs N messages to reach the target node 
[Kun05] 
 

11

2

63

7

8

I

P

D

I

P

D

Initiating node

Predecessor node

Destination node

4

5

The position of the 
requested key

 
Figure 5 – Symmetric recursive routing 

 
 



2     P2P networking principles 

    

10 

Symmetric recursive 
In symmetric recursive routing (Figure 5) the response message visits the same nodes as 
the request message did only in a reversed order. This requires that the nodes remember 
from which node they received the request message. A via list storing information about 
the visited nodes can be included in the query message. This allows the response 
message to follow the same path in reverse. [Jen+08] 
 
Forward-only 
If the forward-only recursive routing is used, the response message is routed as a new 
message initiated by the recipient of the query. The route of the response message is 
thereby independent from the route of the query message. [Jen+08] 
 
Direct response  
The response message can also be sent directly to the initiating node. Direct response 
recursive routing illustrated in Figure 6 takes this approach. The initiator needs to 
encode its contact address in the query message so that the recipient node knows where 
to send the response. This is the optimal routing technique but it can rarely be used due 
to connectivity issues like NATs. [Jen+08] 
 

11

2

3 4

I

P

D

5

I

P

D

Initiating node

Predecessor node

Destination node

The position of the 
requested key

 
Figure 6 - Direct response recursive routing 

 
 
Pros and cons of different routing solutions 
Lookups that are routed recursively are proved to take only 60% of the time compared 
to those that are routed iteratively [Dab+04]. This holds at least in an error-free network 
environment. Recursive lookups are on the other hand more prone to churn (see chapter 
4.2) than iterative ones. This derives from the fact that in the recursive routing mode the 
initiating node cannot monitor the query as accurately as it can in the iterative mode. In 



2     P2P networking principles 

 

11

the iterative mode the initiator can monitor each routing hop separately, while in the 
recursive mode the initiator receives information only from the last hop node 
(considering there are no failures).  [Kun05] 
 
The lookup requests are monitored with timers by the initiating nodes. A timer is 
launched every time a lookup is sent. When there is no response for a lookup, a new 
lookup will be sent after the timeout (i.e. after the timer has expired). The timeout 
values differ significantly in recursive and iterative routing. As defined in [Wu+06] we 
denote the length (number of nodes) of the routing path by l, the average one-hop 
routing latency by ∆  and the average round-trip time by RTT = 2∆.  In recursive routing 
the timeout value Tl should be at least the time it takes to complete the entire lookup, Tl 
≥ (l + 1) ∆. In iterative routing the timeout value Th should only be larger than the 
round-trip time for one hop, Th ≥ RTT = 2∆. Even though the number of hops in the 
distributed hash tables of our study (see chapter 2.3) is O(logN), we can see that as the 
number of nodes in the network increases, the time it takes for the initiating node to 
react to a failure, discovered by the absence of the response, is much longer when 
recursive routing is used. 

 
In a network where nodes frequently join and leave the network, there is a probability of 
routing a message to a node that has already left the network. It is obvious that with 
recursive routing churn will cause more problems than in the iterative mode. In iterative 
routing the initiating node does not only detect the failure quicker but it can also react to 
the problem itself by continuing the lookup somewhere next to the failed node. In the 
recursive mode the initiating node has no way of knowing where the failure took place 
and it cannot inform the intermediate nodes to try a different route. 
 
The performance of the two routing modes is measured in [Wu+06]. The study shows 
that in low churn rates and short routing paths (l ≤ 6) recursive routing can outperform 
iterative routing. Under high churn and with longer routing paths iterative routing 
performs better. 
 
 



2     P2P networking principles 

    

12 

2.3 Distributed Hash Tables 

 
2.3.1 General 
A distributed hash table (DHT) distributes the data and query load to several nodes in 
the network. The data is stored as (key, value) pairs and the node responsible for storing 
the data is determined by the DHT algorithm. DHTs make it possible to find an object 
from a network of thousands of hosts on the grounds of the object’s key.   
 
The abstract keyspace is divided among the participating nodes. Each node has an 
identifier, node ID, that defines its logical location in the network. The stored data is 
also identified by a resource ID generated by a hash function. The key for a data value 
can be hashed for example from the file name or from the objects keywords. In the case 
of SIP-communications the key is generated from the node’s URI. The data is stored at 
a node whose identifier is “closest” to the key. DHT algorithms differ in how they 
define this distance. 
 
The size of the keyspace a node is responsible for is determined by the number of nodes 
in the network. Although the keyspace is divided evenly between the participating 
nodes, there can be differences in the number of keys that nodes have to store. This is 
due to the fact that the hash algorithms are not always optimal, especially when there is 
churn affecting the network. DHTs aim to balance the responsibilities evenly on every 
node. There are various load balancing methods that address this problem [God+05].  
 
DHT algorithms typically have four design constraints [Hel03]. The Few neighbours 
constraint means that each node keeps routing information for usually only log N other 
nodes in a network of N nodes. By distributing the routing information evenly on every 
node DHTs can handle the arrival and departure of nodes in a decent number of update 
messages. When the routing information is distributed, the node arrival or departure 
process affects only a small number of nodes and only those nodes need to update their 
routing table information. 
 
The Low latency constraint indicates that all nodes should reach any other node in the 
network in a small number of hops. Usually this means that the maximum hop count 
between two nodes is log N. Nodes also need to be able to make their own routing 
decisions. This constraint called greedy routing decisions ensures that node lookups are 
efficient and every node can make its own routing decisions without the help of other 



2     P2P networking principles 

 

13

nodes. Network should also be able to withstand the effects of churn and retain 
connectivity and ability to route packets correctly as the nodes arrive and depart. DHTs 
should balance the load evenly so that there won’t exist any overloaded nodes and links. 
These characteristics are demanded by robustness constraint. 
[Hel03] 
 
Various DHT algorithms have a different routing geometry for the keyspace. The 
keyspace can take the form of a hypercube, ring, tree or a butterfly. The routing 
geometry affects route and neighbor selection as well as the DHT’s performance and 
resilience. 
 
Consistent hashing 
Most DHT algorithms use a technique called consistent hashing that is designed to 
minimize the need for changes in the key ownerships between nodes as the network is 
affected by churn (i.e. the nodes arriving and departing the overlay). In traditional hash 
functions a change in the number of key storing nodes would mean that the hash value 
for a given object would change. This would lead into a situation where lookups would 
be directed towards wrong nodes as an object could hash into several hashed values 
depending on the number of participating nodes at a given time. 
 
DHTs used in this study 
In this thesis we focus on two DHT algorithms Chord [Sto+01] and Kademlia 
[May+02]. Chord has a ring geometry where the nodes lie on a one-dimensional cyclic 
identifier space. The distance from an identifier A to B is calculated as the clockwise 
numeric distance on the circle. Kademlia measures the distance between two nodes as 
the numeric value of the exclusive OR (XOR) of their identifiers.  
 
Different routing geometries have been compared against their static resilience in 
[Gum+03]. Static resilience measures the DHT’s ability to route lookups correctly in the 
situation where there are failed nodes in the network and the recovery mechanisms have 
not yet taken any actions. The paper suggests that Chord’s ring geometry has twice the 
amount of alternate routing paths than Kademlia’s XOR geometry and because of that it 
has superior static resilience compared to Kademlia. 
 
Li, et al. compare DHT designs by their performance and communication cost under 
churn [Li+05]. The paper states that Chord can ensure correct lookups better than other 
DHT algorithms when there is very little bandwidth available. This is due to the 



2     P2P networking principles 

    

14 

separation of successor table and the routing (finger) table in Chord. Chord only needs 
to update the successor lists to route lookups correctly while other DHT algorithms need 
to update all their routing information. When there is more bandwidth available 
Kademlia seems to defeat Chord in both efficiency and scalability as stated in [Kov07]. 
The paper has some lack of information about the Chord parameters so the results have 
to be interpreted carefully. 
 
 
2.3.2 Chord 
Chord is a distributed lookup protocol that maps a given key onto a node. This Section 
is based on paper [Sto+01] that first introduced the algorithm. Chord uses consistent 
hashing to ensure that all nodes receive roughly the same number of keys. The 
consistent hash function assigns each node and value to an m-bit identifier. The 
identifier length m must be large enough so that at a very low probability two nodes or 
values will hash to the same identifier. In this study 160 bit node identifiers are used.  
 
In Chord the nodes are logically arranged in a ring called the identifier circle. The 
node’s place on the circle is defined by the identifier that is hashed from the node’s IP-
address (in P2PSIP/RELOAD from the user’s public key). Key identifiers are hashed 
from the values that the key identifiers are pointing to. A key k is assigned to k’s 
successor, the first node whose identifier is equal to k or follows k in the identifier 
space. Figure 7 illustrates how the responsibility of the keys is handled in Chord. 
 
 

8

3

2

1

5

0

7

10

9

4
6

8

4

7

key

node

successor(7) = 7

successor(4) = 5

successor(8) = 2

 
Figure 7 – Chord identifier ring with three nodes and three keys 

 



2     P2P networking principles 

 

15

When nodes join and leave the network, the responsibilities over the keys need to 
change from one node to another in order to maintain the consistent hashing. When 
node n joins the network, it gains the responsibility over some keys previously assigned 
to node n’s successor. When node n leaves the network, all of its keys will be 
reassigned to its successor. Looking at Figure 7, if a new node joins the network with 
identifier 10, the key with the identifier 8 will be reassigned from node 2 to this new 
node. If node 5 leaves the network, the key with identifier 4 will be reassigned to node 
7. 
 
The application running over Chord interacts with Chord in two ways. Chord provides a 
lookup(key) algorithm that returns the address of the node responsible for the key that 
the application looked for. Chord also informs the application about any changes in the 
set of keys that a given node is responsible for. 
 
Routing tables 
Chord keeps information about other nodes in two independent tables. Every Chord 
node keeps a list of the nodes succeeding it on the identifier circle. This successor list 
contains r nearest successors of the node. Correct lookups are achieved as long as the 
successor information is maintained correctly even if each node is aware of only its 
closest successor node (r = 1). The lookup is done in a one way manner so in the worst 
case it is required to traverse all N nodes to complete the lookup. 
 
To accelerate the routing process every Chord node also keeps a finger table where 
additional routing information is stored. Node n keeps a finger table, whose entries are 
nodes that lie at exponentially increasing distances on the identifier circle from node n. 
The i th finger of node n is the first node to succeed identifier n+2i-1 on the circle. This 
means that for every destination key node n always has some finger pointing at least 
halfway to the destination. When each iteration loop in the lookup process halves the 
distance to the target identifier, it follows that log N halvings will be enough to find the 
target node. The first finger of node n is also the successor of node n. Finger tables can 
have at most m entries. The maximum number of entries m is the number of bits in the 
key/node identifiers. 
 
 
Updating and stabilizing the routing table 
Nodes joining and leaving will cause the successor lists and the finger tables to get out 
of date. An update process for successor lists is needed to ensure the correctness of 



2     P2P networking principles 

    

16 

lookups. Finger tables also need to maintain the performance of the Chord algorithm, 
although finger table incorrectness won’t prevent Chord from performing lookups 
correctly. 
 
A stabilization protocol, stabilize, is run periodically at every node to keep the successor 
pointers up to date. The correct successor pointers are then used to update the finger 
tables. This protocol updating the finger pointers is called fix fingers. Intervals for 
running stabilize and fix fingers can be adjusted to give the best overall performance for 
a system with certain constraints. These constraints usually include lookup success rate 
and the overall bandwidth used by Chord.  
 
Lookup process 
In the beginning of a key lookup process the initiating node looks if it has the node 
responsible for the requested key in its successor list. If there is no match in the node’s 
successor list, it uses its finger table to find a finger[i] which most immediately precedes 
the requested key. The initiating node then contacts this node and the contacted node 
repeats the same lookup procedure. The lookup process continues until the node that 
immediately precedes the desired identifier is found. This node then returns its 
successor as the lookup value. The lookup process is illustrated in Figure 8. Depending 
on the routing style the contacted node either gives the initiating node the address of the 
next node to contact (iterative style) or it contacts the next node itself (recursive style). 
These two routing modes have different constraints about the connections between the 
network nodes. Which style is preferred, depends on the type of network Chord is used 
in. Section 2.2 presents the comparison between these two routing styles. 
 
 
Figure 8 shows an illustration of node with ID 17 performing a lookup for a key with ID 
13. Node 17 looks for the closest node to ID 13 from its finger table and notices that 13 
belongs to 5th finger interval [1, 17). The corresponding entry in its finger table is node 
3 which is the first node in this interval. Node 17 will then ask node 3 to find the 
successor of ID 13. Node 3 then checks its finger table and finds out that ID 13 belongs 
to the 4th interval [11, 19) where the first node 12. Finally node 12 knows that ID 13 
must belong to its successor node. Node 12 now replies that the node responsible for ID 
13 is node 14. 
 
 
 



2     P2P networking principles 

 

17

+2

+1

+16

+4

+8

N18

N14

N12

N9

N5
N28

N27

N23

N17

N30

N20

N17+4
N17+2
N17+1

N17+8
N17+16

2m-1 0

N18
N19
N23

N3
N27

N3

N10

k13

start interval succ.
[18,19)
[19,21)
[21,25)
[25,1)
[1,17)

N24

Finger Table of node 17

N3+4
N3+2
N3+1

N3+8
N3+16

N5
N5
N9

N20
N12

start interval succ.
[4,5)
[5,7)

[7,11)
[11,19)
[19,3)

Finger Table of node 3

LOOKUP PROCESS
1.       N17.finger[5] = N3

2.       N3.finger[4] = N12

3.       k13 must belong to the 
successor of N12

4.       N12.successor = N14

 
Figure 8 - Chord’s lookup process.  Node 17 looking for key 13 

 
 
Performance 
Chord does not waste nodes’ capacity but uses it effectively. For efficient routing each 
node needs to maintain information for only O(log N) other nodes. The lookups are also 
resolved in an efficient manner. Each node can carry out a lookup to any given node via 
O(log N) messages to other nodes [Sto+01]. 
 
 
 
2.3.3 Kademlia 
Kademlia is a DHT algorithm that has already been used in various peer-to-peer 
applications. It has been utilized by a number of very popular applications like eMule 
and BitTorrent. Kadelmia takes advantage of every message it sends by using them to 
keep the routing tables up to date. This way the need for explicit update messages is 
minimized. 
 



2     P2P networking principles 

    

18 

Node identifiers and keys have 160 bits. Kademlia uses exclusive or (XOR)-metric to 
define logical distances between two nodes in the network. The distance between 
identifiers a and b is an integer interpretation of their bitwise XOR. Nodes are 
considered as leaves of a binary tree. The XOR topology is symmetric unlike the ring 
topology used in Chord. The symmetry feature means that the distance from node x to 
node y equals the distance from y to x. Figure 9 depicts the XOR metric. 

00110101
11100011

11010110

XOR
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

 
Figure 9 – XOR-metric 

 
Nodes are treated as leaves of a binary tree where each node gets its location according 
to the shortest unique prefix of the node’s identifier. Every node sees the network as a 
group of subtrees that the node itself doesn’t belong to. The highest subtree consists of 
the other half of the binary tree not containing the node itself. The next subtree includes 
the half of the remaining binary tree that is not part of the highest subtree. The subtree 
model is illustrated in Figure 10. 
 

1

1

1

1

1

1

0

0

0

0

0

0

0 0

0

1

1

1

1

10

0

0

1

1

10

0

01

1 10

0

11 … 11 00 … 00

 
Figure 10 – Subtree model used in Kademlia 

 
 
 
K-bucket concept 
Every node stores contact information about other nodes in lists called k-buckets. Each 
node keeps a k-bucket for nodes that lie from a distance between 2i and 2i+1 from itself. 
As 0 ≤ i < 160 this results in 160 k-buckets for every node. K-bucket entries are sorted 



2     P2P networking principles 

 

19

by the time that has passed since the entries have been seen. The least recently seen 
node is the first node on the list and the most recently seen node is the last. Parameter k 
stands for the size of k-buckets. Each k-bucket can store at most k entries. 
 
 
Routing table 
Kademlia nodes use their k-buckets to form routing tables. Entries in each k-bucket 
have a common prefix of their IDs. The k-buckets are arranged in a binary tree and their 
positions are determined by the prefix. This binary tree with k-buckets as its leaves is 
the node’s routing table. The routing table covers the whole ID range. As all k-buckets 
have equal size each node knows more about the ID ranges near its own ID than about 
those that are further away. 
 
 
Routing table updating 
Kademlia minimizes the need of update messages by including pieces of information 
about the overlay in every lookup message sent. As a node receives any message it 
updates the appropriate k-bucket. If the k-bucket already contains the sender’s node ID, 
the sending node is moved at the end of the list. If the sending node doesn’t exist in the 
appropriate k-bucket and the k-bucket is not full, the sending node is inserted at the tail 
of the list. 
 
In the case that the k-bucket is already full the receiving node pings the least recently 
seen node in the k-bucket to know whether that node is still alive. If the ping is 
responded, the least recently seen node is moved at the end of the list and the new node 
is not added to the k-bucket. To keep the k-buckets stable and resilient against lost 
messages Kademlia doesn’t evict a node from a k-bucket until it has failed to respond to 
five consecutive messages. An optimization has also been made to the process of 
pinging of the least recently seen node depicted above. The original algorithm results in 
a large number of ping messages and the optimized algorithm delays contacting the 
least recently seen node until there is a useful message it can send to this node. 
 
Kademlia still keeps a timer for updating the k-buckets. If there are no lookups for a 
particular ID range the corresponding bucket could end up out of date. To prevent this 
from happening, each node performs a refresh procedure to every bucket that hasn’t 
been a target of a lookup in the past hour. This is done by performing a node search for 
a random ID in the k-bucket’s ID range. 



2     P2P networking principles 

    

20 

 
 
Lookup process 
Kademlia’s has a node lookup procedure in which parameter α determines the number 
of parallel requests sent. The initiator picks α closest nodes to the requested node ID 
from its k-buckets and sends the lookup requests to these nodes. The recipients then 
return k closest nodes to the requested ID they know of (a single k-bucket if the bucket 
is full). 
 
As the initiator gets the responses it picks the next α nodes that will be the new 
recipients of a request. This process goes on until the initiator has queried all the k 
closest nodes it has learned during the lookup process and also gotten a response from 
all of them. The lookup process is illustrated in Figure 11.  
 
Performance 
Each Kademlia node keeps information about BlogBN + B other nodes in its routing 
table. Here the letter B stands for the number of different node IDs in the network. 
Kademlia uses 160 bit node IDs which gives B a value of 2160 [May+02]. Node lookups 
are performed in O(logBN) + c hops where c indicates a small constant. 

 
 
 
 
 
 
 
 
 



2     P2P networking principles 

 

21

1

1

1

1

1

1

0

0

0

0

0

0

0 0

0

1

1

1

1

10

0

0

1

1

10

0

01

1 10

0

11 … 11 00 … 00

 

1

1

1

1

1

1

0

0

0

0

0

0

0 0

0

1

1

1

1

10

0

0

1

1

10

0

01

1 10

0

11 … 11 00 … 00

 

1

1

1

1

1

1

0

0

0

0

0

0

0 0

0

1

1

1

1

10

0

0

1

1

10

0

01

1 10

0

11 … 11 00 … 00

1

1

1

1

1

1

0

0

0

0

0

0

0 0

0

1

1

1

1

10

0

0

1

1

10

0

01

1 10

0

11 … 11 00 … 00

 
Figure 11 – Kademlia’s lookup process 

 
 
 



 

22 

 

3   SIP and P2PSIP 
 
 
This Chapter discusses two signaling protocols for session establishment. SIP, a widely 
used client-server protocol for controlling multimedia communication sessions, and 
P2PSIP, a novel protocol implementing the SIP functions without server elements. 

3.1 SIP 
SIP is a signalling protocol that is used to set up, modify and tear down multimedia 
sessions such as voice and video calls between one or more participants. SIP is 
standardized by the IETF and the protocol is used in 3GPP signaling and is a permanent 
element of the IP multimedia subsystem (IMS) architecture. 
 
SIP delivers session descriptions to users and enables them to create a multimedia 
session between each other. SIP supports name mapping and redirection services which 
together enable mobility of users. SIP can locate the desired user, determine its 
willingness to participate in a session and get information of the user’s support for given 
methods or protocols. After these phases SIP can determine the session parameters and 
establish the session. Established sessions can also be modified with SIP by inviting 
more participants to them or adding media, video for example, to an ongoing voice call 
session. 
 
SIP supports user mobility and location with a user specific externally visible identifier 
called public Uniform Resource Identifier (URI). SIP is an application layer protocol 
very similar to Hypertext Transfer Protocol (HTTP). Like HTTP, SIP is text-based, uses 
a client-server architecture and a request/response transaction model where a transaction 
consists of a request and the responses triggered by the request. 
 
The Session Description Protocol (SDP) [RFC2327] is used for describing the session 
parameters like the type of media, codec and sampling rate. The session parameters are 
included in a SDP message that is contained in the body of a SIP message. [RFC3261] 
 



3     SIP and P2PSIP 

 

23

3.1.1 SIP ENTITIES 
 
User agent (UA) 
User Agents are SIP endpoints that establish and manage SIP sessions between each 
other. UAs send and receive the session descriptions and finally agree on the session 
parameters. UAs usually interact with a human user but they can also operate without 
user intervention like in the case of SIP voice mail service.  
 
UAs are implemented on top of many different kinds of devices and systems including 
desktop SIP phones, software running on a computer or on mobile devices like laptops 
PDAs or mobile phones. The user interface can be very different between the various 
devices but the base functionality of the UA itself is always the same. 
 
User agents divide into two logical entities: user agent clients (UAC) and user agent 
servers (UAS).  UAC creates SIP requests and UAS creates responses to SIP requests. 
UAs take these roles only for the duration of that prevailing transaction. 
 
Proxy (Proxy server) 
A proxy server, or proxy for short, is a SIP router that routes the SIP messages toward 
their destination. Proxies receive SIP messages from UAs or other proxies. Proxies can 
be used to enforce different policies as they can interpret and rewrite request messages 
before they are forwarded. Proxies route the SIP messages in a recursive manner. 
 
There are two operating modes for proxies. In stateless mode proxy acts as a simple 
forwarding element, which does not maintain any information about the messages it has 
forwarded. As a result, stateless proxies cannot retransmit any messages on their own. 
Proxies operating in stateful mode remember information about each transaction they 
have made. Stateful proxies can also “fork” incoming requests by routing them to more 
than one destination. Keeping state of transactions enables stateful proxies to perform 
certain operations that stateless proxies are not capable of.  
 
Redirect server 
Redirect servers also act as SIP routers but not in the same manner that proxies do. 
Redirect servers route the SIP messages in an iterative manner. Redirect servers inform 
the UA sending the message to try an alternative URI or multiple URIs. Redirect servers 
are not active in sending messages, they just answer to UAs’ requests.  
 



3     SIP and P2PSIP 

    

24 

Registrar 
SIP users register their current SIP URIs by sending register requests to the registrar at 
their public URI´s domain. Registrar is a server that handles requests that are addressed 
to the domain it operates in. Registrar is responsible for updating the location service 
lists that include mappings between the user’s public URI and SIP URIs. Usually the 
lists are kept in a physically separate location server. The current SIP URI is registered 
into the registrar and incoming requests can always be forwarded to the correct 
destination. 
 
Location server 
Location servers are not SIP entities though they play an important role in providing 
SIP’s location service function (see chapter 3.1.3). Location information is stored on the 
location server by the SIP registrars and queried by the SIP proxies or UAs. SIP is not 
used as a communication protocol between the SIP entities and the location server. 
[Cam02]  
 
Logical roles 
SIP entities rarely all exist in physically separate elements. One physical element takes 
different logical roles on separate transactions. For example the proxy, the redirect 
server and the location server can all be physically located in a single device. 
 
3.1.2 SIP Messages 
SIP messages can be dived in two categories. Requests are upstream messages from a 
client to a server. Responses are downstream messages from a server to a client, which 
are sent upon reception of a request.  
 
Requests 
There are six requests defined in the SIP core specification [RFC 3261]. Those are listed 
in the list below. Extensions made to the core SIP specification include also other 
requests.  
 

 
• REGISTER  
Users register their contact information by sending a REGISTER request to the registrar 
of their domain. 

 
 



3     SIP and P2PSIP 

 

25

• INVITE  
The session setup is initiated by the INVITE request from the calling party. The 
message contains the session description and invites the callee to participate in a 
session. 

 
 

• ACK  
Final responses to INVITE requests are acknowledged by ACK requests. The client that 
sent the INVITE request is also the sender of the ACK request. 

 
 

• CANCEL  
Pending session set up can be revoked by the CANCEL request. This is possible as long 
as the server side has not yet returned the final response. If the final response has 
already been sent, the CANCEL request will be ignored.  

 
 

• BYE  
If one of the participants wants to abandon a session, a BYE request is used. If a session 
covers only two participants the BYE request automatically terminates the session. In a 
multi-party session the sender of the BYE request simply leaves the session. 

 
 

• OPTIONS  
SIP servers and UAs can be asked about their support for different methods and session 
description protocols by sending them an OPTIONS request. 

 
Responses 
SIP responses contain an integer code that holds information about the status of the 
transaction. Status codes from 100 to 199 indicate a provisional response and codes 
from 200 to 699 are used in final responses. SIP responses also carry a text-based 
reason phrase that represents the information of the status code in a way that is more 
informative to the end user. SIP entities ignore these phrases and act only according to 
the numerical status codes. Figure 13 illustrates some SIP requests and the responses 
triggered by them. 
 



3     SIP and P2PSIP 

    

26 

 
3.1.3 Location service function 
The function of mapping a single public URI to one or more contact addresses (SIP 
URIs), where the holder of the public URI can be reached, is called Location Service. 
This abstract service provides address bindings for the domain the public URI belongs 
to. [RFC3261] 
 
SIP users can be reached at any given moment with the same identifier regardless of 
their whereabouts. User’s public URI is an email-like address which consists of a 
username and a domain name. A public URI can for example look like this:  
sip:john.smith@domain.com 
 
Other SIP users can always reach John via this address. John, for one, can have multiple 
SIP URIs depending on his current location. When John is working his SIP URI is 
sip:jsmith@ws20.company.com 

 

and as John is connected with his laptop to a public WLAN at a cafe John has the SIP 
URI 
sip:johns@cafeteria.com 

 
It is apparent that SIP needs a way to map these different URIs to Johns public URI. To 
make this possible, John has to let the SIP protocol know his current address. This is 
done with the help of a registrar. To remain reachable via SIP, John needs to register his 
new location with the registrar responsible for his public URI at domain.com. As the 
registrar at domain.com is aware of Johns current SIP URI, it can forward any requests 
addressed to sip:John.Smith@domain.com. 
 
The registration process is depicted in Figure 12. In order to stay reachable, John 
registers his SIP URI by sending a register request to the registrar in his public URI’s 
domain. Johns new location is stored to the location service and mapped to his public 
URI. Alice then wants to establish a session with John and sends an invite to his public 
URI. The Proxy at domain.com receives the invite and queries Johns SIP URI (or URIs 
if there are many) from the location service. After this the proxy sends a new invite 
addressed to Johns current SIP URI. The roles of the registrar and the proxy are logical 
and they can both be physically located in a single device. 



3     SIP and P2PSIP 

 

27

Location
Service

1 REGISTER

5 Response

2 Store

3 INVITE

4 Query
ProxyRegistrar

6 INVITE

UA

UA

domain.com

sip.domain.com

john.smith@domain.com

johns@cafeteria.com

johns@cafeteria.com

Alice@work

John@cafeteria

(public URI)

(SIP URI)

SIP MESSAGE

OTHER PROTOCOL

 
Figure 12 – Registration of a SIP URI and user localisation with the public URI 

 

 

3.1.4 SIP session setup 
Registered users can set up connections between each other. Figure 13 depicts an 
example session setup for two SIP user agents including two proxy servers. Alice (or 
Alice’s UA to be exact) first sends an invite request addressed to John’s public URI. 
The SIP proxy at Alice’s domain (proxy A) receives the message and forwards it 
towards the SIP proxy of the domain that is responsible for John’s public URI (proxy 
B). Then proxy A sends a 100 Trying response to Alice, which indicates that it has 
received the request and taken the required action due to the request. Proxy B then 
forwards the invite request to John’s UA. After this Proxy B sends a 100 Trying 
response to Proxy A to inform it about receiving the invite request. Upon receipt of the 
invite request, John’s UA replies with a 180 Ringing response to alert Alice that the 
request has gone through. The response is then forwarded by the proxies to Alice’s UA. 
Right after sending the 180 Ringing response, John’s UA also sends a 200 OK final 
response to Alice indicating that the invite request was successful. This response is also 
forwarded to Alice’s UA by the proxies. Alice’s UA then acknowledges this final 
response with an ACK request. The ACK request is delivered straight to John’s UA 
without the proxies.  
 



3     SIP and P2PSIP 

    

28 

At this stage the media is established between Alice and John. In Figure 13 the ending 
of the session is initiated by John. After John has hung up, his UA sends a BYE request 
to Alice’s UA, which then replies with a 200 OK final response. 

 

INVITE

INVITE
100 Trying

INVITE

100 Trying

180 Ringing
180 Ringing

180 Ringing

200 OK
200 OK

200 OK

ACK

Media Session

200 OK

BYE

sip:Alice@company.com sip:John@enterprise.comsip.company.com

Proxy A

sip.enterprise.com

Proxy B

 
Figure 13 - SIP Session setup and tear down. 

 
 

3.2 P2PSIP 
P2PSIP is a set of protocols and mechanisms providing an alternative solution to the 
session establishment that conventional client/server SIP offers. It replaces the 
somewhat fixed topology of SIP with a DHT-based structured peer-to-peer overlay 
network. The overlay nodes, called peers, collaborate and provide the same location 
service function that maps Addresses of Records (public URIs) to overlay locations 
(SIP URIs) as conventional SIP does. In P2PSIP this is done in a distributed manner, 
every peer taking responsibility over routing and location information storing. To be 
able to provide the distributed location service function, P2PSIP offers distributed 
database- and transport functions.  
 
The P2PSIP Working Group was founded by the IETF in 2007 to develop standards for 
serverless use of SIP. P2PSIP is still largely under development. There are many 
internet drafts discussing potential solutions for different mechanisms of P2PSIP. The 
current state of the general P2PSIP framework is documented in a WG draft [Bry+08]. 



3     SIP and P2PSIP 

 

29

 
 
3.2.1 High Level Description 
In P2PSIP the overlay nodes are organized in a peer-to-peer manner to make SIP based 
real time communication possible. The P2PSIP network consists of P2PSIP peers and 
P2PSIP clients. Peers participate in the P2PSIP overlay and they provide storage and 
transport services to other peers in that overlay. The role of a P2PSIP client is still under 
debate. One approach is that the client is not itself part of the overlay but interacts with 
the overlay through an associated peer. Clients can store information in the overlay and 
retrieve information from it, but they do not contribute any resources to the overlay, and 
thereby do not route messages or store information for other nodes. [Bry+08] 
 
Peers offer services to other peers to enable the provision of larger functions by the 
overlay. The services offered by every P2PSIP node are storage and transport. These 
services are needed to provide the location function which is a core function of the 
client/server SIP. The overlay needs to be aware of the services its peers support, in 
order to know which functions can be provided by the overlay. To make this possible, 
some information about the supported services must be stored into the distributed 
database. [Bry+08]  
 
Peer Protocol 
A specific protocol is needed for P2PSIP to enable communication between the peers. 
The peer protocol routes messages within the overlay, maintains the overlay and stores 
and retrieves data in the overlay. It was first suggested that SIP should be used for this 
inter-peer communication [Bry+08]. The P2PSIP WG is now working towards a new 
protocol for this purpose. Several drafts for the peer protocol have been proposed. At 
the moment the P2PSIP WG has one peer protocol draft as a working group item. It is 
called REsource LOcation And Discovery (RELOAD). This protocol is described in a 
more detailed fashion in Section 3.2.3. 
 
A peer protocol called P2PP (Peer-to-Peer Protocol) has already been used in existing 
P2PSIP implementations for both fixed and mobile platforms [Har+07]. P2PP, like 
other peer protocol candidates, has still many problems to be solved before reaching an 
RFC status.  
 



3     SIP and P2PSIP 

    

30 

Client Protocol 
A protocol to allow communication between the clients and the peers is also needed. 
This protocol has a working title Client Protocol and it is agreed to be a logical subset of 
the peer protocol. This means that any operation supported by the client protocol is also 
supported by the peer protocol. [Bry+08] 
 
 
3.2.2 Reference model 
It is expected that most P2PSIP peers and clients will be coupled with SIP entities 
[Bry+08]. The P2PSIP Reference Model illustrates this assumption in Figure 14. The 
scenario presented in the figure is only an example of a possible P2PSIP overlay. Other 
compositions are also possible.  
 
Peer names refer to the SIP entity the peer is coupled with. Proxy peer is coupled with a 
SIP proxy, Redir peer with SIP redirect server and UA peers with a SIP user agent. It is 
also possible that a peer is coupled with more than one SIP entity. A Gateway peer 
connects the overlay to other networks.  
 
The nodes can connect to a P2PSIP overlay in several ways. User agent peers A and B 
are connected straight to the overlay while UA peer C is connected behind a NAT. The 
UA client connects with the overlay via UA peer D using the P2PSIP client protocol. 
The SIP user agent interacts with the overlay through the proxy peer using SIP to 
communicate with the proxy peer.  SIP UA can also use the Redir peer as an adapter 
node to interact with the P2PSIP overlay. The Proxy peer and the Redir peer speak both 
SIP and the peer protocol used in the overlay (RELOAD in this thesis). The overlay can 
connect to other networks such as PSTN through the gateway peer that speaks the 
appropriate protocols. 
 
 



3     SIP and P2PSIP 

 

31

UA Peer A

UA Peer C

UA Peer B

Peer D

Gateway Peer

Redir Peer

UA Client

NAT

Proxy Peer

Other networks

P2PSIP overlay

SIP UA  
Figure 14 - P2PSIP Reference Model 

 
NAT Traversal 
Network address translation (NAT) is a technique in which the IP packet’s address 
fields are translated as the packet traverses a router or a firewall performing the NAT 
function. The hosts that are located behind a NAT device have an IP address that is 
unique only in their own domain. If they want to communicate with a host outside their 
domain, they have to do it via a NAT that translates the source address of the IP packet 
to some globally unique address. Since the IP service model assumes globally unique 
addresses for every node, the presence of NATs causes problems for many protocols 
and applications. Several techniques have been developed to solve this problem. These 
techniques are referred to as NAT traversal. [Pet+03] 
 
Interactive Connectivity Establishment (ICE) [Ros07] is a protocol that determines the 
best way to establish connectivity through NAT. ICE makes use of other protocols 
designed for NAT traversal and is therefore capable of avoiding the drawbacks of using 
only one NAT traversal method. [Leh05]  
 
RELOAD is designed to support environments where nodes are behind NATs or 
firewalls. For NAT traversal RELOAD uses ICE to establish new RELOAD or 
application protocol connections. Tunneling is used for the application protocols when 
ICE is unable to establish a direct connection. [Jen+08] 
 



3     SIP and P2PSIP 

    

32 

 
 
 
 
3.2.3 RELOAD 
This chapter is based on the current proposal of P2PSIP working group for peer 
protocol called Resource Location and Discovery (RELOAD) [Jen+08]. The details 
given here can still change but this Section aims to present an overview of the 
RELOAD protocol.  
 
Applications make use of the RELOAD protocol by defining RELOAD usages. A usage 
specifies the supported data kinds and also the data structures and access control rules 
for those data kinds. Usages also specify the way the Resource Names are formed.  The 
RELOAD draft defines two usages: SIP usage for the serverless implementation of the 
SIP protocol and diagnostics usage for monitoring the state of the overlay.  
   
With the SIP usage, the RELOAD overlay can implement the user location function of 
SIP in a distributed manner. The SIP usage enables the RELOAD overlay to perform 
the registration and rendezvous functions, which in the traditional SIP network are 
carried out by the associated servers. With the registration function the SIP UA can 
store the mappings from its public URI to its current node ID as well as to retrieve other 
UAs’ node IDs. The rendezvous function allows SIP UAs to use the RELOAD’s 
message routing system to form direct connections to other SIP UAs.   
 

Table 2 – RELOAD’s Kind IDs [Jen+08] 
Kind Kind ID 
SIP registration 1 
TURN service 2 
Certificate 3 
Routing table size 4 
Software version 5 
Machine uptime 6 
Application uptime 7 
Memory footprint 8 
Datasize stored 9 
Instances stored 10 
Messages sent/received 11 
EWMA bytes sent 12 
EWMA bytes received 13 
Last contact 14 
RTT 15 

 



3     SIP and P2PSIP 

 

33

 
Data is stored in the overlay as elements called data kinds. One resource ID (i.e. peer) 
can contain several data kinds identified by a kind ID. The Internet Assigned Numbers 
Authority (IANA) has defined 15 kind IDs for RELOAD. The data kinds are listed in 
Table 2. The SIP usage defines the SIP registration (location), certificate, STUN server 
and TURN server data kinds.  
 
Data can be saved in three different data models. The single value data model simply 
holds one DataValue element. There can be only one single value element in a kind ID 
per resource ID. The array data model is a set of array entries that include DataValue 
elements which are addressed by an integer index. An array can also hold empty 
indexes. The dictionary data model is a set of dictionary elements in which DataValue 
elements are indexed with a key for each value. One possible scenario for a resource 
ID’s contents is illustrated in Figure 15. 
 

RESOURCE ID

Kind 1 Kind YKind X

SIP-REGISTRATION

Dictionary entry 

key       SipRegistrationData 

Single value 

Dictionary entry 

Array entry 

DataValue index            DataValue 

Array entry 

index            DataValue 

Array entry 

index            DataValue

key       SipRegistrationData 

 
Figure 15 - Data storage model of P2PSIP 

 
 

 



3     SIP and P2PSIP 

    

34 

RELOAD messages 
Reload uses messages for overlay maintenance and forming connections between the 
overlay nodes. Most messages have both request- and answer forms. The messages used 
for overlay topology maintenance are Join, Leave, Update and Route Query.  
 
• JOIN  
A Join request is sent by a new peer (joining peer) that wishes to join the overlay. The 
Join request’s destination is the admitting peer and its purpose is to inform the admitting 
peer that a new peer wants to take responsibility over some part of the overlay. The 
admitting peer replies with a Join answer message. 
 
• LEAVE  
A node should send a leave message to every node it has a direct connection when it is 
about to leave the overlay. 

 
• UPDATE  
Update request is a message by which the sending node wants to notify the receiving 
node about the senders routing state (the sender’s view of the current state of the 
overlay). Update answer is sent as a response and it indicates either success or an error. 

 
• ROUTE QUERY  
With the Route Query request message the sender can ask for the next hop peer for a 
message directed to a given destination. Route Query messages are mainly used for 
iterative routing (see Section 2.2.1). 
 
The messages used for setting up and maintaining connections between the peers are 
Attach, Ping and Tunnel 



3     SIP and P2PSIP 

 

35

 
• ATTACH  
A Node can set up a connection to another node by sending the target node an Attach 
message through the overlay. 

 
• PING  
Ping messages are used for checking the connectivity between nodes and gathering 
information about the target peer’s resources. 
 
• TUNNEL  
If a node has only a few messages to send for the destination node, applications using 
RELOAD can use Tunnel message to route the messages through the overlay instead of 
setting up a direct connection. 

 
The messages associated with RELOAD’s data storage protocol are Store, Fetch, 
Remove and Find. 
 
• STORE  
A Store request is sent by a node that wants to store data in the overlay. Several data 
kinds can be stored to a single resource ID with one store request message. Successful 
requests are responded with a Store answer message. 

 
• FETCH  
When a node wants to get one or more data elements from the overlay, it uses the Fetch 
request message. The request contains the resource ID where the data elements will be 
fetched from. Multiple data kinds can be retrieved with a single request. The requested 
data is included in the Fetch answer message, which is sent as a response to a successful 
request. 

 
• REMOVE  
To remove a stored data element from the overlay, a node sends a Remove request to 
the resource ID containing the given data. Only the creator of the data normally has the 
right to remove it from the overlay. 
 
• FIND  
Nodes can examine the overlay by sending Find requests. These requests contain 
several resource IDs and kind IDs that the requesting node wants to get information 



3     SIP and P2PSIP 

    

36 

about. The Find answer message contains the closest resource ID for each kind ID that 
was included in the request message. 
 
Overlay Operations 
There are several operations that have to be performed when a peer wants to be a part of 
an existing overlay. This Section discusses those operations beginning with a peer 
willing to join an overlay and concluding in the situation where the peer is a fully 
functioning member of the overlay. 
 
Enrollment 
Before peers can function as members of an overlay they need to go through an 
enrollment process. Although P2PSIP aims for independence of centralized network 
entities, an enrollment server is usually needed in order to securely authenticate peers 
and admit them to join existing overlays. A peer wanting to join an existing overlay is 
called a joining peer. The joining peer gets its node ID and credentials during the 
enrollment process. The node ID is unique and it will identify the peer and its logical 
position in the overlay. After the enrollment process the joining peer can attempt to join 
the overlay by contacting a bootstrap node (see Peer joining and registration section 
below). 
 
To find the enrollment server the joining peer initiates the discovery process. First the 
joining peer needs to know the name of the overlay it is about to join. P2PSIP does not 
determine how this information is acquired. The connection to the enrollment server’s 
IP address is then established with HTTPS. The enrollment server replies with an 
overlay configuration document. The document includes information about the 
expiration time of this overlay configuration, overlay (DHT) algorithm being used, 
certificates, supported data kinds, addresses for credential server and bootstrapping etc. 
[Jen+08] 
 
If the document the joining peer receives contains a credential server address, it means 
that credentials are required to be able to join the overlay. To get credentials the joining 
peer contacts the credential server with a ‘Simple Enrollment Request’ message over 
HTTPS. The credential server authenticates the joining peer using the user name and 
password included in the request. After a successful authentication the certificate is 
returned in a ‘Simple Enrollment Response’ message. It contains one or more node IDs 
which for security reasons must be unpredictable to the requesting (joining) peer. The 



3     SIP and P2PSIP 

 

37

response also contains the names this particular user is allowed to use when 
participating in this overlay. [Jen+08] 
 
In the absence of the credential server the joining peer generates its own self-signed 
certificate. In this case the user can choose any username. The node ID must be 
computed from the user’s public key using a hash algorithm (SHA-1 or SHA-256) 
defined in the configuration document. When self signed certificates are accepted by 
other nodes, the matching between the node ID and the public key of the peer in 
question is checked so that no peer can steal other peer’s node ID. [Jen+08] 
 
Enrollment is crucial for the security of the overlay. Malicious peers can try to disturb 
the overlay for example by frequently joining and leaving and thereby causing excessive 
churn which can overload the other peers. This is why the enrollment server must 
prevent one device from getting many IDs in a P2PSIP overlay. The IDs must be unique 
and the registered IDs cannot be modified. These features make it hard for malicious 
nodes to populate the overlay. [Son+08] 
 
Peer joining and registration 
After the joining peer has obtained a node ID and credentials it is ready to join an 
overlay. The joining peer first needs to locate a bootstrap peer for the overlay. There is a 
bootstrap mechanism in P2PSIP that helps the joining peer to locate a bootstrap peer, 
the first point of contact in the overlay the joining peer wants to participate. There are 
four different ways of locating a bootstrap peer defined in [Bry+08].  
The joining peer can: 

• Cache addresses of peers that participated in the overlay last time the peer was a 
member of the overlay  

• Use a multicast discovery mechanism by sending a Ping request to the address 
given in the overlay configuration document 

• Use manual configuration 
• Contact a bootstrap server and ask for an address of a bootstrap peer 

The first two options are included in the RELOAD draft [Jen+08] and they are 
suggested to be used in the order they are presented above.  
 
After the address of a bootstrap peer has been resolved, the joining peer contacts the 
bootstrap peer that refers the joining peer to an admitting peer. The admitting peer is a 
peer already participating in the overlay, which will help the joining peer to become a 
fully functional peer. The choice of the admitting peer often depends on the peer ID of 



3     SIP and P2PSIP 

    

38 

the joining peer. The admitting peer usually is a peer that will be a neighbor of the 
joining peer after it has become a member of the overlay. This comes from natural 
reasons, since the admitting peer’s role is to help the joining peer learn about the other 
peers in the overlay. The peers that are logically near each other (i.e. have peer IDs that 
are close to each other) have very similar routing tables and it is wise to pick such an 
admitting peer that already has most of the information the joining peer will need. 
 
The joining process is illustrated in Figures 16-19. The joining peer (JP) sends an attach 
message to the admitting peer (AP). The message goes via the bootstrap peer because 
the joining peer does not know the location of the admitting peer. The Bootstrap peer 
(BP) contacts the admitting peer through AP’s predecessor (PP) and AP responds with 
an Attach_ans message which travels via  BP to the joining peer. JP and AP then use 
ICE to connect and then set up a TSL connection. Figure 16 illustrates these actions. 

JP BPPP APPPP NP NNP

ATTACH Dest = JP

ATTACH Dest = JP

ATTACH Dest = JP

ATTACH ans

ATTACH ans

ATTACH ans

JP = Joining Peer

PPP = Predecessor of PP

PP = Predecessor Peer of AP

NP = Successor Peer of AP

BP = Bootstrap Peer

NNP =  Successor of NP

AP = Admitting Peer

TLS

 
Figure 16 - Joining Peer discovering its Admitting Peer 

  
  
 
After establishing a connection with AP, the joining peer needs to contact the peers it is 
supposed to have in its routing table. The figures here represent the case where Chord is 
used as the overlay algorithm. First JP populates its neighbor table by sending an Attach 



3     SIP and P2PSIP 

 

39

message to AP’s successor node NP. This is again done through AP and the destination 
address is set to AP+1. The final connection set up is again done with ICE and the 
connection will be TLS secured (Figure 17). This routine is repeated until every entry in 
the neighbor table is filled up. 
 
When using Chord also the finger table entries need to be populated. This is done by 
sending Attach messages to locations exponentially further away from the previous 
finger table entry (the Chord’s finger table concept is described in Section 2.3.2). Figure 
18 depicts JP contacting its last finger table entry halfway around the Chord ring. The 
Attach message is sent with a destination ID of JP+2^127. The message is routed to a 
node XX which denotes the predecessor node of the target peer. 
 
 

 
Figure 17 – Joining Peer populating its neighbor table 

 



3     SIP and P2PSIP 

    

40 

JP XX Target PeerNP

Attach JP+2^127

AttachAns

Attach JP+2^127

Attach JP+2^127

AttachAns

AttachAns

TLS

 
Figure 18 – Joining Peer populating its last finger table entry 

 
When the routing tables are populated, JP is ready to take its own place and be a fully 
functioning member in the overlay. JP sends a Join request message to AP which 
triggers the process of JP getting the data it will be responsible for. After receiving the 
Join request message from JP, AP replies with a JoinAns message and then starts 
sending the data items (or pointers to the data items) to JP. After the data items have 
been transferred, AP sends an Update message to JP and indicates that JP is its 
predecessor. This process is illustrated in Figure 19. At this point JP knows the ID-
space which it has responsibility for in the overlay.  
 
JP has not yet been able to contact its predecessors because Chord has no way to route 
to them unless they are known. As JP received the Update message from AP the 
message contained information about AP’s predecessors. These predecessors are also 
JP’s predecessors so JP sends Attach messages to them and then sets up the connections 
with the appropriate predecessor peers. The final phase of joining the overlay consists of 
JP sending Update messages to every entry on its routing table to let them know that it 
is ready to operate as a fully functional peer. 
 
 



3     SIP and P2PSIP 

 

41

JP PP APPPP

JoinReq

JoinAns

StoreAns

UpdateReq

StoreAns

StoreReq Data B

UpdateAns

StoreReq Data A 

 
Figure 19 – Joining Peer receiving the data items it will be responsible for from the Admitting Peer 

 
 
Resource registration 
In order to implement the location service function, a peer has to register its location 
information in the overlay. The registration is done by storing a Sip Registration Data 
structure under the peer’s own public URI. 
 
SIP registration kind defines dictionary as its data model. Data is stored into dictionary 
entries as SIP Registration Data elements. User’s public URI serves as the resource 
name, which is hashed in order to solve the resource ID that will be responsible for 
storing the data element. SIP Registration kind accepts two types of data; 

• SIP Registration URI is an address where the user can be reached at. 
• SIP Registration Route is a list of destinations (addresses) to the user’s peer. 

 
When using the former type, a user can inform anyone who tries to call him to try 
another URI instead. The latter type is used to direct callers to contact a specific peer 
where the user will be reached at. It is suggested in [Jen+08] that both the dictionary 
key and value are set to the peer ID to be contacted. Multiple registrations for a single 
public URI are supported in P2PSIP using the latter approach. The example dictionary 
entries for the two SIP Registration Data types are illustrated in Figure 20. 
 
 



3     SIP and P2PSIP 

    

42 

DICTIONARY ENTRY

key: 1234 value: 1234

DICTIONARY ENTRY

key: 
sip:alice@dht.example.org

value: 
sip:sam@dht.example.org

Sip Registration Route

Sip Registration URI

 
Figure 20 – SIP Registration Data types 

 
 
Updating the overlay 

UPDATE messages are used to keep the nodes’ knowledge about the overlay up to date. 

The updating process and the contents of the messages included to it are completely 

overlay-specific i.e. they depend on the DHT algorithm used. Chord is the default DHT 

algorithm for RELOAD and it is mandatory to implement. Information about the update 

process of Chord can be found in Section 2.3.2.  

 

Retrieving information from the overlay 

FETCH and FIND messages can be used for information retrieval. FETCH message 

contains the resource ID, kind ID, data model and possibly a subset of the values 

included in that data model. FIND message is used to explore the overlay and its 

purpose is to determine what kind of resources can be fetched from the overlay. 

 

Maintenance 
Overlay maintenance in RELOAD is taken care of with Join, Update and Leave 
procedures. The message contents and when they are sent depend on the overlay 
algorithm that is used. 
 

 



 

43 

 

4   Simulation of P2P networks 
 
 
This Chapter discusses different types of simulation tools and presents the simulation 
environment used in our study. The concept of churn is also introduced. 

4.1 General 
P2P networks, like any systems, can be simulated with a numerical, computer based 
simulation which imitates the behaviour of the network over time. The data generated 
by the simulation is then collected and analyzed and after the analysis, estimations 
about the performance of the true system are made. 
 
As a consequence of the development in processing power, simulation has become a 
useful tool in testing and designing of large networks consisting of thousands of nodes. 
Building of large prototype systems is often impossible and always very expensive and 
time consuming. With simulation larger systems can be evaluated than when using 
prototypes. Simulation can be used as a tool to evaluate different design choices for 
systems that are not yet implemented as well as for predicting the behaviour of existing 
systems under varying circumstances. Simulation enables a simple way of evaluating 
the system’s dependence on different input parameters. The arrival and departure of 
nodes as well as the lookup frequency can be modified to match any conditions. With 
prototype networks it is impossible to make these adjustments with equal accuracy. 
 
Simulation software can be divided into general-purpose programming languages (C, 
C++, Java), simulation programming languages (SIMULA, GPSS, MODSIM) and 
simulation environments (NS2, OMNeT++). The general-purpose programming 
languages - obviously - are not specifically designed for simulation purposes. They are 
flexible to use and available in most computers but require a lot of programming work. 
The simulation languages offer many ready-made features for building a simulation 
model, and thus ease the workload of the person programming the model. Simulation 
environments enable building of the simulation scenario without actual programming. 
This way the implementation of the model can be done in a short period of time. 
Simulation environments usually have graphical user interfaces with animation and 
visualization tools. Also tools for analyzing the simulation output are included. 
[Ban+05] [Las07] 



4     Simulation of P2P networks 

 

    

44 

 
4.1.1 Discrete-event simulation 
Discrete-event simulation, also referred as event driven simulation, is based on handling 
and scheduling events. An event is given a following definition in [Ban+05]: “An 
instantaneous occurrence that changes the state of a system”. An event in a P2P 
network simulation can be for example an arrival or departure of a peer or a message. 
 
In discrete-event simulations the simulation time moves in discrete steps from one event 
to the next one. The time intervals that do not include any events are skipped over. The 
upcoming events are kept in a future event list which is processed in chronological 
order. As the events are handled, new events are generated in the process on the grounds 
of the dependencies and logic of the simulation model. The generated events are then 
put into the future event list to their proper position. After the first event in the list is 
handled it is removed from the list and the simulation clock will jump to the time instant 
the next event is scheduled to. [Ban+05] 
 
Future events are scheduled as the present events are handled. For example in handling 
an event of a peer arrival to the network occurring at time instant t, a lifetime l for that 
peer is drawn in random from a given statistical distribution. Based on that lifetime 
value a new event is then scheduled for the departure of that peer to occur at time t+l. 
Another example from P2P network simulations is determining the intervals for the 
query messages sent by a peer. As the event of sending the first query message is 
handled, the next query message will be scheduled and put into the future event list. 
[Ban+05] 
 
The components of a discrete-event simulation program are presented in [Las07]. They 
include 
 
• Event scheduler 

The event scheduler maintains the future event list and it is always executed 
before an event. It can modify the event list and it can be called many times 
during the handling of one event. 

• Simulation clock and time advance mechanism 
The simulation needs a global variable that represents the simulation time. In 
time-driven simulations the time is advanced in constant size increments and in 
event-driven simulations it is advanced based on the event beginning times event 
by event. 



4     Simulation of P2P networks 

 

 

45

• The state variables of the system 
The state variables include the global variables, which together define the state 
of the entire system. The number of peers in the network at a given moment of 
time is an example of a state variable in P2P network simulation.  

• Event handlers 
Event handlers process the events with event specific routines. The state values 
are updated and new events are scheduled by these routines  

• Input routines 
The user of the simulation gives the program information about some important 
parameter values using the input routines. 

• Report generator 
Report generator collects the data during the simulation, makes statistical 
analysis on it and outputs the results. 

• Initialization routines 
The initial values of the state variables are set by the initialization routines. 
These values are usually acquired from the input routines. 

 

4.2 Churn 
The term churn is used to describe the process of nodes arriving to the overlay and 
leaving it. This process of node arrival and departure keeps the overlay in a continuous 
state of change. The changes in the overlay require certain maintenance operations from 
the overlay protocol in order to maintain the correctness of the lookups and the possible 
content retrievals. 
 
There are two main characteristics that have to be set in order to determine churn rate. 
First there is the distribution of node arrivals, second the distribution of session time or 
peer uptime. Accurate churn characterization is vital in order to draw accurate 
conclusions about peer-to-peer systems. Modeling churn without detailed information 
about the arrival and departure of peers is a very challenging problem. [Stu+06] 
 
In mobile environment churn comes in different forms than in traditional P2P 
applications where turning the application on and off is the only source of churn. In 
mobile handsets the battery may run out, the device may become unreachable because it 
has moved to a location where it does not have a connection to any network or it can 
only connect to a network in which it cannot get enough bandwidth in order to work 
properly. 



4     Simulation of P2P networks 

 

    

46 

4.3 OverSim 
The simulations were carried out by OverSim [web1] overlay network simulation 
framework based on OMNet++ [web2] discrete event network simulator. OverSim 
consists of modules that are defined in a simple definition language NED. The modules 
are implemented in C++. Figure 21 illustrates OverSim’s modular architecture. In this 
work the OverSim-20080919 release is used. 
  
OverSim supports different underlying network models. In the release we use there are 
three models available: Simple underlay, Single host underlay and IPv4 underlay. In our 
study we use the Simple underlay which is used for large networks because of its 
scalability. In this underlay model packets are sent directly from one overlay node to 
another and have a constant delay. 
 
OverSim has three different churn models to choose from: Lifetime churn, Pareto churn 
and Random churn. In our study Lifetime churn is used. OverSim implements DHT 
algorithms Chord and Kademlia that are both used in our simulations. OverSim also 
implements the desired routing modes and provides a generic lookup mechanism that 
can be used to test these different key based routing alternatives [Bau+07]. 
 

 
Figure 21 – OverSim architecture [Bau07] 

 



4     Simulation of P2P networks 

 

 

47

OverSim has two configuration files that are used to specify all the relevant simulation 
parameters. A file called default.ini contains all those parameters and another file called 
omnetpp.ini contains simulation run specific parameter settings. The parameters in 
omnetpp.ini replace the values in default.ini if there is any overlapping between the two 
files. Omnetpp.ini is used for making different kinds of simulation scenario settings. 
These scenarios can then be run without separately configuring the default.ini file. Both 
configuration files are presented in Appendix E. 
 

4.4 Distributions used in the simulations 
 
Exponential Distribution 
In this simulation the times between sending FETCH messages from a single node are 
drawn from the exponential distribution. The distribution is presented in Figure 22 with 
cumulative distribution function (cdf) in subfigure a and probability density function 
(pdf) in subfigure b.   
 

{ 0,
0,0);( ≥

<

−

= te
t

t

tf
λλλ  

{ 0,1
0,0);( ≥−

<

−

= te
t

t
tF

λ

λ  

 

 
Figure 22 – cdf (a) and pdf (b) of the Exponential distribution [web3] 

 
Weibull Distribution 
Weibull distribution is an extension of the exponential distribution. It is illustrated in 
Figure 23. In our simulations the Weibull distribution is the same as Exponential 
distribution. This is the case as the shape parameter m has value of one. The similarity 
can be noticed by comparing the cdf plots. 
 



4     Simulation of P2P networks 

 

    

48 

⎪⎩

⎪
⎨
⎧

=
≥⎟

⎠
⎞

⎜
⎝
⎛

<

−
−

0,

0,0

)/(
1

),;(
tetm

t

mt
m

mtf
λ

λλλ  

⎩
⎨
⎧=

≥−−

<

0,)/(1

0,0
),;(

t
mte

t
mtF

λ

λ  

 

 
Figure 23 – cdf (a) and pdf (b) of the Weibull distribution [web3] 

 

 



 
 

49 

 

5 Simulation setup 
 
 
This Chapter presents the preparations we made with the OverSim simulator to create 
the desired simulation scenarios. The preparations included modifications to the 
simulator code, modelling of REALOAD messages, parameter settings and statistics 
collection. 

 

5.1 Simulation environment 
The simulations are performed in a 32bit Ubuntu virtual machine run on a server with 
eight CPUs of 2,5 GHz and 4 GB RAM. Only one CPU is used for the simulations. 
 

5.2 Modifications to the OverSim code 
The standard record functions in OverSim were not enough to collect all the relevant 

statistics from the simulations. A new class, MyClass (Appendices B and C), has been 

written to collect these statistics and necessary additions to some other classes have 

been made in order to function with the new class. Another option would have been to 

add the statistic calculations to each relevant class. With our approach we wanted to 

make as few modifications to the OverSim code as possible. The most important added 

features are the measurement of hop count, which was already implemented in OverSim 

but had some problems in it and did not produce correct results. Also the calculation of 

the key distribution has been added as a new feature. 

 

In order to make the lookup calculations correct the OverSim code has been examined 

and a new way of counting the hops has been developed and added to the code. This 

required minor additions to OverSim’s Chord and Kademlia classes. The actual hop 

calculation code has been added to MyClass discussed above. 

 

RELOAD protocol functions have been modeled with OverSim’s DHTTestApp class 

which provides many features RELOAD uses. RELOAD operations are initiated by this 

class which communicates with the DHT class. The DHT class then communicates with 



5    Simulation setup 

 

    

50 

Chord and Kademlia classes. The relations between OverSim’s classes relevant to this 

thesis are explained in Section 5.3. 

 

Modeling the RELOAD protocol is not an easy task because of the somewhat general 

protocol description in the draft [Jen+08]. Assumptions about message sizes had to be 

made. The values not accurately determined in the draft were set in a way that they 

would be in the right scale so that the results obtained from the simulations would be 

credible. An example of these values is the determination of the message sizes. 

 

Our simulations pay attention mostly on calculating the update traffic. This is why the 
update message sizes are especially important. The RELOAD message sizes are 
determined by the message sizes of the DHT algorithms (i.e. Chord as Kademlia does 
not really use update messages). With RELOAD those messages are complemented 
with a header field of 52 bytes and a signature field of 20 bytes. 
 
Our intention was to also examine Kademlia DHT algorithm’s recursive routing mode. 
Recursive routing was included in OverSim’s implementation of Kademlia. The lookup 
success rates for Kademlia using recursive routing mode in our test runs were 
unexplainable low. It was obvious, based on those test runs, that there was something 
wrong with the routing mode implementation. Despite of our effort we did not manage 
to make Kademlia in the recursive routing mode to work correctly. Eventually a 
decision was made to simulate Kademlia only in the iterative routing mode. 
 

5.3 OverSim Classes 
DHTs are tested with OverSim’s DHT test application which we have modified in order  
to equate the behavior of P2PSIPs peer protocol RELOAD. 
 
OverSim classes modified for the simulations that are run in this study and the relations 
between them are presented in Figure 24. DHTTestApp and GlobalDhtTestMap classes 
are located in the Tier2 library that communicates with the Applications library 
containing the DHT and DHTDataStorage classes. In the Overlay library there are both 
Chord and Kademlia classes that define the logic that the DHT class executes. These 
two classes are subclasses of the BaseOverlay class located in the Common library. 
SimpleNetConfigurator class in the Underlay library defines the parameters for the 
network running below the overlay. Functions from MyClass are called in all of the 



5    Simulation setup 

 

 

51

classes presented in Figure 24 in order to collect essential information about the 
simulation runs. 

DHTTestApp

DHT

SimpleNet
Configurator

KademliaChord

MyClass

GlobalDht
TestMap

DHTData
Storage

Overlay

Applications

Tier2Common

Underlay

BaseOverlay

 
Figure 24 – OverSim libraries and modified classes 

 

5.4 Modelling of messages 
Chord’s maintenance messages (FixFingers, Stabilize, Notify, New Successor Hint, 
Join) were modelled to correspond RELOAD’s update message. Sizes for those 
messages are defined by adding a 52 byte header field and a 20 byte signature field to 
the regular OverSim Chord messages. The message sizes including the header and 
signature fields used in our study are presented in Table 3. 
 

Table 3 – Maintenance message sizes 
        
  message size (bytes)   
  Fix Fingers Call 105   
  Fix Fingers Response 158   
  Stabilize Call 104   
  Stabilize Response 130   
  Notify Call 105   
  Notify Response 340   
  New Successor Hint 126   
  Join Call 104   
 Join Response 339  
    

 
OverSim has FindNodeCall and FindNodeResponse overlay messages, which are used 
for the node lookup process. FindNodeCall has a constant size of 52 bytes while 
FindNodeResponse contains variable amount of data depending on the DHT algorithm 
and the parameters the algorithm is run with. In our simulations FindNodeResponse for 
Chord has a size of 59 bytes and for Kademlia a size of 241 bytes. These are default 
sizes in OverSim and they are not modified in any way.  



5    Simulation setup 

 

    

52 

 
 

5.5 Fixed parameters 
The relevant parameters for the simulations in this thesis are listed in Table 4. The 
parameters are from OverSim’s default.ini file which is presented as a whole in 
Appendix E.  
 

Table 4 – Parameters from default.ini 
group parameter value description 
DHT numReplica 1 number of replica for stored data records 

  numGetRequests 1 number of queried replica for get requests 

  
ratioIdentical 0.5 ratio of identical replica needed for a valid 

result 
DHTTestApp testInterval 1309

1 
mean interval for lookup messages from 
one node 

  putDelay 5000 interval for key put messages 
  initDelay 0.2 delay for storing the key 

Chord joinRetry 2   
  joinDelay 10 delay between join retries (s) 

  
stabilizeRetry 1 retries before a successor is considered 

failed 
  stabilizeDelay 120 stabilize interval (s) 
  fixfingersDelay 240 fix_fingers interval (s) 

  
successorListSize 8 max number of successors in the 

SuccessorList 
  aggressiveJoinMode true   
  extendedFingerTable false   
  proximityRouting false   

Kademlia lookupRedundantNodes 8 number of next hops in each step 
  ParallelPaths 1 number of parallel paths 
  ParallelRpcs 1 number of nodes to ask in parallel 
  lookupMerge true   

  
minSiblingTableRefreshInter

val 1000 siblingTable refresh delay (s) 
  minBucketRefreshInterval 200 bucket refresh delay (s) 
  maxStaleCount 0 number of timeouts before node removal 
  k 8 number of paths (size of k-bucket) 
  s 8 network diameter O(log_{2^(b)}) 
  b 1 number of siblings 
  pingNewSiblings true ping new unknown siblings? 
  activePing false ping new neighbors? 
  proximityRouting false   

SimpleNetwor
k constantDelay 50 constant delay between two peers (ms) 
  jitter 0.01 average amount of jitter in % 

 
 
An example setting for a run written in omnetpp.ini is shown in Table 5. In OverSim 
these kinds of run specific settings are collected to omnetpp.ini file which is presented 



5    Simulation setup 

 

 

53

as whole in Appendix E. If there are overlapping parameters in default.ini and 
omnetpp.ini files the parameter value written in the omnetpp.ini file will be used in the 
simulation run. 
 

Table 5 – A Sample setting for a run from omnetpp.ini 
parameter value description 
description Chord (Iterative) description of the simulation scenario 

network SimpleNetwork description of the underlay network 
sim-time-limit 1209600 simulation time (s)   (1209600s = 14d) 
routingType iterative   
lifetimeMean 69120 mean node lifetime (s) 

globalFunctionsType GlobalDHTTestMap   
useGlobalFunctions 1 are globalFunctions used? (1=true) 

overlayType ChordModules   
tier1Type DHTModules   
tier2Type DHTTestAppModules   

targetOverlayTerminalNum 4000 target number of active overlay terminals  
testInterval 13091 mean interval for lookup messages from one node
putDelay 14400 interval for key put messages 
initTime 47700 duration of the init phase (s) 
initDelay 1.0 delay for storing the key (s) 

 

5.6 Input parameters 
The effect of four parameters is tested in our simulations. These parameters include the 
number of nodes in the network, lifetime of the nodes, time between key updates and 
time between FETCH-messages sent by each node. Other parameters remained constant 
at their default value while these four were varied one at a time. The parameter values 
used in the scenarios are tabulated in Table 6 with the default values written in boldface.  
 

Table 6 - Input parameters for the simulations 

Number of 
nodes 

Node lifetime 
(hours) 

Time between key 
updates (hours) 

Time between 
FETCH messages 

(hours) 
1000 4,8 1 0,91 
2000 9,6 2 1,82 
4000 19,2 4 3,64 
6000 38,4 8 7,27 
8000  12  
10000  16  

  20  
  24  



5    Simulation setup 

 

    

54 

 
• SIMULATION TIME  
  Simulation time for all scenarios is 14 days. 
• NUMBER OF NODES  

This parameter describes the number of nodes participating 
in the overlay network. The default value (4000) is chosen to 
be such a value that fits the requirements of the simulation 
software and the available processing power. The aim is to 
simulate as large networks as possible. The tests with 
Kademlia DHT algorithm show that it would be too time 
taking to run the simulations with the default number of 
nodes at 10000. As the comparison of the two DHT 
algorithms is a fundamental part of this study, the default 
number of nodes has to be dropped to 4000. Had the 
simulation concerned only Chord DHT algorithm, the default 
number of nodes would have been at least 10000.  

 
• MEAN NODE LIFETIME  

This parameter defines the mean value of the nodes’ lifetime. 
Each node is assigned a random lifetime from the Weibull 
distribution. Node lifetimes are based on measurements in 
[Ver07]. The default value (19,2 hours) is set on the grounds 
of the mean number of power off switches in one day.  

 
• KEY UPDATES  

Default time between key updates is chosen to be 4 hours. 
This value is set to be feasible with mean node lifetimes. 
The values are varied from one to 24 hours. 

 
• KEY TTL The time to live (TTL) value for keys stored in nodes is set to 

be three times the key update value. This value is chosen to 
make the network able to withstand a situation where two 
consecutive key updates are lost. 

 
• MEAN FETCH MESSAGE INTERVAL  

In our simulation FETCH messages are sent at exponentially 
distributed random intervals from each node. The parameter 



5    Simulation setup 

 

 

55

value is determined from usage intensity data presented in 
[Ver07]. From this data the information about outbound 
voice calls, video calls, sms- and mms messages and packet 
data sessions is added up. Table 7 depicts this evaluation 
process. The occurrence time of the next FETCH message is 
always scheduled at the time a node sends a FETCH 
message. 
  

Table 7 – Determination of FETCH message interval 
       
    mean number of events in a day   
  Outbound voice calls 2.67   
  Outbound video/data calls 0.10   
  Outbound sms messages 3.05   
  Outbound mms messages 0.13   
  packet data sessions 0.65   
  total 6.6   
        
        
  6.6 messages a day → one message in every 3.64 hours   
        

 
 

5.7 Output parameters 
From the simulation output there are seven parameters we are especially interested in. 
All the parameters are mean values over all of the nodes. Statistics are also collected 
about the largest value for each parameter in a single node.  
  
• OVERALL BANDWIDTH USAGE 

Overall bandwidth usage is measured as received bytes per 
second in a node. Overall traffic includes all Store, Fetch, 
FindNode and maintenance messages.  

 
• MESSAGE OVERHEAD FOR MAINTENANCE 

 Message overhead for structure maintenance is measured as 
received bytes per second in a node. When the Chord-
protocol is used, the maintenance messages include all Join, 
FixFingers, Stabilize, Notify and New Successor Hint 
messages. When Kademlia is used as the DHT protocol, the 
measurement of maintenance messages is more difficult as 



5    Simulation setup 

 

    

56 

Kademlia includes maintenance operations in other 
messages. Because of this the maintenance overhead 
statistics are collected only for scenarios using Chord. 

 
• NUMBER OF LOOKUP HOPS 

The number of routing hops required for lookups was 
measured by calculating the number of nodes that must be 
visited until the node containing the requested information is 
found. The last hop added into the count is the one reaching 
that target node. 

• LOOKUP MESSAGE OVERHEAD 
This parameter determines the number of messages and the 
volume of data transferred in a lookup process. Lookup 
message overhead is calculated by multiplying the number 
of lookup hops by the associated message sizes.    

• LOOKUP DELAY 
The delay between sending a lookup and receiving the 
answer for it is defined by this parameter. In our simulations 
we use a fixed link delay for the UDP messages valued 
50ms. A small jitter with a magnitude of one percent is 
included to prevent network-wide synchronization of 
message sending times. The delay used in our simulations is 
independent from the lookup message sizes. The delay is 
calculated from the instant a Fetch request message is sent to 
the instant a Fetch response message arrives. 

• KEY DISTRIBUTION 
Key distribution is determined with the distribution of keys 
between the nodes. This is measured as keys per node. Also 
the total number of keys stored in the network is calculated. 

 
• SUCCESS RATE 

Success rate of the FETCH-messages is the most important 
output parameter in our simulations. A successful FETCH 
message consists of a sent FETCH request and a received 
FETCH response. Success rate is determined as unique 
FETCH responses over unique FETCH requests.  
 



5    Simulation setup 

 

 

57

 
 
 
 

5.8 Collecting the statistics 
The statistics are collected using OverSim’s RECORD_STATS tool and our MyClass 
that includes a printStats function. MyClass prints a results.dat file that contains the 
statistics calculated in the class. The statistics collected with RECORD_STATS are 
automatically printed to a file called omnetpp.sca which is then processed with an 
OverSim script overStat.pl that prints the statistics in a more readable fashion. 
 
MyClass collects statistics about: 

• Number of hops in a lookup 
• Lookup delay 
• Number of keys in the network 
• Maximum number of keys in a single node 
• Keys per node 

 
Statistics collected with RECORD_STATS tool include: 

• Sent messages and bytes  
• Received messages and bytes 
• Lookup success rates 
• Number of nodes joined and left 
• Mean session times 

 
Collecting statistics to two separate files is not an optimal but necessary resolution 
because the omnetpp.sca file reached its size limit when tests runs were executed. 
Dividing the statistics into two files it is possible to collect all the statistics from the 
simulations.



 
 

58 

 

6   Results 
 
 
This Chapter presents the results from the simulation scenarios. The results are 
illustrated with figures where the effects of the 4 input parameters (shown in Table 6) 
on the 7 output parameters discussed in Section 5.7 are depicted. The figures have 3 
curves (excluding the maintenance traffic), one for each DHT algorithm – routing mode 
pair. 
 

6.1 Overall bandwidth usage 
Total traffic received per node was measured by adding up the maintenance traffic, 
Store and Fetch message traffic and FindNode message traffic (calls and responses). 
Figure 25 illustrates the results. Kademlia uses more than twice the bandwidth needed 
by Chord. The difference between the bandwidth consumption with the two DHT 
algorithms stays the same in all simulation scenarios. 
 
Iterative routing mode in Chord uses more bandwidth than symmetric recursive mode. 
The maintenance traffic bandwidth usage results indicated that this would not be the 
case but when also the FindNode messages are taken into account the iterative mode 
demands more bandwidth. 
 



6    Results 

 

 
 

59

 

 
Figure 25 – Mean overall traffic received per node 

 
 

6.2 Maintenance traffic bandwidth usage 
The amount of maintenance traffic received per node was measured from the 
simulations. The results cover only the two scenarios where Chord was used as a DHT 
algorithm because Kademlia does not exploit separate maintenance messages and is 
therefore left outside of these measurements. The results are presented in Figure 26.  

 



6    Results 

 

 
 

60 

 

 
Figure 26 – Mean maintenance traffic received per node 

 
There is a noticeable difference in the results between iterative and recursive routing 
modes. The reasons for this unexpected behaviour are discussed in more detail in 
Chapter 7. Other discoveries common to both routing modes are that: 

• There is less maintenance traffic when key update interval is longer 
• The maintenance traffic increases with an increasing node lifetime 
• The maintenance traffic is, as expected, independent of the FETCH message 

interval 
• A bigger network generates more maintenance traffic. The growth is in the order 

of O(log N). This is illustrated in Appendix F.  
 
Figure 26d illustrates the amount of received maintenance traffic as the number of 
nodes in the network increases. Both iterative and recursive routing modes face an 
increased maintenance traffic as the number of nodes goes from 1000 to 10000. A 
noteworthy difference between the routing modes is the amount the maintenance traffic 
increases. With iterative mode there is an increase of 22% from a network of 1000 
nodes to a 10000 node network. With recursive mode the increase is 67%. This is due to 



6    Results 

 

 
 

61

 

the difference in the number of FixFingers messages produced by the routing modes 
(see Section 7.1). 
 

6.3 Number of hops for lookup 
The number of routing hops to complete a lookup gives us information about the delay 
involved in the lookup process that is independent of the underlying topology and the 
actual link delays. The results are shown in Figure 27. Kademlia with iterative routing 
mode used less than half of the hops that were needed in the scenarios where Chord was 
used as the DHT protocol. The main observation from the results is that only the size of 
the network has an effect on the number of hops. The shapes in the Chord and Kademlia 
curves in Figure 27d show that they both scale logarithmically. For Chord both routing 
modes produce equivalent results. 
 
 

 
Figure 27 – Hops per lookup 

 
 
 



6    Results 

 

 
 

62 

 

 
 

6.4 Lookup message overhead 
Lookup message overhead was calculated from the OverSim’s overlay messages 
FindNodeCall and FindNodeResponse. These messages are used for locating the desired 
node. The motivation for this was to compare the DHT algorithms and their bandwidth 
usage with RELOAD. FindNodeCall has a constant size of 52 bytes while 
FindNodeResponse contains variable amount of data depending on the DHT algorithm 
and the parameters the algorithm is run with. In our simulations FindNodeResponse for 
Chord has a size of 59 bytes and for Kademlia a size of 241 bytes. The results are 
depicted in Figure 28.  
 

 
Figure 28 – Overhead caused by the lookup messages 

 
Kademlia uses about 30% more bandwidth for lookups than Chord does. This difference 
grows as the number of nodes in the network increases. Combining these results with 



6    Results 

 

 
 

63

 

the hop count results above it can be noticed that the smaller hop count in Kademlia 
comes with a price in the form of larger lookup overhead.  

 

6.5 Lookup delay 
The delay of lookup was measured in seconds. Figure 29 presents the results. The 
results are similar with the number of hops results above. Only the number of nodes 
makes a difference on the delay.  
 

 
Figure 29 – Delay of the lookup process 

 
 

6.6 Key distribution 
The number of keys stored in a node is measured at the instant a node leaves the 
network. Adding up all of the nodes we have an estimate on the total number of keys 
stored in the network (including the duplicates) during the simulation. The keys stored 
in the nodes that are in the network when the simulation ends are calculated at that 
instant. Some keys are located in more than one node at a time because of the key 



6    Results 

 

 
 

64 

 

lifetime and key update interval values used (see Section 7.2). The Keys per node value 
is calculated simply by dividing the total number of keys in the network by the number 
of nodes that participated in the network during the simulation.  
 
The number of keys in the network and their distribution to nodes are illustrated in 
Figure 30 and Figure 31. From the figures following observations can be made: 

• The longer the key update interval the larger the total number of keys and the 
more keys per node 

• The longer the mean node lifetime the smaller the total number of keys and the 
less keys per node 

• The larger the network the larger the total number of keys and the more keys per 
node. 

• Kademlia stores less keys than Chord 
• Recursive routing mode stores more keys than iterative routing mode when 

Chord is used 
 

 
Figure 30 – Number of keys in the network 

 



6    Results 

 

 
 

65

 

Figure 30d indicates a constant growth in total number of keys when the number of 
nodes in the network increases. Recursive Chord has the highest growth rate, iterative 
Chord growing at a slightly slower rate. Total number of keys grows significantly 
slower when Kademlia is used. Figure 31d also shows this constant rate of change. 
When the number of nodes grows, the number of keys per node stays almost fixed. 
 
The key distribution with increasing key update intervals is depicted in Figure 31a. It 
can be seen that Chord and Kademlia graphs both follow the same trend although 
Kademlia produces less keys than Chord. The difference between Kademlia and Chord 
grows when the key update interval increases but the growth slows down with the larger 
values of key update interval. 
 

 
Figure 31 – Distribution of keys 

 
The maximum values of keys per node are presented in Figure 32. The graphs follow 
loosely the same trends shown in Figure 31. The maximum number of keys a single 
node has at the instant it leaves the network grows with an increasing key update 



6    Results 

 

 
 

66 

 

interval, decreases with an increasing mean node lifetime and grows slightly with an 
increasing network size. The main conclusion that can be drawn from the results is that 
Kademlia produces the smallest maximum values, which was presumable on the 
grounds of the total number of keys and their distribution. 

 
Figure 32 – Maximum number of keys stored in a single node 

 

6.7 Lookup success rate 
Figure 33 presents success rates of the lookups. From these results observations are that: 

• The shorter the key update interval the higher the success rate 
• The longer the mean node lifetime the higher the success rate 
• The success rate decreases slowly as the network gets larger when using Chord 

with iterative routing mode. 
• Kademlia has higher success rates than Chord 
• Recursive Chord has slightly higher success rates than iterative Chord 

 
Figure 33a demonstrates the trend of lookup success rates when the key update interval 
increases. Kademlia has the highest success rates and recursive Chord outperforms 



6    Results 

 

 
 

67

 

iterative Chord when the update interval becomes larger. In Figure 33d the success rates 
are plotted against network size. Kademlia maintains success rates as the number of 
nodes in the network increases. For recursive Chord there is a minor decrease in the 
success rate when the network gets bigger. For iterative Chord there is a slightly bigger 
decrease in the success rate than in recursive Chord’s case. 
 
 

 
Figure 33 – Lookup success rates 

 
Two test runs were carried out after obtaining the lookup success rate results. Chord 
with iterative routing mode was used. The idea was to test some shorter key update 
intervals and see if they give better results. The key update intervals we used were 30 
minutes, 5 minutes and 1 minute. The highest lookup success rate, 96.6%, was obtained 
with the key update interval of 5 minutes. 



 
 

68 

 

7   Discussion 
 
 
This Chapter presents discussion about the results and the reasons that affected the 
results. The results are also compared with the findings from other simulation studies. 
Finally the simulated system’s applicability for the current mobile telephone networks is 
estimated on the grounds of the results. 
 

7.1 Differences in maintenance traffic volume for Chord 
A difference between the two routing modes when using Chord was observed in chapter 
6.2. To better understand the large difference, the output of the OverSim simulator was 
studied and reasons for the difference were discovered. First the difference was 
narrowed to concern only the Fix Fingers messages. Studies showed that in recursive 
routing mode Chord produced much more Fix Fingers messages than it did when the 
iterative routing mode was used. After this discovery the Fix Fingers routine was more 
carefully examined for both routing modes.  
 

FixFingers - Iterative

1

4

14

12

17

29

1

Network of 30 nodes

FixFingers Call

FindNode Call

3

18

1

(a) (b) (c)

 
Figure 34 – FixFingers procedure with iterative Chord 

 
To examine the Fix Fingers routine a test network of 30 nodes was set up. The progress 
of the routine was followed from the output shown on the OverSim’s graphical user 
interface. The observations made during these examinations are presented in Figure 34 
and Figure 35. In Figure 34 node 1 starts its Fix Fingers procedure which consists of 
three independent phases. Node 1 first locates the recipient using FindNode call 



7    Discussion 

 

 
 

69

 

messages. As the recipient (node 12 in Figure 34a) is found, node 1 then sends a 
FixFingers call to that node.  
 
Node 1 needs to contact two nodes (4 and 14) before locating node 12 to which it then 
sends the FixFingers call. In the second and third phase (Figure 34b and 31c) only one 
node needs to be contacted before locating the target node. Altogether this means three 
FixFingers calls and seven FindNode calls for the procedure when iterative routing 
mode is used. 
 
Figure 35 illustrates the Chord’s FixFingers procedure for the recursive routing mode 
with the same 30 node network that was used above for iterative Chord. This time node 
2 starts the FixFingers procedure. The difference with the iterative routing mode is that 
only FixFinger calls are used i.e. no FindNode calls are sent. Node 2 initiates the 
procedure which consists of 6 phases. For some reason the first three phases are 
identical and contain two FixFinger calls. Phases 4 and 6 contain three FixFinger calls 
and the procedure contains in total 14 FixFinger calls. 
 
Although the reason for this behaviour remains unclear, this is definitely why recursive 
routing mode creates more FixFingers messages and thereby more maintenance 
messages than iterative mode. The difference grows when the number of nodes in the 
network increases as can be seen in Figure 26. 
 

FixFingers - Recursive

2

2

2

2

2

2

19

19

19

3

17

21

13

13

13

4 16

26

10 21

Network of 30 nodes
FixFingers Call

1.

4.

5.

6.

2.

3.

 
Figure 35 – FixFingers procedure with recursive Chord 

 
 



7    Discussion 

 

 
 

70 

 

7.2 Differences in key distribution 
The key distribution results presented in Section 6.5 show a significant difference 
between Chord and Kademlia DHT algorithms. Because the difference is greater than 
one would have expected, some discussion about the reasons affecting the key 
distribution is appropriate. 
 
The DHT module in OverSim takes care of the key storage updating as new nodes join 
the network. The DHT module provides the newly arrived nodes with the appropriate 
keys. The keys will remain also in the node previously responsible for them until the 
TTL timer for those keys runs out. Key updates only update the TTL value to the node 
which at that instant is responsible for storing that key. When nodes leave the network 
the keys stored in them are not transferred to another node. This means that those keys 
stay unreachable until the key update timer expires and the nodes owning the keys store 
them to new nodes. Figure 36 illustrates the key storage and updating.  
 

Key TTL
ddddddd

eeeeeeee

ggggggg

7500s

7000s

1015

Key TTL
aaaaaaaa

bbbbbbb

cccccccc

6000s

8000s

6600s

6700s

Simulation time 3500s

latest update latest update
3000s

2200s

2500s

1500s

3500s

2100s

(a)

 
 

1015

Key TTL
ddddddd

cccccccc

8500s

8500s

12

Simulation time 4000s

Key TTL
ddddddd

eeeeeeee

ggggggg

7500s

8500s

8200s

latest update
3000s

3700s

4000s

Key TTL
aaaaaaaa

bbbbbbb

cccccccc

6000s

8000s

6600s

latest update
1500s

3500s

2100s

latest update
4000s

4000s

Key has not been updated during the last update interval

Key has been moved to another node and will not receive new updates to this node

(b)

 
Figure 36 – Key storage, updating and TTL values 



7    Discussion 

 

 
 

71

 

 
In Figure 36a the simulation time is 3500 seconds and two nodes 10 and 15 are lying 
adjacent in a Chord overlay. Both nodes are storing three keys whose TTL values and 
the simulation times the keys were last updated are shown. Key update interval is 1500s 
and TTL value is 4500s. Node 10 has a key which has not been updated and will be 
removed at simulation time 6000s unless an update is received. Figure 36b shows the 
same nodes at simulation time 4000s. A new node with id 12 has just joined the network 
and received responsibility for two keys one previously stored in node 10 and the other 
in node 15. These two keys are stored in two nodes until their TTL timers run out. 
These keys’ TTL values are updated only in node 12 and in the lookup perspective these 
keys reside only in node 12. 
 
There are significant differences in keys per node values between Chord and Kademlia, 
which can be read in Figure 31. The scenarios using Chord have over 50% more keys 
per node than the scenario using Kademlia. The reason for this is an aggressive join 
mode that OverSim uses with Chord by default. With aggressive join mode Chord’s 
stabilize procedure (see chapter 2.3.2) is called every time a new node joins the 
network. This leads up to a situation where many keys are stored into two or even more 
nodes simultaneously. This theory was tested by setting the aggressive join mode off 
and modifying the stabilize delay parameter in Chord. It turned out that setting stabilize 
delay to one second gave very similar results with the aggressive join mode. Using the 
default stabilize delay of 120 seconds did not work at all because many keys just 
disappeared from the network for an undefined reason. 
 
The increase of keys per node depicted in Figure 31 derives from the definition of key 
TTL value (Chapter 5.1). The TTL value is three times the value of key update interval. 
As the key update interval increases it is evident that there will be more keys in the 
network. Keys can be stored in the network for up to three days after the node identified 
by the key has left the network. In these simulations no additional replicas were used 
i.e. number of replicas was one. This means that a key will be stored only in one node at 
a time or more precisely only one location for each node is known by the DHT. Taking 
only the TTL value into account a key can theoretically be located in three different 
nodes at a time. Each key update can store the key to a new node if during the update 
interval a new node has joined the network with an identifier closer to the key than the 
node the key was previously stored into. Newly joined nodes also receive keys from 
their predecessor node and successor node when they join the network.   



7    Discussion 

 

 
 

72 

 

 
Although keys might reside in many nodes, the DHT algorithm with replica value set to 
one only looks for them in one node. This way the duplicate keys are of no use for the 
lookup process. When number of replicas is increased also the algorithm changes and 
lookup messages are no more targeted to one node only. This key relocation shows 
especially in the longer update intervals, when the TTL of a key is very high and many 
nodes join the network during the key’s lifetime. This can be observed in Figure 31a. 
 

7.3 Lookup success rates 
At first glance the lookup success ratios seem relatively low. There are, however, 
several reasons for these results. The most important thing affecting the lookup success 
rates is the number of replicas. Number of replicas corresponds to the number of nodes 
a key is stored to ensure the availability of a key as the network faces churn. As stated 
in the previous section the number of replicas was set to one. This setup highlights the 
drop in the lookup rates that is illustrated in Figure 33a. From the research point of view 
the decision not to use any replicas can be justified by the fact that the effect of other 
parameters on the lookup success ratio can be determined better. 
 
The default value for the key update interval could have been chosen to be smaller to 
give higher lookup success rates. More accurate study on the effect of key update logic 
including the adjustment of the key TTL value could give higher lookup success rates.  
 

7.4. Comparison with other simulation studies 
A previous study [Hon+08] has been made by Hong & Schulzrinne from Columbia 
University in New York collaborating with Hilt from Bell Labs. The paper studies how 
much bandwidth is needed in order to maintain certain success ratios for Chord’s 
fixfingers and join processes.  
 
Node lifetimes used in the paper are 30min, 1h, 5h and 10h. The results from the paper 
show a decrease in control message traffic as the churn rate increases (i.e. node lifetime 
decreases). Similar behaviour can be noticed in the results of this study. Figure 26 
shows that as the mean node lifetime decreases (i.e. the churn rate increases) there is a 
decrease in the maintenance message traffic.  
 



7    Discussion 

 

 
 

73

 

In our study the churn rates are smaller than in [Hon+08]. The node lifetimes used in 
this study are 4.8h, 9.6h, 19.2h and 38.4h. The bandwidth results in [Hon+08] give 
higher traffic rates than the results in this study. This can be because of several reasons. 
One of them is that in [Hon+08] JOIN messages have been included in the control 
message count whereas in this study they have not. The parameters used in Chord are 
not revealed in the paper. 
 
According to [Hon+08] the probability of success for fixfingers process decreases when 
the churn rate increases. As a successful fixfingers process involves contacting several 
nodes consecutively, it has similar properties with the lookup process studied in this 
thesis. A decrease in lookup success rates when the churn rate increases (i.e. mean node 
lifetime decreases) in our study is shown in Figure 33b. 
 
 

7.5 Applicability for mobile telephone networks 
The highest mean maintenance traffic per node measured in these simulations is 80,7 
bytes/s and the highest maintenance traffic during one simulation run measured in one 
node is 1610 bytes/s. 
 
Figure 37 presents extrapolation curves for the mean maintenance traffic when the 
number of nodes increases. The bandwidth usage grows logarithmically and scales well 
even with a network of ten million nodes. Overall bandwidth usage with extrapolation 
curves is depicted in Figure 38. 
 



7    Discussion 

 

 
 

74 

 

y = 14.091Ln(x) - 49.821

y = 1.5322Ln(x) + 5.5921

0

20

40

60

80

100

120

140

160

180

200

1000 10000 100000 1000000 10000000

number of nodes

up
da

te
 tr

af
fic

 (b
yt

es
/s

)

Chord Iterative

Chord Symmetric Recursive

Log. (Chord Symmetric Recursive)

Log. (Chord Iterative)

 
Figure 37 – Extrapolation curves for maintenance bandwidth usage 

 

y = 13.037Ln(x) + 63.272

y = 14.114Ln(x) - 49.656

y = 15.623Ln(x) - 50.031

0

50

100

150

200

250

300

1000 10000 100000 1000000 10000000

number of nodes

tr
af

fic
 (b

yt
es

/s
)

Chord Iterative

Chord Symmetric Recursive

Kademlia Iterative

 
Figure 38 – Extrapolation curves for overall bandwidth usage 

 
The bandwidth limitations in different mobile telephone networks are presented in 
Table 8. As we can see from the table only GSM data could have difficulties in 
providing enough bandwidth for P2PSIP’s maintenance traffic. Networks with other 
techniques should work fine. 
 
 
 



7    Discussion 

 

 
 

75

 

 
Table 8 – Theoretical maximum bandwidths for mobile telephone networks [Leh06] 

GSM Data 9.6 kbps      
HSCSD 57.6 kbps 
GPRS 115 kbps 
EDGE 384 kbps 
WCDMA 2 Mbps DL / 384 kbps UL 
HSDPA 3.6 Mbps DL / 384 kbps UL 
HSUPA 14 Mbps DL / 5.76 Mbps UL 

 
 
When we consider using P2PSIP with RELOAD in mobile telephone networks, the first 
thing that should be taken care of is increasing the lookup success rate to at least 95 
percent. For networks using Chord this would require a key update interval of about 30 
minutes. In our simulations networks using Kademlia reached a lookup success rate of 
97 percent with a key update interval of one hour. If the mean node lifetime is much 
lower than our default 19,2 hours even a shorter key update interval can be needed. 
Updating the keys more frequently will increase the bandwidth usage. Another 
adjustment to improve the lookup success rate also increasing bandwidth usage is to 
make the DHT algorithm send maintenance messages more frequently.  The effects of 
the different parameters in Chord and Kademlia can also be investigated in order to find 
out which method gives the best lookup success rate results without increasing the 
bandwidth usage too much.  
 
Even though P2PSIP is applicable for mobile telephone networks as far as bandwidth 
consumption is concerned, this does not mean that there are not any other barriers. If a 
P2P application for example keeps the CPU of the mobile device up all the time, the 
battery should run out in 5 to 7 hours. 
 
 
 
 
 
 
 



 
 

76 

 

8 Conclusions 

 
The objective of this Master’s thesis was to study and simulate a mobile P2P network 
using a novel P2PSIP protocol which is still under development. The most important 
goal was to investigate the bandwidth needed for P2PSIP network’s maintenance traffic 
in order to find out if the data rates of different mobile telephone networks are adequate 
to P2PSIP based overlay networks. The effect of several input parameters to the 
required bandwidth was tested with simulations. A special interest was the comparison 
between two DHT algorithms Chord and Kademlia as well as the routing mode 
selection between iterative and recursive styles. Simulation scenarios were built with 
OverSim overlay network simulator. The necessary additions were coded into the 
OverSim code and altogether 57 scenarios were simulated. This thesis presents the 
results from those simulation runs and gives guidelines for further simulations based on 
these results. 
 
Kademlia DHT algorithm was simulated only in iterative routing mode because the test 
simulations with recursive routing gave results that were inconsistent with other test 
results. The reason for this inconsistency could not be solved with a reasonable amount 
of work so the recursive routing mode for Kademlia had to be discarded from the scope 
of this thesis. 
 

8.1 Main Results 
The results show that 2G mobile telephone networks can handle the bandwidth usage of 
a P2PSIP network operating with RELOAD peer protocol. This was proven for a 
network of ten thousand nodes and estimates are given that this would hold even up to 
network sizes of ten million nodes. Kademlia outperforms Chord when lookup delay 
and lookup success rate of two DHT algorithms are compared, but uses more than twice 
as much bandwidth. With our simulation parameters the bandwidth usage of Kademlia 
is, however, moderate and it will not be a problem. 
 
The lookup success rates are, with the input parameters used in our study, in general too 
low for a satisfactory session establishment. With a key update interval of one hour we 
have lookup success rates of 93% for Chord and 97% for Kademlia. This is the absolute 



8    Conclusions 

 

 
 

77

 

minimum value to use for key update interval in this kind of system. Even a key update 
interval of 5 minutes did not raise the lookup success rates for Chord higher than 97%. 
This value is too low for demanding users and applications. 

 

8.2 Working with OverSim 
The level of unambiguity of the results did not quite match the expectations. The high 
detail level in OverSim makes it challenging to produce a desired simulation scenario 
first time around. A highly delailed simulator is surely a good thing when there is 
unlimited time to do research but the fact is that OverSim cannot be mastered in a short 
period of time. One contribution this thesis has to give is to point out some features of 
OverSim, which should be taken into account when simulating overlay networks and 
DHT algorithms. The features covered in chapters 7.1 – 7.3 should be examined in more 
detail before making a new simulation study. 

 

8.3 Future Research 
For the future research a more advanced version of the RELOAD draft or perhaps 
already an RFC would make a better starting point for a study. Once there are more 
standardized elements in the P2PSIP and RELOAD protocols more detailed studies can 
be made. 
 
To develop this study more exact input parameters should be used. This thesis gives 
information for the future research about how to choose the parameter range. Some 
parameter values could be chosen from real test networks that P2PSIP has been run on. 
One especially useful piece of information to get from the test network environment 
would be the message sizes that obviously make a great effect on the bandwidth usage.   
 
The effect of replication would be a good thing to investigate. The reasons behind the 
low lookup success rates also need more research. Future research on replication could 
give us answers also on the lookup success rate issue. 
 
 
 

 



 
 

78 

 

References  
 
 
[Ali+05] Alima L.O, Ghodsi, Haridi S. A framework for structured peer-to-peer 

overlay networks, in Global computing, vol. 3267, Lecture Notes in 
Computer Science: Springer Berlin/ Heidelberg, 2005, pp. 223-249 

 
[Ban+05] Banks J, Carson J, Nelson B, Nicol D. Discrete-Event System Simulation 

(Fourth Edition), Prentice Hall International Series in Industrial and 
Systems Engineering. 2005 

 
[Bau+07] Baumgart I, Heep B, Krause S, OverSim: A Flexible Overlay Network 

Simulation Framework. in Proceedings of 10th IEEE Global 
Internet Symposium (GI ’07) in conjunction with IEEE INFOCOM 
2007, Anchorage, USA, May 2007. 

 
[Bry+08] Bryan D, Matthews P, Shim E, Willis D, Dawkins S. Concepts and 

Terminology for Peer to Peer SIP.  draft-ietf-p2psip-concepts-02 
http://tools.ietf.org/html/draft-ietf-p2psip-concepts-02 

 
[Cam02] Camarillo G, SIP Demystified. McGraw-Hill 2002, ISBN 0-07-137340-3 
 
[Cam+08] Camarillo C, Garcia-Martin M. The 3G IP Multimedia Subsystem (IMS) 

3rd edition. Wiley 2008, ISBN 978-0-470-51662-1  
 
[Cha+03] Chawathe Y, Ratnasamy S, BreslauL, Lanham N, Shenker S. 

Making gnutella-like P2P systems scalable. Proc. 2003 conference on 
Applications, Technologies, Architectures and Protocols for Computer 
Communications, August 25-29 2003, pp. 407-418. 

 
[Coo+07] Cooper E, Johnston A, Matthews P. Bootstrap Mechanisms for P2PSIP. 

draft-matthews-p2psip-bootstrap-mechanisms-00 
  http://www.p2psip.org/drafts/draft-matthews-p2psip-bootstrap-

mechanisms-00.txt 
 



References 

 

 
 

79

 

[Dab+04] Dabek F, Li J, Sit E, Robertson J, Kaashoek M, Morris R. Designing a 
DHT for low latency and high throughput. In Proceedings of the 
USENIX Symposium on Networked Systems Design and 
Implementation, Mar 2004. 

 
[Gka+04] Gkantsidis C, Mihail M, Saberi A. Random Walks in Peer-to-Peer 

Networks. In Proceedings of IEEE INFOCOM, 2004 
 
[God+05] Godfrey PB, Stoica I. Heterogenity and Load Balance in Distributed 

Hash Tables. In Proceedings of the IEEE INFOCOM, Miami, FL, Mar. 
2005. 

 
[Gum+03] Gummadi K, Gummadi R, Gribble S, Ratnasamy S, Shenker S, Stoica I. 

The Impact of DHT Routing Geometry on Resilience and Proximity. In 
Proceedings of the ACM SIGCOMM Aug 2003. 

 
[Har+04] Harjula E., Ylianttila M., Ala-Kurikka J., Riekki J., Sauvola J. Plugand-

Play Application Platform: Towards Mobile Peer-to-Peer. In: 
ThirdInternational Conference on Mobile and Ubiquitous Multimedia 
(MUM2004). College Park, MD, USA, pp. 63-69, 2004. 

 
[Har07] Harjula E, Peer-to-Peer SIP in Mobile Middleware Intercommunication. 

M.Sc. thesis, Department of Electrical and Information engineering, 
University of Oulu, Finland, Sep 2007. 

 
[Har+07] Harjula E, Heikkinen M, Salinas A, Hautakorpi J, Beijar N, Ou Z. 

DECICOM Decentralized Inter-Service Communications State-of-The-
Art Study, 2007. 

 
[Hel03] Hellerstein J, Toward Network Data Independence, ACM SIGMOD 

Record 32 (3) 2003. 
 
[Hon+08] Hong S G,  Hilt V and Schulzrinne H. Evaluation of Control Message 

Overhead of a DHT-Based P2P System. Bell Labs Technical Journal 
Volume 13 Issue 3, pages 79-86, 2008 

 



References 

 

 
 

80 

 

[Jen+08] Jennings C, Lowekamp B, Rescorla E, Baset S, Schulzrinne H. REsource 
LOcation And Discovery (RELOAD) draft-ietf-p2psip-reload-00. 

 http://www.p2psip.org/drafts/draft-ietf-p2psip-reload-00.txt , Jul 2008. 
 
[Kov07] Kovacevic A, On Benchmarking of Peer-to-Peer Overlays, Technische 

Universität Darmstadt, Germany, Nov 2007. 
 http://www.kom.tu-darmstadt.de/~sandra/Kovacevic_2.Milestone_Adapt

ability_ScalabilityAndStability.pdf, Retrieved on 25.5.2009. 
 
[Kun05] Kunzmann G, Recursive or iterative routing? Hybrid!. In the proceedings 

of the Gesellschaft für Informatik (GI) 2005. 
 
[Las07] Lassila P. Lecture notes of course S-38.3148 Simulation of data 

networks, 
 Department of Communications and Networking, Helsinki University of 

Technology, Finland, 2007. 
  
[Leh05] Lehtinen M, NAT Traversal Techniques, Special Assignment, 

Department of Communications and Networking, Helsinki University of 
Technology, Finland, 2005.  

 
[Leh06] Lehtinen J, Design and Implementation of Mobile Peer-to-Peer 

Application. M.Sc. thesis, Department of Communications and 
Networking, Helsinki University of Technology, Finland, 2006 

 
[Li+05] Li J, Stribling J, Kaashoek F, Morris R, and Gil T. A Performance vs. 

Cost Framework for Evaluating DHT Design Tradeoffs under Churn. In 
IEEE INFOCOM, Miami, FL, Mar. 2005. 

 
[May+02] Maymounkov P, Mazières D. Kademlia: A peer-to-peer Information 

System Based on the XOR Metric. In Proceedings of the IPTPS 2002, 
Boston, Mar 2002. 

[Pet+03] Peterson L, Davie B. Computer Networks – A Systems Approach 3rd 
edition. Morgan Kaufmann 2003. ISBN 1-55860-833-8  

 



References 

 

 
 

81

 

[RFC2327] Handley M, Jacobson V. Network Working Group, Request for 
Comments: 2327 - SDP: Session Description Protocol. Apr 1998 

 
[RFC 3261] Rosenberg J, Schulzrinne H, Camarillo G, Johnston A, Peterson J, 

Sparks R, Handley M, Schooler E. Network Working Group, Request for 
Comments: 3261 – SIP: Session Initiation Protocol. Jun 2002. 

 
[RFC4981] Risson J, Moors T, Network Working Group, Request for Comments: 

4981 – Survey of Research towards Robust Peer-to-Peer Networks. Sep 
2007. 

 
[Ros07] Rosenberg J. Interactive Connectivity Establishment (ICE) : A Protocol 

for Network Address Translator (NAT) Traversal for Offer/Answer 
Protocols. draft-ietf-mmusic-ice-19 

 http://tools.ietf.org/html/draft-ietf-mmusic-ice-19 , Oct 2007. 
 
[Sep07] Seppänen J. Prospects of Peer-to-Peer SIP for Mobile Operators,             

M.Sc. thesis, Department of Communications and Networking, Helsinki 
University of Technology, Finland, 2007 

 
[Son+08] Song H, Jiang X, Matuszewski M, Ekberg J-E, Laitinen P. Security 

requirements in Peer-to-Peer Session Initiation Protocol (P2PSIP), 
 http://www.p2psip.org/drafts/draft-matuszewski-p2psip-security-

requirements-03.txt , Jul 2008. 
 
[Sto+01] Stoica I, Morris R, Krager D, Kaashoek M, Balakrishnan H. Chord: A 

Scalable Peer-to-peer Lookup Service for Internet Applications. In 
Proceedings of the ACM SIGCOMM 2001, San Diego, CA, USA, Aug 
2001. 

 
[Stu+06] Stutzbach D, Reza R, Understanding Churn in Peer-to-Peer Networks. In 

the proceedings of Internet Measurement Conference (IMC), Oct. 2006. 
 
[Ver07] Verkasalo H. A Cross-Country Comparison of Mobile Service and 

Handset Usage. Licenciate Thesis on Helsinki University of Technology, 
Finland, Jan 2007. 



References 

 

 
 

82 

 

 
[Web1] OverSim: The Overlay Simulation Framework 

http://www.oversim.org/ 
 
[Web2] OMNeT++ Community Site 

http://www.omnetpp.org/ 
 
[Web3] SANYO Semiconductor Co.,Ltd. Quality and Reliability Handbook ver.3 

Chapter 8-1-2 Probability Distribution Functions. 
http://www.semiconductor-sanyo.com/reliability/main.asp?-
part=8&id=M30A156 Retrieved on 15.5.2009 

 
[Wu+06] Wu D, Tian Y, Ng K-W, Analytical Study on Improving DHT Lookup 

Performance under Churn. In Proceedings of the IEEE P2P’06, 
Cambridge UK, Sep 2006. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

83 

 

 Appendices 

 
A Tabulated Results 

 

 
 



Appendices                                                       84 

 

 
 

 

 

 
 



Appendices                                                       85 

 

 
 

 

 

 
 



Appendices                                                       86 

 

 
 

 

 
 
 
 

B MyClass.h 

 
// MyClass.h 
#include <string> 
using std::string; 
#include<OverlayKey.h> 
#include<NodeHandle.h> 
#include <omnetpp.h> 
 
#ifndef MYCLASS_H 
#define MYCLASS_H 
 
 
class MyClass { 
public: 
 MyClass(); 
 static void print(); 
  
 static std::map<OverlayKey, int> lookupHops;  
 static std::map<OverlayKey, double> luDelay;  
 
 static void addMaintenance(int join, int notify, int stabilize, 
int newSuc, int fixFing); 
 static void addHop(int hopCount); 
 static void addHop2(int hopCount); 
 static void addKeys(int keys); 
 static void reset(); 
 static void printLookups(); 
 static void addLookup(OverlayKey key, double simtime); 
 static void addDelay(double delay); 
 static void removeLookup(OverlayKey key); 
 static bool isValidLookup(OverlayKey key); 
 static void addHandle(IPvXAddress ip, NodeHandle handle);  
 static NodeHandle getHandle(IPvXAddress ip); 
 
 static double hops; 
 static bool iterative;  



Appendices                                                       87 

 

 
 

 

 
 static double finished_lookups; 
 static double removed_lookups; 
    static double lookup_calls; 
 static int remaining_lookups ; 
 
 static double numberOfNodes; 
 static double numberOfKeys; 
 static double maxKeys; 
 static double minKeys; 
 
 static double stabilizeInterval; 
 static double fixFingersInterval; 
 static double time; 
 
 static string dht; 
 static double lookupFreq; 
 static double churnRate; 
 static int terminalsAdded; 
 static int terminalsRemoved; 
 
 static int networkSize; 
 static int routingTableSize; 
 static string routingModel; 
 static int aid; 
 
// ####  KADEMLIA ############ 
 static int k; 
 static int s; 
 static int b; 
 
 static double hopsPerLookup; 
 static double lookupMessageOverhead; 
 static double lookupDelay; 
 static double keysPerNode; 
 
}; 
 
#endif 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendices                                                       88 

 

 
 

 

 

C MyClass.cc 
 

// MyClass.cc 
#include <iostream> 
using std::cout; 
using std::cin; 
using std::ios; 
using std::cerr; 
using std::endl; 
using namespace std; 
 
#include <fstream> 
using std::ofstream; 
 
#include <cstdlib> 
 
#include <string> 
using std::string; 
 
#include "MyClass.h" 
 
typedef std::map<OverlayKey, int> lookupHops;         
typedef std::map<OverlayKey, double> luDelays; 
 
lookupHops lookups; 
luDelays delays; 
 
double MyClass::hops = 0; 
double MyClass::finished_lookups = 0; 
double MyClass::time = 0; 
bool MyClass::iterative = true; 
 
double MyClass::removed_lookups = 0; // used for calculating lookups 
that take too long and are removed 
double MyClass::lookup_calls = 0; 
int MyClass::remaining_lookups = 0; // lookups that are in progress 
when simulation stops 
 
double MyClass::numberOfNodes = 0; 
double MyClass::numberOfKeys = 0; 
double MyClass::maxKeys = 0; 
double MyClass::minKeys = 1000; 
 
string MyClass::dht = "empty"; 
double MyClass::lookupFreq = 0; 
double MyClass::churnRate = 0; 
int MyClass::terminalsAdded = 0; 
int MyClass::terminalsRemoved = 0; 
 
int MyClass::networkSize = 0; 
double MyClass::stabilizeInterval = 0; 
double MyClass::fixFingersInterval = 0; 
int MyClass::routingTableSize = 0; 
string MyClass::routingModel = "empty"; 
int MyClass::aid = 0; 
 
// ### KADEMLIA ####### 
int MyClass::k = 0; 
int MyClass::s = 0; 
int MyClass::b = 0; 
 
double MyClass::hopsPerLookup = 0; 
double MyClass::lookupMessageOverhead = 0; 
double MyClass::lookupDelay = 0; 



Appendices                                                       89 

 

 
 

 

double MyClass::keysPerNode = 0; 
 
MyClass::MyClass() {} 
 
// calculates the hopcount 
void MyClass::addHop(int hopCount) 
{ 
 hops = hops + hopCount; 
 finished_lookups++; 
 hopsPerLookup = hops / finished_lookups; 
} 
// calculates the number of keys in the network 
// and the max/min number of keys in one node 
void MyClass::addKeys(int keys) 
{ 
        numberOfNodes++; 
        numberOfKeys += keys; 
        keysPerNode = numberOfKeys / numberOfNodes; 
     
 if (keys < minKeys){ 
  minKeys = keys; 
 } 
 
 if (keys > maxKeys){ 
  maxKeys = keys; 
 } 
} 
// inserts lookups and simTimes to map containers 
void MyClass::addLookup(OverlayKey key, double simtime) 
{ 
    lookups.insert(make_pair(key, 0)); 
 delays.insert(make_pair(key, simtime)); 
 lookup_calls++; 
} 
 
void MyClass::addDelay(double delay) 
{ 
 lookupDelay += delay; 
} 
// removes lookups from the map container 
void MyClass::removeLookup(OverlayKey key) 
{ 
  bool skip = false; 
 
// checks that the key exists in the lookups map 
 lookupHops::iterator it; 
 it=lookups.find(key); 
 if (it == lookups.end()) 
  return;   
 
 
//  if delay > 5 seconds the lookup is removed from the map 
        double delaytmp = (simulation.simTime() - delays[key]); 
        if (delaytmp > 5) { 
                cout << "DELAY " << delaytmp << endl; 
                delays.erase(key); 
                lookups.erase(key); 
                skip = true; 
                ++removed_lookups; 
        } 
 
//      removes all the lookups currently having a delay > 5 seconds from the 
map 
        luDelays::iterator iter; 
        for (iter = delays.begin(); iter != delays.end(); iter++) { 
                double delaytmp =(simulation.simTime()-(iter->second)); 
                if (delaytmp > 5) { 
                     OverlayKey temp = iter->first; 



Appendices                                                       90 

 

 
 

 

                        delays.erase(temp); 
                        lookups.erase(temp); 
                        ++removed_lookups; 
                } 
        } 
 
if (skip == false) {  
   // calculates the number of hops in this 
lookup 
            int hoptmp = (lookups[key] -1)*2; 
            addHop(hoptmp); 
            lookups.erase(key); 
    
   // calculates the delay of this lookup 
            double delaytmp = (simulation.simTime() - delays[key]); 
            addDelay(delaytmp); 
            delays.erase(key); 
 } 
} 
} 
// checks that there is a ongoing lookup for a specific key  
bool MyClass::isValidLookup(OverlayKey key) 
{ 
 map<OverlayKey, int, double>::iterator iter; 
 bool tmp = false; 
 for (iter = lookups.begin(); iter != lookups.end(); iter++) { 

if (iter->first.compareTo(key) == 0 && time != 
simulation.simTime() ){ 

   tmp = true; 
   iter->second++; 
  } 
 } 
 // simulation time stored to allow only one call of this function 
at a time 
 time = simulation.simTime();   
 return tmp; 
 
} 
 
// resets the initial values 
void MyClass::reset() 
{ 
 MyClass::hops = 0; 
 MyClass::finished_lookups = 0; 
 
 MyClass::removed_lookups = 0; 
 MyClass::lookup_calls = 0; 
 MyClass::remaining_lookups = 0; 
 
 MyClass::numberOfNodes = 0; 
 MyClass::numberOfKeys = 0; 
 MyClass::maxKeys = 0; 
 MyClass::minKeys = 1000; 
 
 MyClass::stabilizeInterval = 0; 
           MyClass::fixFingersInterval = 0; 
 
 MyClass::dht = "empty"; 
 MyClass::lookupFreq = 0; 
 MyClass::churnRate = 0; 
 MyClass::networkSize = 0; 
 MyClass::routingTableSize = 0; 
 MyClass::routingModel = "empty"; 
 MyClass::aid = 0; 
 MyClass::iterative = true; 
 
 MyClass::k = 0; 
 MyClass::s = 0; 



Appendices                                                       91 

 

 
 

 

 MyClass::b = 0; 
 
 MyClass::hopsPerLookup = 0; 
 MyClass::lookupMessageOverhead = 0; 
 MyClass::lookupDelay = 0; 
 MyClass::keysPerNode = 0; 
 
} 
 
// prints the results to results.dat 
void MyClass::print() 
{        
 ofstream outResultFile( "results.dat", ios::app ); 
 
    outResultFile << "DHTused " << dht << " variable" << " variable" << ' ' << 
"RoutingModel " << routingModel << ' ' << "LookupCalls "  
<< lookup_calls << ' ' <<  
"FinishedLookups: " << finished_lookups << ' '  
<< "removedLookups " << removed_lookups << ' ' << "SuccessRate " << 
finished_lookups/(lookup_calls - remaining_lookups) << ' ' << "Added " << 
terminalsAdded  
<< ' ' << "Removed " << terminalsRemoved << ' ' << "HopsPerFinishedLookup: " 
<< hopsPerLookup << ' ' << "Lookup_delay: " << lookupDelay/finished_lookups << 
' ' << "Network_Size: " << networkSize << ' ' << "Stabilize_interval: " << 
stabilizeInterval  << ' ' << "FixFingers_interval " << fixFingersInterval << ' 
' << "Hops: " << hops << ' ' << "Keys_total " << numberOfKeys << ' ' << 
"Max_keys " << maxKeys << ' ' << "Min_keys " <<  
minKeys << ' ' << "Keys_per_node: " << keysPerNode << endl; 
 
} 
 
 
 
 
 
 
 
 
 
 



Appendices                                                       92 

 

 
 

 

 

D Additions to OverSim code 
 

OverSim file: GlobalStatistics.cc 
Function: doFinish() 
Added code: MyClass::print(); 
      MyClass::reset(); 
 
 
OverSim file: DHTTestApp.cc 
Function: handleTimerEvent(cMessage* msg) 
Added code: MyClass::addLookup(key, simulation.simTime()); 
 
 
OverSim file: DHT.cc 
Function: handleGetResponse(DHTGetResponse* dhtMsg) 
Added code: MyClass::removeLookup(key); 
Function: finishApp() 
Added code: MyClass::addKeys(dataStorage->getSize()); 
 
OverSim file: Chord.cc 
Function: findNode(…) 
Added code: MyClass::isValidLookup(key); 
 
 
OverSim file: Kademlia.cc 
Function: findNode(…) 
Added code: MyClass::isValidLookup(key); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendices                                                       93 

 

 
 

 

 

E OverSim parameter files 
 

Default.ini 
 
// default.ini 
[General] 
preload-ned-files=*.ned @../../INET-20061020-OverSim-3/nedfiles.lst 
@../nedfiles.lst 
# For enabeling realworld connections, choose appropriate scheduler 
# UdpOut does only work with SingleHostUnderlay! 
# You have to select appropriate outDeviceType in SingleHost configuration 
#scheduler-class = TunOutScheduler 
#scheduler-class = UdpOutScheduler 
# If a realworld connection is desired, debug-on-errors has to be disabled 
debug-on-errors=false 
#debug-on-errors=true 
perform-gc=false 
network=SimpleNetwork 
 
[ExternalApp] 
# If an external app should be connected to the simulation, set app-port to 
the appropriate TCP Port 
# Has to be "0" if no external app is used 
app-port = 0 
# If bigger than zero, accept only n simultaneous app connections 
appConnectionLimit = 0 
 
[Cmdenv] 
express-mode = yes 
 
[Tkenv] 
bitmap-path=../Bitmaps 
 
[Parameters] 
 
**.transitionTime = 10 
 
# --- Application settings --- 
 
# ** include *.overlayTerminal, *.overlayBackboneRouter, *.singleHost 
 
# KBRTestApp settings 
**.tier1*.kbrTestApp.testMsgInterval=60 
**.tier1*.kbrTestApp.msgHandleBufSize=8 
**.tier1*.kbrTestApp.lookupNodeIds=true 
 
# i3 settings 
**.tier*.i3.triggerTimeToLive = 60  # expiration time for triggers 
**.tier*.i3.serverPort = 3072 
**.tier*.i3.debugOutput = 1 
 
# i3 client settings 
**.tier*.serverPort = 3072 
**.tier*.clientPort = 3073 
**.tier*.triggerRefreshTime = 40   # time between trigger refreshings 
**.tier*.serverTimeout = 100       # time to wait until server considered 
unreachable 
**.tier*.bootstrapTime = 20        # time to wait until i3 bootstraps 
**.tier*.initTime = 30             # time to wait after i3 bootstrap to init 
app 
**.tier*.cacheSize = 3             # size of gateway cache 
**.tier*.idStoreTime = 600         # time before discarding a stored id-
address pair 
**.tier*.sampleRefreshTime = 600   # time between sample refreshings 
 



Appendices                                                       94 

 

 
 

 

 

# GIASearchApp settings 
**.tier1*.giaSearchApp.messageDelay=60 
**.tier1*.giaSearchApp.randomNodes=true 
**.tier1*.giaSearchApp.randomKeys=20 
**.tier1*.giaSearchApp.maximumKeys=100 
**.tier1*.giaSearchApp.minKeyProbability=0.1 
**.tier1*.giaSearchApp.maxKeyProbability=0.15 
**.tier1*.giaSearchApp.maxResponses=10 
**.tier1*.giaSearchApp.routeMessages = true 
**.tier1*.giaSearchApp.searchMessages = false 
 
#DHT settings 
**.tier1*.dht.numReplica=1 
**.tier1*.dht.numGetRequests=1 
**.tier1*.dht.ratioIdentical=0.5 
 
# DHTTestApp settings  testIntervaldef=60 
**.tier2*.dhtTestApp.testInterval=13091   
**.tier2*.dhtTestApp.testTtl=5000 
**.tier2*.dhtTestApp.putDelay=5000 
**.tier2*.dhtTestApp.initDelay=0.2 
 
# P2PNS settings 
**.tier2*.p2pns.twoStageResolution=false 
 
#Scribe 
**.tier1*.scribe.childTimeout = 60    # seconds until a node assumes that a 
particular child has failed 
**.tier1*.scribe.parentTimeout = 6    # seconds until a node assumes that the 
parent node has failed 
**.tier1*.scribe.scribePort = 1025    # port scribe listens on for direct udp 
messages 
 
# Vast / SimMud / PubSumMMOG / SimpleGameClient 
**.tier*.*.areaDimension = 100 
**.tier*.*.numSubspaces = 5 
**.tier*.*.playerTimeout = 10 
**.tier*.*.maxMoveDelay = 1 
**.AOIWidth = 15.0 
**.movementRate=4 # in updates per second 
 
#SimpleGameClient FIXME: Make it independent of tier... 
**.tier*.simpleGameClient.movementGenerator = "randomRoaming" 
**.tier*.simpleGameClient.movementSpeed=6.0 # in m/s 
**.tier*.simpleGameClient.groupSize = 1 # clients >0 per group when 
GroupRoaming is active 
**.tier*.simpleGameClient.useScenery = false # use obstacles on playground ? 
**.globalObserver.globalFunctions*.coordinator.seed = 0 # seed for obstacle 
generation ? 
 
# generic app settings 
**.tier*.*.debugOutput=true 
**.tier*.*.activeNetwInitPhase=true 
 
# --- Overlay settings --- 
 
# ** include *.overlayTerminal, *.overlayBackboneRouter, *.singleHost 
 
# chord settings 
**.overlay*.chord.joinRetry=2 
**.overlay*.chord.joinDelay=10 
**.overlay*.chord.stabilizeRetry=1 
**.overlay*.chord.stabilizeDelay=120 
**.overlay*.chord.fixfingersDelay=240 
**.overlay*.chord.successorListSize=8 
**.overlay*.chord.aggressiveJoinMode=true 
**.overlay*.chord.extendedFingerTable=false 
**.overlay*.chord.numFingerCandidates=3 



Appendices                                                       95 

 

 
 

 

 

**.overlay*.chord.proximityRouting=false 
**.overlay*.chord.mergeOptimizationL1 = false 
**.overlay*.chord.mergeOptimizationL2 = false 
**.overlay*.chord.mergeOptimizationL3 = false 
**.overlay*.chord.mergeOptimizationL4 = false 
 
# kademlia settings 
**.overlay*.kademlia.lookupRedundantNodes = 8 #8 
**.overlay*.kademlia.lookupParallelPaths = 1 
**.overlay*.kademlia.lookupParallelRpcs = 1 
**.overlay*.kademlia.lookupMerge = true 
**.overlay*.kademlia.routingType = "iterative" 
**.overlay*.kademlia.minSiblingTableRefreshInterval = 1000 
**.overlay*.kademlia.minBucketRefreshInterval = 200 
**.overlay*.kademlia.maxStaleCount = 0 
**.overlay*.kademlia.k = 8 #8 
**.overlay*.kademlia.s = 8 #8 
**.overlay*.kademlia.b = 1 
**.overlay*.kademlia.pingNewSiblings = true 
**.overlay*.kademlia.activePing = false 
**.overlay*.kademlia.proximityRouting = false 
 
# generic Lookup settings  
**.overlay*.*.lookupRedundantNodes = 1 
**.overlay*.*.recNumRedundantNodes = 3 
 
 
# pastry settings 
**.overlay*.pastry.bitsPerDigit=4 
**.overlay*.pastry.numberOfLeaves=16 
**.overlay*.pastry.numberOfNeighbors=16 
**.overlay*.pastry.joinTimeout=20 
**.overlay*.pastry.readyWait=5 
**.overlay*.pastry.secondStageWait=2 
**.overlay*.pastry.pingTimeout=2.0 
**.overlay*.pastry.pingRetries=1 
**.overlay*.pastry.repairTimeout=60 
**.overlay*.pastry.ringCheckInterval=60 
**.overlay*.pastry.sendStateWaitAmount=.0001 
**.overlay*.pastry.enableNewLeafs=true 
**.overlay*.pastry.optimizeLookup=false 
**.overlay*.pastry.optimisticForward=true 
**.overlay*.pastry.avoidDuplicates=true 
**.overlay*.pastry.partialJoinPath=false 
**.overlay*.pastry.useRegularNextHop=true 
**.overlay*.pastry.alwaysSendUpdate=false 
**.overlay*.pastry.coordBasedRouting=false 
**.overlay*.pastry.numCoordDigits=4 
**.overlay*.pastry.CBRstartAtDigit = 0 
**.overlay*.pastry.CBRstopAtDigit = 160 
**.overlay*.pastry.useSecondStage=true; 
**.overlay*.pastry.useDiscovery=false 
**.overlay*.pastry.periodicMaintenance=false 
**.overlay*.pastry.discoveryTimeoutAmount=.4 
**.overlay*.pastry.repairTaskTimeoutAmount=500 
**.overlay*.pastry.sendStateAtLeafsetRepair=true 
**.overlay*.pastry.overrideOldPastry=false 
**.overlay*.pastry.overrideNewPastry=false 
**.overlay*.pastry.routeMsgAcks=true 
**.overlay*.pastry.routingType="semi-recursive" 
 
# bamboo settings 
**.overlay*.bamboo.bitsPerDigit=4 
**.overlay*.bamboo.numberOfLeaves=8 
**.overlay*.bamboo.numberOfNeighbors=16 
**.overlay*.bamboo.joinTimeout=20 
**.overlay*.bamboo.readyWait=5 
**.overlay*.bamboo.pingTimeout=2.0 



Appendices                                                       96 

 

 
 

 

 

**.overlay*.bamboo.pingRetries=1 
**.overlay*.bamboo.repairTimeout=60 
**.overlay*.bamboo.ringCheckInterval=60 
**.overlay*.bamboo.sendStateWaitAmount=.0001 
**.overlay*.bamboo.enableNewLeafs=true 
**.overlay*.bamboo.optimizeLookup=false 
**.overlay*.bamboo.optimisticForward=true 
**.overlay*.bamboo.avoidDuplicates=true 
**.overlay*.bamboo.partialJoinPath=false 
**.overlay*.bamboo.useRegularNextHop=true 
**.overlay*.bamboo.alwaysSendUpdate=false 
**.overlay*.bamboo.coordBasedRouting=false 
**.overlay*.bamboo.numCoordDigits=4 
**.overlay*.bamboo.CBRstartAtDigit = 0 
**.overlay*.bamboo.CBRstopAtDigit = 160 
**.overlay*.bamboo.discoveryTimeoutAmount=.4 
**.overlay*.bamboo.repairTaskTimeoutAmount=10 
**.overlay*.bamboo.leafsetMaintenanceTimeoutAmount=4 
**.overlay*.bamboo.globalTuningTimeoutAmount=20 
**.overlay*.bamboo.routeMsgAcks=true 
**.overlay*.bamboo.routingType="semi-recursive" 
 
# koorde settings 
**.overlay*.koorde.stabilizeRetry=1 
**.overlay*.koorde.stabilizeDelay=20 
**.overlay*.koorde.deBruijnDelay=20 
**.overlay*.koorde.successorListSize=8 
**.overlay*.koorde.deBruijnListSize=8 
**.overlay*.koorde.shiftingBits=3 
**.overlay*.koorde.joinRetry=2 
**.overlay*.koorde.joinDelay=10 
**.overlay*.koorde.deBruijnDelay=60 
**.overlay*.koorde.aggressiveJoinMode=true 
**.overlay*.koorde.useOtherLookup=true 
**.overlay*.koorde.useSucList=true 
**.overlay*.koorde.fixfingersDelay=10 # should try to get rid of this 
parameter 
**.overlay*.koorde.extendedFingerTable=false # should try to get rid of this 
parameter 
**.overlay*.koorde.numFingerCandidates=3 # should try to get rid of this 
parameter 
**.overlay*.koorde.proximityRouting=false # should try to get rid of this 
parameter 
**.overlay*.koorde.mergeOptimizationL1 = false 
**.overlay*.koorde.mergeOptimizationL2 = false 
**.overlay*.koorde.mergeOptimizationL3 = false 
**.overlay*.koorde.mergeOptimizationL4 = false 
 
# broose settings 
**.overlay*.broose.bucketSize=8 
**.overlay*.broose.rBucketSize=8 
**.overlay*.broose.userDist=0 
**.overlay*.brooseShiftingBits=2 # ugly: parameter of the compound module due 
to NED limitations 
**.overlay*.broose.parallelRequests=1 
**.overlay*.broose.joinDelay=10 
**.overlay*.broose.pingDelay=80 
**.overlay*.broose.refreshTime=180 
**.overlay*.broose.numberRetries=1 
 
# gia settings 
**.overlay*.gia.maxNeighbors = 50 
**.overlay*.gia.minNeighbors = 10 
**.overlay*.gia.maxTopAdaptionInterval = 120 
**.overlay*.gia.topAdaptionAggressiveness = 256 
**.overlay*.gia.maxLevelOfSatisfaction = 1.00 
**.overlay*.gia.updateDelay = 60 
**.overlay*.gia.maxHopCount = 10 #??? 



Appendices                                                       97 

 

 
 

 

 

**.overlay*.gia.messageTimeout = 180 
**.overlay*.gia.sendTokenTimeout = 5 
**.overlay*.gia.neighborTimeout = 250 
**.overlay*.gia.tokenWaitTime = 5 
**.overlay*.gia.keyListDelay = 100 
**.overlay*.gia.outputNodeDetails = false 
**.overlay*.gia.optimizeReversePath = 0 
 
# PubSubMMOG 
**.overlay*.*.joinDelay = 1 
**.overlay*.*.parentTimeout = 2 
**.overlay*.*.maxChildren = 10 
**.overlay*.*.maxMoveDelay = 1 
 
# Generic settings 
 
**.overlay*.*.debugOutput=true 
**.overlay*.*.hopCountMax= 50 
#**.overlay*.*.recNumRedundantNodes = 4 
**.overlay*.*.collectPerHopDelay=false 
IPv4Network.*.overlay*.*.drawOverlayTopology=false 
SingleHostNetwork.*.overlay*.*.drawOverlayTopology=false 
**.overlay*.*.drawOverlayTopology=true 
**.overlay*.*.useCommonAPIforward=false 
**.overlay*.*.routingType="source-routing-recursive"  #"exhaustive-iterative 
semi-recursive full-recursive source-routing-recursive" 
**.overlay*.*.keyLength=160 
**.overlay*.*.joinOnApplicationRequest=false 
**.overlay.*.localPort = 1024 
 
# SimpleMultiOverlayHost settings 
**.numOverlayModulesPerNode = 10 
**.overlay[0].*.localPort=1024 
**.overlay[1].*.localPort=1025 
**.overlay[2].*.localPort=1026 
**.overlay[3].*.localPort=1027 
**.overlay[4].*.localPort=1028 
**.overlay[5].*.localPort=1029 
**.overlay[6].*.localPort=1030 
**.overlay[7].*.localPort=1031 
**.overlay[8].*.localPort=1032 
**.overlay[9].*.localPort=1033 
 
# general overlay lookup settings 
#**.overlay*.*.lookupRedundantNodes = 4  ## SIIRRETTY 
**.overlay*.*.lookupParallelPaths = 1 
**.overlay*.*.lookupParallelRpcs = 1 
**.overlay*.*.lookupSecure = false 
**.overlay*.*.lookupMerge = false 
**.overlay*.*.lookupUseAllParallelResponses = false 
**.overlay*.*.lookupStrictParallelRpcs = false 
**.overlay*.*.lookupNewRpcOnEveryTimeout = false 
**.overlay*.*.lookupNewRpcOnEveryResponse = false 
**.overlay*.*.lookupFinishOnFirstUnchanged = false 
**.overlay*.*.lookupFailedNodeRpcs = false 
**.overlay*.*.routeMsgAcks = false 
**.overlay*.*.useCommonAPIforward=false 
 
# neighbor cache settings 
**.neighborCache.enableNeighborCache = false 
**.neighborCache.rttExpirationTime = 100 
**.neighborCache.maxSize = 50 
 
 
# ---- UnderlayConfigurator settings ---- 
 
# UnderlayConfigurator module settings 
*.underlayConfigurator.transitionTime = 0 



Appendices                                                       98 

 

 
 

 

 

*.underlayConfigurator.measurementTime = -1 
*.underlayConfigurator.gracefulLeaveDelay=15 
*.underlayConfigurator.gracefulLeaveProbability=0.5 
# disable churn for SingleHost networks 
SingleHostNetwork.underlayConfigurator.churnGeneratorTypes = "" 
# any combination of "NoChurn", "LifetimeChurn", "ParetoChurn" and 
"RandomChurn" separated by spaces 
*.underlayConfigurator.churnGeneratorTypes = "LifetimeChurn" 
 
# ChurnGenerator configuration 
*.churnGenerator*.initPhaseCreationInterval = 1 
*.churnGenerator*.targetOverlayTerminalNum = 10 
*.churnGenerator*.lifetimeMean = 20000.0 
*.churnGenerator*.deadtimeMean = 10000.0 
*.churnGenerator*.lifetimeDistName = "weibull" 
*.churnGenerator*.lifetimeDistPar1 = 1.0 
 
# RandomChurn (obsolete) 
*.churnGenerator*.targetMobilityDelay=300 
*.churnGenerator*.targetMobilityDelay2=20 
*.churnGenerator*.churnChangeInterval=0   
*.churnGenerator*.creationProbability=0.5 
*.churnGenerator*.migrationProbability=0.0 
*.churnGenerator*.removalProbability=0.5 
 
# Use following channels in access networks 
# see Common/channels.ned for allowed channels 
# Here ** include *.underlayConfigurator, *.churnGenerator* and 
*.globalObserver.globalTraceManager 
**.channelTypes="ethernetline dsl" 
 
# use globalFunctions? 
*.globalObserver.globalFunctionsType = "" 
*.globalObserver.useGlobalFunctions = 0 
 
# global statistics 
*.globalObserver.globalStatistics.outputMinMax = false 
*.globalObserver.globalStatistics.outputStdDev = false 
*.globalObserver.globalStatistics.globalStatTimerInterval = 20 
*.globalObserver.globalStatistics.measureNetwInitPhase = false 
 
# bootstrap oracle settings 
*.globalObserver.bootstrapOracle.maxNumberOfKeys = 100 
*.globalObserver.bootstrapOracle.keyProbability = 0.1 
*.globalObserver.bootstrapOracle.maliciousNodeProbability = 0.0 
*.globalObserver.bootstrapOracle.maliciousNodeChange = false 
*.globalObserver.bootstrapOracle.maliciousNodeChangeStartTime = 200 
*.globalObserver.bootstrapOracle.maliciousNodeChangeRate = 0.05 
*.globalObserver.bootstrapOracle.maliciousNodeChangeInterval = 100 
*.globalObserver.bootstrapOracle.maliciousNodeChangeStartValue = 0 
*.globalObserver.bootstrapOracle.maliciousNodeChangeStopValue = 0.5 
 
# globalObserver configuration 
*.globalObserver.globalTraceManager.traceFile = "" 
*.globalObserver.globalParameters.rpcUdpTimeout = 1.0 
*.globalObserver.globalParameters.rpcKeyTimeout = 5.0 
*.globalObserver.globalParameters.printStateToStdOut = false 
*.globalObserver.globalParameters.topologyAdaptation = false 
 
# bootstrapList configuration 
**.bootstrapList.debugOutput = true 
**.bootstrapList.mergeOverlayPartitions = false 
**.bootstrapList.maintainList = false 
 
# SimpleNetwork configuration 
SimpleNetwork.overlayTerminal.udp.constantDelay = 50ms 
SimpleNetwork.overlayTerminal.udp.useCoordinateBasedDelay = false 
SimpleNetwork.overlayTerminal.udp.jitter = 0.01 



Appendices                                                       99 

 

 
 

 

 

SimpleNetwork.underlayConfigurator.terminalTypes = "SimpleOverlayHost" 
SimpleNetwork.underlayConfigurator.fieldSize = 150 
SimpleNetwork.underlayConfigurator.sendQueueLength = 0 
SimpleNetwork.underlayConfigurator.fixedNodePositions = false 
SimpleNetwork.underlayConfigurator.nodeCoordinateSource = 
"dummy_that_doesnt_exist" 
#SimpleNetwork.underlayConfigurator.nodeCoordinateSource = "nodes_2d.xml" 
#SimpleNetwork.underlayConfigurator.nodeCoordinateSource = "nodes_3d.xml" 
 
# SingleHostNetwork configuration 
SingleHostNetwork.underlayConfigurator.terminalTypes = "dummy" 
SingleHostNetwork.underlayConfigurator.nodeIP = "" 
SingleHostNetwork.underlayConfigurator.nodeInterface = "" 
SingleHostNetwork.underlayConfigurator.stunServer = "" 
SingleHostNetwork.underlayConfigurator.bootstrapIP="" 
SingleHostNetwork.underlayConfigurator.bootstrapPort=1024 
SingleHostNetwork.zeroConfigurator.enableZeroconf = false 
SingleHostNetwork.zeroConfigurator.serviceType = "_p2pbootstrap._udp" 
SingleHostNetwork.zeroConfigurator.serviceName = "OverSim" 
SingleHostNetwork.zeroConfigurator.overlayName = "overlay.net" 
SingleHostNetwork.singleHost.outDeviceType = "UdpOutDevice" 
 
# IPv4Network configuration 
IPv4Network.outRouter*.outDeviceType = "TunOutDevice" 
**.mtu = 65000 
**.parser="GenericPacketParser" 
**.appParser="GenericPacketParser" 
**.gatewayIP = "" 
 
# IPv4 backbone configuration 
IPv4Network.underlayConfigurator.terminalTypes = "OverlayHost" 
IPv4Network.backboneRouterNum=1 
IPv4Network.overlayBackboneRouterNum=0 
IPv4Network.accessRouterNum=2 
IPv4Network.overlayAccessRouterNum=0 
IPv4Network.connectivity=0.8 
IPv4Network.underlayConfigurator.startIP="1.1.0.1" 
IPv4Network.outRouterNum=0 
 
# default overlay and application 
# Here ** include *.globalObserver.globalTraceManager and *.churnGenerator* 
**.overlayType = "ChordModules" 
**.tier1Type = "KBRTestAppModules" 
**.tier2Type = "TierDummy" 
**.tier3Type = "TierDummy" 
**.numTiers = 1 
 
# default INET parameters 
 
# ip settings 
**.ip.procDelay=10us 
**.routingFile="" 
**.IPForward=true 
 
# ARP configuration 
**.arp.retryTimeout = 1 
**.arp.retryCount = 3 
**.arp.cacheTimeout = 100 
**.networkLayer.proxyARP = true  # Host's is hardwired "false" 
 
# NIC configuration 
**.ppp[*].queueType = "DropTailQueue" 
**.ppp[*].queue.frameCapacity = 10 
 



Appendices                                                       100 

 

 
 

 

 

Omnetpp.ini 
 
//omnetpp.ini 
include ./default.ini 
[Cmdenv] 
//express-mode = false 
status-frequency = 10000000 
 
[Tkenv] 
//**.overlay*.chord.ev-output = true 
//**.ev-output = false 
 
 
[Run 1] 
description = "Kademlia (ITERATIVE)" 
network = SimpleNetwork 
sim-time-limit = 60000s 
#"exhaustive-iterative semi-recursive full-recursive source-routing-recursive" 
**.overlay*.*.routingType="iterative" 
*.churnGenerator*.lifetimeMean = 69120.0 
*.churnGenerator*.deadtimeMean = 17280.0 
**.globalObserver.globalFunctionsType = "GlobalDhtTestMap" 
**.globalObserver.useGlobalFunctions = 1 
**.overlayType = "KademliaModules" 
**.tier1Type = "DHTModules" 
**.tier2Type = "DHTTestAppModules" 
**.targetOverlayTerminalNum = 400 
**.tier2*.dhtTestApp.testInterval=13091 ## MEAN for FETCH MESSAGES 
**.tier2*.dhtTestApp.putDelay=14400 ## UPDATE TIMER 
## TTL TIMER = 3*UPDATE TIMER -> DHTTestApp.cc 
*.churnGenerator*.initTime = 1000 
**.tier2*.dhtTestApp.initDelay=1.0 
include params.ini 
 
[Run 2] 
description = "Chord (ITERATIVE)" 
network = SimpleNetwork 
sim-time-limit = 1209600s 
#"exhaustive-iterative semi-recursive full-recursive source-routing-recursive" 
**.overlay*.*.routingType="iterative" 
*.churnGenerator*.lifetimeMean = 69120.0 
*.churnGenerator*.deadtimeMean = 17280.0 
**.globalObserver.globalFunctionsType = "GlobalDhtTestMap" 
**.globalObserver.useGlobalFunctions = 1 
**.overlayType = "ChordModules" 
**.tier1Type = "DHTModules" 
**.tier2Type = "DHTTestAppModules" 
**.targetOverlayTerminalNum = 4000 
**.tier2*.dhtTestApp.testInterval=13091 ## MEAN for FETCH MESSAGES 
**.tier2*.dhtTestApp.putDelay=1800 ## UPDATE TIMER 
## TTL TIMER = 3*UPDATE TIMER -> DHTTestApp.cc 
**.tier2*.dhtTestApp.initDelay=1.0 
*.churnGenerator*.initTime = 47700 
#include params.ini 
 
[Run 3] 
description = "Chord (RECURSIVE)" 
network = SimpleNetwork 
sim-time-limit = 1209600s 
#"exhaustive-iterative semi-recursive full-recursive source-routing-recursive" 
**.overlay*.*.routingType="source-routing-recursive" 
*.churnGenerator*.lifetimeMean = 69120.0 
*.churnGenerator*.deadtimeMean = 17280.0 
**.globalObserver.globalFunctionsType = "GlobalDhtTestMap" 
**.globalObserver.useGlobalFunctions = 1 
**.overlayType = "ChordModules" 
**.tier1Type = "DHTModules" 



Appendices                                                       101 

 

 
 

 

 

**.tier2Type = "DHTTestAppModules" 
**.targetOverlayTerminalNum = 50000 
**.tier2*.dhtTestApp.testInterval=13091 ## MEAN for FETCH MESSAGES 
**.tier2*.dhtTestApp.putDelay=14400 ## UPDATE TIMER 
*.churnGenerator*.initTime = 47700 
## TTL TIMER = 3*UPDATE TIMER -> DHTTestApp.cc 
**.tier2*.dhtTestApp.initDelay=1.0 
##include params.ini 
 
 
 
 

F Trendline figures of maintenance traffic 
 
 

mean maintenance traffic received per node

y = 18.631Ln(x) + 46.47

0

10

20

30

40

50

60

70

80

90

1000 2000 4000 6000 8000 10000

number of nodes

up
da

te
 tr

af
fic

 (b
yt

es
/s

)

Chord Symmetric Recursive

Log. (Chord Symmetric
Recursive)

 

mean maintenance traffic received per node

y = 2.0264Ln(x) + 16.062

0

5

10

15

20

25

1000 2000 4000 6000 8000 10000

number of nodes

up
da

te
 tr

af
fic

 (b
yt

es
/s

)

Chord Iterative
Log. (Chord Iterative)

 


	Table of Contents
	List of Figures
	 List of Tables
	 List of Abbreviations
	1   Introduction
	2   P2P networking principles
	3   SIP and P2PSIP
	4   Simulation of P2P networks
	5   Simulation setup
	6   Results
	7   Discussion
	8   Conclusions
	References 
	Appendices

