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The newest generation of processors for embedded applications requires high per-
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straint makes very difficult the task to implement a real time control system
based on low-performance controllers. This is the reason why FPGAs are be-
coming more and more popular for the construction of real time control systems.
Nevertheless, the main problem of using FPGAs is the requirement of having a
good knowledge of the internal architecture and the associated languages for the
development of applications. Thus, the main motivation of this work is intended
to develop a generic methodology for the development of control systems using
FPGAs. The system takes as an example the digital control techniques associated
in the DC/DC converters domain. The work could be divided into three parts.
The first part is introducing all the linear models associated with the behaviour
of Buck converters and the design of regulated control system for these power
supplies. The second part corresponds to the development of all the theoretical
material to develop a fixed-point architecture for linear controllers. Finally, the
third part specifies and designs a reusable architecture inside of the FPGA for
the development of digital control systems.
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ŷ Small-signal output vector

C Coefficient matrix

P Pole matrix

u Input vector

V Vandermonde matrix

x State vector

ω0 Natural frequency

σ2(e) Variance of the statistical noise function

IX



LIST OF TABLES

ε Error coefficient

ζ Damping ratio

ci ith coefficient

cn Fourier Coefficient

Cin Input capacitance

d(t) Control signal

E(e) Mean of the statistical noise function

ed[n] DPWM noise signal

eu[n] Control noise signal

ev[n] Voltage error

epu[n] Per-unit control error

ev out[n] Output voltage noise

Ffactor Form factor function

fsw mp Switching frequency multi-phase converter

GADC ADC transfer function

Gbuck Buck converter transfer function

Gcontroller, Gc Controller transfer function

GDPWM DPWM transfer function

Gid(s) Control to Inductor Current

Gii(s) Input Voltage to Inductor Current

Gilio(s) Output Current to Inductor Current

God(s) Control to Output Voltage

Goi(s) Input Voltage to Output Voltage

H(s) Transfer function of the input filter

Hv Sensor gain

I1(ω) Current spectrum of a single-phase converter

ik(t) k-th inductor current

X



LIST OF TABLES

iL Inductance current

Imax Maximum Current

Imin Minimum Current

Inh nth current harmonic of the input current waveform

Ins Filtered nth current harmonic

iout Output current

Kc Critical gain

kd Derivative gain

ki Integrative gain

kp Proportional gain

m Mantissa

Ncoefficents Coefficient wordlenght

nDPWM Number of bits of DPWM

Ninteger Coefficient integer wordlenght

Nreal Coefficient fractional wordlenght

pi ith pole

PDF Probability density function

Q Quantizer block

ri ith residue

RESR Equivalent Series Resistance in capacitor

Rinductance Parastic series resistance

Tcycle Required time to perform the calculation of a new
duty cycle

u[n] Control voltage

upu[n] Per-unit control signal

vc Capacitance voltage

Vg Input voltage

XI



LIST OF TABLES

Vadc ADC reference voltage

vout Output voltage

Vref Reference voltage

W Numerical wordlenght

X Fractional wordlenght

Zout(s) Open-Loop to Output Impedance

ADC Analog Digital Converter

AMS Analog Mixed-Signal Extensions

C Capacitance

CPU Core Processing Unit

D Duty cycle

DPWM Digital Pulse Width Modulator

DSC Digital Signal Controller

EDA Electronic Design Automation

ESR Equivalent Series Resistance

FPGA Field-Programmable Gate Array

FSM Finite State Machine

HDL Hardware Design Language

IBIS Input/Output Buffer Information Specification

ICEM Integrated Circuits Electromagnetic Model

KCL Kirchhoff Current Law

KVL Kirchhoff Voltage Law

L Inductance

LSB Least Significant Bit

MSB Most Significant Bit

N Number of commutation

PCB Printed Circuit Board

XII



LIST OF TABLES

PID Proportional Integrative Derivative

VRM Voltage Regulation Mode

XST Xilinx Synthetisable Tool

XIII



Chapter 1

Introduction

Embedded applications have emerged appreciably during the past few years
due to the considerable increase of nomad and traveller ways of life. These
itinerant lifestyles induce the apparition and development of more and more
portable and autonomous systems. As a consequence, energy sources, their
corresponding storage devices and power management control systems should
be improved substantially to obtain an optimal and long-lasting working
operation. Consequently, new issues in the quest for longer power autonomy
have appeared recently. Furthermore, embedded products own strict power
supplies design requirements which are becoming more and more critical
with the increasing complexity of the functionalities proposed by these new
portable devices.

In this context, power management discipline has acquired an increasing
interest in the design and manufacture of embedded systems for automotive,
consumer and other industrial markets. Therefore, one of the current chal-
lenges in the domain of power electronics is the design and implementation
of power supplies for the new generation of high-performance CPUs. The
characteristics of the new families of processors may require from 40 to 100
watts of power. The load current for such power supplies must have a good
dynamic respone. For instance, the slew rate parameter is in the order of
50 A

µs
. On the other hand, this fast current response should still keep the

output voltage within tight regulation and response time tolerances. To man-
age such a big number of watts, it is necessary to feed CPUs by following
some strict specifications related to the stability of the input voltage and
current. Therefore, the creation of several control techniques is necessary to
accomplish the specification of the manufacturer.

The first digital architecture in charge to implement the control tech-
niques for the newest generation of power supplies was the Freescale DSC56800
core processor. This technology was not fast enough to implement a real-time
control system. The need of controlling a Buck converter, whose switching
frequency is 1 MHz, requires fast digital reconfigurable systems. FPGAs were
the best solution to solve the problem concerning the computational speed.
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1. Introduction

Nevertheless, the implementation of the previous control techniques using a
DSC had to be radically changed. The internal architecture of FPGAs have
nothing in common with the typical processor architectures. In addition to
the previous problem, the programmers used to the use of programming lan-
guages such as C, should firstly understand that Hardware Description Lan-
guages are intended to configure the hardware of an FPGA. The drawbacks
specified earlier came up with the need of developping a generic methodology
to program FPGAs.

As a result, to face these new challenges in the control of DC/DC power
supplies area, our work takes part in the LISPA (Laboratoire pour l’Intégration
des Systèmes de Puissance Avancés) which is a French (Midi-Pyrenean) re-
gional project including the LAAS-CNRS and Freescale Semiconductor.

The main motivation of this chapter is to introduce the reader in the early
stages of control systems design for embedded applications. This Master’s
Thesis takes, as an example, the case of output voltage regulation for power
converters applying a generic methodology. Figure 1.1 shows briefly the
steps and procedures to create a digital control systems using a FPGA as a
digital controller for embedded aplications. Most of the layers in the stack
are connected with one of the chapters appearing in this report.

First step in the design methodology, and the most essential, is the def-
inition of the problem to be solved. This is not a straightforward step, but
it is crucial for the development of the control system. Engineers must have
a clear idea of the problem they want to face, the underlying specifications
they should accomplish and finally the propierties of the technology em-
ployed. The second step requires the task of an specialist whose expertise
domain is associated with the creation of behavioral models of a physical pro-
cess. Every dynamic system or physical process can be described nowadays
by means of mathematical tools, for example differential equations. State-
space representation allow us to predict system behaviour when a given input
is aplied. As soon as the mathematical model of the system is understood
and validated, a control engineer is in charge to develop and optimize control
laws in order to achieve the desired specifications defined in point 1. The
validation of the whole control system, including the physical system and the
control law, in tools such as Matlab or Simulink is necessary before starting
the electronic design and implementation. The first three steps are explained
detailed in Chapter 2. The first half of this chapter describes the state-space
representation of our Buck converter. The second half describes every block
included in a control for the output voltage regulation of a Buck converter.

The bottom of Figure 1.1 is associated to a large extent with the fabri-
cation of the electronic system and also with the translation of our control
algorithms into the core of the FPGA. Translation of control law algorithms
deals with the problem of the coefficient quantization. It is also important to
know the wordlength required to represent the input and output signals in
the controller. Another important parameter is the roundoff error provoked

2



1. Introduction

by the truncation at the ouput of arithmetic circuits. Chapter 3 deals with
all the previous problems and the results of this part of the work are essential
to the design of the controller inside of the FPGA.

Last steps are essential before the industralization of our design. First
of all, we need to represent, using HDL (Hardware Description Languages),
the whole control system including physical system and control laws. This
step is very important to validate the previous step. If the results obtained in
this step are matching the simulation obtained in Simulink, we can almost be
sure that future problems will be related to the malfunction of the electronic
system. Nowadays, HDL allow the possibility of modelling physical systems
as a continous process thanks to the AMS (Analog Mixed Signal) extension
of VHDL. Chapter 4 discusses the design of the synchronous machine that
controls the behaviour of the Buck converter.

Finally, the creation of the electronic circuitry containing our digital sys-
tem is the last step before the industralization of the electronic product.
The existence of EDA tools (Electronic Design Automation), allow the en-
gineers to quickly design the layout. But let’s remember that the domain
of EDA is not only the creation of software for the PCBs fabrication. The
EDA also develops and standarizes models such as ICEM (Integrated Circuit
Electromagnetic Model) oriented to the modelling of radiated and conducted
parasitic emissions of integrated circuits on printed circuit boards (PCB).
IBIS [1] and SPICE model are also useful for simulating components and
electronic systems. Validation and testing the whole system should be the
last step before the industrialization of the system. Last chapter shows ex-
perimental results of the output voltage regulation. This chapter validates
the methodology for digital control systems using FPGAs.
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Figure 1.1: Steps and procedures to create a digital control system
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Chapter 2

Modeling of the
digitally-controlled power
converter

2.1 Introduction

In particular, this chapter is based on the study of the first three levels
of our chain. DC/DC power converters are the study case of our generic
methodology to create embedded digital control systems using FPGAs as
processing cores. The target is to deliver the most appropiated output voltage
to the load in whichever work conditions.

In the first section of this chapter, the state-space representation of one-
phase Buck converters can be found and also the input current characteriza-
tion of interleaving multiphase Buck converters. After the presentation of the
linear model of a switching power converter, the efforts are focussed on the
assertion of the electronic systems to control digitally the power converter.

For the time being, DC/DC converters can be controlled by means of
digital architectures. Digital domain creates the possibility of making an
embedded design of the converter and allows performing difficult mathemat-
ical operations inside of an unique package. For example, non-linear control
can be implemented more easily by means of digital computers.

Digital systems consists of several blocks as it is ilustrated in Figure 2.1a.
First, an interface between analogue and discrete worlds. Next, a digital
controller in charge of the management of the digital system. Finally, another
interface between digital and analogue world.

In our case, acquisition is made by means of an ADC converter. After
that, the control law generation is achieved by a digital controller. And
finally, a duty cycle signal following a PWM pattern is generated. In digitally-
controlled power converters, DPWM block is considered as a DAC. Figure
2.1b shows the reason for such analogy. The input of the DPWM, u[n] is a

5
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binary word coming from the digital controlle. The output, d(t) is a PWM
pattern'

&

$

%

Generation
Duty Cycle

Law Generation
Digital ControlAcquisition

(a)

Ev [n]+

−
Controller DPWM

ADC

FPGA

Power

Converter

ACQUISITION ANALOG DOMAIN

V in

VoutV ref

vout [n]

(t)[n]u d (t)

DIGITAL CONTROLLER

(b)

Figure 2.1: Implemented control system. (a) shows the schema of a digital
system. (b) shows a negative-feedback control system

Thus, our system is composed of the following elements:� Power converter: one-phase Buck converter� ADC: samples the analogue signal to be read by the FPGA� Reference : internal value placed inside of the digital system necessary
to assure that the output voltage of the power converter tends to a
value specified by the specifications of the problem. The value in figure
2.1b is represented by Vref� Substracter: generates the voltage error Ev[n]� Linear controller: processes error voltage generating the command ref-
erence, u[n]� DPWM (Digital Pulse Width Modulation): it generates the duty cycle
signal, d(t). As previously explained, the DPWM is considered as a
DAC.
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2. Modeling of control system

2.2 Power converter

2.2.1 One-phase Buck converter

The easiest way to represent DC/DC converters is by means of a state space
model representation. State space of a system or of a mathematical process
is the minimum set of equations (called state variables). These variables
contain sufficient information about the history of the system or process to
allow computation of the future system behaviour.

To express precisely the definition of state, in mathematical terms, some
notation is needed. Let the system be denoted by S. Associated to S, there is a
set of input variables u1, u2, ..., up and a set of output variables y1, y2, ..., ym.
For convenience, we let the input variables to be represented by an input
vector.

u = [u1u2...up]
T (2.1)

and the output vector is represented as a m-dimensional vector

y = [y1y2...ym]T (2.2)

The input and output vectors are assumed to be functions of time t. To
indicate this explicitly, we write u(t) and y(t), denoting respectively, the
value of u and y at time t.

After that, we designate a set of state space variables by x1, x2, ..., xn.
Then, we are led to define the state vector as the n-dimensional vector x =
[x1x2...xn]T .

We are now in a position to express a definition of state depending on the
state vector, the input vector and the output vector. For linear differential
systems the state space model takes the simplified form of

{
Kx′(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Eu(t)
(2.3)

In case of a Buck converter, two state variables allows us to know the sit-
uation of the system, for example the inductor current and capacitor voltage
are the aforementioned states.

The operation of a Buck is divided into two moments associated to the
switch status as it can be observed in Figures 2.2 and 2.3. “On-state” op-
eration will define the first set of equations and consequently “off-state”
operation will define the second one. Finally, the behavioral model of the
buck converter is the weighted mean of the two previous equations.

7
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Figure 2.2: Switch ON Buck converter

2.2.1.1 State-space averaging

Switch On Considering an ideal switch is ideal, inductance and capacitor,
we define the first set of equations when the switch is in the “on-state“ as
follows:






Vg = L
diL
dt

+ vc

il = C
dvc

dt
+

vc

R

(2.4)

{
iout =

vc

R
vout = vc

(2.5)

For the first equation in the system, we are using KVL (Kirchoff Voltage
Law), that is, the sum of voltages in a mesh is equal to zero. Similarly, the
second equation is formulated using KCL (Kirchoff Current Law), which is
equivalent to say that the sum of currents entering and leaving a node is
equal to zero.

Defining set of vectors :

u =

(
Vg

Ig

)
x =

(
iL
vc

)
y =

(
vout

iout

)
(2.6)

Replacing (2.4) and (2.5) in (2.3), we obtain:






(
L 0

0 C

)
x′ =

(
0 −1

1 1
R

)
x +

(
1 0

0 0

)
u

y =

(
0 1

0 1
R

)

x

(2.7)

where,

K =

(
L 0
0 C

)
A1 =

(
0 −1
1 −1

R

)
B1 =

(
1 0
0 0

)
C1 =

(
0 1
0 1

R

)

8
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Figure 2.3: Switch OFF Buck converter

Switch Off Similarly to the previous case, the equations when the switch
is in the off-state,using KVL and KCL as follows:






0 = L
diL
dt

+ vc

il = C
dvc

dt
+

vc

R

(2.8)

{
iout =

vc

R
vout = vc

(2.9)

Similarly than in the previous case, we replace Equations (2.8) and (2.9)
into (2.3).






(
L 0

0 C

)
x′ =

(
0 −1

1 1
R

)
x

y =

(
0 1

0 1
R

)
x

(2.10)

K =

(
L 0
0 C

)
A2 =

(
0 −1
1 −1

R

)
B2 =

(
1 0
0 0

)
C2 =

(
0 1
0 1

R

)

Averaging over one period, the resulting state space equations are:






A = A1D + A2(1 − D)

B = B1D + B2(1 − D)

C = C1D + C2(1 − D)

(2.11)

in the Buck Converter, A1 = A2, B2 = 0, C1 = C2 we have that state
matrix are:

A = A1 B = B1D C = C1

9



2. Modeling of control system

Finally, the average model in one switching period is:






(
L 0

0 C

)
x′ =

(
0 −1

1 1
R

)
x +

(
D 0

0 0

)
u

y =

(
0 1

0 1
R

)

x

(2.12)

2.2.1.2 Steady-state simulations

Previous system is only useful to calculate and parametrize the Buck be-
haviour at a constant duty cycle ratio, D. Therefore, the buck is considered
to be working under steady-state conditions whilst D is constant over the
time. A Matlab script has been written to validate the state space average
process developped in previous points. By choosing the following parame-
ters, whose nomenclature is related to Figures 2.2 and 2.3 we can calculate
the step response.

Table 2.1: Parameters of the single-phase converter designed in our laboratory
for a 1 MHz switching frequency

System Parameter Value
L 1, 2µH
C 240µF
R 2Ω
Vg 5V
D 0, 2

2.2.1.3 Control-to-output transfer function

Once, the average model of the Buck converter is calculated, we should cal-
culate the transfer function that relates the output voltage with the duty
cycle solving Equation (2.3). The reason why the relationship between vout

and d is calculated is because we are willing to implement an output voltage
control system. As it could be appreciated in the formulation of the state-
space averaging system derivation, the duty cycle, D is closely related to the
average energy entering to the system per switching period.

The solution of this system can be found by means of Laplace transform.
After applying the Laplace operator in Equation (2.12), the system can be
solved using clasical matrix computations. To calculate the output voltage,
we only need the first Equation of (2.12) because in the Buck converter

10
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Figure 2.4: Step response of the output current of lossless static buck model.
The response shows big overshoots during first transients because there is an
energy exchange without losses between the inductance and the capacitance

the output voltage in the load and the voltage capacitance are the same (if
parastic elements are not included).

((
L 0
0 C

)
s −

(
0 −1
1 1

R

))
X(s) =

(
D 0
0 0

)
Vg (2.13)

(
Ls 1
−1 Cs − 1

R

)
=

(
D 0
0 0

)
Vg (2.14)

The final step required to work out the value of the output voltage is the
calculation of the inverse matrix in Equation (2.14). The transfer function
that relates the output voltage when the duty cycle is constant and having
a value of D is

GOD(s) =
RCs + 1

s2 + 1
RC

s + 1
LC

·
Vg

LC
(2.15)

Using the values listed in Table 2.1 and applying them in Equation (2.15),
the transfer function turns out into the form :

GOD =
0.00048s + 1

s2 + 2083.33s + 3.472 · 109
· 3.472 · 109 (2.16)

As it is known, every second-order transfer function has the main form

G(s) =
b2s

2 + b1s + b0

s2 + 2ζω0s + ω2
(2.17)
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2. Modeling of control system

The parameter ω0, also called the natural frequency of the system, will
determine how fast the system oscillates during any transient response. On
the other hand, the parameter ζ , also called damping ratio, will determine
how much the system oscillates as the response decays toward steady state.
In the given example of this section, the natural frequency and damping
ratio are 58.92 kHz and 0.0176768 respectively. In [2], we can see that the
system tends to be more oscillatory whenever the damping ratio is comprised
between zero and the unity. This propierty has a physical sense in an LC
network. In the model of the Buck converter, the ESR (Equivalent Series
Resistance) and the inductor copper losses were not included. Therefore, the
energy exchange between the inductance and capacitance is lossless and the
oscillation in the transient response is remaining longer over the time.

Using a model that includes more realistic parameters, we can contrast
the limitations of a lossless model. The state-space representation of a model
can be written using the procedure of State-Space Averaging Method. The
equations are based on Figure (2.5):

Vg

R
inductance L

Resr

C
Rout

Figure 2.5: Buck model including losses

The demonstration to obtain the state-space representation of Equation
(2.18) can be found in the Appendix B.






(
L 0

0 C

)

x′ =

(
−
(
Rinductance + RoutResr

Rout+Resr

)
− Rout

Rout+Resr

− Rout

Rout+Resr

1
Rout+Resr

)

x +

(
D 0

0 0

)

u

y =

(
RoutResr

Rout+Resr

Rout

Rout+Resr

Resr

Rout+Resr

1
Rout+Resr

)
x

(2.18)

Two simulations of the new model are performed in Matlab to show the
divergence with the lossless model. There are defined two type of parameters
to show how the damping effect is affected by the addition of series resistances
both in the inducance and capacitance. In the first case, the values of Resr

and Rinductance are 0.4853 Ω and 2.6 Ω respectevily. The transfer function
GOD(s) is calculated in Matlab, showing a result where the coefficients are
rounded:

12



2. Modeling of control system

GOD(s) =
3, 254 · 105 + 2, 994 · 109

s2 + 3.453 · 104s + 2.304 · 109
(2.19)

The natural frequency, ω0, and the damping factor, ζ are in Equation
(2.20). The step response of the system is shown in Figure 2.6

{
ωo = 48 kHz

ζ = 0.36
(2.20)
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Figure 2.6: Step response of the model when Resr = 0.4853 Ω and Rinductance =
2.6 Ω. The step response is classified as underdamped because ζ = 0.36

The second considered situation happens when the values of Resr and
Rinductance are 9Ω and 2.5Ω respectively. In this case the transfer function
calculated in Matlab is showed in Equation (2.21). The natural frequency and
damping factor are ω0 = 26.665 kHz and ζ = 29.5228. The step response,
shown in Figure 2.7, is not exhibiting any oscillation during the transient.
The physical reason why our dynamic system, is not showing any oscillation
is because of the exchange of energy between the inductance and capacitance
absorbed in Resr.

GOD(s) =
1.364 · 10s + 6.313 · 108

s2 + 1.574 · 106s + 7.11 · 108
(2.21)
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Figure 2.7: Step Response of the model when Resr = 9Ω and Rinductance =
2.6Ω. The step response is classified as overdamped because ζ = 29.5228.

2.2.1.4 Small-signal model

The developed state space model of the power converter seems to be accurate
enough for steady-state working operation, but the emerging question is how
our system behaves when there is a disturbance in the system. Disturbances
in the output voltage over the load might be originated because of many
different situations such as disturbances in the input voltage, output current
or uncertainties in the duty cycle. To understand the behavioural model of
a Buck converter, it is necessary to create a small-signal model. What is the
reason to be called like this?. The answer is easy. The output response in a
power converter, as a linear system, can be divided into the sum of multiple
inputs. That is, the output in a Buck can be expressed by superposition
using the sum of a steady-state response and a small-signal disturbance.In
mathematical terms, it can be expressed as Equation (2.22):

{
K (x + x̂)′ = A (x + x̂) + B (u + û)

(y + ŷ) = C (x + x̂) + E (u + û)
(2.22)

State-space matrices are also affected by duty cycle disturbances. For
example, state-space A-matrix is

{
A + â = A1

(
D + d̂

)
+ A2

(
1 − D − d̂

)

= A1D + A2 (1 − D) + A1d̂ − A2d̂
(2.23)

In a similar way, we can define state matrix B, C and E. The resulting
state space is
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2. Modeling of control system

{
K (x′ + x̂′) = (A + â) (x + x̂) +

(
B + b̂

)
(u + û)

y′ + ŷ′ = (C + ĉ) (x + x̂) + (E + ê) (u + û)
(2.24)

Operating the previous expression, neglecting second-order differential
terms, eliminating the steady-state operation terms and rearranging terms,
we have that small-signal state space model is






Kx̂′ = (Ax̂ + Bû) + ((A1 − A2)x + (B1 − B2)u) d̂

= Ax̂ + B1Dû + B1ud̂

ŷ′ = (Cx̂ + Eû) + ((C1 − C2)x + (E1 − E2)u) d̂

= Cx̂

(2.25)

Small-signal simulations A Matlab simulation is used to highlight the
results of Equation (2.25). To study the small-signal behavior of the Buck
converter, the parameters of the studied Buck are the same as in subsection
2.2.1.2. Nevertheless, in this report the only disturbance studied is at the
duty cycle, d̂. One of the reasons of the generation of this perturbation might
be caused, for example, because of the finite number of bits used to generate
a duty cycle. Blue graph in Figure 2.9 shows the step response of the studied
Buck converter when the magnitude of the disturbance is equal to d̂ = 0.1·D.
On the other hand, green graph corresponds to the output voltage when the
disturbance is applied to the steady-state operation. Figure 2.8 might help
the reader to highlight the fact that a Buck converter is a linear system.
Steady-state value of green graph corresponds to the addition of the steady-
state value of Figure 2.4 and the disturbance. The reader might see [3] in
order to see more about the disturbance caused at the ouput voltage in a
buck converter due to the input voltage or inductor current.

D

d Bu

V+v
y=Cx+Du

V

v

Kx’=Ax+Bu

Figure 2.8: Dynamic operation of the Buck converter
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Figure 2.9: Step response of the output voltage in the dynamic Buck model

Small-signal transfer function definitions From small-signal model
converter, we can formulate six important transfer functions defined by the
following list. The following functions take into consideration all possible
disturbances affecting the power converter state variables. As our study case
is the output voltage regulation of a Buck converter, we noticed that state
variables are inductor current and capacitance voltage. Disturbance in our
system can come from the inaccuracy in the resolution of our duty cycle,
the poor regulation of the input voltage and also the dynamic variation of
the output current. Thus, six transfer functions matching the variable dis-
turbance with the source of origin are used to describe the power converter
behaviour.

Input voltage to inductor current

Gii(s) =
ÎL

v̂in

∣∣∣∣∣
ˆiout=d̂=0

(2.26)

Input voltage to output voltage

Goi(s) =
ˆVout

V̂in

∣∣∣∣∣
ˆiout=d̂=0

(2.27)

Control to inductor current

Gid(s) =
ÎL

d̂

∣∣∣∣∣
ˆiout= ˆVin=0

(2.28)
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Control to output voltage

God(s) =
ˆVout

d̂

∣∣∣∣∣
ˆiout=d̂=0

(2.29)

Open-loop to output impedance

Zout(s) =
ˆVout

ˆIout

∣∣∣∣∣
d̂= ˆVin=0

(2.30)

Output current to inductor current

Gilio(s) =
ÎL

ˆIout

∣∣∣∣∣
d̂= ˆVin=0

(2.31)

Variable resistive loads have not been considered in this report, because
the development of our converter model is simplified.Therefore, the set of
first four transfer function for our model are listed as:

Input Voltage to Inductor Current

Gii(s) =
D

LRC

RCs + 1

s2 + s
RC

+ 1
LC

(2.32)

Input Voltage to Output Voltage

Goi(s) =
D

LC

1

s2 + s
RC

+ 1
LC

(2.33)

Control to Inductor Current

Gid(s) =
Vg

LRC

RCs + 1

s2 + s
RC

+ 1
LC

(2.34)

Control to Output Voltage

God(s) =
Vg

LC

RCs + 1

s2 + s
RC

+ 1
LC

(2.35)
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2. Modeling of control system

2.2.2 Multiphase model converter

2.2.2.1 Introduction

Parallel or multiphase architectures for DC/DC converters are useful for DC
loads that requires high output current and a high slew rate such as the
newest CPUs cores.

Multiphase Buck converters are composed by a number of N commutation
cells or phases, where every cell is composed by a switching device and a single
inductance. Each cell is always connected to a common capacitance and to
a load. The topology for a N-phased Buck Converter shown in Figure 2.10:

L 2

L1

i LN L N

Vg

Ig

iL2

L1i

C
R

+

−

vo

io

ic

+

−

vc

Figure 2.10: Multiphase Buck converter

2.2.2.2 Input current characterization

Single-phase input curent spectrum In steady state behavior, the multi-
phase model converter can be described by means of the complex Fourier
series thanks to the periodicity of the input current waveform. Input current
for a buck converter is illustrated in Figure 2.11.

In general terms, every periodic waveform cycle f(t) can be represented
by an averaged set of coefficients “cn” as follows [4]:

f(t) =
i=∞∑

i=−∞
cne

jnω0t (2.36)
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. . . . . . . .

tDT

Imin

Imax

3DT nDT2T nTsw T 2DTsw sw sw sw sw sw

Figure 2.11: Input current of a Buck converter

being “cn”,

cn =
1

Tsw

∫ Ts

0

f(t)e−jnω0tdt (2.37)

with:

Tsw switching frequency of the buck converter
ω0 fundamental frequency

According to the previous formulation, the coefficients “cn” for the input
current waveform in the single-phase converter case can be calculated by:

c0 =
Imax − Imin

2
D

cn =
Imax − Imin

D (2πn)2 2 sin(πnD)e
−j

(
πnD +

π

2

)
(2.38)

with:

Imax: maximal input-current
Imin: minimal input-current
D : steady-state duty-cycle

Therefore, the time domain function, for the input current waveform in
Buck converters, can be represented by the infinite-Fourier series shown by

f(t) =
(Imax − Imin)D

2
· (2.39)

·



1 +

+∞∑

n=−∞n 6=0

sin(φn)

(φn)2
e
−j

(
φn +

π

2

)

ejnω0t





being
φn = πnD (2.40)

19



2. Modeling of control system

'

&

$

%

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Input Current Spectrum of several duty cycles

Discrete Frequency [n ⋅ f
s
]

M
ag

ni
tu

de
 o

f t
he

 fo
ur

ie
r 

co
ef

fic
ie

nt
 [A

]

 

 

D=0.3
D=0.2
D=0.1
D=0.08

(a)

0
5

10
15

20
25

0.05
0.1

0.15
0.2

0.25
0.3

0

0.5

1

1.5

2

Discrete Frequency [n ⋅ f
s
]

Input Current Spectrum of several duty cycles

DutyCycle

M
ag

ni
tu

de
 o

f t
he

 fo
ur

ie
r 

co
ef

fic
ie

nt
 [A

]

(b)

Figure 2.12: Input current spectrum for a single-phase Buck converter. The
spectrum is calculated setting Imax and Imin to the values 20A and 10A respec-
tively. (a) shows a 2D representation of the current spectrum for several duty
cycles. (b) shows the same graph in a 3D graph
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As it can be observed in Figures 2.12a and 2.12b, the harmonic content
is concentrated on the fundamental power converter frequency. Obviously,
in the case of the single-phase Buck converter, the fundamental frequency
is the power converter switching frequency. After it, main harmonics are
distributed in integer multiples of this fundamental frequency. In last figures,
it can be also observed how for very low duty cycles, the harmonic content
is centered in the fundamental frequency and first harmonics. Nevertheless,
the harmonic content distribution, roughly speaking, tends quickly to zero
as soon as high frequency values are achieved. This decay factor is equal to
2 as shown in Equation (2.38).

Multi-phase input current spectrum Input current for multiphase DC/DC
converters feeds to the load using the so-called interleaving mode. In this
mode of operation, the i-switch (see Figure 2.10) is activated every fraction
of the switching period. The operation of interleaving multiphase converter
is seen to be working to a frequency of N · fs , as it will be demonstrated
along this section.

The architecture can be modeled assuming that all input current wave-
forms are identical and shifted one fraction of the switching period, Tsw, of
the power converter commutation cell as shown in :

Tsw

N
(2.41)

N being the number of phases of the power converter.
Using the Kirchoff’s law (KCL), the input current can be obtained by the

addition of each commutation cell output current as follows:

imp(t) = i1(t) + i2(t) + ... + iN (t) =

N∑

j=1

ij(n) (2.42)

Considering that the time series for each input current commutation cell
are shifted versions of the fundamental one, the following relationship can be
obtained:

i1(t) = i2

(
t −

Tsw

N

)
= ... = iN

(
t −

N − 1

N
· Tsw

)
(2.43)

Next step is to apply the Fourier series operator in order to find the input
current spectrum for the interleaved multiphase Buck converter:

Ig(ω) = I1(ω) + I2(ω) · ejω Tsw
N + ... + IN−1 · e

jω N−1

N
Tsw (2.44)

Ig(ω) = I1(ω)

N−1∑

k=0

ejωk Tsw
N (2.45)

= I1(ω) · Ffactor(ω) (2.46)
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Ffactor(ω) being the following function

Ffactor(ω) =

sin

(
ω

Tsw

2

)

sin

(
ω

Tsw

2N

) · ejωTsw
N−1

2N (2.47)

As it can be observed in previous equations, the spectrum of an inter-
leaved multiphase power converter is strongly influenced by the spectrum of
the single-phase one associated to an additional second term so-called Form
Factor. The magnitude of this last discrete function owns several peculiari-
ties. The analysis of this discrete function will be focussed on the search for
its its critical points. The first motivation for a consequent analysis is the
placement of the zeros of the function, demonstrated as follows:

sin

(
ω

Tsw

2

)
= 0

ω
Tsw

2
= kπ

ω =
2πk

Tsw

= ωswk

(2.48)

Equation (2.48) shows that zeros of form factor function are zero at mul-
tiples of fsw. Nevertheless, Form-factor function has a critial point at N ·fsw,
because denominator of Form-factor function is equal to zero. Thus, the only
way to solve this uncertainity is by means of the L’Hôpital theorem:

lim
ω→Nωsw

Ffactor(ω) = lim
ω→Nωsw

sin
(
ω Tsw

2

)

sin
(
ω Tsw

2N

) =
0

0︸︷︷︸
uncertainity

(2.49)

lim
ω→Nωsw

Ffactor(ω) = lim
ω→Nωsw

sin
(
ω Tsw

2

)

sin
(
ω Tsw

2N

) (2.50)

= lim
ω→Nωsw

Tsw

2
cos
(
ω Tsw

2

)

Tsw

2N
cos
(
ω Tsw

2N

)

=
Tsw

2
cos
(

NωsTsw

2

)

Tsw

2N
cos
(

NωsTsw

2N

)

=

Tsw

2
cos

(
N �2π

��Tsw
��Tsw

�2

)

Tsw

2N
cos

(
�N �2π

��Tsw
Ts

��2N

)

=
Tsw

2
cos (Nπ)

Tsw

N
cos (π)

= N · (−1)N
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Figure 2.13: Form factor function for a four-phased Buck converter

The Form factor is represented in Figure 2.13 for a four-phased power
converter case. As it was expected, harmonics are found in the multiples of
the fundamental frequency and their value is equal to N since the number of
phases is even. On the other hand, i.e. for an odd number of phases, their
magnitude will be –N . As a consequence of this Form Factor, the harmonic
spectrum is concentrated over the multiples of N ·fsw mp. Otherwise, harmon-
ics are equal to zero. The reason for this frequency behavior is because the
spectrum for multi-phase converters, as seen in Figures 2.14a , is composed
by the same spectrum as the single-phase converter multiplied by the Form
Factor. Thanks to last multi-phase Buck converter skill, its input current
inherites all the frequency propierties coming from the single-phase convert-
ers. Last conclusions can be observed in Figures 2.14a and 2.14b where the
input-current spectrum is shown for a four-phased power converter.

Previous Figures 2.12a and 2.14a compare the single-phase and multi-
phase Buck converter input-current harmonic contents. In these figures, it is
worthy to notice the discrete behavior of the power converter input-current
spectrum due to the periodicity of the signal. Moreover, some conclusions
can be extracted associated to the relationship existing between the har-
monic amplitudes and the power converter duty cycle. Thus, this relation is
inversely proportional since the duty cycle is placed in its denominator, as it
can be seen in previous Figures. Therefore, the smaller duty cycle is, the big-
ger harmonic magnitude for the multiples of the fundamental frequency are.
On the other hand, the DC harmonic amplitude owns a direct relationship
between the average value and the duty cycle.
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Figure 2.14: Input current spectrum for a multi-phase Buck converter. The
spectrum is calculated setting Imax and Imin to the values 20A and 10A respec-
tively. The number of phases is 4. (a) is a 2D representation showing the current
spectrum for several duty cycles. (b) represents the same information in a 3D
graph
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2.2.2.3 Input-capacitor filter design of interleaved multiphase con-
verters

Introduction Last conclusions are quite important in the design of input-
filters for VRMs, in particular, for the input capacitor. As a matter of fact,
the widespread trend for the input capacitor design is based on the maximal
allowed input voltage drops. This is why the quantity of input capacitors
in VRMs is often quite important to absorb correctly the drops in the input
power supply. Nevertheless, these input capacitors take a lot of place and
make the final design more expensive. As a result and in order to reduce
the aforementioned problem, interleaved multiphase converters allow us to
reduce the AC frequency components. Then, they are cancelled thanks to the
analysis of zeros in the Form Factor function. In short, all frequency compo-
nents that are different to zero are now placed at multiples of N ·fsw mp. This
allows an easier design of the input-filter design with a lower capacitor num-
ber and obtaining a reduced harmonic content. The magnitude of the input
capacitance must be properly calculated to assure enough attenuation for the
selected harmonics. Nevertheless, the value of the input capacitance could
be a source of unstabilities in the switching regulator if it is not calculated
correctly.

Single-phase converters Figure 2.15 shows the typical arrangement of an
electronic load fed by a switching converter. The system can be divided into
three parts. The power source is composed by a voltage source, its output
resistance and, finally, the inductance associated to the cables. The power
stage, composed by a single-phase Buck converter, is feeding a load. The
system requires an input filter in order not to propagate back to the power
source the harmonics produced by the input current waveform. It can be
seen in Figure 2.15 that the input capacitance in a power converter has the
task to become a low-impedance path for all the high frequency harmonics
coming from the load and returning to the ground.

Therefore, the value of the input capacitance in a single-phase converter
can be calculated imposing a desired attenuation for the selected harmonics
as follows:

Ins = H(s)Inh = αInh (2.51)

with :

Ins Filtered nth current harmonic
α: attenuation parameter

Inh: nth harmonic of the input current waveform
H(s): Transfer function of the input filter

Considering that the load effect of the source resistance and inductance
in Figure 2.15 are small, the high frequency impedance is mainly due to the
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Figure 2.15: Power system model based on an single-phase Buck converter

effect of the capacitance. In fact, looking at Figure 2.15, the capacitance is
a low path impedance for high frequency current harmonics. Therefore, the
input filter transfer function at high frequencies can be approximated by the
capacitance element only :

|H(jω)| =
1

Cin1ω
= α(ω) (2.52)

Using Equation (2.52) into (2.51) and (2.38), we have:

|Ins| =
1

2πfCin1︸ ︷︷ ︸
transfer function

·

(
Imax − Imin

2(πn)2D
sin (φn)

)

︸ ︷︷ ︸
Single-phase current spectrum

(2.53)

The design goal is to be able to attenuate the switching frequency, that
is when n = 1 and f = fsw in Equation (2.53)

Cin1 = f(I1s, D) =
(Imax − Imin) sin (φ1)

2(π)2DI1sfsw

(2.54)

Using Equation (2.53), we can define the parameter I ′
1h as the magnitude

of the nth-harmonic if the duty cycle was 1. Thus, Equation (2.53) is

|I ′
ns| =

1

2πfCin1
·
I ′
1h

D
= α′(f) ·

I ′
1h

D
(2.55)

being α′(f),

α′(f) =
I ′
nh

2πfCin1
(2.56)

Applying logarithms to both sides of Equation (2.55), we can see that the
relationship is now:
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Figure 2.16: Input capacitance value for a single-phase Buck converter depend-
ing on the duty cycle when an attenuation of -40 dB is applied in the fundamental
frequency

|Ins|dB = α′
dB(f) − 20 · log(D) (2.57)

Last equation explains how the duty cycle degrades the attenuation of
the switching frequency filter in a single-phase converter. Figure 2.16 shows
that the capacitance must be bigger when the duty cycle is lower.

Multi-phase converters For multi-phase power converters, the procedure
to calculate the value of the input capacitance is basically the same. The
main difference strives in the cancellation effect of the Form-Factor function.
Looking at Figure 2.17, the model of the input current capacitance in multi-
phase converters can be seen to be formed by the same blocks than in Figure
2.15. The block Form-Factor function is considered to be part of the input
filter because it cancels all the harmonics of the input current except those
multiple of N (number of phases).

Power
Source

Load
Form
Factor

Function converter

Single−phase

Input filter

Input
Capacitance

Figure 2.17: Input filter for multi-phase converters
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The value of the input capacitance must be calculated forcing that the
first harmonic, k, in the multi-phase power converter is attenuated in a factor
α. Therefore, Equation (2.53) is now:

|Iks| =
1

2πfCinN︸ ︷︷ ︸
transfer function

·

(
Imax − Imin

2(πk)2D
sin (φk)

)

︸ ︷︷ ︸
Multi-phase current spectrum

(2.58)

Then, thanks to the effect of the form factor function, the first harmonic
in multi-phase power converters is placed at:

k = N · n (2.59)

with :

k: kth harmonic of the multi-phase converter
n: nth harmonic of the input-phase converter
N : Number of phases

The Form-Factor function also multiplies the value of each harmonic by
a constant N. Finally, the value transfer function must be calculated when

fsw mp = N · fsw (2.60)

Substituing Equations (2.59) and (2.60) into (2.61), the value of the input
capacitance in multi-phase converters is

CinN = f(Is, D, N) =
(Imax − Imin) sin (φN ·n)

2(πNn)2DI1sfsw

(2.61)

In a similar way, (2.58) can be splitted defining again the parameter I ′
kh,

as the value of the kth-harmonic when the converter is single and the duty
cycle is equal to 1. (2.58) turns into

|Iks| =
1

2πfCin

·
I ′
kh

N · D
= α′(f) ·

1

N · D
(2.62)

with α′(f) defined in (2.56). Applying logarithms to (2.62), the relation-
ship of the attenuation, the number of phases and duty cycle for a N-phased
converter is calculated like

|Iks|dB = α′(f)dB − 20 log(N) − 20 log D (2.63)

Table 2.2 summarizes the required value for Cin to obtain an attenuation
of 40 dB in the first harmonic.
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Figure 2.18: Cin value required to attenuate first harmonic when an attenuation
of -40 dB must be applied to the first harmonic in a N-phased Buck converter.
(a) shows the capacitor values when the multiphase converter is composed by 2
phases. (b) shows the capacitor values when the number of phases is 10
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Figure 2.19: Input Capacitance value for multi-phase converters depending on
the number of phases

Table 2.2: Capacitor values depending on the phase and duty cycle

Number of phases D Cin Value [µF ]
0.3 50.0267

1 0.2 81.7797
0.008 216,3
0.3 12.5067

2 0.2 20.445
0.008 54.064
0.3 3.1267

4 0.2 5.11
0.008 13.59
0.3 0.5

10 0.2 8.2
0.008 2.2
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2.3 Acquisition module

The function of the acquisition module is to sample and to quantize the
information delivered by our analogue power converter into digital data useful
for the digital controller. The device in charge of this important task is the
ADC.

It is worth to note the number of bits required to code efficiently the
output voltage according to the desired specification. Calculations for the
I/O resolutions have been given in [3] in order to respect Intel design spe-
cifications.

The first main target is to assure that our system has enough resolution
to track accurately the analogue magnitude that should be converted in the
digital domain. It was proved in [3] that the minimal number of bits for our
case is eight bits, following Equations (2.64):

∆Vout max > ∆Vq ADC > ∆Vq DPWM (2.64)

∆Vout max︸ ︷︷ ︸
maximum voltage variation

≥
Vfs ADC

2nADC · Hv︸ ︷︷ ︸
∆Vq ADC = voltage quantification error

(2.65)

being,� ∆Vout Max = maximal variation allowed in the measured variable� ∆Vq ADC = ADC voltage quantification level� ∆Vq DPWM = DPWM quantification level� ∆Vfs ADC = ADC full-scale voltage� nADC = ADC bits number� Hv = sensor gain

In our study case, we use a pipeline ADC architecture with parallel data
ouput interfaced with the FPGA. ADC in the given system was selected to
be ADC08060 [5]. It is a low-power, 8-bit, monolithic converter with an on-
chip track-and-hold circuit. This ADC topology presents the best trade-off
between resolution and conversion times introducing a reduced delay to our
system which is acceptable for the given power converter. It is important
to notice that digital output is not acquired instantaneously in the selected
ADC. As [5] shows, digital samples are available after 6 clock pulses. It is
going to be important to synchronize our FPGA with our acquisition system.
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2.4 Digital control law generation

2.4.1 Introduction

Feedback control systems are used in everyday life to assure that the output
response in a physical system called “plant” corresponds to our desired spe-
cifications. Examples of a control system in nature are in warm-bloodedness
animals where blood temperature is kept constant even if external conditions
are extreme for life.

In our study case, the system plant is a one-phase synchronous Buck con-
verter. The main parameter to be controlled is the power converter output
voltage depending on load conditions, input voltage and command distur-
bances. Therefore, the output voltage must be always remaining constant
over the time and the mentioned previous conditions.

In order to achieve a stable response in the system, power converters are
operated in a negative-feedback architecture (see Figure 2.1b), respecting
some design guidelines.

By introducing a linear controller before the power converter, we can
modify the dynamics according to the classical relationships in the field of
control systems. Nevertheless, the control could also be non-linear. For
example, a popular non-linear control technique could be the sliding control
method. The reason why a linear controller was chosen instead of the sliding
control is due to a better steady-state error operation. Thus, the problem of
designing a controller into a digital architecture corresponds to the problem
of implementing the digital response of a LTI system.

Figure 2.1b allows us to derive the relationship between Vref and Vout.
The knowledge of the transfer function of our system including the power
plant is essential to define the transfer function of our controller. A guide
explaining how to place efficiently poles and zeros in this kind of systems, by
means of the pole-zero matching technique, can be found in [3]. For example,
if one of our requirements is that the steady-state error of the output is zero,
then, one integrator element is needed to be implemented in the controller.

Vout(s)

Vref(s)
=

Gcontroller(s)Gbuck(s)GDPWM(s)

1 + Gcontroller(s)Gbuck(s)GDPWM(s)GADC(s)
(2.66)

Because the resulting transfer function of the controller is a linear system,
we are able to use all the mathematical tools related to the analysis of linear
systems.
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2.4.2 Digital filter

2.4.2.1 Introduction

The controller block, should be implemented in the FPGA. This block is
designed to perform the desired static and dynamic performances in terms of
steady-state error, overshoot or rise time, delivering the command introduced
to the DPWM by means of a given digital control law.

Since the first time PIDs were used, there has been many works related to
the configuration of its parameters and architectures. For example, Ziegler-
Nichols methods were useful to tune the parameters of PIDs thanks to the
knowledge of the power converter dynamics and also the final specification of
the problem [6]. Another characteristic of the PID is the possibility to be im-
plemented in different manners. Parallel and serial PID are the most popular
forms of the same idea. The main advantage why in industry PID has been
so succesful along the years was because of the easiness of implementation
as an analogue controller.

Later on, with the inclusion of digital computers and digital reconfigurable
architectures in every day life, the PID became a less interesting implemen-
tation due to the new computation power. The possibility to implement
very complex controllers in a tiny package offering better dynamics for the
response of the power converter took the place of PID controllers in indus-
try. The main problem, as it will be explained in the next chapter, is the
requirement of a profound analysis when fixed-point arithmetics are used for
the implementation of the filter.

2.4.2.2 PID

Classical digital filters are based on PID architectures. PID acronym is due
to words: Proportional, Integral and Derivative. The compensation effects
caused by each one of the filter branches are:� Proportional: multiplies current error� Integral : performs accumulation of current and past error� Derivative : asses derivation

Table 2.3 shows how we can tune all elements according to the desired
effect we want to obtain in the output system response. Classical tunning
methods are based on the Ziegler-Nichols formulation [7]. In this tunning
technique the I and D gains are first set to zero. The ”P” gain is increased
until it reaches the ”critical gain”, Kc, at which the output of the loop starts
to oscillate. Kc and the oscillation period Pc are used to set the gains as
shown in Table 2.3

PID architecture can be implemented by several ways. It can be imple-
mented by means of either a parallel architecture, where all blocks perform
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Table 2.3: Ziegler - Nichols method

Control Type Kp Ki Kd

P 0, 5Kc - -
I 0, 45Kc 1, 2Kp/Pc -
D 0, 6Kc 2Kp/Pc KpPc/8

every function or a serial architecture, where the PID function is implemented
in a implicit form taking the difference of a parallel form.

u[n] = Kpev[n] + Ki

+∞∑

i=0

ev[n] + Kd∆ev[n] (2.67)

where� u[n] is the output of the PID controller� ev[n] is the input of the PID controller� Kp is the gain of the proportional branch� Ki is the gain of the integrative branch� Kd is the gain of the derivative branch

To obtain the series equivalent architecture, we take difference of input
we have :

∆u[n] = Kp∆ev[n] + Kiev[n] + Kd∆
2ev[n] (2.68)

∆ev[n] = ev[n] − ev[n − 1] (2.69)

∆2ev[n] = ∆(∆ev[n]) = ev[n] − 2ev[n − 1] + ev[n − 2] (2.70)

substituing

∆u[n] = (Kp + Ki + Kd)ev[n] − (Kp + 2Kd)ev[n − 1] + Kdev[n − 2] (2.71)

∆u[n] = K0ev[n] + K1ev[n − 1] + K2ev[n − 2] (2.72)

finally the expression of the series output PID is:

u[n] = u[n − 1] + K0e[n] + K1e[n − 1] + K2e[n − 2] (2.73)
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Figure 2.20: PID implementations. (a) shows the parallel form. (b) shows the
serial form

K0 = (Kp + Ki + Kd) (2.74)

K1 = (Kp + 2Kd)

K2 = Kd (2.75)

Parallel PID architectures owns an advantage over series one. The inte-
grative term is made directly cycle by cycle. On the other hand, it is difficult
to calculate maximum values over time and this is something very important
in order to avoid nonlinearities such as overflow or wrap. For that reason, an
antiwind-up filter is required in the parallel branch.
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Since both PID are equivalent it is reasonable that both are having the
same transfer function.

Gc(z) =
K0 + K1z

−1 + K2z
−2

1 − z−1
(2.76)

Based on the aforementioned PID tunning technique, called pole-zero
matching, we present an example of our study case obtaining the next set of
coefficients for the Buck converter in Table 2.1. The design is explained in
[3].

K0 = 1.5127 K1 = −2.2123 K2 = 0.761 (2.77)

Using Equation (2.77) and the Matlab toolbox ltiview, we can see impulse
response and Bode plot in Figures 2.21a and 2.22a. The impulse reponse
filter is used as a pattern to validate our programming method in VHDL.
Therefore, once our filters are programmed, the impulse response calculated
in Matlab and the VHDL result should match except for the errors due to
the numerical accuracy between previous systems (Floating-point and fixed-
point number representations).

2.4.2.3 Structures of 3rd order

On the other hand, to improve the dynamics of the output voltage, the
following 3-rd order filter has been calculated [3]. The transfer function
presented in this Master’s Thesis, has been written rounding the coefficients
in order to make easier the interpretation. Nevertheless, all decimals are
considered for computing our algorithms.

Gc(z) =
5z2 − 9.789z + 4.79

z3 − 1.01066z2 − 0.24466z + 0.2553
(2.78)

2.4.2.4 Comparaison between PID and 3rd order

Figures 2.21a and 2.21b represent the impulse response for the PID controller
and the third-order filter respectively. We can appreciate in Figure 2.21a that
the impulse response of the PID has an abrupt dynamic. That is, the number
of samples required to reach the steady-state value of the PID is less than
for a 3rd-order filter. To demonstrate why it changes so quickly, we can use
Equation (2.76) to invert the z-transform. The temporal sequence is:

u[n] = K0δ[n] + (K0 + K1) δ[n − 1] + (K0 + K1 + K2) u[n − 2] (2.79)

being δ[n] the unitary impulse function and u[n] the step function. Using
the value of the coefficients given in Equation (2.77), the previous equation
matches completely with Figure 2.21a. We can see in Equation (2.79) and
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Figure 2.21a that the number of samples to reach the steady-state value are
three.

On the other hand, the impulse reponse of the 3rd order controller has an
oscillatory transient and the best way to analyze it is using the decomposition
of the transfer function using the residue method. This method is going to
be used along the chapters, this can be found in Appendix A and in [8]. The
residue method is very powerful to decompose a rational function where its
polynomials have a high degree into a sum of simple rational functions. After
applying the residue method, Equation (2.78) changes to the following form
(coefficients are rounded) :

Gc (z) =
0.001493

z − 1
+

2.214852

z − 0.51066
+

7.2134

z + 0.5
(2.80)

To obtain the z-inverse function of the 3rd order function controller, we
can use Equation (2.80). The resulting time

u[n] =0.001493 · u[n − 1] + 2.214852 (0.51066)n · u[n − 1]︸ ︷︷ ︸
decreasing exponential

+

+ 7.72134 (−0.5)n · u[n − 1]︸ ︷︷ ︸
decreasing oscillatory exponential

(2.81)

Equation (2.81) shows finally why the impulse response of the 3rd order
function has an oscillatory behavior. The last term is an exponential that
changes of sign every sample. Therefore, the conclusion is that all poles
located −1 ≤| z |≤ 0 have an oscillatory trend. Finally, thanks to the
residue method, it can be seen that the number of poles matches with the
number of exponentials forming the time-domain waveform.

On the other hand, Figures 2.22a and 2.22b represent both the bode chart
for the PID controller and third-order filter.

For the PID controller, we can see how the integrative branch (see denom-
inator of Equation (2.76)) eliminates the steady state error. The frequency
response chart allow to check the existance of two zeros (number of solutions
of the numerator in Equation (2.76)). One of the zeros is located at the
natural frequency of the power converter in order to cancel one of the com-
plex poles located in the natural frequency of the power converter, ω0. The
purpose of the second zero is to maximize the open-loop gain and to enlarge
stability margins.

The third-order filter has also an integrative behaviour to cancel the
steady-state error. The main difference with respect to the PID controller is
that the zeros are now complex. This property makes it possible to cancel
both complex poles of the power converter placed at 1√

LC
making the control

system less oscillatory.
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Figure 2.21: Impluse response of the linear controllers. (a) shows the PID
impulse response, see Equation (2.79). (b) shows the 3rd-order filter impulse
response, see Equation (2.81).
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Figure 2.22: Bode plots of the linear controllers. (a) shows the PID Bode plot.
Transfer function corresponds to Equation (2.76). (b) shows the 3rd-order filter
Bode plot. Transfer function corresponds to Equation (2.78).
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2.5 Duty cycle generation

2.5.1 Introduction

This module performs the interface between digital and analogue world.
There are some architectures to create a PWM pattern. The analogue way
to do this is by comparing a saw-tooth waveform, s(t), with a signal u(t) .
The output waveform is then expressed by means of the following formula:

d(t) =

{
1 if s(t) < u(t)
0 if s(t) > u(t)

(2.82)

The digital PWM generation lies on the same principle expressed by
Equation (2.82). The main advantage of using this technique is that the
hardware performing PWM patterns can be implemented using digital cir-
cuits. This fact allows to increase the use of the logic elements included
inside of the FPGA and consequently the minituarization of the electronic
system. Nevertheless, the FPGA does not include the most optimal hard-
ware to implement an accuarate DPWM. There are mainly three families of
DPWM architectures [9- 12].� Fast-clock counter� Delay line loop� Hybrid

The DPWM owns a quantizer effect of a number comprised between 0
and 1, since the controller is having a normalized output between -1 and
1. The more bits are used for the DPWM, the more accurate is our output
voltage in VRM and therefore we decrease a source of error in the loop. The
quantizer block is represented as the Figure 2.23:

2

1−1

1

−n

Buck

DPWM MODEL

Output of Controller

Figure 2.23: DPWM Model Block
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The number of elements in the staircase is composed of 2−n, n being the
number of total bits. The number of bits required is given in [3] as

nDPWM =

⌊
nADC + log2

(
VoutHv

VfsADCDmin

)⌋
+ 1 (2.83)

=

⌊
log2

(
VoutHv

∆VqADCDmin

)⌋
= ⌊x⌋

being� Vout = Output Voltage� Dmin = Minimum duty cycle� ⌊x⌋ is equivalent to the greatest integer greater or equal to x

In our study case, the maximum number of bits that we are using is 10,
because of hardware constraint associated to the used FPGA. The number
of bits, shown in [3], is 12.

2.5.2 DPWM architecture

2.5.2.1 Fast clock counter

The saw-tooth signal is generated by means of a counter of n bits, where n
is the number of bits of our controller. The PWM output waveform comes
from the comparison between a counter and the controller output. When the
counter is equal to zero, the output of the fast clock counter is set to one, but
when the counter reachs the number equal to u[n], the SR latch changes the
output of the fast clock counter to zero. The scheme of this architecture is
shown in Figure 2.24. For a fast-clock counter architecture owning a generic
number of n bits, the input counter frequency is :

fcounter (n) = 2n · fsw (2.84)

being n, the number of bits introduced at the input of fast clock counter
and fsw is the switching frequency of the Buck converter.

Example 2.5.2.1. For a binary word consisting of 16 bits and a Buck con-
verter switching at 1MHz, the internal clock frequency of the counter must
be equal to

fcounter (16) = 65, 536 GHz (2.85)

To respect restrictive constraints of accuracy for controlling our power
converter, a high number of bits is necessary to generate a fine DPWM pat-
tern. Thus, the fast clock counter topology requires a high frequency imposed
by Equation (2.84). As we know, higher frequencies are more demanding in
terms of energy consumption.
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Figure 2.24: Scheme of a fast clock counter

2.5.2.2 Delay-line loop

A delay-line loop consists of an array of buffers placed sequentially. A pulse is
generated every Tsw at the input of the delay-line. Every buffer has associated
a propagation delay ∆t between elements. The work principle relies on a
comparaison between the digital controller output and the instant delay using
a multiplexor as it is ilustrated in Figure 2.25. To achieve this comparison, we
need only a latch at the output stage of the Delay-line loop. In comparaison
to the previous architecture, the problem arises in the number of buffers in
the delay-line. Therefore, the main drawback is in the size of sillicon that this
structure requires to be implemented. In fact, the number of delay elements
increases exponentially with the accuracy. The propagation delay for every
buffer in the delay-line must be equivalent to one MSB of the digital word
as stated in Equation (2.86)

tdelay = ∆t = 2−n (2.86)

n being the number of bits.

2.5.2.3 Hybrids

As normally happens, the best solution consists of a mix of proposed solu-
tions. Hybrids are implemented by a counter and a delay line loop. The
main idea is to divide the n-bit word, as it is shown in Figure (2.27), coming
from the digital controller into two parts. This allow decreasing drawbacks
related to high frequencies or the high number of tap delays. The demon-
stration requires some definitions.

Definition 2.5.2.1. The data width of the DPWM hardware consisting of n
bits can be divided in two parts. Coarse and fine adjustment.

n︸︷︷︸
Data width

= a︸︷︷︸
Coarse

+ b︸︷︷︸
Fine

(2.87)
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Definition 2.5.2.2. The duty cycle is the result of multiplying the binary
word entering into the DPWM by the quantization step of the DPWM gen-
eration block. The more bits are used to generate the digital word, the more
accurate is the generation of the duty cycle.

D = d[n]︸︷︷︸
Binary word

· ∆t︸︷︷︸
quantization step

(2.88)

Definition 2.5.2.3. The quantization step for the DPWM is inversely pro-
portional to the data width of the binary word. A closed expression to deter-
mine the quantization step is given by

∆t = 2−n

︸︷︷︸
LSB the binary word

· Tsw︸︷︷︸
switching period

(2.89)

Figure 2.26 summarizes all the previous definition. It can be easily ap-
preciated how the duty cycle is formed discretizing the switching time, Ts in
quantization steps of ∆t.

Definition 2.5.2.4. All binary words can be represented by means of

d[n] =

n−1∑

i=0

ai2
i (2.90)

After all the previous definitions, we are ready to prove why a Hybrid
architecture can be generated by a delay-line loop and a fast clock counter
altogether. The duty cycle can be rewritten using Equations (2.88), (2.90)
and (2.89).

D = 2−nTsw

n−1∑

i=0

ai2
i (2.91)

Equation (2.87) is useful to split the binary word into the coarse and fine
adjustment.

D = 2−nTsw





n−1∑

i=b

ai2
i

︸ ︷︷ ︸
coarse adjustment

+

b∑

i=0

ai2
i

︸ ︷︷ ︸
fine adjustment




(2.92)

Taking the common factor of 2b at the coarse part of the binary word,
Equation (2.92) results

D = 2−nTsw

(

2b

n−b−1∑

i=0

ai2
i−b +

b∑

i=0

ai2
i

)

(2.93)
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Operating in Equation (2.93) and using n − b = a, the duty cycle is now
equal to

D = 2−n+bTsw

a−1∑

i=0

ai2
i

︸ ︷︷ ︸
coarse adjustment

+ 2−nTsw

b−1∑

i=0

ai2
i

︸ ︷︷ ︸
fine adjustment

(2.94)

D = 2−aTsw

a−1∑

i=0

ai2
i

︸ ︷︷ ︸
fast clock counter

+ 2−nTsw

b−1∑

i=0

ai2
i

︸ ︷︷ ︸
delay-line loop

(2.95)

fa =
1

2−aTsw

= 2−a · fsw (2.96)

The resulting Equation (2.95) shows the the operation of the hybrid is
based on a coarse generated by a fast clock counter and a fine adjustment
thanks to the inclusion of a Delay-line loop. The frequency of operation for
the counter is given by Equation (2.96).

2.6 Conclusions

In the first part of this chapter the linear models of a switching power con-
verter have been analyzed. These models are accurate enough for frequencies
up to fsw

2
. The origin of these unaccuracies in frequencies higher than the

switching frequency is related to the use of the state-space average method.
For example, Figures such as 2.5, 2.6 and 2.7 show that all the oscillations
appearing in the signals are not having any harmonic. In contrast to the
real waveforms in a Buck converter, the inductor current, for example, is
triangular-shaped. This shows that if the accuracy in the model is required,
then non-linear (chaotic models) can be applied [13]. After the derivation
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of a linear model for Buck converters, the small signal model is used for the
analysis of the behavior of small disturbances. And finally, a set of transfer
functions is defined to see how all the input parameters of a Buck converter
affects the output voltage response.

After the study of the linear model of a power converter, an analytical
study comparing the input current of a single-phase and a multiphased struc-
ture has been developed. Then, the spectrum of an interleaved multiphase
power converter has been calculated. It has been shown how its harmonic
content is strongly influenced by the spectrum of the single-phase converter
plus the addition of a second function, Form Factor function. This discrete
function is presented giving the harmonic magnitude value for a given num-
ber of phases and it owns several singularities. As a consequence, it can be
noted that the Form Factor function is zero for all multiples of the switch-
ing frequency. Nevertheless, this function has an uncertainty at the critical
point, N · fsw mp. Therefore, in a single-phase converter all frequency con-
tents are centered over the switching frequency and their first multiples and
they are by far larger than DC contents for very low duty cycles. Thus,
it has been found that the smaller duty cycle is, the larger AC frequency
components are found. On the other hand, the average amplitude for DC
current is directly proportional to the duty cycle. It is quite important to
determine the working point of the power converter and the final design of
the input-filter capacitor value in order to decrease the number of input ca-
pacitors and the final cost of the system. Comparing (2.61) and (2.54), we
see the value of the input capacitance of a N-phased converter is related to
the value for single-phase converters just dividing the number of phases by
N2. In multi-phase converters, since N > 1 and 0 < D ≤ 1, both logarithms
have opposite sign in (2.63). This is the reason why for the low duty cycles,
it is required to increase the number of phases to lighten the value of Cin.
Fig. 2.18 shows that for same duty cycles and attenuations, the values of Cin

are always much lower when the number of phases increases.
Finally, the rest of the chapter ends with a short presentation of the rest of

components necessary to perform a digital voltage regulation. First of all, the
ADC used for our application is presented. Secondly, all the linear controllers
used during master’s thesis are presented and analyzed in a time/frequency
frame. A derivation of the serial and parallel forms based on the use of
difference equations has been done. Finally, the last part shows all the new
ways to generate a PWM pattern digitally. It is been proved mathematically
why hybrids configurations are the best option.
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Chapter 3

Digital control laws
implementation by means of
reconfigurable architectures

3.1 Introduction

3.1.1 FPGA architectures

In general, FPGAs require three major types of elements:� combinational logic� interconnect� I/O pins

These three elements are mixed together to form an FPGA fabric.
Figure 3.1 shows the basic structure of an FPGA that incorporates these

three elements. The combinational logic is divided into relatively small units
which may be known as Logic Elements (LEs) or combinational logic
blocks (CLBs). The LE or CLB can usually form the function of several
typical logic gates but it is still small compared to the typical combinational
logic block found in a large design. The interconnections between the logic
elements are made using programmable interconnections. This interconnec-
tion may be logically organized into channels or other units. FPGAs typically
offer several types of interconnections depending on the distance between
combinational logic blocks. Moreover, clock signals are also provided with
their own interconnection networks. The I/O pins may be referred as I/O
blocks (IOBs). They are generally programmable to be inputs or outputs
and often provide other features as low-power or high-speed connections.

An FPGA designer must rely on pre-designed wiring, unlike a custom
VLSI designer who can design wires as needed to make connections. The
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Figure 3.1: FPGA structure

interconnection system of an FPGA is one of its most complex aspect because
wiring is a global property of a logic design.

Connections between logic elements may require complex paths since the
LEs are arranged in some sort of two-dimensional structure as shown in
Figure 3.1. We therefore need to make connections not just between LEs
and wires but also between wires themselves. Wires are typically organized in
wiring channels or routing channels that run horizontally and vertically
through the chip. Each channel contains several wires. For example in Figure
3.2, the net in the figure starts from the output of the LE in the upper-
right-hand corner, travels down vertical channel 5 until it reaches horizontal
channel 2, then moves down vertical channel 3 to horizontal channel 3. It
then uses vertical channel 1 to reach the input of the LE at the lower-left-
hand corner. Therefore, it can be seen that the calculation of the delay is
difficult to be calculated and it depends on how the mapping algorithms are
mapping the required hardware for the controller application.

All FPGAs need to be programmed or configured. There are three
major circuit technologies for configuring FPGA: SRAM, anti-fuse and flash.
SRAM-based FPGAs hold their configurations in static memory. The output
of the memory cell is directly connected to another circuit and the state of
the memory cell continuously controls the circuit being configured.

Using static memory has several advantages:
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Figure 3.2: FPGA structure� The FPGA can be easily reprogrammed. Because the chips can be
reused, and generally reprogrammed without removing them from cir-
cuit, SRAM -based FPGAs are the generally accepted for system pro-
totyping.� The FPGA can be reprogrammed during system operation, providing
dynamically reconfigurable systems.� The circuits used in the FPGA can be fabricated with standard VLSI
processes.� Dynamic RAM, although more dense, needs to be refreshed, which
would make the configuration circuitry much more cumbersome.

SRAM-based FPGA also have some disadvantages:� The SRAM configuration memory burns a noticeable amount of power,
even when the program is not changed.� The bits in the SRAM configuration are susceptible to theft.

The basic method used to build a combinational logic block (CLB)
also called a logic element or LE – in an SRAM-based FPGA is the Lookup
Table (LUT). As shown in Figure 3.3 , the lookup table is an SRAM that
is used to implement a truth table. Each address in the SRAM represents a
combination of inputs to the logic element. The value stored at that address
represents the value of the function for that input combination. A n-input
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function requires an SRAM with 2n locations. Since a basic SRAM is not
clocked, the lookup table LE operates much as any other logic gate.

Unlike a typical logic gate, the function represented by the LE can be
changed by modifying the values of the bits stored in the SRAM. As a result,
the n-input LE can represent 2n functions. The delay through the lookup
table is independent of the bits stored in the SRAM, so the delay through
the logic element is the same for all functions. This means that, for example,
a lookup-table based LE will exhibit the same delay for a 4-input XOR and
a 4-input NAND. In contrast, a 4-input XOR built with static CMOS logic
is considerably slower than a 4-input NAND. Of course, the state logic gate
is generally faster than the LE.

Logic elements generally contain registers – flip-flop and latches- as well
as combinational logic. A flip-flop or latch is small compared to the com-
binational logic element. As shown in Figure 3.4, the memory element is
connected to the output; whether it stores a given value is controlled by its
clock and enable inputs.

More complex logic blocks are also possible. For example, many logic
elements also contain special circuitry.
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3.1.2 State of the art of hardware description languages

This chapter highlights the historical reasons for the standardisation of HDL
languages. Later on, it comments differences among two of the most popular
HDL languages, and, finally it discusses the reasons for choosing VHDL.

In the VLSI era, a structured design process is required. In response to
this need, considerable efforts have been being expended in the development
of design aids. Hardware description languages are a specific example of this
and a great deal of effort is being expanded in their development. Actually,
the use of these languages is not new. Languages, such as CDL, ISP and
AHPL have been used since the 70’s. However, their primary application
have been the verification of a hardware architecture without a high degree
of accuracy and the verification of a design’s architecture. That is, their
timing model is not precise, and/or their language constructs imply a certain
hardware structure. Newer languages, such as Verilog and VHDL, have more
universal timing models and they imply no particular hardware structure.

Thus, Hardware Description Languages have two main applications which
are documenting a design and modelling it.

In general, all useful hardware description languages are supported by a
simulator. Thus, the model inherent in an HDL description can be used to
validate a design. Prototyping of complicated systems is extremely expen-
sive. Thus, the goal of those concerned with the development of hardware
languages is to replace this prototyping with validation through simulation.
Another important use of HDL descriptions in synthesis, that is, the auto-
matic generation of gate-level circuits from the HDL model. HDL models
are also used for test generation.

The use of hardware description languages in the design process implies
a different approach than those used in the past. Formerly, digital designers
were restricted to rely on a combination of word descriptions, block diagrams,
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timing diagrams, and logic schematics to describe their diagrams. Also, for
a designer to be personally involver in the simulation process was considered
to be an “anathema”. The attitude was, “those who can’t design, simulate”.
The situation today is markedly different. Designers have a great deal more
training in software. They prepare their designs in computer environment,
where the design is entered as an HDL source file, as a schematic diagram,
or as some combination of both approaches. Simulation is a tool frequently
employed by the designers themselves to verify the correctness of the design.
Synthesis tools translate the HDL models into gate-level designs.

To illustrate the concepts of an structured design, a specific hardware
description language must be used. Until recently, there has not been a
standard hardware description language, as there are standard programming
languages such as C, C++, and JAVA. However, beginning in 1983, the
US Department of Defence sponsored the development of the VHSIC (very
high speed integrated circuit) hardware description language (VHDL). The
original intent of the language was to serve as a means of communicating
designs from one contractor to another in the VHSIC program.

In June 1987, eligible members voted to accept this version of VHDL as
the standard one. In december 1987, it became official. From 1988 through
1992, VHDL users suggested minor changes to the language. The proposed
changes were balloted in 1993, some of which were incorporated into the
language.

3.1.2.1 Differences between most popular HDL languages

For the moment, there are currently available two industry standards related
to the development of digital integrated circuits: VHDL and Verilog. As
mentioned before, VHDL became IEEE standard 1076 in 1987. Nevertheless,
Verilog has been used longer than VHDL and has been used extensively since
it was launched by Gateway in 1983. It became IEEE standard 1364 in
December 1995.

This section compares both languages depending on some features and
tries to orientate the reader in order to justify why VHDL was chosen.
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Table 3.1: Levels of hardware description details

Level Behavioral Structural
of Domain Domain

detail Representation Primitive
System Performance Specification Purpose of the project
Chip Algorithms Output Voltage Regulation

Register Data Flow Memory, Counter, Multiplier
Gate Boolean Equations AND, OR

Circuit Differential Equations Transistor, R, L, C

1. Capability� Every language allows us to describe the function of a digital cir-
cuit depending on several hierarchy abstraction. The grammar
for every language may suit better for several type of hardware
descriptions. Hardware description is a set of interconnected el-
ements representing individual functions. Every element inside
of a hardware must be represented in a certain level of detail to
achieve a whole and more generic performance. Levels of details
are divided into six (see Table 3.1). Modelling constructs in VHDL
and Verilog cover a slightly different spectrum across the levels of
behavioural abstraction.

2. Data Types� VHDL A multitude of language or user defined data types can be
used. This may mean dedicated functions are needed to convert
objects from one type to another. The facility of making your own
personal set of data types allows to read better the code and also
creates a link between real world and application.� Verilog Compared to VHDL, Verilog data types are simple, easy to
use and very much geared towards modelling hardware structure
as opposed to abstract hardware modelling. Unlike VHDL, all
data types used in a Verilog model are defined by the language
and not by the user.

3. Design re-usuability� VHDL Procedures and functions may be placed in a package so
that they are available to any design-unit that wishes to use them.� Verilog There is no concept of packages in Verilog. Functions and
procedures used within a model must be defined in the module.
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4. Easiest to learn� Starting with zero knowledge of either language, Verilog is the
easiest to learn and understand.

5. High Level Constructs� VHDL There are more constructs and features for high-level mod-
eling in VHDL than there are in Verilog. Abstract data types can
be used along with the following statements:

(a) package statements for model reuse

(b) configuration statements for configuring design structure

(c) generate statements for replicating structure

(d) generic statements for generic models that can be individually
characterized, for example, bit width

All these language statements are useful in synthesizable models.� Verilog Except for being able to parameterize models by overload-
ing parameter constants, there is no equivalent to the high-level
VHDL modeling statements in Verilog.

6. Libraries� VHDL A library is a store for compiled entities, architectures,
packages and configurations. Useful for managing multiple design
projects.
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3. Reconfigurable Architectures� Verilog There is no concept of a library in Verilog. This is due to
their origins as an interpretive language.

7. Low Level Constructs� VHDL Simple two input logical operators are built into the lan-
guage, they are: NOT, AND, OR, NAND, NOR, XOR and XNOR.
Any timing must be separately specified using the after clause.� Verilog The Verilog language was originally developed with gate
level modeling in mind, and so has very good constructs for mod-
eling at this level and for modeling the cell primitives of ASIC and
FPGA libraries.

8. Managing large designs� VHDL Configuration, generate, generic and package statements
all help manage large design structures.� Verilog There are no statements in Verilog that help manage large
designs.

9. Operators� The majority of operators are the same between two languages.

10. Procedures and tasks� VHDL allows concurrent procedure calls. Verilog does not allow
it.

11. Structural replication� VHDL The generate statement replicates a number of instances
of same design-unit or some sub part of a design.� Verilog There is no equivalent statement in Verilog.

12. Test harnesses� Designers typically spend about 50% of their time writing synthe-
sizable models and the other 50% writing a test harness to verify
the synthesizable models. Test harnesses are not restricted to the
synthesizable subset and so are free to use the full potential of
the language. VHDL has generic and configuration statements
that are useful. Focussing on the application, we are willing to
develop VHDL is going to be more convenient due to the ability
of creating data types called in a closer way to the aplication.
Also, it is possible to reuse the code among application. Thus,
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we can easily create structural models for different control algo-
rithms. Nevertheless, the difficulty in learning the whole syntax
has been the order of several months to get to know the whole set
of standard libraries, types of syntax verbose and, finally, the set
of instructions for writing proper test benches.

3.2 Modeling linear systems using FPGAs

3.2.1 Introduction

Some common problems are performed in FPGA due to the lack of a specific
arithmetic architecture like DSP cores. DSPs normally have a CPU whose
architecture is Harvard, a set of RISC instructions to increase the compu-
tational speed of algorithms, a rigid ALU having all the arithmetic circuits
necessary to perform filters and a C compiler that allows us to start a quick
programming avoiding the knowledge of the DSP architecture.

On the other hand, the architecture of FPGAs is defined by the VHDL
file that the user is typing. This freedom might be a double-edged sword.
The advantage of this flexibility is multiple. First of all, there is an increase
of parallelism and, consequently, speed. It is also important to think that
when the application needs a custom design to be produced massively, FPGA
plays an important role before manufacturing the same desgin into an ASIC.
Therefore, the underlying advantage is the possibility to optimize our algo-
rithm in terms of size.

Nevertheless, the lack of a fixed architecture inside of the FPGA pack-
age and the non-existence of a set of data types for synthesis can make the
programming of the algorithm a random success. For that reason, the devel-
opment of a generic algorithm in VHDL, based on a previous mathematical
analysis, is interesting in order to speed up the development of algorithms.

3.2.2 Rational number system on FPGA

The numbers representing the signals in a control system belongs to the set
of ℜ (Real Numbers). In an FPGA, the numerical representation is based
on busses representing integer numbers, belonging to the set of Z. There-
fore, it is necessary a systematic way to design and represent real numbers
inside of the FPGA. Nowadays, there has been some attempts to perform
some VHDL libraries representing rational numbers. The fixed-point and
floating-point IEEE proposed libraries are able to synthetize hardware with
the inconvenient of having low-speed architectures. Finally, after the study of
the use of the fixed point libraries, we decided to implement our syntethisable
VHDL code for the representation of rational numbers.
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3.2.2.1 Fixed-point

The representation of a rational number in fixed point consists of the di-
vision of the number into two parts as it can be seen in the Figure 3.6.
This representation is exactly the same as the used performing arithmetic
by hand. The point that separates the integer part and the decimal part is
not represented in the FPGA. For that reason, we follow in this report the
WQX nomenclature which is shown in the Figure 3.6. This means that every
rational registers have W bits where X bits of the length are decimal.'

&

$

%

.

FIXED POINT NUMBER

INTEGER
PART

FRACTIONAL
PART

X−Bits(W−X)−Bits

Figure 3.6: NQM Fixed-Point Structure

The range and accuracy of a WQX representation is given by

Range =
[
−2W−X−1, 2W−X−1 − 2−X

]
(3.1)

Accuracy = 2−X (3.2)

Example 3.2.2.1. Consider a rational number coded using a 11Q8 pattern.
The range and accuracy of the codification is

Range = [−4, 3, 99609375]

Accuracy =
1

256

3.2.2.2 Floating-point

Floating-Point numbers are divided by two parts: mantissa and exponent.
Every value can be translated into fixed-point by the means of the following
relationship:

y = (−1)S · m · βe−bias (3.3)
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where m is an integer comprised between 0 ≤ m ≤ βt − 1 and being
called mantissa. The sign is represented by s. The parameter β is the base
representation of our digital architecture. It might be a numerical represen-
tation either binary, octal or hexadecimal. For the case of using a binary
representations β = 2. Finally, if the exponent is represented using e bits,
then the bias is selected to be

bias = 2e−1 − 1 (3.4)

The range of the nonzero floating-points is given by

βemin ≤ |y|≤ βemax
(
1 − β−t

)
(3.5)

Exponent, e Unsigned mantissa, mS

Figure 3.7: Floating Point Structure

Example 3.2.2.2. Consider the 754-1985 ANSI/IEEE standard defining
floating point numbers. A number can be represented by three different forms:
single, double and extended. The only difference among them is the number of
bits used to represent the number. Single precision contains 32 bits, double 64
and extended 80 bits. As a matter of an example, we will calculate the range
for single precision numbers. The number of bits containing the mantissa,
sign and exponent are illustrated in Figure 3.8.

Exponent, e Unsigned mantissa, mS

8 bits 23 bits

32 bits

1 bit

Figure 3.8: IEEE single precision structure

58



3. Reconfigurable Architectures

The bias is calculated using Equation (3.4).

bias = 28−1 − 1 = 127 (3.6)

Therefore the exponent is ranging between

−126 ≤ e ≤ 128 (3.7)

We can see from the Equation (3.7) the possibility to represent a rank of
values coming from very small numbers to very big ones thanks to the expo-
nential representation. Thus, the range is calculated using Equation (3.5).

1, 175494351 · 10−38 ≤ y ≤ 3, 402823466 · 1038 (3.8)

The disavantage of this representation is the need of the duplication of all
the arithmetic to perform basic operations in signal processing: addition and
multiplication. For example, every time we perform a multiplication, we need
to have an arithmetic circuit performing the multiplication between both
mantissas and the addition of both exponents. This situation discourages to
use this number representation.

3.2.2.3 Conclusion

Fixed-point number are chosen to system to represent rational numbers, in
order to make our design less complicated in terms of architecture and less
size in logic gates.

Another crucial advantage of using fixed-point representation is the use
of less power to perform arithmetic calculations [14]. This is a very impor-
tant characteristic when the power supply being controlled by our FPGA is
integrated inside of an embedded system.

For the rest of the report, we will validate our generic methodology by
using the two controllers that were suggested to be implemented for VRM
applications. The first transfer function will be the case for the serial PID
because of the easiness to implement a transfer function having only one
pole. After that, we will move to the programming of the 3rd-order controller
calculated by means of the pole-zero matching technique, [3].

3.2.3 Coefficient wordlength

3.2.3.1 Mathematical calculation

The first step before starting the design of a linear controller consists of
the bit-width definition for the controller coefficients. Considering that this
controller is an LTI system defined by :

u[n] =

k∑

i=0

bie[n − i] −

l∑

j=1

au[n − j] (3.9)
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The number of bits for the coefficients is imposed by :

Ncoefficients = Ninteger + Nfractional (3.10)

where Ninteger is defined by:

Ninteger = max
i

⌈log2|ci|⌉ + 1 (3.11)

where ci ∈ {ai, bi} are the coefficients referring Equation (3.9).
The number of decimal digits needed for the rational part of the coefficient

is closely related to the shift of poles and zeros of the controller. The number
of bits is also related on the type of structure to be programmed such as
direct form , canonical, coupled, parallel. To develop a connection between
the number of decimals needed for every coefficient and the shift of roots in
z-plane, it is assumed that the digital transfer function to be programmed
is in direct form. This topology is the most critical architecture suffering
from the effects of pole deviation due to the fact that the transfer function
of the controller relies on the relationship between two polynomials of a high
degree. Last conclusion is explained in the following definition.

Definition 3.2.3.1. . Every polynomial can be written in two different
forms: serial and coupled. Direct form consists of a sum of terms, whereas
the coupled form consists of a product of terms [15]� Direct form

Fc(x) = xn + cn−1x
n−1 + ... + c0 (3.12)� Coupled form

Fc(x) = (x − pn) (x − pn−1) ... (x − p1) (3.13)

being the set of real numbers, C = {cn−1, cn−2, ..., c0} the set of coefficients
for the direct form polynomial, whereas the set P = {pn, pn−1, ..., p1} is the
set of roots of the polynomial in the coupled form.

We define the quantization effects in Equations (3.12) and (3.13), as it
is expressed in Equations (3.14) and (3.15). Two intial assumptions should
be considered for the coefficient wordlength problem defined in the following
definition.

F̂c(x) = xn + ĉn−1x
n−1 + ... + ĉ0 (3.14)

F̂c(x) = (x − p̂n) (x − p̂n−2) ... (x − p̂1) (3.15)

60



3. Reconfigurable Architectures

Definition 3.2.3.2. The set of quantized coefficients and roots is related
to the ideal counterpart by using the next formula

ĉ = c + ∆c (3.16)

p̂ = p + ∆p (3.17)

Therefore, the question arising, when looking at the polynomial of Equa-
tion (3.14), is how much the set of quantized roots p̂n, p̂n−2, ..., p̂1 are shifted
regarding to the roots pn, pn−1, ..., p1 after the quantization.

The answer to the previous problem can be solved considering the poly-
nomial as a function of two unknowns , x and a generic coefficient cj .

Fc(cj, x) = xn + cn−1x
n−1 + ... + cjx

j + ... + c1x + c0 (3.18)

The same definition can be applied to the set of quantized coefficients as

Fc(ĉj, x) = xn + ĉn−1x
n−1 + ... + ĉjx

j + ... + ĉ1x + ĉ0 (3.19)

Using Equation (3.18) and substituing the unknown x by the root pi, the
value of the polynomial should be equal to zero for the using Equation (3.13).

Fc (cj, x = pi) = 0 (3.20)

The value of the quantized polynomial when the coefficient is equal to ĉj

and the value of the pole is equal to p̂i can be approximated by means of
Taylor series:

F (ĉj, x = p̂i) = P (cj + ∆cj , x = pi + ∆pi) (3.21)

= P (cj , pi) +
∂P

∂cj

∣∣∣∣
x=pi

∂cj +
∂P

∂pi

∣∣∣∣
x=pi

∂pi +

+ ...︸︷︷︸
high-order differential terms

≈ 0

Substituing Equation (3.20) into (3.21) and rearranging terms we can see
how much the root pi is shifted when the coefficient is suffering from having
a quantization ∂cj . As a result, the relationship is

∂pi = −

∂F
∂cj

∣∣
x=pi

∂ck

∂F
∂x

∣∣
x=pi

(3.22)

We must, therefore, calculate the partial derivatives appearing in Equa-
tion (3.22) to have a closed expression to calculate the pole shift
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∂F

∂cj

= xj (3.23)

∂F

∂cj

∣∣∣∣
x=pi

= pj
i

The second partial derivative is calculated using Equation (3.13) and the
derivative of two multiplicative functions, (ab)′ = a′b + ab′.

∂F

∂x
= (x − pn−1) (x − pn−2) ... (x − pj) ... (x − p1)︸ ︷︷ ︸

derivative of term (x − pn)

+ (3.24)

+ (x − pn) (x − pn−2) ... (x − pj) ... (x − p1)︸ ︷︷ ︸
derivative of term (x − pn−1)

+... +

+ (x − pn) (x − pn−1) ... (x − p1)︸ ︷︷ ︸
derivative of term (x − pj)

+... +

+ (x − pn) (x − pn−1) ... (x − pj) ... (x − p2)︸ ︷︷ ︸
derivative of term (x−p1)

=

=

n∑

i=1

n∏

j=1,j 6=i

(x − pij) (3.25)

∂F

∂x

∣∣∣∣
x=pi

=
n∏

j=0,j 6=i

(pi − pj) (3.26)

Using Equations (3.22), (3.23) and (3.26) the shift of the root pi due to
the coefficient cj.

∂pi = −
pj

i∂cj

n∏

i=1,i6=j

(pi − pj)

(3.27)

To know the influence of the set of n coefficients in the set of n poles, the
best way is to use matrix notation. Considering the vector of coefficients, C
and the vector of roots P as

C = (c0c1...cn−1)
T (3.28)

P = (p0p1...pn−1)
T (3.29)

The Jacobian matrix of sensitivities is now expressed in the form of
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∂P

∂C
= −A · B =





∂p1

∂c0

∂p1

∂c1
· · · ∂p1

∂cn−1

∂p2

∂c0

∂p2

∂c1
· · · ∂pn

∂cn−1

...
...

. . .
...

∂pn

∂c0

∂pn

∂c1
· · · ∂pn

∂cn−1




(3.30)

being the matrix A and B. The Jacobian matrix is the matrix of first-
order partial derivatives of n-dimensional applications, F : ℜn → ℜn. In our
case, the application corresponds to the Equation (3.19) being n for this case
the number of roots and coefficients of the polynomial.

A =





n∏

k=1k 6=1

(p1 − pk)
−1 0 · · · 0

0
n∏

k=1k 6=2

(p2 − pk)
−1 · · · 0

...
...

. . .
...

0 0 · · ·

n∏

k=1k 6=n

(pn − pk)
−1





(3.31)

B = V T = V (p0p1...pn−1) =





1 1 · · · 1
p0 p1 · · · pn−1
...

...
. . .

...
pn−1

0 pn−1
1 · · · pn−1

n−1





T

(3.32)

The matrix appearing in Equation (3.32) ,V , is known as the Vander-
monde matrix [16]. The Vandermonde matrix has its application in the field
of polynomial interpolation.

Finally, in order to obtain the number of rational bits, it is necessary
to calculate the most sensitive pole of the vector as it is shown in next
demonstration. Firstly, it is worth to define the norm of a vector and a
matrix [17].

Definition 3.2.3.3. The ∞-vector norm of a vector D = (d0, d1, ..., dn) =
(di) is

‖ D ‖∞= max
1≤i≤n

|di| (3.33)

The ∞-matrix norm of a matrix C = (cij) is

‖ C ‖∞= max
1≤i≤n

n−1∑

j=0

(cij) ”max row sum“ (3.34)
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Matrix norms are useful to concentrate the information of all numbers
appearing in a matrix into one number.

For the case of the Jacobian matrix defined in Equation (3.30) and know-
ing that each element of the jacobian matrix have the form of Equation
(3.27), we can use the definition of the ∞-matrix norm to assure a lower
bound for the number of rational bits.

∥∥∥∥
∂P

∂C

∥∥∥∥
∞

= max
1≤i≤n

n−1∑

k=0

∣∣∣pk
i

∣∣∣
∣∣∣∣

n∏

k=0,k 6=i

(pi − pk)

∣∣∣∣

(3.35)

Considering that ∞-norm of the vector P is ‖P‖∞ = ε and the ∞-norm
of the vector 1

∂C
is equal to 2Nrational.The number of bits rational bits needed

is finally

Nfractional =

⌊
log2

(∥∥∥∥
∂P

∂C

∥∥∥∥
∞
·

1

|ε|

)⌋
+ 1 (3.36)

It is important to highlight few characteristics related to Equation (3.36).
The denominator of this equation tends to zero when the roots of the poly-
nomial are close. Therefore, for cases when poles or zeros of a given transfer
function are concentrated in a cloud, more bits are needed to decrease the
shift of thee roots. Last conclusion is validated for our study case in the next
numerical example.

Example 3.2.3.1. Consider the 3rd order transfer function given in [3]. The
purpose of this example is to calculate the number of bits required to achieve
a maximum shift of a 10 % of the magnitude of the roots of the denominator.

Gc (z) =
5z2 − 9, 7895529827277z + 4, 7906487334929

z3 + 1, 01066421884141z2 − 0, 244667890579294z + 0, 255332109420706
(3.37)

The vector of the coefficients and roots are :

C = (c2, c1, c0) (3.38)

= (1, 01066421884141, −0, 2446678905792940, 255332109420706)

P = (p1, p2, p3) = (1, 0, 51066421884152,−0, 5)

The number of integer coefficients for the denominator was given in Equa-
tion (3.11).
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Ninteger = ⌈log2 ‖C‖∞⌉ + 1 = 2 (3.39)

‖C‖∞ = 1, 01066421884141 (3.40)

To calculate the number of rational bits, we need to calculate the Jacobian
matrix of Equation (3.30). The Jacobian matrix we are willing to form for
this example is having the following form

∂P

∂C
=





∂p1

∂c0

∂p1

∂c1

∂p1

∂c2
∂p2

∂c0

∂p2

∂c1

∂p2

∂c2
∂p3

∂c0

∂p3

∂c1

∂p3

∂c2



 (3.41)

The matrix A and B appearing in Equation (3.30) for this particular
example are

A =





3∏

i=1,i6=1

(p1 − pi) 0 0

0
3∏

i=1,i6=2

(p2 − pi) 0

0 0

3∏

i=1,i6=3

(p0 − pi)





(3.42)

=




1, 362391 0 0

0 2, 022023 0
0 0 0, 659632





B = V T (p1, p2, p3) =




1 1 1
1 0, 51066 0, 26077
1 −0, 5 0, 25



 (3.43)

Substituing the results of Equations (3.42) and (3.43) into equation (3.30),
the result of the Jacobian matrix is

∂P

∂C
=




1, 362391 1, 362391 1, 362391
2, 022023 1, 0325749 0, 527299
0, 6596322 −0, 329816 0, 164908



 (3.44)

The ∞-matrix norm of the Jacobian matrix is

∥∥∥∥
∂P

∂C

∥∥∥∥
∞

= 4, 087173015 (3.45)

The number of rational bits is calculated using Equation (3.36) and the
maximum shift of poles is ε = 0, 1
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Nrational ≥

⌊
log2

(
4, 087173015 ·

1

0, 1

)⌋
+ 1 = 6 (3.46)

Therefore, the codification of coefficients in fixed-point is following the
patter 8Q6 as it has seen in Subsection 3.2.2.1. That is, the coefficients for
the denominator of the transfer function need a total of eight bits whose six
last bits are rational numbers.

The set of quantized coefficients and the associated quantized roots for the
polynomial of the denominator in Equation (3.37) are :

Ĉ = (−1, 015625,−0, 25, 0, 25) (3.47)

P̂ = (1, 02056, 0, 49247,−0, 4974) (3.48)

We see that the controller is unstable because one pole is moved outside
of the unit circle.

Following the same procedure as in Example 3.2.3.1 for the numerator
of Equation (3.37), we calculate the number of necessary bits, to assure a
maximum shift among roots and quantized roots. Imposing an ε = 0, 1, the
required number of bits is 10, because the zeros of the transfer function are
very close to the border of the unity circle. Therefore, the number of bits
in the controller for our application will be imposed by the polynomial of
numerator. The new roots for the denominator using the new constraint
imposed by the numerator are

P̂ = (1, 001326780, 50925428,−0, 4998388) (3.49)

3.2.3.2 Real coefficient implementation

We can see that even if the number of bits was increased, the controller
is still unstable. The arising question is how the controller can be made
stable. The answer comes at looking Equation (3.36). When we calculate
the number of bits, we only impose that the root is moved inside of a small
disc of radius ∂p, but the main drawback of this method is that we are not
able to parametrize the direction of this shift. Examples of quantized roots
appearing in Equations (3.47) and (3.49) were coming using the rounding
approach for the coefficients of the quantized polynomial. Nevertheless, in
case, the coefficients are truncated instead of rounded, the new roots are

P̂ = (0, 99866866895454491, 0, 509254282,−0, 4998388745) (3.50)

Figure 3.10 shows how the pole located at z = −1 is located whether if
we are using rounding or truncation methods. Truncation method limits the
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number of digits right after the last required real number, by discarding the
rest of the word. On the other hand, rounding method imposes a number of
real numbers approximating to the nearest value.
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Figure 3.9: Pole-Zero map comparing the effect of rounding/truncating coeffi-
cients

The Bode chart can also show that the method of rounding/truncation
can also differ, like in the previous case. The Figure 3.10 shows that due to
the shift of the integrator, the Bode plot at frequencies close to zero differ
because of the shift in the integrative pole. It is required, then, to increase
the accuracy of the system, just increasing the number of rational bits. The
new upper bound for our controller will be then ε = 0, 01 applying truncation
method for the quantized coefficients. The Bode and pole-zero map for the
new accuracy are shown in Figures 3.12 and 3.11.

In Figure 3.11, we can see that for a maximum shift of ε = 0, 01, the
integrative pole for the case of truncated coefficients is exactly located at z =
1. On the other hand, for the case of rounded coefficients, the pole is located
inside of the unit circle. Moreover, the problem comes when we observe
the frequential response for both cases. In Figure 3.12, it can be observed
the case of truncated coefficients. The plot matches with the response of the
original controller. On the other hand, the shift of the integrative pole for the
case of rounded coefficients is clearly appreciated in the Bode. The negative
slope of −20 db

dec
starts at the frequency of 20Hz and not in DC frequency.

3.2.3.3 Integrative part

As it has been shown in the previous point, the integrative part of our digital
controller may be an important source of unstabilities. However, the inte-
grative part is required in our study case in order to cancel the steady-state
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error. Thus, the easiest way to solve problems related to controllers requir-
ing an integrative action is the construction of the controller using parallel
structures. As it can be observerd in Equation (3.51), the transfer function
of a controller Gc (z) can be written in two forms

Gc (z) =

m∑

i=0

biz
i

1 +

n∑

j=1

ajz
j

︸ ︷︷ ︸
serial form

=

n∑

j=0

rj

z − pj

︸ ︷︷ ︸
parallel form

when m ≤ n (3.51)
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Figure 3.12: Pole-zero diagram for ε = 0.01

Equation (3.51) shows clearly that the transfer function of the controller
written in parallel form correspond of a sum of first-order transfer functions.
The coefficient pj is clearly the root of every term. For parallel structures
the quantization of the coefficient pj corresponds to a shift of the root of
the same magnitude (see Equation (3.52)). Therefore, when the controller
requires an integrative action pj = 1 and we don’t need any shift in that
root, the best option is to use parallel structures.

z − p̂j = z − (pj + ∆pj) (3.52)

In the next Table 3.2 we summarize the number the bits required to
obtain a given error. As we can see, the number of bits increases with the
polynomial degree. For the case of PID, the polynomial of the denomintor
is monic and it has only one pole. Therefore, the coefficient to be quantized
will depend itself of the shift over the z-plane.

Table 3.2: Number of bits depending on the error

Error PID Pole-Zero Matching Controller
40% 3 8
10% 5 10
0.1% 8 13
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3.2.4 Per-unit terminology

Common problems when arithmetics are performed in FPGA are in the lack
of architecture and the non-existence of data types like in C compilers for DSP
or computers. That’s why it is important to calculate maximum values in
output response in order to avoid common problems in quantized arithmetic:
overflow and wrap. The effects are shown in Figure 3.13:

0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3
Digital Problems

 

 
Well−parametrized binary code
Wrap problem
Saturation problem

Figure 3.13: Problems in arithmetic digital circuits

Saturation problem happens when a result of an arithmetic operation
exceeds the maximum allowed value for our binary code. On the other hand,
wrap consists of using a sign bit of in the binary word when arithmetic
operation result is by far too large. As it can be seen in the Figure, 3.13
wrap problem is seen to be a change in the sign of the quantized response.

To avoid both problems it is recommended to normalize filter output
response by the following Equation:

upu(t) =
u(t)

‖u(t)‖∞
(3.53)

epu(t) =
e(t)

‖e(t)‖∞
(3.54)

Having LTI system defined by a difference equation

u[n] =
k∑

i=0

bie[n − i] −
1∑

j=1

aju[n − j] (3.55)

the per-unit LTI system is
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upu[n] =
k∑

i=0

biepu[n − i] −
l∑

j=1

ajupu[n − j] (3.56)

where upu and epu are defined by Equations (3.53) and (3.54)
In our case, the equation for a serial PID is as follows:

upu[n] = upu[n − 1] + k0epu[n] + k1epu[n − 1] + k2epu[n − 2] (3.57)

In this document, the maximum value is derived using the maximum
value coming from the impulse response of the controller. The reason why
the impulse response is taken as a pattern is related to the analysis of the
transient behaviour of the step response in a control system. Considering
a generic control system, as given in Figure 3.14, where the plant and the
controller are LTI systems, the step response of the system can be described
by a set of exponentials. If we consider that the output response of the
plant is over-damped, the step response, vout(t) of the whole control system
in closed-loop is

vout(t) = Vref

(
1 −

n∑

k=1

rke
− t

pk

)
n being the number of poles and pk ∈ ℜ

(3.58)
Considering that the set of exponential tends quickly to zero, the only

exponential that shapes the output is the exponential that has the least
constant time, that is, the exponential having the smallest pole magnitude
(closest pole to the imaginary axis).

vout(t) ≈ Vref ·
(
1 − e−τt

)
where τ =

n

min
k=1

pk (3.59)

Using the approximation appearing in Equation (3.59), the error signal
(input signal to the controller) is

e[n] = Vref − y[n] = Vref · e
−τn (3.60)

Finally, the last assumption is to consider that τ is big enough to be
tending to ∞. The limit of Equation (3.60) is tending to a discrete delta
because at the first moment the error is maximum and tends quickly to zero.
This is the reason why the maximum value of the impulse response of the
controller was chosen as a parameter to normalize the signals of the loop.

e[n] = lim
τ→∞

Vref · e
−τnu[n] ≈ Vref · δ[n] (3.61)

Using same coefficients for the PID calculated in (2.77), MATLAB is able
to calculate maximum value by means of the functions dimpulse and max.
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Figure 3.14: Step Response of the control system

‖gc[n]‖∞ = 1, 5127 (3.62)

For the case of the 3rd order controller, the ∞-norm is

‖gc[n]‖∞ = 9, 736232 (3.63)

In [18- 19], a restrictive upper bound to calculate the maximum value of
the controller is

‖u[n]‖∞ ≤ ‖gc[n]‖ · ‖e[n]‖∞ (3.64)

where ‖‖∞ and ‖‖1 denote respectively the l∞ and l1 norms defined pre-

viously. ‖u‖∞ = maxn
k |e[n]|, and ‖gc[n]‖1 =

∞∑

k=0

|gc[n]|.

The deduction of the upper bound for Equation (3.64) can be guessed
interpreted using convolution of two signals because we are willing to know
the time-domain output of the controller when the applied input is e[n].

u[n] =
∞∑

k=0

e[k] ∗ gc[k − n] (3.65)

Applying ∞-norm to inputs and output of Equation (3.66) and applying
finally Cauchy-Schwarz unequality, we have

‖u[n]‖∞ =

∞∑

k=0

gc[k − n] ∗ e[k] ≤ ‖gc[n]‖1 · ‖e[n]‖∞ (3.66)
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Example 3.2.4.1. Consider that we are willing to implement an output
voltage regulated system using the 3rd-order filter given in section 2.4.2.3.
The whole control system is shown in Figure 3.14. The maximum value at
the output of the controller preventing overflow was given in Equation (3.66).
The 1-norm, calculated in Matlab, was

‖gc[n]‖1 = 38, 2511 (3.67)

The maximum voltage coded by the ADC is 2, 5V , in case Vref = 1V ,
then the maximum error is ‖e[n]‖∞ = |1 − 2, 5| = 1, 5

‖e[n]‖∞ = 1, 5V (3.68)

The maximum value at the output of the controller is

‖u[n]‖∞ < ‖gc[n]‖1 · ‖e[n]‖∞ = 38, 2511 · 2, 5 = 57, 37665 (3.69)

The number of bits required to implement the result of Equation (3.69) is

Ninteger = ⌈log2 (57, 37665)⌉ + 1 = 7 bits (3.70)

Finally, to prevent overflow, we need to codify the signal using 7 bits.
Obviously, this rule should not make us feeling free from implementing an
overflow/underflow block after the controller, because the 3rd-order filter has
an integrator.

3.3 Effects of rounding multiplier output

After the analysis of the error due to the shift of the coefficients, the second
source of error in the implementation of a digital control system comes when
it is compulsory to shorten the number of bits at the multiplier output. A
digital multiplier is an arithmetic circuit whose inputs are W-bit width and
the output is 2W-width. For some reasons explained later in this chapter,
the output must be W-bit width. There are many ways to modelize and
parametrize the effects of having a limited number of bits at the output of
a multiplier. The direct form to express the problem of rounding consists
of a shift in the poles of the system to be implemented. Let’s focus in the
multiplier of Figure 3.15.

The output of the rounded multiplier can be seen as the addition of a
source of noise ∆y to the real output.

y + ∆y = b · x (3.71)

If the rounded output is considered to be the same output as the output
of a non-rounded multiplier consisting of a factor b′, there is a shift of the

73



3. Reconfigurable Architectures

'

&

$

%

b2W

Q
2W W

x y’

b’2W
x

y’

∆ y

b’ 2W2W
x y’

2W 2W

2W

Figure 3.15: Model of rounding the output of a multiplier

coefficient and, therefore, of the pole of the system directly proportional to
the rounding performed in the real multiplier (Eq. (3.73)).

y + ∆y = b′x = (b + ∆b) · x (3.72)

∆y

y
=

∆b

b
(3.73)

The aforementioned answer is not as easy as the reader might think. First
of all, the diference between the problem of rounding and the rounding of
coefficients is that the shift is not static. That is, for the case of rounding
coefficients the problem is defined and solved in design times. On the other
hand, the rounding effect due to multiplier and the associated shift depends
sample by sample whilst the system is operative. It is depending strongly
also on the type of rounding operation performed on the system. This is
why the error in Figure 3.15, ∆y, can be described in a better way using the
pdf (probability density function) of the rounding method that the quantizer
block, Q, is applied at the output of the multiplier.

In this report, two types of rounding methods are going to be analyzed.
First method is floor, which is equivalent to two’s complement truncation,
rounds to the closest representable number in the direction of negative in-
finity. On the other hand, the second method, called round, rounds to the
closest representable integer. In the case of a tie, it rounds positive numbers
to the closest representable integer in the direction of positive infinity and it
rounds negative numbers to the closest representable integer in the direction
of negative infinite.

The statistical properties of both rounding methods can be derived by
means of Figures 3.16a and 3.16b.
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Figure 3.16: Probability density function of rounding/floor truncation methods

The mean and and variance for round method is [18]:

E(pe) = 0 (3.74)

σ2
e =

2−2W

12
(3.75)

And for floor method is [18]:

E(pe) = −
2−W

2
(3.76)

σ2
e =

2−2W

12
(3.77)
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3.4 Structures for controllers

The way that our transfer function is programmed plays an important role to
succeed in our purpose of implementing a controller. There are several struc-
tures that are going to be analyzed using the fixed-point toolbox of Matlab.
Even if the result of the all the structures must be the same, every network
has different characteristics ranging from the number of memory elements,
multipliers, computational complexity, coefficient wordlength requirements
and roundoff noise. Structures analyzed are : direct form I, canonical, cas-
cade and parallel.

3.4.1 Direct form I

The direct form I consists of the transcription of the difference equation of
the controller as the Equation (3.55). This structure needs N+M registers,
multipliers and adders, where N and M are the degree of the numerator
and denominator polynomials in Equation (3.55). It is obvious that the
structure is not efficient in terms of used hardware resources. The high order
of polynomials makes the structure to be very dependent on the rounding
coefficient errors and the rounding multiplier errors.'
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Figure 3.17: Direct form I structure
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3.4.2 Canonical

The canonical structure is derived from the direct form structure. The deriva-
tion can be explained by means of the z-transform of the LTI system. The
number of memories is reduced to the maximum number of poles/zeros of
the controller. The effects of rounding coefficients are the same as before
due to the fact that the degree of polynomials included in numerator and
denominator, as it can be seen comparing Equations (3.55) and (3.78), is
not decreased. On the other hand, the rounding noise even if it is not bear-
able for many aplications has a different nature than in previous case as it
will be appreciated in the following section. Equation (3.78) represents the
mathematical expresion why the Figure 3.17 turns into 3.18.

Gc (z) =

N∑

k=1

bkz
−k

1 +

M∑

l=1

alz
−l

(3.78)

=

N∑

k=1

bkz
−k ·

1

1 +
M∑

l=1

alz
−l

3.4.3 Cascade

The cascade structure consists of the rationalization of the polynomials in the
numerator and denominator of the transfert function. Therefore, the output
of the system is the multiplication of the response of a set of transfer function
of first and second order systems, being called biquad filter when all the
sections are made of second-order polynomials. Every individual structure
can be configured. The error due to the quantization of the coefficients
decreases as the degree of every section decreases to the number of two. It is
also considered the fact that every section can be programmed either using
direct form or canonical form.

Equation (3.79) represents mathematically that the transfer function of
the controller can be represented by a product of second-order transfer func-
tions.

Gc(z) =

n∏

i=0

bi0 + bi1z
−1 + bi2z

−2

ai0 + ai1z−1 + ai2z−2
(3.79)
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Figure 3.18: Canonical structure
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3.4.4 Parallel

Parallel structure is derived from direct form by calculating the residues of
the transfer function. The transfer function of the controller is as follows:
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Gc(z) =
∑

i=0

ri

z − pi

(3.80)

The error due to the quantization of the coefficient is the lowest of all
the structures because of the low order of the polynomials involved in every
term of Equation (3.80).

Finally, Table 3.3 summarizes all the concepts related to the characteris-
tics of every structure.

Structure Quantization Coefficient Sensitivity Rounding Sensitivity
Direct I High High

Canonical High High
Cascade Medium Medium
Parallel Low Low

Table 3.3: Summary of structure characteristics

3.4.5 Simulation of the structures and output noise
characterization

Using the fixed-point toolbox of Matlab we can perform arithmetic operations
in fixed point arithmetic. The toolbox allows us to define the length of the
word and also the length of the decimal part. Finally, it allows us to define
the length and rounding method of the arithmetic operation. Therefore, this
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Figure 3.20: Parallel structure
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toolbox allows us to compare, as a first step of design, the output error pro-
duced by the structure due to the limited fixed-point data length to represent
the signals in our control system. The output voltage error due to the error
produced by the length in the controller can be described using Figure 3.21.

The output of a noisy controller can be described by the sum of the
response for an ideal controller plus a noise.

û[n] = u[n] + eu[n] (3.81)

The noise generated by the controller might modifiy the behaviour of
the plant if the magnitude of the noise is big enough to be detected by the
DAC converter. Therefore, the output of the DAC converter and the output
response of the plant can be described by

evout(t) =

{
god(t) ∗ ed(t) if eu[n] > VDAC · 2−n

0 if eu[n] < VDAC · 2−n (3.82)

being nADC the number of bits of the DAC converter and VDAC the ref-
erence voltage of the DAC.
The noise generated by the controller could be also an important contribu-
tion to the origin of limit cycles if evout(t) is large enough to be detected by
the ADC range.

ADC

DAC
Ref e[n] Controller Plant

u+e
d(t)

V vout (t)+evout (t)

u[n] [n] d(t)+e

gc [n] g (t)od

Figure 3.21: Control system considering controller as a noisy element

3.4.5.1 Results for PID controller

Due to the low order of the transfer function of a PID, cascade and parallel
structures are not possible to be implemented. For this reason, the structure
to be analyzed is going to be only Direct Form I. Figure 3.22 shows the
impulse response of floating point and fixed-point accuracy and Figure 3.23
shows the error between both precisions.

As we can see in Figure 3.22, PID impulse response has almost the same
impulse response in both cases. The output error, as can be seen in Figure
3.23, among them is constant over the time, therefore the error is not diver-
gent. This means that we are still having an stable impulse response. The
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Figure 3.22: Impulse response of the simulated PID structure. Red plot is the
impulse response of the fixed-point structure. Blue graph is the output of the
PID structure using MATLAB double precission. floating point versus fixed point
for the PID controller

reason why the error is not divergent can be explained seeing that the output
error is less than 1

2
LSB and the error is not fedback in the network.

3.4.5.2 Results for 3rd-order filter

The impulse response of the third-order filter is compared with two different
rounding methods: truncation and rounding. First of all, simulations of every
structure applying truncation method is presented and, finally, in the second
subsection results for rounding method are presented.

Truncation This is the type of rounding method that is going to be imple-
mented in our controller because of the lack of requiring extra hardware to
be performed. The goals to be achieved in this analysis is to try to have the
minimum error as it is posible. It must be thought that the main purpose
of a control loop system is to have an stable output tending to the value of
reference. When the output of the system equals the value of reference, the
error should ideally be zero. Therefore, the most important task is to achieve
a controller that having a zero input the output will not be divergent. This is
another good reason why the impulse response was chosen to try the stability
of the controller.

Direct Form The simulated structure is shown in Figure 3.25. The
data width consists of w bits and the only truncation is applied in the block
called Q. It is necessary to truncate the data length in order to adapt the data
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Figure 3.23: Error between floating impulse response and fixed point response
for the PID controller

length of the register, z−1. The truncation block can be replaced by an error
source, en (see Figure 3.25), characterized statistically in Equations (3.76)
and (3.77). Simulation of the error between floating point and fixed-point
structures shows that the impulse response is in Figure 3.23. The fixed-point
response is not suitable because when the input error is zero the response
tends to −∞. The explanation of this phenomena is linked with the given
explanations in Sections 3.2.3 and 3.3. The error introduced in the system
is only produced at the output stage.The input branch is not suffering from
any truncation since the input to the bn multiplier is W and the output is
2W. Therefore the situation can be modeled using the difference equation of
the transfer function

û[n] =
n∑

i=0

bie[n − i] −
m∑

j=1

aj û[n − j] (3.83)

being û[n − j] = u[n − j] + en[n]. We can assume that the results of the
output branch due to the truncation can be given assuming that there is an
ideal controller, who is not suffering from truncation, having coefficients âj .

û[n] =

n∑

i=0

bke[n − i] −

m∑

j=1

âjy[n − j] (3.84)

being âj = aj + δaj. The new coefficients are considered to suffer from a
shift δa which is equivalent to en[n]. The z-transform of equation 3.84 is
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Figure 3.24: Simulated structure considering truncation as a source of error

Gc(z) =

n∑

i=0

bkz
−i

1 +

m∑

j=1

âjz
−j

(3.85)

The particularity of the new shift in the coefficients is that in this case,
the shift is dynamic. It is depending on the value to be truncated sample
by sample. Since the generated noise can be modelled as an ergodic process
[20], the easiest way to model this shift is by means of statistics. That is we
can calculate the mean and variance of this shift. For the case of truncation
method, we have that

E (δaj) = −
2−w

2
= 2−w−1 (3.86)

σ2 (δaj) = −
2−2w

12

Finally, we can see that the truncation δp can be calculated using the
results in Equation (3.27)

E (∂pi) = −
pj

iE (∂aj)
n∏

i=1,i6=j

(pi − pj)

=
pj

i2
−w−1

m∏

i=1,i6=j

(pi − pj)

(3.87)

The linear controller losses its stability because the integrator, located
at z = 1 is pulled outside of the unit circle because of the effect of the
truncation. The new pole is located at
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Figure 3.25: Direct form simulated structure

E (p̂integrator) = pintegrator +
m∑

j=0

∂pintegrator

∂cj

= 1 + m ·

2−w−1

m∑

j=0

pj

m∏

i=1,i6=j

(pi − pj)

(3.88)

pintegrator = 1

m being a positive number close to zero.

Parallel The programmed parallel structure is shown in Figure 3.27.
The number of branches performing a 3rd order filter is obviously three.
The upper branch in Figure 3.27 is not having a multiplier because it is the
branch performing the integrative action. It is important to notice that the
integrative branch is not suffering from the truncation effect (we did not
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Figure 3.26: Simulated structure considering truncation as a source of error,
en

include any quantization block). Thus, pintegrator is not moved outside of the
unit circle and the programmed filter is not having a divergent error like in
the direct form case (see Figure 3.24). The source of error is coming from
the two lower branches.

The model of one of the branches can be modelled analyzing Figure 3.28.
The truncation block is placed after the arithmetic sum of the input and
the previous state. The effect of the truncation is seen to be modelled as
an error characterized by the mean and variance, see Equations (3.76) and
(3.77). The perturbed output to the residue can be written by

û[n] = b[n] · ŵ[n] (3.89)

The value after the addition, ŵ[n], is calculated in the following equation

ŵ[n] = x[n] − piŵ[n − 1] + en (3.90)
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Figure 3.27: Parallel programmed structure

The same disturbed value can be calculated considering that there exists
a shift in the pole pi

ŵ[n − 1] = x[n] − p̂w[n − 1] (3.91)

Equalling Equations (3.90) and (3.91), we have that the pole shift by the
truncation is

∆a = a − â = ei (3.92)

The disturbance at the output of the residue element, ∆u[n] is calculated
as follows

∆u[n] =

n∑

i=0

riei[n] (3.93)

n being the number of residues of the structure.
One important question about the disturbance at the output of the par-

allel structure is the number of bits at its output. We need to calculate the
number of bits of the output signal in order to avoid the arithmetic error
detected by the DAC or in our case by the DPWM. Therefore, the maximum
acceptable error is
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Figure 3.28: Error Analysis of a residue

‖∆u[n]‖∞ ≤ 2−nDAC (3.94)

Using Equation (3.93) into Equation (3.94), we obtain the following un-
equality

‖∆u[n]‖∞ = ‖
n∑

i=0

riei[n]‖∞ ≤
n∑

i=0

ri‖ei[n]‖∞ ≤ 2−nDAC (3.95)

As we know, the maximum error produced by every residue using trun-
cation is

‖ei[n]‖∞ =
1

∆
= 2−ncontroller (3.96)

ncontroller being the number of fractional bits for quantizing the signal.
Replacing Equation (3.96) into Equation (3.95), we can derive the number

of required bits for the parallel converter

2−ncontroller

n∑

i=0

ri ≤ 2−nDAC (3.97)

Taking log2 to both sides of previous equations, and using the propierties
of logarithms log2 (a · b) = log2 a + log2 b

log2

(
2−ncontroller

n∑

i=0

ri

)
≤ log2

(
2−nDAC

)
(3.98)

log2 2−ncontroller + log2

(
n∑

i=0

ri

)
≤ −nDAC (3.99)
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−ncontroller ≤ −nDAC − log2

n∑

i=0

ri (3.100)

The final unequality validating that the output error is lower than the
dynamic range of the DAC converter is

ncontroller ≥ nDAC + log2





n∑

i=0

ri

︸ ︷︷ ︸
sum of residues




(3.101)

Last equation gives us the number of necessary bits to obtain an accept-
able error produced by arithmetic truncation. This number of bits must
be necessarily bigger than the number of bits for the DAC converter plus
a second term composed by the sum of the residues of the function. It is
important to see that the magnitude of the residues plays an important role
because they are multiplying the error introduced by the truncation block.
Thus, the bigger the magnitudes of the residues are, the more bits are needed
to compensate the multiplicative effect.

Example 3.4.5.1. Consider the control system composed by our FPGA and
the Buck converter. The maximum number of bits for the DPWM (DAC Con-
verter) that our FPGA can implement is 10 bits. The number of necessary
bits to not propagate the arithmetic errors to the DPWM can be calculated
using two of the three residues in our 3rd-order filter (r0 and r1). Remember
that our integrative branch is not having any truncation block (see Figure
3.27)� r1 = 10, 3048957� r2 = −3, 8074951171850

The number of bits required bits is calculated using Equation (3.101)

ncontroller > 10 + log2 (10, 3048957− 3, 807495117185) ≥ 13 (3.102)

Some simulations using Matlab fixed-point toolbox were performed to
validate Equation (3.101). The Figure (3.29a) shows a simulation having 12
bits as a rational part to code the impulse response signal. We can appreciate
that during some samples, the arithmetic error is propagated to the DPWM,
exceeding the LSB of the DPWM.

The minimum input value detected by the DPWM in this example is

2−10 ≈ 1 · 10−3 (3.103)
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On the other hand, in Figure 3.29b we can appreciate that just increasing
one bit, the propagation effect disappears. Thefore, the upper bound given in
Equation (3.101) is validated
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Figure 3.29: Error in the parallel structure implementing the 3rd-order filter.
(a) shows the error when the quantized signal is using 12 bits. (b) shows the
error when the quantized signal is 13 bits.

89



3. Reconfigurable Architectures

3.5 Conclusions

The end of this chapter tries to summarize all the explained in this section.
The purpose of it was to try to develop a theorical methodology to implement
linear controllers in ASICs or FPGAs. First of all, the representation of the
set of real numbers in computation was represented in a digital system. The
choice is fixed-point representation although this representation has a range
and accuracy much smaller than floating-point representation with the same
data width. On the other hand, fixed point representations have the main
advantage of requiring a less complicated hardware synthesis. This fact, al-
lows to save size of sillicon in the FPGA/ASIC and also to save energy. After
defining the type of numerical representation for our linear controller, it was
necessary to identify many problems before the construction of a digital con-
troller inside of an FPGA. The lack of a rigid arithmetic hardware such as
DSPs cores and the specification of a data width as in C compilers, suggested
the idea of the following two questions. Our starting point was the imple-
mentation of a linear controller using the difference equation. The difference
equation of a linear controller can be written as

u[n] =

n∑

k=0

bk︸︷︷︸
coefficient

e[n − k] −

m∑

i=1

ai u[n − i]︸ ︷︷ ︸
signal

(3.104)

The difference equation is formed by a set of two different informations
(see Equation (3.104)) : coefficients and input/output signals (e[n − k] and
u[n − i]). The effect of quantization coefficients in the fixed-point repre-
sentation was analyzed in Section 3.2.3. The data width of the coefficient
representation is a deterministic problem that can be solved previously with
a good design. The quantization effect of the coefficients has a direct con-
nection in the frequency response to the linear controller. The codification
of the coefficients was shown in Example 3.2.3.1.

Later on, the chapter discusses about the number of bits to quantify
the input and output signals for the linear controller. First of all, it is
important to know how many bits are needed to quantify the integer part of
the signals to prevent overflow/underflow. It is stated in literature that
overflow/underflow problems can cause unstability problems. Arithmetic
errors produced in the implementation can not be modelled in advance as a
deterministic process. Some literature [21- 23] defines the arithmetic error as
an ergodic process. The generation of an arithmetic error is generated sample
by sample due to the truncation of the output signal. Some authors related
to communications field characterized this problem in terms of SNR of the
digital filter. Our contribution was to define an upper bound to avoid the
propagation of arithmetic error in a control system for parallel structures.

Finally, a table to summarize the data width for coefficients and signal is
included in Table 3.4.
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Table 3.4: Summary of data width

Number of bits Coefficients Signal
Integer 5 10

Fractional 13 13
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Chapter 4

HDL architecture of digital
driven converters

This section takes all the theoretical results from the previous chapter to start
with the implementation of the whole digital system. The previous chapter
finished providing us the data width for signals and coefficients. The data
width used for the design of the digital system will be the most restrictive
comparing both metrics, because our purpose is to unify the data width.
The advantage of unifying both parameters is a more compact design of the
controller in the VHDL file. Nevertheless, this solution is not going to be
the most optimal in terms of size of sillicon. The data width used for the
digital controller will be codified using 23Q13 fixed-point codification as it
was stated in Section 3.5.

On the other hand, this chapter is not only focussed in the HDL program-
ming of the controller. The output voltage regulation needs other blocks to
be programmed in order to make the Buck converter work. The control law
will be mostly divided into the blocks that have been mentioned in Section
2.4.1. The list of elements, shown in Figure 4.1, are listed as follows� Adquisition module : This block is intended to communicate the

ADC that samples the output voltage of the Buck converter.� Controller : This block includes the linear controller studied in the
last chapter.� Memory : It saves during one switching period the duty cycle calcu-
lated in the controller.� DPWM : It generates the duty cycle for the Buck converter.� Clock Manager : It synchronizes all the modules to be working every
Tsw

The reason why VHDL is chosen instead of Verilog was because, as it
was explained in Section 3.1.2, VHDL has the possibility to program digital
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FPGA

ADC
Adquisition

Module

Clock

Manager

Controller Memory DPWM BUCK

Figure 4.1: HDL blocks in our system

systems in a generic way. This feature has a tremendous advantage to allow
reuse of VHDL code. For example, we have the possibility to implement linear
controllers considering the problem of the data width of the coefficients and
signal to be specified later. That is, in case the linear controller must be
changed, we can reuse the same piece of code just changing the data width.

4.1 Clock manager

It is in charge of activating at the right moment all important events to make
our architecture synchronous. For instance, it activates the DPWM module
and it is in charge to generate the pulses driving D latches of the acquisition
board. Since the FPGA is driven by an internal clock of 512MHz (see [24]),
the clock manager must be an 9-bit counter, to activate the controller every
Tsw = 1MHz. The clock manager is written as a behavioural statement that
thanks to some ”if“ statements can activate every module at the right time.

4.2 Acquisition module

This module is associated to the external acquisition board (containing ADCs).
It is in charge of driving the ADC and of reading a sample to be processed by
the control algorithm. The design of this module consists (see Figure 4.2a)
of a finite state machine. The states of the FSM can be seen in Figure 4.2a.
E0 corresponds to the ”wait“. The acquisition module is waiting until start
signal is activated. E1 is the state in charge to start and stop the sequencer.
E2 is the state that reads the data value of the ADC. Finally, E3 is the
”Done“ state, where the FSM sets the ouput signal ”Done“. This machine
drives a counter to perform the right number of pulses and as soon as the
sample is ready, the counter is stopped and the the sample is stored. The
resulting waveform is shown in Figure 4.2b.
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Figure 4.2: HDL design and experimental result of the acquisition module. (a)
shows the design of the acquisition module. (b) shows a screen capture of the
driving pulses for the ADC converter. The ADC [5] requires a minimum number
of 6 clock pulses to sample the signal. We can see that for this case the frequency
the FPGA drives the ADC converter was 60 MHz (time base 50 ns

div
). For this

case the number of impulses is 20. Thus, 14 samples were obtained in order to
test our application.
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4.3 Controller

4.3.1 Introduction

The controller block is in charge to calculate the command signal for the
DPWM, depending on the sampled output voltage. Due to the complexity
of this block and the high number of arithmetic circuits involved the latency
associated to the calculation is difficult to be estimated. This is the reason
why the best solution is to design a synchronous system that assures the
output of a system by means of a clock. Therefore, each of the involved sub
blocks are divided into two submodules: Finite State Machine and Combi-
national Circuit. The design of each sub block is as shown in Figure 4.3.

Start

Clock

Done

Output
Reset

Input

Enable

State Machine

Arithmetic 

Circuits

Figure 4.3: Structure of every sub-block

4.3.2 Finite state machine

This block has the task of coordinating which operations are calculated de-
pending on the computability matrix and the degree of parallelism imple-
mented in the controller [25]. The number of operations determines the
number of states that the State Machine is required to have. Normally, FSM
(Finite State Machines) have two structures: Moore and Mealy Structures.
It has been proved using the Xilinx ISE software tool that substitutying the
FSM by a ring counter increases the clock frequency, decreases the algorithm
complexity and allows us easily to implement the function by generics. The
ring counter consists of an array of D flip flops where the output of every
single D flip flop represents the enable moment for every arithmetic circuit in-
volved in the controller equation. The strucutre of the ring counter is shown
in Figure 4.4a:
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The ring counter has the following characteristics :� In order to make the counter work, it is needed a pulse of the following
characteristics: Tpulse > TCLK� A n number of D flip flops generates a sequence modn, allowing us to
generate n instructions inside of each of the involved blocks.� The maximum frequency that we are able to introduce is up to 1.5
GHz, according to the results obtained by XST, Xilinx Synthetisable
Tool.

A simulation of the output of the ring counter is in Figure 4.4b'
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Figure 4.4: Ring counter. (a) shows the hardware structure. (b) shows a
Modelsim capture of a ring counter.
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W

W

W

Carry

Adder

Underflow/Overflow protector
W+1

Figure 4.5: Adder block

4.3.3 Arithmetic circuits

4.3.3.1 Introduction

The sub module of arithmetic circuit tries to implemement the structure
described in the previous section. For the case of the PID controller, the
structure to be implemented will be direct form I. On the other hand, the
3-rd order filter is going to be implemented using parallel form due to the low
rounding noise. The list of generic components that have been developped are
: adder, multiplier, quantizer, saturation element, PID controller, 3rd-order
filter, integrative residue and residue function.

4.3.3.2 Adder

The adder has a registered output to be interfaced with the ring counter. The
special feature of the adder is that internally it has an underflow/overflow
detector. The detector is essential to prevent from non-linearities produced
by wrap problems discussed in Section 3.2.4. Thus, the implementation of
this arithmetic circuit with an underflow/overflow detector is essential for
the integrative effect.

The W-bit adder is an arithmetic circuit whose inputs and outputs are real
numbers using two’s complement representation. To detect the underflow and
overflow it is necessary to implement inside of the adder an W+1 internal
register that represents the addition of the two inputs. The detection of
underflow and overflow conditions are detected using the N+1 and N bits of
the internal register together with the sign of the inputs. The structure of
the adder can be seen in Figure 4.5. The previous stage before the output is
the underflow/overflow protection. To the input of such block we have the
addition of the addends and the carry/borrow of the addition (AND gate).
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Example 4.3.3.1. Considering we have in our circuit a 4-bit adder. The
output of such adder, according to Figure 4.5, must have a data width of 5
bits. If the binary code used in our system is the 2-complement representa-
tion, the input/output range of the signal must not exceed the interval [−8, 7].
This example discusses the logical conditions that the underflow/overflow
block in Figure 4.5 must meet to prevent from having wrap problems.

The first analysed situation is the underflow detection. For example, when
the addends are −410 = (1100)2 and −710 = (1001)2 the addition using a
decimal notation is

−4 + (−7) = −11

In binary notation, the addition is

1
1 1 0 0

+ 1 0 0 1
1 0 1 0 1

(W+1)-bit is 1. This bit is not at the output of Fig. 4.5. Wrong condition

Addends have negative sign

In this situation the output of the adder must be −810 = (1000)2. Ac-
cording to the previous example, the conditions showing that the sum of two
negative numbers must provoke an underflow is whenever the following two
conditions are met.

1. The MSB of both addens is equal to one.

2. The resulting W+1 bit at the output of the adder is equal to one.

On the other hand, when the addends are positive and the addition exceeds
the positive range of the binary word, the underflow/overflow block should
detect an overflow condition. For example, when the inputs to the adder are
now 410 = (0100)2 and 510 = (0101)2, the addition using decimal notation is

4 + 5 = 9

In binary notation, the addition is

0 1 0 0
+ 0 1 0 1

W-bit is 1. Result can not be negative. Wrong condition

0 1 1 0 1

Addends have positive sign

In this situation the output of the adder must be 710 = (0111)2. The
conditions showing that the sum of two positive numbers are now provoking
overflow are

1. The MSB of both addens is equal to zero.

2. The resulting W bit at the output of the adder is equal to one.

98



4. HDL Architecture

WQX

WQX

2WQ2X

Figure 4.6: Multiplier block

4.3.3.3 Multiplier

As the adder, the multiplier has a registered output. The input of this block
is coded into WQX but the output is coded into 2WQ2X. Because the output
of the multiplier has a double width than the inputs , we do not have any
overflow problem as in the case of the adder. See Figure 4.6

4.3.3.4 Quantizer

This is the block less straightforward and more abstract of all defined in
this Section. This element tries to apply a truncation effect to the output
of the multiplier. This arithmetic circuit is crucial for the design of a linear
controller. The function is to delimit the data width of the multiplier output.
The data width of the multiplier output is having the same data width as
the inputs when the quantizer is placed after the arithmetic circuit. The
quantizer function can be described applying the operator q{} to a number
ci. The numerical representation of a fixed-point number coded by a WQX
format is:

A =
W−X∑

i=−X

ai · 2
i (4.1)

The FPGA representation corresponds to:

B =
W∑

i=0

ai · 2
i (4.2)

Equations (4.1) and (4.2) are related by a factor 2W . After multiplying,
A and B having WQX representation, the result C is :

C =

2(W−X)∑

i=−2X

ci · 2
i (4.3)

C =
2W∑

i=0

ci · 2
i (4.4)
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Quantizer 

2WQ2X WQX
q{}

Figure 4.7: Quantizer block diagram

The implementation of the quantizer function is the answer to the fol-
lowing question. If the result of multiplication between two numbers, coded
in WQX, is coded into 2WQ2X, how can we return to the original code
WQX?. The suggested Equation (4.5) shows a possible implementation to
develop an arithmetic circuit using a dataflow description. First of all, and
due to the numerical propierties of the 2-complement representation, the
MSB is carrying the sign. Thus, the MSB for the input and output must be
the same. The integer part of the output word will correspond to the input
because the number of bits for the input signal was calculated to never have
an overflow situation (see Section 3.2.4). The decimal part will be the X
bits corresponding to output due that the rounding method is truncation. In
mathematical terms the description is

q =






c2W−1 · 2
2W−1 i = W − 1

W+X−1∑

i=2X

ci · 2
i X ≤ i ≤ W − 2

X−1∑

i=0

ci · 2
i 0 ≤ i ≤ W − 2

(4.5)

4.3.3.5 Saturation element

The block is in charge to compare the output value of the controller and to
delimit the maximum values in order to prevent overflow/underflow effects.
The equation for this block using WQX codification is :

y[n] =

{
−2W−X if x[n] ≤ −2W−X

2X − 1 if x[n] ≥ 2X − 1
(4.6)

x[n]

y[n]

−1

1

x[n] y[n]

DETECTOR UNDER/OVER FLOW

Figure 4.8: Schema of the under/over flow detector
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4.3.3.6 PID controller

The architecture of the PID controller together with the data width for every
path is shown in Figure 4.9. All the arithmetic circuits composing the PID
were comented in the previous section. The block called as T is the saturation
element analysed previously. Let’s remember that the outputs and inputs,
for the PID study case, were normalized using the simplifications made in
Equations (3.53)-(3.62).

−1z

−1z

e[n] 0
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z−1

T
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W

W
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2W

2W

2W

2W

2W
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S2
S3 u[n]

k

k

k

Figure 4.9: VHDL structural model of the PID controller

The operations performed in the PID controller are

1. Shift Registers u[n − 1] = u[n] , e[n − 2] = e[n − 1]

2. Shift registers e[n − 1] = e[n]

3. Register e[n] = Vref − Vout[n]

4. Register k0e[n], k1e[n − 1], k2e[n − 2]

5. Register S1

6. Register S2

7. Register S3

8. Indicate operation is Done =′ 1′

The number of operations listed previously were eight. The main advan-
tage of using FPGAs, compared with DSP architectures, is that the number
of instructions were decreased. For instance, operation number 4 is calculat-
ing three results at the same time. The reason of increasing the degree of
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Figure 4.10: Numerical Error between PID impulse response using Matlab
floating-point accuracy and the architecture designated in Figure 4.9. The data
width of the coefficient/signals is summarized in Table 3.4. The error between
both impulse response is expressed in voltage.

pipelining in the algorithm was because in the FPGA we can have physically
all the adders, memory and multipliers.

The resulting error between the PID impulse response of our simulated
VHDL architecture and the Matlab floating-point accuracy is shown in Fig-
ure 4.10. The script that process the data coming from ModelSim is found
in Appendix F.

We can appreciate in Figure 4.10 that the numerical error for the PID
signal is larger than the accuracy of the DPWM. The source of error is not
coming from any truncated signal because in the architecture of the PID any
quantizer block was needed (see Figure 4.9). The origin of this error is found
in the normalization used in Equation (3.53). This normalization divides
all the signals during the design time of our architecture. Thus, the signals
flowing inside of our FPGA have a magnitude comprised in the range [−1, 1].
As the signal was codified in this case using the same codification than the
coefficients, 11Q8, the signal is only using 8 bits to be represented. One
solution should be the increase of the fractional length in order to enclose
the error into the upper bound of the DPWM accuracy. Another solution
should be the codification of the signal using Equations (3.64)-(3.66).
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4.3.3.7 3rd order filter

The structure of the third order filter is shown in Figure 4.11. As it can be
seen, every n-order filter can be programmed generically decomposing the
filter as the sum of its residues. The particularity of our controller is that
it requires an integrative branch in order to cancel the steady-state error
(error between the reference voltage and the output voltage). Therefore,
the best programming method suited in a nth-order controller, implemented
using parallel structures, is using structural definitions.

q{}

q{}
u[n]

2
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r2


z−1

−1z

−1
z

r

−p
1

1

2W
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2W
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2W

W

r
0

W

2W

Figure 4.11: VHDL implementation of a 3rd-order filter

Integrative residue The integrative residue is in charge to perform se-
quentially the accumulation of the input e[n]. The reason why in this struc-
ture the multiplier r0 is placed before the adder is to delay the effect of
saturation in the system. The parameter r0 in this case was 0.001464843.
Thus, the magnitude of the input is decreased and consenquently the effect of
accumulation is delayed. Another reason why direct form structure saturates
later than canonical structure is because the adder with saturation protection
explained earlier (adder S1) has a data width of 2W. Figure 4.12b compares
the response of the 3rd-order filter using both integrative branches. For the
case when the integrative branch is implemented using canonical form, the
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system saturates when the sample is ≥ 500. On the other hand, we see that
direct form I is still not saturated in all the performed simulations.'
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Figure 4.12: Integrative residue implementation and analysis. (a) shows 2-ways
to implement integrative effect. (b) shows ModelSim results of the 3rd-order filter
using both integrative strategies.

The sequence of operations in the integrative branch in both forms is

1. Register u0[n − 1] = u0[n]

2. Register result of multiplier r0 · e[n]

3. Register the result of the adder S1

4. Done =′ 1′

The total number of operations is equal to 4.
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Residue function This sub-block is included only for transfer functions
that can be divided into the sum of its residues. Therefore, this block is only
called for the case of a 3rd-order filter. The form of this function, including
the length in bits of every branch is shwown in Figure 4.13 and it corresponds
to Equation (3.80).

2W

e[n] 2W 2W

i

W 2W ui [n]i
r

z−1

q{}

−p

S1

M1

M2

Figure 4.13: Residue architecture

The sequence of operations for one of the residues is

1. Register ui[n − 1] = ui[n]

2. Register the result of the multiplier M1

3. Register the result of the adder S1

4. Register the result of the multiplier M2

5. Done =′ 1′

The number of operations to calculate the output of the 3rd-order filter
is the maximum number of operations comparing the number of operations
having both the integrative branch and the residue branch. In this case, the
maximum number of operations corresponds to the residue function, being
the result equal to 5. The main advantage of using FPGA in comparison with
the use of DSPs is the possibility to compute in parallel the operations of
the integrative branch. Oppositely to the operation of FPGAs, DSPs would
calculate the operations of every branch in the 3rd-order filter sequantially.
Finally, the conclusion is that the computational complexity to calculate
linear controllers in DSPs architectures increases in the same way as the
order of the filter.

As a result, we can see in Figure 4.14 the comparison between the VHDL
3rd-order structure and Matlab accuracy. It can be appreciated that in this
case, the upper bound is respected because it was possible to calculate the
number of necessary bits to quantize the signal (see Section 3.4.5.2). The
figure also shows that the performed simulations in Section 3.4.5.2 using the
Fixed-Point toolbox in Matlab and the VHDL architecture have the same
results.
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Figure 4.14: Comparison between ModelSim results and Matlab accuracy in a
3rd-order filter. Top graph shows the impulse response of 3rd-order filter. Middle
graph shows the error between Matlab floating-point accuracy and Matlab fixed-
point toolbox accuracy. Bottom graph shows the error between Matlab floating-
point accuracy and the VHDL 3rd-order filter architecture appearing in Figure
4.11. The data width for both coefficients and signals are summarized in Table
3.4.

4.4 Controller to DPWM transition

It is one of the most important sub blocks to be implemented. It is in charge
to adapt the result of the output of the controller to the dynamic range of
the driver in the MOSFET circuits. In [26], the minimum and maximum
duty cycles are comprised between 0.07 < d < 0.85 . There is also another
issue before modeling the transfer function of this block. First of all, it is
important to model the PWM for the analog case and try to apply per-
unit method. During simulations performed in [3], the analogical PWM is
unipolar. The equation that generates the transfer function was already
described in Equation (2.82), highlighting also that the PWM in our system
was unipolar. Therefore, since the output values coming from the controller
were normalized the transfer function of this block is :

d[n] =

{
0, 07 if u[n] < 0

0, 78 · u[n] + 0, 07 if 0 ≤ u[n] ≤ 1
(4.7)
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Figure 4.15: Working principles

4.5 Memory

It is in charge to create an initial duty cycle when both the Buck converter
and the FPGA are switched on. It is also used to store the result coming from
the controller to DPWM block and introduce the sample in the DPWM one
switching period later. The resulting VHDL behavioral model synthetizes a
n-array of D latches. Thus, the inclusion of a memory in the digital system
prevents from creating PWM waveforms having duty cycles equal to 1.
The origin of this effect is the associated delay with the ADC and the FPGA
circuitry. The aforementioned problem is illustrated in Figure 4.16. In the
upper part of the figure, Tcycle is the needed time to calculate the current
duty cycle, d[n]. In case Tcycle is bigger than Ton, the SR-latch of the DPWM
(see next section) will not reset the control signal until the next cycle.

New duty cycle 

Without memory

Tcycle Ts

Ton Ton Ton

2Tcycle 2Ts 3Tcycle 3Ts t

Figure 4.16: Skip problem
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4.6 DPWM

DPWM is in charge to produce the duty cycle signal. The architecture of the
block, implemented in our FPGA, resembles the structure of the fast clock
counter mentioned in Section 2.5.1. Nevertheless, this time it is slightly mod-
iffied in order to obtain the maximum accuracy. Equation (2.84) relates the
number of bits and the clock frequency of a fast clock counter. Our goal
is to maximize the data width of the DPWM input without exceeding the
maximal inner PLL frequency of the Virtex V [24]. As the maximum inner
frequency is 512 MHz the maximum number of bits is 9. Figure 4.18a shows
the architecture of the DPWM block using the Fast Clock Counter strategy.
The suggested modification is based on the design of two generic counters in
VHDL instead of one. The only difference among both counters is that one is
intended for counting even numbers contrary to the last counter designed for
counting odd numbers. The final count is multiplexed by means of a multi-
plexer. Using this strategy we can artificially double fcounter since we are now
using both rising and falling edges to count. Thanks to the aforementioned
modification, we obtain a gain of 1 bit in the DPWM block. The Register
level scheme of the modified Fast Clock Counter is showed in Figure 4.18b.
The last question is to know if the output multiplexer is able to switch the
data bus at a speed of 512 MHz. The synthesized VHDL architecture of
Figure 4.18b was tested in a real FPGA and the experimental results were
dumped in Figure 4.17. As the figure shows the output of the multiplexer is
a staircase function simulating the behaviour of an unipolar PWM. The logic
analyzer shows that the hardware is able to generate counting sequences of
10 bits.

Figure 4.17: Logic analyzer capture of a 10-bit ramp
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Figure 4.18: Fast clock counter and modified FPGA implementation. a) shows
fast clock counter architecture. b) shows the FPGA synthetised architecture.
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4.7 Simulations of the VHDL architecture

The last section of this chapter shows graphically, by means of the simulation
tool ModelSim, the operation of all the blocks appearing in Figure 4.9. Every
subsection of this chapter shows the operation of the controllers analyzed
along this thesis. The first section shows the response for the PID controller.
The second and last subsection shows graphically the simulations for the
third-order controller. Thus, these simulations highlight the modularity of
our digital controller because by replacing the PID block for another more
suitable control strategy, the system should be ready to work.

4.7.1 Digital System with PID controller

Figure 4.19 shows the impulse response of the PID controller inside the digital
system. The operation of the Controller to DPWM block can be seen in
Figure 4.19 at the bottom. This block is essential for the correct operation of
the Buck converter. At the intitial time, n = 0, the PID output is maximum
and the duty cycle is also maximum. During the rest of time, the output
of the PID is negative. Therefore, the duty cycle of the PWM generated
pattern is having a minimum duty cycle.

Figure 4.19: ModelSim simulation of the PID impulse response. 1) shows the
output response of the controller. 2) corresponds to the output of the Controller
to DPWM transition block. 3) shows the response of the DPWM block.

Figure 3.22 shows the response of the digital controller to the pulse. As
in the previous simulation, the maximum value corresponds to the intial
sample, n = 0. After this, the value of the PID controller increases sample
after sample because of the integrative effect that it is inherently in this filter.
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Figure 4.20: ModelSim simulation of the PID step response. 1) shows the
output response of the controller. 2) corresponds to the output of the Controller
to DPWM transition block. 3) shows the response of the DPWM block. 4)
shows the moment the response is saturated.

The value of the PID is limited by the overflow protection block. The duty
cycle at the PWM output of the digital system increases until the output of
the controller saturates to its maximum value.

4.7.2 Digital System with 3rd-order controller

This subsection was also divided into the same simulations as in the case for
the PID controller. First of all, the system is going to be simulated using
the impulse response. The most interesting thing to appreciate during this
simulation is to see how the block in charge of adapting the output of the fil-
ter into the input of the DPWM is working. Last simulation was considering
that the error voltage into the system is constant, for example this would be
the case when the power supply of the converter is not still activated. For this
case, the internal registers of the digital system should not have wrap prob-
lems. That is, the PWM patter should not vary from minimum to maximum.

Figure 4.21a shows how the digital system is working when an impulse is
introduced into the system. The impulse response (signal labelled as 1) of
the system matches with the impulse response of Figure 2.21b. The block
Controller to DPWM transition is adapting the input to the DPWM block
generator (signal 2). It can be seen that when the output of the filter is
negative, the value introduced to the DPWM has the minimum duty cycle
(signal 3) that the driver can accept, dmin.
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Figure 4.21: ModelSim simulation of the 3rd-order controller. (a) shows the
impulse response of the 3rd-order controller. Figure (b) shows the pulse response
(signal 1) to the system. The value of the filter (signal 2) increases indefinetely
because the filter owns an integrative effect of the input. Nevertheless, the block
Controller to DPWM transition (signal 3) can not increase indefinetely. As it
can be seen in the Figure (b), the duty cycle increases until, dmax, which is the
maximum duty cycle accepted by the driver of the synchronous buck.

Figures 4.22a and 4.22b represent different moments of the pulse response
simulation. It can be seen in both figures how the value introduced in the
DPWM evolves from the minimum, dmin, to the maximum duty cycle, dmax.
The simulation also shows how the pulse width of the PWM signal evolves.
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(a) Beggining of the simulation

(b) Middle instant of the simulation

Figure 4.22: Different instants of the pulse response simulation. 1) Pulse
response 2) Input to DPWM 3) PWM pattern

4.8 Conclusion

This chapter was focussed on the design of a digital system that controls
the output voltage of a Buck Converter. The target of this design was to
program, using VHDL, a modular architecture. The advantages of using
modular architectures is that in case there are future modifications in the
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system, the architecture has minimum modifications. For example, if the
need of replacing the ADC is arisen, our modifications will be only focussed
on the redesign of the acquisition module in the system.
Another strategy, that was considered in the design of the digital architecture,
was the design of the whole architecture system as a generic architecture.
This advantage allow the designer to program, a priori, every block in the
digital architecture without the need of knowing many specifications and
contraints in the analog/digital system. What should be understood about
specifications is the list of the following elements:

1. Number of bits of the ADC

2. Number of bits for the DPWM generation block

3. Degree of complexity of the linear controller (Number of poles)

4. Number of bits required for the coefficients

5. Number of bits required for the signal

6. Number of bits required for the rational part of signal/coefficients

The first two specifications corresponds to problems related to the selec-
tion of the hardware. The last constrainsts corresponds to problems analyzed
in Chapter 3. The degree of complexity of the linear controller is not a prob-
lem either. The use of parallel structures and the construction of generic
digital architecture of a residue branch allow the possibility to program the
all type of IIR filters. Finally, when all specifications are known, the synthe-
sis of the whole architecture only needs the assignement of concrete values
to this generic values. This strategy allows to obtain different hardware, just
making minimum modificiations in the source files.

An improvement of this chapter consisted of the possibility to increase
the accuracy of the DPWM using a modified fast clock counter structure.
The maximum inner frequency for the FPGA was 512MHz, [24]. The mod-
ification of the counter was key to obtain 10-bit DPWM blocks inside of the
FPGA. Figure 4.17 shows experimental results of this improvement in a logic
analyzer.

Finally, simulations of the whole digital architecture, showed that the
block Controller to DPWM Architecture was essential to adapt the and per-
form the comparison effect of a reference voltage with an unipolar sawtooth
waveform (see Subsection 2.5.1).
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Chapter 5

Experimental Results

5.1 Introduction

This section shows the behaviour of the output voltage for the Buck con-
verter, comparing the implementation for the two controllers previously an-
alyzed in Section 2.4.2. The behaviour of the complete control system was
tested under several conditions. The electronic system, composed by the
Buck converter (Table 2.1), ADC, controller and DPWM was analyzed in
Section 2. First of all, the output voltage was seen under the influence of two
static load currents. The static tests are intended to show that the output
voltage ripple should not exceed the levels defined in [6]. Finally, the second
type of tests are meant to show the performance of the regulation when the
output current is varying. The purpose of the dynamical tests must show
the effect of the overshoot and settling time in the output voltage.

The following table summarizes the characteristics of the tests performed
in the laboratory.

Table 5.1: Summary of performed tests

Type of test Static 1 Static 2 Dynamic 1 Dynamic 2
Input Voltage [V] 5 5 5 5

Mean Static Current [A] 4 8 - -
Mean Dynamic Current [A] - - 4-8 13-19
Output current period [ms] - - 100 100
Current Slew Rate

[
mA
µs

]
- - 20 20

The results of the test were displayed using the Fast Acquisition option
of the oscilloscope. This mode is a method for accumulating and displaying
digital waveform data, representing the behavior over time of an electrical
signal. Therefore, using this option can help for the detection of limit-cycles
or instabilities.
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5.2 Results for the PID controller

Figures 5.1a and 5.1b show the results of the static tests using a PID con-
troller. In Figure 5.1a, the test shows that the PID is completely stable.
Nevertheless, it can be seen that the duty cycle presents a duty-cycle problem
due to the fact that the duty cycle could only be generated using maximum
10 bits in a FPGA.
The magnetic coupling, highlighted in Figure 5.1a, also appeares in the fig-
ures of this chapter. The magnetic coupling is an EMC problem coming from
the magnetic coupling between two magnetic circuits. The two coupled ele-
ments are the inductor of the Buck converter and the oscilloscope probe. The
oscilloscope probe and the oscilloscope ground form a big magnetic antenna.
The suggested solutions for this magnetic coupling are two. First of all, the
isolation of the magnetic source, in this case the inductor, using a magnetic
shield is the first solution. Magnetic shields for the case of magnetic circuits
consists of the use of ferrite materials whose magnetic permeability is high
in order to concentrate all the magnetic field. The second solution is to use
a transformer in the oscilloscope to isolate the device and its own ground.
From the point of view of electrical safety, the second solution should be
avoided.
The origin of the unstability problems, that can be seen in some of the fig-
ures, is because of the design. The design of the controller was made for large
currents. The transfer function of our plant is in Equation (2.35), whose pa-
rameter R models the output current. For high currents the resistor owns
a low value. On the other hand, when the load is having low currents the
resistor value is high. Thus, this parameter is not constant in our real ap-
plication. Both controllers were designated to have a large stability margin
for high currents. For the case of the 3rd-order controller (Figure 5.4a), the
output voltage has a low stability margin. Thus, the output voltage and
the inductance current are oscillating. For the case of the PID controller,
Figure 5.1b, the previous conclusion seems not to match. Another problem
in our state-space averaging model is that parastic elements in the circuit
were not considered. This inaccuracy between the real and the state-space
model did not consider all the poles and zeros that the real system owns.
In order to obtain the real frequency Bode plot of the Buck converter, we
should measure the Buck converter using a frequency analyzer. Thus, the
designed controllers were not optimal for the real Buck converter.

Figures 5.2a and 5.2b show the results of the dynamic tests using a PID
controller. The output voltage in the Buck converter decreases during the
load transient. This change is compensated by the regulator effect of the
PID. We can see that the width of the overshoot is very short because the
multiplicative and integrative branches in the PID are multiplied by coeffi-
cients having a large magnitude.
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Figure 5.1: Static tests using PID controller. (a) shows the results for the static
test 1. (b) shows the results for the static test 2. Voltage scale is 2 V
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Figure 5.2: Dynamic tests using PID controller. (a) shows the results for the
dynamic test 1. (b) shows the results for the dynamic test 2. Voltage scale is
2 V
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5.3 Results for the 3rd-order filter

Figures 5.4a and 5.4b show the results of the static tests using a third-order
filter. It can be seen that the filter presents some unstable behaviour when
the current is low. This unstability is explained because the third-order filter
was calculated assuming high load currents in the system. On the other
hand, when the output current has a big magnitude, the system is free of
any unstable behaviour or limit-cycle. The reason of the lack of limit-cycles
was explained in Section 3.4.5.

Figures 5.2a and 5.2b show the results of the dynamic tests using a third-
order filter. The overshoot in the output voltage takes more time to be
corrected than in the PID counterpart. The residue associated with the in-
tegrative fraction, see Equation (2.80), is a very small value (a0 = 0.001493).
Thus, whenever the error signal is not equal to zero, the linear controller
should correct its ouput until the error signal is again equal to zero. Com-
paring the dynamic Figures 5.5a and 5.2a, we can see that the settling time
is higher for the 3rd-order controller. Comparing the integrative coefficients
for both the PID and 3rd-order controller, we can see that the magnitude is
directly related to the settling time. For the PID case, the coefficient was
a0 = 1.5127 (see Equation (2.77)).
Finally, the reason why there is an undershoot or overshoot in the output
voltage when the output current is changed will be discussed. The origin of
this change is found to be in the output capacitor of the Buck converter. The
current/voltage relationship of a capacitor shows that there is a differential
relation. Thus, a change in the current also carries a change in the voltage.
Since the output voltage of the Buck converter is related to the output ca-
pacitor (see Equation (2.12)), the output voltage changes proportionally to
the capacitor voltage.
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dvc

dtC vc

ic

c = Ci

Figure 5.3: Voltage/Current relation in a capacitor
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Figure 5.4: Static tests using 3rd-order controller. (a) shows the results for the
static test 1. (b) shows the results for the static test 2. Voltage scale is 2 V
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Figure 5.5: Dynamic tests using 3rd-order controller. (a) shows the results for
the dynamic test 1. (b) shows the results for the dynamic test 2. Voltage scale
is 2 V
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Chapter 6

Conclusions and future
perspective

The last chapter tries to summarize the conclusions given along this thesis
and suggest a future work perspective.

Firstly, in the second chapter, all the models of a single-phase Buck con-
verter were introduced in order to model the behaviour of our plant. The
first conclusions that might be drawn after the simulations are the innacu-
racy of the output and state signals for frequencies higher than fsw

2
. Later

on, the analytical expressions to calculate the spectrum of a single-phase
and multiphase Buck converter were extracted. The expression in Equation
(2.45), showed that the input current of a multiphase Buck converter is the
same as the single-phase counterpart with the multiplication of the Form-
factor function. The previous function makes the input current of a N-phase
converter be equivalent to the a single-phase converter one, but switching at
N ·fsw in terms of spectrum distribution. This characterization was useful to
calculate the value of the input capacitance in a multiphase Buck converter.
The second half of the chapter discusses all the concepts regarding to the
implementation of digital linear control. The chapter ends with the analysis
of a novel technique to generate a PWM waveform without the need of a
DAC converter. Therefore, the electronic system has the advantage of being
more compact.

A prospective work, related to the dynamic systems field, consists of the
derivation and simulation of a non-linear models for switching converters.
After the analysis of non-linear models, it might be also interesting to per-
form some simulations using the linear controllers presented in Section 2.4.2.
The latter comparison with both Buck converter models should help to find
a better control strategy. As a matter of fact, the so-called ”better control
strategy“ should not constraint this time to the idea of the implementation
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of linear controllers as it was in this Master’s Thesis.

The third chapter was focussed on the numerical accuracy, stability ana-
lysis of linear controllers when fixed-point system are used to represent the
set of rational numbers. Hardware using fixed-point arithmetic circuits have
the advantages of being faster, smaller in terms of sillicon size and energeti-
cally more efficient. After the selection of the numerical representation, the
chapter tries to solve the question of how many bits are necessary in order to
respect the frequency properties of the filter. The next problem to be solved
was the quantization of input/output signals of the controller. To calculate
the number of bits for the signal is also an essential and very important task.
The main question were the number of bits required to avoid overflow and
the number of bits in order to avoid the effect of truncation are propagated
in the DPWM block.

A future work in this chapter could be the analysis and desgin of linear
controllers using the δ-operator instead of the shift operator (z−1). The delta
operator, as it is pointed out in [27- 28], uses the Euler approximation to sim-
ulate an analogue derivative. Thus, any digital linear system described by
means of the δ-operator converges to a differential equation when the sam-
pling time of the digital system tends to zero. One of the advantages of using
delta operator is the direct translation of the analogue linear controllers to
the FPGA since both behavioral equations are equivalent. Finally, the last
analysis should be the calculation of number of bits for both coefficient and
signal using the delta operator.

The fourth chapter uses all the metrics analyzed in the third chapter in
order to program the linear controller. The chapter is also analyzing the
best strategies to build the controller system given in Figure 2.1b. The main
drawback of FPGAs is the impossibility of performing very difficult digi-
tal circuits due to the non-constant delay among its components. Therefore,
the best solution was to implement a synchronous system driven by a general
clock. The design of a synchronous system constrained the design of all blocks
by dividing them into two parts. The first part is in charge to implement
the functionality for the control system (arithmetic circuit). Oppositely, the
second part corresponds to the implementation of a state machine activat-
ing and storing the results coming from the arithmetic circuit. Therefore,
every block tries to copy the concept behind the harvard computer architec-
ture where there are independent data and signal paths. Finally, another
strategy to quickly program state machines using the generic approach that
VHDL offers, is the synthesis of ring counters as a replacement of the classi-
cal Mealy/Moore Finite State Machines.
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Some future work, that could be developped, is the behavioral description
of the Buck converter in order to simulate the response of the complete con-
trol system. The main goal of this approach is to compare both the VHDL
and Simulink output voltage simulations. The complete simulation of the
control system using VHDL help us to verify the behaviour of our complete
electronic system using the HDL synthetizable code for the FPGA. If a more
relialable simulation is required, the AMS (Analog Mixed Signal) standard
library can be used to program the Buck converter using continous differen-
tial equations. The VHDL-AMS is a derivative of the hardware description
language VHDL (IEEE standard 1076-1993). A last implementation before
testing the real application is the development of synthetizable descriptions
of the Buck converter and to plot the results in a debugging tool. This ap-
proach could allow to verify inside of the FPGA the behaviour of our digital
controller and see that there are no timing problems inside of the FPGA.
Finally, the last future work proposal related to Chapter 4 is the construc-
tion of a generic library for the implementation of filter structures using
the δ-operator. This block would replace the normal serial register intended
to program filter structures using serial registers (z variable). This option
should only be used in case the δ-operator is used for the linear controller.

Finally the fifth chapter shows that after modelling (Chapter 1) the con-
trol system, design the controller (Chapter 1), translating the algorithms into
fixed-point number representation (Chapter 3) and simulating our digital sys-
tem (Chapter 4) the Buck converter is able to control the output voltage.
The comparison of the Simulink simulations given in [3] and our work are
able to validate our methodology.
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Appendix A

Residue theorem

Definition A.0.0.1. If f (z) =
∑∞

∞ ck (z − z0)
k in a neighbourhood of z0,

C−1 is called the residue of f at z0. We use the notation c−1 = Res (f ; z0)
If f has a simple pole at z0; i.e., if

f(z) =
A(z)

B(z)
(A.1)

where A and B are analytic at z0 and B has a simple zero at z0, then

C−1 = lim
z→z0

(z − z0) f(z) =
A(z0)

B′(z0)
(A.2)

f(z) =
A(z)

B(z)
(A.3)

Since

f(z) =
c−1

z − z0

+ c0 + c1 (z − z0) + ... (A.4)

(z − z0) =c−1 + c0 (z − z0) + c1 (z − z0)
2 + ...

and

lim
z→z0

f(z) = C−1 (A.5)

The second equality in A.2 follows since

lim
z→z0

(z − z0) f(z) = lim
z→z0

(z − z0)
A(z)

B(z)
(A.6)

= lim
z→z0

A(z)
B(z)−B(z0)

z−z0

=
A(z0)

B′(z0)
(A.7)

The same principle can be applied for functions having more than a simple
pole. Applying A.2 to every pole of a rational function, we can decompose
the function calculating the residue for every pole in the function.
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Appendix B

Demonstration of the
state-space representation of a
Buck converter including
parastic resistances

The state-space averaging model of a Buck converter including all the parastic
resistances can be found using the same methodology as in Section 2.2.1.1.
First of all, the state-space equations for both states, on and off must be
found.

B.1 On-state

According to Figure B.1a, a set of two equations must be written using KVL
and KCL. The state variables are as in the previous case, x = (iL, vc)

T

Vg = L ·
diL
dt

+ Rinductance · iL − vout (B.1)

C ·
dvc

dt
= iL − iout

The main difference among this model and the lossless model is that the
output voltage is not equal to the capacitance voltage. The Equation (B.1) is
having three unknowns and a couple equations. Thus, it is necessary to find
a third equation in order to solve the system of equations. The last equation
can be found using the superposition principle to see the effect that every
state variable is having in the output voltage.
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B. Demonstration of the state-space representation of a Buck
converter including parastic resistances
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Figure B.1: Buck Converter including parastic resistances

vout = iL ·
RoutResr

Rout + Resr︸ ︷︷ ︸
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(B.2)

The output current can also be found using the relationship

iout =
vout

Rout

=
Resr

Rout + Resr

+
1

Rout + Resr

(B.3)

Using Equations (B.2) and (B.3), the output vector, y = (vout, iout)
T can

be written

y = C · x =

(
RoutResr

Rout+Resr

Rout

Rout+Resr
Resr

Rout+Resr

1
Rout+Resr

)
· x (B.4)

Finally substituing Equation (B.2) into (B.1), we obtain the last equation
to represent the state space equation of the system in Figure B.1
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B. Demonstration of the state-space representation of a Buck
converter including parastic resistances
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being the u = (Vg, Ig)

T

B.2 Off-state

For the off-state, the derivation of the state-space model is exactly the same
as in the On-State. Nevertheless, the main difference in the equations is
on the input vector, u. In Figure B.2, it is seen that any voltage source is
connected to the Buck converter during this period. Thus, the input voltage
vector must be equal to zero. The state-space equations are now
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y = C · x =

(
RoutResr

Rout+Resr

Rout

Rout+Resr
Resr

Rout+Resr

1
Rout+Resr

)
· x (B.7)

B.3 State-space averaging

Finally, the application of the state-space averaging technique, used in Equa-
tion (2.11), is useful to linearize the dynamic system. The final equation
corresponds to the same state-space representation as in Equation (2.18).
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Appendix C

Input current modelling script

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Serie de Fourier discreto mediante la formula
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4

5 clear ;
6 clc;
7

8 Imin=10;
9 Imax=20;

10 n=[1:25];
11 D=[0.3 0.25 0.2 0.10 0.08];
12 coeficiente=(Imax −Imin);
13

14 dc=(coeficiente/2) * D;
15

16 for a=1:length(D),
17 argumento(a,:)=2 * pi * n* D(a) * i;
18 end
19

20 for a=1:length(D),
21 for b=0:length(n),
22 if b==0,
23 seriefourier(a, b+1)=dc(a);
24 else
25 seriefourier(a,b+1)=(coeficiente/D(a)) * ((1+argumento(b)) *
26 exp(argumento(b)) −1)./(2 * pi * n(b))ˆ2;
27 end
28 end
29 end
30

31 for a=1:length(D),
32 for b=1:length(n)+1
33 fouriermagnitud(a,b)=abs(seriefourier(a,b));
34 end
35 end
36
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C. Input current modelling script

37

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39 % Representacion de las funciones
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41

42 n=[0:25];
43 figure(1)
44 hold on;
45 h1=stem(n, fouriermagnitud(1,:), 'g' )
46 h2=stem(n, fouriermagnitud(3,:), 'r' )
47 h3=stem(n, fouriermagnitud(4,:), 'b' )
48 h4=stem(n, fouriermagnitud(5,:), 'c' )
49 set(h1, 'LineWidth' , 3)
50 set(h2, 'LineWidth' , 3)
51 set(h3, 'LineWidth' , 3)
52 set(h4, 'LineWidth' , 3)
53 title( 'Input Current Spectrum of several duty cycles' );
54 legend( 'D=0.3' , 'D=0.2' , 'D=0.1' , 'D=0.08' );
55 xlabel( 'Discrete Frequency [n \cdot f s]' );
56 grid on;
57 ylabel( 'Magnitude of the fourier coefficient [A]' )
58

59 figure(2);
60

61 h5=stem3(n, D, fouriermagnitud);
62 title( 'Input Current Spectrum of several duty cycles' );
63 ylabel( 'DutyCycle' );
64 xlabel( 'Discrete Frequency [n \cdot f s]' );
65 zlabel( 'Magnitude of the fourier coefficient [A]' )
66

67

68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69 % Definicion sinc digital
70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71

72

73 sinc=sin(n * pi)./sin(n * pi/4);
74 figure(3);
75 h6=stem(n,abs(sinc));
76 set(h6, 'LineWidth' , 3)
77 title( '4 −phase filter form factor function' );
78 xlabel( 'Discrete frequency [n \cdot f s]' );
79 ylabel( 'Amplitude' )
80

81 for b = 1:length(D),
82 for a=1:length(n),
83 if a==1,
84 multifase(b, a)=4 * fouriermagnitud(b,a);
85 else
86 multifase(b,a)=abs(sinc(a) * fouriermagnitud(b,a));
87 end
88 end
89 end
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C. Input current modelling script

90

91 figure(4);
92 hold on;
93 h10=stem(n, multifase(1,:), 'g' )
94 h11=stem(n, multifase(3,:), 'r' )
95 h12=stem(n, multifase(4,:), 'b' )
96 h13=stem(n, multifase(5,:), 'c' )
97 set(h10, 'LineWidth' , 3)
98 set(h11, 'LineWidth' , 3)
99 set(h12, 'LineWidth' , 3)

100 set(h13, 'LineWidth' , 3)
101 title( 'Input current 4 phase system' );
102 grid on;
103 legend( 'D=0.3' , 'D=0.2' , 'D=0.1' , 'D=0.08' );
104 xlabel( 'Discrete Frequency [n \cdot f s]' );
105 ylabel( 'Magnitude of the fourier coefficient [A]' )
106

107 figure(5);
108 h20=stem3(n, D, multifase);
109 set(h20, 'LineWidth' , 3)
110 title( 'Input Current Spectrum of several duty cycles' );
111 ylabel( 'DutyCycle' );
112 xlabel( 'Discrete Frequency [n \cdot f s]' );
113 zlabel( 'Magnitude of the fourier coefficient' )
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Appendix D

Coefficient wordlength script

1 %% Calculo del numero de bits de la parte decimal
2

3 ceros = [0.99391288222701 0.96399771431853];
4 polos = [1 0.51066421884152 −0.5];
5

6 num bits ceros = calculobits2(ceros, 0.01);
7 num bits polos = calculobits2(polos, 0.01);
8

9 if (max(num bits ceros) > max(num bits polos)),
10 num bits decimal = floor(max(num bits ceros))+1;
11 else
12 num bits decimal = floor(max(num bits polos))+1;
13 end
14

15 %% Calculo del numero de bits de la parte entera
16

17 max ceros = max(abs(ceros));
18 max polos = max(abs(polos));
19

20 if (max ceros > max polos),
21 max valor = max ceros;
22 else
23 max valor = max polos;
24 end
25

26 num bits entero = floor(log2(max valor))+1;
27

28

29 %% Valores discretizados
30

31 Controlador = zpk(ceros, polos, 6.5, 1e −6);
32 Controlador = tf(Controlador);
33 [numerador, denominador] = tfdata(Controlador);
34 numerador = cell2mat(numerador);
35 denominador = cell2mat(denominador);
36
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D. Coefficient wordlength script

37 for i=1:length(numerador) ,
38 temp=dec2bin(round(abs(numerador(i)) * 2ˆnum bits decimal));
39 num cuantizados(i)=sign(numerador(i)) * bin2dec(temp)
40 /(2ˆnum bits decimal);
41 end
42

43 for i=1:length(denominador) ,
44 temp=dec2bin(round(abs(denominador(i)) * 2ˆnum bits decimal));
45 den cuantizados(i)=sign(denominador(i)) * bin2dec(temp)
46 /(2ˆnum bits decimal);
47 end
48

49

50 for i=1:length(numerador) ,
51 temp=dec2bin(floor(abs(numerador(i)) * 2ˆnum bits decimal));
52 num cuantizados2(i)=sign(numerador(i)) * bin2dec(temp)
53 /(2ˆnum bits decimal);
54 end
55

56 for i=1:length(denominador) ,
57 temp=dec2bin(floor(abs(denominador(i)) * 2ˆnum bits decimal));
58 den cuantizados2(i)=sign(denominador(i)) * bin2dec(temp)
59 /(2ˆnum bits decimal);
60 end
61

62 ceros cuantizados = roots(num cuantizados);
63 polos cuantizados = roots(den cuantizados);
64

65 ceros cuantizados2 = roots(num cuantizados2);
66 polos cuantizados2 = roots(den cuantizados2);
67

68 %% Definir sistemas lineales y graficar su diagrama de polos /ceros
69

70 Controlador cuantizado = tf(num cuantizados, den cuantizados, 1e −6);
71 Controlador cuantizado2 = tf(num cuantizados2, den cuantizados2, 1e −6);
72

73 uno = figure;
74 bode(Controlador, ' −' , Controlador cuantizado, ' * ' ,
75 Controlador cuantizado2, 'o' );
76 grid on;
77 legend( 'Infinite precision' , 'Rounded Fixed point' ,
78 'Truncated Fixed Point' );
79 dos = figure;
80 pzmap(Controlador, Controlador cuantizado, Controlador cuantizado2);
81 grid on;
82 legend( 'Infinite precision' , 'Rounded Fixed point' ,
83 'Truncated Fixed Point' );
84

85 ratio ceros = max(abs((ceros −ceros cuantizados')./ceros));
86 ratio polos = max(abs((polos −polos cuantizados')./polos));
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D. Coefficient wordlength script

1 function [bits] = calculobits2 (x, e)
2 % Calcula la formula indicada en mi cuadernos
3 % x es el polinomio
4 % e es el error en porcentaje
5

6 matriz identidad=eye(length(x));
7

8

9 for a=1:length(x),
10 for b=1:length(x),
11 matriz vander(a,b)=x(b)ˆ(a −1);
12 end
13 end
14

15 for j=1:length(x),
16 producto=1;
17 for i=1:length(x),
18 if (i == j)
19 continue ;
20 else
21 producto=producto * (x(i) −x(j));
22 end;
23 end ;
24 vector raices(j)=1/producto;
25 end
26

27 for a=1:length(x),
28 for b=1:length(x),
29 if (a==b),
30 matriz raices(a,b)=abs(vector raices(b));
31 else
32 matriz raices(a,b)=0;
33 end
34 end
35 end
36

37 vector error=(1/e) * ones(length(x),1);
38 matriz sensible=matriz raices * matriz vander';
39 matriz sensible=abs(matriz sensible);
40 matriz sensible=matriz sensible * vector error;
41 bits=log2(matriz sensible);
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Appendix E

Script to analyze IIR structures

1 %% Borrar parametros
2

3 clear;
4 clc;
5

6 %% Definicion filtro e impulso
7

8 indice=[1:25];
9 w = 18;

10 d = 13;
11

12 b = [5 −9.7895529827277 4.7906487334929];
13 a = [1 −1.01066421884141 −0.244667890579294 0.255332109420706];
14

15 q = length(b);
16 p = length(a);
17

18 for i=1:length(indice) ,
19 if (i == 1)
20 x(i)=1;
21 else
22 x(i)=0;
23 end
24 end
25

26 for i=1:length(indice)
27 vector dac(i)=2ˆ −10;
28 end
29

30 %% Forma directa I
31

32 x n = zeros(q, 1);
33 y n = zeros(p −1, 1);
34

35 for i= 1:length(x),
36 x n(2:q) =x n(1:q −1);
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E. Script to analyze IIR structures

37 x n(1)=x(i);
38

39 y directo(i)=b * x n−a(2:p) * y n;
40

41 y n(2:p −1)=y n(1:p −2);
42 y n(1)=y directo(i);
43 end
44

45 y directo float = y directo;
46 %
47 % % %% Forma directa II
48 %
49 % x n = zeros(p,1);
50 %
51 % for i=1:length(x),
52 % x n(2:q)=x n(1:q −1);
53 % x n(1)= x(i) − a(2:q) * x n(2:q);
54 %
55 % y canonico(i) = b * x n;
56 % end
57 %
58 % y canonico float = y canonico;
59 % %
60 % % %% Forma en cascada
61 %
62 % b 1 = [1 −1.9464 0.94675724];
63 % a 1 = [1 −0.5 −0.5];
64 %
65 % b 2 = [6.5 0];
66 % a 2 = [1 −0.4125];
67 %
68 % y intermedio = iircanonico(b 1, a 1, x);
69 %
70 % y cascada = iircanonico(b 2, a 2, y intermedio);
71 %
72 % y intermedio float=y intermedio;
73 % y cascada float = y cascada;
74

75 % %% Forma paralelo
76

77 num = [6.5 −12.6516 6.15392206];
78 den = [1 −0.9125 −0.29375 0.20625];
79

80 [raiz,polo,k]=residue(num,den);
81

82 a 11 =[raiz(1) 0];
83 b 11 =[1 −polo(1)];
84

85 a 22 = [raiz(2) 0];
86 b 22 = [1 −polo(2)];
87

88 a 33 = [raiz(3) 0];
89 b 33 = [1 −polo(3)];
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E. Script to analyze IIR structures

90

91

92 y paralelo1 = iircanonico(a 11, b 11, x);
93 y paralelo2 = iircanonico(a 22, b 22, x);
94 y paralelo3 = iircanonico(a 33, b 33, x);
95

96 y paralelo = y paralelo1+y paralelo2+y paralelo3;
97

98 y paralelo1 float = y paralelo1;
99 y paralelo2 float = y paralelo2;

100 y paralelo3 float = y paralelo3;
101

102 y paralelo float = y paralelo;
103

104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105 % Analisis de cada estructura%%%%%%%%%
106 % Mediante la toolbox fixed point%%%%%
107 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 %% Forma directa I
109

110 f = fimath;
111 f.ProductWordlength = 2 * w;
112 f.ProductFractionLength = 2 * d;
113 f.ProductMode = 'SpecifyPrecision' ;
114 f.SumMode = 'SpecifyPrecision' ;
115 f.SumWordLength = 2 * w;
116 f.SumFractionLength = 2 * d;
117 f.RoundMode = 'floor' ;
118

119 b = fi(b, 1, w, d);
120 a = fi(a, 1, w, d);
121

122 x = fi(x, 1, w, d);
123 y directo = fi(zeros(size(x)), 1, w, d);
124 x n = fi(zeros(q, 1), 1, w, d);
125 y n = fi(zeros(p −1, 1), 1, w, d);
126

127 a.fimath = f;
128 b.fimath = f;
129 x.fimath = f;
130 y directo.fimath = f;
131 x n.fimath = f;
132 y n.fimath = f;
133

134 for i= 1:length(x),
135 x n(2:q) =x n(1:q −1);
136 x n(1)=x(i);
137

138 y directo(i)=b * x n−a(2:p) * y n;
139

140 y n(2:p −1)=y n(1:p −2);
141 y n(1)=y directo(i);
142 end
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E. Script to analyze IIR structures

143

144 n=[0:length(y directo) −1];
145 uno = figure
146 uno = plot(n,y directo float, '. −b' ,n,y directo, '. −r' )
147 legend( 'double' , 'fixed −point' )
148 xlabel( 'n (samples)' ); ylabel( 'amplitude' )
149 title( 'Step response direct I form' )
150

151 e = double(lsb(y directo));
152 dos = figure
153 dos = plot(n,double(y directo) −y directo float, '. −r' , ...
154 [n(1) n( end)],[e/2 e/2], 'c' , ...
155 [n(1) n( end)],[ −e/2 −e/2], 'c' )
156 text(n( end),e/2, '+1/2 LSB' , 'HorizontalAlignment' , 'right' ,
157 'VerticalAlignment' , 'bottom' )
158 text(n( end), −e/2, ' −1/2 LSB' , 'HorizontalAlignment' , 'right' ,
159 'VerticalAlignment' , 'top' )
160 xlabel( 'n (samples)' ); ylabel( 'error' )
161 title( 'Error between floating point and fixed point direct form I' );
162 %
163 % % %% Forma directa II
164 %
165 % y canonico = fi(zeros(size(x)), 1, 2 * w, 2 * d);
166 % x n = fi(zeros(p, 1), 1, w, d);
167 %
168 % y canonico.fimath = f;
169 % x n.fimath = f;
170 %
171 % for i=1:length(x),
172 % x n(2:q)=x n(1:q −1);
173 % x n(1)= x(i) − a(2:q) * x n(2:q);
174 %
175 % y canonico(i) = b * x n;
176 % end
177 %
178 % n=[0:length(y canonico) −1];
179 % tres = figure
180 % tres = plot(n,y canonico float,'. −b',n,y canonico,'. −r')
181 % legend('double','fixed −point')
182 % xlabel('n (samples)'); ylabel('amplitude')
183 % title('Step response direct II form')
184 %
185 % cuatro = figure
186 % cuatro = plot(n,double(y canonico) −y canonico float,'. −r', ...
187 % [n(1) n(end)],[e/2 e/2],'c', ...
188 % [n(1) n(end)],[ −e/2 −e/2],'c')
189 % text(n(end),e/2,'+1/2 LSB','HorizontalAlignment','r ight',
190 % 'VerticalAlignment','bottom')
191 % text(n(end), −e/2,' −1/2 LSB','HorizontalAlignment','right',
192 % 'VerticalAlignment','top')
193 % xlabel('n (samples)'); ylabel('error')
194 % title('Error between floating point and fixed point direc t form II');
195 %
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E. Script to analyze IIR structures

196 %
197 % % %% Forma cascada
198 %
199 % b 1 = [1 −1.9464 0.94675724];
200 % a 1 = [1 −0.5 −0.5];
201 %
202 % b 2 = [6.5 0];
203 % a 2 = [1 −0.4125];
204 %
205 % y intermedio = iircanonicofixed(b 1, a 1, x, w, d);
206 %
207 % y cascada = iircanonicofixed(b 2, a 2, y intermedio, w, d);
208 %
209 % n=[0:length(y canonico) −1];
210 % cinco = figure
211 % cinco = plot(n,y cascada float,'. −b',n,y cascada,'. −r')
212 % legend('double','fixed −point')
213 % xlabel('n (samples)'); ylabel('amplitude')
214 % title('Step response cascade')
215 %
216 % seis = figure
217 % seis = plot(n,double(y cascada) −y cascada float,'. −r', ...
218 % [n(1) n(end)],[e/2 e/2],'c', ...
219 % [n(1) n(end)],[ −e/2 −e/2],'c')
220 % text(n(end),e/2,'+1/2 LSB','HorizontalAlignment','r ight',
221 % 'VerticalAlignment','bottom')
222 % text(n(end), −e/2,' −1/2 LSB','HorizontalAlignment','right',
223 % 'VerticalAlignment','top')
224 % xlabel('n (samples)'); ylabel('error')
225 % title('Error between floating point and fixed point casca de');
226

227

228

229 % %% Forma paralelo
230

231 w2=18;
232 d2=13;
233

234 f2 = fimath;
235 f2.ProductWordlength = w2+w;
236 f2.ProductFractionLength = d2+d;
237 f2.ProductMode = 'SpecifyPrecision' ;
238 f2.SumMode = 'SpecifyPrecision' ;
239 f2.SumWordLength = w2+w;
240 f2.SumFractionLength = d2+d;
241 f2.RoundMode = 'floor' ;
242

243 % x = fi(x, 1, w2, d2);
244 % k = fi(k, 1, w2, d2);
245

246 k.fimath = f2;
247 x.fimath = f2;
248
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E. Script to analyze IIR structures

249 x2 = fi(x, 1, 18, 13);
250

251 b 11 = fi(b 11, 1, w, d);
252 a 11 = fi(a 11, 1, w, d);
253 b 22 = fi(b 22, 1, w, d);
254 a 22 = fi(a 22, 1, w, d);
255 b 33 = fi(b 33, 1, w, d);
256 a 33 = fi(a 33, 1, w, d);
257

258 y paralelo1 = iircanonicofixed(a 11, b 11, x2, w, d, w2, d2);
259 y paralelo2 = iircanonicofixed(a 22, b 22, x2, w, d, w2, d2);
260 y paralelo3 = iircanonicofixed(a 33, b 33, x2, w, d, w2, d2);
261

262 y paralelo = y paralelo1+y paralelo2+y paralelo3;
263

264 n=[0:length(y paralelo float) −1];
265 siete = figure;
266 siete = plot(n,y paralelo float, '. −b' ,n,y paralelo, '. −r' )
267 legend( 'double' , 'fixed −point' )
268 xlabel( 'n (samples)' ); ylabel( 'amplitude' )
269 title( 'Step response parallel' )
270

271 ocho = figure
272 ocho = plot(n,double(y paralelo) −y paralelo float, '. −r' , ...
273 [n(1) n( end)],[e/2 e/2], 'c' , ...
274 [n(1) n( end)],[ −e/2 −e/2], 'c' , n, vector dac, 'g' )
275 text(n( end),e/2, '+1/2 LSB' , 'HorizontalAlignment' ,
276 'right' , 'VerticalAlignment' , 'bottom' )
277 text(n( end), −e/2, ' −1/2 LSB' ,
278 'HorizontalAlignment' , 'right' , 'VerticalAlignment' , 'top' )
279 text(n( end),vector dac(1), 'LSB of the DPWM block' ,
280 'HorizontalAlignment' , 'right' , 'VerticalAlignment' , 'top' )
281 xlabel( 'n (samples)' ); ylabel( 'error' )
282 title( 'Error between floating point and fixed point parallel' );

1 function y = iircanonico(b,a,x)
2

3 q = length(b);
4 p = length(a);
5

6 x n = zeros(p,1);
7

8 for i=1:length(x),
9 x n(2:q)=x n(1:q −1);

10 x n(1)= x(i) − a(2:q) * x n(2:q);
11

12 y(i) = b * x n;
13 end

1 function y = iircanonicofixed (b,a,x,w1,d1, w2, d2)
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2

3 f = fimath;
4 f.ProductWordlength = w1+w2;
5 f.ProductFractionLength = d1+d2;
6 f.ProductMode = 'SpecifyPrecision' ;
7 f.SumMode = 'SpecifyPrecision' ;
8 f.SumWordLength = w1+w2;
9 f.SumFractionLength = d1+d2;

10 f.RoundMode = 'floor' ;
11

12 q = length(b);
13 p = length(a);
14

15 b = fi(b, 1, w1, d1);
16 a = fi(a, 1, w1, d1);
17

18 x n = fi(zeros(p,1),1 , w2 , d2);
19 x = fi(x, 1, w2, d2);
20

21 a.fimath = f;
22 b.fimath = f;
23 x.fimath = f;
24 x n.fimath = f;
25

26 for i=1:length(x),
27 x n(2:q)=x n(1:q −1);
28 x n(1)= x(i) − a(2:q) * x n(2:q);
29

30 y(i) = b * x n;
31 end
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Appendix F

Script processing ModelSim
results

1 %% Limpia memorias
2

3 clc;
4 clear all;
5

6 %% Abrir archivo de resultados de MODELSIM
7

8 load respuestaescalontercer.lst
9

10 resultados = respuestaescalontercer(: , 3);
11 resultados = resultados(2:length(resultados));
12 resultados = resultados * 6.7204 * 2ˆ −26;
13

14 %% Desarrolla la respuesta impulsional real
15

16 b = [6.5 −12.6516 6.15392206];
17 a = [1 −0.9125 −0.29375 0.20625];
18 Filtro = tf(b, a, 1e −6);
19

20 for i=1:length(resultados) ,
21 if (i == 1)
22 x(i)=1;
23 else
24 x(i)=1;
25 end
26 end
27

28 z = [0;0;0;0];
29 y = zeros(size(x));
30

31 for i=1:length(x) ,
32 y(i) = b(1) * x(i)+z(1);
33 z(1) = (b(2) * x(i)+z(2)) −a(2) * y(i);
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34 z(2) = (b(3) * x(i)+z(3)) −a(3) * y(i);
35 z(3) = −a(4) * y(i);
36 end
37

38 yfloat = y;
39

40 %% Procesado con la toolbox fixed point
41

42 f = fimath;
43 f.ProductWordlength = 36;
44 f.ProductFractionLength = 26;
45 f.ProductMode = 'SpecifyPrecision' ;
46 f.SumMode = 'SpecifyPrecision' ;
47 f.SumWordLength = 36;
48 f.SumFractionLength = 26;
49 f.RoundMode = 'floor' ;
50

51

52 % El numero uno da signo
53

54 b = fi(b, 1, 18, 13);
55 a = fi(a, 1, 18, 13);
56

57 x = fi(x, 1, 18, 13);
58 y = fi(zeros(size(resultados)), 1, 36, 26);
59 z = fi([0;0;0], 1, 18, 13);
60

61 a.fimath = f;
62 b.fimath = f;
63 x.fimath = f;
64 y.fimath = f;
65 z.fimath = f;
66

67 for i=1:length(x) ,
68 y(i) = b(1) * x(i)+z(1);
69 z(1) = (b(2) * x(i)+z(2)) −a(2) * y(i);
70 z(2) = (b(3) * x(i)+z(3)) −a(3) * y(i);
71 z(3) = −a(4) * y(i);
72 end
73

74 %% Grafica las dos respuestas
75

76 n=[0:length(y) −1];
77 uno=figure;
78 plot(n, yfloat, '. −r' , n, resultados, '. −b' );
79 title( 'Step response' );
80 legend( 'Floating Point' , 'ModelSim Results' );
81

82 diferencia= yfloat −resultados';
83 dos=figure;
84 plot(n, diferencia)
85 title( 'Error between two time series' );
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