-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Aaltodoc Publication Archive

@
HELSINK| UNIVERSITY OF TECHNOLOGY

Faculty of Electronics, Communicatios and Automatio
Department of Communications and Networking

Ville Ryh&nen

Converting CORBA Based Fault Management to SNMP

Master’s Thesis submitted in partial fulfillmentr@quirements fo the
degree of Master of Science in Technology in Espadand on May 18
2009

Supervisor: Professor Jorg Ott

Instructor: M.Sc. Kaisa Kettunen

https://core.ac.uk/display/80702087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF THE
MASTER'S THESIS

Author: Ville Ryhdnen
Name of the thesisConverting CORBA Based Fault Management to SNMP

Date: 15.5.2009 Number of pages:10+63

Faculty: Facultyof Electronics, Communications and Automation
Department of Communications andadeking

Professorship:Networking Technology Code: S-38

Supervisor: Professor Jorg Ott

Instructor: M.Sc. Kaisa Kettunen

Fault management involves tasks to enable the tifmtedésolation and correction of abnorn
operation of the telecommunication network. Telegumications management netwd
architecture of ITU-T consists of five layers, ofhish the bottom two, the eleme
management layer and the network element layerfoatesed on the management of netw

elements. For fault management tasks at theseslas@reral protocols have been utilised.

CORBA based fault management has been common worletelements and eleme

management systems utilising solution sets of 3@eR.as the telecommunications indug

moves towards an all-IP world, SNMP has yet aganoome the predominant protocol for

monitoring network elements. A network operatorkiag into unifying the fault manageme
of its network could consider converting the CORB#sed network element to using SNM
This thesis studies the requirements and detailsi®kind of conversion. With a literary stug
aspects of fault management and comparison of CORRASNMP are scoped for designin
CORBA-SNMP converter. A proof of concept for thengersion is obtained with a simplifig

implementation.

The implementation shows that a converter is geétsy to construct, and the converter
perform with operating principle of either CORBA BNMP. The converter is also able

provide fault management unification without addoupsiderable delay, strain on bandwi

nt

try

nt
P.
Y,
g a
d

can
to
th

usage or consuming memory resources. The resullssothesis give grounds for studying the

proposed concepts further and also broaden theecmnvo cover configuration manageme

Though for configuration management SNMP may ndhkeereferred protocol.

nt.

Keywords: Fault management, CORBA, SNMP, protocol conversionverter

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIVISTELMA

Tekija: Ville Ryhanen
Tyon nimi: CORBA-pohjaisen vianhallinnan konversio SNMP:lle

Paivamaara: 15.5.2009 Sivumaara; 10+63

Laitos: Elektroniikan, tietoliikenteen ja automaation tikdeta,
Tietoliikenne- ja tietoverkkotekniikéaitos

Professuuri; Tietoverkkotekniikka Koodi: S-38

Tyo6n valvoja: Professori Jorg Ott

Ty6n ohjaaja: DI Kaisa Kettunen

Vianhallinta pitaa sisallaan toimia, joilla havaita eristetdén ja korjataan tietoliikennevert
epanormaaleja toimintoja. ITU-T:n tietoliikenteeallmtaverkkoarkkitehtuuri koostuu viides
tasosta, joista kaksi alimmaista, elementinhaliaga sekéa verkkoelementtitaso, keskitty

verkkoelementtien hallintaan. Useita protokolliahyddynnetty vianhallintaan néilla tasoilla

CORBA-pohjainen vianhallinta on ollut yleinen 3GRPratkaisusarjaa hyddyntévis
verkkoelementeissa ja elementinhallintajarjestedénis Mutta tietoliikenneteollisuude
siirtyessa kohti all-IP-maailmaa, SNMP on jalleendelleen vahvistamassa asemag
hallitsevana verkkoelementtien monitorointiprotd&oh. Taten verkkonsa vianhallinn
yhdenmukaistamista tutkiva verkko-operaattori voisharkita =~ CORBA-pohjaiste

verkkoelementtiensd konvertointia kayttdmaan SNBPTama tyd tutkii tamankaltaise

konversion edellytyksia ja yksityiskohtia. Kirjaliustutkimuksella otetaan selva

vianhallinnan eri puolista ja vertaillaan CORBAza3NMP:ta konvertterin suunnittelua varts

Todiste konversiokonseptin toimivuudesta saadaaimikrtaistetun implementaation avulla,

Implementaatio osoittaa konvertterin olevan melktpbsti rakennettavissa, ja etta konvert
voi toimia joko CORBA:n tai SNMP:n toimintaperiaegila. Konvertteri mahdollista
vianhallinnan yhdenmukaistamisen lisdamattd huavast viivetta, rasitust
kaistaleveyskaytolle tai kuluttamatta runsaasti stiigsursseja. Taman tyon tulokset antd
aihetta esitettyjen konseptien laajemmalle tutkisslile, sekd konvertterin laajentamise

kattamaan konfiguraation hallinnan. Tahan tosin $N&lehka ole suositelluin protokolla.

on
ta

vat

teri
a

a
wvat
I

e

Avainsanat: Vianhallinta, CORBA, SNMP, protokollakonversio,rkertteri

Preface

This thesis was written at Oy L M Ericsson Ab, Rimd. At first finding a suitable
research subject took a little time, but at the legot a subject | felt real interest in. For
this and for the very extensive guidance and suppooughout my writing process, |

want to thank my instructors Kaisa Kettunen andnaeitk&ranta.

In the beginning, and at times during my writinige tompletion of this thesis seemed
like an insurmountable task, but going one stegptahe and with rigorous proofreading
by my instructors got me to the finish. Even thoulga writing took more time than

originally planned, the end result from the addetetwas beneficial for the end result

and helped the work of my supervisor, Professay (@it.

With this master’s thesis | end the longest, anthi® point the most significant part of
my life — my university years. This time would @y have been briefer without all
the activities | partook, but the time would alstvé been many times less memorable. |
will especially remember the many bus trips actbhsdand, and would like to thank my
travelling companions for the many gained memaaies stories. Other big thanks go to
my Driving School’s headmaster Veikko Sompa andhillcolourful students; you kept
my driving skills up to date and with your invités play board games aided me in

extending my student years a little further.
Finally thanks to my parents for giving my suppbrough my whole life, and to all the
friends I've gained since my freshman year, forphmj me to get my mind of my

troubles when | felt stressed.

Espoo, May 1% 2009

Ville Ryh&nen

Table of Contents

AB ST R A C T ..ttt ettt e e e e e oo oottt e e e e e e — et e e e r— et et e e e e e e et e e e aaees
THVISTELMA ...ttt ettt ettt et e et e st eaanae e eteeteensenseeaesae e Il
PREFACE ...ttt e e e e e ettt e e e e e e e e eeeeee e e e e bbbt e e e e e e e e e e e e anne 1]
TABLE OF CONTENTS ..ottt ettt ettt e e e e e e e s e e e e e e s s nbbn e v
LIST OF FIGURES ...ttt et e e et e e e e e e e e s ennes \
LIST OF TABLESttt ettt e e e e e e e bbb e e e e et e e e e e e e e e e e eaaas VII
ABBREVIATIONS AND DEFINITIONSooiiiiiiiiiiiiiiieieeee e AL
1 INTRODUCTION. ..ottt ee et a e e e e e e s bbbt e e e e e e s sesmneeeeaeeesaannnes 1
1.1 (OBJIECTIVES ANDSCOPE.....cetiiitieeeesiasaiiutteeeeaaaesaaassssaneeeesssasssssseseeeeaeessaassssssseeeeees 2
1.2 STRUCTURE OF THETHESIS. .. .uttttttieeeeesiiiitiieeeeeeeeeessasssssneesessssssssssnsaaeeessssnnssssssnees 2
2 MANAGEMENT OF NETWORK ELEMENTS......cciiiiiiiiit ittt e e e e 4
211 Fault MaNnagemENtccoiieieieiee sttt e e et neesaesre e e e sae e e enee e 6
2.2 BEMENT MANAGEMENT SYSTEMuutiiiitiieeeesaaiiniieeeeeeaeeessssnssneeesssssnsssssseeeeeseaens 8
221 Fault Management at the Element Management Layercooeevveeeenencenene. 10
2.3 (@10] = SRR 11
231 The Concept of an Object iN CORBA..........coooi et 11
2.3.2 Object Management ArchiteCture (OMA)oooere e 12
2.3.3 Object Request Broker (ORB).........ccooiiiiiieii ettt 13
R O o 1= o B = ol S 14
2.3.5 Interface Definition Language (IDL)cceoviieieve i 14
2.3.6 Interoperability and General Inter-ORB Protocol (GIOP)ccccovvevevevvennnee. 15
2.3.7 CORBA and Fault Managementccccceeieiieieese e seeee st ere s eee e nnas 19
2.4 SINIMIP L4+t e e et e e e e et e ea e e e e e e 21
241 BasiC SNMP CONCEPLSooueeiieiieie ettt ettt st s se et nenrs 21
2.4.1.1 The Structure of Management Information [SM...............ccevvvvvvvvrnnnnne. 22
2.4.1.2 Management Information Base (MIB) ...coooeeeeeiieiiiiiiiieeeeeee, 23
2.4.1.3 SNMP OPEIAtiIONS.uuuuuuuununnen s e eeeeeeeeeeeeeeeeeeeeeeeeseesensesssenneneeeeees 24

2.4.2 ProtOCOl ArCITECIUMNE. ... veeee ittt ettt et e e sttt e s e e et e s s e e e e s saseeeessaraeeesassneees 25

2.4.2.1 The SNMPV3 ENQINE.....couuuriiietees s eeeeeeeeeesssssssssssssnsssssrsnnnennsnnen. 26
2.4.2.2 The SNMPV3 APPlIiCAtioNSeuviiceeeeeeiieiiieeiieeeeeeeeeeeeee e 27
G Y =S Lo - SRS 28
2.5 OrHER METHODS OFFAULT MANAGEMENT ...coiiiitie e 31
3 CONVERSION BETWEEN CORBA AND SNMP FAULT MANAGEMENT. 33
3.1 INCENTIVES FOR ACORBA-SNMPCONVERTERcctttttiiiriiieriinriienneinnneenneennninnes 33
3.2 (GENERAL ASPECTS OFPROTOCOLCONVERSION. ... e e e e e e e e 34
3.3 GOMPARISON OFFAULT MANAGEMENT WITH CORBAAND SNMPovvvvvieeeennns 35
4 CONVERTER ...ttt e e e e e e e ettt e e e e e e e e e s s mneeeeeeeeeennnssenees 39
4.1 STRUCTURE OF ACORBA-SNMPCONVERTER.......cuuttiiiiitieeeeaaiinneieeeeraeaeeessnnnnnes 39
V20 W R = o (0 Toce) 1Y/ =T o o1 o [39
Y/ 1== == Ta T Y=o o] o S 40
V20 G T Y P=TaP=To T="a N o] =0t AV F= o) o 1 oo 42
S <ol B |) /=T o o o U 42
415 Receiving and Forwarding MESSAgES........ceeueeeerererreseeeenie e e seeseenee e eee e 42
4.2 DESIGN OF ACORBA-SNMPCONVERTERccciiitttiiiiiiaeeeeesssiseeeeeeeseeenssnnseeeeens 45
4.2.1 Protocol Mapping Implementationccccceveeeeiiceene s 47
4.2.2 Message Mapping Implementationccccvveeveieceere s 48
4.3 DESIGNEVALUATION ...ttt 50
T R =S S 1= 7= 0= J O 51
4.3.2 ReSUItS AN ANAIYSIS......cceeeeciecieeie ettt sttt st ae s neena et 54
5 CONCLUSIONS ..ottt ettt e ettt e e e e e e e s nneeee e e e e e aanseees 58
5.1 FURTHER STUDY ..ottt 58
REFERENGCES.ottt ettt e e e e e e s s bbbt et e e e e e bbbt e e e e e e e e e e e annnnnes 60

List of Figures

FIGURE 1: THE FIVE-LAYER TMN ARCHITECTURE ANDFCAPScoiiiiiiiieiiiiiee et 5
FIGURE 2: POSITION OF THEEMSS IN THE TELECOMMUNICATIONS NETWORK[IEC].................. 9
FIGURE 3: RELATIONSHIPS OF MANAGED OBJECTSMANAGED ELEMENTS AND MANAGING
SY STEM. ittt 444 otk bbb bbb bbb nn e 10
FIGURE 4: AUTOGENERATION OF THE INFRASTRUCTURE CODE FROM AN INTEREA DEFINED
USING THEIDL ...ttt et e et e e e et e e e e e st e e s e e e e e ennnees 15
FIGURE5: A REQUEST BEING SENT THROUGH THORB AND INTER-ORB PROTOCOL
RELATIONSHIP[OMG3.0.3] ..tutvtiueiiiiiiiiie e s s mmmmm s s e s s n e e e n s e e e n e e e e e e e e e e e e eean 16
FIGURE 6: THE FORMAT OF AGIOPMESSAGE AND MESSAGE HEADERAND THE FORMAT OF A
REQUEST MESSAGE HEADER........uvitieiitteteeeastteeeesssseseessssessasssssesssssssssessssssssesssnsssneesans 18
FIGURE 7: INTERACTION BETWEEN THE FAULT DETECTORFAULT NOTIFIER, FAULT ANALYZER

AND REPLICATION MANAGER [OMG3.0.3] ...tttiuiiniiiiiiiaee e mmmmm e 20
FIGURE 8: MIB-Il SUB TREE OF THE MGMT BRANCHM AURO]ceiuiiaiieaiiesieesieeeeeesiee e 24
FIGURE 9: SNMPV3 ENTITY [IMAURO]cuittiiiiiiieeee ettt s s a e e e e e 26
FIGURE 10: SNMPV3 MESSAGE FORMAT WITHUSMoiiiiiiiiiiie et 28
FIGURE 11: PROTOCOL STACKS OFSNMPAND CORBAooiiiiiiiieiieeciie e 36
FIGURE 12: PROXY CONFIGURATION OF THE CONVERTERSTALLINGS-1]...cuviiiiiiiiiiieeiiiee e 40

FIGURE 13: THE INTERACTION BETWEENSNMP MANAGER AND CORBABASEDNE USING THE

CORBA-SNMPCONVERTER......ccttttttttttttttetuununtennnennsstnnssnnnnnnnseeeeesessesssesssansseernrmemnmennne 41
FIGURE 14: SYNCHRONOUS MESSAGE EXCHANGE THROUGH THE CONVERTER..........cccvveenne.. 44
FIGURE 15: ASYNCHRONOUS MESSAGE EXCHANGE THROUGH THE CONVERTER.........ccvveeunee. 44
FIGURE 16: CONVERTER IMPLEMENTATION AT START UP.....utiieiiiieeiieeesiiieesineeesseeesseessnneess 47
FIGURE 17: MANAGED OBJECTMODEL AND NAME SPACE PARTITIONS [3GPP-1068] 49
FIGURE 18: USING CORBAATTACH _PUSHWITH AN SNMPSET-PDU.........ccoiiiiiiiiiiiiiiicceeeeeeens 52
FIGURE 19: FETCHING AN ALARM LIST WITH AN SNMP GETBULK-PDUcciiiiiiiiiiiiiineeen, 53

FIGURE 21: THE AVERAGE MAPPING TIMES OF DIFFERENT SIZED ALARM LIST......coveevevveninennnn. 55

Vi

List of Tables

TABLE 1: A SUBSET OF THEFCAPSFUNCTIONALITY [IEC]...ciiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 6
TABLE 2: GIOPMESSAGES.o ittt 17
TABLE 3: SNIMPY3 APPLICATIONS.cttttttttettuettentuesnseessstsnssssnsesunsnnnseseeesssssessssssssssssssmsssnssnnnes 27
TABLE 4: DIFFERENCES OFCORBAAND SNMPFAULT MANAGEMENT ...ccvvvvviiiiriiieiienrieennnennnes 38

VIl

Abbreviations and Definitions

3GPP

API

ASN.1

BER

BML

CBC

CMIP

CORBA

DES

DN

DO

EML

EMS

ESIOP

FCAPS

FM

HMAC

IDL

IEC

IETF

IOP

IOR

ITU-T

3rd Generation Partnership Project
Application Programming Interface

Abstract Syntax Notation One

Basic Encoding Rules
Business Management Layer

Cipher Block Chaining

Common Management Information Protocol
Common Object Request Broker Architecture
Data Encryption Standard

Distinguished Name

Distributed Object

Element Management Layer

Element Management System

Environment Specific Inter-ORB protocol
Fault, Configuration, Accounting, Performarigecurity
Fault Management

Hash Message Authentication Code
Interface Definition Language

International Engineering Consortium
Internet Engineering Task Force

Internet Inter-ORB Protocol

Interoperable Object Reference

International Telecommunications Unions T@eonunications

Standardization Sector

VI

IRTF

MD5

MIB

MO

NE

NEL

NML

NMS

OID

OMA

OMG

ORB

0OS

PDU

RAS

RDN

RFC

SHA-1

SMI

SML

SNMP

SOAP

SP

TL1

TMN

Internet Research Task Force
Message-Digest algorithm 5
Management Information Base
Managed Object

Network Element

Network Element layer

Network Management Layer

Network Management System
Object Identifier

Object Management Architecture
Object Management Group

Object Request Broker

Operations System

Protocol Data Unit

Reliability, Availability and Survivability
Relative Distinguished Name

IETF’s Request For Comments
Secure Hash Algorithm 1

Structure of Management Information
Service Management Layer

Simple Network Management Protocol
Simple Object Access Protocol
Service Provider

Transaction Language 1

Telecommunications Management Network

UDP User Datagram Protocol
USM Used-based Security Model
VACM View Access Control Model

XML Extensible Markup Language

Introduction

1 Introduction

Telecommunications networks consist of intercoregcinetwork elements that
communicate with various protocols and transporformation with various
transmission paths. Over the last decade the telecmications networks have been in
transition. Old networks were primarily designed ¢orcuit-switched voice traffic and
were relatively simple. They were based on coppeps for subscriber access and on a
network of telephone exchanges to process calles@metworks have evolved into
transporting voice, high-speed data, video, andyepessible combination of these;

they are now based on a variety of complex teclyieso

The International Engineering Consortium describeselement management system
(EMS) as a system that manages one or more ofcfispggpe of telecommunications
network element (NE) [IEC]. Typically, the EMS maes the functions and
capabilities within each NE but does not managertféc between different NEs in the
network. To support management of the traffic betwiself and other NEs, the EMS
communicates upward to higher-level network managgmsystems (NMS) as
described in the International Telecommunicationgiods Telecommunications
Standardization Sectors (ITU-T) telecommunicationanagement network (TMN)
layered model.In addition to the layered structure, the generahnagement
functionality splits into the five key areas of Mfauconfiguration, accounting,

performance, and security comprising the so-cdiédPS reference model.

The machine-to-machine communication protocol betwie NE and its EMS varies
from NE to NE and ranges from vendor-proprietatytsons to open standards such as
CORBA or SNMP. Defined by the Object Managementupr¢OMG), the Common
Object Request Broker Architecture (CORBA) is dmited middleware that can be
used to manage a network element; it is for exanugied by the 3rd Generation
Partnership Project (3GPP). Simple Network Managerfeotocol (SNMP) is part of
the Internet Engineering Task Force's (IETF) ingerprotocol suite used in network
management systems to monitor network devices fonditions that warrant

administrative attention. Other widely used manag@nmnterface protocols have been

Ville Ryh&nen 1

Introduction

Transaction Language 1 (TL1), Common Managemertrimition Protocol (CMIP),

and nowadays Extensible Markup Language (XML) aimap& Object Access Protocol
(SOAP). As telecommunications move toward an alWwidtld and networks converge,
the environment around NE may change and a neetlange the used protocol may

arise.

1.1 Objectives and Scope

This thesis will study how the conversion betweddGRBA based management and an
SNMP management can be done. Management of a rket®lement involves all
aspects depicted by the FCAPS model, but thisghesli concentrate on fault aspects,
as they are important in all kinds of network elatse With this framing, the basic
problem can be addressed simply, but the resuttdoeabroadened to cover the whole

aspect of management of network elements and nleswor

The thesis will find out which problems arise framerworking of two different ways
of management implementation and how to solve tiodlpms that occur. The study
will show if this kind of conversion is practicah@ useful, and if the subject is case for
further study. What benefits this kind of convenslarings will also be studied, and if
these benefits are beneficial in other types ofvewsions or if they will become

disadvantages.

1.2 Structure of the Thesis

This thesis uses literature study and constructsgearch by designing, implementing
and testing a CORBA-SNMP converter. The first halimainly based on literature

study of books, articles and technical specificatio

The latter part deals with the design and implesmtgont of the converter. The intended
method for the conversion is to translate SNMP @gss to a form that a CORBA
based element will understand and also translage dlements responses and
notifications to SNMP messages. The goal of theishis to study the possibilities to
convert CORBA based control to SNMP so that thevagk elements inner behaviour

need not to be changed and that the conversionbeadone without completely

Ville Ryh&nen 2

Introduction

unpacking and repacking all management messagesadrtversion will operate in both
directions between a SNMP based managing systemCf@BA based network
element. The study will evaluate if this kind ofneersion is economic and robust

enough for service providers to use.

This thesis is structured as follows: Chapter Zdlkess what management of network
element entails, the CORBA architecture and the 8NWotocol. Chapter 3 explores
the reasons for a conversion from CORBA to SNMR, eampares the differences and
similarities of CORBA and SNMP fault management.Ghapter 4 the design and
implementation of the converter is explained wehting and results. Chapter 5, as the
last chapter, sums up the findings and includesudson about the topics of future

research.

Ville Ryh&nen 3

Management of Network Elements

2 Management of Network Elements

Network elements typically do not remain staticotigh their life cycle in the way they
are set up, nor does the network around them. @psrenust be able to reconfigure
their network nodes if they decide to make charmem case a fault or some other
event occurs. Management must be applied in thasescand this refers to the
activities, methods, procedures, and tools thatapeto the operation, administration,

maintenance, and provisioning of networked systanaselements [Raman-1].

ITU-T has defined a Telecommunications Managemergtwirk (TMN) in
recommendations M.3000, M.3010, M.3200 and M3400rfanaging open systems in
a communications network. A TMN may provide managetnfunctions and offer
communications both between Operations Systems ({@®)selves, and between OSs
and the various parts of the telecommunicationg/ort [ITU3010]. A TMN may also
provide management functions and offer communioatio another TMN or TMN-like
entities in order to support the management of rmatiional and national
telecommunications networks. A telecommunicatiogisvork consists of many types of
analogue and digital telecommunications equipmadtassociated support equipment,
such as transmission systems, switching systeméjptaxes, signalling terminals,
front-end processors, mainframes, cluster contglland file servers. When managed,

such equipment is generically referred to as ndtwetgments (NE).

The TMN architecture is a reference model for hehreeal telecommunications
management approach. Its purpose is to partitienfuhctional areas of management
into layers. The key benefit of this architectuseto identify five functional levels of
telecommunication management as depicted in Figurdeusiness management layer
(BML), service management layer (SML), network ngeraent layer (NML), element
management layer (EML), and NEs in the network el@mlayer (NEL). This
distribution of management responsibilities makegsossible to spread these functions
or applications over the multiple disciplines ofsarvice provider and use different

operating systems, different databases, and diffgn@gramming languages [IEC].

Ville Ryh&nen 4

Management of Network Elements

Figure 1: The Five-layer TMN architecture and FCAPS

As Figure 1 illustrates, ITU-T also splits the gextenanagement functionality into five

areas: Fault management, Configuration manageméotounting management,

Performance management and Security managementREAhis categorization is a
functional one and stems directly from ITU-T recoamdations describing the five

different types of information handled by managenssistems. Portions of each of the
functionalities will be performed at different lageof the TMN architecture. A subset
of the FCAPS functionality is listed in Table 1.

Ville Ryhanen 5

Management of Network Elements

Table 1: A Subset of the FCAPS Functionality [IEC]

Fault Configuration = Accounting Performance Security

Management | Management Management Management Management

alarm handling system turn-up track service data collection control NE

usage access
trouble network bill for services report enable NE
detection provisioning generation functions
trouble autodiscovery data analysis access logs
correction
test and back up and
acceptance restore
network database
recovery handling

2.1.1 Fault Management

The TMN M.3400 recommendation describes fault mansmnt (FM) as a set of
functions which enables the detection, isolatiod eorrection of abnormal operation of
the telecommunication network and its environm@miN3400]. The concept of a fault
is central to the definition of fault managementiaéilt is usually indicated by failure to
operate correctly or by excessive errors. Therdédco@ various types of faults related to
a NE: faulty hardware; software failures such dsnsoe related bugs, incompatibility
with hardware; congestion problems such as overboadl threshold condition at the
NE; or communication failure between the NE and EM&awal]. A fault can also be
defined by its difference from an error; a faultais abnormal condition that requires

management attention to repair, whereas an ereosiisgle event [Stallings-1].

Fault management includes the following functiom geups in the TMN M.3400

recommendation:

Ville Ryh&nen 6

Management of Network Elements

° Reliability, Availability and Survivability (RAS) @ality Assurance

° Alarm Surveillance

° Fault Localization

° Fault Correction

° Testing

° Trouble Administration

As can be seen in Table 1, other divisions alsetehkiut they cover basically the same

areas.

RAS quality assurance establishes the reliabilitgca that guide the design policy for
redundant equipment for managing availability anthge reporting [TMN3400]. With
it, an operator can determine how much redundasicyeeded in the managed network
nodes and what the network must report when a apdervice goes offline.

Alarm surveillance or fault detection is about ntoring NE failures in near-real time.
When such a failure occurs, an indication is madglable by the NE. Based on this a
service provider (SP) determines the nature andrggwf the fault. Alarm information
can be reported at the time of occurrence, anadfggdd for future access. An alarm
may also cause further management actions witleiiNth that lead to the generation of
other fault management data [TMN3400].

Where the initial failure information is insuffigie for fault localization, it has to be
augmented with information obtained by additionalluire localization routines

employed by service providers tests [TMN3400]. Faiocalization requires

communication between nodes to determine wherdaihge occurred. Based on the
fault information received, fault diagnosis is dawedetermine the root cause of the
failure [Hanemann]. Fault correction transfers dadacerning the repair of a fault. To
replace equipment or facilities that have failetvise provider utilises procedures that

put redundant resources in use.

In addition to passive failure detection, a serjicevider can also perform proactive

tests. These tests can either deal with resourcesam assume the role of virtual

Ville Ryh&nen 7

Management of Network Elements

customer and test a service by performing intevactt the service access point
[Hanemann]. Testing dealing with resources can dreiexd out in one of two ways

[TMN3400]. In one case, a service provider directiven NE to carry out analysis of
circuit or equipment characteristics. Processingxiscuted entirely within the NE and
the results are automatically reported to the serprovider, either immediately or on a
regular delay. Another method is to carry out thalgsis within the SP side. In this
case the SP merely requests that the NE providesado the circuit or equipment of

interest and no other messages are exchangedhsitiE.

Trouble administration transfers trouble reportgjioated by customers and trouble
tickets originated by proactive failure detectiomecks. The aim is for the service
provider to identify and react to problems in itfeced services before a customer
notices them [Hanemann]. The probing can be dama ft customer point of view or

by testing the resources which are part of theicerv

In essence fault management contains facilities éhable the detection, isolation and
correction of network problems. Furthermore, it nu@g trend analysis to predict faults
so that the availability of the network is maximizeThis can be established by
monitoring networks for abnormal behaviour. Whefa@dt or event occurs, a network
component will send a notification to the networkemator using a management
protocol. The TMN M.3010 recommendation allowsttoe use of multiple protocols to
be used for management. This means that open sthedeh as SNMP and CORBA
are consistent with the TMN framework as is itdi&imanagement protocol CMIP
[IEC]. Each protocol executes the managementdnown way but the principles

remain the same.

2.2 Element Management System

An element management system (EMS) is used to neaorag device or a set of devices
connected in a network. The EMS communicates wétwark devices directly using
network management protocols — an efficient EMS roomicates with its NE using
whatever protocol is native to the NE. Functionsally expected from an EMS can be

listed as [Misra]:

Ville Ryh&nen 8

Management of Network Elements

° provide common information about the NE, such atesy up-time and system
name,

° monitor the operational state of the NE, such ad-sip and shut-down,

° monitor the occurrence of NE malfunctions,

° gather and process NE performance information,

° enable configuration of the NE,

° carry out remote operations on the NE.

The EMS is a critical piece in the total telecommeations management solution [IEC].
Only the EMS can access the complete managemeaminafion content of all the NEs
in its management domain. As Figure 2 shows, th&glre the media that transmit the
network elements’ management information and céntrahe network management

layer and to the network management systems.

Standard
EMS/MMS

/ / * Interface

Vendor A Vendor B Vendor C Vendor £
EMS EMS EMS Qoo EMS

Wendor-
N —— —— — — Specific or
Standard
1 Interface

Multi-vendor Network

Figure 2: Position of the EMSs in the Telecommunications Network [1EC]

According to the OSI Management architecture — twhscthe basis for many modern
network management systems [Stallings-1] — EMSsMIEd reside in a management
domain [Klerer]. A management domain may be dec@mgointo one or more

management systems, and zero or more managed ¢éemAn object represents an
abstraction of a bundle of data and instructionshyect-oriented world. A managed

Ville Ryh&nen 9

Management of Network Elements

element, such as a network element, may be dec@udgot one or more managed
objects (MO). MOs depict network element's managegnrdormation that represents

resources and their activities. A managed objeesgnts a view of the resource to the
management system with properties that are mankggdéman-2]. A resource such as
an ATM board provides interfaces for ATM traffiogwever, only some aspects of the
board are manageable by a management system. pragserties are reflected in the

managed object that represents the board. A maradesystem, such as EMS

illustrated in Figure 3, is an application procedgthin a management domain witch

effects monitoring and control functions on managejcts [Klerer].

Management domain
EMS <+—— Managing system
A
Managed element
v l
NE NE NE
m\
= / / \ MOs representing NE’s
Media ATM 4 v resources
Stream Board
Board

Figure 3: Relationships of managed objects, managed el ements and managing system

2.2.1 Fault Management at the Element Management Layer

In the TMN model an EMS is placed on the elemennagament layer. Fault
management at the EML is about logging each disatrm or event in detail. Most
faults will be detected by the NE and reportechio EMS as notifications or alarms. By
periodically polling an NE an EMS can detect thenowunication failure with the NE,

in which case a notification is generated at theSENIhe EMS filters the alarms and

Ville Ryh&nen 10

Management of Network Elements

forwards them to an NMS that performs alarm cotimaacross multiple nodes and
technologies to perform root-cause analysis [IEEYIS stores the list of currently
active alarms at NEs, and EMS removes the alarrm fextive list whenever a

notification to clear the alarm is received. EMSoamaintains history of the alarms.

Fault management at the EML can be executed byrdeuof protocols. The following
sections detail two of the most prominent ones: BARnd SNMP. A brief view of

other fault management methods is also included.

2.3 CORBA

The Common Object Request Broker Architecture (CARB a standard defined by
the Object Management Group (OMG) that enablesilliged software components in
a network to work together. CORBA allows applicatido talk to each other even if
they are on different computers, on different opegasystems, on different CPU types,

or implemented with different programming languaflsHale].

The components of CORBA are Object Management fechire (OMA), Object
Request Broker (ORB) to support interaction betwelgjects, and object services. The
object interfaces are specified in a notion call@eérface Definition Language (IDL).
CORBA 2.0 introduced protocols for building inteevpble ORBs to the architecture.
The General Inter-ORB Protocol (GIOP) is connectioiented. A specialization of this
protocol for use with TCP/IP Internet Suite hasrbeefined in [IOP. Environment
Specific Inter-ORB protocols (ESIOP) have beenrasfifor interfacing with platforms
that do not support CORBA. [Raman]

2.3.1 The Concept of an Object in CORBA

A central concept in CORBA is its version of thenmaged object. A CORBA managed
object is not quite identical to an object in agramming language; they generally
share characteristics even though all sets of thphw not intersect [Pope]. The type of
a CORBA object is called an interface, which isiEmin concept to a C++ class or a

Java interface. An object has methods, state, arthiacteristic behaviour. Objects are

Ville Ryh&nen 11

Management of Network Elements

a physical manifestation of a class. A CORBA objectan instance of a class
encapsulating operations, attributes, and exceptl@®RBA also admits the possibility
of types that are not objects and types that the&SQMcuments call pseudo-objects. An
object is a basic computational unit consisting afefined behaviour and perhaps some
attributes. The attributes retain the effect ofdaebur. Requests made on an object are
messages or methods. The visible part of an olgeits interface. An interface to an

object is the combined sum of the messaging prtgaw®ed to request services.

As distributed middleware CORBA envisions distrédmitobjects (DO) as the union of
concepts from two paradigms — distributed compudéing object-orientation, with some

explicit differences [Pope]:

° A client knows an object by its interface.

° Objects are not always local with respect to thients.

° Dynamic composition may compose objects into nepliegtions.

° Objects hide many of the underlying differences architecture through

encapsulation.
In summary, distributed objects offer benefits bjeat-orientation and client-server: the
ability to distribute risk, rightsizing system déwement with small combinable

subtasks, and having looser coupling with well-dedi integration [Pope].

3GPP describes a Managed Object (MO) as a softalajext that encapsulates the
manageable characteristics and behaviour of acpatinetwork resource and uses this
description in its CORBA solution set [3GPP-1068]Os are organised in hierarchical
Managed Object Model similar to that of a file €8t where an MO that contains
another one is referred to as the superior (paret@reas the contained MO is referred
to as the subordinate (child). More of this will cmvered in Chapter 3.3.

2.3.2 Object Management Architecture (OMA)

In CORBA, a managed object is an object that igemilho system wide administration
and control. It is a client of services, such asivation, installation, or dynamic
behaviour [Pope]. These managed objects are meetfegher as an application object,

an object facility, or an object service.

Ville Ryh&nen 12

Management of Network Elements

The object management architecture is composedvof @spects and uses object-
oriented design concepts: a core model that descthe principles for defining objects
along with their properties and interfaces; andfarence model with four components:
object request broker, object services, commorlitiasi and application objects. The
last two components use the object services adibgiblocks. The common facilities

are higher level services that may be used by akapplications. [Raman]

2.3.3 Object Request Broker (ORB)

The foundation of CORBA is the object request brokdich is the mechanism for
objects to interact with each other. Figure 5 inaBeaph 2.3.6 illustrates a request sent
by a client to an object implementation. The clienthe entity that wishes to perform
an operation on the object and the object impleatsmt is the code and data that

actually implements the object [OMG3.0.3].

When an object in the client role invokes an openatthe request is processed by an
ORB to identify the server object to perform theguest [Raman]. The client is not
aware of either the location or implementation detaf the server object. The client
makes the request using the object reference. TRB {3 responsible for all of the
mechanisms required to find the object implemeaoafor the request, to prepare the
object implementation to receive the request, andommunicate the data making up
the request [OMGS3.1]. The interface the client Ssepmpletely independent of where
the object is located, what programming language implemented in, or any other
aspect that is not reflected in the interface ef dbject. In the client-server model an
object plays roles of a client and a server analgect may assume both client and

server roles for different operations.

When considering security aspects of CORBA, the OBRBitself, offers only trivial
security without the aid of an underlying securiastructure. It enables only a very
minimal security of being able to check that partereemeet requirements and that the

correct target receives a request. The designanfrise is flexible to the point of being

Ville Ryh&nen 13

Management of Network Elements

able to support a wide variety of security mechasigrom the network and hardware.

2.3.4 Object Services

The core part of CORBA is of limited use by itsalfthe same way that a programming
language stripped of its standardized library irofted use. What greatly enhances the
power of CORBA is a standardized collection of objservices — called CORBA
Services — that provide functionality useful foettlevelopment of a wide variety of
distributed applications [McHale]. The CORBA Sepsachave APIs that are defined in
IDL. The CORBA Services are a distributed, standadl class library. The object
services identified and standardized include [Rgm&vent Service, Life Cycle
Service, Naming Service, Persistence Service, Cosmate Control Service,
Externalization Service, Relationship Service, Beation Service, Security Service,
Time Service, Query Service, Licensing Service déraService, Change Management
Service, Start-up Service, Properties Service, @adology Service. For example,
Security Service is defined in a way that is indef@t of any particular security
technology and developers are given freedom fromledying security technologies
used in a given system without needing to redethgnapplications. The architecture

allows new services to be identified if desired.

2.3.5 Interface Definition Language (IDL)

The object interfaces in CORBA are defined usingnguage called IDL. The structure
of IDL is simple and the method of defining datpdy and interfaces is very similar to
writing programs in terms of data declarations &mtttion calls [Raman]. IDL is an

object contract language, but IDL is not a compjategramming language, it has no
iterators or flow control [Pope]. It is primarily language in which one can express

complex interfaces, but it does not provide impletagon for interfaces.

IDL defines data types such as integer, charadtergs and enumerated. It is also
possible to define new types using the struct, mnend sequence constructs. The
operations interfaces include name, parametersjltreand exceptions. The IDL

definitions including type definitions, constantceteration, and interface definitions

Ville Ryh&nen 14

Management of Network Elements

may be combined into one or more modules. [Raman]

IDL is used to define the public API that is expibd®/ objects in a server application.
IDL defines this API in a way that is independertamy particular programming
language. However, for CORBA to be useful theretrbasa mapping from IDL to one
or a number of particular programming languagesen® are not written in OMG IDL,
which is purely a descriptive language, but in lages for which mappings from OMG
IDL concepts have been defined. The CORBA standardently defines mappings
from IDL to the following programming languages [Male]: C, C++, Java, Ada,
Smalltalk, COBOL, PL/I, LISP, Python and IDLScripthese officially-endorsed
language mappings provide source-code portabilftyamplications across different
CORBA products. There are also proprietary mappitgs they will not guarantee
source-code portability to other CORBA vendor pmridu[McHale]. Typically, a
CORBA implementation comes with a tool called ath. iEmpiler which converts the
user's IDL code into some language-specific geadraibde. A language mapping
requires the developer to create some IDL code rigyatesents the interfaces to his
objects. A traditional compiler then compiles tlengrated code to create the linkable-
object files for the application. Figure 4 illugea how the generated code is used
within the CORBA infrastructure.

{client) main(} {server) main{)
Object Object
— reference |— — implementation Key:
Generated Generated I: ORB vendor-supplied code
— stub code — — skeletan code |

|: ORB vendor-tool generated code
Object Request M————M Object Request
Broker network Broker I: User-defined application code

Figure 4: Autogeneration of the infrastructure code from an interface defined using the
IDL

2.3.6 Interoperability and General Inter-ORB Protocol (GIOP)

ORB interoperability specifies a comprehensivexiiee approach to supporting

networks of objects that are distributed acrossraadaged by multiple, heterogeneous

Ville Ryh&nen 15

Management of Network Elements

CORBA-compliant ORBs. General Inter-ORB Protocol@8) is the abstract protocol
by which ORBs communicate. This protocol defines different message types — such
as request and reply messages — that can be exthdmegween client and server

applications and also specifies a binary formatheron-the-wire representation of IDL
types.

GIOP does not specify the actual networking teabmpplthat is used to transmit
messages between clients and servers. For exa@l@, does not specify if messages
should be transmitted over TCP/IP, X.25, ATM or soather transport. Instead, the
choice of transport mechanism is decided in a gfization of GIOP. The most well-
known GIOP specialization is the Internet Inter-ORBtocol (IIOP), which is for use
on TCP/IP networks. All CORBA products are obligedsupport IIOP, but they may
optionally also support other GIOP-based protocolenvironment specific inter-ORB
protocols (ESIOP). Figure 5 illustrates the intdRE protocol relationship. An
interoperable object reference (IOR) contains ttwetact details for all the protocols

that clients can use to communicate with an obreatserver. [McHale]

(Client) (Obiect Implementation)
CORBA/IDL

hequest A ESIOPs
other GIOP

ORB I mappings...

Figure 5: A request being sent through the ORB and Inter-ORB protocol relationship
[OMG3.0.3]

The GIOP specifies eight message types that catrabemitted between client and
server applications. The GIOP message types argud?e Reply, Fragment,

CancelRequest, CloseConnection, MessageError, €Beguest and LocateReply.

Ville Ryh&nen 16

Management of Network Elements

Table 2: GIOP Messages

TypeName Originator Notes
Request Client
Reply Server (i.e.
Implementation)
Fragment both remaining pieces of a large
Request/Reply
CancelRequest Client sent when client gets a titneou
exception
CloseConnection Server sent before closing theetock
connection
MessageError both normally sent to non-CORBA
applications
LocateRequest Client similar to “ping”, “is the ebj
here?”
LocateReply Server reply to “ping”

Figure 6 describes an example the GIOP requestagessd its headers. The fields in

the GIOP header can be described as follows:

The four characters "GIOP" serve to identify thetpcol.

. The GIOP version number (major and minor) is usett¢ate the message.
. A flag byte is currently only used to indicate thde ordering.

. An integer is used to indicate the message type.

. The message size (excluding the GIOP header itself)

Ville Ryh&nen 17

Management of Network Elements

This summarises all information which is sent ® @OP header. The request message
consists of a Request header followed by a Redpoest. The header consists of the

following fields:

. Theser vi ce_cont ext s field allows service specific context informatitm
be passed along with a Request. Intended for usenjunction with the CORBA
services to carry extra information along with Bequest, the service contexts are not

needed in the core specification of CORBA.

. Ther equest _i d field is used to uniquely identify a Request entizgafrom
a client so that the client can later match a kaxkeReply with its corresponding

Request (the corresponding Reply is tagged wittséimeer equest _i d).

. Ther esponse_expect ed flag is used to indicate whether the Request is

one-way or not. A normal Request ma&sponse_expect ed set equal to TRUE.
. The next field is an array of three bytes resefeeduture use.

. Theobj ect _key field is used at the server end to identify thgeobwhich is

being invoked.

. The operation field is simply a string giving thanme of the operation being
invoked.
. Ther equesti ng_pri nci pal field identifies the user making the request.

That is, it is simply the user name of the peraoming the client.

GIOP header Message header | Message body

operation ﬁ
|Message size ‘ service_contents —T L L L object_key

L reserved
message_type response_expected
flags request_id
minor
major

requesting_princibal
S GIOP header

GIOP

Figure 6. The format of a GIOP message and message header, and the format of a

Request message header

Ville Ryh&nen 18

Management of Network Elements

2.3.7 CORBA and Fault Management

According to OMG many different kinds of applicatg developed by the members of
the OMG and the users of CORBA, have a need fdt falerance [OMG3.0.3]. The
standard for Fault Tolerant CORBA aims to provideust support for applications that
require a high level of reliability, including ajgdtions that require more reliability
than can be provided by a single backup server.stdreard requires that there shall be

no single point of failure.

In CORBA fault tolerance depends on entity reduglafault detection, and recovery.
The entity redundancy means the replication of abjeThis strategy allows greater
flexibility in configuration management of the nuembof replicas, and of their
assignment to different hosts, compared to sergplication. Replicated objects can
invoke the methods of other replicated objects eutiregard to the physical location of
those objects. Support for redundancy in time @vigled by allowing clients to make

repeated requests on the server, using the saaleorative transport paths.

In a fault-tolerant CORBA system, fault managementompasses the following
activities [OMG3.0.3]:

° Fault detection - detecting the presence of a fauthie system and generating a
fault report.

° Fault notification - propagating fault reports tatiges that have registered for
such notifications.

° Fault analysis/diagnosis - analysing a (potentilhge) number of related fault
reports and generating condensed or summary reports

In the fault tolerance infrastructure, fault detestdetect faults in the objects, and report
faults to the fault notifier. The fault notifier aeives fault reports from the fault
detectors, filters the reports, and propagates filbered reports as fault event
notifications to consumers that have subscribedtiem. The fault analyser reasons
about the received fault reports, and produceseggde or summary fault reports. It

propagates these reports back to the fault nofiledissemination to other consumers.

Typically, there are several fault detectors, idolg those provided by the

Ville Ryh&nen 19

Management of Network Elements

infrastructure to monitor objects, and other faldtectors provided by the infrastructure
or the application. Each fault detector belonga particular fault tolerance domain, and
is not shared across fault tolerance domains. Magsementations of fault detectors are
based on time-outs, and use either pull- or pusiedbanonitoring. There can be also

one or more fault analysers.

A problem with the CORBA fault notification is thmotential for a large number of
notifications to be generated by a single fault [G840.3]. This problem is addressed
by filtering within the fault notifier, by fault alysers, and by the

Faul t Moni t ori ngGranul ari ty interface.

Figure 7 illustrates the architecture of fault talkce infrastructure - the interaction
between the fault detectors, fault notifier, faattalyzer, and replication manager in a

relatively simple system.

Fault Notiflcations

Fautt
Anatyzer

Fault Fawlt Fault
Detsofor Dreteobor Datnotor

Application

Figure 7: Interaction between the fault detector, fault notifier, fault analyzer and

replication manager [OMG3.0.3]

Ville Ryh&nen 20

Management of Network Elements

2.4 SNMP

SNMP stands for Simple Network Management Protacwl is currently in its third
version — although versions one and two are aldb ist some use. SNMP is
standardized by the Internet Engineering Task F@HE&F) and it is the standard
network management protocol in the IP realm. Eaaisign of SNMP is specified by
one or more IETF Request for Comments (RFC): RFE7 ldefines SNMP Version 1
(SNMPv1), RFCs from 3416 to 3418 define SNMP Versib (SNMPv2) and RFCs
from 3410 to 3418 and RFC 2576 define SNMP Ver8Sig8NMPv3).

The initial version of SNMP protocol is nowadayhistorical IETF standard; although
SNMPV1 is historical, it is still widely supportdny many vendors. The security of
SNMPV1 is based on communities, which are nothimgenmthan passwords. SNMPv2
expanded the functionality of SNMP and broadenea@pplicability from only TCP/IP-

based networks to also include OSl-based netwofke key enhancements that
SNMPv2 provides to version 1 fall into three followy categories: structure of
management information (SMI), manager-to-managepaloidity, and protocol

operations. SNMPv3 addresses the security probtdntise previous versions, but no
other essential changes are made to the protoclif®]. There are several new textual
conventions, but these are really just more prewiggs of interpreting the data types

defined in previous versions.

For gathering management information SNMP uses Isimpessages called protocol
data units (PDU). SNMP uses user datagram prot(4DbP) to transmit PDUs. The

SMI provides a way to define the managed objectSNMMP and their behaviour, and
the management information base (MIB) can be thbagha database of managed

objects.

2.4.1 Basic SNMP Concepts

In SNMPv1 and SNMPV2 there are two kinds of ergitimanagers and agents. A

manager is a server running a software system imgnaghanagement tasks for a

Ville Ryh&nen 21

Management of Network Elements

network. An agent is a piece of software that ranghe managed network device. It
can be a separate program or it can be incorpomatedhe operating system; most IP
devices today have some kind of SNMP agent build[Ntauro]. The agent is
responsible for:

. Collecting and maintaining information about itsdbenvironment

. Providing that information to a manager, eitheraaponse to a request or in an

unsolicited fashion when something noteworthy hagpe

. Responding to manager commands to alter the lag#lguration or operating

parameters

The manager station generally provides a userfaderso that a human network
manager can control and observe the managementgstoc€his interface allows the
user to issue commands (for example deactivate nl, Icollect statistics on
performance) and provides logic for summarizing @orchatting information collected
by the system. SNMPv3 makes a big change to thie bascepts and abandons the
notion of managers and agents, both are now c&@NWMP entities. Chapter 2.4.2

elaborates this change in more detalil.

2.4.1.1 The Structure of Management Information (SMI)

The structure of management information definesgergeral framework how managed
objects and their resources are named and repeelsant specifies their associated data
types. The definition of managed object in SMI barbroken down into three attributes

[Mauro]:

. Name: the name, or object identifier (OID), uniquely ides an MO. Names
commonly appear in two forms: numeric and “humaadable.” In either case, the
names are long and inconvenient. In SNMP applinatia lot of work goes into helping

the user to navigate through the namespace comibnie

. Type and syntax: A data type of an MO is defined using a subset b$tPact

Syntax Notation One (ASN.1). ASN.1 is a way of sfyeeg how data is represented
and transmitted between entities, within the cohoéSNMP. The benefit of ASN.1 is
that it is machine independent and different mashican communicate without

Ville Ryh&nen 22

Management of Network Elements

worrying about such as byte ordering.

. Encoding: A single instance of an MO is encoded into a stoh@ctets using
Basic Encoding Rules (BER). BER defines how thectsj are encoded and decoded so

that they can be transmitted over a transport nmediuch as Ethernet.

2.4.1.2 Management Information Base (MIB)

All MOs in the SNMP environment are arranged inexdrchical or tree structure. The
leaf objects of the leaf are the actual MOs, edclwlach represents some resource,
activity, or related information that is to be mged. The tree structure itself defines a
grouping of objects into logically related setsgute 8 illustrates the MIB-II sub tree,
which is a very important management group becausgy device that supports SNMP
must also support MIB-II [Mauro]. The MIB-II standadefines variables for things
such as interface statistics (interface speedsjmuam transmission unit, octets sent,
octets received, and so on) as well as varioug thivggs pertaining to the system itself
(system location, system contact, and so on). i@ goal of MIB-II is to provide
general TCP/IP management information; it doescowér every possible item a vendor

may want to manage within its particular device.

Ville Ryh&nen 23

Management of Network Elements

Root-Node

ceitt(0) i iso(1) Joint(2) b

dod(6) |

ntemet(1)

directory(1) mgmt(2) experimental(3) private{d) h

mib-2(1)

system(1) J|interfaces(2) tcpl6]|‘| transmission(10)

sampi11)

Figure 8: MIB-II sub tree of the mgmt branch [Mauro]

What gives SNMP its power is the extensive setaridardized MIB structures that has
been defined [Stallings-2]. The MIB at an agenitgrdictates what information that
agent will collect and store. For example, thee amumber of variables in the basic
MIB that relate to the operation of the underlyin@P and IP protocols, including
number of packets sent and received, packets or,eand so on. Since all agents
maintain the same set of data variables, applicatc@an be written at the management
station to exploit this information.

2.4.1.3 SNMP Operations

SNMP is designed to be easy to implement and teswoe minimal processor and
network resources. It is therefore a tool for buidda bare-bones management facility.
Entities send and receive information by PDUs. Ezdhe following SNMP operations

Ville Ryh&nen 24

Management of Network Elements

has a standard PDU format:

. Get: Used by a manager to retrieve an item frorageamnt's MIB.

. GetNext: Used by a manager to traverse a MIB seditr lexicographic order.

. GetBulk: Used by a manager to retrieve a large@edf a table from an agent's
MIB at once.

. Set: Used by a manager to set a value in an adéi's

. GetResponse: Used by an agent to respond to managérgetnext or getbulk
operation.

. Trap: Used by an agent to send an alert to a manage

. Notification: Used to standardize the PDU formatraps.

. Inform: Used by a manager to send an alert to amattanager.

. Report: Allows SNMP engines to communicate withheaiher.

2.4.2 Protocol Architecture

Each SNMP entity consists of an SNMP engine andarrmaore SNMP applications.
The revised concepts are important because thepedah architecture rather than
simply a set of messages; the architecture helpgrae different pieces of the SNMP

system making a secure implementation possible [dau

Ville Ryh&nen 25

Management of Network Elements

L L L L L L L L LR L L e i L R L R L L] T
*
* *

.." SNVIP entity ".'
: SNIME engine (fdentifed by SampEnginelD) :
. -
:]
: .
. Message . ACCESS .
: Dispatcher Processing Security Contral
: Subsvstermn Subsystam Subsystem
: .
. -
:]
: :
: Applications) :
. -
: Command generator Motification receiver Froxy fonwarder
:]
: .
. Zommand responder Motification originator Cither '

- .'

Figure 9: SNMPv3 entity [Mauro]

2.4.2.1 The SNMPv3 Engine

The engine is composed of four pieces: the dispatcthe message processing
subsystem, the security subsystem, and the acoes®Icsubsystem. An SNMP engine
implements functions for sending and receiving rages, authenticating and
encrypting or decrypting messages, and controllaggess to managed objects
[Stallings-1].

The job of the dispatcher is to send and receivesages. The dispatcher determines the
version of each received message and hands itetondssage processing subsystem.
The dispatcher also sends SNMP messages to ottiseernThe message processing
subsystem prepares messages to be sent and edttsom received messages. An
implementation of the message processing subsystagn support a single message
format corresponding to a single version of SNMP jtomay contain a number of
modules, each supporting a different version of $NMhe security subsystem
provides authentication and privacy services. Eadgoing message is passed to the
security subsystem from the message processingstebs Depending on the services

required, the security subsystem may encrypt tliebbosad message, and it may generate

Ville Ryh&nen 26

Management of Network Elements

an authentication code and insert it into the nges$eader. The processed message is
then returned to the message processing subsySiemiarly the security subsystem
checks incoming messages for authentication codd parforms decryption.
Authentication uses either community strings (SNMRnd v2) or SNMPv3 user-based
authentication, that uses the MD5 or SHA algoritiimmauthenticate without sending a
password in the clear. The privacy service usesIB& algorithm to encrypt and
decrypt SNMP messages. The access control subsystegsponsible for controlling

access to management information base objects.rfflau

2.4.2.2 The SNMPv3 Applications

SNMPv3 divides the traditional manager and agelesrof previous SNMP version into
a number of applications presented in Table 3applications make use of the services
provided by the SNMP engine of an entity. RFC 3dlldws additional applications to
be defined over time.

Table 3: SNMPv3 Applications

Application Description Traditional

role

Command generatarGenerates get, getnext, getbulk, and | seanager
requests and processes the responses.

Implemented by an NMS.

Command Receives and responds to get, getneagent
responder getbulk, and set requests.

Notification Monitors a system for particular events|enanager
originator conditions, and generates SNMP traps aQﬁld agent

notifications. A notification originator must
have a mechanism for determining where to
send messages, and which SNMP version

and security parameters to use.

Ville Ryh&nen 27

Management of Network Elements

Notification Listens for notification messages, receiy@sanager

receiver traps and inform messages, and generates
response messages to them.

Proxy forwarder Forwards messages between entities. | agent

2.4.3 Messages

In all versions of SNMP information is exchangedwsen SNMP entities with

messages. Each message includes a message hedderP&J). SNMPv3 message

format is illustrated in Figure 10.

scope of authentication

scope of encryption

msgVersion

msgID

msgMaxSize

msgFlags

msgSecurityModel

msgAuthorativeEnginelD

msgAuthorativeEngineBoots

msgAuthorativeEngineTime

msgUserName

msgAuthenticationParameters

msgPrivacyParameters

contextEnginelD

contextName

PDU

Figure 10: SNMPv3 message format with USM

>

-

Generated/processed
by Message Processing
Model

Generated/processed
by User Security
Model (USM)

Scoped PDU
(plaintext or encrypted)

Ville Ryh&nen

28

Management of Network Elements

The user-based security model (USM) and the vieeess control model (VACM)
together detail the security enhancements added SNMPv3. RFC 2274 defines the

USM and this specification encompasses [Stallifgs-1

. Authentication: Provides data integrity and datagior authentication. The
message authentication code HMAC, with either thshhfunction MD5 or SHA-1,

provides authentication.
. Timeliness: Protects against message delay onyepla

. Privacy: Protects against disclosure of messagdogdy The cipher block

chaining (CBC) mode of DES is used for encryption.

. Message format: Defines format wsgSecur i t yPar anet er s field, which

supports the functions of authentication, timelesd privacy.

. Discovery: Defines procedures by which one SNMPrengbtains information
about another SNMP engine.

. Key management: Defines procedures for key gemeratipdate, and use.

Specifically, USM is designed to secure against tbkowing principal threats
[Stallings-2]:

. Modification of information: An entity could altean in-transit message

generated by an authorized entity in such a wayp &ffect unauthorized management
operations, including the setting of object valuBlse essence of this threat is that an
unauthorized entity could change any managemeanpeter, including those related to

configuration, operations, and accounting.

. Masquerade: Management operations that are nobreld for some entity

may be attempted by that entity by assuming thetiyeof an authorized entity.

. Message stream modification: SNMP is designed teeraip over a
connectionless transport protocol. There is a thtkat SNMP messages could be
reordered, delayed, or replayed (duplicated) tceceéffunauthorized management
operations. For example, a message to reboot @ealeould be copied and replayed
later.

. Disclosure: An entity could observe exchanges betme&emanager and an agent

Ville Ryh&nen 29

Management of Network Elements

and thereby learn the values of managed objectsleard of notifyable events. For
example, the observation of a set command thatgadsapasswords would enable an

attacker to learn the new passwords.

USM does not secure against denial of service: teaclker may prevent exchanges
between SNMP entities, or traffic analysis: ancki#a may observe the general pattern

of traffic between entities.

In any message transmission, either the transnuitereceiver is designated as the
authorative SNMP engine. When an SNMP messageinsrdgpayload, which expects
a response (for example, a Get-, GetNext-, GetBBkt-, or Inform-PDU), then the
receiver of such messages is authoritative; wheBNMP message contains a payload,
which does not expect a response (for example, MMPY2-Trap-, Response-, or
Report-PDU), then the sender of such a messagetiraative. This designation

serves two purposes [Stallings-2]:

1. The timeliness of a message is determined witheidp a clock maintained by
the authoritative engine. When an authoritative irmigsends a message (Trap,
Response, Report), it contains the current valussalock, so that the non-authoritative
recipient can synchronize on that clock. When a-aagthoritative engine sends a
message (Get, GetNext, GetBulk, Set, Inform), dudes its current estimate of the
time value at the destination, allowing the desiimato assess the timeliness of the

message.

2. A key localization process enables a single practp own keys stored in
multiple engines; these keys are localized to titbaitative engine in such a way that
the principal is responsible for a single key bubids the security risk of storing

multiple copies of the same key in a distributetivoek.

Access control is a security function performedhet PDU level. An access control
document defines mechanisms for determining whetbeess to a managed object in a
local MIB by a remote principal (which may be amliindual or an application or a
group of individuals or applications) should beoaléd [Stallings-2]. The view-based

Ville Ryh&nen 30

Management of Network Elements

access control model is defined in RFC 2275 and sigsecontrol access to managed
objects in a MIB or MIBs. VACM makes use of a MIBat defines the access policy for
this entity, and makes it possible for remote agunfation to be used. VACM

implements the services required for the accestsralosubsystem. VACM makes an
access control decision on basis of the princig&lng for access, the security model
and security level used for communicating the regwé the principal, the context to
which access is requested, the type of access steguéread, write, notify), and the

actual object for which access is requested [8gdHl].

2.5 Other Methods of Fault Management

Despite the current strong presence of CORBA anlliBNhere are also other methods
for fault management in the telecommunicationsdfieThe nowadays somewnhat
outdated common management information protocol I@Ms still used to manage
telecommunications devices that do not use the [RC®ack. 3GPP includes CMIP in

its solution sets for fault management.

Looking at the wider area of network managementeth&re other methods than
CORBA and SNMP available from different organisaicand vendors. Large device
manufacturers such as Cisco and Juniper have dffeetr own command line interface
for managing their devices, but they do not scaddl ¥ managing a large group of
devices. Large manufacturers have also developgdgblutions to XML-based agents
and utilised embedded web servers (EWS) on theiicdg to provide web based
configuration management [Choi-et-al]. These venslpecific solutions do however
mainly configuration management. IETF has starteswn project, called Netconf, to
standardise the vendor specific XML-based solutipg3 F-N]. It also though only

concentrates on configuration management. Thenetd&kesearch Task Force (IRTF) —
a sister group of the IETF — does research on duiways of fault management, and
network management as a whole. At the moment iirhpsovement for SNMP, but no

completely new management ways.

Configuration management has been seen as the essakh SNMP, and therefore new

Ville Ryh&nen 31

Management of Network Elements

management solutions have concentrated on that. SN& been left on the side of
these solutions to handle fault management. Buhimgtprevents from developing a
complete XML-based management system as describesh iarticle from Korean

POSTECH [Choi-et-al]. Management information cardeéned by XML Schema and
transferred using HTTP over TCP. 3GPP has also dofeasibility study of XML-

based telecommunications management and introdaicgmlution set to replace their
CORBA solution set [3GPP-XML]. In this solution gie object access protocol
(SOAP) is used to as XML messaging and invocatiatogol. With the wide and ever
widening usage of XML, XML/SOAP solutions can beseas very viable candidates in

the future of fault management.

Ville Ryh&nen 32

Conversion between CORBA and SNMP Fault Management

3 Conversion between CORBA and SNMP Fault

Management

The previous section described CORBA and SNMP —tileeprominent methods for
fault management. This section focuses on convetssdween these two solutions and

presents reasons why a service provider would wardnduct such a conversion.

3.1 Incentives for a CORBA-SNMP Converter

CORBA was taken to fault management use in lat®4,99hen CMIP and SNMP were
seen as hard to learn and implement [Deri&Ban]oAlse advent of Java gave wave to
CORBA as it provided language mapping to Java [HegjnThis and other language
mappings promised developers a tool that wouldwalloem to build heterogeneous
distributed applications and their management fiatess with relative ease. Particularly
GSM and UMTS NEs were provided to service provideith almost solely CORBA

management. However, SNMP remained in use and swbility and different

implementations evolved over the years.

The biggest impact of CORBA as a management prbtosas in the
telecommunications sector, but after its initiatsss years, the concept of an all-IP
world started gaining ground also in telecommumicest. In this environment SNMP, as
part of the Internet Protocol Suite, became oncainaghe most popular fault
management mode because of its merits, such asoédeglementation and great
interoperability [Yoon-et-al]. CORBA on the othearld was being seen as complex,
inconsistent and downright arcane [Henning]. Thesting of the Internet bubble in
2002 did also not help CORBA as its development mdlodown, because several
vendors and software companies refocused theirteffAlso according to Henning, the
standardization process of OMG hindered developn®@nCORBA so that it is
presently almost static in the management field.

While SNMP is not without its drawbacks, it is Istiie strongest choice for monitoring

Ville Ryh&nen 33

Conversion between CORBA and SNMP Fault Management

NEs and for fault management on moderate size mk$wblaving been designed to be
simple it has limitations on scalability, thoughstlaffects configuration management
more than fault management. Because most netwovicede used worldwide are

equipped with an SNMP agent, the best choice s@reice provider wanting to manage
all its NEs with a single protocol is SNMP. For &R operating, both CORBA using
and SNMP using NEs, the solution is to convertGRRBA based fault management to
using SNMP.

3.2 General Aspects of Protocol Conversion

There has been only limited amount of researchiechrout on protocol conversion
concerning element management or network managernmetite late 90s, the trend in
research was converting existing SNMP managed édevio CORBA management
[Mazumbar], [Aschemann], [Deri&Ban], and in the lg&2000s studies on SNMP-XML
conversion have been made [Yoon], [Klie], [Choi§t- From these studies similar

general aspects for management protocol convecsiome gathered.

In most cases illustrated in research articlestopm conversion includes two main
parts, a translator and a gateway [Mazumbar], [As&@mnn], [Yoon]. Usually different
protocols have different presentations of informatimodels and to convert this
information a translation algorithm is needed. Ttamslator’s algorithm translates data
type definitions; object references; variable, ilatire, and other names between the
protocols involved in the conversion. The loss wofoimation is possible in these
translations and should be taken into consideratioen designing the algorithm. Some
loss of less important information may though bsified for the functionality reasons.
In some cases the original protocol has informatad functions not needed by the
desired new protocol, so translation of these fonstis not always mandatory. The
translator may have to convert one type, definibomame of one protocol to many on

the other protocol or vice versa.

The gateway is needed to convert and map operatioethods and messages from one

protocol to the other. This gateway conversion alap be similar to the conversion in

Ville Ryh&nen 34

Conversion between CORBA and SNMP Fault Management

the translator, as one message in the other prhotagyp require two or more messages
in the other. The gateway may also need to generatsages and monitor entities on

its each side.

Some metrics are needed for the conversion evaluafihe conversion should be able
to convert all desired functions, not add significdoad compared to the original
protocol, and not be noticeable to the user — e will not notice the underlying

protocol.

3.3 Comparison of Fault Management with CORBA and SNMP

As Section 2 illustrated, fault management can beedby using both CORBA and
SNMP, but they have differences in how they exedatdt management. There are

differences in protocol stacks, data types, MO gm&tions, and messages.

The protocol stacks of CORBA and SNMP are presesitsglby side in Figure 11. Both
SNMP and CORBA protocols — comprising of 1IOP, Gl@mid a stub or a skeleton —
preside on the application layer. SNMP and CORBA ulfferent protocols on
transport layer; CORBA utilises the more reliabl€PTr while SNMP uses lighter and
speedier UDP.

Ville Ryh&nen 35

Conversion between CORBA and SNMP Fault Management

SNMP protocol stack CORBA protocol stack OSI model
Stubs/Skeleton Application layer
Presentation
SNMP GIOP layer
1nor Session layer
UDP TCP Transport layer
P IP Network layer
MAC MAC Data link layer
Physical layer Physical layer Physical layer

Figure 11: Protocol stacks of SNMP and CORBA

The messages of SNMP and CORBA used in fault manegealso differ. In CORBA
all is done basically with two GIOP message typeguest and reply. A request can
also be cancelled and both message types candradnded. These messages are still
versatile as they can convey different CORBA openst The operations the EMS can
perform on the NE via these messages and the CO&B¥ces that provide these
operations are the real essence of CORBA fault ggmant. CORBA communications
generally are also more complex than SNMP and taweepe with many aspects such
as encoding of operation calls, or different par@meemantics. Contrary to CORBA,
in SNMP the essence of fault management are theages the EMS and the NE send
to each other. SNMP uses eight different messagestyor fault management as
described in Paragraph 2.4.1.3., and communicatitinthese messages is defined very
precisely. In addition to some general informatieach SNMP message contains a list
of name-value pairs, a so-called variable bindimgf. |Especially the trap and

notification messages are important as they dheritanager entity of alarms and other

Ville Ryh&nen 36

Conversion between CORBA and SNMP Fault Management

events in the NE. The CORBA equivalents to SNMMpdrare alarm and event
operations. Since an SNMP message PDU can speoify than one variable that may
span multiple tables and rows, each SNMP PDU caraleopore than one CORBA
operation [Mazumdar]. In describing data SNMP u&88I.1 types in the PDUs while
CORBA uses IDL types.

The MO presentation is quite similar, but there @diféerences in the details such as
SNMP information modules being SMI documents whilese of CORBA are IDL
modules. As explained in Paragraphs 2.4.1.1 and.2.4nanaged objects in SNMP are
organised in a treelike hierarchy defined by unigqiigect identifiers (illustrated in
Figure 8). An object ID is made up of a seriesnbégers based on the nodes in the tree,
separated by dots. Each managed object has a mam®@iD and an associated textual
name; the OID textual name pairs pertaining toecsic network element are grouped
in a MIB. In 3GPP CORBA fault management, manage@ats are also organised in
treelike hierarchy called hame space [3GPP-1068feMas SNMP MOs are similar to
the pairs that IP addresses and URLs make, maragedts of CORBA are more like
objects in object oriented programming languageslisinguished name (DN) is used
to uniquely identify a CORBA MO within a name spadée distinguished name is
constructed from a series of name components egfeiw as relative distinguished
names (RDN) such as the MO'’s type name and identitgber; the full distinguished
name contains the path from the MO to the global MO similarly as for example file
names in Unix file system. ITU-T Recommendation0Q.%lefines the concepts of DN
and RDN in detail. The CORBA MOs have also attesuthat reference what is their
parent MO and what context does the MO belong.

Table 4 summarises the main differences in fautagament of CORBA and SNMP.

Ville Ryh&nen 37

Conversion between CORBA and SNMP Fault Management

Table 4: Differences of CORBA and SNMP Fault Management

CORBA

SNMP

Main difference

Transport protoco

TCP

UDP

Retransmissions in
TCP

Messages

2 formal types,
many different

operations, name-

8 formal types,

OID-value pairs

Message structure
CORBA has fixed
fields versus SNMF
having free variable

value pairs o
bindings
Attributes within
IDL modules, SMI modules,
) _) MO versus
MO presentation objects with OID-textual name '
. . attributes as

attributes pairs

branches of MO
Data types IDL types ASN.1 types

Manager functions

D

Several different
operations for
modifying and
accessing MO

information

Set-operation for
variable-binding
manipulation, get-
operation for
viewing variable-

bindings

CORBA-operations
are a lot like
programming

language functions

SNMP-operations

simple and rigid

Security

Security Service
(CORBASEC)

USM and VACM

Ville Ryh&nen

38

Converter

4 Converter

As described in Chapter 1 the objective of theighissto study how a network operator
— having network elements using 3GPP’s implemeriati CORBA fault management
(FM), while most other of the operator's NEs aslvasl the operator's EMS are using
SNMP for fault management — can unify the fault agament of its network and thus
convert the CORBA based NEs into understanding SNMWP In order to do this a
CORBA-SNMP converter is needed and designed ty @art the protocol conversion
from one to another. The converter can be addedti NEs or between the EMS and
the NE.

4.1 Structure of a CORBA-SNMP Converter

The structural design of the converter can be dyithto five sections representing the
different tasks of the CORBA SNMP conversion. Thesetions — protocol mapping,
message mapping, managed object mapping, securdpping, receiving and

forwarding messages — are combined to form the evbohverter.

4.1.1 Protocol Mapping

To convey messages between the EMS and NE, theedenmhas to take care of the
different protocol stacks of SNMP and CORBA. Thacks differ on top of the IP layer
and operate on different styles of connections liaae to be taken into consideration.
Stallings [Stallings-1] describes a concept of &MP proxy agent, where an SNMP
agent acts on behalf of one or more devices thanaloimplement SNMP. The
CORBA-SNMP converter works similarly and Figure l&dicates the protocol
architecture. The converter must connect to the Ed&rding to the SNMP protocol
stack and at the same time connect to the NE aiogptd the CORBA protocol stack.
Once both connections from the converter are sethgpconnection between the EMS

and the NE is complete.

Ville Ryh&nen 39

Converter

Proxy agent

. Mapping function
Management station pping Proxied device
Manager process Agent process Management
process
CORBA
SNMP SNMP CORBA
UDP UDP TCP TCP
P 1P P P

Network-dependent Network-dependent | Network-dependent Network-dependent

protocols protocols protocols protocols

@ e

Figure 12: Proxy configuration of the converter [Sallings-1]

4.1.2 Message Mapping

In both CORBA and SNMP, the essential part of faudinagement is the NE detecting
faults and other important events and reportingntthe the EMS with messages. The
other essential part is the EMS setting filterstloem NE — also with messages — which
determine what notifications it wants to receiveessence, a CORBA-SNMP converter
Is a gateway that translates these FM messageEMi@s and NEs send each other. To
the EMS the converter makes the CORBA managingfade of the NE look like a
SNMP agent entity; at the same time the CORBA fanslhagement remains unchanged
for the NE.

As described of the CORBA based fault managememaragraph 2.3.7, the faults
occurring in CORBA based fault management systemasiatected by a fault detector
and reported to a fault notifier. The fault notifféters these reports and propagates the
filtered reports to consumers that have subscribethem. The reporting is done by

sending an alarm message or an event message EMiBe The task of the CORBA-

Ville Ryh&nen 40

Converter

SNMP converter is to translate these alarm or ewvaatssages into SNMP trap
messages. The NE maintains a subscription listalsat describes, according to filters
applied to some of the subscriptions, which alaansl events are sent to which
managing systems. The EMS can manage the subeaorli with SNMP set messages.
The converter needs to map the SNMP set and getages to CORBA set requests, as
well as the NE responses from CORBA to SNMP. FidlBellustrates the tasks and

components of the converter.

. CORBA
SNMP (SNMP Agent entity) messages
Mmessages NE
CORBA-SNMP converter (CORBA
EMS [Tap | - T L L A | based)
(SNMP 4 E‘f‘ 3 ________ 3
Manager ‘r‘.f O A Ewvent
C]‘lﬁl}-’} = Mapping and . i
§ T_1.an$|m_i“g) I :
e = | Sub-
ot -9 B Set {seribtion-
- L, [TSRO VTP SRR S . e <R B 0 i
Response 1 | LET ;oA Response
E FANCAN . A I A
“UDp € TCP

Figure 13: The interaction between SNMP manager and CORBA based NE using the
CORBA-SNMP converter

SNMP Trap- and Set-PDUs contain only few mandaf@igs or mandatory variable-
bindings. Most information is in variable-bindingisat are defined by specific MIB
files. In order for the manager entity to underdtamformation coming from the NE
trough the converter, a MIB file corresponding he tCORBA based NEs must be
defined and loaded to the converter and the EMt®. MIB file defines object types
that correspond to the information fields of CORB/rm and event notifications. It

also defines the OIDs of each of these object types

In an SNMP set message every variable-binding fieidst be valid in order for the

Ville Ryh&nen 41

Converter

intended changes to be made [Stallings-1]. In amdib describing the CORBA based
NE, a MIB file must also define what CORBA operagoa SNMP set message can
invoke on the NE. The converter maps these allowariable-bindings to CORBA
operations and operation parameters, and invokesofferation on the NE's ORB
through its own ORB. The MIB file must similarly fitee what information an SNMP

get messages can obtain from the NE.

4.1.3 Managed Object Mapping

The converter needs a MIB file that defines theidBrmation and characteristics. The
MIB file needs to include — in addition to the titewhal SNMP OID-textual name pairs

— additional mapping of SNMP OID and CORBA distirglied name pairings. When

the converter receives a notification from the NBeeds to map the DN of the MO
causing the notification into a corresponding OTe DN is a line containing every

MO RDN in a direct succession between the root M@ the leaf MO causing the

notification (for example a DN can look like

“DC=ConpanyXYZ, Net =DS3BackBone, St at i on=TMR, Node=1, Port =3"),

and the mapping function needs to map each paaratenl by a comma to a part of an
OID and append them to a full OID of the MO.

4.1.4 Security Mapping

In addition to protocol stacks, the mapping funeti@as to convert the security functions
of CORBA and SNMPv3. Since the security functioisS:NMP and CORBA are
mostly not similar, the converter cannot map séguwsith exactly same parameters
between the EMS and the NE. The most importantgdahe security mapping is trying
to maintain the same level of security from the EM&ugh the converter to the NE
and vice versa. The maker of the converter or flexaior using the converter needs to
decide what CORBASEC level and features corresportide desired SNMP USM and
VACM features.

4.1.5 Receiving and Forwarding Messages

In SNMPv3 the manager and agent tasks are repessdayt applications. A normal

Ville Ryh&nen 42

Converter

SNMP (agent) entity utilises a proxy forwarder agggion to forward messages from
other SNMP entities. As the converter also has &p and translate messages from the
NE to the EMS and vice versa, messages cannot \sibgpforwarded by proxy. Each
message needs to be read and a new message néedotmed according to it. As a
basic initialization, the converter should be cgafed to listen to the address and port
of the EMS and replace the information of the EM#ws own in the subscription list
of the NE.

One important aspect of message transfer that rieduls considered in the converter’s
design is message blocking. SNMP and CORBA messaagede sent synchronously
(blocking) and asynchronously (non-blocking). Iftiees are in different threads of
control, they are asynchronous and sending a regueshich the sender expects a
response does not halt the operations of the sevitbr waiting for the response. With
the addition of a converter between the EMS and $¥&chronous message exchange
may block the operations of the managing system rfarch longer than an
asynchronous straight SNMP exchange. If the coaewetbcks all other messages while
waiting for a response to its first received requéscan become a bottleneck and
impede performance of the network element. Messageiving and handling should
therefore be threaded by the converter. FigurenthFagure 15 illustrate the difference
between blocking and non-blocking message exchamigie simplified examples.
Blocked requests from the EMS caused by blockingtber causes are not transmitted
automatically unless the EMS application itselfesicare of this. If the EMS is polling
the NE periodically, the loss of some of the manag@ data is acceptable. SNMP over
TCP would help with some loss of management datawould also increase network
congestion with its retransmissions in situatiamswhich SNMP is designed for, when
networks are in trouble and something has gone gvironetwork elements [Mauro].

Ville Ryh&nen 43

Converter

Blocking message exchange

EMS converter NE

mapping request

: Request
blocked <

! mapping response

Response

mapping alarm

Figure 14: Synchronous message exchange through the converter

Non-blocking message exchange

EMS converter NE

thread 1 thread 2

Request

mapping Alarm

thread

e Response
Alarm ///
‘/// «]

mapping

M

A / A 2 4 \ 4

Figure 15: Asynchronous message exchange through the converter

In its most robust configuration, the converterdias each task in a different thread of

control. Receiving messages from the NE, sendingsages to the NE, receiving

Ville Ryh&nen 44

Converter

messages from the EMS, and sending messages t&MBeare all handled with a
separate thread. As the communication betweenaimeecter and the EMS and between
the converter and the NE is done with differennsmort protocols, using different

threads of control the converter will not block etliunctions, if a message times out.

4.2 Design of a CORBA-SNMP Converter

The intent of the converter implementation is tover — as described in the previous
sections — that the concept of converting a netweltment's CORBA fault
management to use SNMP via a converter is fundtidimamake this proof of concept,
the following kind of CORBA to SNMP converter wassigned and implemented.

The converter implementation is written in Javagoamnming language; the fault
management of an NE in this thesis utilises Erigssdava implementation of IDL
specifications for Alarm and Notification servicgsfined by 3GPP’s CORBA Solution
Sets [3GPP-1063], [3GPP-1113]. For implementing $NMnanaging system
functionality and the SNMP functionality of the ca@mter, an open source SNMP
application programming interface (API) for Javaused [SNMP4J]. Although the
implementation utilises an Ericsson NE, the corerentas designed for interoperability
with network elements and managing systems of othanufacturers; the design
follows both CORBA and SNMP standards.

The operating principle of this example implemeptatis to manage CORBA fault
management operations with SNMP messages and ltbeifa restrictions apply. The
implementation only covers fault management coneersas such no changes to the
MOs or MO models can be made or reconfiguratiomfopaed. Also the operating
principle could have been to operate as much asilgedike a normal SNMP agent
entity, but as the difference between these operaiinciples is not of great relevance

to the presented conversion concept, this prineigle chosen for testing purposes.

The implementation comprises of five Java classeslass for handling the SNMP

Ville Ryh&nen 45

Converter

connection and function€gnvert er Agent), a class to function as the converter’s
ORB and for handling the CORBA connection and ojpana Converter ORB), a
class that handles the mapping and translationtibim (VessageMappi ng), a class
that represents the converter's MIB file contain@{pP textual name DN pairings of
every MO of the network elemen®r{npCor baConst ant s), and finally the class
that combines the other classes and utilises tleenrmake the converter functional
(Convert er). These classes also utilise the previously meaddcSNMP and CORBA
Java libraries. The MIB also contains the CORBA rapen parameter OID pairs
needed for the mapping functions. To avoid messémking the converter object runs
in its own thread as well as running both its agaml ORB objects in their own

separate threads.

To start up the implementation, several tasks adopmed. First the converter
implementation sets up both the CORBA connectiomatd the NE and the SNMP
connection toward the EMS. The converter initiatesORB to start up the CORBA
runtime system; the converter needs to use CORBAintaservice for resolving the
needed CORBA objects from the NE. But before theveder can use the naming
service, it must get a reference to the namingieeiitself. This is done by fetching an
IOR file that has a stored stringified object refaze to the root naming context. Next,
with the resolved naming service, the converterartgpreferences to AlarmIRP and
NotificationlRP CORBA objects; these handle theltftasanagement operations on the
NE. Once the converter has a reference to a CORB&cbin the NE, the converter can
invoke operations upon it. For receiving and prgpeandling notifications from the
ORB of the NE, a sequence push consumer must beected to the converter's ORB.
The converter's ORB can be put to listen for noéifions in the start up, or later with a

specific function &t t ach_push).

To set up the SNMP connection, the converter sGNMP agent entity processes:
multithreaded message dispatcher, UDP transportpmgpwith IPv4, message
processing model MPv3, command responder, and isecnodels. The address and

port number of the EMS for sending, and the addaessport number of the converter

Ville Ryh&nen 46

Converter

agent for listening are also configured — this iinfation also needs be configured in the
managing system, for communicating with the NE gtothe converter. After finishing
its installation the agent starts listening for sagges. Figure 16 illustrates the

components and start up processes of the conwenpéEmentation.

Converter-class ‘ NE's ORB
e f'Ji-nitiaIizes v T _creates and initializes . l /
N e i i
) 5 T HOES
ConverterAgent- “preates T ~YConverter-
class ORB-class i AlarmIRP-
. i it | class
MessagehMapping- PR ; y I
e |isten for class N
managing S
system Mapping ohject N
functions references i .
S i |Motificationd
M ¢ JIRP-class
i |
SnmpCorbaConstants- gofreeees ¢ i
class

Figure 16: Converter implementation at start up

Also at the start up of the converter, both theveoter agent and the converter ORB set
up security features. Security mapping, or moreuately applying the same level of
security between the EMS and NE, is set up. Thatageset up with USM security
model and VACM access control and in the ORB CORBE&Ss set up from an IOR

file.

4.2.1 Protocol Mapping Implementation

A UDP connection between the EMS and the convestestablished with the setting up
of the converter's SNMP agent entity. In settingtbhp converter’'s CORBA ORB, a
TCP connection with IPv4 between the converter tred NE is established. As the
messages that the converter needs to convey betive&MS and the NE require more

than just encapsulating the message payload with trensport protocol headers, no

Ville Ryh&nen 47

Converter

direct protocol mapping between the transportapostocols is done. The converter
receives an SNMP message, reads its contents asedl lmn the information, uses
mapping functions to invoke a new CORBA operatibroigh the ORB. When the
ORB of the converter gets a notification form thie,d SNMP message is formed and
mapped from the information of the notification.d@ese of this different philosophy of
working in SNMP and CORBA, the converter maintaitvgo separate transport

connections, instead of directly mapping the tranisprotocols.

4.2.2 Message Mapping Implementation

In the 3GPP implementation of CORBA fault managematarm and event
notifications are transported in a message caltegctsired event [3GPP-1063]. A
structured event is comprised of three struct cant: header, filterable data, and the
remainder of body. The header can be further deosatpinto a fixed portion and a
variable portion, and the fixed portion of the hexadivided into event type and event
name. Still further in details the event type has fields: domain name and type name.
The domain name identifies the particular vertioalustry domain in which the event
type is defined (for example telecommunicationsaiiice, or health care); the type name
categorizes the type of the event uniquely withiea domain. For both alarm and event
notifications the header part of the structurednéve similar, but the number of fields
in filterable data differs to some extent. Filtdeadata comprises of hame-value pairs
called properties. Both alarm and event have fisdisnanaged object class, managed
object instance, event time, notification ID, sfiecievent or problem, system
distinguished name, and additional text and infoe &larm notification has also fields
for probable cause, perceived severity, alarm ID acknowledgement handling. The
format of these name-value pairs is mostly stritmgpg with a few string-integer and

string-long integer pairs.

The task of the converter is to read the receivedctsired event and construct an
SNMP Trap-PDU. The converter fills the requestigd and variable-bindings of the
PDU based on the information it reads from thecstmed event. Mandatory value-

name pairs in the Trap-PDU agsUpTi ne. 0 andsnnpTr apO D. 0. The field for

Ville Ryh&nen 48

Converter

sysUpTi ne is filled with system uptime OID and the convegeswn time counter
value; the field fosnnpTr apQ Dis filled with an OID indicating an enterprise SIRM
trap and an OID corresponding to the type namel foflthe structured event. Other
information fields of the structured event are neppo an OID corresponding to the
name of the field. The values are mapped as igptXor the managed object instance
field containing the MO’s DN, which will be mappéal the corresponding OID of the
MO, as the following paragraph explains. The coterelooks up the OIDs from its
MIB file. After executing mapping functions, theraerter sends the new constructed
trap message to the EMS.

The 3GPP specification TS 32.106-8 gives an examifpéemanaged object model and
its corresponding relative distinguished names $&ea in Figure 17 [3GPP-1068]. In
this figure the bottom object of NS-B right branchhas a DN of
“DC=se. ericsson. | nt, A=9, F=1, G=1, H=2". The first part represents the DN
prefix of the maker of the MO and will be mappedtie enterprise OID prefix of the
maker (1.3.6.1.4.1.193 for Ericsson). The local DAE9, F=1, G=1, H=2" will be
mapped as “9.1.1.2” with each RDN number part ageério the OID; so the full DN
of the example MO will map to an OID of 1.3.6.1.493.9.1.1.2.

ROM iz
.- 'DC=22 ericz=on Imc
o M5-A L
DM prefiz is R _ {ﬁ‘— .- RDMig"A=3"
RDM ig"a=7" ~. |ﬁ—‘,— .
RON iz w1 - 4 N3 A~ RDM is"A=8" DM prefx iz
L L B . e T T MDICE ze ericsson dnc!
ROM iz "v=1" -.__ B
T “e. | RDM s "F=1"
: e RO s "G =1"
'|‘_ "",___ s M —an
M5-C ROM iz "H=2 RDM iz
| M5-0 ey
S —— H=2
DM prefixiz . ‘/‘\ DM prefixis
"DC=se.erics o [e e 'DiC=zeEticE
0N Imoh=T, 0N Imc.A=a,
=1 F=13=1"

Figure 17: Managed Object Model and Name Space Partitions [3GPP-1068]

Ville Ryh&nen 49

Converter

Upon receiving a get or set message from the ENtSconverter performs the mapping
in the opposite direction. In the 3GPP CORBA FM lempentation, the managing
system can perform a set of different configurabperations on the NE. These include
subscribing to notifications, removing a subscapti setting or changing a filter for
subscribed notifications, and setting or removimgfiguration for the severity of a
specific problem. The converter needs to map vhribimdings in an SNMP set
message to these operations and respond with anregponse, if mapping does not
match correctly. The CORBA operations can have re¢vparameters and the
parameters can also be objects with their own patens1 A list of all these parameters
and sub-parameters needs to be in a MIB file, andreesponding OID and variable-
binding assigned to each of them. In case the g&aton is successful, the managing

system gets a response that no errors occurred.

The managing system can retrieve information froeMNE with several “get” CORBA
operations. These include retrieving the subsacmiptstatus (this also keeps the
subscription active), the versions of the notificatand alarm services, list of active
alarms, number of active alarms, and a list of hedialarms. Similar to set messages,
the converter needs to map variable-bindings iInSNMP get message to these
operations and the parameters of these operafitiesconverter generates and maps a
response message from the response informatidredE and sends it to the managing

system.

4.3 Design Evaluation

To test the functionality of the converter implertaion, the designed Java classes
were compiled, and three different types of testecaets were run: cases involving
SNMP set messages; cases involving SNMP get messaige cases involving SNMP
trap messages. During the test environment setarpe modifications to the complete
designed operating environment of the converteleweade in order to cope with the
complexity of the complete system. For simplicgymulated Alarm and Notification
services of the NE — run on the same computer @sdhverter — were used and the

CORBA security functions turned off. Because ofsthdimitations the tests were

Ville Ryh&nen 50

Converter

focused on the inner functionality of the convertstarting at the point where the
converter receives a generated test message antyetdwhere the converter would
send the EMS a response or trap message. Witheitiset up extensive functionality

testing was performed, covering the whole CORBAcfiomality.

4.3.1 Test Scenarios

As Figure 16 illustrated, the converter credtessageMappi ng object and creates
and initializes threads forConverter Agent and Converter ORB objects.
Converter ORB conveys AlaramlRP and NotificationIRP object refares to
MessageMappi ng. As SnnpCor baConst ans is a static class with no functions, it

does not need initialising.

The first test was to test the converter's subsugiio notifications. As Figure 18
illustrates a Set-PDU is formed irConverter Agent containing OID of
attach_push operation. Functions of th&kssageMappi ng object map the
variable-bindings of the PDU and invoke tlatach_push operation on the
NotificationIRP object reference. The operatiorunes the subscription ID of the new
notification subscription and it is put into a Respe-PDU. The Response-PDU is
relayed to th&€onvert er Agent for sending to the managing system. Similar astion
were performed also in all the other modifying @iens tested by thset test case
category: det ach, attach_push_ext,

change_subscription_filter _ext,andset severity operations.

Ville Ryh&nen 51

Converter

Converter-class

ComverterAgent- Messagetdapping- ConverterORE-
class class class
AlarmlIRP-class
Mapping
functions Trap-
Set- . 4. . category
category of test
of test _._._-1—-—-—-—""1 cases
CASES :
2a. I } \
Get- l \ [ah
category NotificationIRP-
of test |
CASES el
3 Trap-
SnmpCorbalConstants-class category
of test
cases
13 SecPDU (attach_pushQIDY 2y mapSnmpSet(...) —map_attach_push(...) 3 attach_push(..) 4) ResponsePDU{subscribtion|D)

Figure 18: Using CORBA at t ach_push with an SNMP Set-PDU

The get category of test cases tested all CORBA operationsnformation fetching;
they were invoked with Get-PDUs or in case of fetghan alarm list with GetBulk-
PDUSs. The CORBA operations controlled with Get-PDUsare

get _subscription_st at us, get _subscription_status_ext,
get _notification_| RP_version, get _al arm count,
get _al arm count _ext, get _al arm | RP_versi on, and

get _all _nodified severity; the Get-PDU contains the operation’s OID,
which invokes the specified operation, and thehfedcinformation is packed into a
Response-PDU. As Figure 19 illustrates, althouglet alarm/|ist and
get _alarm|i st_ext operations are invoked with GetBulk-PDUs, theyction
similarly as test cases invoked with Get-PDU. THieence is that the maximum size
of the response (maximum number of variable-binsling determined in the GetBulk-
PDU.

Ville Ryh&nen 52

Converter

Converter-class

ConverterAgent- MessageMapping- ConverterORB-| alarmIRP-class
Class class class

Trap-

hMapping | — 7| category
functions [of test

Set- |

o cases

category 4 |20 L |

of test //'1 Fo i

cases / MotificationIRP-
» 95 Class

Get- re 1. l \ [Txap-

categary categary

of test of test
cases cases

SnmpCorbaConstants-class

1) GetBulkPLUget alarm_listOID, max repetitions) 3 get_alamm_list.)
2 mapSnmpGetBulki.) —rmap_get_alamrm_list) 4) ResponsePDUEIaNmM lish

Figure 19: Fetching an alarmlist with an SNMP GetBulk-PDU

The third and final test case category was casasvimg CORBA alarms and events.
Alarms were generated by ti ar nl RP-class instance and events were generated by
the Not i fi cati onl RP-class instance, all were passed as structuredt evethe
Convert er ORB object. Figure 20 illustrates how a structurednévs mapped to a
Trap-PDU by theMessageMappi ng object and passed to ti@nvert er Agent

for sending.

Ville Ryh&nen 53

Converter

Converter-class A 20 u
4 \ /
Converterfgent- MesdageMappirnio- ConverterORB- AlarmIRP-class
class class
class
Set- Trap-
categary Mapping tategory
of test funttions 23 1 ar test
CASES b a3 - —Cases
— | Motification|RP-
category ! class
of test Trap-
Cases category
of test
SnmpCorbaConstants-class CASES
11 8truc turedEventialanm) 3 mapCobaStructuredEvent{eventy—mapAlamm(..)

21 receivePushedEvent(StructuredEventi —toComhaMessageMappingfevent) 4) sendTrapPdul ..)—TrapPDU{. ..}

Figure 20: A structured event containing an alarm mapped to an SNMP Trap-PDU

4.3.2 Results and Analysis

The test cases showed that the converter impletmr@mtanabled invoking all the
CORBA FM operations with SNMP Set- and Get-PDUsvall as monitoring CORBA
notifications as SNMP Trap-PDUs. The implementaticas able to map information
correctly in every test case and all tested CORPBArations functioned correctly. As
the different component objects were run in separtireads, the converter
implementation was able to perform different kindf test cases simultaneously;
notifications were mapped and sent at the same dsnievoking a get operation. If a
large number of alarms was generated, they werenapped and conveyed
consecutively and instantly by the converter andenwere discarded. The relevant part
of fault management is to inform managing systenith worrect fault information
immediately, with the focus on information detadlad correctness; these parts the

converter handles well.

As the converter is implemented between the EMSthad\E, it adds processing on

Ville Ryh&nen 54

Converter

the network management. Despite of the limitatisesby the test environment, some
performance measurements were made. Fetching am dilst is by far the most
complex operation for the mapping functions of t@verter, so it describes best how

much at most the converter adds to the messageegetime.

Average mapping times of get_alarm_list

120

A
100
@
3
()
2 80
(@]
£ / é
2 60
5 e
1= /
()
(@]
g 40]
1
<C //
20 A 4/
0 T T
0 5 10 15 20 25 30

Alarm list size

Figure 21: The average mapping times of different sized alarmlists

The time increase caused by the mapping functios te@sted with fetching different
sized alarm lists. Because the CORBA operationrmeta list of structured events,
every alarm added to the Trap-PDU must be mappearately. Figure 21 shows that
increasing the size of the alarm list increasesntapping time approximately linearly.
The measurements were made by adding time stamibee tetart and the end of the
mapping function. Measurements on each list sizeewen ten times. The Java
implementation was run with Eclipse SDK 3.2.1 usilaya 1.4.2. JRE, and the test
environment was running on a laptop computer witiSE Linux Enterprise Desktop
10 operating system, Intel Core2 T7200 2 GHz prsmeand 4 GB of memory. During
the measurements some other processes were atsngum the computer; as the scale

of the measurements was in milliseconds, the resoeonsumption added some

Ville Ryh&nen 55

Converter

fluctuation on the measurements. Still these measents can be considered giving
indication of the real mapping performance. Appnexiing from the measurements and
the graph in Figure 21, even with an alarm listsistmg of a hundred active alarms it
would still take only approximately 500 ms to méye talarm list operation; this time
addition in the context of transporting managemeéata can be considered quite
harmless as the original CORBA operations take muondre time. To the person
running the managing system, the added converterdwoot create any practical
slowing down compared to the previous, in the commee of fault management.
Measurements of the impact that the converter hati® whole round trip time should

also be measured, but they are left to be madatarefimplementations.

Measurements were also made on all the other mappedations: the other get-
operations were mapped in approximately 1 ms, getations were mapped in
approximately 15 ms, and alarms and events wer@ethm between 7 ms and 30 ms.
It can be concluded that the added delay from thesepings is of no real concern to

the managing system.

There were no clear ways to test how much the atevenplementation consumes
memory resources, but some hints could be obtafrmd how it functions. The

implementation runs three simultaneous threadsmmogt of the time they just wait for
incoming messages. The converter does not maiatajrstatistics or lists of variables,
only a static MIB file and the request IDs (fourtds each) for waiting response
messages. So it can be concluded that comparedetootiginal CORBA fault

management, the converter does not add consideladdke to the resources of the

managed system, even if the converter were to 8ecaihto the NE.

The SNMP management messages handle all managangtioms with single request-
response message pair or with a single trap messagsuch the converter does not
greatly burden the bandwidth requirements betwhenEtMS and the NE. The lighter
UDP connection between the EMS and the convertkrmet increase the bandwidth

usage of the network as much as adding another cb@Rection would. The original

Ville Ryh&nen 56

Converter

bandwidth usage between the EMS and the NE is remd between the converter and
the NE, and a lighter moderately used UDP connechietween the EMS and the

converter is added to the bandwidth usage.

The converter’s handling of errors and incorrechagement commands follows SNMP
practises. Unless the information in the requestsage is completely correct, an error
response is returned, instead of the requestedhiatoon or command. Error messages
from the NE will be forwarded to the EMS using SNMPRor responses. SNMP error

code and error index message fields provide theerter a variety of possible error

responses, although some CORBA error informatienbeaforfeit in the conversion.

Even though the converter implementation was siiegli it gave indication that a
converter would be useful when a CORBA-SNMP conwerss beneficial. The
implementation enabled the testing of the convarsioexisting CORBA functionalities

and acts as a good starting point for further erations.

Ville Ryh&nen 57

Conclusions

5 Conclusions

At the start of this thesis none or very few papersid be found on the specific details
of protocol conversion from CORBA to SNMP. Basedtlis, the objective was set to
study the conversion of fault management betweeREBOand SNMP with focus on
the conversion from CORBA based FM to SNMP. Thestt described the background
and details of the conversion and proved the cdackmctional. With a simplified
implementation, a proof of concept for conversidnaoCORBA based NE to using
SNMP without changing its inner fault managementima@isms was reached. At the
end it was observed that the added CORBA-SNMP atevevas quite simple to
construct, although only the fault aspect of theiCAPS-model was considered in

the implementation.

The converter implementation in this thesis wasigiesl with the emphasis on the
working philosophy of CORBA fault management. Thanaging system utilised the
CORBA operations of the NE by SNMP PDUSs, and thifinations from the NE were

in essence in the same CORBA form, only deliverean SNMP PDU. This is however
not mandatory; the converter implementation caddsgned to work in a more SNMP
oriented way and use more elaborate mapping fumtibhis way some of the CORBA
fault management functionality would have to bddiy but the NE could be managed

more in the way of a native SNMP using NE.

It can be concluded that the benefits of the CORBWMP conversion over its

drawbacks are much greater to the operator thabmsidering the conversion. The
converter does not add considerable delay, strairbandwidth usage, or consume
memory resources and the benefits of unifying tla@aging system of all the network

elements of the operator will likely provide perfance and cost savings.

5.1 Further Study

This thesis only covered the conversion of netweldment's CORBA based fault

management, so the next logical step would beudysthe conversion in further detail

Ville Ryh&nen 58

Conclusions

and without test environment limitations. The addiof configuration management
would also add to the fault management conversierthe presently absent conversion
of managed object models would be covered. Cordigum and performance
management would also cover some of the actionslede¢o be performed as a
consequence of fault management actions. As thdyysnade only a shallow proof of
concept implementation and testing on the CORBA-$Nddnverter, a real prototype
of the converter would be needed for more detaiéesting. The prototype could be
made with only fault management conversion, butldidae perhaps more beneficial

with configuration and performance management c@iwe added in some form

Adding configuration and performance managementveion to the converter
requires also further consideration on the roleSOfMP. SNMP is at its best in
monitoring network elements and as such a natiate for fault management. But for
configuration and performance management more uaatlipreferred protocols are in
use. Protocols such as Netconf and other XML basdations are replacing or have
already replaced SNMP in configuration manageméhbl-et-al] [Yoon], and adding
CORBA-Netconf mapping to the converter could be igew choice for converting
configuration management of a CORBA based NE. @emsig the design of the
converter implementation, adding some other typepudtocol conversion to the
converter would seem possible, but its impacts didalve to be studied and tested. The
converter could also be expanded to work in a seveet up, between CORBA based
managing system and SNMP based NE. Studies orséhnisof conversion have been

written and mapping functions made as present&skation 3.2.

Ville Ryh&nen 59

References
[BGPP-XML] 3GPP TR 32.809: Telecommunication mamaget; Feasibility study of
XML-based (SOAP/HTTP) IRP solution sets

[BGPP-1063] 3GPP TS 32.106-3: Telecommunication agament; Configuration
Management; Part 3: Notification Integration Refieee Point: CORBA

Solution Set Version 1:1

[BGPP-1068] 3GPP TS 32.106-8: Telecommunication agament; Configuration
Management; Part 8: Name convention for Manage@ b

[B3GPP-1113] 3GPP TS 32.111-3: Telecommunication agament; Configuration
Management; Part 3: Alarm Integration Referencent?PoCORBA

Solution Set

Agrawal, N.: On the design of Element Mgement System for Node Bs
in a 3G Wireless Network ; Personal Wireless Comications, 2002
Conference on, Publication Date17 Dec. 2002

[Agrawal]

IEEE International

[Aschemann] Aschemann G., Mohr T., Ruppert M.: gnégion of SNMP into a
CORBA- and Web-based Management Environment, Dayaautt of

Computer Science, Darmstadt University of Techngl@&ermany 1999

Choi M-J., Oh J-M., Hong J.W.: Designd Implementation of an XML-

[Choi-et-al]
Network Operations and bEnant

Based Management Agent,
Symposium, 2004. NOMS 2004. IEEE/IFIP, Publicatidate: 23-23

April 2004

60

Ville Ryh&nen

[Deri&Ban]

[Hanemann]

[Henning]

[IEC]

[IETF-N]

[ITU3000]

[ITU3010]

[ITU3200]

[ITU3400]

[Klerer]

[Klie]

Deri L., Ban B.:Static vs Dynamic CMIPBIP Network Management
Using CORBA, IBM Zurich Research Laboratory, LeetuNotes in
Computer Science, Intelligence in Services and Netsr Technology
for Cooperative Competition Springer Berlin / Hallaerg 1997

Hanemann A., Sailer M., Schmitz D.: AeduService Quality by
Improved Fault Management, Proceedings of the 2medrnational
conference on Service oriented computing 2004, Nevk, NY, USA,

ACM 2004

Henning M., The Rice and Fall of CORBA, fQcus: component
technologies, York, NY, USA, ACM 2006

IEC: Tutorial: Element Management SystefaMSs),
http://www.iec.org/online/tutorials/ems/ 20074ned 28.4.2009]

Network Configuration (Active WG): Netconf Status Pages,
http://tools.ietf.org/wg/netconf/ [visited 28.4.29]0

ITU-T: Recommendation M.3000

ITU-T: Recommendation M.3010

ITU-T: Recommendation M.3200

ITU-T: Recommendation M.3400

Klerer S. M.: The OSI Management Architee: an Overview, |IEEE
Network March 1988

Klie T., StrauR F.: Integrating SNMP Agentwith XML-Based

Ville Ryh&nen 61

[Mauro]

[Mazumdar]

[Misra]

[McHale]

[OMG3.0.3]

[OMG3.1]

[Pope]

[Raman-1]

[Raman-2]

[SNMP4J]

Management Systems, IEEE Communications Magauig 2004
Mauro D., Schmidt K.: Essential SNMP? Edition, O'Reilly 2005

Mazumdar S.: Inter-Domain Managemenveenh CORBA and SNMP :
WEB-based Management - CORBA/SNMP Gateway Approdsi|
Laboratories 1996

Misra K.: OSS for Telecom Networks: An lattuction to Network

Management, Springer-Verlag London Limited 2004

McHale C. CORBA Explained Simply,
www.CiaranMcHale.com/download/ 2007 [visited 280092]

OMG: Common Object Request Broker Arebitire (CORBA)
Specification, Version 3.0.3, 2004

OMG: Common Object Request Broker Architee (CORBA)
Specification, Version 3.1, 2008

Pope A.: The CORBA Reference Guide: Undaditegy the Common
Object Request Broker Architecture, Addison-Wedl897

Raman L.: Fundamentals of telecommurinatinetwork management,
IEEE Press 1998

Raman L.. OS|I Systems and Network Managem IEEE

Communications Magazine March 1998

SNMP4J - The Object Oriented SNMP API flava Managers and
Agents, Apache 2.0 license, http://www.snmp4j.¢vigited 28.4.2009]

Ville Ryh&nen 62

[Stallings-1] Stallings W.: SNMP, SNMPv2, SNMPv3jdaRMON 1 and 2, Third
Edition, Addison-Wesley 1999

[Stallings-2] Stallings W.: SNMPv3: A Security Emfiement for SNMP, IEEE
Communications Surveys, Fourth Quarter 1998 Vdlol1

[Yoon] Yoon J-H., Ju H-T., Hong J.W.: DevelopmehtSNMP-XML translator
and gateway for XML-based integrated network maneeyg,
International Journal of Network Management Volub®lissue 4, John
Wiley & Sons, Ltd. 2003

Ville Ryh&nen 63

