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Fault management involves tasks to enable the detection, isolation and correction of abnormal 

operation of the telecommunication network. Telecommunications management network 

architecture of ITU-T consists of five layers, of which the bottom two, the element 

management layer and the network element layer, are focused on the management of network 

elements. For fault management tasks at these layers, several protocols have been utilised. 

 
CORBA based fault management has been common in network elements and element 

management systems utilising solution sets of 3GPP. But as the telecommunications industry 

moves towards an all-IP world, SNMP has yet again become the predominant protocol for 

monitoring network elements. A network operator looking into unifying the fault management 

of its network could consider converting the CORBA based network element to using SNMP. 

This thesis studies the requirements and details of this kind of conversion. With a literary study, 

aspects of fault management and comparison of CORBA and SNMP are scoped for designing a 

CORBA-SNMP converter. A proof of concept for the conversion is obtained with a simplified 

implementation. 

 
The implementation shows that a converter is quite easy to construct, and the converter can 

perform with operating principle of either CORBA or SNMP. The converter is also able to 

provide fault management unification without adding considerable delay, strain on bandwidth 

usage or consuming memory resources. The results of this thesis give grounds for studying the 

proposed concepts further and also broaden the converter to cover configuration management. 

Though for configuration management SNMP may not be the preferred protocol. 
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Vianhallinta pitää sisällään toimia, joilla havaitaan, eristetään ja korjataan tietoliikenneverkon 

epänormaaleja toimintoja. ITU-T:n tietoliikenteen hallintaverkkoarkkitehtuuri koostuu viidestä 

tasosta, joista kaksi alimmaista, elementinhallintataso sekä verkkoelementtitaso, keskittyvät 

verkkoelementtien hallintaan. Useita protokollia on hyödynnetty vianhallintaan näillä tasoilla.  

 
CORBA-pohjainen vianhallinta on ollut yleinen 3GPP:n ratkaisusarjaa hyödyntävissä 

verkkoelementeissä ja elementinhallintajärjestelmissä. Mutta tietoliikenneteollisuuden 

siirtyessä kohti all-IP-maailmaa, SNMP on jälleen uudelleen vahvistamassa asemaansa 

hallitsevana verkkoelementtien monitorointiprotokollana. Täten verkkonsa vianhallinnan 

yhdenmukaistamista tutkiva verkko-operaattori voisi harkita CORBA-pohjaisten 

verkkoelementtiensä konvertointia käyttämään SNMP:tä. Tämä työ tutkii tämänkaltaisen 

konversion edellytyksiä ja yksityiskohtia. Kirjallisuustutkimuksella otetaan selvää 

vianhallinnan eri puolista ja vertaillaan CORBA:a ja SNMP:tä konvertterin suunnittelua varten. 

Todiste konversiokonseptin toimivuudesta saadaan yksinkertaistetun implementaation avulla. 

 
Implementaatio osoittaa konvertterin olevan melko helposti rakennettavissa, ja että konvertteri 

voi toimia joko CORBA:n tai SNMP:n toimintaperiaatteella. Konvertteri mahdollistaa 

vianhallinnan yhdenmukaistamisen lisäämättä huomattavaa viivettä, rasitusta 

kaistaleveyskäytölle tai kuluttamatta runsaasti muistiresursseja. Tämän työn tulokset antavat 

aihetta esitettyjen konseptien laajemmalle tutkimukselle, sekä konvertterin laajentamiselle 

kattamaan konfiguraation hallinnan. Tähän tosin SNMP ei ehkä ole suositelluin protokolla. 

 

Avainsanat: Vianhallinta, CORBA, SNMP, protokollakonversio, konvertteri 

Tiivistelmä 
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1 Introduction 

Telecommunications networks consist of interconnected network elements that 

communicate with various protocols and transport information with various 

transmission paths. Over the last decade the telecommunications networks have been in 

transition. Old networks were primarily designed for circuit-switched voice traffic and 

were relatively simple. They were based on copper loops for subscriber access and on a 

network of telephone exchanges to process calls. These networks have evolved into 

transporting voice, high-speed data, video, and every possible combination of these; 

they are now based on a variety of complex technologies. 

 

The International Engineering Consortium describes an element management system 

(EMS) as a system that manages one or more of a specific type of telecommunications 

network element (NE) [IEC]. Typically, the EMS manages the functions and 

capabilities within each NE but does not manage the traffic between different NEs in the 

network. To support management of the traffic between itself and other NEs, the EMS 

communicates upward to higher-level network management systems (NMS) as 

described in the International Telecommunications Unions Telecommunications 

Standardization Sectors (ITU-T) telecommunications management network (TMN) 

layered model. In addition to the layered structure, the general management 

functionality splits into the five key areas of fault, configuration, accounting, 

performance, and security comprising the so-called FCAPS reference model.  

 

The machine-to-machine communication protocol between the NE and its EMS varies 

from NE to NE and ranges from vendor-proprietary solutions to open standards such as 

CORBA or SNMP. Defined by the Object Management Group (OMG), the Common 

Object Request Broker Architecture (CORBA) is distributed middleware that can be 

used to manage a network element; it is for example used by the 3rd Generation 

Partnership Project (3GPP). Simple Network Management Protocol (SNMP) is part of 

the Internet Engineering Task Force's (IETF) internet protocol suite used in network 

management systems to monitor network devices for conditions that warrant 

administrative attention. Other widely used management interface protocols have been 
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Transaction Language 1 (TL1), Common Management Information Protocol (CMIP), 

and nowadays Extensible Markup Language (XML) and Simple Object Access Protocol 

(SOAP). As telecommunications move toward an all-IP world and networks converge, 

the environment around NE may change and a need to change the used protocol may 

arise. 

1.1  Objectives and Scope 

This thesis will study how the conversion between a CORBA based management and an 

SNMP management can be done. Management of a network element involves all 

aspects depicted by the FCAPS model, but this thesis will concentrate on fault aspects, 

as they are important in all kinds of network elements. With this framing, the basic 

problem can be addressed simply, but the results can be broadened to cover the whole 

aspect of management of network elements and networks. 

 

The thesis will find out which problems arise from interworking of two different ways 

of management implementation and how to solve the problems that occur. The study 

will show if this kind of conversion is practical and useful, and if the subject is case for 

further study. What benefits this kind of conversion brings will also be studied, and if 

these benefits are beneficial in other types of conversions or if they will become 

disadvantages.  

1.2 Structure of the Thesis 

This thesis uses literature study and constructive research by designing, implementing 

and testing a CORBA-SNMP converter. The first half is mainly based on literature 

study of books, articles and technical specifications. 

 

The latter part deals with the design and implementation of the converter. The intended 

method for the conversion is to translate SNMP messages to a form that a CORBA 

based element will understand and also translate the elements responses and 

notifications to SNMP messages. The goal of the thesis is to study the possibilities to 

convert CORBA based control to SNMP so that the network elements inner behaviour 

need not to be changed and that the conversion can be done without completely 



 Introduction 

Ville Ryhänen 3 

unpacking and repacking all management messages. The conversion will operate in both 

directions between a SNMP based managing system and CORBA based network 

element. The study will evaluate if this kind of conversion is economic and robust 

enough for service providers to use. 

 

This thesis is structured as follows: Chapter 2 describes what management of network 

element entails, the CORBA architecture and the SNMP protocol. Chapter 3 explores 

the reasons for a conversion from CORBA to SNMP, and compares the differences and 

similarities of CORBA and SNMP fault management. In Chapter 4 the design and 

implementation of the converter is explained with testing and results. Chapter 5, as the 

last chapter, sums up the findings and includes discussion about the topics of future 

research.
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2 Management of Network Elements 

Network elements typically do not remain static through their life cycle in the way they 

are set up, nor does the network around them. Operators must be able to reconfigure 

their network nodes if they decide to make changes or in case a fault or some other 

event occurs. Management must be applied in these cases and this refers to the 

activities, methods, procedures, and tools that pertain to the operation, administration, 

maintenance, and provisioning of networked systems and elements [Raman-1].  

 

ITU-T has defined a Telecommunications Management Network (TMN) in 

recommendations M.3000, M.3010, M.3200 and M3400 for managing open systems in 

a communications network. A TMN may provide management functions and offer 

communications both between Operations Systems (OS) themselves, and between OSs 

and the various parts of the telecommunications network [ITU3010]. A TMN may also 

provide management functions and offer communications to another TMN or TMN-like 

entities in order to support the management of international and national 

telecommunications networks. A telecommunications network consists of many types of 

analogue and digital telecommunications equipment and associated support equipment, 

such as transmission systems, switching systems, multiplexes, signalling terminals, 

front-end processors, mainframes, cluster controllers, and file servers. When managed, 

such equipment is generically referred to as network elements (NE).  

 

The TMN architecture is a reference model for hierarchical telecommunications 

management approach. Its purpose is to partition the functional areas of management 

into layers. The key benefit of this architecture is to identify five functional levels of 

telecommunication management as depicted in Figure 1: business management layer 

(BML), service management layer (SML), network management layer (NML), element 

management layer (EML), and NEs in the network element layer (NEL). This 

distribution of management responsibilities makes it possible to spread these functions 

or applications over the multiple disciplines of a service provider and use different 

operating systems, different databases, and different programming languages [IEC]. 
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Figure 1: The Five-layer TMN architecture and FCAPS 

 

As Figure 1 illustrates, ITU-T also splits the general-management functionality into five 

areas: Fault management, Configuration management, Accounting management, 

Performance management and Security management (FCAPS). This categorization is a 

functional one and stems directly from ITU-T recommendations describing the five 

different types of information handled by management systems. Portions of each of the 

functionalities will be performed at different layers of the TMN architecture. A subset 

of the FCAPS functionality is listed in Table 1.
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Table 1: A Subset of the FCAPS Functionality [IEC] 

Fault 

Management 

Configuration 

Management 

Accounting 

Management 

Performance 

Management 

Security 

Management 

alarm handling system turn-up track service 

usage 

data collection control NE 

access 

trouble 

detection 

network 

provisioning 

bill for services report 

generation 

enable NE 

functions 

trouble 

correction 

autodiscovery  data analysis access logs 

test and 

acceptance 

back up and 

restore 

   

network 

recovery 

database 

handling 

   

 

2.1.1 Fault Management 

The TMN M.3400 recommendation describes fault management (FM) as a set of 

functions which enables the detection, isolation and correction of abnormal operation of 

the telecommunication network and its environment [TMN3400]. The concept of a fault 

is central to the definition of fault management. A fault is usually indicated by failure to 

operate correctly or by excessive errors. There could be various types of faults related to 

a NE: faulty hardware; software failures such as software related bugs, incompatibility 

with hardware; congestion problems such as overload and threshold condition at the 

NE; or communication failure between the NE and EMS [Agrawal]. A fault can also be 

defined by its difference from an error; a fault is an abnormal condition that requires 

management attention to repair, whereas an error is a single event [Stallings-1].   

 

Fault management includes the following function set groups in the TMN M.3400 

recommendation: 
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� Reliability, Availability and Survivability (RAS) Quality Assurance 

� Alarm Surveillance 

� Fault Localization 

� Fault Correction 

� Testing 

� Trouble Administration 

As can be seen in Table 1, other divisions also exist, but they cover basically the same 

areas. 

 

RAS quality assurance establishes the reliability criteria that guide the design policy for 

redundant equipment for managing availability and outage reporting [TMN3400]. With 

it, an operator can determine how much redundancy is needed in the managed network 

nodes and what the network must report when a node or service goes offline. 

 

Alarm surveillance or fault detection is about monitoring NE failures in near-real time. 

When such a failure occurs, an indication is made available by the NE. Based on this a 

service provider (SP) determines the nature and severity of the fault. Alarm information 

can be reported at the time of occurrence, and/or logged for future access. An alarm 

may also cause further management actions within the NE that lead to the generation of 

other fault management data [TMN3400].  

 

Where the initial failure information is insufficient for fault localization, it has to be 

augmented with information obtained by additional failure localization routines 

employed by service providers tests [TMN3400]. Fault localization requires 

communication between nodes to determine where the failure occurred. Based on the 

fault information received, fault diagnosis is done to determine the root cause of the 

failure [Hanemann]. Fault correction transfers data concerning the repair of a fault. To 

replace equipment or facilities that have failed service provider utilises procedures that 

put redundant resources in use.  

 

In addition to passive failure detection, a service provider can also perform proactive 

tests. These tests can either deal with resources or can assume the role of virtual 
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customer and test a service by performing interaction at the service access point 

[Hanemann]. Testing dealing with resources can be carried out in one of two ways 

[TMN3400]. In one case, a service provider directs a given NE to carry out analysis of 

circuit or equipment characteristics. Processing is executed entirely within the NE and 

the results are automatically reported to the service provider, either immediately or on a 

regular delay. Another method is to carry out the analysis within the SP side. In this 

case the SP merely requests that the NE provide access to the circuit or equipment of 

interest and no other messages are exchanged with the NE.  

 

Trouble administration transfers trouble reports originated by customers and trouble 

tickets originated by proactive failure detection checks. The aim is for the service 

provider to identify and react to problems in its offered services before a customer 

notices them [Hanemann]. The probing can be done from a customer point of view or 

by testing the resources which are part of the service. 

 

In essence fault management contains facilities that enable the detection, isolation and 

correction of network problems. Furthermore, it may use trend analysis to predict faults 

so that the availability of the network is maximized. This can be established by 

monitoring networks for abnormal behaviour. When a fault or event occurs, a network 

component will send a notification to the network operator using a management 

protocol. The TMN M.3010 recommendation allows for the use of multiple protocols to 

be used for management. This means that open standard such as SNMP and CORBA 

are consistent with the TMN framework as is its initial management protocol CMIP 

[IEC].  Each protocol executes the management in its own way but the principles 

remain the same.  

2.2  Element Management System 

An element management system (EMS) is used to manage one device or a set of devices 

connected in a network. The EMS communicates with network devices directly using 

network management protocols – an efficient EMS communicates with its NE using 

whatever protocol is native to the NE. Functions usually expected from an EMS can be 

listed as [Misra]: 
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� provide common information about the NE, such as system up-time and system 

name, 

� monitor the operational state of the NE, such as start-up and shut-down, 

� monitor the occurrence of NE malfunctions, 

� gather and process NE performance information, 

� enable configuration of the NE, 

� carry out remote operations on the NE. 

The EMS is a critical piece in the total telecommunications management solution [IEC]. 

Only the EMS can access the complete management information content of all the NEs 

in its management domain. As Figure 2 shows, the EMSs are the media that transmit the 

network elements’ management information and control to the network management 

layer and to the network management systems. 

 

Figure 2: Position of the EMSs in the Telecommunications Network [IEC] 

 

According to the OSI Management architecture – which is the basis for many modern 

network management systems [Stallings-1] – EMSs and NEs reside in a management 

domain [Klerer]. A management domain may be decomposed into one or more 

management systems, and zero or more managed elements.  An object represents an 

abstraction of a bundle of data and instructions in object-oriented world. A managed 
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element, such as a network element, may be decomposed into one or more managed 

objects (MO). MOs depict network element's management information that represents 

resources and their activities. A managed object presents a view of the resource to the 

management system with properties that are manageable [Raman-2]. A resource such as 

an ATM board provides interfaces for ATM traffic, however, only some aspects of the 

board are manageable by a management system. These properties are reflected in the 

managed object that represents the board. A management system, such as EMS 

illustrated in Figure 3, is an application process within a management domain witch 

effects monitoring and control functions on managed objects [Klerer]. 

 

Figure 3: Relationships of managed objects, managed elements and managing system 

2.2.1 Fault Management at the Element Management Layer 

In the TMN model an EMS is placed on the element management layer. Fault 

management at the EML is about logging each discrete alarm or event in detail. Most 

faults will be detected by the NE and reported to the EMS as notifications or alarms. By 

periodically polling an NE an EMS can detect the communication failure with the NE, 

in which case a notification is generated at the EMS. The EMS filters the alarms and 
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forwards them to an NMS that performs alarm correlation across multiple nodes and 

technologies to perform root-cause analysis [IEC]. EMS stores the list of currently 

active alarms at NEs, and EMS removes the alarm from active list whenever a 

notification to clear the alarm is received. EMS also maintains history of the alarms. 

 

Fault management at the EML can be executed by a number of protocols. The following 

sections detail two of the most prominent ones: CORBA and SNMP. A brief view of 

other fault management methods is also included. 

2.3  CORBA 

The Common Object Request Broker Architecture (CORBA) is a standard defined by 

the Object Management Group (OMG) that enables distributed software components in 

a network to work together. CORBA allows applications to talk to each other even if 

they are on different computers, on different operating systems, on different CPU types, 

or implemented with different programming languages [McHale].  

 

The components of CORBA are Object Management Architecture (OMA), Object 

Request Broker (ORB) to support interaction between objects, and object services. The 

object interfaces are specified in a notion called Interface Definition Language (IDL). 

CORBA 2.0 introduced protocols for building interoperable ORBs to the architecture. 

The General Inter-ORB Protocol (GIOP) is connection-oriented. A specialization of this 

protocol for use with TCP/IP Internet Suite has been defined in IIOP. Environment 

Specific Inter-ORB protocols (ESIOP) have been defined for interfacing with platforms 

that do not support CORBA. [Raman] 

2.3.1  The Concept of an Object in CORBA 

A central concept in CORBA is its version of the managed object. A CORBA managed 

object is not quite identical to an object in a programming language; they generally 

share characteristics even though all sets of objects do not intersect [Pope]. The type of 

a CORBA object is called an interface, which is similar in concept to a C++ class or a 

Java interface. An object has methods, state, and a characteristic behaviour. Objects are 



Management of Network Elements 

Ville Ryhänen 12 

a physical manifestation of a class. A CORBA object is an instance of a class 

encapsulating operations, attributes, and exceptions. CORBA also admits the possibility 

of types that are not objects and types that the OMG documents call pseudo-objects. An 

object is a basic computational unit consisting of a defined behaviour and perhaps some 

attributes. The attributes retain the effect of behaviour.  Requests made on an object are 

messages or methods. The visible part of an object is its interface. An interface to an 

object is the combined sum of the messaging protocols used to request services.  

 

As distributed middleware CORBA envisions distributed objects (DO) as the union of 

concepts from two paradigms – distributed computing and object-orientation, with some 

explicit differences [Pope]: 

� A client knows an object by its interface. 

� Objects are not always local with respect to their clients. 

� Dynamic composition may compose objects into new applications. 

� Objects hide many of the underlying differences in architecture through 

encapsulation. 

In summary, distributed objects offer benefits of object-orientation and client-server: the 

ability to distribute risk, rightsizing system development with small combinable 

subtasks, and having looser coupling with well-defined integration [Pope]. 

 

3GPP describes a Managed Object (MO) as a software object that encapsulates the 

manageable characteristics and behaviour of a particular network resource and uses this 

description in its CORBA solution set [3GPP-1068].  MOs are organised in hierarchical 

Managed Object Model similar to that of a file system, where an MO that contains 

another one is referred to as the superior (parent), whereas the contained MO is referred 

to as the subordinate (child). More of this will be covered in Chapter 3.3. 

2.3.2  Object Management Architecture (OMA) 

In CORBA, a managed object is an object that is subject to system wide administration 

and control. It is a client of services, such as activation, installation, or dynamic 

behaviour [Pope]. These managed objects are manifested either as an application object, 

an object facility, or an object service. 
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The object management architecture is composed of two aspects and uses object-

oriented design concepts: a core model that describes the principles for defining objects 

along with their properties and interfaces; and a reference model with four components: 

object request broker, object services, common facilities, and application objects. The 

last two components use the object services as building blocks. The common facilities 

are higher level services that may be used by several applications. [Raman] 

2.3.3  Object Request Broker (ORB) 

The foundation of CORBA is the object request broker which is the mechanism for 

objects to interact with each other. Figure 5 in Paragraph 2.3.6 illustrates a request sent 

by a client to an object implementation. The client is the entity that wishes to perform 

an operation on the object and the object implementation is the code and data that 

actually implements the object [OMG3.0.3]. 

 

When an object in the client role invokes an operation, the request is processed by an 

ORB to identify the server object to perform the request [Raman]. The client is not 

aware of either the location or implementation details of the server object. The client 

makes the request using the object reference. The ORB is responsible for all of the 

mechanisms required to find the object implementation for the request, to prepare the 

object implementation to receive the request, and to communicate the data making up 

the request [OMG3.1]. The interface the client sees is completely independent of where 

the object is located, what programming language it is implemented in, or any other 

aspect that is not reflected in the interface of the object.  In the client-server model an 

object plays roles of a client and a server and an object may assume both client and 

server roles for different operations. 

 

When considering security aspects of CORBA, the ORB, by itself, offers only trivial 

security without the aid of an underlying secure infrastructure. It enables only a very 

minimal security of being able to check that parameters meet requirements and that the 

correct target receives a request. The design of security is flexible to the point of being 
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able to support a wide variety of security mechanisms from the network and hardware. 

2.3.4  Object Services 

The core part of CORBA is of limited use by itself, in the same way that a programming 

language stripped of its standardized library is of limited use. What greatly enhances the 

power of CORBA is a standardized collection of object services – called CORBA 

Services – that provide functionality useful for the development of a wide variety of 

distributed applications [McHale]. The CORBA Services have APIs that are defined in 

IDL. The CORBA Services are a distributed, standardized class library. The object 

services identified and standardized include [Raman]: Event Service, Life Cycle 

Service, Naming Service, Persistence Service, Concurrence Control Service, 

Externalization Service, Relationship Service, Transaction Service, Security Service, 

Time Service, Query Service, Licensing Service, Trader Service, Change Management 

Service, Start-up Service, Properties Service, and Topology Service. For example, 

Security Service is defined in a way that is independent of any particular security 

technology and developers are given freedom from underlying security technologies 

used in a given system without needing to redesign the applications. The architecture 

allows new services to be identified if desired. 

2.3.5  Interface Definition Language (IDL) 

The object interfaces in CORBA are defined using a language called IDL. The structure 

of IDL is simple and the method of defining data types and interfaces is very similar to 

writing programs in terms of data declarations and function calls [Raman]. IDL is an 

object contract language, but IDL is not a complete programming language, it has no 

iterators or flow control [Pope]. It is primarily a language in which one can express 

complex interfaces, but it does not provide implementation for interfaces.  

 

IDL defines data types such as integer, character string, and enumerated. It is also 

possible to define new types using the struct, union, and sequence constructs. The 

operations interfaces include name, parameters, result, and exceptions. The IDL 

definitions including type definitions, constant deceleration, and interface definitions 
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may be combined into one or more modules. [Raman] 

 

IDL is used to define the public API that is exposed by objects in a server application. 

IDL defines this API in a way that is independent of any particular programming 

language. However, for CORBA to be useful there must be a mapping from IDL to one 

or a number of particular programming languages. Clients are not written in OMG IDL, 

which is purely a descriptive language, but in languages for which mappings from OMG 

IDL concepts have been defined. The CORBA standard currently defines mappings 

from IDL to the following programming languages [McHale]: C, C++, Java, Ada, 

Smalltalk, COBOL, PL/I, LISP, Python and IDLScript. These officially-endorsed 

language mappings provide source-code portability of applications across different 

CORBA products. There are also proprietary mappings, but they will not guarantee 

source-code portability to other CORBA vendor products [McHale]. Typically, a 

CORBA implementation comes with a tool called an IDL compiler which converts the 

user's IDL code into some language-specific generated code. A language mapping 

requires the developer to create some IDL code that represents the interfaces to his 

objects. A traditional compiler then compiles the generated code to create the linkable-

object files for the application. Figure 4 illustrates how the generated code is used 

within the CORBA infrastructure. 

 

Figure 4: Autogeneration of the infrastructure code from an interface defined using the 

IDL 

2.3.6  Interoperability and General Inter-ORB Protocol (GIOP) 

ORB interoperability specifies a comprehensive, flexible approach to supporting 

networks of objects that are distributed across and managed by multiple, heterogeneous 
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CORBA-compliant ORBs. General Inter-ORB Protocol (GIOP) is the abstract protocol 

by which ORBs communicate. This protocol defines the different message types – such 

as request and reply messages – that can be exchanged between client and server 

applications and also specifies a binary format for the on-the-wire representation of IDL 

types. 

 

GIOP does not specify the actual networking technology that is used to transmit 

messages between clients and servers. For example, GIOP does not specify if messages 

should be transmitted over TCP/IP, X.25, ATM or some other transport. Instead, the 

choice of transport mechanism is decided in a specialization of GIOP. The most well-

known GIOP specialization is the Internet Inter-ORB Protocol (IIOP), which is for use 

on TCP/IP networks. All CORBA products are obliged to support IIOP, but they may 

optionally also support other GIOP-based protocols or environment specific inter-ORB 

protocols (ESIOP). Figure 5 illustrates the inter-ORB protocol relationship. An 

interoperable object reference (IOR) contains the contact details for all the protocols 

that clients can use to communicate with an object in a server. [McHale] 

 

Figure 5: A request being sent through the ORB and Inter-ORB protocol relationship 

[OMG3.0.3] 

 

The GIOP specifies eight message types that can be transmitted between client and 

server applications. The GIOP message types are: Request, Reply, Fragment, 

CancelRequest, CloseConnection, MessageError, LocateRequest and LocateReply.  
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Table 2: GIOP Messages 

TypeName Originator Notes 

Request Client  

Reply Server (i.e. 

Implementation) 

 

Fragment both remaining pieces of a large 

Request/Reply 

CancelRequest Client sent when client gets a timeout 

exception 

CloseConnection Server sent before closing the socket 

connection 

MessageError both normally sent to non-CORBA 

applications 

LocateRequest Client similar to “ping”, “is the object 

here?” 

LocateReply Server reply to “ping” 

 

Figure 6 describes an example the GIOP request message and its headers. The fields in 

the GIOP header can be described as follows:  

• The four characters "GIOP" serve to identify the protocol.  

• The GIOP version number (major and minor) is used to create the message.  

• A flag byte is currently only used to indicate the byte ordering.  

• An integer is used to indicate the message type.  

• The message size (excluding the GIOP header itself).  
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This summarises all information which is sent to the GIOP header. The request message 

consists of a Request header followed by a Request body. The header consists of the 

following fields:  

• The service_contexts field allows service specific context information to 

be passed along with a Request. Intended for use in conjunction with the CORBA 

services to carry extra information along with the Request, the service contexts are not 

needed in the core specification of CORBA.  

• The request_id field is used to uniquely identify a Request emanating from 

a client so that the client can later match a received Reply with its corresponding 

Request (the corresponding Reply is tagged with the same request_id).  

• The response_expected flag is used to indicate whether the Request is 

one-way or not. A normal Request has response_expected set equal to TRUE.  

• The next field is an array of three bytes reserved for future use.  

• The object_key field is used at the server end to identify the object which is 

being invoked.  

• The operation field is simply a string giving the name of the operation being 

invoked.  

• The requesting_principal field identifies the user making the request. 

That is, it is simply the user name of the person running the client.  

 

Figure 6: The format of a GIOP message and message header, and the format of a 

Request message header 
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2.3.7  CORBA and Fault Management 

According to OMG many different kinds of applications, developed by the members of 

the OMG and the users of CORBA, have a need for fault tolerance [OMG3.0.3]. The 

standard for Fault Tolerant CORBA aims to provide robust support for applications that 

require a high level of reliability, including applications that require more reliability 

than can be provided by a single backup server. The standard requires that there shall be 

no single point of failure.  

 

In CORBA fault tolerance depends on entity redundancy, fault detection, and recovery. 

The entity redundancy means the replication of objects. This strategy allows greater 

flexibility in configuration management of the number of replicas, and of their 

assignment to different hosts, compared to server replication. Replicated objects can 

invoke the methods of other replicated objects without regard to the physical location of 

those objects. Support for redundancy in time is provided by allowing clients to make 

repeated requests on the server, using the same or alternative transport paths. 

 

 In a fault-tolerant CORBA system, fault management encompasses the following 

activities [OMG3.0.3]: 

� Fault detection - detecting the presence of a fault in the system and generating a 

fault report. 

� Fault notification - propagating fault reports to entities that have registered for 

such notifications. 

� Fault analysis/diagnosis - analysing a (potentially large) number of related fault 

reports and generating condensed or summary reports. 

In the fault tolerance infrastructure, fault detectors detect faults in the objects, and report 

faults to the fault notifier. The fault notifier receives fault reports from the fault 

detectors, filters the reports, and propagates the filtered reports as fault event 

notifications to consumers that have subscribed for them. The fault analyser reasons 

about the received fault reports, and produces aggregate or summary fault reports. It 

propagates these reports back to the fault notifier for dissemination to other consumers. 

 

Typically, there are several fault detectors, including those provided by the 
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infrastructure to monitor objects, and other fault detectors provided by the infrastructure 

or the application. Each fault detector belongs to a particular fault tolerance domain, and 

is not shared across fault tolerance domains. Most implementations of fault detectors are 

based on time-outs, and use either pull- or push-based monitoring. There can be also 

one or more fault analysers.  

 

A problem with the CORBA fault notification is the potential for a large number of 

notifications to be generated by a single fault [OMG3.0.3]. This problem is addressed 

by filtering within the fault notifier, by fault analysers, and by the 

FaultMonitoringGranularity interface. 

 

Figure 7 illustrates the architecture of fault tolerance infrastructure - the interaction 

between the fault detectors, fault notifier, fault analyzer, and replication manager in a 

relatively simple system. 

 

Figure 7: Interaction between the fault detector, fault notifier, fault analyzer and 

replication manager [OMG3.0.3] 
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2.4 SNMP 

SNMP stands for Simple Network Management Protocol and is currently in its third 

version – although versions one and two are also still in some use. SNMP is 

standardized by the Internet Engineering Task Force (IETF) and it is the standard 

network management protocol in the IP realm. Each version of SNMP is specified by 

one or more IETF Request for Comments (RFC): RFC 1157 defines SNMP Version 1 

(SNMPv1), RFCs from 3416 to 3418 define SNMP Version 2 (SNMPv2) and RFCs 

from 3410 to 3418 and RFC 2576 define SNMP Version 3 (SNMPv3). 

 

The initial version of SNMP protocol is nowadays a historical IETF standard; although 

SNMPv1 is historical, it is still widely supported by many vendors. The security of 

SNMPv1 is based on communities, which are nothing more than passwords. SNMPv2 

expanded the functionality of SNMP and broadened its applicability from only TCP/IP-

based networks to also include OSI-based networks. The key enhancements that 

SNMPv2 provides to version 1 fall into three following categories: structure of 

management information (SMI), manager-to-manager capability, and protocol 

operations. SNMPv3 addresses the security problems of the previous versions, but no 

other essential changes are made to the protocol [Mauro]. There are several new textual 

conventions, but these are really just more precise ways of interpreting the data types 

defined in previous versions.  

 

For gathering management information SNMP uses simple messages called protocol 

data units (PDU). SNMP uses user datagram protocol (UDP) to transmit PDUs. The 

SMI provides a way to define the managed objects of SNMP and their behaviour, and 

the management information base (MIB) can be thought as a database of managed 

objects. 

2.4.1 Basic SNMP Concepts 

In SNMPv1 and SNMPv2 there are two kinds of entities: managers and agents. A 

manager is a server running a software system handling management tasks for a 
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network.  An agent is a piece of software that runs on the managed network device. It 

can be a separate program or it can be incorporated into the operating system; most IP 

devices today have some kind of SNMP agent build in [Mauro]. The agent is 

responsible for:  

• Collecting and maintaining information about its local environment  

• Providing that information to a manager, either in response to a request or in an 

unsolicited fashion when something noteworthy happens  

• Responding to manager commands to alter the local configuration or operating 

parameters  

The manager station generally provides a user interface so that a human network 

manager can control and observe the management process. This interface allows the 

user to issue commands (for example deactivate a link, collect statistics on 

performance) and provides logic for summarizing and formatting information collected 

by the system. SNMPv3 makes a big change to the basic concepts and abandons the 

notion of managers and agents, both are now called SNMP entities. Chapter 2.4.2 

elaborates this change in more detail. 

2.4.1.1 The Structure of Management Information (SMI) 

The structure of management information defines the general framework how managed 

objects and their resources are named and represented and specifies their associated data 

types. The definition of managed object in SMI can be broken down into three attributes 

[Mauro]: 

• Name: the name, or object identifier (OID), uniquely defines an MO. Names 

commonly appear in two forms: numeric and “human readable.” In either case, the 

names are long and inconvenient. In SNMP applications, a lot of work goes into helping 

the user to navigate through the namespace conveniently. 

• Type and syntax: A data type of an MO is defined using a subset of Abstract 

Syntax Notation One (ASN.1). ASN.1 is a way of specifying how data is represented 

and transmitted between entities, within the concept of SNMP. The benefit of ASN.1 is 

that it is machine independent and different machines can communicate without 
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worrying about such as byte ordering. 

• Encoding: A single instance of an MO is encoded into a string of octets using 

Basic Encoding Rules (BER). BER defines how the objects are encoded and decoded so 

that they can be transmitted over a transport medium such as Ethernet. 

2.4.1.2 Management Information Base (MIB) 

All MOs in the SNMP environment are arranged in a hierarchical or tree structure. The 

leaf objects of the leaf are the actual MOs, each of which represents some resource, 

activity, or related information that is to be managed. The tree structure itself defines a 

grouping of objects into logically related sets. Figure 8 illustrates the MIB-II sub tree, 

which is a very important management group because every device that supports SNMP 

must also support MIB-II [Mauro]. The MIB-II standard defines variables for things 

such as interface statistics (interface speeds, maximum transmission unit, octets sent, 

octets received, and so on) as well as various other things pertaining to the system itself 

(system location, system contact, and so on).  The main goal of MIB-II is to provide 

general TCP/IP management information; it does not cover every possible item a vendor 

may want to manage within its particular device. 
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Figure 8: MIB-II sub tree of the mgmt branch [Mauro] 

 

What gives SNMP its power is the extensive set of standardized MIB structures that has 

been defined [Stallings-2]. The MIB at an agent-entity dictates what information that 

agent will collect and store. For example, there are a number of variables in the basic 

MIB that relate to the operation of the underlying TCP and IP protocols, including 

number of packets sent and received, packets in error, and so on. Since all agents 

maintain the same set of data variables, applications can be written at the management 

station to exploit this information. 

2.4.1.3 SNMP Operations 

SNMP is designed to be easy to implement and to consume minimal processor and 

network resources. It is therefore a tool for building a bare-bones management facility. 

Entities send and receive information by PDUs. Each of the following SNMP operations 
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has a standard PDU format:  

• Get: Used by a manager to retrieve an item from an agent's MIB.  

• GetNext: Used by a manager to traverse a MIB sub-tree in lexicographic order. 

• GetBulk: Used by a manager to retrieve a large section of a table from an agent's  

MIB at once.  

• Set: Used by a manager to set a value in an agent's MIB.  

• GetResponse: Used by an agent to respond to manager’s get, getnext or getbulk 

operation. 

• Trap: Used by an agent to send an alert to a manager.  

• Notification: Used to standardize the PDU format of traps. 

• Inform: Used by a manager to send an alert to another manager.  

• Report: Allows SNMP engines to communicate with each other. 

2.4.2 Protocol Architecture 

Each SNMP entity consists of an SNMP engine and one or more SNMP applications. 

The revised concepts are important because they define an architecture rather than 

simply a set of messages; the architecture helps separate different pieces of the SNMP 

system making a secure implementation possible [Mauro]. 
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Figure 9: SNMPv3 entity [Mauro] 

2.4.2.1 The SNMPv3 Engine 

The engine is composed of four pieces: the dispatcher, the message processing 

subsystem, the security subsystem, and the access control subsystem. An SNMP engine 

implements functions for sending and receiving messages, authenticating and 

encrypting or decrypting messages, and controlling access to managed objects 

[Stallings-1]. 

 

The job of the dispatcher is to send and receive messages. The dispatcher determines the 

version of each received message and hands it to the message processing subsystem. 

The dispatcher also sends SNMP messages to other entities. The message processing 

subsystem prepares messages to be sent and extracts data from received messages. An 

implementation of the message processing subsystem may support a single message 

format corresponding to a single version of SNMP, or it may contain a number of 

modules, each supporting a different version of SNMP. The security subsystem 

provides authentication and privacy services. Each outgoing message is passed to the 

security subsystem from the message processing subsystem. Depending on the services 

required, the security subsystem may encrypt the enclosed message, and it may generate 
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an authentication code and insert it into the message header. The processed message is 

then returned to the message processing subsystem. Similarly the security subsystem 

checks incoming messages for authentication code and performs decryption. 

Authentication uses either community strings (SNMPv1 and v2) or SNMPv3 user-based 

authentication, that uses the MD5 or SHA algorithms to authenticate without sending a 

password in the clear. The privacy service uses the DES algorithm to encrypt and 

decrypt SNMP messages. The access control subsystem is responsible for controlling 

access to management information base objects. [Mauro] 

2.4.2.2 The SNMPv3 Applications 

SNMPv3 divides the traditional manager and agent roles of previous SNMP version into 

a number of applications presented in Table 3. All applications make use of the services 

provided by the SNMP engine of an entity. RFC 3411 allows additional applications to 

be defined over time. 

Table 3: SNMPv3 Applications 

Application Description Traditional 

role 

Command generator Generates get, getnext, getbulk, and set 

requests and processes the responses. 

Implemented by an NMS. 

manager 

Command 

responder 

Receives and responds to get, getnext, 

getbulk, and set requests.  

agent 

Notification 

originator 

Monitors a system for particular events or 

conditions, and generates SNMP traps and 

notifications. A notification originator must 

have a mechanism for determining where to 

send messages, and which SNMP version 

and security parameters to use. 

manager  

and agent 
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Notification 

receiver 

Listens for notification messages, receives 

traps and inform messages, and generates 

response messages to them. 

manager 

Proxy forwarder Forwards messages between entities. agent 

 

2.4.3 Messages 

In all versions of SNMP information is exchanged between SNMP entities with 

messages. Each message includes a message header and a PDU. SNMPv3 message 

format is illustrated in Figure 10. 

 

Figure 10: SNMPv3 message format with USM 
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The user-based security model (USM) and the view access control model (VACM) 

together detail the security enhancements added with SNMPv3. RFC 2274 defines the 

USM and this specification encompasses [Stallings-1]: 

• Authentication: Provides data integrity and data origin authentication. The 

message authentication code HMAC, with either the hash function MD5 or SHA-1, 

provides authentication. 

• Timeliness: Protects against message delay or replay. 

• Privacy: Protects against disclosure of message payload. The cipher block 

chaining (CBC) mode of DES is used for encryption. 

• Message format: Defines format of msgSecurityParameters field, which 

supports the functions of authentication, timeliness, and privacy. 

• Discovery: Defines procedures by which one SNMP engine obtains information 

about another SNMP engine. 

• Key management: Defines procedures for key generation, update, and use. 

Specifically, USM is designed to secure against the following principal threats 

[Stallings-2]:  

• Modification of information: An entity could alter an in-transit message 

generated by an authorized entity in such a way as to effect unauthorized management 

operations, including the setting of object values. The essence of this threat is that an 

unauthorized entity could change any management parameter, including those related to 

configuration, operations, and accounting.  

• Masquerade: Management operations that are not authorized for some entity 

may be attempted by that entity by assuming the identity of an authorized entity.  

• Message stream modification: SNMP is designed to operate over a 

connectionless transport protocol. There is a threat that SNMP messages could be 

reordered, delayed, or replayed (duplicated) to effect unauthorized management 

operations. For example, a message to reboot a device could be copied and replayed 

later.  

• Disclosure: An entity could observe exchanges between a manager and an agent 
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and thereby learn the values of managed objects and learn of notifyable events. For 

example, the observation of a set command that changes passwords would enable an 

attacker to learn the new passwords. 

USM does not secure against denial of service: an attacker may prevent exchanges 

between SNMP entities, or traffic analysis: an attacker may observe the general pattern 

of traffic between entities.  

 

In any message transmission, either the transmitter or receiver is designated as the 

authorative SNMP engine. When an SNMP message contains a payload, which expects 

a response (for example, a Get-, GetNext-, GetBulk-, Set-, or Inform-PDU), then the 

receiver of such messages is authoritative; when an SNMP message contains a payload, 

which does not expect a response (for example, an SNMPv2-Trap-, Response-, or 

Report-PDU), then the sender of such a message is authoritative. This designation 

serves two purposes [Stallings-2]:  

1. The timeliness of a message is determined with respect to a clock maintained by 

the authoritative engine. When an authoritative engine sends a message (Trap, 

Response, Report), it contains the current value of its clock, so that the non-authoritative 

recipient can synchronize on that clock. When a non-authoritative engine sends a 

message (Get, GetNext, GetBulk, Set, Inform), it includes its current estimate of the 

time value at the destination, allowing the destination to assess the timeliness of the 

message.  

2. A key localization process enables a single principal to own keys stored in 

multiple engines; these keys are localized to the authoritative engine in such a way that 

the principal is responsible for a single key but avoids the security risk of storing 

multiple copies of the same key in a distributed network. 

 

Access control is a security function performed at the PDU level. An access control 

document defines mechanisms for determining whether access to a managed object in a 

local MIB by a remote principal (which may be an individual or an application or a 

group of individuals or applications) should be allowed [Stallings-2]. The view-based 
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access control model is defined in RFC 2275 and used to control access to managed 

objects in a MIB or MIBs. VACM makes use of a MIB that defines the access policy for 

this entity, and makes it possible for remote configuration to be used. VACM 

implements the services required for the access control subsystem. VACM makes an 

access control decision on basis of the principal asking for access, the security model 

and security level used for communicating the request of the principal, the context to 

which access is requested, the type of access requested (read, write, notify), and the 

actual object for which access is requested [Stallings-1]. 

2.5 Other Methods of Fault Management 

Despite the current strong presence of CORBA and SNMP, there are also other methods 

for fault management in the telecommunications field. The nowadays somewhat 

outdated common management information protocol (CMIP) is still used to manage 

telecommunications devices that do not use the TCP/IP stack. 3GPP includes CMIP in 

its solution sets for fault management.  

 

Looking at the wider area of network management there are other methods than 

CORBA and SNMP available from different organisations and vendors. Large device 

manufacturers such as Cisco and Juniper have offered their own command line interface 

for managing their devices, but they do not scale well to managing a large group of 

devices. Large manufacturers have also developed their solutions to XML-based agents 

and utilised embedded web servers (EWS) on their devices to provide web based 

configuration management [Choi-et-al]. These vendor specific solutions do however 

mainly configuration management. IETF has started its own project, called Netconf, to 

standardise the vendor specific XML-based solutions [IETF-N]. It also though only 

concentrates on configuration management. The Internet Research Task Force (IRTF) – 

a sister group of the IETF – does research on future ways of fault management, and 

network management as a whole. At the moment it has improvement for SNMP, but no 

completely new management ways. 

 

Configuration management has been seen as the weakness of SNMP, and therefore new 
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management solutions have concentrated on that. SNMP has been left on the side of 

these solutions to handle fault management. But nothing prevents from developing a 

complete XML-based management system as described in an article from Korean 

POSTECH [Choi-et-al]. Management information can be defined by XML Schema and 

transferred using HTTP over TCP. 3GPP has also done a feasibility study of XML-

based telecommunications management and introduced a solution set to replace their 

CORBA solution set [3GPP-XML]. In this solution simple object access protocol 

(SOAP) is used to as XML messaging and invocation protocol. With the wide and ever 

widening usage of XML, XML/SOAP solutions can be seen as very viable candidates in 

the future of fault management.
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3 Conversion between CORBA and SNMP Fault 

Management 

The previous section described CORBA and SNMP – the two prominent methods for 

fault management. This section focuses on conversion between these two solutions and 

presents reasons why a service provider would want to conduct such a conversion.  

3.1 Incentives for a CORBA-SNMP Converter 

CORBA was taken to fault management use in late 1990s, when CMIP and SNMP were 

seen as hard to learn and implement [Deri&Ban]. Also the advent of Java gave wave to 

CORBA as it provided language mapping to Java [Henning]. This and other language 

mappings promised developers a tool that would allow them to build heterogeneous 

distributed applications and their management interfaces with relative ease. Particularly 

GSM and UMTS NEs were provided to service providers with almost solely CORBA 

management. However, SNMP remained in use and its usability and different 

implementations evolved over the years. 

 

The biggest impact of CORBA as a management protocol was in the 

telecommunications sector, but after its initial success years, the concept of an all-IP 

world started gaining ground also in telecommunications. In this environment SNMP, as 

part of the Internet Protocol Suite, became once again the most popular fault 

management mode because of its merits, such as ease of implementation and great 

interoperability [Yoon-et-al]. CORBA on the other hand was being seen as complex, 

inconsistent and downright arcane [Henning]. The bursting of the Internet bubble in 

2002 did also not help CORBA as its development wound down, because several 

vendors and software companies refocused their efforts. Also according to Henning, the 

standardization process of OMG hindered development of CORBA so that it is 

presently almost static in the management field. 

 

While SNMP is not without its drawbacks, it is still the strongest choice for monitoring 
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NEs and for fault management on moderate size networks. Having been designed to be 

simple it has limitations on scalability, though this affects configuration management 

more than fault management. Because most network devices used worldwide are 

equipped with an SNMP agent, the best choice for a service provider wanting to manage 

all its NEs with a single protocol is SNMP. For an SP operating, both CORBA using 

and SNMP using NEs, the solution is to convert the CORBA based fault management to 

using SNMP. 

3.2 General Aspects of Protocol Conversion 

There has been only limited amount of research carried out on protocol conversion 

concerning element management or network management. In the late 90s, the trend in 

research was converting existing SNMP managed devices to CORBA management 

[Mazumbar], [Aschemann], [Deri&Ban], and in the early 2000s studies on SNMP-XML 

conversion have been made [Yoon], [Klie], [Choi-et-al]. From these studies similar 

general aspects for management protocol conversion can be gathered. 

 

In most cases illustrated in research articles, protocol conversion includes two main 

parts, a translator and a gateway [Mazumbar], [Aschemann], [Yoon]. Usually different 

protocols have different presentations of information models and to convert this 

information a translation algorithm is needed. The translator’s algorithm translates data 

type definitions; object references; variable, attribute, and other names between the 

protocols involved in the conversion. The loss of information is possible in these 

translations and should be taken into consideration when designing the algorithm. Some 

loss of less important information may though be justified for the functionality reasons. 

In some cases the original protocol has information and functions not needed by the 

desired new protocol, so translation of these functions is not always mandatory. The 

translator may have to convert one type, definition or name of one protocol to many on 

the other protocol or vice versa. 

 

The gateway is needed to convert and map operations, methods and messages from one 

protocol to the other. This gateway conversion may also be similar to the conversion in 
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the translator, as one message in the other protocol may require two or more messages 

in the other. The gateway may also need to generate messages and monitor entities on 

its each side.  

 

Some metrics are needed for the conversion evaluation. The conversion should be able 

to convert all desired functions, not add significant load compared to the original 

protocol, and not be noticeable to the user – the user will not notice the underlying 

protocol. 

3.3 Comparison of Fault Management with CORBA and SNMP 

As Section 2 illustrated, fault management can be done by using both CORBA and 

SNMP, but they have differences in how they execute fault management. There are 

differences in protocol stacks, data types, MO presentations, and messages. 

 

The protocol stacks of CORBA and SNMP are presented side by side in Figure 11. Both 

SNMP and CORBA protocols – comprising of IIOP, GIOP and a stub or a skeleton – 

preside on the application layer. SNMP and CORBA use different protocols on 

transport layer; CORBA utilises the more reliable TCP while SNMP uses lighter and 

speedier UDP. 
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Figure 11: Protocol stacks of SNMP and CORBA 

 

The messages of SNMP and CORBA used in fault management also differ. In CORBA 

all is done basically with two GIOP message types: request and reply. A request can 

also be cancelled and both message types can be fragmented. These messages are still 

versatile as they can convey different CORBA operations. The operations the EMS can 

perform on the NE via these messages and the CORBA services that provide these 

operations are the real essence of CORBA fault management. CORBA communications 

generally are also more complex than SNMP and have to cope with many aspects such 

as encoding of operation calls, or different parameter semantics. Contrary to CORBA, 

in SNMP the essence of fault management are the messages the EMS and the NE send 

to each other. SNMP uses eight different message types for fault management as 

described in Paragraph 2.4.1.3., and communication with these messages is defined very 

precisely. In addition to some general information, each SNMP message contains a list 

of name-value pairs, a so-called variable binding list. Especially the trap and 

notification messages are important as they alert the manager entity of alarms and other 
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events in the NE. The CORBA equivalents to SNMP traps are alarm and event 

operations. Since an SNMP message PDU can specify more than one variable that may 

span multiple tables and rows, each SNMP PDU can equal more than one CORBA 

operation [Mazumdar]. In describing data SNMP uses ASN.1 types in the PDUs while 

CORBA uses IDL types.  

 

The MO presentation is quite similar, but there are differences in the details such as 

SNMP information modules being SMI documents while those of CORBA are IDL 

modules. As explained in Paragraphs 2.4.1.1 and 2.4.1.2 managed objects in SNMP are 

organised in a treelike hierarchy defined by unique object identifiers (illustrated in 

Figure 8). An object ID is made up of a series of integers based on the nodes in the tree, 

separated by dots. Each managed object has a numerical OID and an associated textual 

name; the OID textual name pairs pertaining to a specific network element are grouped 

in a MIB. In 3GPP CORBA fault management, managed objects are also organised in 

treelike hierarchy called name space [3GPP-1068]. Whereas SNMP MOs are similar to 

the pairs that IP addresses and URLs make, managed objects of CORBA are more like 

objects in object oriented programming languages. A distinguished name (DN) is used 

to uniquely identify a CORBA MO within a name space. The distinguished name is 

constructed from a series of name components referred to as relative distinguished 

names (RDN) such as the MO’s type name and identity number; the full distinguished 

name contains the path from the MO to the global root MO similarly as for example file 

names in Unix file system. ITU-T Recommendation X.500 defines the concepts of DN 

and RDN in detail. The CORBA MOs have also attributes that reference what is their 

parent MO and what context does the MO belong. 

 

Table 4 summarises the main differences in fault management of CORBA and SNMP. 
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Table 4: Differences of CORBA and SNMP Fault Management  

 CORBA SNMP Main difference 

Transport protocol TCP UDP 
Retransmissions in 

TCP 

Messages 

2 formal types, 

many different 

operations, name-

value pairs 

8 formal types, 

OID-value pairs 

Message structure: 

CORBA has fixed 

fields versus SNMP 

having free variable 

bindings 

MO presentation 

IDL modules, 

objects with 

attributes 

SMI modules, 

OID-textual name 

pairs 

Attributes within 

MO versus 

attributes as 

branches of MO 

Data types IDL types ASN.1 types  

Manager functions 

Several different 

operations for 

modifying and 

accessing MO 

information 

Set-operation for 

variable-binding 

manipulation, get-

operation for 

viewing variable-

bindings 

CORBA-operations 

are a lot like 

programming 

language functions, 

SNMP-operations 

simple and rigid 

Security 
Security Service 

(CORBASEC) 
USM and VACM  
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4 Converter 

As described in Chapter 1 the objective of the thesis is to study how a network operator 

– having network elements using 3GPP’s implementation of CORBA fault management 

(FM), while most other of the operator’s NEs as well as the operator’s EMS are using 

SNMP for fault management – can unify the fault management of its network and thus 

convert the CORBA based NEs into understanding SNMP FM. In order to do this a 

CORBA-SNMP converter is needed and designed to carry out the protocol conversion 

from one to another. The converter can be added into the NEs or between the EMS and 

the NE. 

4.1 Structure of a CORBA-SNMP Converter 

The structural design of the converter can be divided into five sections representing the 

different tasks of the CORBA SNMP conversion. These sections – protocol mapping, 

message mapping, managed object mapping, security mapping, receiving and 

forwarding messages – are combined to form the whole converter. 

4.1.1 Protocol Mapping 

To convey messages between the EMS and NE, the converter has to take care of the 

different protocol stacks of SNMP and CORBA. The stacks differ on top of the IP layer 

and operate on different styles of connections that have to be taken into consideration. 

Stallings [Stallings-1] describes a concept of an SNMP proxy agent, where an SNMP 

agent acts on behalf of one or more devices that do not implement SNMP. The 

CORBA-SNMP converter works similarly and Figure 12 indicates the protocol 

architecture. The converter must connect to the EMS according to the SNMP protocol 

stack and at the same time connect to the NE according to the CORBA protocol stack. 

Once both connections from the converter are set up, the connection between the EMS 

and the NE is complete. 



 Converter 
 

Ville Ryhänen 40 

 

Figure 12: Proxy configuration of the converter [Stallings-1] 

4.1.2 Message Mapping 

In both CORBA and SNMP, the essential part of fault management is the NE detecting 

faults and other important events and reporting them to the EMS with messages. The 

other essential part is the EMS setting filters on the NE – also with messages – which 

determine what notifications it wants to receive. In essence, a CORBA-SNMP converter 

is a gateway that translates these FM messages that EMSs and NEs send each other. To 

the EMS the converter makes the CORBA managing interface of the NE look like a 

SNMP agent entity; at the same time the CORBA fault management remains unchanged 

for the NE. 

 

As described of the CORBA based fault management in Paragraph 2.3.7, the faults 

occurring in CORBA based fault management systems are detected by a fault detector 

and reported to a fault notifier. The fault notifier filters these reports and propagates the 

filtered reports to consumers that have subscribed to them. The reporting is done by 

sending an alarm message or an event message to the EMS. The task of the CORBA-
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SNMP converter is to translate these alarm or event messages into SNMP trap 

messages. The NE maintains a subscription list that also describes, according to filters 

applied to some of the subscriptions, which alarms and events are sent to which 

managing systems. The EMS can manage the subscription list with SNMP set messages. 

The converter needs to map the SNMP set and get messages to CORBA set requests, as 

well as the NE responses from CORBA to SNMP. Figure 13 illustrates the tasks and 

components of the converter. 

 

Figure 13: The interaction between SNMP manager and CORBA based NE using the 
CORBA-SNMP converter 

 

SNMP Trap- and Set-PDUs contain only few mandatory fields or mandatory variable-

bindings. Most information is in variable-bindings that are defined by specific MIB 

files. In order for the manager entity to understand information coming from the NE 

trough the converter, a MIB file corresponding to the CORBA based NEs must be 

defined and loaded to the converter and the  EMS. The MIB file defines object types 

that correspond to the information fields of CORBA alarm and event notifications. It 

also defines the OIDs of each of these object types. 

 

In an SNMP set message every variable-binding field must be valid in order for the 
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intended changes to be made [Stallings-1]. In addition to describing the CORBA based 

NE, a MIB file must also define what CORBA operations a SNMP set message can 

invoke on the NE. The converter maps these allowed variable-bindings to CORBA 

operations and operation parameters, and invokes the operation on the NE’s ORB 

through its own ORB. The MIB file must similarly define what information an SNMP 

get messages can obtain from the NE. 

4.1.3 Managed Object Mapping 

The converter needs a MIB file that defines the NE information and characteristics. The 

MIB file needs to include – in addition to the traditional SNMP OID-textual name pairs 

– additional mapping of SNMP OID and CORBA distinguished name pairings. When 

the converter receives a notification from the NE it needs to map the DN of the MO 

causing the notification into a corresponding OID. The DN is a line containing every 

MO RDN in a direct succession between the root MO and the leaf MO causing the 

notification (for example a DN can look like 

“DC=CompanyXYZ,Net=DS3BackBone,Station=TMR,Node=1,Port=3”), 

and the mapping function needs to map each part separated by a comma to a part of an 

OID and append them to a full OID of the MO. 

4.1.4 Security Mapping 

In addition to protocol stacks, the mapping function has to convert the security functions 

of CORBA and SNMPv3. Since the security functions of SNMP and CORBA are 

mostly not similar, the converter cannot map security with exactly same parameters 

between the EMS and the NE. The most important part of the security mapping is trying 

to maintain the same level of security from the EMS through the converter to the NE 

and vice versa. The maker of the converter or the operator using the converter needs to 

decide what CORBASEC level and features correspond to the desired SNMP USM and 

VACM features. 

4.1.5 Receiving and Forwarding Messages 

In SNMPv3 the manager and agent tasks are represented by applications. A normal 
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SNMP (agent) entity utilises a proxy forwarder application to forward messages from 

other SNMP entities. As the converter also has to map and translate messages from the 

NE to the EMS and vice versa, messages cannot simply be forwarded by proxy. Each 

message needs to be read and a new message needs to be formed according to it. As a 

basic initialization, the converter should be configured to listen to the address and port 

of the EMS and replace the information of the EMS with its own in the subscription list 

of the NE.  

 

One important aspect of message transfer that needs to be considered in the converter’s 

design is message blocking. SNMP and CORBA messages can be sent synchronously 

(blocking) and asynchronously (non-blocking). If entities are in different threads of 

control, they are asynchronous and sending a request in which the sender expects a 

response does not halt the operations of the sender while waiting for the response. With 

the addition of a converter between the EMS and NE, synchronous message exchange 

may block the operations of the managing system for much longer than an 

asynchronous straight SNMP exchange. If the converter blocks all other messages while 

waiting for a response to its first received request, it can become a bottleneck and 

impede performance of the network element. Message receiving and handling should 

therefore be threaded by the converter. Figure 14 and Figure 15 illustrate the difference 

between blocking and non-blocking message exchange with simplified examples. 

Blocked requests from the EMS caused by blocking or other causes are not transmitted 

automatically unless the EMS application itself takes care of this. If the EMS is polling 

the NE periodically, the loss of some of the management data is acceptable. SNMP over 

TCP would help with some loss of management data, but would also increase network 

congestion with its retransmissions in situations for which SNMP is designed for, when 

networks are in trouble and something has gone wrong in network elements [Mauro]. 
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Figure 14: Synchronous message exchange through the converter 

 

Figure 15: Asynchronous message exchange through the converter 

 

In its most robust configuration, the converter handles each task in a different thread of 

control. Receiving messages from the NE, sending messages to the NE, receiving 
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messages from the EMS, and sending messages to the EMS are all handled with a 

separate thread. As the communication between the converter and the EMS and between 

the converter and the NE is done with different transport protocols, using different 

threads of control the converter will not block other functions, if a message times out.  

4.2 Design of a CORBA-SNMP Converter 

The intent of the converter implementation is to prove – as described in the previous 

sections – that the concept of converting a network element’s CORBA fault 

management to use SNMP via a converter is functional. To make this proof of concept, 

the following kind of CORBA to SNMP converter was designed and implemented.  

 

The converter implementation is written in Java programming language; the fault 

management of an NE in this thesis utilises Ericsson’s Java implementation of IDL 

specifications for Alarm and Notification services defined by 3GPP’s CORBA Solution 

Sets [3GPP-1063], [3GPP-1113]. For implementing SNMP managing system 

functionality and the SNMP functionality of the converter, an open source SNMP 

application programming interface (API) for Java is used [SNMP4J]. Although the 

implementation utilises an Ericsson NE, the converter was designed for interoperability 

with network elements and managing systems of other manufacturers; the design 

follows both CORBA and SNMP standards.  

 

The operating principle of this example implementation is to manage CORBA fault 

management operations with SNMP messages and the following restrictions apply. The 

implementation only covers fault management conversion; as such no changes to the 

MOs or MO models can be made or reconfigurations performed. Also the operating 

principle could have been to operate as much as possible like a normal SNMP agent 

entity, but as the difference between these operating principles is not of great relevance 

to the presented conversion concept, this principle was chosen for testing purposes. 

 

The implementation comprises of five Java classes: a class for handling the SNMP 
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connection and functions (ConverterAgent), a class to function as the converter’s 

ORB and for handling the CORBA connection and operations (ConverterORB), a 

class that handles the mapping and translation functions (MessageMapping), a class 

that represents the converter’s MIB file containing OID textual name DN pairings of 

every MO of the network element (SnmpCorbaConstants), and finally the class 

that combines the other classes and utilises them to make the converter functional 

(Converter). These classes also utilise the previously mentioned SNMP and CORBA 

Java libraries. The MIB also contains the CORBA operation parameter OID pairs 

needed for the mapping functions. To avoid message blocking the converter object runs 

in its own thread as well as running both its agent and ORB objects in their own 

separate threads. 

 

To start up the implementation, several tasks are performed. First the converter 

implementation sets up both the CORBA connection toward the NE and the SNMP 

connection toward the EMS. The converter initiates its ORB to start up the CORBA 

runtime system; the converter needs to use CORBA naming service for resolving the 

needed CORBA objects from the NE. But before the converter can use the naming 

service, it must get a reference to the naming service itself. This is done by fetching an 

IOR file that has a stored stringified object reference to the root naming context. Next, 

with the resolved naming service, the converter imports references to AlarmIRP and 

NotificationIRP CORBA objects; these handle the fault management operations on the 

NE. Once the converter has a reference to a CORBA object in the NE, the converter can 

invoke operations upon it. For receiving and properly handling notifications from the 

ORB of the NE, a sequence push consumer must be connected to the converter’s ORB. 

The converter’s ORB can be put to listen for notifications in the start up, or later with a 

specific function (attach_push). 

 

To set up the SNMP connection, the converter starts SNMP agent entity processes: 

multithreaded message dispatcher, UDP transport mapping with IPv4, message 

processing model MPv3, command responder, and security models. The address and 

port number of the EMS for sending, and the address and port number of the converter 
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agent for listening are also configured – this information also needs be configured in the 

managing system, for communicating with the NE trough the converter. After finishing 

its installation the agent starts listening for messages. Figure 16 illustrates the 

components and start up processes of the converter implementation. 

 

Figure 16: Converter implementation at start up 

 

Also at the start up of the converter, both the converter agent and the converter ORB set 

up security features. Security mapping, or more accurately applying the same level of 

security between the EMS and NE, is set up. The agent is set up with USM security 

model and VACM access control and in the ORB CORBASEC is set up from an IOR 

file.  

4.2.1 Protocol Mapping Implementation 

A UDP connection between the EMS and the converter is established with the setting up 

of the converter’s SNMP agent entity. In setting up the converter’s CORBA ORB, a 

TCP connection with IPv4 between the converter and the NE is established. As the 

messages that the converter needs to convey between the EMS and the NE require more 

than just encapsulating the message payload with new transport protocol headers, no 
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direct protocol mapping between the transportation protocols is done. The converter 

receives an SNMP message, reads its contents and based on the information, uses 

mapping functions to invoke a new CORBA operation through the ORB. When the 

ORB of the converter gets a notification form the NE, a SNMP message is formed and 

mapped from the information of the notification. Because of this different philosophy of 

working in SNMP and CORBA, the converter maintains two separate transport 

connections, instead of directly mapping the transport protocols.  

4.2.2 Message Mapping Implementation 

In the 3GPP implementation of CORBA fault management alarm and event 

notifications are transported in a message called structured event [3GPP-1063]. A 

structured event is comprised of three struct constructs: header, filterable data, and the 

remainder of body. The header can be further decomposed into a fixed portion and a 

variable portion, and the fixed portion of the header divided into event type and event 

name. Still further in details the event type has two fields: domain name and type name. 

The domain name identifies the particular vertical industry domain in which the event 

type is defined (for example telecommunications, finance, or health care); the type name 

categorizes the type of the event uniquely within the domain. For both alarm and event 

notifications the header part of the structured event is similar, but the number of fields 

in filterable data differs to some extent. Filterable data comprises of name-value pairs 

called properties. Both alarm and event have fields for managed object class, managed 

object instance, event time, notification ID, specific event or problem, system 

distinguished name, and additional text and info. The alarm notification has also fields 

for probable cause, perceived severity, alarm ID and acknowledgement handling. The 

format of these name-value pairs is mostly string-string with a few string-integer and 

string-long integer pairs. 

 

The task of the converter is to read the received structured event and construct an 

SNMP Trap-PDU. The converter fills the request-id field and variable-bindings of the 

PDU based on the information it reads from the structured event. Mandatory value-

name pairs in the Trap-PDU are sysUpTime.0 and snmpTrapOID.0. The field for 
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sysUpTime is filled with system uptime OID and the converter’s own time counter 

value; the field for snmpTrapOID is filled with an OID indicating an enterprise SNMP 

trap and an OID corresponding to the type name field of the structured event. Other 

information fields of the structured event are mapped to an OID corresponding to the 

name of the field. The values are mapped as is, except for the managed object instance 

field containing the MO’s DN, which will be mapped to the corresponding OID of the 

MO, as the following paragraph explains. The converter looks up the OIDs from its 

MIB file. After executing mapping functions, the converter sends the new constructed 

trap message to the EMS. 

 

The 3GPP specification TS 32.106-8 gives an example of a managed object model and 

its corresponding relative distinguished names seen here in Figure 17 [3GPP-1068]. In 

this figure the bottom object of NS-B right branch has a DN of 

“DC=se.ericsson.lmc,A=9,F=1,G=1,H=2”. The first part represents the DN 

prefix of the maker of the MO and will be mapped to the enterprise OID prefix of the 

maker (1.3.6.1.4.1.193 for Ericsson). The local DN “A=9,F=1,G=1,H=2” will be 

mapped as “9.1.1.2” with each RDN number part appended to the OID; so the full DN 

of the example MO will map to an OID of 1.3.6.1.4.1.193.9.1.1.2.  

 

Figure 17: Managed Object Model and Name Space Partitions [3GPP-1068] 
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Upon receiving a get or set message from the EMS, the converter performs the mapping 

in the opposite direction. In the 3GPP CORBA FM implementation, the managing 

system can perform a set of different configuration operations on the NE. These include 

subscribing to notifications, removing a subscription, setting or changing a filter for 

subscribed notifications, and setting or removing configuration for the severity of a 

specific problem. The converter needs to map variable-bindings in an SNMP set 

message to these operations and respond with an error response, if mapping does not 

match correctly. The CORBA operations can have several parameters and the 

parameters can also be objects with their own parameters. A list of all these parameters 

and sub-parameters needs to be in a MIB file, and a corresponding OID and variable-

binding assigned to each of them. In case the set operation is successful, the managing 

system gets a response that no errors occurred. 

 

The managing system can retrieve information from the NE with several “get” CORBA 

operations. These include retrieving the subscription status (this also keeps the 

subscription active), the versions of the notification and alarm services, list of active 

alarms, number of active alarms, and a list of modified alarms. Similar to set messages, 

the converter needs to map variable-bindings in an SNMP get message to these 

operations and the parameters of these operations. The converter generates and maps a 

response message from the response information of the NE and sends it to the managing 

system. 

4.3 Design Evaluation 

To test the functionality of the converter implementation, the designed Java classes 

were compiled, and three different types of test case sets were run: cases involving 

SNMP set messages; cases involving SNMP get messages; and cases involving SNMP 

trap messages. During the test environment set up, some modifications to the complete 

designed operating environment of the converter were made in order to cope with the 

complexity of the complete system. For simplicity, simulated Alarm and Notification 

services of the NE – run on the same computer as the converter – were used and the 

CORBA security functions turned off. Because of these limitations the tests were 
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focused on the inner functionality of the converter, starting at the point where the 

converter receives a generated test message and ending at where the converter would 

send the EMS a response or trap message. With this test set up extensive functionality 

testing was performed, covering the whole CORBA functionality. 

4.3.1 Test Scenarios 

As Figure 16 illustrated, the converter creates MessageMapping object and creates 

and initializes threads for ConverterAgent and ConverterORB objects. 

ConverterORB conveys AlaramIRP and NotificationIRP object references to 

MessageMapping. As SnmpCorbaConstans is a static class with no functions, it 

does not need initialising.   

 

The first test was to test the converter’s subscribing to notifications. As Figure 18 

illustrates a Set-PDU is formed in ConverterAgent containing OID of 

attach_push operation. Functions of the MessageMapping object map the 

variable-bindings of the PDU and invoke the attach_push operation on the 

NotificationIRP object reference. The operation returns the subscription ID of the new 

notification subscription and it is put into a Response-PDU. The Response-PDU is 

relayed to the ConverterAgent for sending to the managing system. Similar actions 

were performed also in all the other modifying operations tested by the set test case 

category: detach, attach_push_ext, 

change_subscription_filter_ext, and set_severity operations. 
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Figure 18: Using CORBA attach_push with an SNMP Set-PDU 

  

The get category of test cases tested all CORBA operations for information fetching; 

they were invoked with Get-PDUs or in case of fetching an alarm list with GetBulk-

PDUs. The CORBA operations controlled with Get-PDUs are 

get_subscription_status, get_subscription_status_ext, 

get_notification_IRP_version, get_alarm_count, 

get_alarm_count_ext, get_alarm_IRP_version, and 

get_all_modified_severity; the Get-PDU contains the operation’s OID, 

which invokes the specified operation, and the fetched information is packed into a 

Response-PDU. As Figure 19 illustrates, although get_alarm_list and 

get_alarm_list_ext operations are invoked with GetBulk-PDUs, they function 

similarly as test cases invoked with Get-PDU. The difference is that the maximum size 

of the response (maximum number of variable-bindings) is determined in the GetBulk-

PDU. 
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Figure 19: Fetching an alarm list with an SNMP GetBulk-PDU 

 

The third and final test case category was cases involving CORBA alarms and events. 

Alarms were generated by the AlarmIRP-class instance and events were generated by 

the NotificationIRP-class instance, all were passed as structured event to the 

ConverterORB object. Figure 20 illustrates how a structured event is mapped to a 

Trap-PDU by the MessageMapping object and passed to the ConverterAgent 

for sending. 
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Figure 20: A structured event containing an alarm mapped to an SNMP Trap-PDU 

  

4.3.2 Results and Analysis 

The test cases showed that the converter implementation enabled invoking all the 

CORBA FM operations with SNMP Set- and Get-PDUs as well as monitoring CORBA 

notifications as SNMP Trap-PDUs. The implementation was able to map information 

correctly in every test case and all tested CORBA operations functioned correctly. As 

the different component objects were run in separate threads, the converter 

implementation was able to perform different kinds of test cases simultaneously; 

notifications were mapped and sent at the same time as invoking a get operation. If a 

large number of alarms was generated, they were all mapped and conveyed 

consecutively and instantly by the converter and none were discarded. The relevant part 

of fault management is to inform managing systems with correct fault information 

immediately, with the focus on information details and correctness; these parts the 

converter handles well. 

 

As the converter is implemented between the EMS and the NE, it adds processing on 
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the network management. Despite of the limitations set by the test environment, some 

performance measurements were made. Fetching an alarm list is by far the most 

complex operation for the mapping functions of the converter, so it describes best how 

much at most the converter adds to the message delivery time.  
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Figure 21: The average mapping times of different sized alarm lists 

 

The time increase caused by the mapping function was tested with fetching different 

sized alarm lists. Because the CORBA operation returns a list of structured events, 

every alarm added to the Trap-PDU must be mapped separately. Figure 21 shows that 

increasing the size of the alarm list increases the mapping time approximately linearly. 

The measurements were made by adding time stamps to the start and the end of the 

mapping function. Measurements on each list size were run ten times. The Java 

implementation was run with Eclipse SDK 3.2.1 using Java 1.4.2. JRE, and the test 

environment was running on a laptop computer with SUSE Linux Enterprise Desktop 

10 operating system, Intel Core2 T7200 2 GHz processor and 4 GB of memory. During 

the measurements some other processes were also running on the computer; as the scale 

of the measurements was in milliseconds, the resource consumption added some 
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fluctuation on the measurements. Still these measurements can be considered giving 

indication of the real mapping performance. Approximating from the measurements and 

the graph in Figure 21, even with an alarm list consisting of a hundred active alarms it 

would still take only approximately 500 ms to map the alarm list operation; this time 

addition in the context of transporting management data can be considered quite 

harmless as the original CORBA operations take much more time. To the person 

running the managing system, the added converter would not create any practical 

slowing down compared to the previous, in the common use of fault management. 

Measurements of the impact that the converter has on the whole round trip time should 

also be measured, but they are left to be made on future implementations. 

 

Measurements were also made on all the other mapped operations: the other get-

operations were mapped in approximately 1 ms, set-operations were mapped in 

approximately 15 ms, and alarms and events were mapped in between 7 ms and 30 ms. 

It can be concluded that the added delay from these mappings is of no real concern to 

the managing system. 

 

There were no clear ways to test how much the converter implementation consumes 

memory resources, but some hints could be obtained from how it functions. The 

implementation runs three simultaneous threads, but most of the time they just wait for 

incoming messages. The converter does not maintain any statistics or lists of variables, 

only a static MIB file and the request IDs (four bytes each) for waiting response 

messages. So it can be concluded that compared to the original CORBA fault 

management, the converter does not add considerable load to the resources of the 

managed system, even if the converter were to be added into the NE. 

 

The SNMP management messages handle all managing operations with single request-

response message pair or with a single trap message. As such the converter does not 

greatly burden the bandwidth requirements between the EMS and the NE. The lighter 

UDP connection between the EMS and the converter will not increase the bandwidth 

usage of the network as much as adding another TCP connection would. The original 
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bandwidth usage between the EMS and the NE is now used between the converter and 

the NE, and a lighter moderately used UDP connection between the EMS and the 

converter is added to the bandwidth usage. 

 

The converter’s handling of errors and incorrect management commands follows SNMP 

practises. Unless the information in the request message is completely correct, an error 

response is returned, instead of the requested information or command. Error messages 

from the NE will be forwarded to the EMS using SNMP error responses. SNMP error 

code and error index message fields provide the converter a variety of possible error 

responses, although some CORBA error information can be forfeit in the conversion. 

 

Even though the converter implementation was simplified, it gave indication that a 

converter would be useful when a CORBA-SNMP conversion is beneficial. The 

implementation enabled the testing of the conversion of existing CORBA functionalities 

and acts as a good starting point for further examinations.
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5 Conclusions 

At the start of this thesis none or very few papers could be found on the specific details 

of protocol conversion from CORBA to SNMP. Based on this, the objective was set to 

study the conversion of fault management between CORBA and SNMP with focus on 

the conversion from CORBA based FM to SNMP. This thesis described the background 

and details of the conversion and proved the concepts functional. With a simplified 

implementation, a proof of concept for conversion of a CORBA based NE to using 

SNMP without changing its inner fault management mechanisms was reached. At the 

end it was observed that the added CORBA-SNMP converter was quite simple to 

construct, although only the fault aspect of the whole FCAPS-model was considered in 

the implementation. 

 

The converter implementation in this thesis was designed with the emphasis on the 

working philosophy of CORBA fault management. The managing system utilised the 

CORBA operations of the NE by SNMP PDUs, and the notifications from the NE were 

in essence in the same CORBA form, only delivered in an SNMP PDU. This is however 

not mandatory; the converter implementation can be designed to work in a more SNMP 

oriented way and use more elaborate mapping functions. This way some of the CORBA 

fault management functionality would have to be forfeit, but the NE could be managed 

more in the way of a native SNMP using NE.  

 

It can be concluded that the benefits of the CORBA-SNMP conversion over its 

drawbacks are much greater to the operator that is considering the conversion. The 

converter does not add considerable delay, strain on bandwidth usage, or consume 

memory resources and the benefits of unifying the managing system of all the network 

elements of the operator will likely provide performance and cost savings.  

5.1 Further Study 

This thesis only covered the conversion of network element’s CORBA based fault 

management, so the next logical step would be to study the conversion in further detail 
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and without test environment limitations. The adding of configuration management 

would also add to the fault management conversion, as the presently absent conversion 

of managed object models would be covered. Configuration and performance 

management would also cover some of the actions needed to be performed as a 

consequence of fault management actions. As this study made only a shallow proof of 

concept implementation and testing on the CORBA-SNMP converter, a real prototype 

of the converter would be needed for more detailed testing. The prototype could be 

made with only fault management conversion, but would be perhaps more beneficial 

with configuration and performance management conversion added in some form 

 

Adding configuration and performance management conversion to the converter 

requires also further consideration on the role of SNMP. SNMP is at its best in 

monitoring network elements and as such a natural choice for fault management. But for 

configuration and performance management more useful and preferred protocols are in 

use. Protocols such as Netconf and other XML based solutions are replacing or have 

already replaced SNMP in configuration management [Choi-et-al] [Yoon], and adding 

CORBA-Netconf mapping to the converter could be a wiser choice for converting 

configuration management of a CORBA based NE. Considering the design of the 

converter implementation, adding some other type of protocol conversion to the 

converter would seem possible, but its impacts would have to be studied and tested. The 

converter could also be expanded to work in a reverse set up, between CORBA based 

managing system and SNMP based NE. Studies on this sort of conversion have been 

written and mapping functions made as presented in Section 3.2.
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