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Monitoring the behavior of physical structures and processes gives valuable information 

about their condition and performance. This information can be used to improve safety, 

reliability and performance of the monitored physical structure. Complex systems of 

today require efficient and intelligent monitoring strategies which will help forming 

cause-effect relations between certain variables and problems. Wireless sensing is a 

promising technology for monitoring applications due to its advantages, e.g., in 

installation times and costs. Many systems were successfully implemented over the last 

decade. However these systems are often hard to use and designed for a specific 

purpose. Moreover, high sampling rate data collection with these systems can take long 

times due to limited bandwidth of the wireless networks. 

In this thesis, a wireless monitoring toolkit is developed and it can be defined as a 

portable, easy-to-use, simple-to-setup and fast monitoring system to be used for 

simultaneous multi-parameter monitoring of physical structures and processes. The 

toolkit consists of user interfaces, a novel data acquisition system which optimizes 

wireless communication speed in the network, a real-time monitoring application, a 

communication test application, a high sampling rate application, and wireless sensors 

hardware equipped with multiple sensors and IEEE 802.15.4 radios. Real-time 

monitoring application has a flexible, reliable and efficient structure due to its dynamic 

and multi-task operation. These two features distinguish this application from other 

wireless monitoring applications.  

Tests on a wooden bridge, a laboratory scale trolley crane, and an industrial bridge 

crane show that the developed system works seamlessly in industrial environments as 

well as in laboratory environments. Data collected in these case studies provide valuable 

information about the condition and performance of the monitored structures and 

systems, as shown by the data analysis performed. 

The thesis includes a review of state of the art wireless monitoring systems and 

determines framework of a general purpose wireless monitoring system to be used for 

condition monitoring and performance optimization purposes.  

Keywords: wireless monitoring, performance optimization, condition monitoring, 

structural health monitoring, crane monitoring, wireless sensors, controller tuning, 

wireless sensor networks. 
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Nomenclature 

ar Radial accelerations 

at Tangential accelerations 

A Peak acceleration [m/s
2
] 

Ar  r
th

 coefficient of the DFT  

ADC1 ADC channel one 

ADC2 ADC channel two 

Axis Number of accelerometer axis 

b Number of bits used for mapping  

BpS Bytes per Sample 

D Peak-to-peak displacement [mil] 

Dorg Original data (4-bit)  

 f Frequency [rpm] 

rf  
Frequency resolution  

sf  
Sampling frequency  

g  Constant of gravity 

H Humidity 

j 1  

l  Length of string  

n Number of samples  

N Number of samples in time series 

NI Node Interval 

Noise Measurement noise [bit] 

Nvoltage Peak to peak input noise voltage [V] 

r  Length of the pendulum string 

R Voltage reading provided by NI USB-9215A   

Res Measurement resolution [bit] 

SpP Samples per Packet 

T Temperature 

To Period of oscillation 

Ts Sampling Interval 
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Tt
 Time between two consecutive synchronization packets 

V Peak velocity in [m/s] 

Vp-p Peak to peak voltage range 

VDAC Voltage range of DAC module 

xi i
th

 value of the sampled signal 

Xk The k
th

 sample of the time series 

Xrms RMS value 

  Angular acceleration [rad/s
2
] 

  Angular displacement of the swinging pendulum [rad] 

  Angular velocity of the pendulum mass [rad/s] 
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Abbreviations 

6LowPAN IPv6-based Low power Wireless Area Network 

ADC Analog to Digital Converter 

AI Analog Input 

AODV Ad hoc On Demand Distance Vector  

AP Access Point 

API  Application Program Interface 

ASK Amplitude Shift Keying 

BPSK Binary Phase Shift Keying 

BSS The base station subsystem  

CBM Condition Based Maintenance  

CCK Complementary Code Keying 

COFDM Coded Orthogonal Frequency Division Multiplexing 

COM Common 

CSMA-CA Carrier Sense Multiple Access With Collision Avoidance  

DAC Digital to Analog Converter 

DFT Discrete Fourier Transform 

DIO Digital I/O  

DSSS Direct-Sequence Spread Spectrum  

DS-UWB Direct Sequence Ultra Wide Band 

ESS Electronic Switching System 

ETD Embedded Temperature Detector 

FFD Full Function Device 

FFT Fast Fourier Transform 

FHSS   Frequency-Hopping Spread Spectrum  

GCC GNU Compiler Collection  

GFSK Gaussian Frequency-Shift Keying 

GNU  GNU’s Not Unix 

GUI Graphical User Interface  

Hp Horsepower 

HVAC Heating Ventilation Air Conditioning 

I/O Input/output  
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IEEE Institute of Electrical and Electronics Engineers  

IP Internet Protocol  

IPv6 Internet Protocol version 6  

ISA International Society of Automation  

ISMO Intelligent Structural Health Monitoring System 

ISO International Organization for Standards  

ITT International Telephone & Telegraph  

LR-WPAN Low Rate Wireless Personal Area Networks 

LSb Least Significant four Bits 

LSB Least Significant Byte 

Mbps Mega Bits Per Second 

MB-OFDM Multi Band Orthogonal Frequency-Division Multiplexing 

MCU Micro Controller Unit 

MIDE Multidisciplinary Institute of Digitalization and Energy  

M-QAM M-Ary Quadrature Amplitude Modulation 

MSb Most Significant four Bits 

MSB Most Significant Byte 

ODR Output data rate  

OFDM Orthogonal Frequency-Division Multiplexing 

OS Operating System 

O-QPSK Offset Quadrature Phase-Shift Keying 

PAN Personal Area Network 

PCB Printed Circuit Board 

PCMS Process Control Monitoring Systems  

PdM Predictive Maintenance 

PID Proportional-Integral-Derivative 

QPSK Quadrature Phase-Shift Keying 

RF Radio Frequency 

RFD Reduced Function Device 

RH Relative humidity 

RPM Revolutions Per Minute 

RSSI Received Signal Strength Indicator 

RTD Resistance Temperature Detectors  
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SHM Structural Health Monitoring 

SPI Serial Peripheral Interface  

TX Transmission 

UWB Ultra Wide Band 

WLAN Wireless Local Area Network 

WPAN Wireless Personal Area Network 

WSN Wireless Sensor Network 

Yr Year 
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1 Introduction  

1.1 Background and Motivation 

More than $1 trillion is estimated to be spent each year to replace perfectly good 

equipment. The main reason for this is the lack of reliable and cost-effective methods 

that can predict the equipment’s remaining lifetime (McLean and Wolfe, 2002).  

Physical structures such as bridges, machines, motors, airplanes or buildings have 

typical modes of vibration, acoustic emissions and response to stimuli. Monitoring these 

behaviors provide valuable information on wear, fatigue or other mechanical changes 

(Culler et al., 2004). This information can be used to improve safety, reliability and 

performance of the monitored physical structure. However, as systems and structures 

become more complex day by day, forming a cause-effect relationship between certain 

variables and problems becomes harder. For example, there are usually between five 

hundred to five thousand regulatory controllers in a continuous process industry facility 

and only about one third of these industrial controllers provide an acceptable level of 

performance (Desborough et al., 2001).  

Condition monitoring and performance optimization are two approaches that are used to 

develop optimal systems. These two fields are interconnected; for example, a 

malfunctioning valve in a control-loop will affect the performance of the whole plant. 

The performance can be improved if intelligent condition monitoring and maintenance 

strategies are employed (Hägglund, 1995). Similarly an overhead crane with optimum 

control will cause fewer vibrations on the load and eventually less deterioration in the 

structure. This means reduced need for maintenance and longer lifetime of the crane 

(Okubo et al., 1997). Intelligent performance optimization strategies such as root cause 

analysis (Andersen et al., 2006) and condition monitoring methods such as multi-

parameter monitoring (Tavner, 2008) are likely to play an important role in future 

monitoring operations. Wireless sensing technology can play an important role in future 

condition monitoring and performance optimization strategies.  

Reduced size and power consumption of wireless sensors combined with their certain 

advantages in installation times and costs compared to traditional wired sensing 
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techniques led them to be the promising technology for many monitoring and control 

applications. However, they have certain limitations in terms of power, bandwidth, 

memory size, security and reliability. Allocation of the resources in an efficient way and 

development of reliable systems remains a challenge. Even so, several wireless 

monitoring systems have been presented in recent years in a variety of fields such as in 

structural health monitoring (Lynch et al., 2006), building automation (Osterlind et al., 

2007), pipeline monitoring (Stoianov et al., 2007), food and agriculture industries 

(Wang et al., 2006), environmental monitoring (Yick et al., 2008), condition monitoring 

of electrical machines (Tuononen, 2009), etc.  

Often the developed wireless monitoring systems are complex to use and designed for a 

specific purpose which limits their application into other fields. Furthermore limited 

bandwidth of wireless networks can cause long data collection times when a high 

sampling rate is used. Studies address some key issues to be taken into account when 

designing monitoring systems such as usability, ease of set up, speed, etc. (Desborough 

et al. 2001). A wireless monitoring toolkit, which considers aforementioned issues, can 

fill the gap between technology and user’s needs.  

1.2 Scope and Objectives 

The scope of this thesis is to develop and test a general purpose wireless monitoring 

toolkit to be used for condition monitoring and performance optimization purposes. 

Every monitoring application has its own needs and priorities in terms of sampling 

frequency, number of nodes, sensors used, reliability, etc. Developing specific hardware 

or software for these applications can be time and energy consuming. A generic wireless 

monitoring toolkit which meets the needs of several monitoring applications can greatly 

speed up the research and development in the field. 

The main objective of this thesis is to determine and implement a framework of a 

general purpose wireless monitoring toolkit which is easy to use, fast and reliable. 

Toolkit should be easy to use so that, for example, a serviceman can setup the 

monitoring system, and collect the measurement data easily without dealing with low 

level programming issues. Wireless monitoring toolkit should allocate the resources and 

the bandwidth of the network to optimize the speed of data collection in order to avoid 
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long data collection times. Finally the toolkit should be able to provide reliable 

information from multiple measurement locations and by using several sensors.  

1.3 Contributions 

Contributions of the author in the thesis are listed as follows: 

 A literature review has been done to gain a better understanding of monitoring 

applications. Desirable characteristics of a general purpose wireless monitoring 

toolkit have been determined.  

 A wireless monitoring toolkit has been developed and tested. The toolkit 

consists of wireless sensors hardware equipped with multiple sensors, user 

interfaces, a novel data acquisition system which optimizes wireless 

communication speed in the network, a real-time monitoring application, a 

communication test application and a high sampling rate application. Real-time 

monitoring application has two important features that distinguish it from other 

wireless monitoring applications: dynamic and multi-task operation. These 

features give this application a flexible, reliable and efficient structure.  

 Wireless monitoring toolkit has been tested for structural health monitoring 

(SHM) on a model bridge built to scale along with a wired measurement system. 

This study proved the usability of the wireless sensors in SHM applications and 

provided important insights for future development directions that will improve 

the reliability of wireless sensors.  

 Wireless monitoring toolkit has been tested on a laboratory scale trolley crane 

for simultaneous multi-parameter monitoring of the system properties, i.e., load 

position and crane vibrations. It has been shown that it is possible to measure 

system properties with wireless sensors without disturbing the normal operation 

of the system, which is an essential feature of process monitoring. 

 Tests on the trolley crane system indicated that the wireless sensors equipped 

with accelerometers can be used to evaluate the control system performance. 

Measurements also showed the close relation between angular displacement of 

the load and the accelerations experienced by the load.  

 Wireless monitoring toolkit has been used to investigate wireless 

communication characteristics of the sensor nodes in an industrial environment. 
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Vibrations induced due to movement of an industrial crane were measured and 

evaluated.  

 Cosar, E.I., Bocca, M., and Eriksson, L.M., 2009, “High Speed Portable 

Wireless Data Acquisition System for High Data Rate Applications”, in 

Proceedings of the 2009 ASME/IEEE International Conference on Mechatronic 

and Embedded Systems and Applications (MESA 2009), San Diego. 

 Bocca, M., Cosar, E.I., Salminen, J., and Eriksson, L.M., 2009, “A 

Reconfigurable Wireless Sensor Network for Structural Health Monitoring”, 

Proceedings of the 4th International Conference on Structural Health Monitoring 

of Intelligent Infrastructure (SHMII-4 2009), Zurich, Switzerland. 

The work described in this thesis is an outcome of a research project. Following 

paragraph presents people who have contributed to different aspects of the work.  

Hardware components described in the thesis were mainly put together by Juho 

Salminen. Accelerometer sensor board was designed by Jose Vallet. Driver of 

accelerometer sensors was developed by Jose Vallet, Maurizio Bocca and Emre Ilke 

Cosar. Sensor boards were manufactured by Juho Salminen. Driver for temperature and 

humidity sensors on wireless sensor nodes was developed by Maurizio Bocca. 

Communication test application was developed by Maurizio Bocca and Lasse Eriksson. 

Data collected in bridge monitoring case study was analyzed by Maurizio Bocca. Real-

time monitoring application was developed by Emre Ilke Cosar under supervision of 

Lasse Eriksson. High sampling rate application was developed by Emre Ilke Cosar, 

Maurizio Bocca and Lasse Eriksson. High Speed Portable Wireless Data Acquisition 

System for High Data Rate Applications was developed by Emre Ilke Cosar and Lasse 

Eriksson. Rest of the development, literature review and analyses were done by Emre 

Ilke Cosar.  

1.4 Structure 

Structure of this thesis is presented as follows. Chapter 2 is a review of wireless sensor 

networks in monitoring applications. Key design considerations for wireless monitoring 

systems are given at the end of this chapter. Chapter 3 describes the hardware and 

software components developed for the wireless monitoring toolkit. Chapter 4 

introduces three case studies done with the wireless monitoring toolkit and presents the 
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results of these studies. In the conclusions chapter, developed applications and key 

findings of the thesis are summarized.  
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2 Wireless Sensor Networks in Monitoring Applications 

Widespread availability of intelligent, small and cheap sensors enabled human to 

understand, monitor and control the environment more than ever. Sensors that are 

combined with advanced wireless communication technologies, form wireless sensor 

networks (WSNs). Despite their certain limitations in terms of power, bandwidth, 

memory size, security and reliability, WSNs have gained a huge ground in many 

applications. Main reason for this is their advantages in installation times and costs 

compared to traditional wired sensing technologies. Moreover their reduced size and 

power consumption have considerably increased their applicability (Yick et al., 2008). 

Figure 1 shows the classification of WSNs according to their application areas. Each of 

these applications have different development perspectives, hence they face different 

challenges and constraints.  

Following the classification in Figure 1, this thesis focuses on public/industrial 

monitoring applications, with main emphasis on condition monitoring and performance 

optimization. Even so, accumulated experience and gained knowledge can easily be 

applied to other fields as well. 

Figure 1. Overview of WSN applications (Yick et al., 2008). 
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In this chapter, currently available wireless sensor network technologies will be 

investigated. Then condition monitoring trends and importance of performance 

optimization will be discussed. Presentation of public/industrial monitoring strategies 

will be followed by introducing typical monitoring applications. After that, a review of 

current state of the art in wireless monitoring applications will be presented by 

introducing reference applications. Finally, design considerations for monitoring 

systems will be discussed.  

2.1 Wireless Sensor Networks  

A node consists of hardware and software components, e.g., radio, sensor, application, 

etc. It is responsible of measurements and communications in a wireless sensor 

network. See Section 3.2 for a detailed description. 

Fixed wireless communication technologies, excluding cellular networks, can be 

divided into three main groups: Wireless Local Area Networking (WLAN), Wireless 

Personal Area Networking (WPAN) and Wireless Metropolitan Area Networking. 

Perspective and limitations of these wireless networking technologies are different. 

Among these technologies, WLAN and WPAN are designed for indoor use. Figure 2 

shows the data rates and indoor ranges of present WLAN and WPAN technologies.  

Figure 2. Comparison of indoor ranges and data rates of wireless network technologies 

(Zheng and Lee, 2004). 
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Wireless local area networks (WLAN) have been developed to replace local area 

network cable. WLAN, standardized within Institute of Electrical and Electronics 

Engineers (IEEE) 802.11 (IEEE 802.11, 2009), provides a high bandwidth with the cost 

of complex hardware and high power consumption. WPANs have been developed to 

connect personal communication devices within a shorter range. IEEE 802.15 working 

group (IEEE 802.15, 2009) is working on standardization of WPANs. A comparison of 

WLAN and WPAN radio technologies are given in Table 1.  

Table 1. Comparison of WLAN and WPAN protocols (Lee et al., 2007). 

 

WPAN WLAN 

Bluetooth 

(802.15.1) 

UWB 

(802.15.3a) 

Zigbee 

(802.15.4) 
WLAN (802.11b) 

Frequency 

Band 
2.4 GHz 3.1- 10.6 GHz 

868/915 MHz, 

2.4 GHz 
2.4 GHz, 5.8 GHz 

Nominal Range 10 m 10 m 10 – 100 m 100 m 

Max. Signal 

Rate 
1 Mbps 110 Mbps 250 kbps 54 Mbps 

Nominal TX 

power 
0-10 dBm 

-41.3 

dBm/MHz 
(-25) - 0 dBm 15 - 20 dBm 

Number of RF 

channels 
79 1-15 1/10, 16 14 (2.4 GHz) 

Modulation 

type 
GFSK BPSK, QPSK 

BPSK(+ASK), 

O-QPSK 

BPSK, QPSK, 

COFDM, CCK, 

M-QAM 

Spreading FHSS 
DS-UWB, 

MB-OFDM 
DSSS 

DSSS, CCK, 

OFDM 

Basic cell Piconet Piconet Star BSS 

Extension of the 

basic cell 
Scatternet Peer-to-peer 

Cluster tree, 

Mesh 
ESS 

Max. number of 

cell nodes 
8 8 >65000 2007 
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IEEE 802.15.1, which is almost identical to Bluetooth standard, is designed for hand 

phones and other mobile devices. Leopold et al. (2003) have studied the applicability of 

Bluetooth to wireless sensor networks.  

IEEE 802.15.3 is a physical and MAC layer standard for high data rate WPANs. It is 

designed for real-time multi-media streaming of video and music. Devices that employ 

this standard include wireless speakers, portable video electronics, wireless gaming 

tools, cordless phones, printers and televisions (Yick et al., 2008).  

Several wireless sensor network standards, which define the necessary functions and 

protocols for networking of the sensor nodes, have been developed with low power 

consumption goal. Some of these standards include IEEE 802.15.4, ZigBee, 

WirelessHART, ISA 100.11, IETF 6LoWPAN, and Wibree (Yick et al., 2008). 

IEEE 802.15.4 is the proposed standard for low rate wireless personal area networks 

(LR-WPAN’s). This standard aims low cost of deployment, low complexity and low 

power consumption. The IEEE 802.15.4 standard, published in spring 2003, defines the 

characteristics of physical and MAC layers. The physical layer in IEEE 802.15.4 

supports three frequency bands: 2450 MHz, 915 MHz band and 868 MHz, all using the 

Direct Sequence Spread Spectrum (DSSS) access mode (Baronti et al., 2007). Some of 

the key features of these bands are listed in Table 2. 

The MAC layer in IEEE 802.15.4 is responsible for validating frames, frame delivery, 

network interface, network synchronization, device association, and security services. 

 

Table 2. IEEE 802.15.4 radio features (Baronti et al., 2007). 

 2450 MHz 915 MHz 868 MHz 

Gross data rate 250 kbps 40 kbps 20 kbps 

No. of Channel 16 10 1 

Modulation O-QPSK BPSK BPSK 

Chip pseudo-noise sequence 32 15 15 

Bit per symbol 4 1 1 

Symbol period 16 s 24 s 49 s 



10 

 

The MAC layer controls access to the radio channel using carrier sense multiple access 

with collision avoidance (CSMA-CA) mechanism. Residential, industrial, and 

environmental monitoring applications widely use IEEE 802.15.4 (Yick et al., 2008).  

ZigBee is a higher layer communication protocol built on IEEE 802.15.4 standards for 

LR-PANs (Figure 3). ZigBee Alliance, including more than 70 members, established 

ZigBee protocol to add network, security and application software to the IEEE 802.15.4 

standard (ZigBee Alliance, 2009). ZigBee is optimized for automation sensor networks, 

where there is no need for high bandwidth, but low power usage, low cost, low latency 

and high quality-of-service are required (Eriksson et al., 2008 b). ZigBee devices 

support mesh networks enabling hundreds to thousands of devices working together.  

WirelessHART is a wireless network communication protocol for process measurement 

and control applications built on IEEE 802.15.4 for low power 2.4 GHz operation. Mesh 

networking, channel hopping and time-synchronized messaging are some of the key 

features of WirelessHART.  

6LowPAN is an Internet Protocol version 6 (IPv6) based low power wireless personal 

area network. It is based on IEEE 802.15.4 standard and it enables low power devices to 

communicate directly with internet protocol (IP) devices.  

ISA 100.11a is another standard working on 2.4 GHz band and it is designed for low 

data rate wireless monitoring and process automation. It provides simple, flexible, and 

scalable security functionality (Yick et al., 2008).  

Figure 3. IEEE 802.15.4 protocol stack (Craig, 2009). 
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Companies that provide commercially available wireless sensor network devices 

include; Crossbov, Moteiv, Dust Networks, Millenialnet, Sensinode and Sensicast. 

Available products usually offer easy to use platforms to be utilized according to the 

requirements of intended applications. 

2.2 Condition Monitoring and Performance Optimization 

2.2.1 Condition Monitoring 

Condition monitoring programs aim to assess and trend the condition of monitored 

equipment in order to minimize risks and economic impact of an unexpected failure or 

shutdown (Rao, 1996). When it is done efficiently, condition monitoring strategies can 

significantly reduce the cost of maintenance.  

Table 3 shows four types of maintenance strategies, basic philosophies of these 

maintenance strategies and related costs calculated per horsepower per year. 

Horsepower is a widely used unit in industry to state the power required to drive 

machinery. One horsepower is equal to 745.7 Watts (Mobley et al., 2008).  

It is seen from Table 3 that as the intelligence of maintenance strategy is increased, 

costs decrease. Intelligent maintenance operations employ predictive and reliability 

centered strategies that require extensive monitoring of target systems.  

As complexity of the systems increase, it becomes harder to determine a cause-effect 

relationship between certain variables and problems. Root cause analysis is the 

structured investigation of the true cause of a problem and identification of necessary 

actions to eliminate it (Andersen et al., 2006). Condition monitoring systems play an 

important role in gaining system knowledge which enables detection of real root causes 

of problems.  

2.2.2 Performance Optimization 

Performance optimization, or performance tuning, aims to improve system performance. 

In a continuous process industry facility, such as an oil refinery, chemical plant, or 

paper mill, there could easily be from five hundred to five thousand regulatory 

controllers, most of which are proportional-integral-derivative (PID) controllers. Only  
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Table 3. Types of maintenance strategies (Modified from O&M Best Practices, 2002, ch. 5, pp. 6-8). 

Types of Maintenance 

Strategies 
Basic philosophy 

Cost 

(/hp/yr) 

Reactive Maintenance 

(Breakdown or Run-to-

Failure Maintenance) 

 Allow machinery to run to failure. 

 Repair or replace damaged equipment when 

obvious problems occur. 

$18 

Preventive Maintenance 

(Time-Based 

Maintenance) 

 Schedule maintenance activities at 

predetermined time intervals. 

 Repair or replace damaged equipment before 

obvious problems occur. 

$13 

Predictive Maintenance 

(Condition-Based 

Maintenance) 

 Schedule maintenance activities when 

mechanical or operational conditions warrant. 

 Repair or replace damaged equipment before 

obvious problems occur. 

$9 

Reliability Centered 

Maintenance (Pro-Active 

or Prevention 

Maintenance) 

 Utilizes predictive/preventive maintenance 

techniques with root cause failure analysis to 

detect and pinpoint the precise problems, 

combined with advanced installation and 

repair techniques, including potential 

equipment redesign or modification to avoid 

or eliminate problems from occurring. 

$6 

about one third of industrial controllers used in these facilities provide an acceptable 

level of performance (Desborough et al., 2001).  

Performance evaluation of industrial plants and subprocesses is essential for high 

product quality and economical operation. Over the years advanced methods have been 

developed to assess performance of devices and control loops. However there are a few 

generic solutions for plant wide monitoring due to the complexity of even a small real-

world plant (Hölttä, 2009).  

Monitoring the system to gather data is the first step in performance assessment. Studies 

address some key issues to be taken into account when designing industrial process 

control monitoring systems (PCMS) (Desborough et al., 2001): 
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 A simple to use, maintain, and setup PCMS that allows quick and easy access to 

information is desired by practicing control engineers.  

 It is difficult and time consuming to collect and analyze real-time, high 

frequency time series data.  

 Performance monitoring with legacy control systems is usually not possible 

since these old systems do not have enough computing power. Moreover they 

lack the capacity to transfer data to more powerful platforms due to their limited 

bandwidths.  

 Dynamic process models are not available for most of the controllers and they 

are very expensive to obtain. 

In this respect, simple to use, easy to set-up, fast, and real-time process monitoring 

systems can contribute to performance optimization of the processes.  

2.3 Public/Industrial Monitoring Strategies 

In this section, non-intrusive monitoring concept is introduced. Then a comparison of 

wireless and wired monitoring, and continuous and periodic monitoring strategies will 

be given.  

2.3.1 Non-Intrusive Monitoring 

Non-intrusive monitoring aims to monitor the condition of a machine or process without 

disturbing its operation. Industrial machines are planned to be continuously running 

during their lifecycles and every minute they are stopped reduces their profitability. In 

the case of industrial processes, additional hardware connected to the process increase 

the risk of technical problems which may eventually cause a shutdown (Hölttä, 2009). 

Thus, non-intrusive strategies are the most economical type of monitoring. 

2.3.2 Wireless vs. Wired Monitoring 

It has been shown that the cost of installing and wiring a sensor exceeds the cost of 

sensor itself by more than ten times (Sanderford, 2002). Costs related to wires and 

deployments of these wires in an industrial/public environment are not in question when 

wireless sensors are used. Increased mobility of wireless sensors makes the monitoring 
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system more flexible compared to their wired counterpart. Furthermore it is not always 

feasible to place wires in industrial environments such as in medium or high voltage 

environments and on rotating parts of the machines (Nordman, 2004).  

Despite their certain advantages, WSNs have their own resource constraints and design 

considerations. Resource constraints include limited amount of energy, short 

communications range, low bandwidth, and limited processing and storage capacity of 

nodes. Design considerations for a WSN depend on the application and the monitored 

environment (Yick et al., 2008).  

2.3.3 Continuous vs. Periodic Monitoring 

It is possible to divide public/industrial monitoring applications into two groups: 

continuous (on-line) and periodic monitoring. Periodic monitoring applications use 

measurements taken on a periodical basis and analysis of these measurements, whereas 

a continuous monitoring system takes measurements from the monitored structure or 

machine continuously and generates warnings and alarms if necessary. Periodic 

monitoring usually refers to manual data collection. With this technique, workers 

physically connect PDAs or other portable data acquisition devices to the monitored 

equipment for maintenance or calibration purposes (Lapedus, 2003). On-line systems 

are more reliable and allow frequent data collection. However they are not always 

feasible due to the initial cost of purchase and deployment. On-line monitoring systems 

are suitable for equipment and systems that have a potential cost impact greater than $ 

250, 000 and they do not provide a sufficient return for the majority of the equipment in 

a typical industrial deployment (Krishnamurthy et al., 2005).  

Table 4 shows cost analysis of three predictive maintenance (PdM) approaches for a 

typical factory deployment: Manual data collection with hand held instruments, a 

traditional wired on-line monitoring system, and an online monitoring system where 

device is powered with wires but wireless transmission is used to transfer data 

(Krishnamurthy et al., 2005). 

Design constraints valid for most public/industrial wireless monitoring systems are 

reliability, re-configurability and energy efficiency. Reliability can be further divided 

into two classes: communication reliability and measurement reliability.  
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Table 4. Cost breakdown of three PdM approaches (Krishnamurthy et al., 2005). 

 
Manual 

Collection 

Online 

System 

Wireless Data / Wired 

Power 

#Wired APs (Access Points) 0 450 35 

#Wireless APs 0 0 875 

#Analyzers 8 1 1 

Hardware Costs    

Sensors (installed) $1,260,000 $1,260,000 $1,260,000 

Wired APs $0 $2,250,000 $17,500 

Wireless APs $0 $0 $262,500 

Analyzers $144,000 $18,000 $18,000 

Installation Costs    

Wired APs $0 $3,375,000 $262,500 

Wireless APs $0 $0 $1,726,974 

Labor (Collection Costs) $168,000 $3,360 $3,360 

Total Costs $1,572,000 $6,906,360 $3,550,834 

Total Costs w/o Sensors $312,000 $5,646,360 $2,290,834 

Communication reliability can be defined as the ratio of correctly received packets to 

the total transmitted packets. Difference between measured data and the real data is 

defined as measurement reliability. Re-configurability of a WSN is its capacity to adopt 

into new environmental and operational conditions. Energy efficiency is another key 

design consideration in WSNs since most of the systems are battery powered. Replacing 

these batteries introduces new costs to the monitoring system (Wan et al., 2008). 

As explained earlier, continuous monitoring strategy is feasible for the systems that 

have a high cost impact hence above defined constraints hold for wireless continuous 

monitoring systems and there is a huge amount of research done on WSN to meet these 

design requirements. However in the case of a periodic monitoring system design 

considerations are slightly different. In such a system, the idea is a serviceman would 
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install these sensors in a periodic manner and energy efficiency would not be a critical 

issue. Furthermore, communication reliability is not a key design consideration, since in 

the case of broken links, the system can be reconfigured by changing communication 

parameters or the places of the nodes. On the other hand, data reliability and re-

configurability are still of utmost importance for a wireless periodic monitoring system.  

2.4 Typical Monitoring Applications 

In this section the most common monitoring techniques and their application areas are 

introduced.    

2.4.1 Vibration Monitoring 

Vibration is a widely used indicator of condition. A loose screw on an 

electromechanical machine or a crack on a bridge will change the vibration 

characteristics. An accelerometer, a velocimeter or a proximeter can be used to monitor 

these vibration characteristics. Root mean square (RMS) techniques and spectrum 

analysis are commonly used practices in industry (Tavner, 2008).  

Following subsections present two common vibration monitoring methods: overall 

transverse vibration monitoring and spectrum analysis. These vibration monitoring 

techniques are presented in context of rotating machines. Other vibration monitoring 

applications also employ similar methods, however, findings on other fields are usually 

not standardized.  

2.4.1.1 Overall Transverse Vibration Monitoring 

Overall transverse vibration monitoring is the simplest but least effective technique used 

for rotating machinery. Measurements are done by measuring RMS value of the 

vibration acceleration or velocity on the non-rotating side of the machine over a 

bandwidth of 0.01-1 kHz or 0.01-10 kHz (Tavner, 2008). RMS value is calculated by
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1
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where n is the number of samples, ix  is the thi value of the sampled signal and rmsx is the 

resulting RMS value.  

A serviceman can determine the machine state with an accelerometer, a velocimeter or a 

proximeter. Velocimeters and proximeters are more suitable for low frequencies, 

whereas accelerometers perform better when monitoring high frequencies (Tavner, 

2008). Conversion formulas that are used to calculate vibration severity are presented in 

(2) - (7). 

 
319.1*10 *( / )D V f , (2) 

 
6 270.4*10 *( / )D A f , (3) 

 
652.36*10 * *V D f , (4) 

 
33.68*10 *( / )V A f , (5) 

 
9 214.2*10 * *A D f , (6) 

 
30.27*10 * *A V f , (7) 

D is the peak-to-peak displacement in mm, V is the peak velocity in m/s, A is the peak 

acceleration in m/s
2
, and f is the frequency in rpm. Over the years, several guidelines 

were developed to assess relative running condition of rotating machines based on RMS 

vibrations. These standards do not give diagnostic information, but indicate the 

machinery health at a given vibration level. Up to date standard is the ISO 10816-

1:1995, which defines general conditions and procedures for the measurement and 

analysis on the non-rotating parts of machines operating in the 10 to 200 Hz (600 to 

12,000 rpm) frequency range. Table 5 shows the ISO 10816 vibration severity chart for 

four classes of machines.  
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2.4.1.2 Spectrum Analysis 

Goal of spectrum analysis in monitoring applications is to relate various frequencies 

seen in spectra (plot of amplitude versus frequency) to the various physical phenomena 

(Goldman, 1999). Measured overall vibration signal contains multiple smaller 

vibrations due to the condition of the monitored structure or machine, i.e., misalignment 

of rotating machines, crack on a bridge, etc. The overall vibration signal can be 

analyzed to reveal individual contributing components (Brown, 2006). 

When a continuous waveform is to be analyzed digitally, data has to be sampled 

(usually at equally spaced intervals of time) in order to produce a time series of discrete 

samples to be fed into a digital computer. Such a time series completely represents the 

continuous waveform if this waveform is frequency band-limited and the samples are 

taken at a rate that is at least twice the highest frequency (i.e., Nyquist frequency) 

present in the waveform. Spectrum of such a time series can be defined by Discrete 

Fourier Transform (DFT). DFT is calculated by  
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 ,            (8)

where Ar is the r
th

 coefficient of the DFT and Xk denotes the k
th

 sample of the time series 

which consists of N samples and j represents 1 . The k
th

 Fast Fourier Transform (FFT) 

Table 5. ISO 10816 vibration severity chart (Monarch Instrument, 2002).  
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algorithm is a rapid and efficient method to compute DFT of a time series data (Cochran 

et al., 1967). Figure 4 shows spectrum analysis of a vibration signal taken from a 

rotating machine.  

2.4.1.3 Vibration Monitoring Applications 

Vibration Monitoring for Rotating Machines  

Rotating machinery constitutes the core of the industry. During the last decades a great 

amount of research has been conducted and several electrical, mechanical and other 

condition monitoring techniques have been developed to improve reliability of these 

devices.  

Spectral transverse vibration monitoring is a widely used modern technique when 

monitoring rotating machines (Tavner, 2008). In this technique, spectra are reduced to a 

simple sequence of numbers at discrete frequencies. These numbers can then be used 

with criteria such as ISO 10816 to assess health condition of the machine. Figure 5 

shows the basis of this technique. In the figure, a baseline is set according to maximum 

expected vibrations and an operational envelope is set above this. 

Figure 4. Spectrum analysis of a vibration signal taken from a rotating machine (Brown, 2006). 
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Other condition monitoring techniques, for rotating electrical machines, utilizing 

vibration signature include chock pulse method, torsional vibration monitoring and 

specific spectral transverse vibration monitoring (Tavner, 2008).  

Vibration monitoring is used to discover and diagnose a wide variety of problems 

related to rotating machinery such as unbalance, eccentric rotors, misalignment, 

resonance problems, mechanical looseness/weakness, rotor rub, sleeve-bearing 

problems, rolling element bearing problems, flow-induced vibration problems, gear 

problems, electrical problems, and belt drive problems (O&M Best Practices, 2002).  

Table 6 shows examples of how vibration monitoring can be used to detect problems 

related to rotating machinery.  

Vibration Monitoring in Structural Health Monitoring 

Civil structures deteriorate over time due to harsh environmental conditions, hurricanes, 

earthquakes, corrosion and fatigue. Real-time and periodic structural health monitoring 

(SHM) has a great potential to reduce the effects of these catastrophic events (Lynch et 

al., 2006). Over the last decade, many vibration based structural damage detection 

methods have been developed (Doebling et al., 1998; Sohn et al., 2001).  

 

 

Figure 5. Operational envelope around a vibration spectral response (Tavner, 2008). 
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Table 6. Vibration monitoring of rotating machines (Modified from MAARS, 2009). 

Machine Condition Indication Sensor 

80 Kilowatt Standby 

Generator(3600 

RPM) 

Resonance @ 

1.5X RPM 

Excessive 1X and 1.5X RPM 

vibration amplitude (3600 

RPM/60Hz, 5400 RPM/90 

Hz) 

Accelerometer 

Large Propylene 

Process 

Refrigeration 

Compressor(5700 

RPM) 

Rotor bow 

from inter-

stage seal rub 

Failure to Achieve Operating 

Speed, Trip When Passing 

Critical Speed, Excessive 1X 

Amplitudes on all Probes 

(5700RPM/95Hz) 

Proximity 

probes 

Vertical Pump 

Motor (540 RPM) 

Looseness 

induced 

Resonance at 

1X RPM 

Excessive Vibration (Shaking) 

at 1X RPM (540RPM/9Hz), 

resonance verified with 

transient capture, coast-down 

and impact tests 

Accelerometer 

Vertical “Canned” 

Safety Injection 

Pump (1781 RPM) 

Piping and 

Motor Base 

Resonance, 

Turbulence, 

Whirl 

Excessive sporadic amplitude 

at 46% of RPM (819 

RPM/13.7 Hz), Impact tests 

Accelerometer 

Crane Vibration Monitoring 

Bridge, overhead and deck cranes use a trolley to move their loads. For these types of 

cranes, there are two options to establish a higher speed and hence a faster operation: to 

increase maximum speed of the trolley and to decrease time spent for acceleration and 

deceleration. These methods increase trolley acceleration at the expense of introduced 

vibrations. These vibrations eventually cause various problems such as structural 

fatigue, operator discomfort, etc. The vibration information taken from a crane can be 

used to tune the controllers (Okubo et al., 1997). 
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Besides the applications mentioned in this section, vibration monitoring has been 

studied for various other purposes such as pipeline monitoring (Stoianov et al., 2007) 

and road surface monitoring (Eriksson et al., 2008 a).  

2.4.2 Temperature Monitoring 

Temperature monitoring with simple sensors, narrow bandwidths (<1 Hz), and low data 

rate signals, has shown to be an effective monitoring technique for rotating electrical 

machines. Overloaded machines or malfunctioning coolant circuits can be detected by 

monitoring temperatures at one or more locations (Tavner, 2008). 

Applications of temperature monitoring combined with humidity measurements, are 

used to enhance the productivity of greenhouses, to investigate effects of environmental 

conditions on the buildings, for fault detection and diagnostics in HVAC (Heating 

Ventilation Air Conditioning) systems, and to monitor food condition (see Section 2.5).  

2.4.3 Ultrasonic Monitoring 

Sound waves that have a frequency level above 20 kHz are defined as ultrasounds. 

Ultrasounds travel in a straight path and do not penetrate solid surfaces. Many fluid 

systems and most rotating equipment will emit sound patterns in ultrasonic frequency 

spectrum. Equipment condition can be monitored by observing these ultrasonic wave 

emissions. Fluid leaks, vacuum leaks and steam trap failures can be identified by 

ultrasonic monitoring. Furthermore it is possible to detect electrical and mechanical 

abnormalities by monitoring ultrasonic wave emissions (O&M Best Practices, 2002).  

 

2.4.4 Other Monitoring Techniques 

Pressure, oil, speed, flow, level, and pH monitoring techniques are other widely used 

monitoring techniques in many industrial plants. Besides these techniques, discharge, 

electrical current, flux, and power monitoring are used to assess condition of electrical 

machines (Tavner, 2008). Many of these monitoring techniques are discussed and their 

applicability and suitability for wireless condition monitoring is evaluated in 

(Tuononen, 2009). 
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2.4.5 Multi-parameter monitoring  

Multi-parameter monitoring can be described as combining a number of indicators 

together into a single monitoring system to improve detection. For example, 

temperature, chemical degradation or vibration signals can be used alongside with 

electrical signals to assess health condition of electrical machines. This approach gives 

operators a better confidence. Multi-parameter methods are believed to play a major 

role in machine condition monitoring in the future (Tavner, 2008).  

2.5 Review of Wireless Monitoring Applications  

Various transducers have successfully been integrated into wireless nodes and several 

academic and commercial applications have been developed. In this section some of 

these reference applications will be introduced.  

2.5.1 Academic Studies and Applications 

PipeNET of Cambridge University, aims to monitor water transmission pipelines to 

detect and localize leaks using wireless sensor networks. The system is also used to 

monitor water quality and level in water transmission and distribution systems. 

PipeNET system employs pressure, flow, acoustic/vibration, level and pH sensors. 

Figure 6 shows high level description of three pipeline monitoring scenarios (Stoianov 

et al., 2007). PipeNET is a good example of a wireless monitoring system, since it 

combines several transducers, wireless monitoring strategies and application areas into 

one monitoring system. 

Krishnamurthy et al. (2005) studied applicability of industrial wireless sensor networks 

for predictive maintenance purposes. Nodes equipped with accelerometer sensors and 

ZigBee radios were tested in a semiconductor fabrication plant and in an oil tanker.  

Applicability of wireless monitoring systems in building automation (Osterlind et al., 

2007) and HVAC systems (Oksa et al., 2008; Kintner-Meyer et al., 2004) has been 

studied. 

Intensive research is being conducted on WSN applications for SHM and several 

prototypes were proposed in recent years. These prototypes utilize nodes equipped with 
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Figure 6. Monitoring system for water transmission pipelines (Stoianov et al., 2007). 

accelerometer sensors and ZigBee radios (Pakzad et al., 2008; Xu et al., 2004; Bocca et 

al., 2009). 

A wireless sensor network has been implemented and deployed in a petroleum facility. 

Effects of latency and environmental noise on a WSN were investigated (Johnstone et 

al., 2007). 

Several other wireless monitoring applications have been developed for food and 

agriculture industries (Wang et al., 2006), volcanic monitoring, health monitoring, and 

environmental monitoring (Yick et al., 2008). 

2.5.2 Commercial Applications 

In this section a number of commercial wireless monitoring systems are described. 

Emerson Process Management provides smart wireless field network solutions for 

process and asset monitoring that employ temperature, pressure, vibration, pH, 

corrosion, flow, and level transducers and WirelessHART communication protocol 

(Emerson, 2009). Honeywell, another key player in sensors and sensing applications 

industry, uses their own OneWireless universal mesh network, which supports multiple 

industrial protocols and applications simultaneously, to monitor plants (Honeywell, 
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2009). Accutech Instrumentation Solutions provides wireless instrumentation products 

(wireless acoustic, temperature, pressure or discrete input sensors) for the industry. 

Accutech radios work on 902 MHz – 928 MHz band and support open communication 

standards such as ISA and HART (Accutech, 2009). ProSmart of International 

Telephone & Telegraph (ITT) is a wireless monitoring system for rotating equipment 

health monitoring and pumping system control. ProSmart nodes, with 2.4 GHz radios, 

employ vibration, tachometer, temperature, and inductive speed sensors and other 

terminal blocks (ProSmart, 2009). WiSensys system of Wireless Value provides 

wireless solutions for food, industrial, building automation and agricultural monitoring 

(WiSensys, 2009). Tollgrade Communications Inc. produces wireless sensors to 

monitor key circuit parameters, such as voltage, current and power, for fault detection 

and maintenance purposes (Honath, 2008). Other companies that provide commercial 

wireless monitoring systems include Microstrain, Millenial Net, Flowserve, SKF, 

Siemens, Sensicast and ABB. 

2.6 Key Design Considerations for Wireless Monitoring Systems 

This section gives an overview of key design considerations when designing wireless 

monitoring systems. Note that communication reliability and power consumption are 

not going to be mentioned in this section. These are two very important issues to be 

considered when designing wireless systems for continuous monitoring. However, this 

thesis focuses on developing a general purpose wireless monitoring toolkit which is 

going to be used mainly for periodic monitoring, where requirements on battery lifetime 

and energy use optimization are not playing a significant role. 

2.6.1 Sampling Frequency 

Sampling frequency of a sensor in a monitoring application is set by the highest 

frequency of interest. Highest frequency of interest is highly application dependent and 

it is impossible to state that one sampling frequency that will suit all applications. For 

example, as it can be seen in Section 2.4.1, when monitoring vibrations of the rotating 

machines, frequencies of interest are usually below 200 Hz. Rotating electrical 

machines, however, in some cases require monitoring a much broader bandwidth (50 

kHz) (Tavner, 2008). On the other hand, for very stiff structures, such as concrete 

bridges, a bandwidth of 0.1 to 20 Hz is of importance (Kruger et al., 2004).  
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Once the highest frequency of interest is determined, theoretical lower limit for 

sampling frequency can be found according to Nyquist–Shannon sampling theorem, i.e., 

by multiplying the highest frequency of interest by two. However, in practice, when 

filters and noise reduction algorithms are taken into account, higher sampling 

frequencies are required. Most commercial frequency analyzers sample at a rate of 2.56 

times highest frequency to compensate these effects (Goldman, 1999). In this respect, 

maximum achievable sampling rate is an important criterion when designing wireless 

sensor nodes.  

2.6.2 Sensitivity of the Sensors 

Sensitivity of a sensor is the ratio of the magnitude of its response to the magnitude of 

the quantity measured (Vig et al., 2000). For example, if the mercury in a thermometer 

moves 1 cm when temperature changes by 1 °C, the sensitivity is said to be 1 cm/°C. It 

is important to use high sensitivity sensors when measuring very small variables. 

2.6.3 Sensor Resolution 

Resolution is an important specification for reliable measurements. Resolution of a 

sensor is the smallest change it can detect in the quantity that it is measuring. This 

smallest change is often limited by the electrical noise present. Resolution is only useful 

when it is evaluated within the context of bandwidth. Low-pass filters can be used to 

eliminate high frequency noise, however, they reduce the bandwidth of the sensor at the 

same time. Similarly, when a lower measurement bandwidth is used, a higher resolution 

is obtained. Thus the resolution information in sensor datasheets can be misleading and 

it should not be assumed that sensors’ bandwidth and resolution specifications can be 

achieved simultaneously (Lion Precision, 2009).  

2.6.4 Frequency Resolution and Windowing 

Frequency resolution defines the minimum frequency difference between two sinusoids 

that allows resolving two distinct peaks in the spectrum. It is calculated by  
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where sf  denotes sampling frequency, rf  denotes frequency resolution and N denotes 

number of samples taken.  

Windowing technique is used to increase spectral resolution by minimizing edge effects 

that result in spectral leakage in the FFT spectrum. FFT algorithm assumes that the 

finite data set consists of one period of a periodic signal, which means that two 

endpoints of the time waveform are interpreted to be connected. However, this can 

introduce sharp transition changes into the measured data and different spectral 

characteristics than that of original continuous signal. Windowing is a technique used to 

shape the time portion of the measurement data, to minimize edge effects that result in 

spectral leakage in the FFT spectrum. There are various types of windowing functions 

and their performance varies according to the applications they are used for (National 

Instruments, 2009). Table 7 shows some window recommendations for different types 

of signals. 

2.6.5 Measurement Length 

Once the required frequency resolution and sampling frequency are known, number of 

data points, hence the measurement length, can be calculated according to (9). If a 

higher sampling frequency than that of needed is chosen, the amount of data to meet the 

same frequency resolution will increase. This will decrease the performance of a 

wireless node which has limited memory, computational power and energy. 

2.6.6 Synchronization 

Wireless sensor nodes have the capability of monitoring physical phenomena at 

multiple locations and possibly by measuring more than one type of parameter. 

Synchronization of the measurement nodes should be established in order to have a 

reliable cause-effect relationship among the various monitored parameters. “Time 

related, abrupt, spurious (false) variation in the duration of any specified related 

interval” is defined as varying time delay, or jitter by IEEE. These variations depend on 

the clock accuracy, scheduling algorithm (CPU), computer hardware structure and 

network protocol (Eriksson et al., 2008 b). Jitter should be handled carefully to obtain 
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reliable and synchronous measurements from the measurement nodes in a wireless 

sensor network. 

 

Table 7. Recommendations for different window types (National Instruments, 2009). 

Type of Signal Window 

Transients whose duration is shorter than the 

length of the window 
Rectangular 

Transients whose duration is longer than the 

length of the window 
Exponential, Hanning 

General-purpose applications Hanning 

Spectral analysis (frequency-response 

measurements) 

Hanning (for random excitation), 

Rectangular (for pseudorandom 

excitation) 

Separation of two tones with frequencies very 

close to each other but with widely differing 

amplitudes 

Kaiser-Bessel 

Separation of two tones with frequencies very 

close to each other but with almost equal 

amplitudes 

Rectangular 

Accurate single-tone amplitude measurements Flat top 

Sine wave or combination of sine waves Hanning 

Sine wave and amplitude accuracy is important Flat top 

Narrowband random signal (vibration data) Hanning 

Broadband random (white noise) Uniform 

Closely spaced sine waves Uniform, Hamming 

Excitation signals (hammer blow) Force 

Response signals Exponential 

Unknown content Hanning 
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2.6.7 Radio, Routing and Networking Issues 

Among the physical radio specifications explained in Section 2.1 (IEEE 802.15.1, 

802.15.3a, 802.15.4, 802.11b), IEEE 802.15.4 is ideal for monitoring, control, 

automation, sensing and tracking applications for the home, medical and industrial 

environments. Being based on IEEE 802.15.4, ZigBee is considered to be the most 

promising standard for wireless sensors due to its low power consumption, data rates 

and simple networking capability (Wang et al., 2006). However, limited bandwidth 

(250 kbps) of IEEE 802.15.4 radios can result in long operation times when they are 

used for high data rate applications (Cosar et al., 2009). Bluetooth can be an option 

when monitored system requires a high sampling rate, however, its low scalability (8 

devices per network) compared to that of ZigBee’s (up to 65,000 devices per network) 

limits its usage. In the context of monitoring applications, only case Bluetooth would be 

more advantageous over ZigBee would be when a system requires high data rate 

communication in a small area with less than eight sensor nodes for a short period of 

time. Otherwise, being an open standard and mature in development, ZigBee is a good 

candidate for most of the wireless monitoring systems. 

ZigBee defines three device types: ZigBee coordinator, ZigBee router and ZigBee end 

device. These devices form one of the three types of network topologies: star, tree and 

mesh (peer-to-peer). These topologies are shown in Figure 7.  

In star topology, ZigBee end devices only communicate with ZigBee coordinator. In 

mesh topology any device can communicate with any other device in their range. Mesh 

networks can form ad-hoc, self organizing and self healing communication schemes. 

Hierarchical/Tree routing and integrated routing method combined with Ad hoc On 

Demand Distance Vector (AODV) are used in mesh networks. Multipath routing 

capacity improves reliability of mesh networks. Cluster tree networks are utilized by 

full functioning devices (FFD) and reduced function devices (RFD). FFD device is a 

coordinator which provides synchronization services to other devices and coordinators. 

Hierarchical /tree routing mechanism is used in cluster tree networks (Sun et al., 2007).  

Radio, routing and network topology requirements of a wireless monitoring system can 

vary depending on the application. Simplest scenario employs a single hop star 

topology. Note that time required to transfer the data increases as the number of hops 
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Figure 7. ZigBee network topologies (Kinney, 2003).  

increases. Furthermore, synchronizing multiple nodes becomes harder when multi-hop 

topologies are used. However, when the monitored area is large, communication range 

of the radio can be a limitation, and in such a case multi-hop networks would be needed.  

2.6.8 Data Storage and Transmission 

Wireless sensor networks have limited communication bandwidths. When high 

sampling rates are used, it is not possible to transmit the measurement data immediately 

after sampling (the sample-and-transmit method). In such cases, samples have to be 

stored in memory of the sensor node and transmitted after the sampling operation has 

finished (the sample-store-transmit method) (Mechitov et al., 2004). If the internal 

memory of wireless node’s microcontroller unit (MCU) is not sufficient to store all the 

samples, external memories are needed, such as an external flash memory. However, 

using an external memory can introduce additional delays in sampling which will cause 

lost samples (Bocca et al., 2009).  

Data collected by wireless sensor nodes have to be transferred unless locally processed 

in the node. This data transmission can take ten times the measurement length due to the 

limited bandwidth of wireless sensor networks in traditional WSN applications (Cosar 

et al., 2009). A practical wireless monitoring system should provide the collected data 

in a reasonable length of time.  

2.6.9 Simplicity and Configurability 

Monitored structures or processes can require a variety of measurement settings. A 

general purpose wireless monitoring application should meet the requirements of 

different monitoring applications. Configuration of the system should be easy so that a 
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serviceman should be capable of setting the system without considering the application 

level issues (Desborough et al., 2001). 

2.7 Summary 

In this chapter, current condition monitoring and performance optimization trends were 

presented. It has been shown that there is an increasing need for intelligent monitoring 

applications and wireless sensor networks are likely to play an important role in future 

monitoring operations.  

Monitoring systems are widely used in industry. Reference academic and commercial 

wireless monitoring applications reviewed here show how wireless sensors can 

contribute to monitoring systems.  

This study showed that an easy-to-use, easy-to-setup, flexible, non-intrusive multi-

parameter wireless monitoring system, which can provide reliable measurements in a 

short time, has a great potential for condition monitoring and performance optimization 

purposes. Design considerations for such a system were discussed in the last section of 

this chapter. 
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3 Wireless Monitoring Toolkit 

3.1 General Description 

Wireless monitoring toolkit can be defined as a multipurpose, portable, easy-to-use, 

simple-to-setup, simple-to-reconfigure and fast-to-collect-data monitoring system. It is 

designed for simultaneous multi-parameter monitoring of physical structures and 

processes.  

Toolkit includes three applications, one data acquisition system, hardware components 

(sensors, casing, antennas, etc.), sensor drivers, and user interfaces.  

Sensor nodes consist of temperature and humidity sensors, an accelerometer sensor 

printed circuit board (PCB), an off-the-shelf wireless node, antenna, battery, an on and 

off switch, and strong magnets enabling easy installation. All these components are put 

into a compact case. Wireless node includes an IEEE 802.15.4 compatible radio, MCU, 

memory and external I/O pins.  

During the toolkit development, a novel data acquisition system was implemented. This 

system optimizes data transfer from wireless sensor nodes to PCs. Optimization of this 

data transfer was seen to considerably decrease data collection times. 

Applications developed within the scope of the toolkit are listed below: 

 A communication test application was developed to evaluate wireless network 

characteristics. 

 A high sampling rate application was developed. This application aims fast 

collection of measurement data without losing any packets. Developed data 

acquisition system is integrated into this application.  

 A real-time monitoring application was developed to collect measurement data 

in real-time for low sampling rate (< 200 Hz) applications. Synchronization of 

the wireless nodes was improved by using the multi-tasking capability of the 

operating system. 
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Usability of these applications was improved by user interfaces that hide lower level 

programming issues from the operator.  

Initial goal of the thesis was to integrate all the developed modules into one node and 

interface. However Micro.2420 nodes have a limited amount of memory, hence when 

the size of the program exceeds the memory size of the MCU, it is not possible to 

compile a code. 

Currently communication test and high sampling rate applications are embedded in one 

code and user interface. However, the real-time monitoring application is located in 

another code and has its own user interface. Future study will focus on optimizing these 

codes and putting them together in one code. 

3.2 Sensor Node 

3.2.1 Micro.2420 Wireless Sensor Network Platform 

Sensinode Micro.2420 nodes were chosen as the wireless sensor network platform. The 

Micro.2420 nodes are based on a TI MSP430 MCU core having 10 kB RAM and 256 

kB flash memory. The clock of the MCU and the bus run at 8 MHz. The MCU provides 

a multi channel 12 bit analog to digital converter (ADC) with voltage range 0-3.3 V and 

two 12 bit digital to analog converters (DACs) (0-2.5 V). An external 0.5 MB serial 

flash memory is connected to the MCU. The radio module is an IEEE 802.15.4 

compatible, Chipcon CC2420 transceiver, operating on the 2.4 GHz band, having 250 

kbps bandwidth. The platform runs the FreeRTOS real-time kernel. The Micro.2420 

nodes have a 12 pin external connector on which 8 GPIO, 2 ground pins and one power 

pin are located. A 50-pin Micro.bus connects Sensinode Micro series modules into a 

stack and it has SPI, programming, power, UART, clock, reset, interrupt, 1-wire and 

parallel I/O lines on it. Dimensions of Micro.2420 are 40 x 50 mm. Wireless node can 

be powered by two AAA batteries (Sensinode, 2006). Figure 8 shows a Micro.2420 

wireless sensor node and its components.  

Micro.2420 runs NanoStack™ 1.0.3, a flexible 6LoWPAN protocol stack with a full 

IEEE 802.15.4 implementation (Nanostack, 2009). 
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Figure 8. Micro.2420 wireless node. 

3.2.2 Sensors 

Wireless sensor nodes are equipped with 3-axis digital accelerometers (LIS3LV02DQ 

by STMicroelectronics, 7x7x1.5 mm) that have 1 mg resolution at 40 Hz bandwidth. 

Output data rate (ODR) can be set to 40, 160, 640 or 2560 Hz. Sensor bandwidth is 

defined to be one fourth of the output data rate, thus the maximum measurement 

bandwidth is 640 Hz. Sensor has a user selectable full scale of ±2g or ±6g. Data is 

transferred through a Serial Peripheral Interface (SPI) interface. A dedicated PCB board 

is created to connect the sensor to Micro.2420 though a 50 pin bus connector.  

A low power temperature and humidity sensor (SHT71 by Sensirion) is connected to the 

Micro.2420 through 12 pin external connector. Typical resolution of SHT71 is 0.01 ºC 

for temperature and 0.05 % Rh (Relative Humidity) for humidity. Communication is 

established using a digital 2-wire interface. 

3.2.3 Integration of Components 

Components of the sensor node are combined into one single node box. This node box 

includes an accelerometer board stacked on Micro.2420 node, temperature and humidity 

sensor connected to Micro.2420, an external antenna to enhance wireless 

communication capability of Micro.2420, and four external I/O pins including a ground, 

3.3 V and two Input/output (I/O) pins. Accelerometer Board is tightly screwed to the 

bottom of the box to increase accuracy of measurements. Two strong magnets are used 

to attach the nodes to the monitored structure. Damping is minimized by doing so. Node 
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case also includes two AAA batteries and an on/off switch. Figure 9 shows a picture of 

wireless sensor node after all the components combined into one node box.  

3.2.4 Programming, Control and I/O 

Sensinode U600 Micro.USB modules are used to interface Sensinode Micro series 

nodes with a PC, providing a serial connection over USB for debugging, controlling and 

programming purposes. Micro.USB programming board includes a FTDI FT232R 

UART-to-USB chip. Thus chip is compatible with USB full speed (12 Mbit/s), and 

provides a serial port between Sensinode nodes (directly to the microcontroller) and PC. 

Application codes are written in C programming language. GNU (GNU’s Not Unix) 

Compiler Collection (GCC) is used to create binary files. Compiled files are uploaded 

by msp430-bsl programmer for Micro platform devices. 

 

 

Figure 9. Wireless sensor node. 
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MATLAB 7.5.0 (R2007b) serial port interface is used to manage the I/O between 

Micro.USB and PC. When data are sent from the node to serial port of the PC, callback 

functions handle and parse the data. Using MATLAB software enhances the flexibility 

of the system in the sense that the nodes can be controlled and data can be processed in 

near real-time by a script or user.  

3.2.5 Network Topology and Communication 

Single hop star topology is used for communication. This approach represents a simple 

case, however, generated knowledge and experience can easily be used for more 

complex scenarios in future.  

Communication tasks are handled by NanoStack. Features are accessed via Socket API 

(Application Program Interface). Communication sockets can be bind to specific 

addresses. NanoStack ports are identical to those of TCP/IP stack and they range from 5 

to 65536 in uncompressed mode and from 61616-61631 in restricted mode. Address 

structure supported by NanoStack includes address type, address and port information.  

Developed applications use port numbers for identification. This means that every node 

has its own port number. Messages are sent to or received from a node through these 

ports.  

Packets received by the wireless nodes can be handled in one of the two ways: scanning 

the socket, or in a callback manner. When the former is chosen, incoming packets are 

stored in the receive buffer of the radio and pulled only when node reads the 

communication socket. When callback reception is selected, a callback function handles 

the data whenever a packet is received (Sensinode, 2007). Using a callback function 

provides more precision when a timing critical packet is to be received.  

3.2.6 Measurement Node and Sink Node 

Two node types are used in wireless monitoring toolkit: a measurement node (see 

Figure 9) and a sink node. Sink node is simply a Micro.2420 module connected to a PC 

through a U600 Micro.USB programming board. It has two main tasks:  
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1. Managing I/O with PC, i.e., taking user defined setting, sending incoming 

measurement data to PC, debugging errors, etc. 

2. Communication with measurement nodes, i.e., sending setting packets, operation 

initiation, synchronization, receiving data, acknowledgement, etc. 

A measurement node is the node equipped with the hardware presented in Section 3.2.3. 

Two main tasks of measurement nodes are: 

1. Communication with sink node  

2. Sampling 

3.3 Real-time Monitoring Application 

A real-time monitoring system has been developed for low sampling rate (< 200 Hz) 

applications. When the monitored frequencies are not high, wireless nodes can sample 

and transmit without storing the measurement data to an external memory. This 

approach reduces the time spent for measurements.  

A MATLAB based graphical user interface (GUI) has been developed to increase 

usability of the system. Synchronization of the wireless nodes is established by using 

multi-tasking capability of the operating system. Conventional processors execute tasks 

one by one, however, an operating system is said to be multitasking when it rapidly 

switches between tasks (FreeRTOS, 2009). Figure 10 illustrates the task execution in a 

multitasking operating system.  

Operation starts after the user sets the configuration parameters and press start button of 

the GUI. MATLAB program generates a settings packet according to the user 

preferences. This packet includes operational parameters such as timing of the 

operation, active nodes, active sensors in active nodes, etc. The packet is first 

transferred to the sink node using MATLAB’s serial port interface. Sink node transfers 

this packet to the measurement nodes and waits for an acknowledgement. When the 

measurement nodes receive this message, they check whether they are going to be 

active in this operation or not. If they are going to be active, they take the settings 
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Figure 10. Task execution in a multitasking operating system (FreeRTOS, 2009). 

and adjust themselves according to the settings. They send a confirmation message 

indicating that they took the settings, and are ready for sampling operation. Then 

sampling and data collection starts. Operation ends when the user presses “stop” button 

of the GUI. Details of the operation will be presented in the following sections. 

3.3.1 User Interface and Configuration 

MATLAB user interface is designed and implemented so that a user can easily setup the 

monitoring system parameters according to the needs. Main idea is to hide complex 

application details from the user by providing an easy-to-use interface. MATLAB GUI 

can be seen in Figure 11. Note that for the developed prototype toolkit, 6 nodes are 

enough and that is why the GUI is designed for 6 nodes. However, the toolkit and the 

GUI can easily be expanded to support more nodes. 

The settings of the GUI are listed below. 

1. Radio Settings:  

Suitable communication parameters can vary according to the environment. This menu 

is designed considering the “communication test” application which will be explained 

later. With communication test application the user can choose the optimum radio 
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Figure 11. MATLAB GUI. 

channel and this channel can be set as the communication channel through the GUI. 

Furthermore sink address port and broadcast address port settings can be changed to 

avoid mixing packets with other active wireless networks using the same channel.  

2. Operation Settings: 

Communication port, external triggering and sampling period can be set through this 

menu. Communication port is the dedicated serial port number of the PC for the 

communication with the sink node. External triggering is useful when measurements are 

needed to be triggered by an event. There are three options for this menu bar: disabled, 

high-to-low, and low-to-high. This setting adjusts an external I/O port of the sink node 

so that it will sense a high-to-low or low-to-high transition. Sampling period is the time 

between two consecutive measurements.  

3. Sensor Settings: 

With this menu, user can choose active ADC channels (ADC1 or ADC2), active axis of 

the accelerometer (X, Y, or Z), and the scale of the accelerometer (± 2 g or ± 6 g). 

4. Figure Settings: 
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User can choose which graphs will be active during the measurement, i.e., temperature, 

humidity, accelerometer (X, Y, or Z), ADC (ADC1 or ADC2). Update rate defines 

number of samples to be taken before graphs are updated. 

5. Node Settings: 

Currently, the GUI is implemented for six measurement nodes. User can choose active 

nodes in the measurement and active sensors in these nodes (accelerometer, 

temperature, humidity or ADC). Scale of ADC can be set in this menu. This property is 

added considering the analog signals that can be connected to the ADC terminals. 

Graphs are presented and data are saved with this scaling. 

6. Start Stop Buttons: 

These buttons are used to start and stop the operation. When stop button is pressed, user 

is asked whether he wants to save the current measurements. 

3.3.2 Settings Packet 

Data transmission during the operation is based on 80 byte packets, 72 of which are 

reserved for data. A packet is transmitted from measurement nodes to the sink node 

only when there is enough data available, not after every sample taken. By this way, 

unnecessary wireless transmission is prevented. In this respect, settings packet does not 

just transfer user preferences to the measurement nodes. Instead it also transfers 

operational parameters of the network.  

Following equations give the most critical calculations done when forming the settings 

packet. 

 BpS = (Axis*2) + [2*(T+H+ADC1+ADC2)] , (10) 

BpS stands for bytes per sample and it indicates the amount of data bytes during one 

sampling interval. Axis is the number of accelerometer axis, i.e., 1 for X axis, 3 for X, 

Y, and Z. Abbreviations T, H, ADC1, ADC2 indicate respectively temperature and 

humidity sensors, and ADC channels one and two. These parameters are set to one if the 

sensor in concern is active. BpS is calculated for each node, since node setting can be 

asymmetrical. Number of samples per packet, SpP is calculated as below 
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72

= floor( )
max( )

SpP
BpS

 ,       (11) 

Time in between two consecutive synchronization packets, tT , is calculated by 

                 Tt=SpP.Ts ,      (12) 

where sT  stands for sampling interval. Finally each node is assigned a portion of tT  for 

data transmission according to 

  
_ _

tT
NI

number of nodes
 ,      (13) 

where NI stands for node interval. Timing of the operation and use of the calculated 

parameters are illustrated in Figure 12.  

3.3.3 Application Tasks 

Table 8 shows the tasks defined for the measurement and sink nodes and the task 

priorities.  

Sample number
1 2 SpPSpP-1

tT

sT

3 1

sT

NI

SpP

NI*(number of nodes-1)

tT : Transmission interval (interval between two syncronization packets)

sT : Sampling interval

: Sampling instant

: Instant at which synchronization message from the sink node is received

: Instant at which data are transmitted

NI : Node interval (interval between two data transmissions)

Sink node broadcasts 

syncronization packet 

to all nodes

Data transmission 

from measurement 

nodes to the sink 

node

SpP : Samples per packet

 
Figure 12. Timing of the operation. 
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Table 8. Application tasks and their priorities. 

 Measurement Node Sink Node Priority 

Task 1 
Take settings from sink 

node 

Take settings from PC and transfer those 

to measurement nodes 
High 

Task 2 Sampling Transmit synchronization message High 

Task 3 
Transmit measurement 

data 

Receive measurement data and pass it to 

PC 
Low 

Time critical tasks such as sampling and transmission of synchronization packet are 

given the highest priorities. Transmitting and receiving measurement data are not 

critical for the precision of the measurements, hence their priorities are lower. 

Sink Node Task 1: Settings 

This task is responsible of taking the settings packet from the PC, broadcasting it to the 

sink nodes and waiting for the acknowledgement. During this task, other tasks are 

pending. This task is killed once the nodes are set.  

Measurement Node Task 1: Settings 

Measurement node scans the channel until the settings packet is received from the sink. 

Then the node checks whether it will be active during the measurement. Active nodes 

adjust their sensor and ADC settings. Then they send an acknowledgement packet to the 

sink. Task kills itself after the settings are done. Note that other tasks are pending during 

this task. 

Sink Node Task 2: Synchronization 

Sink node transmits synchronization packets periodically with intervals defined by tT . 

Synchronization packets are designed to arrange timing of the measurements and to 

ensure synchronous sampling of all the nodes despite their individual clock drifts. This 

is why this task is given the highest priority. Synchronization packet includes a two byte 

counter, which is used to detect packet order and lost packets.  

Measurement Node Task 2: Sampling 
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This task is responsible of sampling. Samples from the active sensors are taken and 

stored in a measurement buffer, which then will be transferred to a transmission buffer. 

This is the task that has highest priority for the measurement node.  

Sink Node Task 3: Data Storing 

Incoming packets are stored in the sink node’s receive buffer and packets are handled 

whenever the node can spare its resources for this task. This means that the sink node 

does not handle the data right after it is received, but waits until there is no other critical 

task ongoing. Handled data is transferred to the PC through the serial port. The program 

is configured so that the sink node has enough time for this task and no data loss occurs 

due to the execution of other tasks. 

Measurement Node Task 3: Data Transmission 

This task is responsible of transferring the measurement data taken during the previous 

cycle. Every node is assigned a time period within a cycle to transmit its measurements. 

Exact time of this transmission is not exactly known a priori, since the node transmits 

whenever it has the resources. Transmitting the data is not time critical, that is why this 

task has lower priority. 

3.3.4 Remarks of the Operation 

Note that for measurement nodes, reception is not defined in a task. A callback function 

is used to handle the synchronization packets. This callback function resets the 

measurement timer of the node to reduce the effects of clock drift and other delays. 

Measurements of the previous cycle are transferred to a transmission buffer to be sent 

during the next cycle. Counter in the synchronization packet is stored in the 

measurement buffer to indicate the order of the packet. This counter information is 

present in the transmitted data packets, and sink node forwards this number to the PC 

along with the data itself. MATLAB callback function compares this number with 

number of previous packet received. If the difference is larger than one, it introduces a 

gap to the data stored in PC. MATLAB callback function parses the data according to 

the node number and sensors. MATLAB plots the selected figure in real-time.  
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Note also that two types of buffers are used in measurement nodes: measurement buffer 

and transmission buffer. This is due to nature of the multi-task operation. A data packet 

is not transferred at a predetermined instant. Instead the MCU schedules an interval for 

transmission when it is available. Meanwhile the sampling operation continues. So if 

the same buffer was used for both new measurements and transmission, new samples 

would be written on the data taken in the previous cycle.  

3.3.5 Summary 

Real-time monitoring application is carefully planned to meet the objectives of wireless 

monitoring toolkit. This application has two very important features which distinguish it 

from other wireless monitoring applications. These two features are dynamic and multi-

task operation. 

Dynamic operation means that the timing of the operation is not predetermined and 

operational parameters are adjusted each time according to user preferences. This 

enables the user to choose any number of nodes, any sampling frequency and any 

number of sensors. Operation would be optimally adjusted each time according to the 

given preferences as long as the platform limitations are not exceeded. This property of 

the application makes it suitable for a broad range of monitoring applications.  

Multi-tasking operation provides efficient allocation of resources and increased 

measurement precision. With this approach, time-critical tasks, such as sampling and 

synchronization, are given higher priorities whereas other tasks, such as transmission 

and handling of measurement data, are given lower priorities.  

The user can choose the best performing channel based on the RSSI measurements. 

Furthermore, effect of node location on RSSI can be determined with this application.  

3.4 Communication Test Application 

This application is developed to assess communication link quality of measurement 

environment. Received signal strength indicator (RSSI) measurements are used as 

quality indices. RSSI is based on measuring the power present in a received radio 

signal.  
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In this application the user defines radio channels and nodes to be tested, number of 

packets in each test, number of bytes in each packet and transmission power. Then 

MATLAB transfers these settings to the sink node. Sink node transmits the settings to 

measurement nodes. Nodes set their radio channels and transmission powers 

accordingly. Then they transmit test packets. Sink node compares RSSI values of 

received packets to a set of standard values and calculates RSSI histogram based on this 

data and sends it back to PC. Results are plotted once the tests are completed. Section 

4.3.1 presents how this application can be used to evaluate wireless communication 

characteristics of the sensor nodes in an industrial environment. 

3.5 High Speed Portable Wireless Data Acquisition System 

One of the objectives of this thesis was to develop a wireless monitoring system which 

can collect high sampling rate data in a reasonable amount of time. In a typical wireless 

structural health monitoring application, we have observed an operation time of 

approximately 30 minutes for a measurement setup with 6 nodes, 30 seconds of 

sampling, 6 bytes of data per sample at 1 kHz sample rate (a total of 1.08 MB of data). 

This means several hours of data collection for larger deployments. Importance of data 

aggregation on scalability (Mechitov et al., 2004) and long data aggregation periods of 

WSNs in SHM applications (Pakzad et al., 2008) have been previously reported and 

several studies have concentrated on the efficient utilization of communication 

bandwidth in WSNs (Paek et al., 2005, Kimura et al., 2005).  

High data rate applications are an emerging branch of wireless sensor networks (WSNs) 

including applications, such as structural health monitoring (Lynch et al., 2006), 

condition monitoring (Wright et al., 2008), wireless surveillance (Akyildiz et al., 2006), 

and patient health monitoring (Paksuniemi et al., 2005). Communication between a sink 

node and a PC can constitute a bottleneck for high data rate applications of wireless 

sensor networks (WSNs). The cause of this bottleneck will be discussed in this section. 

Then four different data acquisition approaches will be evaluated. Finally, a detailed 

description of a novel data acquisition system will be given. 

A sink node in a wireless sensor measurement application is responsible for collecting 

and transferring measurement data to a device that has higher processing power, in most 

cases a PC. USB ports provide a suitable environment for digital communication of 
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modern PCs with external devices, with data rates ranging from 1.5 Mbps to 480 Mbps. 

Programming or development boards, such as Sensinode U600 Micro.USB, used for 

interfacing wireless sensor nodes and PCs, have USB modules on them. On the other 

hand, MCUs of wireless sensor nodes do not support USB communication, since it is 

not critical for a wireless measurement node to communicate with the PC all the time. 

Instead, they have embedded UART modules for external communications. UART is a 

widely used serial interface component between a modem and a PC due to its simplicity 

and low cost (Osborn, 2009). UART module of a MCU is responsible of converting 

parallel data from memory to a coherent serial stream of bits at the transmitter and 

doing the reverse at the receiver. Baud rate defines the speed at which a single bit is 

transmitted and received. Theoretically, the UART could use a very high baud rate in 

communication, e.g. in the case of TI MSP430 MCU, maximum baud rate is defined to 

be one third of the UART clock source frequency (2.67 Mbps for 8 MHz clock). 

However, electrical noise and software limitations like interrupt latency, data moves, 

and protocol handling limit the maximum practical speed. UART speed also depends on 

the data rates supported by the terminal program and operating system (OS). 

Figure 13 shows data transfer in a typical WSN focusing on the sink node to PC 

communication link. The speed of wireless sink node to PC communication, in most 

cases the speed of UART, has an important role in optimizing the speed of wireless 

communication in a WSN from the user perspective. If the sink node is not capable of 

processing and forwarding the data in its radio buffer faster than data arrives, the buffer 

will eventually be full, which will cause lost data packets during wireless transmission. 

Thus the period in between two consecutive wireless transmissions should be long 

enough, so that the sink node will have time to handle the data. This means that faster 

data logging systems can reduce the time sink nodes spend on data processing, which 

will lead to faster wireless transmissions and shorter operation times. 

 

PC
UART to USB 

Interface

Wireless measurement 

node

Wireless sink

node

UART

Full speed 
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ZigBee  Network
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Figure 13. Data transfer in a WSN. 
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To evaluate effect of data acquisition system on the speed of wireless sensor network, 

performances of four different data acquisition methods are investigated (Figure 14): 1) 

UART communication through 50 pins connector, 2) parallel port with a DB-25 

connection using RS-232 protocol, 3) USB-connected digital I/O board with 8 digital 

inputs, and 4) USB-connected DAQ board with 4 ADCs. Last three methods utilize 

GPIO pins of Micro.2420 instead of UART communication. Micro.2420 nodes and Dell 

Latitude D630 laptop with Intel Core2Duo T9300 @ 2.50GHz processor running 

Windows XP are used for the tests. MATLAB 7.5.0 (R2007b) software is used to 

manage the I/O. 

3.5.1 UART Communication through 50 Pins Connector 

Sensinode U600 Micro.USB modules are designed to interface Sensinode Micro series 

nodes with a PC, providing a serial connection over USB for debugging, controlling and 

programming purposes. An FTDI FT232R UART-to-USB chip, compatible with USB 

full speed (12 Mbit/s), providing a serial port between Sensinode nodes (directly to the 

microcontroller) and PC, is used in Micro.USB.  

 
Figure 14. Four different hardware used in tests: a. NI USB-6501 USB-connected I/O board, b. NI USB-

9215A USB-connected DAQ board with 4 ADCs, c. Sensinode Micro.USB programming board with 

UART communication through 50 pin connector, d. Parallel port with a DB-25 connection that uses RS-

232 protocol. 

a b 

c d 
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Practical outcomes of different baud rates were investigated with Micro.USB board 

connected to a Micro.2420 and PC. Tests were done with a predetermined 1 MB 

random data and the results are presented in Table 9. In this case data is read from the 

internal memory of MCU, repeating all over again once finished reading the memory. 

This scenario is chosen to test the speed, however, in practice values would be taken 

from a sensor. One start bit and one stop bit are added to transmitted values according to 

the UART communication method. When these start and stop bits are removed, net bit 

rate can be found. In the table, three baud rates and their corresponding net bit rates are 

presented. “Net bit rate - Node” column lists the net bit rates found by measuring the 

time spent for the node to output all the data. Values in “Net bit rate - PC” column are 

found in a similar manner by measuring the time it takes for PC to capture the data and 

present it to the user. The differences in the latter two columns result from pulling the 

data from the input buffer of PC by the OS.  

It is seen from the table that even though baud rate can be increased toward 2000 kbps, 

the practical net bit rate has an upper bound (< 400 kbps). Since the baud rate defines 

the rate at which one bit is transferred, the actual speed of the communication is lower 

due to other data handling operations of the microprocessor. 

It should be noted that the bit rate of UART highly depends on the functions used in the 

node. The results presented in Table 9 are obtained with the lowest level functions 

available after a thorough investigation of different options. FreeRTOS is a multitask 

operating system that uses semaphores to guarantee the synchronization between 

tasks/thread. If higher level functions, which take the semaphores into account, are used, 

the practical net bit rate is observed to be around 55 kbps for 115.2 kbps or any of the 

higher baud rates. 

Table 9. Comparison of UART baud rates and their practical net bit rates. 

Baud rate 

(kbps) 

Net bit rate 

(kbps) 

Net bit rate – Node 

(kbps) 

Net bit rate – PC 

(kbps) 

115.2 92.16 87.545 87.105 

921.6 737.28 394.65 385.93 

2000 1600 395.12 386.19 
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3.5.2 Parallel Port with a DB-25 Connection Using RS-232 Protocol 

Parallel port of a PC, also known as the printer port, is an inexpensive tool for 

interfacing. The printer port provides eight data lines, five status lines and four control 

lines. Printer port is OS dependent, since it is a software timed platform. A DB-25 

connector with RS-232 communication was tested in node to PC data transfer. RS-232 

is a digital communication protocol for serial communications that standardizes voltage 

levels and functions of the signals and physical interface pins. Two methods were tested 

with parallel port to transfer data from the wireless node to computer. During the tests, 

MATLAB was the only active program. Data was read and stored into a register, 75 kB 

of data were transferred and the average data rate was computed. The communication 

could be implemented with or without a handshake mechanism. In one way 

communication case (without handshake), the computer simply reads the bits from the 

port continuously and stores them into a buffer. To enable separating which bits belong 

together and indicating the presence of new data, synchronization bits are needed. In our 

implementation, two lines are reserved for this purpose. In the handshake case, one line 

is reserved for the node to inform PC that new data is available, and another line for the 

PC to inform the node that data has been read. Since Micro.2420 node has 8 external 

I/O pins available, in both cases only 6 lines could be used for data. 

One Way Data Logging:  

The 8 data lines of the parallel port are set as input and the data in the node is output 

through the node external I/O pins as bits (6 for data, 2 for control). The total time 

elapsed for reading the original data of 75 kB was 15.81 s, thus a data rate of 37.95 kbps 

was achieved with this method. Note that practical data rate would be slightly lower due 

to the required after-processing. 

Communication with a Simple Handshake:  

In the simple handshake case, PC needs to read from and write to the parallel port. A 

simple handshaking algorithm was tested by setting 6 data lines and one status line for 

input and one control line for output. At each cycle input lines are read and output line 

is toggled between 1 and 0. With these settings, reading the 75 kB of data takes 62.27 s, 

and hence by this method a communication speed of 9.635 kbps can be reached. Note 



50 

 

that when there is a writing operation from the PC side, established speed reduces 

considerably compared to one way data logging. 

It is seen that achievable bandwidth with parallel port is less than with UART, thus 

further investigation has not been done on these methods. 

3.5.3 USB-Connected Digital I/O Board with 8 Inputs 

Another way to take advantage of the node external I/O in data transfer is to use a low-

cost USB-connected digital data acquisition board, which can be used to read the data 

bits. We tested NI USB-6501 low-cost digital I/O (DIO) device for USB with 24 digital 

I/O channels, one 32 bit counter and full-speed USB bus interface. The board is 

software timed and there is no explicit information about its sampling frequency in the 

datasheets. Without software delays or data verification we obtained a minimum 

sampling interval of 1 ms, which means that the DIO board can reach 6 kbps raw data 

rate as two bits are reserved for status. The board manufacturer (National Instruments) 

has also confirmed that it is not possible to obtain sampling intervals faster than 1 ms 

with software timed digital I/O devices. 

3.5.4 USB-Connected DAQ Board with 4 ADCs  

This method employs a NI USB-9215A portable USB data acquisition device. The 

USB-9215A has four analog input channels which provide simultaneous sampling. 

Maximum sampling rate is 100,000 samples/s/channel with 16 bit resolution, and 

voltage range is from -10 V to 10 V. Dimensions of NI USB-9215A are 14x8.6x2.5 cm. 

MATLAB program is used to control the data acquisition. In the proposed method, two 

DAC outputs and two digital output pins of Micro.2420 node are connected to the 

terminals of USB-9215A. Micro.2420 is also connected to PC through Micro.USB 

programming board to manage the configuration of data acquisition. Both Micro.2420 

and USB-9215A can be accessed and controlled from a MATLAB program. The basic 

idea of the method is to map the data bits into analog voltages, a certain voltage 

corresponding to a particular series of bits. Both two analog outputs of the node can be 

used and, in addition, two digital lines are used as counter pins. The method establishes 

a one way communication, after which the raw data is processed and the original data is 

reconstructed offline in MATLAB. Details of this method will be explained in the 
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following section. With this method, we established a data transfer rate of 264.7 kbps, 

which is higher than that of the wireless sensor network (250 kbps). This data rate uses 

a 4-bit mapping of data, which results in error-free communication. If some error is 

tolerated, the speed can go up to 640 kbps with an 8-bit mapping. 

3.5.5 DAQ-Based System Design 

DAQ-based system setup can be seen in Figure 15. A Micro.2420 node is stacked on 

top of a Micro.USB programming board. Micro.USB is connected to the PC. NI USB-

9215A is connected to the external I/O pins of Micro.2420, and the PC.  

The basic idea of the analog DAQ-based interface is that the node outputs analog 

voltages through two DACs. These voltages are read by the DAQ board that is attached 

to the PC. Additionally, two digital outputs of the node are used for synchronization 

purposes. The output range of the DACs is split into 2
4 

= 16 different levels each 

representing a certain bit pattern. On the PC side, the voltages are read through the 

DAQ board and converted back to bit patterns. Thus the data is actually transported in 

 

 

Figure 15. System setup with Micro.2420 node on top of Micro.USB programming board connected to 

the PC, and USB-9215A connected to the external terminals of Micro.2420 and the PC. 
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digital form by which we prevent measurement noise to disrupt the numbers in the 

transfer as far as the voltage levels are correctly interpreted. 

NI USB-9215A Configuration: 

NI USB-9215A has four pairs of analog terminals, one NC (no connection) and one 

COM (common) terminal. COM and the negative terminals of analog channels are 

connected together. As it can be seen from Table 10, four positive input terminals of NI 

USB-9215A are connected to two digital output pins and two analog output pins of 

Micro.2420. NI USB-9215A is connected to the PC with a USB cable. NI USB-9215A 

does not support hardware triggering and thus sampling is set to be triggered by the 

software with the rising edge of the input terminal AI0+ (sync 1). Sampling rate is set to 

100 kSamples/s and the sampled data is stored into a file on the PC.  

Micro.2420 Configuration: 

Two pins of the Micro.2420 are set as analog outputs (DAC) with 12 bit resolution and 

two other pins are set for digital output. Two digital output pins of Micro.2420 are 

grouped together so that they update simultaneously. Micro.2420 is plugged on 

Micro.USB board through 50 pin connector, which establishes the communication 

needed for setting up the data transfer. 

External connector of Micro.2420 is connected to NI USB-9215A as depicted in Table 

10. Abbreviations LSb and MSb in the table stand for least and most significant four 

bits.  

Data Logging: 

 

Table 10. NI USB-9215A and Micro.2420 connection diagram. 

NI USB-9215A terminal Micro.2420 External connector 

AI0+ (sync 1) Digital output  

AI1+ (sync 2) Digital output  

AI2+ (LSb) Analog output 

AI3+ (MSb) Analog output 
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A MATLAB program is used to control the whole data logging operation. The program 

initializes Micro.2420 through Micro.USB and NI USB-9215A. All digital outputs of 

Micro.2420 are set to zero before the operation begins. NI USB-9215A starts logging 

data when it detects first increasing edge of AI0+ terminal voltage. In the case of 4-bit 

mapping, Micro.2420 separates every 16 bit data (2 bytes = 1 sample) first into two 

bytes and then into two four bit segments (Figure 5). Finally, it outputs the 

corresponding analog output voltages via DAC module of the MCU. The DAC’s peak 

to peak voltage of 2.5 V has been split into 16 levels, so the step size of the output 

voltage is 0.1563V. After the analog voltage is output, MCU waits until the data is 

settled down in the output register. After the correct data is put, a digital pin that is 

connected to AI0+ terminal of NI USB-9215A is set to one. Then the node waits for 

10.5 μs for data to be sampled by NI USB-9215A. Then the digital pin, which was 

previously set to one, is set back to 0. Operation is the same for the following byte 

except the second digital pin is set to one instead of the first one. The flow of the 

operation can be seen in Figure 16. 

Reconstruction of the Original Data: 

Logged data is saved into a file of type “.daq”, as a series of voltage readings. Table 11 

shows seven samples taken by NI USB-9215A during the operation. These samples can 

also be tracked from Figure 16. During the waiting time (the time the node waits after 

outputting the DAC values), either one of digital output pins is set to high. Only the 

  

AI0+ (sync 1)

AI1+ (sync 2)

AI2+ (LSb)

AI3+ (MSb)

10.5 µs

USB-9215A starts 

logging data when it 

detects first increasing 

edge on AI0+(sync 1)

D0 ... D3 D0 ... D3

D4 ... D7 D4 ... D7

Samples
1 2 3 4 5 6 7

10 µs  

Figure 16. Flow of the operation for DAQ-based system. 
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Table 11. Samples taken by NI USB-9215A during operation (samples considered in data reconstruction 

are in boldface). 

Sample number 
AI0+ 

(sync 1) 

AI1+ 

(sync 2) 

AI2+ 

(LSb) 

AI3+ 

(MSb) 

1 3.065 0.001 0.002 2.014 

2 3.243 0.001 0.003 2.016 

3 0.000 0.001 0.003 2.017 

4 0.001 3.219 0.156 1.084 

5 0.001 0.001 0.156 1.086 

6 0.001 0.001 0.156 1.086 

7 3.206 0.001 1.088 1.086 

samples taken during this waiting time are considered to be valid and the rest is ignored 

in order to avoid samples taken during the transition states of analog outputs. Multiple 

samples taken for one byte of data are grouped together and averaged. Then the sampled 

voltage values are converted to bits according to the following equation:  

  
2

0.4
b

org

DAC

R
D floor

V

 
  

 
,      (14) 

Dorg is the original (4-bit) data, R is the voltage reading provided by NI USB-9215A, b 

is the number of bits used for mapping (4) and VDAC is the voltage range of DAC 

module, which is 2.5 V. Floor represents the operation of rounding the values obtained 

towards minus infinity. Each byte is reconstructed by combining the two segments of 

the 4-bit data. Samples number 2 (least significant byte, LSB) and 4 (most significant 

byte, MSB) in Table 3 result in a two byte data of 29136 when they are reconstructed 

according to the equation given above, and organized afterwards. Figure 17 shows the 

status of data at different phases of the operation. 

With 10 seconds of data logging, 8 MBs of raw data are obtained, which is then reduced 

to 331 kB at the end of reconstruction period. Processing 8 MB of raw data takes 2.17 s 

in our MATLAB implementation, including all file I/O operations. Note that this period 
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Figure 17. Data transformation through the operation. 

is OS and software dependent. With the processing time included, overall transmission 

speed is found to be 217.6 kbps, but this also depends on the amount of data to be 

transferred. 

Development 

Since the operation employs a one way communication, a counter mechanism is critical 

to differentiate consecutive samples. Two digital pins of Micro.2420 are used to 

indicate the order and the validity of the data. Even though two pins can be used as a 2-

bit counter, in the current algorithm only one pin is updated at a time, since longer 

update intervals were experienced when two pins were updated simultaneously, which 

would eventually reduce the speed of the communication and increase the error rate.  

Two methods of analog data validation at MCU level were tested: controlling a flag of 

DAC module which indicates the status of the output data and comparing the output 
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data register with the data to be written. Faster data transfer rates were observed with 

output register comparison method.  

The operation needs three output registers of MCU (port 6 for digital output register that 

consists of eight digital outputs, DAC1 and DAC2 analog output registers) to be 

updated. It is critical to be able to ignore the data taken during the transition period of 

the analog voltages, thus a safety mechanism is employed by outputting 0’s to the 

counter pins, when there is possibility of a transition. One of the digital outputs is 

updated at a time only when it is certain that there is the correct analog voltage output in 

the DACs. In theory, Micro.2420 can output 12 bits of data at a time and these data can 

be reconstructed perfectly, since NI USB-9215A takes 16-bit samples. However, DAC 

and ADC modules are imperfect and have output and input noises, which make it 

impossible to reconstruct the original data, if a 12-bit mapping is used. Input noise of NI 

USB-9215A is defined to be 7 LSB, which corresponds to 39.1 mV when calculated 

with the following formula. 

 ( )2

p p

voltage Res Noise

V
N




  , (15) 

Nvoltage is the peak to peak input noise voltage, Vp-p is the peak to peak voltage range, Res 

and Noise are measurement resolution and noise in terms of bits. 39.1 mV corresponds 

to the step size of 6-bit mapping in 2.5 V peak to peak voltage range of the node. 

However, when the output noise of the DAC module of Micro.2420 is considered, the 

optimum number of bits to map the data without any errors into 2.5 V is found to be 

smaller than six. The system was tested with 4, 5, 6 and 8-bit mapping methods and the 

results were compared. During these tests, NI USB-9215A logged the data for 10 

seconds, while the Micro.2420 consecutively output a predefined pseudo-random set of 

data. Transferred and reconstructed data and the original data were compared offline. 

Percentage error rates and data transfer rates with four different mapping methods can 

be seen in Table 12. High resolution mapping results in higher speeds; however, error 

rates increase accordingly. Zero error rates are achieved only with four bit mapping. 

Increasing the waiting time allows NI USB-9215A to take more samples for each byte 

and it provides longer time for settling, hence reducing the risk of an error, since the 
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Table 12. Percentage error rates and data transfer rates of four different mapping methods. 

Mapping method % Error 
Data transfer rate 

(kbps) 

8-bit 36.26 640.00 

6-bit 5.13 480.64 

5-bit 0.04 402.74 

4-bit 0.00 264.70 

averaging technique is used when reconstructing the data. Even though the error 

percentage is lower for longer waiting times, it is observed to never be zero with the 

mapping orders other than four. 

3.5.6 Comparisons 

In this section, the above discussed data acquisition methods are summarized and 

compared. Table 13 summarizes the theoretical bit rates and practical data transfer rates 

of the tested data acquisition methods and compares them with the IEEE 802.15.4 

network data rate.  

 

Table 13. Comparison of theoretical data rates and practical data transfer rates of IEEE 802.15.4 network 

and tested data acquisition methods. 

Method 
Theoretical data rate 

(kbps) 

Practical data transfer rate 

(kbps) 

UART communication (921600 

baud rate) 
921.6  385.93 

Parallel port-one way data logging OS-dependent 37.95 

Parallel port-communication with a 

simple handshake 
OS-dependent 9.64 

USB connected Digital I/O board OS-dependent 6.00 

USB connected Analog DAQ board 6400.00 264.70 

IEEE 802.15.4 network 250.00 Application dependent 
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The practical data rate numbers consider only the speed of transferring data from the 

MCU internal memory to PC. In practice, though, data are usually not in the (small) 

internal memory, but they are either read from the external flash or they arrive 

wirelessly from another node. Thus, in Table 14, we also present a comparison of 

UART and DAQ-based system, when data are transmitted simultaneously over the 

IEEE 802.15.4 network and transferred from the sink to PC, which represents a realistic 

use case scenario of a wireless data logging system. In the table, the waiting time after 

transmission is the time the transmitter node waits after a transmission, before the next 

one. These waiting times in the table are optimized for the corresponding 

communication method and speed, and with faster transmissions a high amount of 

packets would be lost. The effect of data logging method on the performance of the 

networked data logging system can be seen from the table. 

It should be noted that in Table 14 the data rate provided by the DAQ-based system is 

with zero error (4-bit mapping). The speed of the DAQ-based system could be further 

improved with a faster data acquisition device that has lower input noise and hence 

would tolerate more efficient data mapping methods (see Table 12). 

A significant increase in network throughput was observed with the proposed method 

compared to the traditional UART communication method with 115.2 kbps. However 

when UART baud rate is increased, performances of two approaches were seen to be 

close to each other. 

 

Table 14. Comparison of data rates including wireless transmission. 

 Waiting time after 

transmission (ms) 

Network throughput (kbps) 

UART / baud rate    

115.2 11 48.67 

230.4 9 57.40 

460.8 4 69.57 

921.6 4 69.75 

DAQ-based system 4 70.14 
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3.6 High Sampling Rate Application 

This section presents the high sampling rate application. Reliability of this system is 

improved by implementing a retransmission algorithm for lost packets. Developed data 

acquisition system is integrated into this application. 

WSN, in this case, is organized in a star topology. In this topology, all measurement 

nodes transmit measurement data to sink node. Operation is controlled by a MATLAB 

program. User can define the operation parameters, such as number of nodes to be used 

in the operation, accelerometer scale, sampling frequency, sampling period and the axes 

to be sampled. MATLAB transmits these settings to the sink node via Micro.USB 

programming board. Sink node sets the wireless nodes according to the user 

preferences. A temperature and humidity reading is taken at the beginning of each 

operation. Then wireless measurement nodes start sampling. A sample-store-transmit 

algorithm is used for the operation. External 500 kB serial flash memory of Micro.2420 

platform is used to store the sampled data. Flash memory of Micro.2420 is separated 

into 8 segments of 256 pages, where each page can store 256 bytes of data. Memory can 

be written in page-wise manner. Writing a page takes 3.45 ms during which MCU is 

blocked and no measurements can be done. This means there will be gaps in data if the 

sampling period is shorter than 3.45 ms. 

After measurement nodes finish sampling, sink node asks measurement nodes to 

transmit their data one node at a time. Data are transmitted in the form of 80 byte 

packets. First byte of each packet carries package type information and following two 

bytes carry the sequential number of the packet. This sequential number is used to 

detect unsuccessful transmissions.  

MATLAB program assigns a .daq file for every node in operation. This .daq file is used 

to store the data logged by USB-9215A. With the first data packet received, sink node 

starts outputting data to its external pins. USB-9215A starts logging data with the first 

packet received and continues logging until the end of transmission. Logging is stopped 

by MATLAB after the last data packet is received. Once all data packets are 

transmitted, MCU of the sink node checks if there are any missing data. In case of lost 

packets, it asks the measurement node to retransmit the lost packets providing the 

sequential numbers of the lost packets. MATLAB program assigns a separate .daq file  
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Figure 18. Operation flow of the high sampling rate application.  

for retransmission and USB-9215 starts logging into this file after the reception of first 

retransmitted packet.  

Retransmission continues until all the packets are received. Once the retransmission is 

over, MATLAB stops USB-9215A. The order of the received retransmission packets is 

stored in a register in order to correctly recover the data offline. This operation is 

repeated for every measurement node in use. 

If a data packet is not received after 10 re-transmissions, program continues with the 

following packet or ends the operation as the case may be. Lost packets due to wireless 

communication can be recovered, however, during the experiments there occurred some 

lost packets due to the operation of writing to the flash. In such a case measurement 

node cannot take the data from flash memory and hence cannot transmit the data.  

After the nodes have completed the transmissions, received data are reconstructed 

offline and retransmitted packets are placed accordingly. Figure 18 shows operation 

flow of the high sampling rate application.   
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4 Case Studies 

Three wireless sensor applications were presented in the previous chapter. This chapter 

presents three case studies done by using the developed applications for wireless sensor 

nodes. These case studies are:  

 Bridge monitoring 

 Trolley crane monitoring  

 Crane monitoring in an industrial environment  

Bridge monitoring case study aims to evaluate suitability of wireless sensor nodes for 

structural health monitoring. For this purpose, wireless sensor nodes equipped with 

accelerometers were used to collect vibration data from a laboratory scale wooden 

bridge.  

In trolley crane monitoring application, wireless sensor nodes were used to collect 

vibration data from a laboratory scale trolley crane. These data were used to compare 

performances of different controller settings and to evaluate the significance of 

acceleration data for control of cranes. Furthermore, position data was collected non-

intrusively from the system. 

Aim of the last case study, crane monitoring in an industrial environment, was to 

observe the performance of wireless communication in an industrial environment. 

Additionally, vibration data was collected from the crane when it is in motion. The data 

was used to observe the changes in time and frequency domains related to the motion of 

the crane. 

4.1 Bridge Monitoring  

Structural health monitoring applications require many detailed sets of data to be 

collected to assess the health condition and to estimate lifetime of structures. Intelligent 

Structural Health Monitoring System (ISMO) project of TKK aims to develop wireless 

sensing and networking technologies to be used for structural health monitoring. The 

high sampling rate application has been used in ISMO project. Aim of this case study 

was to investigate the applicability of wireless sensors equipped with accelerometers, in 
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real world structures, such as bridges. In this case study vibration data were collected by 

using wired and wireless accelerometer sensors and these data are compared against 

each other.  

A wooden bridge built to scale with dimensions 420 cm x 65 cm x 33.5 cm was used for 

the tests. An electromechanical shaker is used to shake the bridge at pre-defined 

frequencies and amplitudes. Wired high sensitivity digital 1-axis accelerometers 

(8712A5M1 by Kistler) were placed on the bridge simultaneously with the wireless 

nodes. Wired accelerometer sensors, shaker and the wooden bridge can be seen in 

Figure 19.  

First set of tests was done by using the shaker, one wireless node and one wired node. 

Aim of these tests was to compare the performances of wired and wireless sensors 

individually. This study showed that data collected by wired and wireless sensors match 

and gave information on noise levels of collected data. After validation of their 

performance, wireless sensors were used on the bridge along with wired measurement 

system. Six wireless sensor nodes were placed on the bridge to collect the vibration data 

while the shaker was introducing vibrations. Illustration of the test setup can be seen in 

Figure 20. 

SHAKER

Wired 

Accelerometers

 
Figure 19. Wooden bridge and wired accelerometer sensors. 
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Figure 20. Test setup with wireless sensors placed on the wooden bridge (Bocca et al., 2009). 

When high sampling rate application is used at sampling frequencies higher than 250 

Hz, a gap is introduced to the data due to the writing operation into the external flash 

memory (see Section 3.6). Figure 21 shows a comparison of frequency spectrums of the 

data collected from wired and wireless sensors when the bridge was excited at 30 Hz. 

There are two plots in Figure 21 for wireless sensors: one showing the spectrum of raw 

data, and the other one showing the spectrum of compensated data. Sampling frequency 

in FFT is adjusted to compensate the error introduced by the writing of the samples in 

the flash memory of the nodes (Bocca et al., 2009).  

Results show that the data collected by wired and wireless sensors have some 

differences in the frequency spectrum. Some of these differences are because of 

imperfect casing of the nodes. These cases cause damping and affect the vibrations that 

accelerometers experience. The difference in frequency values is because of imprecise 

sampling of wireless sensors. The main reason for this is the clock drifts in 

microprocessors which change the true sampling frequency compared to the desired 

sampling frequency. More noise is observed in the data collected by wireless sensors. 

Furthermore, lack of synchronization of measurement nodes with a central node can 

affect cross-correlation analysis when different nodes’ data are considered. At the time 

of writing, ISMO project is ongoing and further study will focus on eliminating these 

causes by optimizing the cases, the synchronization, and the clock drift.  
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Figure 21. Comparison of wired and wireless sensors’ data (Bocca et al., 2009). 

4.1.1 Results of Bridge Monitoring Case Study 

High sampling rate application has been tested in the bridge monitoring case study. This 

study proved the usability of the developed wireless sensors equipped with 

accelerometers in structural health monitoring applications. It was seen that match of 

wired and wireless sensors is good. Measurements done with wireless sensors include 

more noise than those done with wired sensors. The wireless sensors provide accurate 

data which allows identification of structure vibrations.  Better time-synchronization of 

the nodes and optimization of the casing can improve quality of the data. This study 

provided important insights for future development directions that will improve 

reliability of wireless sensors.  

4.2 Trolley Crane Monitoring  

This case study was done on a laboratory scale trolley crane system which has been 

developed for educational and research purposes at the Helsinki University of 

Technology. Aim of this case study was to track the trajectory of the load, to monitor 

the behavior of the trolley crane vibrations (on the load, structure, and motors) with 

different controller settings, and to investigate the relationship between load angle and 

vibrations on the load. Another aspect of this study is to monitor the trolley crane 
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without interfering into the control system. This means that the monitoring system does 

not disturb the operation of the system. 

Trolley crane systems are widely used in industry when heavy loads are to be 

transported, such as in container ships. These systems aim to transfer payloads as fast as 

possible without damaging the load. As the trolley of the crane moves, load swings due 

to the introduced acceleration. These load swings can cause structural fatigue in long 

term and decrease the lifetime of the machine. Moreover, they can cause operator 

discomfort when the operator is situated on the crane. Controller performance of these 

systems can be improved by monitoring the operation. Furthermore by monitoring the 

behavior of the crane, operator’s performance can also be evaluated and efficiency of 

the operation can be increased (Tervo et al., 2009).  

4.2.1 Overview of the Trolley Crane System 

Trolley crane system used here is equipped with two actuators: a trolley motor which 

controls the horizontal position of the trolley, and a hoist motor which controls the 

vertical position of the load by controlling a rope connected to the load. Dimensions of 

the system are 2.5 x 0.8 x 0.6 m. System model and three degrees of freedom of the 

system (d, l and Φ) can be seen in Figure 22. 

Previous studies conducted on the system are: modeling and the development of control 

algorithms for the load position, anti-swing control and human adaptive control (Tervo 

et al., 2009). 

An ultrasound based monitoring system is used to track the load angle Φ. Ultrasound 

receivers, located on the back rail of the system, are used to determine the distance 

between the receivers and an ultrasound emitter located on the load (Figure 23). Load 

 
Figure 22. Trolley crane system (Eriksson et al., 2006). 
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Figure 23. Trolley crane equipped with ultrasound measurement system (Eriksson et al., 2008 b). 

angle is calculated by using these distance measurements, trolley position and rope 

length (Eriksson et al., 2008 b). 

4.2.2 Test Setup 

Three of the wireless nodes described in Section 3.2 were used in the tests. Figure 24 

shows the test setup.  

Trolley crane system employs two potentiometers to measure the rope length and trolley 

position. These potentiometers are connected to the shafts of the motors. As the trolley 

moves or as the rope length changes, resistance of the potentiometers and hence the  
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Figure 24.Test setup.  
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voltage on them changes. In this way, position information is mapped into 5 V analog 

voltage span. Control system monitors these voltages to determine the position of the 

load. 

Three wireless sensor nodes were placed on the system and they were used to collect 

acceleration data. Two wireless sensor nodes (1 and 2 in Figure 24) were used also to 

collect the position information. Analog I/O pins of the nodes are used to acquire this 

information. However since the wireless sensor platform works with 3.3 V and the 

potentiometers with 5 V supply voltage, a voltage scale and buffer circuitry was needed 

to interface the wireless nodes and the system.  

In the interface circuitry, a MC 33202 low voltage, rail-to-rail operational amplifier is 

used as a buffer. Two resistors connected to the output of the buffer are used to scale the 

input voltage coming from potentiometers. Figure 25 shows the electrical schematic of 

the buffer and scale circuit. Potentiometers’ output pins were connected to the input of 

the circuit (Crocodile connectors were used to connect the potentiometer legs to the 

buffer and scale circuitry).  

By using the wireless monitoring toolkit, system data were collected without interfering 

the system itself, namely by non-intrusive monitoring method (see Section 2.3.1). In 

this case it was possible to reach the system data, however, in larger plants, with 

multiple controllers and data buses, it is not always possible to reach the system data 

(see Section 2.2.2).  

4.2.3 Communication Tests 

Communication tests were done to find out the most appropriate radio channel to be  
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Figure 25. Buffer and scale circuitry. 
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Figure 26. Communication test results. 

used during the measurements. In the communication tests one sink node and one 

measurement node were used, and 30 packets, each consisting 77 bytes of data, were 

transmitted at full power from measurement node to the sink node. Sink node 

determined the RSSI (received signal strength indicator) by measuring the power 

present in received signals. Figure 26 shows results of the communication tests for each 

available channel (in total 16). 

It is seen in the figure that some channels did not work at all even though several trials 

were done. Among the ones, where communication was established, channels 20 and 25 

had the best performances. Channel 20 was chosen for the remaining tests.  

4.2.4 Controller Tuning 

In this study we investigate the effects of controller settings on the load, structure, and 

motor vibrations and on control performance. In the laboratory test bed used, there is an 

ultrasound system that measures the load angle and this load angle can be used as a 

performance indicator for the controller. However, in practice it is usually neither 

feasible nor possible to measure the load angle of an industrial crane with ultrasound 
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sensors. In this context, monitoring load and crane vibrations can indicate how well the 

controller performs. Furthermore, it is useful to monitor system vibrations even when it 

is used with load angle measurement system since vibration monitoring provides new 

information about the state of the system.  

Wireless sensors collected data when the system worked with different controller 

settings. The wired control system also recorded the measurements for comparison with 

wireless sensor measurements. Sampling frequency was 50 Hz for the wireless sensors, 

100 Hz for the analog readings taken by the control system of the crane, and 10 Hz for 

ultrasound angle measurements. Two data sets were chosen for further processing, one 

representing a poor controller and the other one representing a significantly better 

controller. From this point on, these two sets of data will be called “good control” and 

“bad control” for simplicity. 

Figure 27 shows the reference trajectory and the measured trajectories of the load. All 

controllers were implemented by using the same reference trajectory. Processed 

measurement data taken from wireless sensors (as described in Section 4.2.2) and from 

the system are also shown on the same figure. Both the data taken by the system and the  
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Figure 27. Trolley position and rope length measurements and the reference signal.  
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Figure 28. Load angle measurements under two different control settings. 

 

wireless sensor data are processed in the same way. First voltage readings were 

converted to meters by using a calibration table, then a peak filter proposed in (Tervo et 

al., 2009) is used to remove outliers in the data and finally a low pass filter is used. It is 

seen from the figure that data taken by the control system and wireless sensors’ data are 

consistent. This means when the system data is out of reach, wireless sensors can be 

used to monitor the system non-intrusively. 

Figure 28 shows the load angle measurements taken under two different control 

settings. These measurements were taken by ultrasound angle measurement system. It is 

seen from the figure that control settings labeled as “bad control” cause large changes in 

load angle whereas the one labeled as “good control” provides a smoother trajectory.  

Figure 29 shows vibration measurements taken from the wireless node placed on the 

load. Effects of controller on load vibrations are clearly seen especially in tangential 

axis. 
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Figure 29. Load vibrations. 

 

Figure 30 shows the spectrum analyses of tangential and radial vibrations taken by the 

wireless sensor on the load. Analyses are done after removing the means and by using 

signal processing tool of MATLAB. Welch’s method (Welch, P., 1967) is used for 

analysis with 50 samples overlap, 256 samples Hanning window and 512 samples FFT. 

Effect of the controller settings on load vibrations can be clearly seen in the spectrum.  
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Figure 30. Spectrum of load vibrations. 
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Figure 31. Spectrum of hoist and trolley motor vibrations. 

Figure 31 shows the spectrums of vibration measurements on vertical axis taken from 

hoist and trolley motors. Data for these spectrum analyzes were collected by nodes 

labeled as 1 and 2 in Figure 24. Same analysis described above was done except in this 

case a window size of 128 samples was used. The effect of controller settings on 

vibrations of the crane structure is visible through these spectrum analyses. Note that 

since the sampling frequency of wireless nodes was only 50 Hz, motor related high 

frequency components are not visible in this case.  

Controller tuning tests show that controller parameters affect the vibrations on the crane 

and it is possible to evaluate controller performance by monitoring the vibrations either 

on the load or on the crane structure.  

4.2.5 Swing Tests 

Swing tests were done with the trolley crane to collect acceleration data when the load 

was freely swinging and actuators were on rest. Aim of this study is to see the extent of 

relationship between angle measurements taken by the system and acceleration 

measurements taken by wireless nodes.  
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In these tests, trolley position and rope length were kept constant. Load was dropped 

from an initial height allowing it to swing back and forth. Load angle is measured by the 

ultrasound system and the accelerometer data is collected by wireless node on the load.  

Two acceleration contributions are present on the mass of a swinging pendulum: 

gravitational and inertial. These contributions result in radial and tangential 

accelerations on the mass. Overall tangential and radial accelerations can be found by 

              ta r gSin     ,                                              (16) 

       
2

ra gCos    , (17) 

where at and ar represents tangential and radial accelerations,  is the angular 

acceleration,   is the angular velocity of the pendulum mass, r is the length of the 

pendulum string, g is the gravity constant and   is the angular displacement of the 

swinging pendulum (Godfrey et al., 2007).  

Angle measurements were taken at 10 Hz and accelerometer measurements were taken 

at 20 Hz. Figure 32 shows 12.5 seconds raw acceleration and angle measurements that 

were taken right after the mass was released.  
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Figure 32. Angle and acceleration measurements. 
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Figure 33 shows the spectrum analyses of radial and tangential acceleration 

measurements and angle measurements. Analyses were done after removing means, and 

the gaps in the acceleration data were filled by linear interpolation. Analyses were done 

by using Welch’s method with 50 samples overlapping, 1024 samples FFT size, and a 

window size of 512 samples for acceleration measurements and 64 samples for angle 

measurements. 

Rope length was 0.45 m and kept constant during the measurements. Period of 

oscillation (TO) for a simple pendulum can be calculated by 

                      2O

l
T

g
 .                                             (18) 

where l is the length of string. In the trolley crane, a rope is used instead of an 

inextendable, massless string, which is the case for an ideal simple pendulum in (18). 

Applying this formula to trolley crane case gives a period of 1.35 seconds, which means 

an oscillation frequency of 0.74 Hz. Spectrum analysis of the angle measurements 

shows a peak at 0.7 Hz, and consistently tangential acceleration measurements have a 
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Figure 33. Spectrum analyses of radial and tangential acceleration measurements, and angle 

measurements. 
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dominant peak at 0.69 Hz and a smaller peak at 1.40 Hz. On the other hand spectrum 

analysis of radial acceleration measurements has the dominant peak at 1.41Hz, which is 

the double frequency component due to the nature of acceleration measurements 

described in (16) and (17). 

Accelerations acting on the load can be derived by using angular displacement 

measurements. In (16) and (17) the angular displacement   is employed, which is the 

angular displacement of the swinging pendulum. To calculate radial and tangential 

accelerations,   should be derived once to find angular velocity and twice to find 

angular acceleration. Simplest way to find derivative of discrete measurements is to 

divide the difference between two consecutive samples by time interval between two 

consecutive samples. However this approach magnifies the noise and does not give 

satisfactory results. To overcome this problem, polynomial methods were used to 

calculate the derivatives, as described in Godfrey et al. (2007). Figure 34 shows a 

fraction of derived accelerations and measured radial and tangential accelerations by 

this method.  
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Figure 34. Comparison of derived and measured accelerations experienced by the load in radial and 

tangential axes. 
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It is seen that radial accelerations are reconstructed successfully and they match the 

measurements in both frequency and magnitude. However, tangential accelerations 

were not possible to reconstruct successfully. Offset and amplitudes were different in 

measured and derived tangential accelerations. Thus, measured accelerations are plot 

after removing the means and multiplying the measurement data by 10. Several factors 

affect the derivation of accelerations. First of all, load is connected with a rope instead 

of an inextendable string. This causes imperfect swing of the load as can be seen in 

Figure 32. Since the rope is flexible in every dimension, load actually swings in three 

dimensions instead of two as assumed in (16) and (17). Accelerometer is placed 

imperfectly and has an offset. Furthermore the angle measurements taken by the system 

are not perfect and do not provide a detailed data, since the sampling frequency is only 

10 Hz. Finally, the polynomial method used for derivation introduces errors into the 

results. 

Nevertheless, the swing tests showed the close relationship between angular 

displacement of the load and the acceleration experienced by the load. In our laboratory 

testbed we had the angular displacement measurements, however, practically it is not 

feasible to setup such a system on an industrial trolley crane. In practice, wireless nodes 

equipped with accelerometers can be used to track the angular displacement of the load. 

An example application scenario would be a monitoring system that warns the operator 

when the angular displacement of the load exceeds some predetermined threshold.  

4.2.6 Results of Trolley Crane Monitoring Case Study 

Real-time monitoring and communication test applications have been tested in trolley 

crane monitoring case study. The main goal of the case study was to show usability and 

usefulness of the toolkit. Results suggest that wireless sensors could be used for several 

purposes in industry to enhance the performance of the control system.  

Developed applications worked successfully during the tests. Setting up the wireless 

nodes took less than half an hour and many sets of data were collected in real-time. 

Packet loss was very little during the measurements.  
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Data taken by the control system and by the wireless sensors are consistent which 

means that wireless sensors can be used to monitor the system non-intrusively when the 

system data is out of reach.  

Controller tuning tests showed that it is possible to evaluate the controller performance 

by monitoring vibrations on the load or on the crane. Swing tests showed the close 

relation between angular displacement of the load and the accelerations experienced by 

the load.  

4.3 Crane Monitoring in an Industrial Environment  

All three applications described in Chapter 3 were tested in an industrial hall with a 

typical 5 ton bridge crane. This case study was done to observe the performance of 

wireless communication in an industrial environment and to monitor the changes in 

acceleration measurements when the crane is in motion.  

4.3.1 Communication Tests   

Performance of the network was tested with four wireless nodes. Data was collected by 

using different radio channels. Once an appropriate radio channel was chosen, distance 

between nodes and the sink node was changed to see the effect of communication 

distance on wireless communication. First tests were done on the ground, and long 

distance tests were done when the nodes were placed on the crane, as shown in Figure 

35.  
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Figure 35. Wireless sensor nodes attached on the test crane. 
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Table 15. Communication tests. 

Range Nodes Channels 

1m 1,2,3,4 All 

2m 1,2,3,4 16 

4m 1,2,3,4 16 

6m 1,2,3,4 16 

8m 1,2,3,4 16 

10m 1,2,3,4 16 

12 m 1,2,3,4 16 

14m 1,2,3,4 16 

16m 1,2,3,4 16 

18m 1,2,3,4 16 

20m 1,2,3,4 16 

22m 1,2,3,4 16 

22.5m 1,2,3,4 16 

Table 15 shows the different ranges and radio channels tested. As seen in the table, in 

the first test, all the channels were evaluated so that the best performing channel could 

be set as the operation channel for the rest of the measurements. Figure 36 shows the 

RSSI values obtained when all channels were evaluated. Operation channel was set as 

16 for the rest of the tests.  
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Figure 36. Communication tests in an industrial environment. 
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Figure 37. Lost packets vs. measurement distance. 

The distance between the wireless sensor nodes and sink node was changed to see the 

effect of communication distance on wireless communication. Figure 37 shows the 

number of lost packets at different communication distances. It is seen that packet loss 

increases as the distance is increased. However this increase is not completely linear and 

depends on the radio environment and channel conditions. Note Node 3 was not active 

in the 22.5 m test, which caused the peak in Figure 37.  

Figure 38 shows the RSSI measurements for different communication distances. It is 

seen that the RSSI values fluctuate and there is a decreasing trend in signal strength as 

the communication distance increases.  

In this study, nodes were placed at different locations even though the distance from 

individual nodes to the sink node was kept the same. This resulted in different 

communication characteristics which indicate the importance of environmental factors 

on wireless communication. These findings are useful for further development of 

wireless sensor applications since the results can be used as a reference for the packet 

loss and signal strength in industrial environments.  
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Figure 38. RSSI measurements. 

4.3.2 Crane Monitoring with High Sampling Rate Application  

In this study, high sampling rate application was tested on the crane. Test crane has 

three degrees of freedom, i.e., it can move forward-backward, right-left and up-down. 

Several data sets were collected when the crane was in motion. Seven wireless nodes 

were placed as shown in Figure 39. One node is placed on the hook and the rest of the 

nodes were placed on the crane structure. Samples were taken at 100 Hz.  
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Figure 39. Wireless nodes on the crane. 
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Figure 40. Three axes data collected while the trolley was moving from right to left, and their spectrum. 

 

Figure 40 shows a set of data collected when the crane was moving from right to left. 

On the left hand side, data collected by Node 3 in three axes are seen, and on the right, 

frequency spectrum of these data are presented. Spectrum analysis is done by using one 

portion of the data during which the crane was moving. Means were removed from the 

data for spectrum analysis and Welch’s method with 1024 samples FFT size, 256 

samples Hanning window and 50 samples overlap was used. 

In this study data was collected successfully from seven wireless nodes placed on an 

industrial crane. Effects of crane movement are clearly seen in time series data. Several 

frequency peaks are visible in spectrum analysis of the data neither one being dominant. 

During the measurements, crane was not loaded and this is the reason for not having 

clear frequency peaks.  
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4.3.3 Real-Time Data Collection 

Real-time monitoring application was tested on the crane with four nodes. Nodes were 

placed as shown in Figure 35. Data was collected when the crane was moving. 

Sampling frequency of accelerometer sensors was 100 Hz. 

In real-time monitoring application, the instants at which a packet is lost can be seen, 

since a series of gaps are introduced into the data when a packet is lost. Figure 41 shows 

these instances during forward-backward movement of the crane. During the first half 

of the test, the crane was moving away from the sink node and during the second half, it 

was coming back. It is seen that more packet loss occurs as the distance between crane 

and the sink node increases. However, packet loss trend does not increase linearly, since 

other environmental factors also affect wireless communication.  

Table 16 shows the percentage of lost packets during each operation and for each node. 

Lost packets increase in forward-backward operation, since the distance between 

wireless nodes and sink is increased. Furthermore, it is seen that Node 2 (on the hook) 
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Figure 41. Lost packets when the crane moves forward and backward.  



83 

 

Table 16. Lost packets in the industrial environment. 

Percentage lost packets  

Operation Node 1 Node 2 Node 3 Node 6 

Lifting  0,0366 0,0684 0,0263 0,0579 

Left-Right  0,0266 0,1065 0,0380 0,1145 

Forward-Backward  0,0761 0,1076 0,0660 0,1181 

Forward-Backward  0,1164 0,1644 0,1301 0,1336 

Down  0,0280 0,0327 0,0329 0,0563 

Lifting-Go Right-Lowering  0,0407 0,0816 0,0459 0,0918 

and Node 6 (on the load) experienced more packet loss compared to Node 1 and 3 (on 

the crane). This is most likely because of relatively high mobility of these nodes, 

whereas the other nodes were attached on the more stable crane structure.  

Figure 42 shows data taken when the crane was lifting a load. Data is taken from X axis 

of the Node 6, which is placed on the load as shown in Figure 35. Load vibrations of the 

time series data when crane is lifting a load are visible in this figure. Note that the lost 

packets are replaced by linear interpolation. In the lower plot, frequency spectrum 

analysis of this data can be seen. Frequency spectrum analysis is done by using Welch’s 

method with 1024 samples FFT and 1024 sample Hanning window with 50 samples 

overlap.  

This study proved the usability of real-time monitoring system in an industrial 

environment. Percentage lost packets and instances at which packets are lost were 

observed when the crane is in motion. Time series data showed the effect of crane 

motion on the measured vibrations. Spectrum analysis of the data collected by a 

wireless node on the load showed clear frequency peaks.  

4.3.4 Results of Crane Monitoring in an Industrial Environment Case 

Study 

In this case study, developed applications were evaluated in an industrial hall, where a 

typical 5 ton bridge crane was situated.  
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Figure 42. Acceleration measurements when crane is lifting the load. Data was taken from Node 6 which 

is placed on the load. 

Communication test application was used to investigate wireless communication 

characteristics of the sensor nodes in an industrial environment. Tests showed the 

importance of environmental factors on wireless communication.  

High sampling rate application was used to collect vibration data from seven wireless 

nodes placed on the crane and on the load. Crane movement was seen to induce 

vibrations that can be detected by wireless sensors.  

Real-time monitoring application was tested on the loaded industrial crane. Percentage 

lost packets and instants at which packets are lost were observed when the crane was in 

motion. Collected data was seen to be useful for detecting movement related vibrations.  
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5 Conclusions 

Wireless monitoring field embraces many engineering branches, such as computer 

science, electronics engineering, mechanical engineering, control engineering and 

telecommunications. Required skills vary from low-level programming of 

microprocessors to high-level programming of PCs. Understanding of electrical and 

mechanical hardware, sensors, data transmission protocols, network design, and data 

analysis methods are essential for the field. Working with wireless sensors is usually 

time-consuming and challenging due to many unanticipated problems.  

The scope of this thesis was to design, develop and test a general purpose wireless 

monitoring toolkit to be used for condition monitoring and performance optimization 

purposes. Within this scope, implementation of a general purpose, easy-to-use, fast and 

reliable monitoring toolkit was planned.  

A review of state of the art wireless monitoring systems has been done to determine 

framework of a general purpose wireless monitoring system to be used for condition 

monitoring and performance optimization purposes.  

The development of a wireless monitoring toolkit was presented in this thesis. Toolkit 

consists of three applications, a novel data acquisition system, hardware components 

(sensors, casing, antennas, etc.), sensor drivers, and user interfaces. Sensor nodes are 

formed by combining a temperature and humidity sensor, an accelerometer sensor PCB, 

an off-the-shelf wireless node, antenna, battery, and a switch into a compact case.  

An important aspect of the work is optimization of wireless data transfer between the 

sensor nodes and PC. To establish this, effect of data acquisition methods on 

performance of networked data logging systems has been investigated. Existing data 

acquisition methods have been evaluated and a new portable, inexpensive and efficient 

data logging system has been introduced.  

A high sampling rate application that uses the above mentioned data acquisition system 

was presented. This application is capable of recovering lost packets by using a 

retransmission algorithm. A communication test application has been developed to 
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evaluate wireless network characteristics. These two applications are combined in one 

code and user interface.  

A real-time monitoring application has been developed for low sampling rate (< 200Hz) 

applications. With this application, wireless nodes can sample and transmit without 

storing the measurement data into an external memory which reduces the time spent for 

measurements. Real-time monitoring application has two very important characteristics: 

dynamic and multi-task operation. These features provide a flexible, reliable and 

efficient structure to the application and distinguish it from other wireless monitoring 

applications. 

High sampling rate application was tested on a wooden model bridge. These tests 

proved the usability of wireless sensors in structural health monitoring applications. The 

tests also gave important insights on future development directions that will increase 

reliability of the wireless sensors.  

Real-time monitoring application was tested on a laboratory scale trolley crane system. 

During these tests, multiple system parameters were simultaneously monitored at 

multiple locations without disturbing the normal operation of the crane. Monitoring 

system was used to evaluate controller performance and to observe the relation between 

load angle and accelerations acting on the load. 

Wireless monitoring toolkit, as a whole, was tested on a 5 ton crane situated in an 

industry hall. These tests showed communication characteristics of wireless sensors in a 

real world environment. Furthermore, vibrations induced due to the movement of the 

crane were measured and evaluated. Real-time monitoring application and high 

sampling rate application were both used at 100 Hz sampling frequency in these tests. 

Even though they seem to be doing the same task, they have different development 

perspectives. Real-time monitoring application is prone to packet loss, whereas high 

sampling rate application overcomes this problem by retransmissions. Furthermore, in 

real-time monitoring case, there is a tradeoff between sampling rate and number of 

nodes, whereas high sampling rate application can sample at high frequencies regardless 

of the number of nodes. On the other hand, user has to wait for the wireless 

transmission when high sampling rate application is used. On the contrary, data are 

accessible during the measurements when real-time monitoring application is used.  
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Note also that measurement data are stored in the memory of sensor node, when high 

sampling rate application is used. This means that a limited amount of data can be taken 

during one measurement. However, memory is not a limitation in real-time monitoring 

application since data is not stored in the node. These two applications are designed to 

complete each other and to give the user more flexibility.  

The main objective of this thesis was to determine and implement a framework of 

general purpose wireless toolkit for monitoring applications. The end result, wireless 

monitoring toolkit, is equipped with three applications to meet the requirement of being 

general purpose. A data acquisition system, which improves the speed of data 

collection, has been developed to meet the fast monitoring system requirement. User 

interfaces have been developed to hide the low level programming issues from the user 

which makes the system easy to use. Three case studies proved the reliability of the 

measurements and the system. At the end, it is fair to say the goals of the thesis were 

met. On the other hand, there is always room for improvement. Future study on the 

topic will focus on improving synchronization of measurements and optimizing the 

code so that all applications are situated in one code. Furthermore, increasing the 

networking capacity of the nodes will enhance their application areas. Finally, a web 

based database and control system can contribute to the value of the work.  
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