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Size restriction of the reading device of the phosphor imaging plate used

in intraoral radiography prevented occlusion imaging. The solution was to

use two overlapping plates to gain partially same imaging into both images.

Images could be stitched into one, larger image by software.

The solution for the stitching algorithm has been presented in this thesis.

It is based on the mutual information method and the adjustment of the

images acquired by the system for suitable form prior to the stitching.

Functionality of the software was tested by a set of image pairs. Due to

the overlapping phosphor plates and the properties of x-radiation, one of

the images acquired has lesser contrast and weaker signal-to-noise ratio.

Around the teeth the image registration was successful. Information on

the palate area is less distinguishable and the registration was less accurate,

but nonetheless, decent for the application. In the beginning of the thesis,

there is a short review on x-radiography and image registration.

Keywords: Image registration, stitching, mutual information, dental, x-ray

imaging
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Suunsisäisessä röntgenkuvauksessa käytettävän fosforikuvalevyn lukulait-

teen kokorajoitus esti hampaiden okluusiokuvauksen. Ratkaisu oli käyttää

kahta kuvalevyä limittäin, jolloin niille tallentui osittain sama näkymä ham-

paista. Kuvat voitaisiin ohjelmallisesti yhdistää limittäisten osien avulla

yhdeksi, suuremmaksi kuvaksi.

Tässä diplomityössä on esitetty kuvat yhdistävän algoritmin ratkaisu.

Se perustuu keskinäisinformaatioon sekä laitteiston tuottamien kuvien

muokkaamiseen tarvittavaan muotoon ennen niiden yhdistämistä.

Ohjelmisto testattiin testikuvapareilla. Johtuen kuvalevyjen päällekkäisyy-

destä ja röntgensäteilyn ominaisuuksista, toisella kuvista on heikompi kon-

trasti ja signaali-kohina-suhde. Hampaiden kohdalla kuvien kohdistus onnis-

tui hyvin. Kitalaen alueella selkeästi erottuvaa informaatiota on vähemmän

ja kohdistus oli hieman epätarkempi, joskin riittävä kyseiseen sovellukseen.

Työssä on myös lyhyt katsaus röntgenkuvaukseen ja kuvien kohdistamiseen.

Avainsanat: Kuvien kohdistus, kuvien yhdistäminen, keskinäisinformaa-

tio, hammaslääketiede, röntgenkuvaus
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1 Introduction

X-ray imaging is a widely used form of medical imaging. It is based on x-

rays (or Röntgen rays), which are a form of electromagnetic radiation. In

the spectrum of electromagnetic radiation, they have higher frequency than

ultraviolet rays but (usually) lower than gamma rays. X-rays are capable of

passing through human tissue more or less unaltered. Some tissue—notably

bones—absorb more radiation than other—say, softer tissue—while air in the

mouth or in bodily cavities has practically no effect at all on the radiation.

Therefore, a film placed on the other side of the patient in view of the x-ray

source will record an image of the bones and other tissue according to the

transmission coefficients of various tissues.

Nowadays the film is usually replaced by a digital sensor or a phosphor

imaging plate, which both have the functionality of the film, but the data on

them can be erased. Therefore they can be used repeatedly unlike the dispos-

able film. Other than that, they are ready in digital form. A digital image has

many advantages over traditional film. It is effortless to distribute and image

manipulation processes (gray value correction, sharpening etc.) are easier to

implement. A film, an imaging plate and a digital sensor are all fundamentally

based on the same phenomenon and are therefore interchangeable among each

other.

In intra-oral imaging—i.e. imaging within the mouth—film, imaging plate

or digital sensor is placed inside the patient’s mouth. X-rays are irradiated

outside the mouth and the “shadows” of the teeth and other tissues are cast

on the recording medium, which stores the dental x-ray image.

Occlusion imaging is used when one wants to take a picture of either all—

or significant part of—upper or lower teeth together. A recording medium is

placed horizontally between the patient’s upper and lower teeth, and x-rays

are beamed either from above the nose or below the jaw, for upper or lower

teeth, respectively.
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Occlusion imaging obviously requires rather large recording medium com-

pared to the other intraoral imaging views in order to be able to cover the

whole area of the teeth.

PaloDEx Group Oy is an internationally operating designer and manu-

facturer of dental imaging equipment. They use—among other dental imag-

ing methods—several technologies in intraoral imaging. In one of them, the

photo-stumulated-phosphor (PSP) imaging plate (IP) is used to record the

x-ray image. The size of the imaging plate is restricted by the device used

for reading the data, and is not large enough to be used in occlusion imaging.

To bypass this, two images are taken and stitched together in order to gain a

larger image.

A certain container is used to house two imaging plates and the occlusion

image can be taken with only one exposure. The plates are slightly overlapping,

so one part of the image is recorded into both plates.

The topic of this thesis is to design and implement an algorithm to inte-

grate those two images. The algorithm stitches the images on account of the

information of the overlapping area of the plates, for that area has the imaging

of the same area of the mouth.

Imaging plate absorbs some of the x-ray radiation when the image is formed

while the rest of the radiation passes trough. Since the two imaging plates are

overlapping, the plate behind the other receives less radiation in the overlap-

ping area during the exposure. For this reason, the intensity levels in that area

of the image are most likely different from those of the imaging plate which

was on top. Nonetheless, the overlapping area of both plates presents the same

area of the mouth. Stitching of the images is based on the information of those

areas of the images, so the chosen method must not rely on absolute intensity

values.

The container for the imaging plates is designed to hold the plates always

in the same direction. However, it is allowed for both plates to move on an
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area about 1 mm larger in height and width than the size of the IP. Thus, if we

consider the location of one of the plates being fixed, the other one may move

±1 mm from the given point in both vertical and horizontal direction. This

may also cause small rotation between the plates if different ends of the plates

move to different directions. The algorithm must manage such movements and

rotations.

The algorithm is designed and tested with Matlab and is later ported into

C++ language to be integrated with the rest of the device driver software.

The 2 Chapter 2 consists of two sections. In section 2.1 is presented a

short review on the history of the x-ray imaging, followed by a small review of

modern dental imaging. Section 2.2 is a literary research of the field of image

registration and image stitching.

Chapter 3, 3, reveals testing arrangements. Chapter 4 is about the algo-

rithm itself, and due to it’s size it has been divided into several smaller sections

each focusing on a specific step in the algorithm process.

Results of various tests are presented in Chapter 5, followed by discussion

and conclusions in Chapter 6.
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2 Background

2.1 X-ray Imaging

2.1.1 History and Technology of X-ray Imaging

X-rays (or roentgen rays) were found by a German physics professor, Wilhelm

Conrad Röntgen, on November 8, 1895. Röntgen, Director of the Physical

Institute of the University of Würzburg, was interested in work of Hertz and

Lenard and many others on electrical discharges in vacuum tubes.[4] He set up

his own apparatus and followed and repeated the work of predecessors, namely

the work done by Hertz and Lenard.

They had been carrying out experiments with Hittorf-Crookes tube, one

kind of vacuum tube. The Hittorf-Crookes tube is a partially evacuated glass

envelope with two electrodes separated by a distance of a few centimeters.

When a potential difference of few thousand volts is connected between the

electrodes, the partially ionized, rarefied gas in the tube is accelerated by the

electric field. Due to the high voltage, the ions accelerate and hit the cathode

(negative electrode) with such energy, that they manage to release electrons

from the surface of the cathode.

As electrically charged particles, the electrons are accelerated in the electric

field away from the cathode and towards the anode (positive electrode). Should

the voltage between the electrodes be huge enough, some of the accelerated

electrons might overshoot, or go through the anode and strike the glass wall

of the tube, emitting x-rays, though this wasn’t known at the time.

X-rays are part of the same electromagnetic radiation as visible light and

radio waves, ranging from frequencies of 30× 1015 Hz to 30× 1018 Hz. In the

spectrum of the electromagnetic radiation they are between lower frequency

ultraviolet and higher frequency gamma-rays, although sometimes the frequen-

cies of x-rays and gamma-rays overlap and the only difference between the two

is the method the rays were generated. Gamma-rays are formed by transi-
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tions within atomic nuclei or matter-antimatter annihilation, while x-rays are

generated when high-speed electrons are decelerated in matter.

Electrons decelerating in matter was what happened in the Röntgen’s tube

when the overshot electrons hit the glass, and when x-rays were emitted. [16]

While carrying out his experiments with cathode rays, Röntgen made a dis-

covery of fluorescence of a paper screen covered with barium platinocyanide

crystals. The paper screens were used to detect whether there were cathode

rays present or not. To use these papers, a special kind of tube with alu-

minum window was needed to pass the cathode rays outside the tube. This

time, however, there was fluorescence even when working with a glass tube

which shouldn’t pass cathode rays. Röntgen realized he had found a new kind

of radiation, and, unaware of the true nature of the radiation, called it the

“x-ray”.

Röntgen quickly experienced more with the rays and made a proceeding on

them. The medical potential was understood soon and the first skeletal radio-

graphs of a living hand were taken less than two months after the discovery of

the radiation.

A modern dental x-ray tube is ultimately similar to the tube Röntgen

used on his experiments. Figure 1 presents the tube. Electrons are emitted

from filament that is heated by electric current. Voltage difference between

a cathode and an anode forces the electrons to travel to the anode, where a

tungsten target is located. X-rays are emitted when electrons decelerate in the

target.

X-ray images were first recorded by a film. One of the properties of the film

is that, the more radiation there is, the darker the image becomes. Therefore

softer tissue in x-ray images show darker than bones, as more radiation passes

through it. X-ray images are still shown in the same manner (as negative

images), even if recorded by some other recording medium.

X-radiation is ionizing radiation, which means it has energy so high it
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Figure 1: Modern deltal x-ray tube. Potential difference forces the electrons

emitted by filament to travel from the cathode to the anode. Electrons decel-

erate in the tungsten target, which emits x-rays. The angle of target guides

the radiation downward. Aluminum filter removes low-energy beam which is

unwanted, whereas the lead diaphragm allows the radiation exit only to the

desired direction, out of the tube. Figure from [6].

is capable of detaching an electron from the electron shell of the atom. If

the quantity of the radiation is great enough, it can has undesired effect on

chemistry of the cell. Higher amounts of radiation will lead to death of the

cell.

Ionization of the DNA might lead to mutation. This kind of damage is

cumulative and therefore people whose work involve x-rays are monitored for

dosage they get from their work. Radiation can be reduced by using lead walls

to block x-ray from escaping to unwanted areas as lead is known to efficiently

attenuate radiation. Also, maintaining a distance from x-ray source helps, as

on the spherical surface the radiation decreases to one fourth when ever the
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distance doubles.

2.1.2 Modern Dental Imaging

Modern dental radiography is divided into three fields. Intraoral radiogra-

phy was the first dental imaging method. In intraoral radiography, a certain

recording medium is placed inside the patient’s mouth (hence the name intrao-

ral). X-ray tube—the source of x-rays—is located outside the head so that the

radiation passes through the object and hits the recording medium. Record-

ing medium might be either (now almost obsolete) film or in more modern

devices either a reusable phosphor imaging plate or an image sensor. Record-

ing medium of various sizes are used. The size of the medium is a trade-off

between the area of the imaging, and the comfort of the patient due to the

limited space in the mouth.

There are several views used in intraoral radiography. They are used for dif-

ferent needs but are fundamentally similar. Periapical view means the record-

ing medium is located in the mouth so that it records an image of whole tooth

including the crown and root. This view might be used to determine the need

for endodontic therapy, or to look for aching tooth.

In bitewing view the recording medium is placed so that it records the

image of the crowns of the teeth, which are usually the region of interest. One

exposure records evenly the crowns of both maxillary (upper) and mandibular

(bottom) teeth.

Lastly, occlusal view is used to get an image either from all maxillary or all

mandibular teeth. The recording medium is placed between patient’s upper

and lower teeth. For upper teeth the x-ray tube is located above the nose,

and for bottom teeth it is located below the jaw. The recording medium for

occlusal view is larger that the one used for periapical or bitewing views.

One of the first mentions of tomography imaging is in the patent from the

year 1922, owned by M. Bocagen.[11] In tomography imaging the recording
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medium is located outside the patients mouth and is hence in the group of

extraoral imaging methods in dental imaging. The x-ray tube and recording

medium are at the opposite sides of the object to be scanned. The tube and

film both rotate—or move otherwise, e.g. on linear or spiral path—in opposite

directions around a fixed point, which determines the location of the imaging

layer. (Figure 2.) Imaging layer is a predetermined plane which gets recorded

sharply in the tomography. In intraoral imaging, all the matter—not only the

desired one—between the tube and film ends up to the image. For tomography

imaging the same holds, however, because of the movement of both x-ray tube

and recording medium, only one layer is scanned sharply. Tissue far from this

desired layer will leave a widely spread, faint haze to the image, which will be

seen as noise in the final image.

Figure 2: Sketch of the movement the x-ray tube and recording medium par-

ticipate in tomography imaging. Tube and medium (denoted by f) move to

opposite directions around a center point which will determine the location of

the imaging layer (s), the plane of tissue to be shown sharp in final image.

Image from [11].

During the years 1954–1960, Y. V. Paatero evolved the idea and finally,
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after few stages of development, introduced an orthopantomography where the

focus point follows the teeth during the scan with rather narrow beam. (Figure

3.) Narrowed beam means only a small vertical slice of the film will be exposed

at the time, thus recording an image of the teeth at the current focus point

only. As the focus point slowly moves, the film slides in the sledge and the

imaging of the new focus point gets recorded to the newly revealed part of the

film.

After the whole round, a panoramic image of the teeth is recorded. Other

that teeth, both chin and sinus are also visible in the image. (See image 4.)

Figure 3: A sketch of the rotation of the x-ray tube and the film casing in the

orthopantomography device. The focus point follows the presumed curve of

human teeth thus recording a sharp image of all teeth. Image courtesy of [11].

On more modern, digital orthopantomography device, the film is replaced

by a digital sensor. The film size on non-digital devices varies between different

apparatus but might be e.g 15 × 30 cm[3]. Digital sensor, however, might be

significantly smaller. Like in the case of film device, the beam is narrow and

only a small vertical slice of teeth and skull is exposured at the time. Recorded
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data is read from the sensor at certain intervals and the sensor is reset to zero.

This is equivalent to sliding a film in a sledge so that the beam next hits an

unexposured part of the recording medium, and there is no need to slide the

sensor as is in the case of a film device. Panoramic image of teeth and skull is

composed of these narrow slices.

Figure 4: An example of panoramic image taken with digital orthopantomog-

raphy device. Besides teeth, also jawbone and sinus are visible. Image courtesy

of PaloDEx Group Oy.

The third and most modern way to utilize x-rays in dental imaging is

computed tomography or CT. For this application, frequent exposures are made

from different directions of one imaging layer at the time. The data is run

through a back projection process with computer which tries to conclude what

sort of tissue there is and how it is distributed along the object.

The result is either a series of slices orthogonal to one axis or true three-

dimensional image of the scanned volume.

From the 3D-data collected by CT device, it is also possible to generate

images similar to orthopantomography and intraoral imaging.
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2.2 Image Registration

Image registration is a process where two or more images are transformed in

some geometrical manner so that the coordinates of the images become parallel

and the images can be matched.

In the following two sections, a short description is given in both general

image registration and medical image registration.

2.2.1 In General

Image registration is needed when two (or more) images are to be merged into

one. In the process the source images are transformed so that their coordinates

match with each other. Transformations may be as simple as shifting, rotating

or scaling, or they may be more complex—e.g. perspective, lens distortion or

other kind of corrections. Images are of the same scene, but conditions of

exposure may vary.

B. Zitová et al.[19] divided image registration applications into four groups

according to the image acquisition manner. The following division gives some

examples of why image registration is used.

Different viewpoints The first group consists of applications which acquire

their source images from different viewpoints, i.e. the sensors are at

different locations looking at the same thing. These applications usually

try to stitch partially overlapping images in order to gain a wider view.

The algorithm and application of this thesis also falls into this class as

the focus is to stitch two adjacent x-ray images to gain a larger one.

In this group fall also applications which try to make a 3D model out of

several 2D images. Humans (and presumably other animals with forward

directed eyes) form 3D models of the objects they see with their two 2D

eyes.
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Different times For the second group of applications, images have been

taken from the same view point but at different times. Aim of these

applications is to find and evaluate changes in the scene over the time

or between different conditions. In medical imaging some applications

might e.g monitor healing or tumor evolution.

Different sensors Third group obtains images with different kind of sensors.

In literature this sort of image registration is also referred as multimodal

image registration. Multimodal image registration is used in medical

imaging to get combinations of images from different kind of sensors, like

magnetic resonance imaging (MRI), ultrasound or x-ray, for instance.

Although the images obtained for the application of this thesis are not

from different kind of sensors, overlapping imaging plates have an influ-

ence on each other some what similar.

Scene to model registration The final group of applications does scene

to model registration. They try to register recorded scene with pre-

formulated model. The aim is to localize the model in acquired image

or compare them, e.g. to see if some anatomical structure of a patient

differ from normal, or to register satellite images with maps.

Regardless of the division of the applications, Barbara Zitová et al. found

in their survey that majority of the methods consists of four steps: First, in

feature detection, distinctive structures are detected from the images. After

that, in feature matching step the found features of two images are matched

before mapping functions try to do transform model estimation. When suitable

estimation has been done, images are resampled and transformed to match each

other. Steps are walked through in the following.

Feature detection Methods in the first step of the registration can be di-

vided into two main groups. In feature-based methods significant struc-
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tures are searched and detected. Different features are searched for dif-

ferent kind of images and applications. Region features are larger areas

of some constant variable—intensity, color, etc.—in the image which are

separated from each other with high contrast boundaries.

Line feature can be any sort of line, or segment of one. They are searched

by different kind of edge detection methods.

Points might be also considered as detectable features. They might

be intersections of lines, corners or they might be searched with some

derivate based method.

These methods are usable—and often recommended—if there are enough

distinctive and detectable objects in the images, which is usually the

case in general photography. However, there are images from certain

fields which generally lack such details and area-based methods are used

instead. In area-based methods no features are searched, but rather,

every single pixel in the image is considered to be a feature, and the

whole image is sent to the next step of the algorithm.

Feature matching Once the definite features from the source images has

been mapped into feature space, they are turned over and over in order

to find a match. The division between feature-based and area-based

methods holds in the feature matching step also.

For matching extracted features, there are number of methods to choose

from. Methods might be based on e.g. spacial relations, where the

information about the distances between found features are exploited, or

some invariant descriptors of the features themselves are compared and

the best matches are taken to present the same object in the scene.

Area-based methods are used if no features were extracted. These include

e.g. correlation based methods where the intensity levels of the images

are compared. If intensity values of the pixels are not expected to be the
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same, the mutual information based methods might be used. Mutual

information is a measure of statistical dependency between the images.

Area-based methods are usually time consuming compared to the feature-

based method. Also, portions of images containing smooth area without

any prominent details are at high risk to be misregistered with some

other smooth areas.

Transform model estimation After the features are matched, a mapping

function to transform the images is constructed. Mapping functions are

based on the assumed geometric deformation of sensed images. Functions

can be divided into two categories according to the amount of feature

points they use. Global models use all available features and usually

preserve the angles and curvatures of the images.

Local mapping models, however, divide the image into smaller pieces and

form functions for those smaller parts independently thus allowing more

complex transforms.

Image resampling and transform After the transform functions have been

formed, the image or both are transformed and thus the images are reg-

istered. There are also numerous methods for resampling the data in

order to maintain it’s visual quality, however, the bilinear interpolation

is most commonly used as it offers probably the best trade-off between

accuracy and computational load.

2.2.2 In Medical Imaging

Registration of medical images usually involve multiple modalities, i.e. images

acquired with different kind of sensors which are sensitive to different kind of

tissue. Typical image sources are x-ray, magnetic resonance imaging (MRI),

ultrasound (US) or some nuclear medicine methods (SPECT, PET). Even the

scope of the dimensionality of the registration is wide covering all possibilities
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of 2D/2D, 2D/3D and 3D/3D registration, with or without time as an extra

dimension.[8]

Many different methods for registering medical images have been intro-

duced, even some that are not based on images themselves but rather on

calibrating coordinate systems by some other means. Some methods relay on

searching for mounted markers which will guide the registration.

When it comes to registering images on account of the content of the image

itself, one must remember that medical images, as a rule, lack salient objects,

which would be searched by numerous feature extraction methods.[19] There-

fore, area-based methods are used instead.

B. Zitová et al. introduced three area based methods in their survey.

Correlation-like methods are based on cross correlation and its modifications.

Cross correlation (1) is a measure of similarity where sliding dot product of

two images is calculated.

In digital image each pixel is associated with one or more values which

defines the color and intensity of the pixel. For the sake of clarity, and the

fact that x-ray images are grayscale, the images in the following are taken to

be grayscale, i.e. there is only one value, intensity, associated for each pixel.

Let’s take an image matrix A, where each pixel can be represented by Ai,j,

where i and j are the coordinates, i being the row and j the column of the

pixel. The cross correlation between image matrices A and B can be calculated

by the following equation.

CC =

∑
i

∑
j(Ai,j −mean(A))(Bi,j −mean(B))√∑

i

∑
j(Ai,j −mean(A))2

∑
i

∑
j(Bi,j −mean(B))2

(1)

Correlation based methods have been around for a long time and they are

well known. One advantage is easy hardware implementation, which makes

them useful for real-time applications. On the other hand, they may give poor

results on noisy images and usually require intensity levels to be similar by

some linear transformation, i.e. multimodal images may give poor results.
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In correlation-like methods. like in all area based methods, source images

are transformed before similarity is calculated. The value is then compared to

values of earlier transformations, and the best transformation is chosen.

Fourier methods work in the frequency domain. The Fourier transforma-

tions are compared and best match selected. These methods are used if im-

ages were acquired under varying conditions or there is frequency dependent

noise. These methods are faster than correlation based methods, especially

with larger images.

Mutual information methods are considered to be the leading technique in

multimodal registration. They are able to register multimodal images because

they don’t compare directly intensity values as the correlation-like methods

do, but instead measure the statistical dependency of the values between two

images. The drawback of these methods is the same as for the correlation

methods, they both require a lot of computation.

In the case of this thesis work, the images to be registered differ a lot by

the intensity values of the pixels. Therefore correlation-like methods are not

chosen. Since the calculation cycles can be reduced by taking into account

the specification of the problem, there is no frequency dependent noise and

the images are not outstandingly large, Fourier methods bring no extra value.

Instead, mutual information based method is used. Theory is reviewed in the

following sections.

2.2.3 Entropy

Mutual information method is an area based image registration method. It

has its roots on information theory.

The measure of information—entropy or information entropy—was intro-

duced by Hartley[5] in 1928, and advanced later by Shannon[13]. It is a mea-

sure of information or uncertainty in the signal. Usually, and in this thesis,

by information entropy is meant the Shannon entropy.
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The general definition for entropy H of some data sequence is

H = −
N∑

n=1

p(n) logb p(n) (2)

where N is the number of different possible values or symbols the signal might

have, sometimes referred as the length of alphabet. b is the base of the loga-

rithm and p(n) is the probability for a certain signal value n.

Entropy describes the statistical properties of the signal. Let’s assume

we’ve got a data sequence D, where every distinct sample D(t) has the same,

fixed value v, so that

D(t) = v ∀t (3)

This means the probability for that very value is p(v) = 1 and

p(n) = 0 ∀n 6= v (4)

We can divide the sum in equation 2 into two:

H = −
∑
n=v

p(n) logb p(n)−
∑
n6=v

p(n) logb p(n)

H = −p(v) logb p(v)−
∑
n6=v

p(n) logb p(n) (5)

Now, from

lim
x→0

x log x = 0 ,

and (4), we can write ∑
n6=v

p(n) logb p(n) = 0

and the entropy for such data becomes

H = −p(v) logb p(v) = − logb 1 = 0 (6)

This means there is no entropy or no uncertainty in data at all and we can

always be sure the next value in the sequence is v. This also means there
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is really no information in the data either since receiving constantly one and

single value v is not of use at all.

Another example might be a sequence of white noise. In white noise the

values of the signal are uniformly distributed. If there are N possible values

for the next sample in data D, the probability for the value to be a certain

value n is

p(n) =
1

N
∀n

This time the entropy (equation 2) may be written as

H = −N 1

N
logb

1

N
= logbN (7)

Choosing base b for the logarithm is only a matter of scaling. This time there

is uncertainty in the data sequence (assuming N > 1). This means we can’t be

sure what the next value is, which means the next value in the signal contains

some information.

Data sequences with different probability distributions yield various values

for entropy.

A histogram of the image is a presentation of the gray value distribution of

the image. Let’s take an image matrix A, where each pixel can be represented

by Ai,j, where i and j are the coordinates, i being the row and j the column

of the pixel. Let’s also say the length of the alphabet for signal is N , or there

are N different values the intensity of the pixel can be presented.

If we count the number of pixels associated with certain intensity value n

in the image matrix, and divide it by the number of all pixels in the matrix, we

get the proportion of pixels with value n. We might even say that this equals

to the probability for a pixel to contain value n should we pick a random pixel

from the image matrix. This probability may be written as

p(n) =
1

IJ

I∑
i=1

J∑
j=1

δ(Ai,j − n) , (8)
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where I and J defines the size of the image matrix A, and n denotes the gray

value. The Dirac’s Delta function δ(x) is defined (for digital signals) as

δ(x) =

{
1 if x = 0

0 otherwise
(9)

which states in equation 8 that when the pixel has value Ai,j = n, the delta

function triggers becoming equal to 1, which adds up in the sum.

If we count the probability for each and every value n, and place the results

in an array in the order of value n, we get the probability distribution of gray

values of the image, which is also known as histogram of the image. An example

of a histogram of some grayscale photograph is presented in figure 5.

It is possible to calculate entropy of the image using the probabilities from

the values of histogram as entries to the equation 2. The mutual information

method utilizes entropy.

2.2.4 Mutual Information

In the mutual information method for image registration, two images are

moved, rotated, scaled or transformed in even more sophisticated ways in view

of each other in order to find the best match between images.

Viola and Wells[17] were among the first to use mutual information in its

current form. There was, naturally, previous work, of which one was carried

by Collignon et al.[2], who worked with joint entropy.

Joint entropy is one part of mutual information method. Whereas an en-

tropy of an image is calculated from a histogram, a joint entropy is calculated

from a joint histogram.

Joint histogram binds the two images together. It is a 2-dimensional pre-

sentation of distribution of gray value pairs. In the joint histogram matrix, the

coordinates refer to the gray values, one coordinate indicating the intensity in

the first image and the other coordinate in the second one.
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Figure 5: An example of a histogram of a image. On the far left (n = 0) is

the amount of black pixels while in the far right (n = 255, 8-bit presentation,

N = 28 = 256) can be seen the amount of white pixels. In between are

the proportions of other pixel intensities. From this histogram can be read

e.g. that the proportion of pixels with value 100 is 0.0068, which is also the

probability to get gray value 100 when choosing a random pixel.

If nA is some gray value in the image matrix A, and nB is in the B, the

figure at point (nA, nB) in the joint histogram tells the proportion of pixels

that in the matrix A has the value nA and in matrix B has the value nB

when the coordinates of those pixels are taken to be the same across the image

matrices.

To calculate the joint histogram, the two images need to be of the same

size, i.e. there must be the same number of rows and columns in both images.

The intensity resolution however may differ. If the number of different values

the pixels in the first image may have is NA, and the number for the second

image is NB, the size of the joint histogram matrix is NA ×NB.

Let’s say we’ve got two same sized image matrices, A and B. Since the

matrices are of the same size, we can form pixel intensity pairs Ai,j, Bi,j, where
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the coordinates i, j are the same between the images. Joint histogram is a

distribution of the probabilities of these intensity pairs. A single entry for the

probability distribution can be calculated by equation 10.

p(nA, nB) =
1

IJ

I∑
i=1

J∑
j=1

δ(Ai,j − nA)δ(Bi,j − nB) (10)

where nA is the gray value for the first image and nB is for the second. After

computing all of the p(nA, nB) probabilities, the joint histogram is formed.

The joint histogram gives important clues whether the two images match or

not. Let’s take a case where a joint histogram is calculated from two unrelated

images. If we searched for all coordinates (i, j) in matrix A, where Ai,j equals

to certain value nA, and took a look for pixel values in matrix B in the very

same coordinates, we would most likely find them to be random. This would

mean the row nA in the joint histogram matrix would be noisy. If we them

went through all pixel values n in matrix A and by the same time formed the

joint histogram of the two, unrelated images, we would find the whole joint

histogram matrix to be noisy. (See figure 6 (a).)

In the case of identical image matrices, where A = B, things are different.

Let’s inspect first the joint histogram when nA 6= nB. This means we are to

calculate the probabilities of pixel pairs Ai,j, Bi,j in coordinates (i, j) where

matrix A has value nA and matrix B has nB 6= nA. Now that matrices are

identical, i.e. A = B, Delta functions become

δ(Ai,j − nA)δ(Ai,j − nB) (11)

and in the case of nA 6= nB they can be written as

δ(Ai,j − nA)δ(Ai,j − nB) = 0 ∀nA 6= nB (12)

and joint histogram (equation 10) is

p(nA, nB) = 0 ∀nA 6= nB (13)
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This means majority of the joint histogram (every nA, nB pair outside the

diagonal) is zero-valued because choosing two times the same pixel from the

same matrix (A = B) can’t give different result (nA 6= nB can’t be valid).

Let’s then take the case where nA = nB. This means we are calculating

probability of those pixels (i, j) in matrix A that has value nA whereas the

same pixels in matrix B = A has value nB = nA—notice that this is always

true. Now the Dirac’s Delta functions become simply

δ(Ai,j − nA)

and equation 10 for joint histogram can be written as

p(nA, nB) =
1

IJ

I∑
i=1

J∑
j=1

δ(Ai,j − nA) ∀nA = nB (14)

which would show as a straight line in the joint histogram all the way from

pairs 0, 0; 1, 1; 2, 2 to N − 1, N − 1. (See figure 6 (c)).

Between two totally random images and two identical images, there are

numerous cases where the two images are almost the same. They are of the

same scene but shifted by some pixels or rotated by some small angle in view

of each other. Such cases show in the joint entropy as dense clusters. In the

figure 6 (b) is a demonstration of joint histogram of two identical images except

for the shift of one pixel in horizontal direction.

Like in the case of perfect match, a crisp line or curve can be seen also

when the images have been modified by some gray level correction. Figure 6

(d) is a joint histogram between an original and a gamma corrected version of

an image.

Like the entropy of the image can be computed from it’s histogram, a joint

entropy H(A,B) of two images can be computed from the joint histogram of

the two (15).

H(A,B) = −
NA−1∑
nA=0

NB−1∑
nB=0

p(nA, nB) logb p(nA, nB) (15)
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where p(nA, nB) is the probability from the joint histogram.

Entropy is the measure of uncertainty in the signal. If we want the two

image matrices to match, we want to minimize the uncertainty between them—

to minimize the entropy. For the measurement we could use the additive

inverse −H(A,B) and try to maximize it.[2]

However, choosing to maximize the additive inverse of joint entropy, −H(A,B),

(a) Two random noise images. (b) Identical images shifted by

1 pixel in horizontal direction.

(c) Two identical images. (d) The other image modified

by gamma correction.

Figure 6: Joint histograms. (a) A joint histogram of two random noise images.

As the images are not same in any way, the histogram resembles noise. (b)

Two images are the same, but the other one is shifted by 1 pixel in horizontal

direction. A structure begins to form. (c) Perfect match. A joint histogram

of two identical images shows a crisp line. (d) Otherwise the same as (c), but

the second image has gone through gamma correction.
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as the measurement isn’t always quite enough. Joint entropy might give false

minimum e.g. if backgrounds or other uniform areas are the only things over-

laid. E.g. in the case of overlaying backgrounds there would be only one sharp

point in the joint entropy matrix at the point nA, nB, where nA and nB are

the background gray levels of matrices A and B, respectively. One sharp peak

in joint entropy gives low value for joint entropy, which would lead to false

maximum of the measurement.

There is, however, a measure to discriminate such areas of the overlaying

images in favor of areas where the “proper” data is, and that measure is the

entropy of the single image. Entropy for an image matrix consisting of only

one pixel value is zero (as found in the example at page 17), whereas entropy

for varying data is higher. Therefore, adding the entropies of the separated

images to the equation should help us avoid false maximum. Now it can be

written

I(A,B) = H(A) +H(B)−H(A,B) (16)

where H(A) and H(B) are entropies of separated images, H(A,B) is the joint

entropy of the two, and I(A,B) is the mutual information measure which we

want to maximize.[9]

Mutual information has been studied a lot, and a normalized version, called

NMI (17), has been proposed[15] and it is used in this thesis.

NMI(A,B) =
H(A) +H(B)

H(A,B)
(17)

Although mutual information is mostly used to register multimodal images

from different kind of sensors, there is also previous work involving alignment

of two x-ray images. Sanjay-Gopal et al. exploited mutual information method

to find lesion from the mammograms.[12] They used MI first for registering

the temporal mammograms from the same patient. After the registration they

used mutual information once again to find the lesion structure of the latest

image from the previous images to obtain a final estimation of its location.
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2.2.5 Image Rotation

As the phosphor imaging plates are practically at the same distance from the

teeth and x-ray tube, and they are in the same plane in view of each other, the

stitching problem of this thesis can be considered as rigid registration problem.

Rigid registration means that the images are only rotated and shifted spa-

tially without any more complex transformations. Subpixel accuracy is not

sought, so shifting the image matrices is an easy task. Rotating digital im-

ages, however, is trickier.

Image matrix is rotated using a rotation matrix. Two dimensional clockwise

rotation matrix is

R(θ) =

[
cos θ sin θ

− sin θ cos θ

]
(18)

where θ denotes the angle.

Image matrix is rotated by mapping pixels (i, j) into new pixel coordinates

(̂i, ĵ), which are calculated with rotation matrix (equation 19).[
î

ĵ

]
=

[
cos θ sin θ

− sin θ cos θ

][
i

j

]
(19)

In this “forward method”, the existing pixels (i, j) are mapped into a new

pixels (̂i, ĵ). Because the pixel coordinates must be integer, this approach

can produce holes and overlaps in the new image due to the rounding errors.

Therefore, the “backward method”—where the pixel coordinates of the new

image are taken to be integer and coordinates of the image-to-be-rotated are

calculated from them—is used instead (equation 20).[
i

j

]
=

[
cos θ − sin θ

sin θ cos θ

][
î

ĵ

]
(20)

Newly calculated coordinates (i, j) are not neccessarily integers, although

in the image matrix they are. In the nearest neihgbour method the coordinates
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(i, j) in equation 20 are simply rounded and that pixel is mapped into the new

image.

More sophisticated alternative is the bilinear interpolation method. Let’s

say we’ve computed the coordinate (i, j) with equation 20, and we then identify

the four nearest integral coordinates as Q11 = (i1, j1), Q21 = (i2, j1), Q12 =

(i1, j2) and Q22 = (i2, j2).

The value v for the pixel (̂i, ĵ) in the rotated image matrix can be calculated

by linear interpolation in both i and j directions (equation 21).

v(̂i, ĵ) = v(Q11)
(i2−i1)(j2−j1)

(i2 − i)(j2 − j)

+ v(Q21)
(i2−i1)(j2−j1)

(i− i1)(j2 − j)

+ v(Q12)
(i2−i1)(j2−j1)

(i2 − i)(j − j1)

+ v(Q22)
(i2−i1)(j2−j1)

(i− i1)(j − j1) (21)

To rotate the image around it’s center point, the coordinates must be de-

clared so that the center point is at (0, 0). Since in the matrices the coordinate

are defined by the top-left corner, the equation 20 must be rewritten as[
i

j

]
=

[
cos θ − sin θ

sin θ cos θ

][
î− ic
ĵ − jc

]
+

[
ic

jc

]
(22)

where (ic, jc) is the center point of the image matrix.
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3 Materials

3.1 Imaging Plate

3.1.1 Phosphor Imaging Plate

The topic of this thesis, stitching two x-ray images, doesn’t depend on the

means the images are acquired. However, because the algorithm is going to to

be used with a certain device which uses phosphor imaging plates only, these

plates are used as solely means to obtain test images.

Imaging plate is a flexible plate with a photostimulable phosphor com-

pound coating which is capable of storing the energy of x-rays among other

radiations.[14] The most important feature of the phosphor compound coating

is that, when stimulated by visible or infrared light, it emits light correspond-

ing to earlier absorbed energy—which, in other words, means the phosphor

imaging plate records x-rays.

The advantage of imaging plate over conventional film is its reusability.

After the image has been read from the plate, the committed energy can be

released fully by exposing the plate to bright light. This resets the plate and

it is ready to be exposured by another x-ray dosage.

Besides film and imaging plate, one might take x-ray images with a digital

sensor. With digital sensor the operator doesn’t need to use external device to

read the data out of the imaging plate. However, the sensor is usually thicker

and not flexible at all, making the plate easier to place into a patient’s mouth.

Imaging plates are cut from larger pieces, and the edges of the plates might

not be exactly straight but might curl in the pixel scale. This must be taken

into account in the program.

The size of the IP used in this thesis is 7.0 × 3.1 cm. The corners of the

plates are rounded.
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3.1.2 Imaging Plate Reading Device

After the imaging plate has recorded the x-ray radiation, it is inserted into the

plate reading device. The plate is attached to a sledge, which moves the plate

in one direction. While the sledge and the plate moves, a laser beam sweeps

from side to side. The movement of laser beam is transverse to the movement

of the plate.

When the laser hits the phosphor compound coating, the coating emits

a visible light with energy corresponding to the amount of x-ray radiation

the very spot on the plate was exposed to. Emitted light goes through light

amplifier tube and is then recorded by light sensor.

Recorded data is digitized by 14 bit A/D converter. A computer then

recombines the image from the sequence read from the imaging plate. During

the tests, the resolution setting is 25 pixels per millimeter yielding image size

of 1750× 775 pixels.

Figure 7: Construction of the image reader. The imaging plate moves at

constant speed to one direction. A laser beam sweeps the surface of the plate

from side to side in transverse direction. A light emitted from the phosphor

compound coating is amplified and recorded by photomultiplier tube. Image

courtesy of [14].

The designer of the plate reading device must decide what is the maximum

size of the imaging plate, as it cannot be larger than the area the laser beam
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is able to sweep. This limitation is the reason for this work. There is a

maximum width for the imaging plate, and it is not large enough to cover a

significant part of the teeth for occlusion imaging. This is overcome by using

two overlapping imaging plates, hence creating the need for this algorithm.

3.1.3 Imaging Plate Container

Due to the size limitation of the phosphor imaging plate size (see section 3.1.2),

two plates are needed to cover the area necessary for the occlusion imaging.

Earlier attempts to gain larger imaging area in clinics included putting two

imaging plates side by side. While this truly doubles the area obtained with a

single exposure, the two images where still considered to be separated by the

viewing software on the computer. Positioning them would be based only on

the educated guess of the doctor.

To automatically merge the images into one, single image, the plates are

placed partly one upon the other. This will give the algorithm two images

where a section of the images is similar.

To secure that the plates are overlapping sufficiently for successful stitching

while not overlapping too much to needlessly reduce the combined surface area,

a certain container is used to hold the plates in proper position.

The container is made of carbon fiber. Two imaging plates can be slided

in from the other end of the container (figure 8). Before imaging plates are

slided in, they are covered with thin, plate sized carton, which both protects

the delicate coat of phosphor on the plate, and holds the plate inside the case.

The size of the imaging plate used in testing is 7.0× 3.1 cm. In the con-

tainer the longer sides of the imaging plates overlap for about 0.5 cm, thus mak-

ing the total surface area of the overlapping plates to be around 7.0× 5.7 cm.

The container will be covered by a removable protection bag during the

scan to ensure sterility between patients.

For testing purposes, one container is equipped with four metal balls, which
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Figure 8: A prototype of the imaging plate container with two imaging plates

partially slided into the container. In the clinic, imaging plates are first covered

with thin carton to protect the phosphor surface, and the whole container is

put in a protection bag to ensure sterility between patients.

will show as bright spots in the image. The distances of the spots can be used as

a numerical measurement of the success of the image stitching, as the distances

of the spots should last between different images. Balls are placed so that their

images won’t participate in image stitching process.

3.2 Dental X-ray Images for Testing

A set of intraoral image pairs was taken for testing purposes. Imaging plates

were placed into the plate container which would hold them in right position

in view of each other. The phosphor plates were a standard Digital Imaging

Plates from CAWO Photochemisches Werk GmbH except from the special size

of 31× 70 mm.

To minimize the radiation dose for living tissue, no humans were exposed.

Instead, images were taken from a human skull. The skull was equipped with

a handle to change the position of jawbone, thus allowing the teeth to bite and

hold the plate container between teeth.

Images were taken from both upper and lower teeth. The case was also

rotated in random angles in horizontal plane to make the testing data more

uncorrelated.
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Plates were exposured using the Instrumentarium FocusTM intraoral x-ray

tube from PaloDEx Group Oy.

After exposure, the recorded images from the plates were read by Soredex

Digora R©Optime reading device, also from PaloDEx Group Oy.
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4 Design of the Algorithm

This section covers the design of the algorithm. The flow diagram of this

algorithm is presented in figure A1 at appendix A. Each of the blocks in the

diagram are described in the following subsections.

4.1 Preprocessing Images

Preprocessing block of the algorithm, as the name indicates, processes the

images before they are sent to the actual image fusion algorithm.

When the image is read, the plate reading device scans a certain area. To

make sure all data in the plate is read, this area is larger than the surface area

of the plate. This scanned area defines the size of the image canvas. Image

canvas can be considered as an area where the actual image is laid within. The

size of the canvas may be larger or equal to the size of the image in it.

Figure 9: An example of the actual image within the image canvas. The

image data received from the imaging plate reading device (the image and

surrounding whites inside the border line) is larger than the actual image (the

gray imaging of the mouth).

In our case the canvas of the image file is larger than the actual imaging

of the teeth recorded by the imaging plate (see figure 9). As the data passes

through the software, the surrounding white area is removed for two reasons.
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First, it carries no information at all, and second, it would degrade the quality

of the stitching process as surrounding whites would be mixed with teeth and

other lighter colored areas in the actual image. The easiest way to remove

surrounding whites is simply to crop off any pixel line containing more than

preset amount of white.

Depending on how the operator of the device manages to place the plate

into the track of the reading device, the actual image may be more or less

rotated. This may cause cropping some of the actual image data if the angle

between the plate and the track is significant enough. Figure 10 shows a sketch

of such situation.

Figure 10: A sketch of cropping the image due to the significant angle between

the imaging plate and the reading device. The outline represents the canvas of

the image data where the actual imaging of the teeth is within. The smaller

rectangle represents the border of the resulting image after rather simple re-

moval of the surrounding whites. Other than whites, it also crops off pixels

with proper information.

Normally in intraoral imaging, a small rotation—or a small cutting of the

edges of the image caused by rotation of the image—wouldn’t matter as usually

the most interesting objects are set to the middle of the imaging plate. In image

stitching process however, the edges are needed, for now the most important

information—the information needed to combine the two images—is at the
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edge areas of the images. Nonetheless, the whites must be removed or otherwise

marked before image data can be sent to next step in the algorithm. Should

this not be done, the surrounding whites would have negative impact on fusion

process as structures (surrounding whites) found in the first image would be

in totally different area in the second image.

Since the problems of cropping whites are caused when the actual image in

the image canvas is more or less rotated, a self-evident correction is to counter-

rotate the image so that the pixel lines of the edges of the actual image align

with the pixel grid.

Before the angle to counter-rotate the image can be calculated, the edge of

the image is searched. The surrounding area of the image canvas is known to

be bright white, whereas the imaging of the teeth—unless underexposed—is

darker. This can be seen in the histogram of the image (figure 11). Histogram

presents the gray level distribution of the image. Each bar in the histogram

represents the amount of pixels with corresponding gray value.

The threshold to decide whether some pixel belongs to the surrounding

white or to the proper image is searched from the histogram. Pixels with gray

level higher than threshold are considered to be part of the surround.

Some sample images were examined in image editing software to find a clue

of suitable threshold value where surrounding whites turn into actual image.

It turned out that the threshold is to be found from the band of the histogram

between the great mass of the actual image and far white end of surroundings.

For instance in image 11 the actual image has values 2300 . . . 14500 and the

far white end of the surroundings has 15500 . . . 16383, where gray values may

have 214 = 16384 different values in 14-bit gray images.

However, numbers stated here cannot be trusted to be the same from image

to image since they, especially the values of the actual imaging, depend on

varying conditions such as used voltage and current and the distance between

the x-ray tube and imaging plate.
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Figure 11: A sample histogram of the x-ray image. The high bar on the right

(the bright end) tells us there are significant portion of white in the image.

We already know that it is (mostly) the surrounding white area of the image

canvas around the actual x-ray image. The threshold gray level for removing

the whites is searched from the histogram, and it is the local minimum just

before the figure rockets up in the white end.

Therefore a suitable threshold is searched from the histogram. Since the

histogram is separated in two sections, a fit value for threshold is assumed to

be a local minimum between the sections.

If for some reason the bit accuracy of the image has been decreased and is

lesser than accuracy used to determine the histogram, or for some other reason

the histogram appears to be comb-shaped, the histogram is “low-pass filtered”.

In mathematical point of view there really is no such operator for histograms.

What is done is a low-pass filtering of the series containing the gray levels of the

histogram. This will remove the comb-shape from the histogram, a necessary

action if one wishes to avoid false minima in the series. Conveniently this will

also reduce noise and small variations in the series, which is nice since we hope

to find local minimum of the tendency only.
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A simple way to apply low-pass filter is to count average value of the nearby

values as presented in equation 23, where h(l) is the portion of pixels with gray

value l from the actual histogram, and hL(l) is low-pass filtered histogram. The

constant C in the equation determines the number of histogram entries (2C+1)

used for calculating the average.

hL(l) =
l+C∑

i=l−C

h(i), l = 0 . . . L− 1 (23)

For the parts, where i = l−C < 0 or i = l+C > L− 1 and the histogram

is undefined, the last know value, h(0) or h(L− 1), is used, respectively.

After the histogram has been smoothened, the algorithm searches for the

last local minimum before the white end. This is assumed to be a gray value

which discriminates surrounding whites (values above) and actual image (val-

ues below). It is possible there are pixels with gray values above the threshold

within the actual image, specially around the teeth, but the minimum is con-

sidered to be decent approximation nonetheless.

Next, each pixel row is scanned and the coordinate where the pixel value

drops from high (surrounding white) to below the threshold (actual image) is

stored. The edge of the image is searched by fitting a line on account of these

coordinates (xi, yi) using least squares fitting.

For a linear fit we’ve got a function of form

y(a, b) = a+ bx

whose parameters a and b can be calculated from the data points xi, yi. Using

least square fitting we get

b =
(
∑n

i=1 xiyi)− nxy
(
∑n

i=1 x
2
i )− nx2 (24)

and

a = y − bx (25)



37

where x and y are averages of values xi and yi, respectively.[18]

The edge of the image is now determined by values a and b. There is no

use for the figure a, but from b we can calculate the angle of the estimated

edge of the proper image. Since this figure is the amount of units the slope of

the rotated edge grows against the movement of one unit in desired direction

of the edge, the angle θ of the image is simply

θ = arctan b (26)

Now the image can be rotated by angle −θ using the backward method and

bilinear interpolation as described in section 2.2.5. The border of the actual

imaging should now align with the border of the image matrix, or the pixel

grid.

After the image has been straightened, the surrounding whites can be cut

off by removing any line with white pixels exceeding the preset amount. Be-

cause of the straightened image matrix, there is no fear of losing any vital

information of the images.

4.2 Identifying “Upper” and “Lower” Image

Since the imaging plates in the container are only slightly overlapping each

other, there is really no need to try to register the images by searching the

whole area of the pictures. Instead, to reduce calculation time it is wise to

search only from the overlapping parts of the images. To predefine whether

certain parts of the images—say certain sides of the images—are overlapping

or not, we need information about the container and the placement of the

imaging plates. Information for estimating a suitable size for the overlapping

area of the image could be used too, but in this particular application it is not

needed as the necessary information is actually stored in the images.

Let’s say ai,j corresponds to the amount of radiation that is about to hit

corresponding pixel i, j of the imaging plate. (Strictly speaking there are no
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pixels in phosphor imaging plate, but we can assume that the energy of certain

surface area of the plate is in the process converted to equivalent energy of

corresponding pixel.) If there is no imaging plate above, this pixel on the plate

gains the whole radiation ai,j. However, should there be another imaging plate

blocking the rays, our pixel will only gain the radiation of Tai,j, where T is a

transmission coefficient indicating the proportion of radiation passing through

the first plate (0 < T < 1).

Since an x-ray image is a negative image of recorded data, the value vi,j of

each pixel in the actual image will be

vi,j =

{
1− ai,j if no plate is above

1− Tai,j if another plate is above
(27)

where the values of v and a are both between 0 . . . 1.

We can also state that expected value of ai,j is average of all ai,j (equation

28). From this and equation 27 we get expected values (equations 29 and 30)

for pixel values v in two different cases.

E(ai,j) =
1

IJ

∑
i,j

ai,j = a (28)

E(vi,j, no plate above) = 1− a (29)

E(vi,j, another plate above) = 1− Ta (30)

Since 0 < T < 1, we can say that

E(1− Ta) > E(1− a) , or (31)

E(vi,j, another plate above) > E(vi,j, no plate above)

or, in other words, gray values of pixels shaded by another imaging plate during

the exposure are higher than those not shaded.

The change in the overall gray levels between fully exposured (not shaded)

and partly exposured (shaded) areas in the image of the lower plate can be seen
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clearly. (See the right side on figure 12). Because of the more or less rectangle

shape of the plate with other side longer than the other, the imaging plate

can be inserted in only two ways into the reading device. As a result, there

are only two sides in the image where the border between different exposure

amounts may lie, and due to the design of the container, that border is on

either of the long sides of the image. Also, the border is more or less aligned

with the side of the image because of the design of the container doesn’t allow

there to be significant angle between the plates.

Figure 12: Sample image of the imaging plate showing a distinct vertical

border—or change in the overall gray levels—on the right side of the image. It

has been caused by another imaging plate on top this one during the exposure.

To make decision on which one of the images was on top and which one was

underneath the other one at the time of the exposure, the algorithm tries to find

if there is an area of higher gray values in the image as expected by equation

31. The area of lesser exposure should be on the long side of the image, which

means, moving along the i-coordinate should not have an influence whether

we are on the fully exposured area or not, assuming the image (matrix) is in

upright position and i is taken to be the row coordinate of the matrix.
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The values of each row are added up (32). The series from (32) are differ-

entiated and since we are interested in the absolute change only rather than

direction of the change, the absolute value of the series is taken (33).

s(j) =
I∑

i=1

vi,j (32)

∆s(j) = ‖s(j)− s(j − 1)‖ (33)

Differentiated series ∆s shows a distinct peak where the overall gray values

of the image changed in the “lower” image. In the “upper” image however,

there is no such peak in the differentiated series since the plate has not been

shadowed by any other imaging plate. During this thesis, by “lower” image is

meant the image acquired from the imaging plate that was underneath during

the exposure. By the “upper” image, naturally, is meant the image of the plate

that was above the “lower”.

The images are identified as “upper” and “lower” image according the

absence or the presence of this peak respectively. (See figure 13)

In practice one must notice that there might be false peaks near the ends

of the series. These are formed because the edge of the physical plate is not

always sharp, and there might be white pixels as the remainings of the canvas.

The ∆s series shows a peak where the empty space changes to actual image

since there is a also a change in the overall gray levels.

When searching the peak from the series, the application must omit those

false spikes. In this application it is done by excluding circa 10% of both ends

of the differentiated ∆s(j) series since the overall change in gray levels should

not be there according to the plate container design. Ends of the series has

been set to zero in figure 13.

The series ∆s(j) of both lower and upper image are compared and identified

so that

max ∆sL > max ∆sU
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is satisfied, where ∆sL presents the series of the lower image and ∆sU of the

upper image.

As seen in figure 13 (b), even when teeth (in this case molar teeth)—which

show in the image as lighter areas—are situated in a line at the side of the

image, the diagram shows no prominent peak which would be mixed with the

peak of overall change in gray values in the other diagram.

(a) Image of the

lower imaging plate

overlaid with dia-

gram.

(b) Image of the

upper imaging

plate overlaid with

diagram.

Figure 13: Images of the lower (a) and upper (b) imaging plate along with

overlaid diagrams. The diagrams represent the values of series ∆s(j) (equation

33) at each column j of the image matrix. A distinct peak can be seen in

diagram of the lower image at the very spot where there is a border between

fully and partially exposured areas of the image. Diagrams are in the same

scale. There is no peak at the diagram of the upper image. The ends of the

diagrams are set to zero to avoid possible false peaks near the edges of the

images.
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4.3 Tentative Aligning of Images

The plate container allows there to be only small rotations between the plates,

and to reduce calculation cycles only small angles are to be gone through in

the iteration process later in this algorithm. Therefore the images are first

aligned tentatively so that they are not upside down or mirrored in view of

each other. The pool of image processing techniques included in this part of

the process are only rotation of 180◦ and vertical and horizontal mirroring of

the image.

The preprocessing block (section 4.1) has already turned the image to up-

right position if the image was initially wider than higher, thus ensuring that

the edge of the “lower” image with lesser exposure is either on the left or the

right side of the image.

The “lower” image is aligned (i.e. rotated 180◦ degrees if necessary) so that

the edge with lesser exposure is located to the right. Once again the change

in the overall gray levels (equation 33) is used here, now as an indicator of

alignment of the image. Nothing is done if the maximum value of series ∆s is

already found on the right side of the image, i.e.

argmax
j

∆s(j) >
J

2
, (34)

where J is the width of the image matrix, and thus half of it denoting the

middle of the image in view of coordinate j. Otherwise, if

argmax
j

∆s(j) <
J

2
(35)

is true, the “lower” image is rotated 180◦ to get the less exposured area to the

right side.

Choosing to rotate the image this way is totally arbitrary and one might

choose the opposite as well with no effect on the functionality of the algorithm

at all, if the necessary changes are applied to the rest of the algorithm. This is

done to simplify the later process of the algorithm. The arbitrary choice made
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here only means that the image with lesser exposure—i.e. the lower image—is

going to be located on the left in the resulting image.

Theoretically there might be also situations where

argmax
j

∆s(j) =
Nj

2
. (36)

This case is omitted in this application as it is assumed that the change in gray

levels caused by another imaging plate is closer to the edge of the image than

the middle of the image. This assumption is based on the foreknown shape of

the container for imaging plates.

Next, a section of the image is taken from the lesser exposure part of the

image. The size of this window is determined by the earlier found border

between fully and partially exposured areas of the “lower” image. All columns

between coordinates j = argmaxj ∆s(j) and j = J are read to the window.

Equally sized sections are taken from both sides of the “upper” image. (See

figure 14.)

Imaging plates have round corners which means the images have them too.

On the overlaying parts of the images the corners however are horizontally

mirrored in view of each other. The area outside round corners is more or

less bright white (white surrounding) and would have a negative effect on the

image registration as different parts of the imagings of the same view would be

rendered in white. Therefore the undefinable data near the corners is excluded.

The two sections from the “upper” image are rotated and mirrored ac-

cording to different alignments the plates can have, and then compared to the

window from the “lower” image by calculating the mutual information between

them.

The highest mutual information figure denotes the most likely match of

two windows. Earlier the “lower” image has been rotated so that the under

exposured part faces to the right. The “upper” image is rotated or mirrored

so that, when placed on right in view of the “lower” image, the matching side
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Figure 14: Windows from the images are taken in order to tentatively align the

images. Window is taken from the lesser exposure part of the image. (White

rectangle in the left side image.) From the other image, sections are taken

from both sides. (Two white rectangles in the right side image.)

faces left. Now the overlapping parts of the images are next to each other like

the example in figure 15.

4.4 Defining Region of Interest

The algorithm now knows which parts of the images were overlapping. When

it comes to registering the images, those are the only interesting parts of the

image. These regions of interest (ROI) of the images are cut off to separated

image matrices for closer inspection.

ROI might be selected by the content of the image, but in this application

the region of lesser exposure and corresponding region from the “upper” image
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Figure 15: An example of tentatively aligned images placed right next to each

other. The overlapping areas are right next to each other in the middle of the

image.

are chosen.

The round corners are excluded from the region of interest for the reasons

mentioned in the earlier section. Because of the little inexact edge of the

phosphor coating in the imaging plate (see section 3.1), some margin is to be

cut off from the long sides also to make sure the undefinable data is excluded.

Sizes of margins are determined by studying the images in some image

viewing software. By removing about 10% of the width of the underexposured

part of the image from both left and right sides of the image will remove the

fuzzy edges caused by the inexact border of the phosphor coating. (Fig. 16)

Round corners were removed already in the previous step of the algorithm.

A ROI from the “upper” image is also defined, and its size is determined

by the ROI previously selected from the “lower” image. The size is almost the

same, except now small margins are added so that this region becomes larger

than the other thus allowing the smaller region to move and rotate inside the

bigger one.



46

Figure 16: A top of the underexposured part of the image from which the

margins are removed to define region of interest. White rectangle illustrates

the border of ROI. Circa 10% of original height of the image is removed from

both top and bottom of the image. (Bottom not seen here.) Circa 10% of the

width of the underexposured image is also removed from left and right sides

of the image.

Size of this bigger ROI might either be fixed and only slightly larger—

which is suitable if angle and shift are searched by going through all possible

combinations—or more loosely determined, even the size of the original image,

if some optimization routine is used to find the angle and shift.

As the prime aim of this work was to find robust means to register two

images, no optimization is involved in the early phase of the final product.

Not using optimization in rigid medical image registration is not rare choice

as searches are rather fast.[19] Instead all possible combinations of angles and

coordinate shifts are going to be searched for, and the “upper” region of interest

is chosen to be only little larger than the region of the “lower” image.

Based on the plate container design, movement of one IP is ±1 mm in view

of the other. This predefined information is used when calculating the size for

ROI of “upper” image. If we know the resolution R of the sensor system (pixels

per millimeter), we can compute that distance smm = 1 mm is equivalent to

spixels = Rsmm
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where spixels is the distance of 1 mm in pixels.

The window taken from the “upper” image will be 2× spixels pixels larger

than the “lower” window in both width and height.

4.5 Preprocessing Gray Levels of the ROIs

The response of the imaging plate reading device is not exactly smooth along

the image. There is a tendency for the pixel values to become lighter when

approaching the edge of the longer sides of the image. In the selected regions

of interest the phenomenon is almost linear, however, changing in the opposite

directions.

The mutual information method doesn’t handle non-statistical changes well

and the gradients must be eliminated. Few images were examined with Mat-

lab and a suitable linear function was formed to remove the gradients. The

function is of form

vn(j) =

(
a+ b

j

J

)
v(j)

where a and b are coefficients, v is the original value of the pixel and vn is the

new. The column coordinate j of the pixel is used to further determine the

coefficient when the size of the selected ROI is J .

To reduce the calculation cycles, the bit accuracy of the images is de-

creased. In image manipulation this is referred to color quantization of the

image windows. The color quantization means the number of different possi-

ble gray levels denoting the amount of x-rays is reduced, or, the accuracy to

determinate the amount of x-rays is decreased. Images acquired with Soredex

OpTime plate reading device are stored with bit depth of 14 bits, yielding 214,

or 16, 384 different gray level values.

A certain, arbitrary figure for bin count could be chosen, but Amankwah

Anthony and Otmar Lofffeld gained good results with their tests on bin count

chosen by Freedman and Diaconi’s rule.[7]
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The Freedman and Diaconi’s rule is

W = 2(IQ)N−
1
3 , (37)

where W is the number of bins remaining after quantization. Quartiles are

the three values which divide the histogram into four equal parts, so that each

part represents one fourth of the pixels or samples. Interquartile range IQ is

the range between the third and the first quartile, or in other words, the gray

value range where 50% of the midmost pixels lay. N in equation 37 is the

number of pixels in the image, or rather, in the region of interest.

For example, one underexposured part of the image (ROI of the “lower”

image) has the range IQ = 898. The number of pixels is N = 87, 264 and so,

from (37) we get W ' 40 bins. To make it easier for computer calculation, we

then choose the nearest exponent of 2.

2b = W = 40

b =
ln 40

ln 2
' 5

So, the bit depth of the ROI will be reduced and there are going to be

only 25, or 32 different gray values. This decreases cycles needed to compute

mutual information without decreasing the quality of registration. Values are

calculated separately for “upper” and “lower” ROI.

The region for the “lower” image is chosen from the area of the imaging

plate which was underneath the other and therefore has lesser contrast with

rather narrow histogram. If the reduction of bins were done directly to the

“lower” ROI, majority of the pixels would fall into just few bins. As this is not

wanted, the gray values of the region are adjusted. The histogram is stretched

along all possible values, so that the lowest pixel values become 0 and the

highest 214 − 1 = 16, 383 just before the quantization.

Although in the case of the “upper” ROI, the color quantization wouldn’t

be so violent, its values are adjusted also.
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In the field of digital image manipulation, there exist many methods for

quantization of colors while keeping the quality of the image as good as possible

for human eye. These methods include, among others, use of color palettes or

dithering. In this application, however, we are not interested in the subjective

quality of the windows of the images and we don’t use such methods. Instead,

a plain nearest color algorithm is used for quantization.

If the number of bit accuracy to be is b, and the current value of the pixel

is v, the new value vn can be calculated by the following equation

vn = round

(
v

2b

214

)
(38)

where round rounds the parameter into nearest integer.

The size of the joint histogram of the mutual information method is defined

by the values Wlower and Wupper, which are calculated by equation 37 for lower

and upper image window.

4.6 Finding Spatial Location and Angle

Now that original source images has been preprocessed, the algorithm can

proceed to the core section. This part of the program finds the angle θ between

the images and the spatial shift (i.e. the i, j coordinates) needed to register

the images and fuse them together to form a single image.

To reduce the computation load, the match between images is not searched

through whole images, but rather from previously chosen regions of interest

(see section 4.4) which are known to overlay each other. These overlaying parts

of the images are then rotated and shifted in view of each other.

The imaging plate defines the maximum angle there can exists between the

images. The images themselves have been straightened up earlier in section

4.1. This, however, only nullifies the angle between single imaging plate and

sledge of the plate reading device at the time of image reading, not the angle

between the plates when they were exposured. If location of the other plate is
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considered to be fixed, the other is allowed to move ±1 mm in any direction.

Different ends can move to different directions and thus contribute an angle

between the plates.

To calculate the largest possible angle, we need to know the height h of

the imaging plate. In case of the largest angle, both ends on the non-fixed

plate move 1 mm to different direction, which means, that we’ve got a triangle

where hypotenuse is h/2 and opposite side is 1 mm. Since sine function is

sin θ =
opposite

hypotenuse

we can write

θ = arcsin
opposite

hypotenuse

and, assuming the length h of the plate is given in millimeters, we get an

equation 39 for the the maximum angle θmax.

θmax = arcsin
1

h/2
= arcsin

2

h
(39)

For a 70 mm length imaging plate equation 39 yields an angle of 1.64◦.

The ROI of the “lower” image is rotated with various angles between −θmax

and θmax. The number of different angles to choose is a tradeout between

computational speed and accuracy of the stitching.

Whenever the ROI from the “lower” image is rotated, some undefined data

from outside the border is bound to appear. Depending on the implementation

of the rotate algorithm, appearing data might be pixels of e.g. white or black.

In either way this data is undesired and must be removed. (Almost same thing

emerged earlier in the process when surrounding whites were removed from the

initial images in section 4.1.)

Since the maximum angle θmax corresponds to 1 mm tilt of both plate ends,

the maximum row or column count needed to remove is the number of pixels

on the distance of 1 millimeter. This way, even when rotated by θmax, all

undesired pixels will get cut out. The amount of pixel rows and columns been
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equivalent to 1 mm length on the plate is removed from all four sides of the

image matrix every time, regardless of the actual angle the image has been

rotated. This ensures the pixels count in the rotated and cropped image is

always the same and doesn’t effect the entropy calculations.

The search for right angle and spatial shift is done by the following loop.

Rotation The “lower” region of interest is rotated by an angle θ. Undefined

data outside the original ROI will appear, but it is removed by cropping

the rotated window. Cropped ROI of the “lower” image becomes the

“lower” window.

Spatial transition A same sized window from the “upper” ROI is selected.

The spatial coordinates of this window go through all possible shifts.

This way the windows are moved in vertical and horizontal ways in view

of each other.

Calculating mutual information Mutual information is calculated between

the two windows. First the joint entropy of the two images is formed,

from which the mutual information is evaluated as descripted in section

2.2.4.

Comparison of the calculated figure Newly calculated figure is compared

to the previous found maximum value of the mutual information. If

the new value is higher than the previous maximum, it is stored in the

memory along with the values of angle and spatial shift.

After the comparison of the MI, the windows are shifted to the next spatial

coordinates and a new mutual information figure is counted. When all possible

shifts have been gone through, the original “lower” ROI is rotated by the next

angle and all allowed spatial shifts are to be examined. Finally, after all angles

has been tested, the proper angle and shift coordinates should be known.
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No optimization is used when searching right angle and spatial shift, as both

are restricted by rather small limits and there are no image transformations

involved. Computation time stays reasonable even when searching through all

combinations.

4.7 Rotate “Lower” Image

The offset of the two imaging plates at the time of exposure is now known. In

the previous step of the algorithm the offset was found by rotating and moving

the window taken from the less-exposured area of the “lower” image.

To counter the rotation, the “lower” image is rotated by opposed angle.

By the “lower” image here, it is meant the image after preprocessing step (see

section 4.1) where the surrounding whites are removed but where no color

quantization is done.

The size of the image matrix is allowed to grow as needed so that no pixel

from the image will be cut off.

4.8 Relocate “Upper” Image

The spatial shift—coordinates i, j—between the two images were found in

section 4.6. The image rotating method used here rotates the image matrix

around it’s center point. This means the “lower” region of interest used in

section 4.6, and the entire “lower” image will be rotated around different center

points. This must be taken into account before the images are stitched.

Let’s say the center point of the entire “lower” image is ic, jc. Coordinates

i, j denote the point where the top-left corner of the “upper” image should

be in view of the “lower” image, which was found in section 4.6. Now, when

“lower” image is rotated, the point i, j point to another, wrong pixel. This

can be bypassed by calculating a new point î, ĵ for the top-left corner with

equation 22.
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4.9 Combining Images

At this point of the algorithm, images are ready to be finally merged. The

“lower” image has been counter rotated by an angle that the imaging plates

were in at the moment of exposure. The right coordinates for the “upper”

have been also found.

Corners of the plates are round, and show up in the images as white back-

ground. If these white background areas of the “upper” image were to be

placed over the “lower” image, they would needlessly cover the image behind,

as they contain no information at all. Therefore, in this step of the process,

corner areas of the images are considered to be transparent.

Other that that, the “upper” image is simply laid over the “lower” one.

For the overlapping area, where there is information from both images, the

one from the “upper” image is used. The “upper” is preferred because of the

better image quality over the under-exposured part of the “lower” image.
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5 Results

The quality of the algorithm was tested by a set of intraoral x-ray images

(n = 33). The x-ray images were obtained by inserting two phosphor imaging

plates in a container which would hold the plates in right position, making the

other plate partially cover the other.

Usually the result of the image registration is evaluated by experts.[1] There

are different measures for the quality of the registration (e.g. speed or memory

usage), but here only the precision of the registration is used. In our case the

experts to evaluate the process would have been dentists, but we weren’t able

to use any. Therefore the evaluation of the registration was made entirely

relying on the markers on the images, which is one way to estimate the quality

of the algorithm, as surveyed by Ximiao Cau et al.[1].

The container for imaging plates was equipped with four small metal balls.

The balls were attached to surface of the casing so that they could not move,

hence the distance of the balls would remain fixed between different exposures.

Metal absorbs x-rays, so those four metal balls cast a visible, round shadows

into the image (see figure 17). Measuring the distances reveals whether the

right position has been found or not.

Before the distances can be measured, the dots must be extracted from

the rest of the image. Raimondo et al.[10] used a Top-hat filtering to detect

carcinoma nuclei from a image. Top-hat filter tries to remove all but spots

of desired size from the image. From the filtering result Raimondo et al.

generated a binary mask using a suitable threshold from which they could

count the number of dots (nuclei).

Applying such dot extraction to the result images of this algorithm gener-

ated binary masks where the “shadows” of the metal balls were found, although

the filtering didn’t always remove all other structures. Therefore a predefined

masking was also applied to ensure only proper data was collected by removing

structures from the parts where the metal balls could not be.
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Figure 17: A sample result image of stitching process. Four metal balls cast

round shadows into the image (See added arrows). These figures are searched

and the distances are calculated. Since metal balls are at fixed distances, the

distances of the figures in the image should always be the same. Measuring

the distances will reveal the quality of the algorithm.

There were now only four circular regions in the binary image. The center

point (center of gravity) of each region was calculated. From the center points,

two distances were sought. (These measurements can be seen in image 17,

being the euclidean distances between two upper balls and between two lower

balls.) The two measurements are not comparable with each other as the

metal balls were manually mounted to the the surface of the container and

hence were at different distance from each other.

The exact pixelwise distances of the metal balls were unknown due to the

manual mounting and the high spatial resolution of 25 pixels per mm. This,
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Table 1: Results for distance d1. Distances between the upper metal balls in

the set of images.

distance (pixels) ≤ 499 500 501 502 503 504 ≥ 505

count 0 8 4 16 4 1 0

Table 2: Results for distance d2. Distances between the lower metal balls in

the set of images.

distance (pixels) ≤ 521 522 523 524 525 526 527 528 ≥ 529

count 0 2 2 11 3 7 4 4 0

however, was considered not to be a problem. If the measured distances would

be the same or close to each other in every image, the algorithm would register

source images properly.

Let d1 and d2 be the measured euclidean distances of the metal balls. Tables

1 and 2 reveal the distribution of the space (in pixels) between the shadows of

the metal spheres. The same results are also visible in figures 18 and 19.

Results with registration error of one pixel can still be considered good.[1]

Measure d1 is pretty close to that with the standard deviation of σ1 = 1.09.

Distance d2, however, whose standard deviation is σ2 = 1.99, doesn’t fit in this

criteria, and must be considered as a less accurate result.

After examining the result images, it was found that between the dots, from

which the distance d1 was measured, there was practically always teeth and

other higher contrast structures in the image. The space between the other

dots was occupied by roof of the mouth, which usually lack distinct structures.

This might explain the difference in accuracy between the measurements.

The worst result for registration was three pixels away from the average.

Considering the resolution of 25 pixels per mm, this would mean a displacement

of 0.12 mm in the mouth, which might be tolerable. Otherwise the mutual

information method seems to find the right registration decently enough.
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Figure 18: Results for the distance d1. There is a slight variation in the

measure. Standard deviation is σ1 = 1.09.

Figure 19: Results for the distance d2. There is a bit greater variation with

this measure than with the distance d1. The standard deviation is σ2 = 1.99.
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(a) MI in function of co-

ordinate i

(b) MI in function of

coordinate j

(c) MI in function of

angle θ

Figure 20: Mutual information in function of different variables. The proper

shift and angle between the images was calculated beforehand. Then the mu-

tual information was calculated again when two of the three variables (i, j, θ)

were kept constant while the remaining coordinate swept through all allowed

values.



59

6 Discussion and Conclusions

A special-purpose algorithm for registering and stitching two overlapping den-

tal x-ray images, taken by a certain device, was designed and implemented.

The amount of overlapping area was fixed.

Image pairs were acquired at the same time, with two phosphor coated

imaging plates. Plates were inserted into special container, which would hold

them in position during the exposure. Due to the attenuated x-radiation be-

hind the first imaging plate, the intensity values on the second image were

notably different from the first one. This is why the mutual information

method—originally introduced for multimodal image registration—was cho-

sen. Mutual information method is an area-based, statistical measure of the

similarity of the images.

Testing images were obtained by the same device that the software was

going to be used with. Total of 33 x-ray image pairs were taken for the testing

of the algorithm. Images were taken with various voltage and current settings

for the x-ray tube. Images were taken from both upper and lower teeth of one

human skull with different positioning for each time to minimize the correlation

between the image pairs.

Although the mutual information method itself was well known and easy to

implement, the preprocessing of the data caused some extensive work. There

were e.g. a small gradients at the edges of the images, which happened to be

opposite directed and must be eliminated to void misregistration.

One of the requirements for the algorithm was full automation, so the first

step of the algorithm was to identify and tentatively align the images. Also,

some image manipulation processes had to be implemented to bypass features

of the existing device as they would have reduced the quality of the registration.

Algorithm testing was arranged by inserting four metal balls on the surface

of the container which would hold the imaging plates. Metal balls would cast

a shadow into the image. The balls were inserted in such locations they would
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not participate in the stitching process. Since they were mounted permanently

to the surface of the container, they could not move and the shadows in the

images should always be at fixed distance from each other on properly stitched

result image.

Distances of the shadows were searched from every image. They were com-

pared with each other to gain measurement of the registration of the images.

It was found out that on the area, where there are more salient structures in

the image, the algorithm was able to register the images properly with the

standard deviation of 1.09. However, on the area with less structures, the al-

gorithm performed a bit less accurately. The standard deviation was 1.99. The

worst registration error was three pixels. This might be too much on the areas

of the teeth, but since these errors emerged only in the areas of the palate, the

results could be considered sufficient enough.

The amount of overlapping area of the imaging plates is predetermined to

be approx. 0.5 cm. Generally mutual information method gives more accurate

results when calculated from larger area as smaller areas are easier to got mis-

registered. If more accuracy is wanted for the stitching software, one approach

might be increasing the overlapping area of the plates.

The gradients at the edges of the imaging plates might also be studied with

greater detail, although good results were gained even with the correction by

linear approximation.

Details in the under-exposured area of the image were very faint. Even

when the mutual information should be quite insensitive to poor signal-to-noise

ratio, choosing the parameters—especially the bin count for color quantization—

was very crucial.

However, after the right parameters chosen, the performance of the algo-

rithm is satisfying.
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Appendix A: The Flow Diagram of the Algo-

rithm

Figure A1: The Flow Diagram of the Algorithm.
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