
HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Ville Rantala

Trust Origin and Establishment with
JavaScript Applications

Master’s Thesis
Espoo, September 11, 2009

Supervisor: Sasu Tarkoma Professor, Helsinki University of Technology
Instructor: Janne Jalkanen Lic.Sc. (Tech.), Nokia Oyj

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINKI UNIVERSITY OF ABSTRACT OF
TECHNOLOGY MASTER’S THESIS
Faculty of Information and Natural Sciences
Degree Programme of Computer Science and Engineering

Author: Ville Rantala
Title of thesis: Trust Origin and Establishment with JavaScript Applications

Date: September 11, 2009 Pages: x + 71
Professorship: Data Communications Software Code: T-110
Supervisor: Sasu Tarkoma Professor
Instructor: Janne Jalkanen Lic.Sc. (Tech.)

Applications written with Web technologies are a growing trend. Web
technologies include the JavaScript programming language which has
become popular due to its support in modern Web browsers. Today
JavaScript is also used to implement installable stand-alone applications
in addition to Ajax-style programming. An example of such stand-alone
applications are widgets that conform to the W3C Widgets 1.0 specifica-
tion.

Security is a key concern with these kind of applications because they
often have an access to sensitive and valuable information through Web
or platform interfaces. One of the main challenges is to determine how
to establish trust towards an application. Applications can be benevolent
or malicious, but the difference is hard to tell by an end-user. Digital
signatures and certificates have been used to help end-users in making a
trust decision and to delegate trustworthiness evaluation to trusted par-
ties. These mechanisms have drawbacks that make application develop-
ment, distribution and adoption more difficult.

In this thesis a new trust establishment mechanism is proposed that helps
to deal with the drawbacks. It is based on the Domain Name System and
utilizes the originating domain of applications. An implementation of the
proposed mechanism is provided on top of the W3C Widgets 1.0 specifi-
cation and the implementation is evaluated against design requirements.
The new mechanism is recognized to bring many benefits to the different
parties of the widget ecosystem.

Keywords: JavaScript, Web, Security, Usability
Language: English

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN
Informaatio- ja luonnontieteiden tiedekunta TIIVISTELMÄ
Tietotekniikan koulutusohjelma

Tekijä: Ville Rantala
Työn nimi: Trust Origin and Establishment with JavaScript Applications

Päiväys: 11. syyskuuta 2009 Sivumäärä: x + 71
Professuuri: Tietoliikenneohjelmistot Koodi: T-110
Työn valvoja: Professori Sasu Tarkoma
Työn ohjaaja: Tekniikan lisensiaatti Janne Jalkanen

Web-teknologioiden avulla toteutetut sovellukset ovat kasvava trendi. Yksi
merkittävä teknologia on JavaScript-ohjelmointikieli, jonka suosio on kas-
vanut Web-selainten myötä. Nykyään Ajax-tyylisen ohjelmoinnin lisäksi
JavaScript-kielellä tehdään myös itsenäisiä asennettavia sovelluksia. Yk-
si esimerkki asennettavista sovelluksista on JavaScript-sovellukset, jotka
toteuttavat W3C Widgets 1.0 -spesifikaation.

Tietoturva on tärkeässä osassa mainittujen sovelluksien tulevaisuuden
kannalta. Usein sovelluksilla on pääsy arvokkaaseen ja arkaluonteiseen tie-
toon joko Web- tai ajoalustarajapintojen kautta. On tärkeää pystyä sel-
vittävään, kuinka luottamus sovelluksia kohtaan syntyy ja mihin se voi-
daan perustaa. Sovellukset voivat olla toteutettuja haitallisiin tarkoituk-
siin, mutta loppukäyttäjän voi olla vaikea erottaa niitä vaarattomista so-
velluksista. Digitaalisia allekirjoituksia ja varmenteita on käytetty toden-
tamaan sovellusten alkuperä ja täten auttamaan käyttäjiä tekemään va-
lintoja tai valtuuttamaan luotettu taho arvioimaan sovellusten luotetta-
vuutta. Niiden käyttäminen tuo haittapuolia, jotka vaikeuttavat sovellus-
ten kehittämistä, jakelua ja käyttöönottoa.

Tässä diplomityössä suunnitellaan, toteutetaan ja arvioidaan vaihtoeh-
toinen tapa perustaa luottamus. Ehdotettu menetelmä perustuu Interne-
tin Domain Name System -nimipalvelujärjestelmään. Siinä luottamus pe-
rustetaan sovelluksen alkuperään verkkotunnuksen perusteella. Ehdotettu
menetelmä on toteutettu laajennuksena W3C Widgets 1.0 -spesifikaatioon
ja sen todetaan tuovan etuja monen sovellusten ekosysteemiin kuuluvien
tahojen kannalta.

Avainsanat: JavaScript, Web, Tietoturva, Käytettävyys
Kieli: Englanti

iii

Acknowledgements

First I would like to thank Markku Ranta for giving me an opportunity to
write this thesis during my work at Nokia. A big thank you goes to the
supervisor of this thesis Sasu Tarkoma and to my instructor Janne Jalka-
nen. They gave very valuable feedback and helped me to during the writing
process.

In the planning phase I was inspired by a positive feedback from my col-
leagues Olli Immonen and Pasi Eronen. Besides them I want to thank Anssi
Kostiainen, Teemu Harju and Matti Vesterinen for reviewing and comment-
ing my output.

Finally I would like to thank my family for supporting me. Especially my
wife Mimmi and my daughter Tuula who stood by me and motivated me to
get this work finished.

Espoo, September 11, 2009

Ville Rantala

iv

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Structure of the thesis . 3

2 JavaScript and Web technologies 4

2.1 JavaScript history . 4

2.2 Document Object Model . 5

2.3 Cascading Style Sheets . 6

2.4 Domain Name System . 6

2.5 Modern JavaScript . 7

2.6 JavaScript language properties 8

2.6.1 Security related features 8

2.6.2 Script invocation . 9

2.7 JavaScript security model in browsers 9

3 Web application security solutions 12

3.1 JavaScript security model limitations in browsers 12

3.2 Public Key Infrastructure . 15

3.3 Signed scripts . 17

3.4 Security zones . 18

3.5 XML signatures . 18

3.6 Content security policies . 19

3.7 Server-side proxy . 20

v

4 JavaScript runtimes 21

4.1 Apple Dashboard . 21

4.2 S60 Web Runtime . 22

4.3 Adobe Integrated Runtime . 23

4.4 W3C widgets . 24

5 Trust establishment design 26

5.1 Trust . 26

5.1.1 Trust models . 27

5.2 Design for W3C Widgets . 28

5.3 Widget ecosystem . 28

5.4 Trust relationships . 30

5.5 Trust establishment requirements 32

6 Implementation of originating domain utilization 34

6.1 Overview . 34

6.2 Installation process . 35

6.3 Complementary implementation 37

6.4 Proposed alternative implementation 42

6.5 Implementation summary . 44

6.6 User interface examples . 45

7 Evaluation 49

7.1 Evaluation against design requirements 49

7.2 Comparisons . 51

7.2.1 Certificates versus originating domain 51

7.2.2 One package versus two packages 53

7.2.3 Complementary versus alternative implementation . . . 53

7.3 Evaluation against browser security model limitations 54

7.4 Other possible solutions . 56

7.4.1 Decentralized trust . 56

vi

7.4.2 Source code and behaviour analysis 56

7.5 Restricting granted capabilities 57

8 Conclusion 60

8.1 Future work . 61

A Markup and code examples 70

vii

List of Tables

2.1 Comparing domains when forcing the same origin policy . . . 10

5.1 Factors influencing trust [1] 27

viii

List of Figures

1.1 The amount of Web application vulnerabilities per year ex-
tracted from the web hacking incident database [2] 1

4.1 Apple Dashboard widget installation prompt 22

4.2 S60 Web Runtime widget security prompts 23

4.3 Security prompts of a verified and unverified Adobe Air appli-
cation . 24

5.1 The architecture of W3C Widgets [3] 29

5.2 Functional roles in the widget ecosystem [4] 29

5.3 Relevant trust relationships between roles in the widget ecosys-
tem . 31

6.1 Traditional widget installation process 36

6.2 Proposed widget installation process that utilizes originating
domain . 38

6.3 An example of a widget resource and a widget stub 39

6.4 An example of a resource file without signatures 40

6.5 An example JAD file that describes an example MIDlet 42

6.6 Widget description file with XML and JSON syntax 47

6.7 Widget description file signature definition format when using
JSON syntax . 48

6.8 Example security prompts for a widget from an arbitrary domain 48

6.9 Example prompts for widgets with various source configurations 48

A.1 Python reference implementation of the digest value calculation 70

ix

A.2 Python reference implementation of the signature calculation
using signature method RSA-SHA256 70

A.3 An example of a resource file with one distributor signature . . 71

x

Chapter 1

Introduction

Web applications are a growing trend. Data moves from local storages to
online services so that it is ubiquitously accessible. Applications that han-
dle the data can access people’s and companies’ sensitive information. In
many cases, the information is so valuable that it is worth stealing or mak-
ing unavailable. Information unavailability can cause damage to the parties
that are dependent on that information. News about Web attacks are not
uncommon. Examples include the Gaza conflict cyber war and the Twitter
Web service vulnerabilities. Figure 1.1 shows how the amount of reported
incidents has developed over the time.

Figure 1.1: The amount of Web application vulnerabilities per year extracted
from the web hacking incident database [2]

1

Incidents can have numerous root causes, but one important aspect is how can
Web application users trust the application they use. Trust establishment in
Web browsers works implicitly. Users allow JavaScript applications to run on
their computer when they browse the Web. Certificates and digital signatures
have been used for trust establishment with installable applications. Then
the trust decision can be delegated to a trusted party, which has a process
in place to verify applications on behalf of the users.

Besides the popularity of applications, the amount of different applications is
growing. Application stores like the Apple App Store or Nokia Ovi Store have
thousands of applications in their catalogues. Many of them are developed
by individual developers rather than software companies. This is a trend
that creates different kind of requirements for application development and
distribution. Digital signatures have proven to have limitations in a such
environment. This is true, especially in the case of JavaScript applications
that have a strong Web presence, that use data from multiple sources and
that can change their behaviour dynamically. The scope of this thesis is
to study trust establishment and to design and implement a better trust
establishment mechanism for JavaScript widgets that comply with the W3C
Widgets 1.0 specification [5].

1.1 Problem statement

The problem is that applications acquired by users can be malicious. The
majority of users are not experienced enough to recognize malicious appli-
cations as it would require deep knowledge about the used technology and
the ability to examine the application in question. That is why the appli-
cation trustworthiness analysis must be delegated. Today digital signatures
are used to present statements about the trustworthiness. If a trusted party
has verified an application, the user can assume it to be benevolent and not
to behave maliciously.

Digital signatures have their drawbacks especially when the amount of signed
applications is large and when the applications can change dynamically.
This is often the case with JavaScript applications. The properties of the
JavaScript programming language make applications dynamic. Digital sig-
natures also have a tendency to centralize trust authority to individual com-
panies. Consequently, these companies have lots of control in the content
distribution and adoption phases. In this thesis, the trust establishment
is studied and a new proposal is made. The proposal tries to help in the
problems that exist with the digital signatures. The main research question

2

is:

How can trust be established to provide usable security?

The word usable in the question covers usability aspects from different an-
gles. The usability can be looked from the end-user, developer or content
distributor perspective. The security of a system can be designed robustly,
but its usability might then suffer. Design is often a trade off between us-
ability and security [6]. Digital signatures work quite well if only the security
aspect is looked at. The usability of them can be considered inadequate for
today’s needs as discussed in chapter 7.

1.2 Structure of the thesis

The thesis begins with a chapter about JavaScript and Web technologies to
describe the foundation for JavaScript applications. After that in chapter 3
the browser security model limitations are discussed and solutions that try
to fix those limitations are introduced. Browser security model is studied in
detail because the same engine used in browsers is often used as the engine for
other JavaScript runtimes. Some of those runtimes are presented in the next
chapter along with their way to establish trust. Each runtime has a different
mechanism for the establishment and how that is shown to the end-user.
In chapter 5, a design for a trust establishment mechanism for a selected
JavaScript runtime is described. The selected runtime is a runtime based on
the W3C Widgets specification. After the design comes the implementation
chapter. The methodology to evaluate the implementation is to compare it
against the design principles and other criteria in the chapter. This is done
in the evaluation chapter, chapter 7. Finally, a conclusion is presented in the
last chapter.

3

Chapter 2

JavaScript and Web technologies

JavaScript programming language history starts from theWeb browser. JavaScript
language and other Web technologies are introduced in this chapter to form
the basis on which other JavaScript runtimes are built. The security model
implemented in current Web browsers is described at the end of this chapter.

2.1 JavaScript history

The JavaScript language has become very popular due to its almost univer-
sal support in the Web browsers today. JavaScript programming language
was originally developed by Brendan Eich while working at Netscape. The
browser scripting language was first named Mocha, later LiveScript and fi-
nally renamed to JavaScript. JavaScript was announced in a press release
in December 1995 by Sun Microsystems and Netscape. Netscape Navigator
2.0 was the first browser which supported JavaScript. It became available in
March 1996. In the same year Microsoft released Internet Explorer 3.0 which
also featured similar a scripting language called JScript.

Scripting language standardisation began soon after Netscape and Microsoft
had released their browsers. ECMA International started to develop a stan-
dard based on JavaScript and JScript and other related technologies in
November 1996. The first edition of the ECMAScript scripting language
standard was adopted by the ECMA General Assembly in June 1997.

According to the first ECMAScript standard, ECMA-262 [7], the language
was originally designed to be a client-side Web scripting language. It was to
provide a mechanism to enliven Web pages which were mainly static HTML
documents at the time. Scripting languages were not the only way to create

4

dynamic content. HTML 3.0 specification included some elements for styles
and dynamic content and different browser vendors had their own HTML ex-
tensions. Extensions could be used, for example, to play sounds, loop images
and create scrolling texts. Besides HTML, there were also other mecha-
nisms for enlivening Web pages, such as Virtual Reality Modeling Language
(VRML) and Java applets. In the early days of JavaScript, Java applets and
other technologies got more attention, but today JavaScript has overtaken
them in popularity. [8]

Dynamic HTML (DHTML) is the term that is used to describe the technolo-
gies that can be used to create dynamic and interactive Web pages. DHTML
was supported in Internet Explorer 4.0 and the same kind of methodology is
in use today. [9] DHTML includes the usage of HTML, JavaScript, Cascad-
ing Style Sheets (CSS) and Document Object Model (DOM). HTML is used
to represent the structure of the resources. JavaScript offers ways to imple-
ment the control and the logic of the applications. DOM is the interface that
is used from the JavaScript code to access HTML document content. CSS is
used to create the layout and styles for the application. Even though DOM
and CSS are not a part of the scripting language itself, they are important
when talking about JavaScript application security. For Web developers they
are a seamless part of the whole Web application development.

2.2 Document Object Model

Document Object Model (DOM) is a platform-independent and language-
neutral way to represent structured documents as object models. DOM is
used to represent HTML and XML documents as a collection object in a
tree format. DOM defines an Application Programming Interface (API) for
accessing and manipulating the DOM. It is essentially a programming API
for documents.

DOM is today specified by the World Wide Web Consortium (W3C). The
support was included in some form already in the early DHTML-featured
browsers and the DOM Level 1 specification was recommended by W3C in
1998 [10]. Since then W3C has published DOM Level 2 and Level 3 specifi-
cations. Specifications include language bindings, from which ECMAScript
binding is the most relevant when talking about JavaScript.

Data that the applications handles usually comes either from the resource
document through the DOM API or from a server-side API. DOM is the
interface to the document information, but it does not define any access

5

control model. This means that the access control must be defined and
forced in the upper layers of the application.

2.3 Cascading Style Sheets

Cascading Style Sheets (CSS) is used for adding styles to documents (i.e., the
visual representation). Styles define the layout of documents and they can
be used, for example, to apply fonts and colors. CSS is a W3C specification
and the level 1 specification has been a recommendation since 1996 [11].
Style sheets consist of selectors and properties. Properties are used to define
what kind of styles to apply and selectors to select the elements the styles
are applied to. CSS styles can be included in the documents or they can
be stored in separate files. Referring to CSS styles is done either using the
style-tag or the @import declaration.

CSS can be used as an attack vector when inserting malicious JavaScript
code to the applications. Microsoft and Mozilla have created their own ex-
tensions to the CSS specification that allow scripts defined as CSS properties
to execute. For that Internet Explorer introduces expression1 and binding2

properties and Firefox -moz-binding3 property.

2.4 Domain Name System

Domain Name System (DNS) is a hierarchical naming mechanism for clients
and servers in the Internet. Data transfers over the Internet are routed based
on the IP addresses of the communicating parties and DNS is used to map
those IP addresses to meaningful names which are called domain names.

An important aspect of DNS is its hierarchical nature and the way how
authority over names is delegated. There is no single entity that controls
how names are assigned, but the authority is divided into subnames of a
domain name.

www.some.company.com (2.1)

A domain name consists of subnames which are divided using periods. For
1http://msdn2.microsoft.com/en-us/library/ms537634.aspx
2http://msdn.microsoft.com/en-us/library/ms533503.aspx
3http://developer.mozilla.org/en/docs/CSS:-moz-binding

6

example the domain name 2.1 is divided into four subnames that are also
called labels. The rightmost part of domain names is called the Top-Level
Domain (TLD) which in the example is com. TLDs are controlled by the
Internet Corporation for Assigned Names and Numbers (ICANN), which is
responsible for delegating authority of the subdomains to different parties.
The next level in the example domain is company. The way how subdomains
after this level is delegated is not controlled by the TLD authority anymore.
The authority of the company subdomain may delegate the next level and so
on. Compared to the flat naming scheme, the hierarchical scheme scales bet-
ter when there are lots of addresses and the administration of the mappings
become easier. [12]

DNS plays an important role in the security model that is implemented in
the modern Web browsers. It works as the basis of trust, as described in
section 3.1.

2.5 Modern JavaScript

In the 1990s when the Web gained popularity also the amount of JavaScript-
capable browsers increased. The focus of the Internet changed from a read-
only document repository to a read-write application platform. This trans-
formation brought new requirements for Web browsers. New requirements
include, for example, higher interactivity, more responsive user interfaces
and more personal browsing experience. To fulfil these requirements, more
features are required, especially from the client-side of the applications.
JavaScript as the client-side scripting language has an important role in mod-
ern Web applications, also called Rich Internet Applications (RIA).

The movement from the traditional Web browsing towards RIA required the
page paradigm interaction model to be changed. Page paradigm is a model
where user is forced to load an entire Web page after every interaction. User
clicks a hyperlink and a new page is fetched by the browser. This kind of
interaction model has limitations when it comes to responsiveness and other
requirements of RIA. In JavaScript applications, Ajax-style programming is
used to break the page paradigm.

The term Ajax was introduced in 2005 by Jesse James Garrett and it comes
from Asynchronous JavaScript and XML [13]. The core of Ajax applications
is in asynchronous data loading. It means that data can be fetched from
the server asynchronously without interrupting the user experience. This
interaction pattern enables RIA written with JavaScript and run in a Web

7

browsers environment.

The technical enabler for asynchronous data loading is the XMLHttpRequest
(XHR) object. XHR is an API that provides functionality for transferring
data between a client and a server and it is specified by the W3C [14]. XHR is
an important object in the context of JavaScript application security because
it is one of the APIs that is used to read and write data and to transfer it
over the Internet.

2.6 JavaScript language properties

2.6.1 Security related features

Execution context Every executable JavaScript code runs in an execu-
tion context. Every execution context has associated with it a scope
chain. Code can only access variables listed on its scope chain. In
JavaScript, only function declarations produce a new scope. Every ex-
ecution context also offers the this keyword whose value depends on
how the execution context is invoked.

Global object Global object is a unique object, which is created before
control enters any execution context. In Web browsers the name of the
global object is window. Built-in objects and additional environment
specific objects are defined as properties of the global object. The
global object is referable within the whole execution context.

Global variable A global variable is a variable that is visible in every scope.
This means that global variables are accessible and mutable from any
execution context. Global object is the container for all global variables.

Run-time evaluation In JavaScript, it is possible to evaluate strings as
JavaScript code at run-time. To do this, there is the built-in function
eval. Run-time evaluation can also be performed with the Function
constructor and with setTimeout and setInterval functions.

Dynamic typing In JavaScript type checking is performed at run-time as
opposed to static typing where checking happens at compile-time. Vari-
ables do not need to be introduced before their use and the type of a
variable may vary during the execution.

Prototypal inheritance Object-oriented programming languages with clas-
sical inheritance model have the concept of classes from where other

8

classes can be inherited. JavaScript has prototypal inheritance model
which means that it does not have the concept of class and objects
inherit directly from other objects.

2.6.2 Script invocation

JavaScript code can be referenced and invoked within HTML documents in
many ways. The most common way is to use the script tag. It can be used
to include code inline (embedded scripts) and from an external source (exter-
nal scripts). Based on Opera’s Metadata Analysis and Mining Application
(MAMA) research, about 88% of sites using scripts use it inline with the
script tag and about 63% from an external source [15].

The second way is to define JavaScript code in event handlers that are tied
to HTML tags. For example one could define code that is run when a cer-
tain element is clicked with a mouse button. Other not that often used
mechanisms are hyperlink URLs prefaced by javascript: and, as mentioned
in section 2.3, using stylesheet expressions. All these need to be taken into
consideration when analyzing application behaviour since any of them might
contain malicious code.

2.7 JavaScript security model in browsers

The JavaScript security model that is included in all modern Web browsers
is based on sandboxing the executed application. A sandbox isolates scripts
from other scripts and from the operating system so that applications are
not able to access operating system resources, such as, local file system or
the networking layer. Every execution sandbox is associated with one global
window object which corresponds to a single Web browser window. Windows
can also be nested. So from a user’s perspective, a single Web page can
contain many execution sandboxes.

The primary security policy is the Same Origin Policy (SOP). The way scripts
are isolated depends on what DNS domain the page, to which the script is
embedded to, is loaded from. That is not necessarily the domain that the
script itself originates. [16] The context that the script runs in, and that is
defined by the originating domain, is called script’s security context. Scripts
that run in the same security context can by default access each other’s
global object when they are embedded in the same page, for example, by
using frame-tags.

9

Every global window -object has also a reference to a document-object that
is the DOM representation of the window’s content. This means that if a
script has an access to a global object, it has also access to the content of
that window through the DOM interface.

Table 2.1: Comparing domains when forcing the same origin policy
URL Match Explanation

1 http://example.com/∼username/index.html - the reference URL
2 http://example.com/∼another/user.html yes only path changes
3 http://example.com:8080/index.html no port is different
4 https://example.com/index.html no protocol is different
5 http://www.example.com/index.html no host is different
6 http://208.77.188.166 no host is different

When forcing SOP, browsers check that the originating domains of the win-
dows match. Domains match when protocol, host and port values of the
domain are the same. Table 2.1 contains examples about the comparison.
Host names are matched before the translation to an IP address is done.
That is why the example number 6 does not comply to the SOP even if ex-
ample.com would translate to 208.77.188.166. There is an exception to the
policy that can be used to make scripts at different domains to execute in
the same security context. The domain property of a document object can
be changed to a more general form. This means that for example property
value http://www.example.com could be changed to http://example.com to
make these two documents reside in the same security context. [17]

SOP isolates scripts in the client runtime, but also affects on what resources
the script can access through the XHR API. Scripts can only make HTTP
requests to the domain of their security context. This does not however
affect what resources can be loaded to the security context with, for example,
script- and img-tags.

The third concept that’s access control is controlled by the SOP is cookies.
Cookies are textual data that is stored in the client-side by a Web browser.
They can be used to store data about the client and to save state information.
Cookies are scoped and the path that they are effective in can be customized.
By default cookie scope is limited to the origin of a Web page or to a domain
of a security context. Scope can be modified to a fully-qualified right-hand
segment of the domain at issue up to one level below Top-Level Domain

10

(TLD). In practise this means that aWeb page from http://www.example.com
can modify the scope of a cookie to http://*.example.com, but not to *.com.
Cookie scope determines can a script access the cookie and is the cookie sent
along with HTTP requests to a certain domain. Cookies can be protected
from script access by using HTTP-only cookies. HTTP-only cookies are sent
with HTTP requests, but they are not accessible from scripts. [18]

The following is an example that demonstrates how SOP operates in practise.
Let’s assume we have a Web page A from http://domain.com. That Web page
contains an iframe-element whose src-attribute point to http://another.com
which is the URL of a Web page B. A and B have their own execution sand-
boxes and security contexts since their originating domains do not match.
Scripts at A cannot access B’s DOM object and vice versa. Only A can open
connections with the XHR API to http://domain.com. B can only open con-
nections to it’s origin. When the browser makes an HTTP request to A’s
domain, only cookies set in A’s context are sent along with the request.

As mentioned, one Web page can contain many sandboxed environments and
they can access each other only if their originating domains match. However
scripts running in different security context can navigate each others. To be
able to navigate means for example changing other frame’s location to some
other URL. The way this navigation policy is implemented differs between
browsers, but the current recommendation that many modern browsers im-
plement is to use so called descendant policy [19]. It means that a frame can
navigate only its descendant frames.

Because domain names determine how the policy is enforced, we can say
that a domain is a security principal. Principals are entities that can be
identified and verified. The process of identification and verification is called
authentication. Authenticating in this context means that the browser checks
what is the domain name of a Web page. Web browsers were designed as
a single-principal platform, which means that different principals are not
allowed to communicate with each other and are not able to share resources.
SOP takes care that the scripts in different security contexts (i.e., different
principals) are isolated from each other.

11

Chapter 3

Web application security solutions

The previous chapter described the security model in current Web browsers.
This chapter discusses limitations of that security model and technologies
that are developed to extend the security features of browsers.

3.1 JavaScript security model limitations in browsers

Already in the early days of JavaScript the implemented security model was
considered inadequate by researchers [20]. Since then, many research projects
have had the goal to improve the security of Web applications in browsers
[21, 22, 23, 24, 25].

The way Web has evolved brings additional challenges. When the Web was
mainly used to get static documents over a network, the domain-based SOP
was applicable. Today the Web is used more and more with applications
that collect data from multiple locations and mash it together. These kind
of applications are called mashups. SOP makes implementing mashups hard,
since it is designed to prevent access to multiple domains. Browsers were de-
signed as a single-principal platform, where as mashups would require multi-
principal security models [24]. Another change in the nature of the Web is
that today it is not just about Web sites. It is also about data APIs. An API
is a data source that is accessible with URL. Web applications must conform
to SOP when they want to use those APIs.

SOP is designed to rely on the DNS domains of the resources. The way
domains are matched against each other does not always correlate to the
entity that provides a resource. For example the first two lines in table 2.1
conform to SOP even if these two resources might be controlled by different

12

entities. The first one is controlled by username and the second by another.
This is an example of a false positive case. Domain matching can also create
false negatives. For example, the last two rows in table 2.1 may very well
be the same entity even though the other contains www prefix. The prefix
causes these two to not conform to SOP. DNS names can also be rebinded
for malicious purposes and to subvert the SOP [26].

The root cause of a vulnerability can be in the browser security model or in
some other factor or in a combination of these. Other factors are, for exam-
ple, problems in browser implementations, careless authors, careless users or
badly designed authentication flows. Here we concentrate on vulnerabilities
that are caused by or related to the security model implementation. The
following list is gathered based on the research done in this area and on the
Open Web Application Security Project (OWASP) Top 10 list from 2007
[27]. The OWASP Top 10 is a list of the most serious Web application vul-
nerabilities collected by a world-wide security community. The list contains
JavaScript security issues and vulnerabilities.

SOP issues The SOP was designed to isolate applications from different
domains from each other. It does not, however, have an affect on
from where the data can be loaded with, for example, script- and
img-tags. With them it is possible to define any URL in the src at-
tribute, and the resource from that URL will be loaded to current
security context. Because JavaScript supports run-time evaluation,
it is possible to load scripts from external domains that will run in
the context they are loaded to. Besides loading data, the src at-
tribute of the various elements can be used to transfer data outside
a sandbox. Data can be defined as query string parameters and sent
along with a HTTP GET request. An example of this data transfer
scenario is the URL http://any.domain.com/path?data=somedata.
Content security policies (section 3.6) have been proposed to make
these workarounds more controllable by the page authors.

Cross Site Scripting (XSS) XSS flaws occur when an attacker is able to
run code in a security context where it is not intended to run. In prac-
tise, this happens when an application renders user generated content
to a Web page without properly validating and encoding it. XSS is
possible because browsers determine the security context based on the
origin of the document and not on the origin of the script itself. XSS
can be prevented in the applications, but also more general solutions,
such as, browser-enforced embedded policy [28], static vulnerability

13

http://any.domain.com/path?data=somedata

detection [29] and dynamic Web application analysis [30] have been
proposed.

Cross Site Request Forgery (CSRF) CSRF attacks happens when a ma-
licious Web site causes user’s Web browser to perform an unwanted
HTTP request to some other site. This is possible when the browser’s
security policy allows Web sites to send requests to any domain. Typ-
ically cross site requests can be more harmful if the trusted site uses
HTTP cookies to store the user session. Browsers are implemented so
that they send cookies associated with a domain along with a request
that is made to that domain, regardless of the origin of the request.
Based on the browser security model design, there is no way to tell
where a request originates. To accomplish this researchers have pro-
posed an Origin HTTP header [31, 32]. Currently, the CSRF vulner-
ability prevention must be implemented in the application layer above
the browsers, because it cannot yet be assumed that the proposed ad-
ditional header is implemented in all browsers. Both client- and server-
side solutions for application level CSRF protection have been proposed
[33].

Session stealing Stealing of a user session happens when an attacker can
access the session identifier that identifies the session between a client
and a server. If session identifiers are stored in HTTP cookies, an at-
tacker may be able to read them programmably with JavaScript or by
eavesdropping HTTP traffic. Cookies were designed to enable the im-
plementation of state on top of the stateless HTTP protocol. Today,
they are used as the primary mean to authenticate a user in Web appli-
cations, but as such, their applicability has been questioned and more
secure cookie protocols have been proposed [34]. Browser sandbox se-
curity model was designed to prevent access to the user file system.
This is why cookies are currently practically the only way to store data
on the client side. The limitation causes application developers to use
cookies for purposes they were not designed to be used for, such as,
authentication and authorization.

Absent content security methods When a document is loaded to the
client browser, it is fully accessible to every script that is running in
the same security context through the DOM API. If the document
contains sensitive data, malicious scripts may be able to read it and
compromise the confidentiality, integrity or availability of the data.
The SOP protects the content, but because it does not have an affect
on, for example, script-tag source, sensitive data can be transmitted

14

outside the current security context to any domain by sending it as
query string parameters.

Implicit trust in domains When users browse to a Web page they im-
plicitly trust the party that controls that page. The implicit trust
allows scripts in that page to run in the user’s computer. The party
in control can be authenticated using Hypertext Transfer Protocol Se-
cure (HTTPS) with certificates signed by known Certificate Authorities
(CA). But, users browse also pages without this protection.

Integrity issues Browser security model does not guarantee Web page in-
tegrity, unless the connection between the server and the client is pro-
tected with Transport Layer Security (TLS) or some similar mecha-
nism. A user might browse to a Web page from a trusted domain,
but the page might be modified by an attacker before it is rendered
to the user. These integrity issues affect the informational content of
the page and also the JavaScript code that might be embedded to that
page. Attacks of this type are called Man-In-The-Middle (MITM) at-
tacks. Even protection on the HTTP layer is not always enough. It can
be ineffective itself [35] and it can be only used to guarantee transport
layer security. It is not suitable for ensuring application layer integrity
(i.e., has the embedded JavaScript code changed after the trusted au-
thor wrote it).

3.2 Public Key Infrastructure

Public Key Infrastructure (PKI) is the infrastructure needed for digital sig-
natures that are applied in the Web. Digital signatures together with certifi-
cates can be used for authentication and data integrity. With authentication
it is possible to confirm an identity you are dealing with. In the Web, it
is used, for example, to identify that a user actually deals with the correct
party when making money transactions. Data integrity makes sure that the
information related to the transactions stays the same end-to-end and that
it is not tampered by unknown parties (i.e., protects from a MITM attack).

The implementation of digital signatures is based on public-key cryptography.
It is a form of cryptography in which asymmetric key algorithms is used.
Asymmetric key algorithm means that the key used to encrypt a message is
different than the one used for decryption. The different key types are called
a public key and a private key. Data that is encrypted with a public key
can only be decrypted with the corresponding private key. Also the reverse

15

is true, data encrypted with a private key can be decrypted only with the
corresponding public key.

Data integrity is implemented using public and private key pairs and a hash-
ing algorithm. First a hashing algorithm is used to create a message digest
from the data. Message digest is also called a one-way hash because the
calculation can only happen one-way. It is not possible to calculate the orig-
inal data from the hash. Other important characteristics of message digests
are that they are fixed length and unique for the hashed data. Fixed length
makes them applicable for efficient encryption and uniqueness makes sure
that whenever the data is changed the message digest changes too. After
the message digest is calculated, it is encrypted with the sender’s private
key. The encrypted value is the digital signature of the message. When the
receiver gets the data, the signature can be decrypted with sender’s public
key to unpack the message digest value. Receiver can verify data integrity
by calculating the message digest from the message and comparing it to the
unpacked value. By making this check the receiver can also be sure that the
sender of the message has the private key corresponding to the public key
used for decryption.

Linking a public key to a real-world entity is done with certificates. Digital
certificates are used to claim that a public key belongs to a certain entity.
The entity can be, for example, a name of a company or a name of a server.
A certificate includes information about the entity in question, information
about the issuer and most importantly, the digital signature of the certificate
for ensuring that some trusted entity is linked to a certificate. The linkage
is checked by going up a chain of certificates and making sure that a trusted
certificate is found from the chain. Trusted certificates are called root cer-
tificates. A common application for certificates in the Web is the Transport
Layer Security (TLS) protocol [36]. It is used to provide data integrity and
server authentication in a client-server communication over the Internet.

A list of trusted CAs can be found from an operating system level or it can
be shipped along with an application. For example Web browsers such as
the Firefox comes with a list of trusted root certificates that are decided by
Mozilla. Mozilla has a public policy for managing the list of certificates 1.

Because real-world trust relationships can change, there is a need for a dy-
namic certificate verification. For example a list of trusted certificates hard-
coded in a mobile device Read Only Memory (ROM) years ago might not
reflect the current state. Also a trusted party may become untrusted, for ex-
ample, if agreements have been violated or if the party is compromised and

1http://www.mozilla.org/projects/security/certs/policy/

16

the private key is leaked. Then anyone that have an access to the private key
can pretend to be the trusted party. Certificate Revocation List (CRL) is one
of the mechanisms to handle revoked certificates. A user agent using certifi-
cates can be configured to check the certificate status online using a defined
CRL location before making a trust decision. Another mechanism is the On-
line Certificate Status Protocol (OCSP) that is designed to be more efficient
protocol [37]. Also OCSP Mobile Profile has been specified by Open Mobile
Alliance (OMA) to make the protocol more suitable for mobile environments
[38].

3.3 Signed scripts

Signed scripts can be used to identify and authenticate the source of the
scripts and to guarantee that it hasn’t been modified or tampered since it
was signed. When the source of the script is known, it is possible to imple-
ment more fine-grained security policies. Scripts can for example be granted
different privileges and capabilities based on the origin.

If a script is signed by a trusted entity, such as a well known CA or some
other Trusted Third Party (TTP), users can assume that the script does not
contain any malicious parts. It can be then granted more privileges than to
a script from an unknown source. It is possible for example to define that a
system access is allowed to all scripts that have been signed by Nokia or an
entity verified by VeriSign. VeriSign is one of the publicly recognized CAs.
[39]

Signed scripts are supported by Mozilla-based browsers such as Firefox. It
supports signing entire Web pages. Signed resources are placed into a Java
ARchive (JAR) file along with the associated signature that has been cal-
culated from the resources. The signed page is referenced with a special
URI scheme, for example jar:http://example.com/secure.jar!/page.html. Ex-
tra privileges that can be assigned to signed scripts include access to browser
settings, user browsing history and browser internal APIs. [40]

Signing scripts and Web pages addresses many of the limitations presented
in section 3.1. It is still possible to perform XSS attacks, but it is impossible
to abuse extra privileges of signed scripts. Signed scripts are isolated from
other scripts and one cannot call functions defined in the signed part outside.
Implicit trust based only on a domain and integrity issues can be handled
with signatures. The trust is not anymore fully implicit because signed Web
pages are allowed to run only if they are signed by trusted authority. Trusted

17

authorities can be predefined in browsers or users can have their own trust
chains. Integrity of the pages can be guaranteed in more higher level than
using transport layer security solutions, such as, SSL or TLS. Users can
validate that the integrity has not been compromised and that the application
has not been modified between the signing and the execution.

3.4 Security zones

Microsoft Internet Explorer (IE) has a feature called security zones that
can be used to configure different levels of security for groups of Web sites.
Web site belonging to a group belongs to a security zone. IE includes five
predefined zones: Internet, local intranet, trusted sites, restricted sites, and
my computer. All zones are by default assigned to a security level. Security
levels contains configurable security options, such as, file access, ActiveX
control or scripts and level of capabilities given to Java programs. Some
security zones are automatically recognized from the originating domain of
a page and some must be configured manually by the user or the system
administrator. [41, 42]

Like signed scripts, security zones make trusting domains more explicit. They
also allow more configurable and controllable policies. In the traditional
browser security model scripts have all or nothing type of rights, but with
security zone configurations, users can modify the settings in a more detailed
manner.

3.5 XML signatures

XML Signature is a W3C recommendation that defines an XML syntax for
digital signatures. It can be used to sign any digital content. When external
content is signed the signature is called detached and when the signed con-
tent is inside the XML signature document the signature is called enveloped.
Because XML signatures can be used to sign any content, it can also be used
to sign for example Web pages. [43]

XML signatures are not meant directly for Web browsers in the same way as
signed scripts (section 3.3), but they can be used to implement data integrity
validation and source authentication in browser-like environments. For ex-
ample the W3CWidgets specification takes advantage of the XML signatures
[5]. Like signed scripts, XML signatures depend on the PKI.

18

3.6 Content security policies

Content security policies are policies that restrict or allow content access and
that operate on the client-side. With these policies, Web page authors can
define what kind of content and from what source can be accessed on that
page. Web application authors know what kind of content and what scripts
are needed for the application to function properly [28]. Because of this,
content security policies can be predefined by the authors and enforced in
the browsers.

Examples of content policies include content security policy by Brandon
Sterne [44] and content restrictions by Gervase Markham [45]. In both,
the main issue they tackle is XSS vulnerabilities. Content authors can de-
fine from where scripts can be included to the same security context. That
prevents malicious scripts from arbitrary domain to be injected. An exam-
ple use case from the content security policy documentation is described
next. An auction site wants to allow images from any domain, plugin con-
tent from only a list of trusted media providers and scripts only from its
internal server. With content security policy proposal that use case could
be defined with the value allow self; img-src *; object-src media1.com me-
dia2.com; script-src userscripts.example.com in the HTTP header named
X-Content-Security-Policy.

Same Origin Mutual Approval (SOMA) policy is a proposed policy for the
same kind of functionality [46]. It defines a manifest file that can be used to
specify what domains can access resources. The idea in all of the proposals is
that the content authors can specify from where a resource can be accessed
from. It can be said that the access control decision is a mutual agreement
between the content author and the content integrator. Adobe Flash has
implemented this using the crossdomain.xml policy files [47].

Besides Adobe’s implementation, the content security policies are not widely
implemented in the modern Web browsers. Recently W3C has been spec-
ifying this kind of policy. It is called Cross-Origin Resource Sharing [48].
It specifies a syntax to define how resources are accessible from different
domains. It helps to deal with XSS and also makes it possible to perform
client-side cross-origin requests.

19

3.7 Server-side proxy

Server-side proxies can be used to allow cross-domain communication with
JavaScript applications running on Web browsers. The SOP restricts com-
munication to the domain the application originates, but the originating
domain can contain a proxy which forwards requests to an arbitrary domain.
It is then possible to create mashup applications that use data from different
sources. The author of the application can control which domains can be
contacted with policies that are applied in the server-side component.

An example application that uses server-side proxy is iGoogle and other
OpenSocial containers [49]. iGoogle is a customizable Web page to where
users can embed JavaScript gadgets. Gadgets fetch data using the XHR API,
so they are limited to the SOP restrictions. Cross-domain communication is
made possible by sending requests through the iGoogle server. Proxy server
forwards requests and returns them to the caller gadget.

20

Chapter 4

JavaScript runtimes

Previous chapters of this thesis have concentrated on the Web browser. In
this chapter four other JavaScript runtimes are introduced. Specifically, the
application installation process is presented. The installation process is im-
portant because that is usually the phase where trust is established and trust
decisions are made. Run-time behaviour is discussed later on in this thesis,
in section 7.5.

4.1 Apple Dashboard

Apple Dashboard is a runtime for Apple Dashboard widgets. A Dashboard
widget is a set of source code files and other resources packaged in a folder
that has the file extension .wdgt. The main metadata file for the widget is
called Info.plist where the author can define widget properties and needed
capabilities. Capabilities can include things like network access, command
line access and the usage of Internet and Widget Plug-ins. The widget can
have an access to the file system outside its container and it can call native
OS X applications through the plug-ins. This means that widgets can have
basically the same level of capabilities as the native applications. [50]

Widget packages can be acquired from anywhere. Apple also provides a
repository for widgets where users can search for widgets and download them.
During the installation process, an installation prompt is shown to the user.
An example of such prompt can be seen in figure 4.1. The prompt does not
contain any information about the capabilities that the widget gets after it
has been installed (i.e., the ones defined in the widget’s metadata file). There
is also no information about the origin of the widget. Only the widget’s name

21

and icon are shown. The question mark icon in the prompt opens the generic
help documentation for installing Dashboard widgets. The trust decision
must be made by the user based on the information that has been available
before the installation begun. That information can be for example that it
was downloaded from the Apple repository or that the package was received
from a trusted friend. Dashboard does not support signing of widgets.

Figure 4.1: Apple Dashboard widget installation prompt

4.2 S60 Web Runtime

S60 Web Runtime (WRT) widgets are JavaScript widgets for S60 mobile de-
vices. They are structurally similar than Dashboard widgets 4.1, but before
deploying they are packaged as Zip-archive with a file extension .wgz. The
process of granting capabilities differs from the way it is handled in Dash-
board so that capabilities are queried from the user during the run-time and
not during installation. Before installation, one prompt is shown to the user.
That prompt is the top left prompt in figure 4.2. If, after the widget is in-
stalled and instantiated, the widget tries to access an API that needs extra
capabilities, additional prompts are shown. Additional prompts are the ones
at the right side of the example figure. The bottom left prompt is the addi-
tional information dialog that is shown if the user selects More info from the
security warning prompt. Additional information dialog lists the capabilities
that are granted if the user accepts the request. None of the dialogs show
information about the origin of the widget. Signatures are not supported.
Consequintly no certification information can be available either.

22

Figure 4.2: S60 Web Runtime widget security prompts

4.3 Adobe Integrated Runtime

Adobe Integrated Runtime (AIR) is a runtime that can be used to run ap-
plications that use JavaScript or other Adobe technologies such as Flash.
Applications are run on desktop environment on top of the AIR and they
can have access to the operating system services through the AIR APIs. An
example of such service is file system access. All AIR applications must be
digitally signed using either self-signed certificate or a certificate issued by a
trusted CA [51]. The difference of the used certificate type is shown to the
user when the application is installed. In figure 4.3 the dialog at the bottom
is shown if a self-signed certificate is used. It says that the publisher (i.e.,
the source of the application) is unknown and that the application will have
unrestricted system access. The top left dialog is an example where the pub-
lisher of the application is verified by a trusted CA. The dialog still advices
the user to think whether to trust the publisher in question. The top right
dialog is an example where an AIR application is acquired from the Adobe
AIR Marketplace 1. It shows the originating domain of the file that will be
either installed directly or saved to the computer.

1http://www.adobe.com/cfusion/marketplace/index.cfm

23

Figure 4.3: Security prompts of a verified and unverified Adobe Air applica-
tion

4.4 W3C widgets

W3C widgets are JavaScript applications that are packaged according to the
W3CWidget Packaging and Configuration specification [5]. The specification
is W3C Candidate Recommendation from 23 July 2009. There already exists
some widget user agents that support the W3C widget format. An example is
an open source Apache Incubator project Wookie 2. Microsoft has announced
that they will support W3C widget in Windows Mobile 6.5 3 and there exists
supporting implementations for Symbian-based mobile devices 4 5.

The W3C Widgets specification does not specify how security policies are
defined or what is the conformation process. However, it does define how
widgets can be signed using XML Signatures [52]. It means that imple-

2http://incubator.apache.org/projects/wookie.html
3http://blogs.msdn.com/windowsmobile/archive/2009/03/18/windows-mobile-6-5-

what-s-in-for-developers.aspx
4http://www.samsungiq.com/
5http://www.betavine.net/

24

menters of the user agents can include policies that require certifications and
digital signature verifications. There is also an Access Request Policy speci-
fication that defines how widget network access policy must be defined [53].
Security policies might include things like a widget must be signed using a
certificate issued by a trusted CA if it needs access to arbitrary DNS do-
mains. Or that the user is prompted for an access for each domain listed in
the widget’s metadata.

25

Chapter 5

Trust establishment design

This chapter first contains general trust and trust model definitions. After
that a design of trust establishment for W3C Widgets is presented. The
design contains a description about the widget ecosystem and the relevant
trust relations. It also contains requirements for a good trust establishment
mechanism. These requirements are used to evaluate the implementation
which is described in the next chapter, chapter 6. Implementation chapter
is followed by the evaluation chapter.

5.1 Trust

Trust is a complicated phenomena that can be defined in many ways and
that is studied from many viewpoints such philosophical, sociological, psy-
chological, computer scientific, economic and legal view point. Essentially
trust is a directed relationship between a trustor and a trustee which is af-
fected by multiple factors. Trustor is a party that believes that a trustee is
trustworthy and therefor trusts the trustee. The factors that influence trust
can be classified, as shown in table 5.1. As seen in the table, both subjective
and objective properties of the trustor and trustee as well as the contextual
properties are influencing trust relationships.

The origin of trust relationships is in real world connections. The connections
can be for example social or legal. In computer science these connections
must somehow be modelled in a digital way so that they can be processed

26

Table 5.1: Factors influencing trust [1]
Trustor subjective Confidence, Belief, Gratification, Disposition
Trustor objective Goal/Purpose, Regulation, Laws, Standards
Trustee subjective Benevolence, Motivations, Honesty, Faith
Trustee objective Security/Safety, Reliability, Availability,

Integrity, Dependability, Competence, Utility,
Predictability, Maintainability, Reputation

Context Situation, Risk, Environment

computationally. This process is called trust modelling. Trust establishment
in digital world and in the Internet is usually more challenging than in the
real life because the communication channel between the different parties
is not always secure and the visual trust impression is often missing. An
important aspect of digital trust is also the fact that identities might be
faked. [1]

Trust evaluation is the technical methodology that is used to determine the
trustworthiness of a trustee. In computational trust evaluation different fac-
tors of trust are taken in consideration and a trust value is outputted. Trust
value can then be used to make trust decisions. Even though trust is a
complicated concept, in the digital world the trust decision often ends up to
be a binary value that reflects whether the trust is established or not. For
example user either allows or does not allow a widget to run.

When a system has to make a trust decision based on a policy or based
on a user interaction it has to consider whether some application is trusted
by the system. After a positive trust decision the application in question
gets capabilities. This does not however guarantee that it is trustworthy. It
means that the security of the system relies on the trustworthiness of the
application. If it proves to be untrustworthy the security of the system is
compromised.

5.1.1 Trust models

Trust model is the method to specify, evaluate and set up trust relationships
amongst entities for calculating trust. Trust modeling is the technical ap-
proach used to represent trust for the purpose of digital processing. [1] There
are many ways to model trust. They can be based for example on the PKI
[54], user behaviour [55] or reputation [56].

A common trust model applied in Web browsers and with installable appli-

27

cations is based on the PKI and trust towards a list of Certificate Authorities
(CA). As mentioned in section 3.2, a popular Web browser - Firefox - is dis-
tributed with a default list of trusted CAs. The content of the list is decided
by Mozilla. When a user downloads and installs the browser, an implicit
trust relationship is formed between the user and the CAs that are listed in
the default list.

Computational trust modeling can be used to help end-users to make trust
decisions. However sometimes the aspects influencing trust are very hard
to interpret with the means of computer science. For example, a study [57]
showed that people pay more attention to the visual design of a Web site than
to more rigorous indicators when they assessed the credibility of the site.
The scope of this thesis is the level that can be achieved with computational
means.

5.2 Design for W3C Widgets

W3C Widgets specification has been selected as the target for the trust es-
tablishment design. The specification is still considerably young and there
are not yet many major implementations in a production state. That is why
it is possible that there is room for improvements that has not been discov-
ered yet. The specification is getting lots of attention in the industry, which
indicates that the content of the specification will make a difference once
it gets implemented. W3C Widgets is also a good aggregation of different
widget runtime features. It contains properties from many of the popular
widget runtimes as described in the widget landscape document [58].

The architecture of the W3C Widgets can be seen in figure 5.1. Parts marked
with an asterisk are specified in the W3C Widgets specifications. Other parts
are technologies that are used in a traditional Web browser environment.

5.3 Widget ecosystem

The widget ecosystem includes individual people and companies who operate
in different roles. Functional roles of the different parties can be categorized
as presented in figure 5.2. The source of the figure [4] is about the mobile
ecosystem, but the same functional role classification can be used in this
context. Starting from the left side of the figure there are content owners.
Content owners can be companies or individuals (i.e., user-generated con-

28

Figure 5.1: The architecture of W3C Widgets [3]

tent). The closer to the right side the role is the closer it is to the end-user.

Figure 5.2: Functional roles in the widget ecosystem [4]

In a W3C workshop on security for device access, the use cases for security
policies were reported [59]. Those use cases relate to the widget ecosystem,
since from there it can be extracted what kind of motivations different parties
have. Trust establishment method is closely related to the security policy
conformance, so they must be implemented so that the described use cases
can be implemented.

Enterprise An enterprise that offers devices to its employees must be able
to control the policies.

Delegation Security policies and trust decision must be delegatable. For

29

example an end-user might want to delegate them to a trusted third
party.

Differentiation A party must be able to define security policies themselves
in order to differentiate. They might, for example, want to give appli-
cations or services a privileged access to certain capabilities.

Portability Used mechanisms should allow portability, so that whenever
the used device is changed the policies can be transferred along.

Duplication A user should have the opportunity to have the same applica-
tions with the same security configurations on multiple devices.

In this thesis the parties of the widget ecosystem are categorized in the
following way. The categorization does not follow closely on the business
environment, but rather concentrates how the trust relations between the
parties can be described and defined on.

User is the end-user of an application.

Application / Author is the application itself or the author of an appli-
cation that has the capability to modify it and distribute it to a user
through a Distributor. This role is separated to two parts because this
role can be trusted based on the application itself (Application) or on
the origin of it (Author).

Distributor distributes applications to users, but only controls the distri-
bution channel and not the applications themselves.

Runtime in which the applications run and that is utilized by users. It
can be either the runtime manufacturer or some party controlling the
runtime policies such as a telecom operator.

Data provider provides data that applications consume to be beneficial to
Users, for example, in the case of mashups.

5.4 Trust relationships

In this thesis there are several relevant trust relationships between different
parties that belong to the widget ecosystem. The ecosystem and the parties
are described in section 5.3 and the trust relationships between them are

30

Figure 5.3: Relevant trust relationships between roles in the widget ecosys-
tem

presented in figure 5.3. Solid arrows represents explicit relations that require
trust decisions to be made. Dashed arrows represent more implicit relations
that are relevant, but are assumed to exist naturally. For example a user is
expected to trust the runtime because she/he uses it and has decided to run
applications on top of it. Application authors are expected to trust distrib-
utor and data providers. Distributor, because that is the only way to get
their applications to users and data providers, because authors’ application
require data from those data sources to be valuable to users.

There are multiple explicit trust relations from the user and the runtime to
other parties. This is because they are the end points of the application
distribution chain and also the place where trust decisions are concretized.
For example the user either installs an application or not, or the runtime
either grants capabilities to running JavaScript code or not. Trust decisions
can be made by the runtime by counting on the transitivity of trust. In
general the transitivity means that if A trusts B and B trusts C then A
also trusts C. Conceptually it can be argued that trust cannot be considered
transitive [60], but in this context that assumption can be used to ease the
user role in making trust decisions and by doing that creating better usability.
The delegation of trust is also one of the policy requirements defined in section
5.3.

An example of harnessing trust transitivity is the way Apple distributes
applications through the App Store [61]. Users express their trust towards

31

the runtime by using their Apple devices and towards the distributor by
downloading applications from the App Store. App Store takes care of the
communication to the application authors. Authors must be a part of a
developer program before they can submit applications to the App Store.
After submission Apple checks the applications and only accepts the ones
that can be downloaded and installed by the users. Consequently, users do
not have to make an explicit choice whether to trust an application or its
author and they can rely on Apple’s judgement and policies.

5.5 Trust establishment requirements

This section lists properties that are required from a good trust establishment
implementation. The requirements are gathered based on the information
in the previous chapters of this thesis and the policy description use cases
described in section 5.3.

Effortless mapping to policies It should be easy to define security poli-
cies based on the trust establishment mechanism. Security policies
must remain manageable even if they are complex.

User experience Trust establishment should be implemented so that it is
easy to represent to the end-user. On the other hand, an end-user
must be able to delegate the trust decision to a trusted party, such as,
a hardware manufacturer or some other organization.

Developer experience Development and authoring of the applications should
be easy. Developers or application authors should not be stressed with
additional work or costs. An example of such a cost is the cost of
the developer certificates, that are needed to test applications on the
runtime they are targeted to run on.

Application updatebility After the application is installed and the trust
has been established, it must be possible to update the application
without another trust decision making if that is not needed. For ex-
ample if an application author updates the application logo there is no
need to dissolve the established trust.

Flexibility The mechanism should be flexible so that the different parties
can act independently and there is no excess processes, which limit or
slow down the application adaptation and usage.

32

Distributor control Application distributors must be able to control the
trust establishment. For example, based on the policy description use
cases, a distributor (e.g., handset or service provider) must be able to
differentiate with trust decision features.

Implementation effort Establishment should be easy to implement and it
should be clear enough so that different implementations can interop-
erate.

Easy to understand Understandability helps with many of the other re-
quirements. Easily understandable trust establishment enhances user
experience and helps the other parties dealing with it.

Compatibility with the existing infrastructure The implementation must
not create too many new concepts. It should take advantage of the ex-
isting Internet infrastructure and enable today’s business models and
business use cases.

33

Chapter 6

Implementation of originating
domain utilization

This chapter starts with an overview of the proposed trust establishment
implementation for W3C Widgets. Before the implementation details, the
widget installation process is explained and the proposed modification to the
process is described. After that comes the details of two implementation
styles. The first one is a complementary implementation to the original wid-
get specification and the second is a proposed alternative that has different
properties. The properties of each of the two implementations are compared
in the implementation summary section of this chapter. It is followed by
user interface examples that show how the proposed implementation could
be made visible to the end-user.

6.1 Overview

As described in section 3.1 the current security model in Web browsers is
heavily based on the DNS domain or the hostname that a Web page originates
from. With installable widgets there might be no connection at all to any
domain. The widget is a stand-alone package that might be distributed with
a physical media, like USB flash drive, and that does not acquire data outside
its package. An example is a JavaScript game. In case of games, there might
be no need to connect to any DNS domain during the installation or usage.

The idea in utilizing originating domain is that widgets are forced to connect
to a domain when they are installed. The domain can be showed to the user
and that information can be used to make the decision about trusting the

34

widget. A widget can be distributed from a Web portal, with a physical
media or from a user to another user. In all distribution cases, the domain
linkage always connects the widget to some existing DNS name, which the
widget author or distributor must be able to control. Being able to control
a domain means in this case that it is possible to control resources uploaded
to that domain.

Utilizing originating domain is possible already with an implementation that
is done based on the current W3C specification. The requirement is that se-
curity policies would be tied to domains rather than certificates. The problem
with the current specification is that, as mentioned, widget installation pro-
cess does not necessarily involve a network connection. The utilization could
only be possible when a widget is downloaded directly from the originating
domain. The implementation described in this chapter tries to solve this is-
sue and it also brings other benefits that are discussed more in the evaluation
chapter of this thesis (chapter 7).

6.2 Installation process

W3C Widgets installation process starts with acquiring the widget resource
as depicted in figure 6.1. Once acquired, the resource is validated. The in-
stallation process is described in the W3C Widgets 1.0 specification [5] which
is coined as traditional installation process in this thesis. In the traditional
installation process, the resource validation consists of checking that the wid-
get resource is a valid and suitable Zip-archive and that the MIME type of
the resource matches the specified widget MIME type application/widget.
When the resource validation is performed, the metadata of the widget can
be extracted and interpreted. W3C specifies a configuration document where
the widget metadata and configuration parameters are defined. A part of the
widget metadata is digital signatures [52]. Signatures can be used to authen-
ticate the widget author or distributors and to verify that the widget has not
been changed since the signing. W3C widgets can be unsigned or they can
include one author signature and/or many distributor signatures.

After the widget user agent has all the necessary information about the wid-
get available, security policies can be taken into account as seen in figure
6.1 on the right hand side. Policies can be simple or complicated and they
can originate from many parties as described in section 5.3. Policies might
involve user interaction for the trust decision or the policy might be complied
just by looking at the widget origin based on the signatures. Policy details
and how they are implemented and enforced is outside of the scope of the

35

W3C Widgets specification. After the policy is programmably complied to
or user has decided to trust the widget the installation may proceed. This
traditional installation process might be done entirely offline, but it might
also require a network connection. For example security policy enforcement
might include checking revoked certificates online and making sure that the
signer of the widget is still trusted.

Figure 6.1: Traditional widget installation process

The proposed modification to the traditional widget installation process is
presented in figure 6.2. Instead of acquiring a full widget resource, the process
begins with acquiring a widget description, which is called a widget stub. The
stub contains only the metadata and the configuration parameters which can
have an affect on the trust decision about the installation of the widget.
An important content of the stub is the information about the full widget
resource. Information includes the DNS domain name where the resource
can be downloaded and all the digital signatures of the widget. A message
digest created by a cryptographic hash function can also included. That can
be used to verify the linkage between a stub and a resource. The message

36

digest can be left optional because the trust is essentially established to an
origin and not to a specific content instance. That is why individual widget
versions do not need to be recognized and the more important thing is to
recognize the origin. Security policy enforcement and user interaction phases
are identical to the traditional installation process, but this time there is
more information that can be used to make the decision. In addition to
the author and distributor signatures the originating domain of the widget
is known. Only after a positive trust decision, the actual widget resource
is downloaded from the domain defined in the stub. When the resource is
downloaded, the defined message digest (if one exists) is used to verify that
the downloaded resource matches with the resource described in the stub.
If the verification succeeds, the widget can be installed without any user
interaction in this phase.

The proposed modification to the widget installation process can be imple-
mented as a complementary specification without making any modifications
to the original W3C specification or as an alternative implementation, which
requires more changes to the widget user agent.

6.3 Complementary implementation

In the complementary version, the widget resource can stay unmodified and
the widget stub can be used as an alternative way to install it. Resulting
widget resource and stub structure of the complementary implementation
style can be seen in figure 6.3. The stub contains the configuration document
of the widget, the information about the resource and the digital signature
files. It does not contain the actual widget implementation files, such as,
JavaScript files, images or localization files. Stub content is packaged to a
Zip-archive for distribution just like a widget resource content.

A widget user agent, which supports installing from a stub file, first acquires
a stub and then extracts the metadata and checks the security policies as
described in figure 6.2. The metadata is found from the signature files and
from the configuration file. A user agent can also use the configuration
file to determine whether the widget is supported by this user agent. The
widget might specify some required features in the feature element that are
not supported or the widget might use only window modes that are not
possible in the runtime in question. The feature element might also include
information about additional APIs that the widget wants to access and that
need to conform to the security policy. In error cases, the installation process
can be terminated or the user can prompted for a confirmation of a partly

37

Figure 6.2: Proposed widget installation process that utilizes originating
domain

incompatible widget installation or a permission for an API access. In this
phase, other descriptive metadata can be shown, such as, the description, the
author and the license information of the widget. In regard to the proposed
installation process, the most important information shown in this phase is
the originating domain. Examples about how this could be visible to the
end-user can be found from section 6.6.

The format of the files in the widget resource can be found from the W3C
Widgets specification [5]. Widget resource must contain a Configuration
Document called config.xml and it may contain signature files. Signature
files are XML files that have the suffix .xml that follow the defined naming
convention. Author signature file must be named author-signature.xml and

38

resource/
|-- author-signature.xml
|-- config.xml
|-- icon.png
|-- images
| |-- image1.png
| ‘-- image2.png
|-- index.html
|-- scripts
| |-- script1.js
| ‘-- script2.js
‘-- signature1.xml

stub/
|-- author-signature.xml
|-- config.xml
|-- resource.xml
‘-- signature1.xml

Figure 6.3: An example of a widget resource and a widget stub

a resource can contain zero or one author signature. Distributor signature
file name is in the format signature([1-9][0-9]*)?.xml when expressed as a
regular expression. A widget resource may contain any number of distributor
signatures. In figure 6.3, the author signature is called author-signature.xml
and the one and only distributor signature is called signature1.xml.

The stub package contains one additional file that is not specified by the
W3C. It is the file called resource.xml, which contains information about the
linked widget resource. The configuration document and the signature files
are identical in both packages in the complementary version of the proposed
modification. The resource file may contain signatures by the author or
distributors, but it can include just the reference to the widget resource. It is
important that the signing process is optional because one of the advantages
of the proposed modification is the added easiness for the widget author when
there is no need to deal with signatures and certificates. In addition to the
resource file name a file extension and a MIME type must be defined for the
widget stub. The stub describes the widget resource so it is proposed that
the MIME type is application/widget-description and the file extension .wdd.

An example of a resource file without signatures can be seen in figure 6.4.
It has a resource element as the root element that has a src attribute that

39

points to the location of the widget resource. The format of the resource file
is inspired by the format of the Update Description Document (UDD) that
is defined in the W3C Widgets Updates specification [62]. One of the design
principle of the implementation is to introduce as few new XML elements
and constructions as possible. That is why the message digest of the widget
resource also reuses definitions from the W3C digital signatures specification.
The message digest is described inside a DigestMethod element. Only new
element, this proposed implementation introduces, is the resource element,
which should be added to the widgets namespace.

The example defines that the used digest algorithm is SHA-256 which is the
only algorithm that must be supported to conform the Widgets Digital Sig-
natures specification [52]. SHA-256 can also be considered more secure than
SHA-1 or MD5 because they are known to be vulnerable due to found colli-
sion mechanisms [63]. Widget user agents may also support additional digest
methods. The used method must be defined in the Algorithm attribute. In
practise, the value of the message digest is calculated from the widget re-
source file, which is called widget.wgt in the example. After calculating the
SHA-256 hash from the file, the value is Base64-encoded like the W3C XML
Signature specification defines. A reference implementation for calculating
the value of the DigestValue element written with Python can be found from
figure A.2. The resulting value is denoted as three dots which is also the
notation used in the W3C digest value examples.

<widgets:resource
xmlns="http://www.w3.org/2000/09/xmldsig#"
xmlns:widgets="http://www.w3.org/ns/widgets"
widgets:src="https://example.com/v1.1/widget.wgt">

<DigestMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

<DigestValue>...</DigestValue>
</widgets:resource>

Figure 6.4: An example of a resource file without signatures

As mentioned, it is possible for the author or the distributor to add signatures
to the resource file. They can be used to verify that some known party (e.g.,
party verified by a trusted CA) has defined the source of the widget resource.
Signatures to the resource file are proposed to be implemented using the same
mechanism that is used in the W3C Widgets Digital Signatures specification.
Figure A.3 contains an example of a resource file that contains one distributor
signature. Compared to the file without signatures (figure 6.4) this file has

40

a Signature element as a children of the root element. All the elements,
attributes and namespaces inside the signature element are defined in the
W3C specification. No new elements are introduced. An element called
SignedInfo is an important element because it defines what information is
signed. Here, the signed information is, that this resource file points to
a widget resource located in the location which can be found from the URI
attribute of the Reference element. The root widget element does not contain
a src attribute because that information is found from the signed content.
Signed is also the digest value of the widget resource so that it can be made
sure that the acquired resource was the one that this resource file was about.

The resource file with a distributor signature also contains information about
the role of the signer. Roles are defined by the W3C, and in this case the
role of the signer is a distributor. An example use case for different roles
is that first a company signs an application to prove that it is written by
that company. After that a distributor signature is used by another com-
pany’s network administrator to verify that the application is approved for
use within that company. In the end of the file, is the actual signature value
and the certificate.

To process a widget stub a user agent must begin with extracting the stub
Zip-file. The files inside the stub are processed to find signature files, the
Configuration Document and the resource file. Signature files and the Con-
figuration Document are parsed like W3C defines in [5] section 10. That
section describes the processing rules for a widget resource package that re-
semble closely the rules for a widget stub.

The resource file must be called resource.xml. Once it is found, it can be
examined. To determine whether it contains signatures, the widget user agent
must see is there an element called Signature as a child of the root element.
If there are signatures, they must be processed like defined in [52] section
4, which defines digital signature processing. If there are no signatures, the
location of the widget resource can be read directly from the src attribute
of the root widget element. After these steps, the widget user agent has all
the information needed for enforcing the defined security policy and finally
determining the trust decision. In the proposed widget installation process
(figure 6.2) this state is called “Security policy enforced”. The resource file
could also contain other information about the widget that might affect the
user’s decision about the installation. One example is the size of the widget
resource package. This additional information is loosely related to the trust
decision, so it is left outside of the scope of this thesis. However, it is relevant
when looking from the user experience perspective.

41

6.4 Proposed alternative implementation

The complementary implementation above contains redundant data between
the widget stub and resource. Same signature files and configuration doc-
ument must be included in both. The purpose of the proposed alternative
implementation is to reduce redundancy, make the installation process more
efficient and make the implementation more effortless. The signing imple-
mentation is inspired by the implementation that is used to sign Java MIDlet
Suite’s Java ARchive (JAR) files [64]. MIDlets are Java applications writ-
ten for the Mobile Information Device Profile (MIDP), which is a profile of
Java ME. MIDlet distribution can be done with two files - JAR and Java
Application Descriptor (JAD) file. These files can be compared to widget re-
source and widget stub respectively. JAR file is a Zip-archive that contains
the application and a JAD file can be used to hold metadata about the ap-
plication (e.g., configuration parameters and signatures). According to the
MIDP 2.1 specification [65] each JAR file may be accompanied by a JAD
file and the JAD file can be used for application management. User agent
can determine whether a MIDlet is suitable to run on it based on require-
ments listed in the JAD file. It also allows to specify configuration-specific
attributes that are supplied to the MIDlets without modifying the JAR file
(i.e., the application package can stay unmodified). An example JAD file is
presented in the figure 6.5. It contains similar information that a widget stub
6.3 does. Widget Configuration Document information can be compared to
configuration-specific parameters; JAD can contain signatures from the JAR
file and also the location of the JAR is expressed.

MIDlet-1: Midletti, icon.png, com.example.midletti.MainMidlet
MIDlet-Name: Midletti
MIDlet-Version: 1.1
MIDlet-Vendor: Example Company
MicroEdition-Profile: MIDP-2.0
MicroEdition-Configuration: CLDC-1.0
MIDlet-Permissions: javax.microedition.io.Connector.sms
MIDlet-Jar-URL: http://example.com/midletti.jar
MIDlet-Jar-Size: 7230
MIDlet-Jar-RSA-SHA1: ...
MIDlet-Certificate-1-1: ...

Figure 6.5: An example JAD file that describes an example MIDlet

The syntax of a JAD file is based on key-value pairs separated by a :-

42

character. W3C does not specify such syntax in the context of JavaScript
widgets. The same information can be expressed with XML or JavaScript
Object Notation (JSON) [66]. In this thesis, a Widget Description Docu-
ment (WDD) is proposed to describe widget resources in the same way as a
JAD file describes a JAR file. A WDD file must at least contain the location
of the widget resource and can contain any number of additional metadata
about the widget. Such metadata include signatures or information that is
defined in the W3C Widgets specification in the Configuration Document,
the update description document or the access-element. This information
does not need to be repeated in the widget package itself and means that
there is no redundant definitions.

WDD file must be recognizable by a widget user agent when encountered
from a file system or when downloaded from the Web. That is why WDD
files must have a unique file extension and when served over the Internet
they must be served with a certain MIME type. In this thesis it is proposed
to use .wdd as the file extension and application/widget-description as the
MIME type similarly as in the complementary implementation.

As mentioned, there are two possible syntax selections; either XML or JSON.
An example of the same information written with both syntaxes can be found
from the figure 6.6. There are many tools that can be used to convert from
XML to JSON or vice versa, for example, 1, 2 and 3. However, if it is decided
that both syntaxes are supported, the exact formula of the conversion should
be defined formally and in detail. The information presented includes the
widget resource location and additional metadata that would be tradition-
ally included in a configuration document. For example, it is defined that
the widget needs the camera feature and an application parameter called
apikey with the preferred value is included. That value must be accessible
when the widget is instantiated after a possibly successful installation. This
gives the flexibility to change application configuration parameters without
changing the actual widget resource package or signatures calculated from
that package.

Other than the WDD document, the alternative implementation differs in
the way the signing is implemented. The W3C Widgets Digital Signatures
specification [52] specifies that the content of the widget package is signed file
by file. In more detail, the message digest values of the separate files in the
widget package are signed. In this thesis, it is proposed that only the message

1http://www.json.org/example.html
2http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html
3http://www.xml.lt/Blog/2009/01/21/XML+to+JSON

43

digest value calculated from the widget resource package is signed. This is
a similar approach to the Java MIDlets. In the example JAD (figure 6.5)
the signature of the JAR file is the value of the key MIDlet-Jar-RSA-SHA1.
The public key that corresponds to the used private key is found from the
certificate that is the value of the MIDlet-Certificate-1-1 key. MIDlets can
be signed using multiple certificates, but all certificates must be for the same
public key. The MIDP 2.1 specification defines: “If multiple CA’s are used
then all the signer certificates in the application descriptor MUST contain
the same public key.” [65].

The signature definition format of the WDD is proposed to be different de-
pending on the used markup syntax. When using XML, it is natural to follow
the W3C XML Signatures specification. When using JSON, a less verbose
format can be used. Figure 6.7 shows how signatures can be described in
JSON format. The author-signature and signature1 keys have semantically
the same meaning as author-signature.xml and signature1.xml in figure 6.3.
Those were described in more detail in section 6.3. The RSA-SHA256 mes-
sage digest values are calculated from the widget resource package which is
referenced in the example. A reference implementation for calculating the
message digest can be found from figure A.2. Certificates are defined as
values of a Certificate-1-1 key. The numbers in the key name are used to
include multiple certificates and to express certificate chains. The key name
format is Certificate-<n>-<m> where n is a number starting from 1 and de-
scribing the number of the certificate chain. After that is m which describes
the position of a certificate in the chain. This allows signing with interme-
diate certificates that can be verified from a root certificate after following
the chain to the root. Signatures in the WDD file in XML format follow
the W3C specification so that the resulting file includes a Signature element
from which an example can be found from figure A.3.

6.5 Implementation summary

In section 6, two different implementation options were presented that allow
the new proposed installation process, which is shown in figure 6.2. The first
is called the complementary and the second is called the proposed alternative
implementation. The main difference compared to the W3C Widgets [5] is
that they both split the widget into two files instead of just the widget
resource package. In the complementary implementation, the additional file
is called the widget stub and it is a Zip-archive just like the widget resource.
In the alternative implementation the additional file is called the Widget

44

Description Document (WDD), which is not a Zip-archive, but a textual file.
In both of the implementations the purpose of the splitting is to allow the
usage of the originating domain to make a trust decision. Splitting brings
also other benefits that are discussed in the section 7.

The main difference between the complementary implementation and the
proposed alternative is the way how signatures are defined. The comple-
mentary follows more closely to the W3C Widgets Digital Signatures [52]
specification and signed content is individual files inside a widget resource
package. Alternative implementation takes more properties from the Java
MIDlet signature implementation where the package is signed, and not the
individual files. Another difference is that the alternative implementation
can be made more efficient by including some or all of the metadata about
the widget to the WDD and removing it from the widget resource package.
However, this breaks the compatibility with the current W3C widgets spec-
ification. After removing the metadata from the widget package, it cannot
be installed anymore to a user agent that only supports the W3C-defined
installation process.

The alternative implementation includes two options for the syntax of the
WDD file - XML and JSON. When using XML, W3C XML Signatures [43]
can be used and the widget metadata can be expressed in the XML file like
defined by the W3C. When using JSON, the signature format can be made
simpler and a mapping from the metadata configurations from XML to JSON
is needed.

6.6 User interface examples

The proposed implementations allow the usage of the originating domain as
the source of the trust. This section contains User Interface (UI) examples,
which demonstrate how the implementations could be visible to the user. In
figure 6.8, the prompt on the left side would be shown to the user if the
widget comes from an arbitrary domain, does not use secure connection such
as SSL/TLS and does not contain signatures. To help the user to make
the trust decision, the originating domain is the biggest textual element in
the prompt. The red color is used to mark that the platform was unable
to verify the origin and that the user should notice the domain. The next
prompt in the figure could be shown if the widget from an unverified source
uses some privileged APIs. In the example, the widget needs access to the
location, network and camera. User can either allow or disallow the access.
After a positive trust decision, the installation may begin and the actual

45

widget resource will be downloaded. No user interaction is needed after this
phase, so the user can perform other tasks while the widget is downloaded
and installed. This can be shown to the user, for example, with the third
prompt in the figure.

If the widget user agent has more information about the trustworthiness of
the source it must be visible to the user. In figure 6.9, the leftmost prompt
could be used if the widget is from an arbitrary domain and uses secure
connection with a certificate issued by a trusted CA. The green color of the
domain name is used to indicate that the source can be more likely trusted
than in the first example where red color was used. Yellow color is used in
the prompt in the middle when the widget uses secure connection, but the
certificate can not be verified. In that situation the integrity of the down-
loaded widget is guaranteed but the source can not be authenticated by the
user agent. The third prompt in the figure shows a green company name
instead of a domain name. This kind of prompt could be used when signa-
tures are used and the certificate can be verified. When the user agent can
authenticate the source, there might be no need for an access control prompt
like in the middle of the figure 6.8. Security policies can be defined so that
widgets from a certain origin or signed by certain parties are automatically
granted the access to some or all privileged APIs.

46

<?xml version="1.0" encoding="UTF-8"?>
<widget xmlns="http://www.w3.org/ns/widgets"

src="https://example.com/v1.1/widget.wgt"
viewmodes="application fullscreen">

<name>
The example Widget

</name>
<feature name="http://example.com/camera">

<param name="autofocus" value="true"/>
</feature>
<preference name="apikey"

value="ea31ad3a23fd2f"
readonly="true"/>

</widget>

{
"widget" : {

"src" : "https:\/\/example.com\/v1.1\/widget.wgt",
"viewmodes" : "application fullscreen",
"name" : "The example Widget",
"feature" : {

"name" : "http:\/\/example.com\/camera",
"param" : {

"name" : "autofocus",
"value" : true

}
},
"preference" : {

"name" : "apikey",
"value" : "ea31ad3a23fd2f",
"readonly" : true

}
}

}

Figure 6.6: Widget description file with XML and JSON syntax

47

{
"widget" : {

"src" : "https:\/\/widget.example.com\/v1.1\/widget.wgt",
"author-signature" : {

"RSA-SHA256" : "...",
"Certificate-1-1" : "..."

},
"signature1" : {

"RSA-SHA256" : "...",
"Certificate-1-1" : "..."

}
}

}

Figure 6.7: Widget description file signature definition format when using
JSON syntax

Figure 6.8: Example security prompts for a widget from an arbitrary domain

Figure 6.9: Example prompts for widgets with various source configurations

48

Chapter 7

Evaluation

In this chapter, the implementation described in the previous chapter is ana-
lyzed based on the design requirements from chapter 5. Also the benefits and
drawbacks of the two implementation styles and other existing solutions are
presented. The trust establishment implementation covers only the widget
installation process. Restricting the capabilities that are granted during the
installation is discussed in the last section of this chapter.

7.1 Evaluation against design requirements

This section contains an evaluation of the implementation described in chap-
ter 6 based on the trust establishment requirements described in section 5.5.
The list of requirements is gone through item by item and it is evaluated how
well does the implementation meet the requirements?

Effortless mapping to policies Mapping can be done by listing DNS names
and associating the policy and granted privileges to each origin. DNS
names are human-readable so a policy definition list can be interpreted
by looking at the policy file and it can be understood without addi-
tional documentation. Mapping from DNS names to capabilities al-
lows hierarchical and flexible mappings. For example, a regular expres-
sion https://[^.]*.example.com could be used to match all domains
which are directly under example.com and are protected with a secure
connection.

User experience A user that is used to browse the Web has at least some
conception of DNS names and what they are about.

49

https://[^.]*.example.com
example.com

Developer experience DNS names have a relatively long history in the
Internet era so they are well known. It is easy to acquire a DNS name
and most developers and companies already have one. The cost for a
DNS domain name is low. There is no need for separate development
time certifications (i.e., developer certificates) if the application can be
downloaded from a trusted origin during the development. Name-based
policies and implementations are easier to debug than cryptographic
hashes and signatures.

Application updatebility When the trust is based on the originating do-
main, updates can be deployed without renewing the established trust.
Application author can upload the new application to the server and
the existing trust relation and related policies will remain.

Flexibility The content itself is not examined when the trust is based on
the origin. It brings flexibility to the development and deployment.
When the application package and the description file are separated
it is possible to configure the application and the related metadata
without modifying the application.

Distributor control Distributors can define their own policies and define
which of the origins are trusted. When the application description is
separated, a distributor can sign content as trusted without having the
control of the widget package.

Implementation effort Most platforms that will support JavaScript wid-
gets probably already have a Web browser implemented. It means that
most required components already exist. Those include used protocols,
such as, DHCP, SSL/TLS and HTTP.

Easy to understand Because of the human-readable nature of DNS do-
main names, they are relatively easy to understand when comparing to
digital signatures and certificates.

Compatibility with the existing infrastructure The proposed implemen-
tation does not introduce new technologies as such and can be realized
with the existing infrastructure. DNS domain name system is so funda-
mental mechanism of the Web that it is probably not going to change
or disappear rapidly.

50

7.2 Comparisons

7.2.1 Certificates versus originating domain

Costs Both certificates and DNS domain create costs. As an example at
1.8.2009 the costs for a .com domain were starting from 5 euros per year
and for a code signing certificate 140 euros per year from an example
service provider called Go Daddy 1. DNS name require a DNS server
configuration that adds some costs. DNS name can be protected with
a SSL/TLS encryption to authenticate the server and to guarantee
integrity, and the costs for that at Go Daddy start from around 20
euros per year. Usually, companies and developers already have a DNS
domain acquired so in those cases this does not create any additional
costs.

Security Certificates can be considered a more secure indicator of the ori-
gin. The used cryptography does not contain any significant weaknesses
and the authentication of the real-world entity is done more reliably
than when acquiring a non-secure .com domain for example. However,
if encryption is used, the authentication process is similar in both.
DNS contains some known vulnerabilities like Denial of Service (DoS)
and DNS rebinding [26]. They are threats to the domain-based origin
model, but are difficult enough to carry out in practise so that they
do not jeopardize the applicability of the model. Centralizing the trust
authority creates a big risk if the authority is compromised. For exam-
ple, if a private key of a trusted CA leaks, it is possible to create fake
certificates that look like verified by the CA.

Authoring Certificates are used together with digital signatures that are
calculated on per widget instance basis. It means that every time
the widget changes a new signature process must be carried out. The
domain-based model uses the origin of the code as the trust indicator so
different widget versions are considered equally trusted as long as they
come from the same source. In the JavaScript widget environment,
the party responsible for the code is more important than the code
itself. This is because widgets can be dynamic and they can change
themselves after they have been installed (section 7.5).

User experience If a widget author does not have the opportunity to use
certificates and is forced to deploy a widget without signatures or with a

1http://www.godaddy.com

51

self-signed certificate there is very little information that can be showed
to the user when making a trust decision. A DNS domain offers at least
some hint to the user about the origin of the application even if the
origin is not verified by a trusted party. Another view point in regards
to the user experience is that domain names are known to the user at
least on some level. They are used in other trust-related decision in
the context of W3C Widgets. The Widget Access Request Policy [53]
specifies how to define the network access policy of a widget. The policy
definition includes a list of domains that are accessible by the widget.
It means that if these access policy definitions are used, a widget user
agent is anyway forced to determine the trust towards a domain. The
policy conformation might require user interaction, which means that
user has to think about DNS domains.

Policy reusability There are use cases where domain names are used as
the keys when defining security policies. An example is the Geolocation
API and how it is implemented in Firefox 2. Users can grant Web sites
a permission to access the location information. It means that domain
names are mapped to access control policies. Same policies could be
used between a browser and a widget user agent. It is expected that in
the future more and more APIs will be made available from the widget
and also from the browser execution context [59].

Monopolism In a situation where a certification from a certain Certificate
Authority is needed to run an application on a runtime, it can be said
that the CA has a monopolistic position. All application authors must
purchase a certification service to be able to deploy on that particular
runtime. Leveraging DNS mechanism does not create such monopo-
lism that easily because the DNS infrastructure is not controlled by
an individual company. It is a world-wide system with a hierarchical
structure 2.4.

Past experiences Signatures and certificates are the trust mechanism for
J2ME MIDlets. Today, the related ecosystem is very complex and does
not work well. It is said that the signing is even killing the whole tech-
nology because it makes application development and deployment so
hard 3 4 5. The costs of the required certificates have become unbear-

2http://www.mozilla.com/en-US/firefox/geolocation/
3http://javablog.co.uk/2007/08/09/how-midlet-signing-is-killing-j2me/
4http://www.spenceruresk.com/2007/05/26/the-hidden-problem-with-j2me/
5http://blog.javia.org/midlet-signing/

52

able for individual developers. The reasons for the failure are not so
much technical though, but rather business and political reasons.

7.2.2 One package versus two packages

Flexibility A third party can sign a widget as trusted without the widget
author even knowing about it. As an example an operator could sign a
widget that is distributed by a third-party developer so that the actual
widget package does not need to be touched. The signatures are added
to the widget stub or to the Widget Description Document.

User experience A widget stub or a WDD is smaller than the widget pack-
age, which means that it can be acquired faster. In mobile context,
when the used network connection is slow, the time difference can be
remarkable. Faster acquiring means that the user can make the trust
decision and the decision about installing a widget more instantly. Only
after a positive decision the widget package is downloaded. Widget
compatibility with the user agent in question can also be checked based
on the first file. If only one widget package would be used it should
first be downloaded as whole and in a case of a negative decision there
would be unnecessary download rate used. This might create costs to
the user if flat rate data plan is not used. In the installation experience
flow, it is more natural to make all decisions as close to each other as
possible. The first decision is to download a widget (e.g., click a down-
load link from a widget portal) and the second is whether to actually
install the downloaded widget. If the widget package download takes,
for example, 20 minutes the user flow has already been broken if the
installation decision has to be made only after the download.

Distribution If a widget is separated into two packages it can be distributed
more easily. The actual widget package can be hosted in one place
where it is easy to manage and update and the descriptor file can
be the one distributed. For example, a company can have a widget
catalogue hosted at their domain, but WDD files of the widgets can be
uploaded to several widget repositories and portals.

7.2.3 Complementary versus alternative implementation

Signing individual files The alternative implementation does not support
signing individual files. The widget package altogether is signed. There

53

is usually no need to sign files separately. It complicates the signing
process and the trust decision is a binary choice about whether to
install an application or not. Individual source code files are not good
separately and they always are an integral part of a total widget.

Metadata syntax Complementary implementation uses XML to describe
metadata, but alternative implementation includes an optional use of
JSON. JSON creates smaller files because it is less verbose than XML.
Parsing JSON is also becoming faster because native JSON parsing has
been implemented in some of the latest popular browsers and widget
user agents are often based on those browser engines. However, XML
can be also made more efficient with binary formats, such as, the Xebu
[67].

XML Signatures The complementary method uses XML Signatures which
are more complex and harder to implement than the signature method
in the alternative implementation. W3C Widgets Digital Signatures
require XML to be canonical and because of that, the widget user
agent must also implement at least the one required canonicalization
algorithm [52].

7.3 Evaluation against browser security model
limitations

JavaScript security model limitations in browsers were discussed in section
3.1. The SOP-based security model that relies heavily on DNS domains
was described to contain many limitations and weaknesses. Browser security
model is related to widget user agents because the underlying technology
stack is the same in both. Widgets also run on top of engines that are capable
of executing applications written with Web technologies. In this section, the
list of browser security model limitations is evaluated in the context of W3C
Widgets and the proposed trust establishment mechanism.

SOP workarounds W3CWidgets Access Requests Policy specification deals
with widget network access control. It is possible to make a whitelist
of domains that are accessible from the widget execution context. This
helps to deal with SOP workarounds, but requires that the access policy
also affects to script- and img-tags in addition to the XHR access.

54

Cross Site Scripting (XSS) XSS attacks cannot be coped with the Access
Requests Policy, but the damage that the attack causes can be reduced.
Even if an attacker can inject JavaScript code to an execution context,
it is not possible to steal data that easily when the access outside
the context is managed with policies and it is not possible to make a
connection to an arbitrary domain. The risk for an XSS attack still
remains if proper input/output validation is not done properly or there
is no other mechanism in place that prevents them.

Cross Site Request Forgery (CSRF) The damage of a CSRF is usually
considerable if HTTP cookies are used for identifying and authenti-
cating the client. Widgets can have more novel ways of storing state
information in the client-side. For example, in W3C there is the Web
Storage specification [68] that can be used to store data in the client-
side if the specification is implemented by the widget user agent.

Session stealing Session stealing is as big of a problem with widgets than
it is in the traditional browser environment. The main reason is that
the communication channel between a client and a server can be eaves-
dropped if it is not secured. However, some widgets might not need a
server-side component and they could run only locally. The proposed
implementation forces a connection to a domain. If session informa-
tion is used during the connection it can be said that the proposed
implementation is more vulnerable to session stealing. A game widget
without the need to connect anywhere is safe because there is no session
to steal.

Absent content security methods This limitation is even more risky with
widgets because many widget runtimes offer privileged APIs that can
be called from widgets, but not from a browser environment. W3C
has formed a Device APIs and Policy Working Group Charter 6 who’s
task is to create a framework and policies for defining access control for
security-critical APIs. An access control policy is needed for a content
and API access so that they are harder to abuse by malicious parties.

Implicit trust in domains The proposed implementation makes the trust
towards a domain more explicit. The domain is trusted either by user’s
direct decision or by the fact that a pre-defined policy indicates that
the domain is trusted. Also the Access Requests Policy deals with this
limitation because the widget author has the possibility to explicitly
list which domain can be connected to (i.e., can be trusted).

6http://www.w3.org/2009/05/DeviceAPICharter

55

Integrity issues A widget runtime has the same technologies available for
integrity issues than a browser runtime. SSL/TLS can be used for
transport layer integrity and there exists also technologies and meth-
ods for more higher level integrity. Digital signatures defined in the
Widgets specification are one of the enablers that can be used for appli-
cation level integrity. They can be used in the traditional W3C-defined
implementation and in the proposed implementation.

7.4 Other possible solutions

7.4.1 Decentralized trust

The trust model is centralized with certificates and the PKI. The root of the
trust is CAs that certify other parties. An alternative model is to decentralize
the trust. One example concept that leverages this model is the web of trust
[69]. It is used in Pretty Good Privacy (PGP) to bind public keys to users.
In PKI, public keys are bind to real-world entities by CAs, but in web of
trust binding is done by other users of the system. The same kind of concept
could be used to make a trust decision about an application. If users that
are in your web of trust have trusted an application it could be trusted by
you too.

Similar content trustworthiness concepts have been developed for Peer-to-
Peer (P2P) networks where users share resources with each other. An exam-
ple of such an approach is the EigenTrust algorithm [70]. It is a reputation
system where a trust value is calculated for each peer in the network. The
value is used to determine from whom other peers download their files and to
isolate malicious peers from the network. Same kind of reputation system has
been proposed at [56]. Reputation models could be adapted to application
trust establishment by calculating trust values to application authors, dis-
tributors or applications themselves. Values could be based on a feedback or
rankings given by other users or recommendations made by other developers.

7.4.2 Source code and behaviour analysis

One approach to determine whether an application can be trusted is to look
at the application itself. Other approaches proposed or presented in this
thesis rather look at where the application comes from or who has verified
that the application can be trusted. Source code could be automatically

56

analyzed in two ways - either statically or dynamically. In statical source
code analysis, the application is not executed. The source is interpreted by
an external computer program that tries to determine properties about the
source. In dynamic analysis, the source code is executed and the behaviour
is examined during the run time.

In the case of JavaScript widgets it could be determined that the application
does not call any sensitive APIs and that it does not use a network connection
at all. Those applications could be installed with relaxed security policies
(e.g., by not prompting a permission from the user). Statically this could be
done, for example, by using regular expressions to look for certain patterns
or API calls from the source [29].

Dynamic analysis could be done by monitoring JavaScript applications and
evaluating the actions that the application performs. Auditing information
and intrusion detection techniques can be used to detect malicious actions
[71]. Another dynamic behaviour detection mechanism is to examine the
HTTP traffic that a JavaScript application causes [30].

7.5 Restricting granted capabilities

After the security policy for widget installation is enforced, widget is installed
and the widget has been given a set of capabilities. The capabilities must
be restricted so that they are granted only to the correct application or even
only to parts of it. Capabilities are things like the capability to install the
application, to update it, to access the network or to access some private
information about the user. In a mobile device an example is a capability
to read user’s SMS messages. A more cross-platform example is the location
information. W3C specifies the Geolocation API [72] that is implemented,
for example, in the latest Firefox version 7 and in the iPhone version of the
Safari browser 8. It allows JavaScript code to access user’s location through
an API call.

In the case of JavaScript applications restricting capabilities is harder than
with some other programming languages. The security model has limitations
like described in section 3.1 and the dynamic nature of the language makes
it possible for applications to change their behaviour. For example, a signed
JavaScript widget might become intentionally or unintentionally malicious
after installation through a XSS attack or after an update. Applications

7http://www.mozilla.com/en-US/firefox/geolocation/
8http://blogs.computerworld.com/iphones_safari_browser_to_include_geolocation_0

57

might also mashup data from different sources, so they might be vulnerable
if some of the sources are compromised or starts to behave maliciously.

There exists lots of research around JavaScript sandboxing and secure mashups
in browser environments like discussed in chapter 3. Although many of them
are primarily designed for embedding JavaScript programs from different
sources to a single Web page, some of them are applicable for restricting
granted capabilities in the context of W3C Widgets. An important differ-
ence between browser mashups and widgets is that widgets are client-side
stand-alone applications. Browser mashups are more like widget containers
that can include many widgets running in a single browser window and that
require some kind of server component.

An inter-widget communication protocol has been proposed [73] and it is
referred in the W3C Widgets URI Scheme [74] specification, but it is not
yet specified by W3C. For this reason, in this thesis widgets are considered
as independent applications and the restriction of capabilities is considered
only in the scope of a single widget.

One option to restrict capabilities is to sandbox JavaScript code like done
with signed scripts (section 3.3). Scripts that are signed may be granted
extra capabilities, but they cannot interact at all with unsigned code. This
can be seen as a full restriction and provides good security. The downside
of the method is that it requires support from the widget engine. It cannot
be leveraged as a cross-platform solution because there is no common signed
scripts support available on different platforms. The method also limits some
use cases when the code needs to be able to update itself or when it needs
to communicate with unsigned code.

The next level of restriction can be done on the JavaScript level rather than
in the platform. Examples are Google Caja [75], FBJS [76] and Microsoft
WebSandbox [77]. They are ways to “sanitize” JavaScript code by doing
a source-to-source translation. JavaScript code is translated to a format
that allows better control of the running code. In Caja, the target is to
allow object-capability programming model. Without translations, object-
capability model is hard to implement because JavaScript has a global vari-
able that is accessible by all JavaScript code. It means that there is no way
to protect modules or parts of the application. When a malicious script gets
to run in a JavaScript context, it has access to all information that the other
code has too (i.e., granted capabilities also leak to the malicious code). Caja,
FBJS and WebSandbox define a subset/superset of JavaScript and prevent
developers to use the standardized language. They also cause a performance
penalty and result in bigger applications. This is because additional logic

58

and run-time checks have to be added to achieve the pursued goal. For
example the authors of the WebSandbox tell in their presentation that the
performance is 1.5-4 times lower when using their implementation [78].

Besides source-to-source translation, JavaScript language can be made more
secure by using a safer subset from the beginning. This is the approach taken
in ADsafe [79]. ADsafe defines a safe subset of the JavaScript language so
that applications that use only that subset can be safely embedded into a
Web page. The primary use case is advertising. Third party advertisements
coded with JavaScript are safe to embed if they are coded using the ADsafe
subset. The conformance can be checked with a validator. The advantage
over translating approaches is that no additional code is injected to the ap-
plication, so it can run efficiently.

Adobe AIR introduces a security sandbox solution for restricting privileged
API access to only to the initial application code. Initial application code
is code that is packaged in the application and that code runs in an appli-
cation sandbox. Code running in an application sandbox has access to AIR
APIs such as the file system API. It is not possible to load code outside
the application package to the sandbox. Files and code loaded outside the
application are placed to a non-application sandbox which has more relaxed
policy. Code running there can load scripts from the network and create
JavaScript code dynamically. For example the use of eval is prohibited in
the application sandbox, but can be used in the non-application environment.
Non-application sandbox prevents accessing APIs that could potentially be
used for malicious purposes. AIR also defines a bridge API that can be used
to communicate between the different sandboxes. [51]

All the methods above can be used to restrict granted capabilities. Most im-
portantly, they protect against attacks such as XSS and CSRF. They do not
help in the case where the widget author intentionally develops a malicious
widget. In those cases, there should be mechanisms to block the access from
widgets that are noticed to behave maliciously. With certificates, a certifi-
cate revocation mechanism could be used and in case of domain-based trust
model a dynamic blacklisting of domains could be in place.

59

Chapter 8

Conclusion

In this thesis, a new trust establishment mechanism for installing JavaScript
applications was implemented on top the W3CWidgets specification. Instead
of digital signatures the new mechanism is built on DNS domains. DNS is a
fundamental system in the Web infrastructure and the way trust authority is
hierarchically distributed in it suits well with the JavaScript widgets ecosys-
tem. In the DNS based model, the trust is formed towards an origin of an
applications rather than towards a single application instance. This brings
flexibility to the application development and distribution phases. The new
trust establishment mechanism makes it possible to create more user-friendly
installation flow where the trust decision can be made before acquiring the
actual application package.

In addition to the implementation details, the implementation was evaluated
against a set of defined design requirements. The evaluation indicated that
the new proposed trust establishment mechanism has potential. Digital sig-
natures have failed to fulfil their purpose in the case of Java MIDlets. DNS
based model has properties that could prevent such a failure. One of them is
the fact that the DNS is not controlled by companies and it is a distributed
world-wide system. This could help to keep the application ecosystem open
for individual developers and small companies.

The research question was: How can trust be established to provide usable
security? The new mechanism provides sufficient security and brings usability
improvements from which multiple parties can benefit. These parties include
application authors, distributors and end-users.

60

8.1 Future work

In this thesis, a new trust establishment mechanism was proposed. By using
the mechanism it is possible to implement an application installation flow
that is more user-friendly. One future work item is to measure the impact of
the new flow and compare it to the existing solutions using user experience
measurement techniques.

Another area for future work is to study how the development of the EC-
MAScript standard affects solutions discussed in this thesis. New versions
of the specification are being developed which address the security problems
with JavaScript today.

61

Bibliography

[1] Z. Yan and S. Holtmanns, “Trust modeling and management: from social
trust to digital trust,” Idea Group Inc., 2007.

[2] W. A. S. Consortium. (2009) The web hacking incidents database.
[Online]. Available: http://www.xiom.com/whid

[3] The World Wide Web Consortium. (2007) Widgets 1.0: Re-
quirements. [Online]. Available: http://www.w3.org/TR/2007/
WD-widgets-reqs-20070209/

[4] I. Strategy Analytics. (2008) Understanding the mobile ecosystem.
[Online]. Available: http://www.adobe.com/devnet/devices/articles/
mobile_ecosystem.pdf

[5] The World Wide Web Consortium. (2009) Widgets 1.0: Packaging
and configuration. [Online]. Available: http://www.w3.org/TR/2009/
CR-widgets-20090723/

[6] N. Ben-Asher, J. Meyer, S. Moller, and R. Englert, “An experimental
system for studying the tradeoff between usability and security,” Avail-
ability, Reliability and Security, International Conference on, vol. 0, pp.
882–887, 2009.

[7] E. International. (1996) Ecmascript language specification, stan-
dard ecma-262, 3rd edition. [Online]. Available: http:
//www.ecma-international.org/publications/standards/Ecma-262.htm

[8] D. J. Bouvier, “Versions and standards of html,” SIGAPP Appl. Comput.
Rev., vol. 3, no. 2, pp. 9–15, 1995.

[9] M. Corporation. (2009) About dynamic content. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ms533040(VS.85).aspx

62

http://www.xiom.com/whid
http://www.w3.org/TR/2007/WD-widgets-reqs-20070209/
http://www.w3.org/TR/2007/WD-widgets-reqs-20070209/
http://www.adobe.com/devnet/devices/articles/mobile_ecosystem.pdf
http://www.adobe.com/devnet/devices/articles/mobile_ecosystem.pdf
http://www.w3.org/TR/2009/CR-widgets-20090723/
http://www.w3.org/TR/2009/CR-widgets-20090723/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://msdn.microsoft.com/en-us/library/ms533040(VS.85).aspx

[10] The World Wide Web Consortium. (1998) Document object model
(dom) level 1 specification. [Online]. Available: http://www.w3.org/
TR/1998/REC-DOM-Level-1-19981001/

[11] ——. (1996) Cascading style sheets, level 1. [Online]. Available:
http://www.w3.org/TR/CSS1/

[12] D. E. Comer, Internetworking with TCP/IP Vol.1: Principles, Proto-
cols, and Architecture (4th Edition). Prentice Hall, 2000.

[13] J. J. Garrett. (2005) Ajax: A new approach to web applications. [On-
line]. Available: http://www.adaptivepath.com/ideas/essays/archives/
000385.php

[14] The World Wide Web Consortium. (2008) The XMLHttpRequest Ob-
ject. [Online]. Available: http://www.w3.org/TR/XMLHttpRequest/

[15] B. Wilson. (2008) Mama: Scripting - quantities and
sizes. [Online]. Available: http://dev.opera.com/articles/view/
mama-scripting-quantities-and-sizes/

[16] T. Powell and F. Schneider, JavaScript: The Complete Reference.
McGraw-Hill/Osborne Media, 2004.

[17] J. Ruderman. (2008) Same origin policy for javascript. [Online].
Available: https://developer.mozilla.org/En/Same_origin_policy_
for_JavaScript

[18] M. Zalewski. (2008) Browser security handbook. [Online]. Available:
http://code.google.com/p/browsersec/

[19] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communica-
tion in browsers,” in In Proc. of the 15th ACM Conf. on Computer and
Communications Security (CCS 2008). USENIX Association, 2008, pp.
17–30.

[20] V. Anupam and A. Mayer, “Security of web browser scripting languages:
vulnerabilities, attacks, and remedies,” in SSYM’98: Proceedings of the
7th conference on USENIX Security Symposium. Berkeley, CA, USA:
USENIX Association, 1998, pp. 15–15.

[21] D. Yu, A. Chander, N. Islam, and I. Serikov, “Javascript instrumenta-
tion for browser security,” in POPL ’07: Proceedings of the 34th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. New York, NY, USA: ACM, 2007, pp. 237–249.

63

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/CSS1/
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.w3.org/TR/XMLHttpRequest/
http://dev.opera.com/articles/view/mama-scripting-quantities-and-sizes/
http://dev.opera.com/articles/view/mama-scripting-quantities-and-sizes/
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://code.google.com/p/browsersec/

[22] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: Vulnerability-driven filtering of dynamic html,” ACM
Trans. Web, vol. 1, no. 3, p. 11, 2007.

[23] S. Crites, F. Hsu, and H. Chen, “Omash: enabling secure web mashups
via object abstractions,” in CCS ’08: Proceedings of the 15th ACM con-
ference on Computer and communications security. New York, NY,
USA: ACM, 2008, pp. 99–108.

[24] H. J. Wang, X. Fan, J. Howell, and C. Jackson, “Protection and com-
munication abstractions for web browsers in mashupos,” in SOSP ’07:
Proceedings of twenty-first ACM SIGOPS symposium on Operating sys-
tems principles. New York, NY, USA: ACM, 2007, pp. 1–16.

[25] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner, “Dynamic pharming
attacks and locked same-origin policies for web browsers,” in CCS ’07:
Proceedings of the 14th ACM conference on Computer and communica-
tions security. New York, NY, USA: ACM, 2007, pp. 58–71.

[26] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh, “Protecting
browsers from dns rebinding attacks,” in CCS ’07: Proceedings of the
14th ACM conference on Computer and communications security. New
York, NY, USA: ACM, 2007, pp. 421–431.

[27] OWASP. (2007) Top 10 2007 - owasp. [Online]. Available: http:
//www.owasp.org/index.php/Top_10_2007

[28] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks
with browser-enforced embedded policies,” in WWW ’07: Proceedings
of the 16th international conference on World Wide Web. New York,
NY, USA: ACM, 2007, pp. 601–610.

[29] G. Wassermann and Z. Su, “Static detection of cross-site scripting vul-
nerabilities,” in ICSE ’08: Proceedings of the 30th international confer-
ence on Software engineering. New York, NY, USA: ACM, 2008, pp.
171–180.

[30] B. Engelmann, “Dynamic web application analysis for cross site scripting
detection,” Master’s thesis, University of Hamburg, 2007.

[31] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site
request forgery,” in CCS ’08: Proceedings of the 15th ACM conference on
Computer and communications security. New York, NY, USA: ACM,
2008, pp. 75–88.

64

http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007

[32] A. van Kesteren. (2008) Access control for cross-site requests
- w3c working draft 12 september 2008. [Online]. Available:
http://www.w3.org/TR/2008/WD-access-control-20080912/

[33] W. Zeller and E. W. Felten. (2008) Cross-site request forgeries:
Exploitation and prevention. [Online]. Available: http://www.
freedom-to-tinker.com/sites/default/files/csrf.pdf

[34] A. Liu, J. Kovacs, C.-T. Huang, and M. Gouda, “A secure cookie pro-
tocol,” Computer Communications and Networks, 2005. ICCCN 2005.
Proceedings. 14th International Conference on, pp. 333–338, Oct. 2005.

[35] H. Xia and J. C. Brustoloni, “Hardening web browsers against man-in-
the-middle and eavesdropping attacks,” in WWW ’05: Proceedings of
the 14th international conference on World Wide Web. New York, NY,
USA: ACM, 2005, pp. 489–498.

[36] I. N. W. Group. (2008) The transport layer security (tls) protocol
version 1.2. [Online]. Available: http://tools.ietf.org/html/rfc5246

[37] M. Myers, VeriSign, R. Ankney, et al. (1999) X.509 internet public
key infrastructure online certificate status protocol - ocsp. [Online].
Available: http://tools.ietf.org/html/rfc2560

[38] O. M. A. Ltd. (2007) Oma online certificate status protocol mobile
profile v1.0 approved enabler. [Online]. Available: http://www.
openmobilealliance.org/technical/release_program/ocsp_v10_a.aspx

[39] N. C. Corporation. (1997) Netscape object signing: Establishing trust
for downloaded software. [Online]. Available: http://docs.sun.com/
source/816-6171-10/owp.htm

[40] J. Ruderman. (2007) Signed scripts in mozilla. [Online]. Available: http:
//www.mozilla.org/projects/security/components/signed-scripts.html

[41] Microsoft. (2007) How to use security zones in internet explorer.
[Online]. Available: http://support.microsoft.com/kb/174360

[42] V. Gupta, R. Franco, and V. Kudulur. (2005) Dude, where’s my intranet
zone? (...and more about the changes to ie7 security zones). [Online].
Available: http://blogs.msdn.com/ie/archive/2005/12/07/501075.aspx

[43] The World Wide Web Consortium. (2008) Xml signature syntax and
processing (second edition). [Online]. Available: http://www.w3.org/
TR/2008/REC-xmldsig-core-20080610/

65

http://www.w3.org/TR/2008/WD-access-control-20080912/
http://www.freedom-to-tinker.com/sites/default/files/csrf.pdf
http://www.freedom-to-tinker.com/sites/default/files/csrf.pdf
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc2560
http://www.openmobilealliance.org/technical/release_program/ocsp_v10_a.aspx
http://www.openmobilealliance.org/technical/release_program/ocsp_v10_a.aspx
http://docs.sun.com/source/816-6171-10/owp.htm
http://docs.sun.com/source/816-6171-10/owp.htm
http://www.mozilla.org/projects/security/components/signed-scripts.html
http://www.mozilla.org/projects/security/components/signed-scripts.html
http://support.microsoft.com/kb/174360
http://blogs.msdn.com/ie/archive/2005/12/07/501075.aspx
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/

[44] B. Sterne. (2009) Content security policy. [Online]. Available:
http://people.mozilla.org/~bsterne/content-security-policy/index.html

[45] G. Markham. (2007) Content restrictions. [Online]. Available: http:
//www.gerv.net/security/content-restrictions/

[46] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji, “Soma: mu-
tual approval for included content in web pages,” in CCS ’08: Pro-
ceedings of the 15th ACM conference on Computer and communications
security. New York, NY, USA: ACM, 2008, pp. 89–98.

[47] A. S. Incorporated. (2009) Cross-domain policy file specification. [On-
line]. Available: http://www.adobe.com/devnet/articles/crossdomain_
policy_file_spec.html

[48] The World Wide Web Consortium. (2009) Cross-origin resource sharing.
[Online]. Available: http://www.w3.org/TR/2009/WD-cors-20090317/

[49] OpenSocial Foundation. (2009) Opensocial. [Online]. Available: http:
//www.opensocial.org/

[50] Apple. (2007) Developing dashboard widgets. [Online]. Available:
http://developer.apple.com/macosx/Dashboard.html

[51] Adobe. (2007) Adobe air security white paper. [Online]. Available:
http://download.macromedia.com/pub/labs/air/air_security.pdf

[52] The World Wide Web Consortium. (2009) Widgets 1.0: Dig-
ital signatures. [Online]. Available: http://www.w3.org/TR/2009/
WD-widgets-digsig-20090430/

[53] ——. (2009) Widgets 1.0: Access requests policy. [Online]. Available:
http://www.w3.org/TR/2009/WD-widgets-access-20090618/

[54] J. Linn. (2000) Trust models and management in public-key
infrastructures. [Online]. Available: ftp://ftp.rsasecurity.com/pub/
pdfs/PKIPaper.pdf

[55] Z. Yan, V. Niemi, Y. Dong, and G. Yu, “A user behavior based trust
model for mobile applications,” in ATC ’08: Proceedings of the 5th in-
ternational conference on Autonomic and Trusted Computing. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 455–469.

66

http://people.mozilla.org/~bsterne/content-security-policy/index.html
http://www.gerv.net/security/content-restrictions/
http://www.gerv.net/security/content-restrictions/
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.w3.org/TR/2009/WD-cors-20090317/
http://www.opensocial.org/
http://www.opensocial.org/
http://developer.apple.com/macosx/Dashboard.html
http://download.macromedia.com/pub/labs/air/air_security.pdf
http://www.w3.org/TR/2009/WD-widgets-digsig-20090430/
http://www.w3.org/TR/2009/WD-widgets-digsig-20090430/
http://www.w3.org/TR/2009/WD-widgets-access-20090618/
ftp://ftp.rsasecurity.com/pub/pdfs/PKIPaper.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/PKIPaper.pdf

[56] Y. Wang and J. Vassileva, “Trust and reputation model in peer-to-peer
networks,” in P2P ’03: Proceedings of the 3rd International Conference
on Peer-to-Peer Computing. Washington, DC, USA: IEEE Computer
Society, 2003, p. 150.

[57] B. J. Fogg, C. Soohoo, D. R. Danielson, L. Marable, J. Stanford, and
E. R. Tauber, “How do users evaluate the credibility of web sites?: a
study with over 2,500 participants,” in DUX ’03: Proceedings of the
2003 conference on Designing for user experiences. New York, NY,
USA: ACM, 2003, pp. 1–15.

[58] The World Wide Web Consortium. (2008) Widgets 1.0: The widget
landscape (q1 2008). [Online]. Available: http://www.w3.org/TR/
2008/WD-widgets-land-20080414/

[59] ——. (2008) Security for access to device apis from the web - w3c
workshop. [Online]. Available: http://www.w3.org/2008/security-ws/
report

[60] B. Christianson and W. S. Harbison, “Why isn’t trust transitive?” in
Proceedings of the International Workshop on Security Protocols. Lon-
don, UK: Springer-Verlag, 1997, pp. 171–176.

[61] Apple. (2009) App store and applications for iphone. [Online]. Available:
http://www.apple.com/iphone/appstore/

[62] The World Wide Web Consortium. (2009) Widgets 1.0:
Updates. [Online]. Available: http://www.w3.org/TR/2008/
WD-widgets-updates-20081007/

[63] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,” in
In Proceedings of Crypto. Springer, 2005, pp. 17–36.

[64] J. Knudsen. (2003) Understanding midp 2.0’s security architecture.
[Online]. Available: http://developers.sun.com/mobility/midp/articles/
permissions/

[65] J. . E. Group. (2006) Mobile information device profile for
java 2 micro edition version 2.1. [Online]. Available: http:
//www.jcp.org/en/jsr/detail?id=118

[66] D. Crockford. (2006) The application/json media type for javascript
object notation (json). [Online]. Available: http://tools.ietf.org/html/
rfc4627

67

http://www.w3.org/TR/2008/WD-widgets-land-20080414/
http://www.w3.org/TR/2008/WD-widgets-land-20080414/
http://www.w3.org/2008/security-ws/report
http://www.w3.org/2008/security-ws/report
http://www.apple.com/iphone/appstore/
http://www.w3.org/TR/2008/WD-widgets-updates-20081007/
http://www.w3.org/TR/2008/WD-widgets-updates-20081007/
http://developers.sun.com/mobility/midp/articles/permissions/
http://developers.sun.com/mobility/midp/articles/permissions/
http://www.jcp.org/en/jsr/detail?id=118
http://www.jcp.org/en/jsr/detail?id=118
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627

[67] J. Kangasharju, T. Lindholm, and S. Tarkoma, “Xml messaging for mo-
bile devices: From requirements to implementation,” Comput. Netw.,
vol. 51, no. 16, pp. 4634–4654, 2007.

[68] The World Wide Web Consortium. (2009) Web storage. [Online].
Available: http://www.w3.org/TR/2009/WD-webstorage-20090423/

[69] C. Ellison. (2001) Spki/sdsi and the web of trust. [Online]. Available:
http://world.std.com/~cme/html/web.html

[70] S. D. Kamvar, M. T. Schlosser, and H. Garcia-molina, “The eigentrust
algorithm for reputation management in p2p networks,” in In Proceed-
ings of the Twelfth International World Wide Web Conference. ACM
Press, 2003, pp. 640–651.

[71] O. Hallaraker and G. Vigna, “Detecting malicious javascript code in
mozilla,” in ICECCS ’05: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems. Washing-
ton, DC, USA: IEEE Computer Society, 2005, pp. 85–94.

[72] The World Wide Web Consortium. (2009) Geolocation api
specification. [Online]. Available: http://www.w3.org/TR/2009/
WD-geolocation-API-20090707/

[73] S. Sire, M. Paquier, A. Vagner, and J. Bogaerts, “A messaging api for
inter-widgets communication,” in WWW ’09: Proceedings of the 18th
international conference on World wide web. New York, NY, USA:
ACM, 2009, pp. 1115–1116.

[74] The World Wide Web Consortium. (2009) Widgets 1.0:
Uri scheme. [Online]. Available: http://www.w3.org/TR/2009/
WD-widgets-uri-20090618/

[75] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. (2008)
Caja - safe active content in sanitized javascript. [Online]. Available:
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf

[76] Facebook. (2009) Fbjs. [Online]. Available: http://wiki.developers.
facebook.com/index.php/FBJS

[77] M. L. Labs. (2008) Microsoft web sandbox. [Online]. Available:
http://websandbox.livelabs.com/

68

http://www.w3.org/TR/2009/WD-webstorage-20090423/
http://world.std.com/~cme/html/web.html
http://www.w3.org/TR/2009/WD-geolocation-API-20090707/
http://www.w3.org/TR/2009/WD-geolocation-API-20090707/
http://www.w3.org/TR/2009/WD-widgets-uri-20090618/
http://www.w3.org/TR/2009/WD-widgets-uri-20090618/
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBJS
http://websandbox.livelabs.com/

[78] D. M. Scott Isaacs. (2008) Live labs web sandbox: Securing
mash-ups, site extensibility, and gadgets. [Online]. Available: http:
//mschnlnine.vo.llnwd.net/d1/pdc08/PPTX/TL29.pptx

[79] D. Crockford. Adsafe. [Online]. Available: http://www.adsafe.org/

69

http://mschnlnine.vo.llnwd.net/d1/pdc08/PPTX/TL29.pptx
http://mschnlnine.vo.llnwd.net/d1/pdc08/PPTX/TL29.pptx
http://www.adsafe.org/

Appendix A

Markup and code examples

Python 2.5.1
>>> import hashlib
>>> import base64
>>> file = open("widget.wgt", "r")
>>> sha256 = hashlib.sha256()
>>> sha256.update(file.read())
>>> base64.b64encode(sha256.digest())
’...’

Figure A.1: Python reference implementation of the digest value calculation

Python 2.5.1 (requires M2Crypto)
>>> import M2Crypto
>>> import hashlib
>>> import base64
>>> file = open("widget.wgt", "r")
>>> sha256 = hashlib.sha256()
>>> sha256.update(file.read())
>>> privateKey = M2Crypto.RSA.load_key(’privateKey.pem’)
>>> signature = privateKey.sign(sha256.digest(), ’sha256’)
>>> base64.b64encode(signature)
’...’

Figure A.2: Python reference implementation of the signature calculation
using signature method RSA-SHA256

70

<w
id

ge
ts

:r
es
ou

rc
e

xm
ln

s=
"h

tt
p:

//
ww

w.
w3

.o
rg

/2
00

0/
09

/x
ml
ds

ig
#"

xm
ln

s:
wi

dg
et

s=
"h

tt
p:

//
ww

w.
w3

.o
rg

/n
s/
wi

dg
et

s"
>

<S
ig

na
tu

re
Id

="
Di

st
ri

bu
to

rA
Si

gn
at

ur
e"

>
<S

ig
ne

dI
nf

o>
<C

an
on

ic
al

iz
at
io

nM
et

ho
d

Al
go

ri
th

m=
"h

tt
p:

//
ww

w.
w3
.o

rg
/2

00
6/

12
/x

ml
-c

14
n1

1"
/>

<S
ig

na
tu

re
Me

th
od

Al
go

ri
th
m=

"h
tt

p:
//

ww
w.

w3
.o

rg
/2
00

1/
04

/x
ml

ds
ig

-m
or

e#
rs

a-
sh

a2
56

"/
>

<R
ef

er
en

ce
UR

I=
"h

tt
ps

:/
/e
xa

mp
le

.c
om

/v
1.

1/
wi

dg
et
.w

gt
">

<D
ig

es
tM

et
ho
d

Al
go

ri
th

m=
"h

tt
p:

//
ww

w.
w3

.o
rg

/2
00

1/
04

/x
ml

en
c#

sh
a2

56
"/

>
<D

ig
es

tV
al

ue
>.

..
</

Di
ge

st
Va

lu
e>

</
Re

fe
re

nc
e>

</
Si

gn
ed

In
fo

>
<O

bj
ec

t
Id

="
pr

op
">

<S
ig

na
tu

re
Pr

op
er

ti
es

xm
ln

s:
ds

p=
"h

tt
p:

//
ww
w.

w3
.o

rg
/2

00
9/

xm
ld

si
g-

pr
op

er
ti

es
">

<S
ig

na
tu

re
Pr
op

er
ty

Id
="

pr
of

il
e"

Ta
rg
et

="
#D

is
tr

ib
ut

or
AS

ig
na
tu

re
">

<d
sp

:P
ro

fi
le

UR
I=

"h
tt

p:
//
ww

w.
w3

.o
rg

/n
s/

wi
dg

et
s-
di

gs
ig

#p
ro

fi
le

"/
>

</
Si

gn
at

ur
eP
ro

pe
rt

y>
<S

ig
na

tu
re

Pr
op

er
ty

Id
="

ro
le

"
Ta

rg
et
="

#D
is

tr
ib

ut
or

AS
ig

na
tu

re
">

<d
sp

:R
ol

e
UR

I=
"h

tt
p:

//
ww
w.

w3
.o

rg
/n

s/
wi

dg
et

s-
di

gs
ig

#r
ol

e-
di

st
ri

bu
to

r"
/>

</
Si

gn
at

ur
eP
ro

pe
rt

y>
<S

ig
na

tu
re

Pr
op

er
ty

Id
="

id
en

ti
fi

er
"

Ta
rg

et
="

#D
is

tr
ib

ut
or

AS
ig
na

tu
re

">
<d

sp
:I

de
nt

if
ie

r>
07

42
5f

59
c5

44
b9

ce
bf

f0
4a

b3
67

e8
85

4b
</

ds
p:

Id
en
ti

fi
er

>
</

Si
gn

at
ur

eP
ro

pe
rt

y>
</

Ob
je

ct
><

/S
ig
na

tu
re

Pr
op

er
ti

es
>

<S
ig

na
tu

re
Va

lu
e>

..
.<

/S
ig

na
tu

re
Va

lu
e>

<K
ey

In
fo

><
X5

09
Da

ta
>

<X
50

9C
er

ti
fi
ca

te
>.

..
</

X5
09

Ce
rt

if
ic

at
e>

</
Ke

yI
nf

o>
</

X5
09

Da
ta

>
</

Si
gn

at
ur

e>
</

wi
dg

et
s:

re
so

ur
ce

> F
ig
ur
e
A
.3
:
A
n
ex
am

pl
e
of

a
re
so
ur
ce

fil
e
w
it
h
on

e
di
st
ri
bu

to
r
si
gn

at
ur
e

71

	Introduction
	Problem statement
	Structure of the thesis

	JavaScript and Web technologies
	JavaScript history
	Document Object Model
	Cascading Style Sheets
	Domain Name System
	Modern JavaScript
	JavaScript language properties
	Security related features
	Script invocation

	JavaScript security model in browsers

	Web application security solutions
	JavaScript security model limitations in browsers
	Public Key Infrastructure
	Signed scripts
	Security zones
	XML signatures
	Content security policies
	Server-side proxy

	JavaScript runtimes
	Apple Dashboard
	S60 Web Runtime
	Adobe Integrated Runtime
	W3C widgets

	Trust establishment design
	Trust
	Trust models

	Design for W3C Widgets
	Widget ecosystem
	Trust relationships
	Trust establishment requirements

	Implementation of originating domain utilization
	Overview
	Installation process
	Complementary implementation
	Proposed alternative implementation
	Implementation summary
	User interface examples

	Evaluation
	Evaluation against design requirements
	Comparisons
	Certificates versus originating domain
	One package versus two packages
	Complementary versus alternative implementation

	Evaluation against browser security model limitations
	Other possible solutions
	Decentralized trust
	Source code and behaviour analysis

	Restricting granted capabilities

	Conclusion
	Future work

	Markup and code examples

