

HELSINKI UNIVERSITY OF TECHNOLOGY

Faculty of Electronics, Communicatios and Automation

Department of Communications and Networking

Ville Ryhänen

Converting CORBA Based Fault Management to SNMP

Master’s Thesis submitted in partial fulfillment of requirements fo the

degree of Master of Science in Technology in Espoo, Finland on May 15th

2009

Supervisor: Professor Jörg Ott

Instructor: M.Sc. Kaisa Kettunen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 I

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF THE
MASTER'S THESIS

Author: Ville Ryhänen

Name of the thesis: Converting CORBA Based Fault Management to SNMP

Date: 15.5.2009 Number of pages: 10+63

Faculty: Faculty of Electronics, Communications and Automation,
 Department of Communications and Networking

Professorship: Networking Technology Code: S-38

Supervisor: Professor Jörg Ott

Instructor: M.Sc. Kaisa Kettunen

Fault management involves tasks to enable the detection, isolation and correction of abnormal

operation of the telecommunication network. Telecommunications management network

architecture of ITU-T consists of five layers, of which the bottom two, the element

management layer and the network element layer, are focused on the management of network

elements. For fault management tasks at these layers, several protocols have been utilised.

CORBA based fault management has been common in network elements and element

management systems utilising solution sets of 3GPP. But as the telecommunications industry

moves towards an all-IP world, SNMP has yet again become the predominant protocol for

monitoring network elements. A network operator looking into unifying the fault management

of its network could consider converting the CORBA based network element to using SNMP.

This thesis studies the requirements and details of this kind of conversion. With a literary study,

aspects of fault management and comparison of CORBA and SNMP are scoped for designing a

CORBA-SNMP converter. A proof of concept for the conversion is obtained with a simplified

implementation.

The implementation shows that a converter is quite easy to construct, and the converter can

perform with operating principle of either CORBA or SNMP. The converter is also able to

provide fault management unification without adding considerable delay, strain on bandwidth

usage or consuming memory resources. The results of this thesis give grounds for studying the

proposed concepts further and also broaden the converter to cover configuration management.

Though for configuration management SNMP may not be the preferred protocol.

Keywords: Fault management, CORBA, SNMP, protocol conversion, converter

Abstract

 II

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Ville Ryhänen

Työn nimi: CORBA-pohjaisen vianhallinnan konversio SNMP:lle

Päivämäärä: 15.5.2009 Sivumäärä: 10+63

Laitos: Elektroniikan, tietoliikenteen ja automaation tiedekunta,
 Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkkotekniikka Koodi: S-38

Työn valvoja: Professori Jörg Ott

Työn ohjaaja: DI Kaisa Kettunen

Vianhallinta pitää sisällään toimia, joilla havaitaan, eristetään ja korjataan tietoliikenneverkon

epänormaaleja toimintoja. ITU-T:n tietoliikenteen hallintaverkkoarkkitehtuuri koostuu viidestä

tasosta, joista kaksi alimmaista, elementinhallintataso sekä verkkoelementtitaso, keskittyvät

verkkoelementtien hallintaan. Useita protokollia on hyödynnetty vianhallintaan näillä tasoilla.

CORBA-pohjainen vianhallinta on ollut yleinen 3GPP:n ratkaisusarjaa hyödyntävissä

verkkoelementeissä ja elementinhallintajärjestelmissä. Mutta tietoliikenneteollisuuden

siirtyessä kohti all-IP-maailmaa, SNMP on jälleen uudelleen vahvistamassa asemaansa

hallitsevana verkkoelementtien monitorointiprotokollana. Täten verkkonsa vianhallinnan

yhdenmukaistamista tutkiva verkko-operaattori voisi harkita CORBA-pohjaisten

verkkoelementtiensä konvertointia käyttämään SNMP:tä. Tämä työ tutkii tämänkaltaisen

konversion edellytyksiä ja yksityiskohtia. Kirjallisuustutkimuksella otetaan selvää

vianhallinnan eri puolista ja vertaillaan CORBA:a ja SNMP:tä konvertterin suunnittelua varten.

Todiste konversiokonseptin toimivuudesta saadaan yksinkertaistetun implementaation avulla.

Implementaatio osoittaa konvertterin olevan melko helposti rakennettavissa, ja että konvertteri

voi toimia joko CORBA:n tai SNMP:n toimintaperiaatteella. Konvertteri mahdollistaa

vianhallinnan yhdenmukaistamisen lisäämättä huomattavaa viivettä, rasitusta

kaistaleveyskäytölle tai kuluttamatta runsaasti muistiresursseja. Tämän työn tulokset antavat

aihetta esitettyjen konseptien laajemmalle tutkimukselle, sekä konvertterin laajentamiselle

kattamaan konfiguraation hallinnan. Tähän tosin SNMP ei ehkä ole suositelluin protokolla.

Avainsanat: Vianhallinta, CORBA, SNMP, protokollakonversio, konvertteri

Tiivistelmä

 III

Preface

This thesis was written at Oy L M Ericsson Ab, Finland. At first finding a suitable

research subject took a little time, but at the end I got a subject I felt real interest in. For

this and for the very extensive guidance and support throughout my writing process, I

want to thank my instructors Kaisa Kettunen and Leena Pitkäranta.

In the beginning, and at times during my writing, the completion of this thesis seemed

like an insurmountable task, but going one step at a time and with rigorous proofreading

by my instructors got me to the finish. Even though the writing took more time than

originally planned, the end result from the added time was beneficial for the end result

and helped the work of my supervisor, Professor Jörg Ott.

With this master’s thesis I end the longest, and to this point the most significant part of

my life – my university years. This time would certainly have been briefer without all

the activities I partook, but the time would also have been many times less memorable. I

will especially remember the many bus trips across the land, and would like to thank my

travelling companions for the many gained memories and stories. Other big thanks go to

my Driving School’s headmaster Veikko Sompa and all his colourful students; you kept

my driving skills up to date and with your invites to play board games aided me in

extending my student years a little further.

Finally thanks to my parents for giving my support through my whole life, and to all the

friends I’ve gained since my freshman year, for helping me to get my mind of my

troubles when I felt stressed.

Espoo, May 15th 2009

Ville Ryhänen

 IV

Table of Contents

ABSTRACT.. I

TIIVISTELMÄ .. II

PREFACE ... III

TABLE OF CONTENTS ... IV

LIST OF FIGURES.. VI

LIST OF TABLES...VII

ABBREVIATIONS AND DEFINITIONS...VIII

1 INTRODUCTION...1

1.1 OBJECTIVES AND SCOPE...2

1.2 STRUCTURE OF THE THESIS..2

2 MANAGEMENT OF NETWORK ELEMENTS..................... ..4

2.1.1 Fault Management ...6

2.2 ELEMENT MANAGEMENT SYSTEM ...8

2.2.1 Fault Management at the Element Management Layer ...10

2.3 CORBA ..11

2.3.1 The Concept of an Object in CORBA...11

2.3.2 Object Management Architecture (OMA)..12

2.3.3 Object Request Broker (ORB)..13

2.3.4 Object Services...14

2.3.5 Interface Definition Language (IDL) ...14

2.3.6 Interoperability and General Inter-ORB Protocol (GIOP)15

2.3.7 CORBA and Fault Management ..19

2.4 SNMP...21

2.4.1 Basic SNMP Concepts ...21

2.4.1.1 The Structure of Management Information (SMI) ..22

2.4.1.2 Management Information Base (MIB) ..23

2.4.1.3 SNMP Operations..24

 V

2.4.2 Protocol Architecture...25

2.4.2.1 The SNMPv3 Engine...26

2.4.2.2 The SNMPv3 Applications ...27

2.4.3 Messages ..28

2.5 OTHER METHODS OF FAULT MANAGEMENT..31

3 CONVERSION BETWEEN CORBA AND SNMP FAULT MANAGEMENT.33

3.1 INCENTIVES FOR A CORBA-SNMP CONVERTER...33

3.2 GENERAL ASPECTS OF PROTOCOL CONVERSION...34

3.3 COMPARISON OF FAULT MANAGEMENT WITH CORBA AND SNMP.........................35

4 CONVERTER ...39

4.1 STRUCTURE OF A CORBA-SNMP CONVERTER...39

4.1.1 Protocol Mapping ..39

4.1.2 Message Mapping ..40

4.1.3 Managed Object Mapping..42

4.1.4 Security Mapping ...42

4.1.5 Receiving and Forwarding Messages ..42

4.2 DESIGN OF A CORBA-SNMP CONVERTER..45

4.2.1 Protocol Mapping Implementation ..47

4.2.2 Message Mapping Implementation ..48

4.3 DESIGN EVALUATION ...50

4.3.1 Test Scenarios ..51

4.3.2 Results and Analysis...54

5 CONCLUSIONS ...58

5.1 FURTHER STUDY...58

REFERENCES...60

 VI

List of Figures

FIGURE 1: THE FIVE-LAYER TMN ARCHITECTURE AND FCAPS...5

FIGURE 2: POSITION OF THE EMSS IN THE TELECOMMUNICATIONS NETWORK [IEC]..................9

FIGURE 3: RELATIONSHIPS OF MANAGED OBJECTS, MANAGED ELEMENTS AND MANAGING

SYSTEM..10

FIGURE 4: AUTOGENERATION OF THE INFRASTRUCTURE CODE FROM AN INTERFACE DEFINED

USING THE IDL ..15

FIGURE 5: A REQUEST BEING SENT THROUGH THE ORB AND INTER-ORB PROTOCOL

RELATIONSHIP [OMG3.0.3] ..16

FIGURE 6: THE FORMAT OF A GIOP MESSAGE AND MESSAGE HEADER, AND THE FORMAT OF A

REQUEST MESSAGE HEADER...18

FIGURE 7: INTERACTION BETWEEN THE FAULT DETECTOR, FAULT NOTIFIER, FAULT ANALYZER

AND REPLICATION MANAGER [OMG3.0.3] ...20

FIGURE 8: MIB-II SUB TREE OF THE MGMT BRANCH [MAURO] ...24

FIGURE 9: SNMPV3 ENTITY [MAURO] ..26

FIGURE 10: SNMPV3 MESSAGE FORMAT WITH USM..28

FIGURE 11: PROTOCOL STACKS OF SNMP AND CORBA ..36

FIGURE 12: PROXY CONFIGURATION OF THE CONVERTER [STALLINGS-1]..................................40

FIGURE 13: THE INTERACTION BETWEEN SNMP MANAGER AND CORBA BASED NE USING THE

CORBA-SNMP CONVERTER..41

FIGURE 14: SYNCHRONOUS MESSAGE EXCHANGE THROUGH THE CONVERTER..........................44

FIGURE 15: ASYNCHRONOUS MESSAGE EXCHANGE THROUGH THE CONVERTER........................44

FIGURE 16: CONVERTER IMPLEMENTATION AT START UP...47

FIGURE 17: MANAGED OBJECT MODEL AND NAME SPACE PARTITIONS [3GPP-1068]49

FIGURE 18: USING CORBA ATTACH_PUSH WITH AN SNMP SET-PDU..52

FIGURE 19: FETCHING AN ALARM LIST WITH AN SNMP GETBULK-PDU53

FIGURE 20: A STRUCTURED EVENT CONTAINING AN ALARM MAPPED TO AN SNMP TRAP-PDU

...54

FIGURE 21: THE AVERAGE MAPPING TIMES OF DIFFERENT SIZED ALARM LISTS..........................55

 VII

List of Tables

TABLE 1: A SUBSET OF THE FCAPS FUNCTIONALITY [IEC]...6

TABLE 2: GIOP MESSAGES..17

TABLE 3: SNMPV3 APPLICATIONS..27

TABLE 4: DIFFERENCES OF CORBA AND SNMP FAULT MANAGEMENT....................................38

 VIII

Abbreviations and Definitions

3GPP 3rd Generation Partnership Project

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

BML Business Management Layer

CBC Cipher Block Chaining

CMIP Common Management Information Protocol

CORBA Common Object Request Broker Architecture

DES Data Encryption Standard

DN Distinguished Name

DO Distributed Object

EML Element Management Layer

EMS Element Management System

ESIOP Environment Specific Inter-ORB protocol

FCAPS Fault, Configuration, Accounting, Performance, Security

FM Fault Management

HMAC Hash Message Authentication Code

IDL Interface Definition Language

IEC International Engineering Consortium

IETF Internet Engineering Task Force

IIOP Internet Inter-ORB Protocol

IOR Interoperable Object Reference

ITU-T International Telecommunications Unions Telecommunications

Standardization Sector

 IX

IRTF Internet Research Task Force

MD5 Message-Digest algorithm 5

MIB Management Information Base

MO Managed Object

NE Network Element

NEL Network Element layer

NML Network Management Layer

NMS Network Management System

OID Object Identifier

OMA Object Management Architecture

OMG Object Management Group

ORB Object Request Broker

OS Operations System

PDU Protocol Data Unit

RAS Reliability, Availability and Survivability

RDN Relative Distinguished Name

RFC IETF’s Request For Comments

SHA-1 Secure Hash Algorithm 1

SMI Structure of Management Information

SML Service Management Layer

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SP Service Provider

TL1 Transaction Language 1

TMN Telecommunications Management Network

 X

UDP User Datagram Protocol

USM Used-based Security Model

VACM View Access Control Model

XML Extensible Markup Language

 Introduction

Ville Ryhänen 1

1 Introduction

Telecommunications networks consist of interconnected network elements that

communicate with various protocols and transport information with various

transmission paths. Over the last decade the telecommunications networks have been in

transition. Old networks were primarily designed for circuit-switched voice traffic and

were relatively simple. They were based on copper loops for subscriber access and on a

network of telephone exchanges to process calls. These networks have evolved into

transporting voice, high-speed data, video, and every possible combination of these;

they are now based on a variety of complex technologies.

The International Engineering Consortium describes an element management system

(EMS) as a system that manages one or more of a specific type of telecommunications

network element (NE) [IEC]. Typically, the EMS manages the functions and

capabilities within each NE but does not manage the traffic between different NEs in the

network. To support management of the traffic between itself and other NEs, the EMS

communicates upward to higher-level network management systems (NMS) as

described in the International Telecommunications Unions Telecommunications

Standardization Sectors (ITU-T) telecommunications management network (TMN)

layered model. In addition to the layered structure, the general management

functionality splits into the five key areas of fault, configuration, accounting,

performance, and security comprising the so-called FCAPS reference model.

The machine-to-machine communication protocol between the NE and its EMS varies

from NE to NE and ranges from vendor-proprietary solutions to open standards such as

CORBA or SNMP. Defined by the Object Management Group (OMG), the Common

Object Request Broker Architecture (CORBA) is distributed middleware that can be

used to manage a network element; it is for example used by the 3rd Generation

Partnership Project (3GPP). Simple Network Management Protocol (SNMP) is part of

the Internet Engineering Task Force's (IETF) internet protocol suite used in network

management systems to monitor network devices for conditions that warrant

administrative attention. Other widely used management interface protocols have been

 Introduction

Ville Ryhänen 2

Transaction Language 1 (TL1), Common Management Information Protocol (CMIP),

and nowadays Extensible Markup Language (XML) and Simple Object Access Protocol

(SOAP). As telecommunications move toward an all-IP world and networks converge,

the environment around NE may change and a need to change the used protocol may

arise.

1.1 Objectives and Scope

This thesis will study how the conversion between a CORBA based management and an

SNMP management can be done. Management of a network element involves all

aspects depicted by the FCAPS model, but this thesis will concentrate on fault aspects,

as they are important in all kinds of network elements. With this framing, the basic

problem can be addressed simply, but the results can be broadened to cover the whole

aspect of management of network elements and networks.

The thesis will find out which problems arise from interworking of two different ways

of management implementation and how to solve the problems that occur. The study

will show if this kind of conversion is practical and useful, and if the subject is case for

further study. What benefits this kind of conversion brings will also be studied, and if

these benefits are beneficial in other types of conversions or if they will become

disadvantages.

1.2 Structure of the Thesis

This thesis uses literature study and constructive research by designing, implementing

and testing a CORBA-SNMP converter. The first half is mainly based on literature

study of books, articles and technical specifications.

The latter part deals with the design and implementation of the converter. The intended

method for the conversion is to translate SNMP messages to a form that a CORBA

based element will understand and also translate the elements responses and

notifications to SNMP messages. The goal of the thesis is to study the possibilities to

convert CORBA based control to SNMP so that the network elements inner behaviour

need not to be changed and that the conversion can be done without completely

 Introduction

Ville Ryhänen 3

unpacking and repacking all management messages. The conversion will operate in both

directions between a SNMP based managing system and CORBA based network

element. The study will evaluate if this kind of conversion is economic and robust

enough for service providers to use.

This thesis is structured as follows: Chapter 2 describes what management of network

element entails, the CORBA architecture and the SNMP protocol. Chapter 3 explores

the reasons for a conversion from CORBA to SNMP, and compares the differences and

similarities of CORBA and SNMP fault management. In Chapter 4 the design and

implementation of the converter is explained with testing and results. Chapter 5, as the

last chapter, sums up the findings and includes discussion about the topics of future

research.

Management of Network Elements

Ville Ryhänen 4

2 Management of Network Elements

Network elements typically do not remain static through their life cycle in the way they

are set up, nor does the network around them. Operators must be able to reconfigure

their network nodes if they decide to make changes or in case a fault or some other

event occurs. Management must be applied in these cases and this refers to the

activities, methods, procedures, and tools that pertain to the operation, administration,

maintenance, and provisioning of networked systems and elements [Raman-1].

ITU-T has defined a Telecommunications Management Network (TMN) in

recommendations M.3000, M.3010, M.3200 and M3400 for managing open systems in

a communications network. A TMN may provide management functions and offer

communications both between Operations Systems (OS) themselves, and between OSs

and the various parts of the telecommunications network [ITU3010]. A TMN may also

provide management functions and offer communications to another TMN or TMN-like

entities in order to support the management of international and national

telecommunications networks. A telecommunications network consists of many types of

analogue and digital telecommunications equipment and associated support equipment,

such as transmission systems, switching systems, multiplexes, signalling terminals,

front-end processors, mainframes, cluster controllers, and file servers. When managed,

such equipment is generically referred to as network elements (NE).

The TMN architecture is a reference model for hierarchical telecommunications

management approach. Its purpose is to partition the functional areas of management

into layers. The key benefit of this architecture is to identify five functional levels of

telecommunication management as depicted in Figure 1: business management layer

(BML), service management layer (SML), network management layer (NML), element

management layer (EML), and NEs in the network element layer (NEL). This

distribution of management responsibilities makes it possible to spread these functions

or applications over the multiple disciplines of a service provider and use different

operating systems, different databases, and different programming languages [IEC].

Management of Network Elements

Ville Ryhänen 5

Figure 1: The Five-layer TMN architecture and FCAPS

As Figure 1 illustrates, ITU-T also splits the general-management functionality into five

areas: Fault management, Configuration management, Accounting management,

Performance management and Security management (FCAPS). This categorization is a

functional one and stems directly from ITU-T recommendations describing the five

different types of information handled by management systems. Portions of each of the

functionalities will be performed at different layers of the TMN architecture. A subset

of the FCAPS functionality is listed in Table 1.

Management of Network Elements

Ville Ryhänen 6

Table 1: A Subset of the FCAPS Functionality [IEC]

Fault

Management

Configuration

Management

Accounting

Management

Performance

Management

Security

Management

alarm handling system turn-up track service

usage

data collection control NE

access

trouble

detection

network

provisioning

bill for services report

generation

enable NE

functions

trouble

correction

autodiscovery data analysis access logs

test and

acceptance

back up and

restore

network

recovery

database

handling

2.1.1 Fault Management

The TMN M.3400 recommendation describes fault management (FM) as a set of

functions which enables the detection, isolation and correction of abnormal operation of

the telecommunication network and its environment [TMN3400]. The concept of a fault

is central to the definition of fault management. A fault is usually indicated by failure to

operate correctly or by excessive errors. There could be various types of faults related to

a NE: faulty hardware; software failures such as software related bugs, incompatibility

with hardware; congestion problems such as overload and threshold condition at the

NE; or communication failure between the NE and EMS [Agrawal]. A fault can also be

defined by its difference from an error; a fault is an abnormal condition that requires

management attention to repair, whereas an error is a single event [Stallings-1].

Fault management includes the following function set groups in the TMN M.3400

recommendation:

Management of Network Elements

Ville Ryhänen 7

� Reliability, Availability and Survivability (RAS) Quality Assurance

� Alarm Surveillance

� Fault Localization

� Fault Correction

� Testing

� Trouble Administration

As can be seen in Table 1, other divisions also exist, but they cover basically the same

areas.

RAS quality assurance establishes the reliability criteria that guide the design policy for

redundant equipment for managing availability and outage reporting [TMN3400]. With

it, an operator can determine how much redundancy is needed in the managed network

nodes and what the network must report when a node or service goes offline.

Alarm surveillance or fault detection is about monitoring NE failures in near-real time.

When such a failure occurs, an indication is made available by the NE. Based on this a

service provider (SP) determines the nature and severity of the fault. Alarm information

can be reported at the time of occurrence, and/or logged for future access. An alarm

may also cause further management actions within the NE that lead to the generation of

other fault management data [TMN3400].

Where the initial failure information is insufficient for fault localization, it has to be

augmented with information obtained by additional failure localization routines

employed by service providers tests [TMN3400]. Fault localization requires

communication between nodes to determine where the failure occurred. Based on the

fault information received, fault diagnosis is done to determine the root cause of the

failure [Hanemann]. Fault correction transfers data concerning the repair of a fault. To

replace equipment or facilities that have failed service provider utilises procedures that

put redundant resources in use.

In addition to passive failure detection, a service provider can also perform proactive

tests. These tests can either deal with resources or can assume the role of virtual

Management of Network Elements

Ville Ryhänen 8

customer and test a service by performing interaction at the service access point

[Hanemann]. Testing dealing with resources can be carried out in one of two ways

[TMN3400]. In one case, a service provider directs a given NE to carry out analysis of

circuit or equipment characteristics. Processing is executed entirely within the NE and

the results are automatically reported to the service provider, either immediately or on a

regular delay. Another method is to carry out the analysis within the SP side. In this

case the SP merely requests that the NE provide access to the circuit or equipment of

interest and no other messages are exchanged with the NE.

Trouble administration transfers trouble reports originated by customers and trouble

tickets originated by proactive failure detection checks. The aim is for the service

provider to identify and react to problems in its offered services before a customer

notices them [Hanemann]. The probing can be done from a customer point of view or

by testing the resources which are part of the service.

In essence fault management contains facilities that enable the detection, isolation and

correction of network problems. Furthermore, it may use trend analysis to predict faults

so that the availability of the network is maximized. This can be established by

monitoring networks for abnormal behaviour. When a fault or event occurs, a network

component will send a notification to the network operator using a management

protocol. The TMN M.3010 recommendation allows for the use of multiple protocols to

be used for management. This means that open standard such as SNMP and CORBA

are consistent with the TMN framework as is its initial management protocol CMIP

[IEC]. Each protocol executes the management in its own way but the principles

remain the same.

2.2 Element Management System

An element management system (EMS) is used to manage one device or a set of devices

connected in a network. The EMS communicates with network devices directly using

network management protocols – an efficient EMS communicates with its NE using

whatever protocol is native to the NE. Functions usually expected from an EMS can be

listed as [Misra]:

Management of Network Elements

Ville Ryhänen 9

� provide common information about the NE, such as system up-time and system

name,

� monitor the operational state of the NE, such as start-up and shut-down,

� monitor the occurrence of NE malfunctions,

� gather and process NE performance information,

� enable configuration of the NE,

� carry out remote operations on the NE.

The EMS is a critical piece in the total telecommunications management solution [IEC].

Only the EMS can access the complete management information content of all the NEs

in its management domain. As Figure 2 shows, the EMSs are the media that transmit the

network elements’ management information and control to the network management

layer and to the network management systems.

Figure 2: Position of the EMSs in the Telecommunications Network [IEC]

According to the OSI Management architecture – which is the basis for many modern

network management systems [Stallings-1] – EMSs and NEs reside in a management

domain [Klerer]. A management domain may be decomposed into one or more

management systems, and zero or more managed elements. An object represents an

abstraction of a bundle of data and instructions in object-oriented world. A managed

Management of Network Elements

Ville Ryhänen 10

element, such as a network element, may be decomposed into one or more managed

objects (MO). MOs depict network element's management information that represents

resources and their activities. A managed object presents a view of the resource to the

management system with properties that are manageable [Raman-2]. A resource such as

an ATM board provides interfaces for ATM traffic, however, only some aspects of the

board are manageable by a management system. These properties are reflected in the

managed object that represents the board. A management system, such as EMS

illustrated in Figure 3, is an application process within a management domain witch

effects monitoring and control functions on managed objects [Klerer].

Figure 3: Relationships of managed objects, managed elements and managing system

2.2.1 Fault Management at the Element Management Layer

In the TMN model an EMS is placed on the element management layer. Fault

management at the EML is about logging each discrete alarm or event in detail. Most

faults will be detected by the NE and reported to the EMS as notifications or alarms. By

periodically polling an NE an EMS can detect the communication failure with the NE,

in which case a notification is generated at the EMS. The EMS filters the alarms and

Management of Network Elements

Ville Ryhänen 11

forwards them to an NMS that performs alarm correlation across multiple nodes and

technologies to perform root-cause analysis [IEC]. EMS stores the list of currently

active alarms at NEs, and EMS removes the alarm from active list whenever a

notification to clear the alarm is received. EMS also maintains history of the alarms.

Fault management at the EML can be executed by a number of protocols. The following

sections detail two of the most prominent ones: CORBA and SNMP. A brief view of

other fault management methods is also included.

2.3 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard defined by

the Object Management Group (OMG) that enables distributed software components in

a network to work together. CORBA allows applications to talk to each other even if

they are on different computers, on different operating systems, on different CPU types,

or implemented with different programming languages [McHale].

The components of CORBA are Object Management Architecture (OMA), Object

Request Broker (ORB) to support interaction between objects, and object services. The

object interfaces are specified in a notion called Interface Definition Language (IDL).

CORBA 2.0 introduced protocols for building interoperable ORBs to the architecture.

The General Inter-ORB Protocol (GIOP) is connection-oriented. A specialization of this

protocol for use with TCP/IP Internet Suite has been defined in IIOP. Environment

Specific Inter-ORB protocols (ESIOP) have been defined for interfacing with platforms

that do not support CORBA. [Raman]

2.3.1 The Concept of an Object in CORBA

A central concept in CORBA is its version of the managed object. A CORBA managed

object is not quite identical to an object in a programming language; they generally

share characteristics even though all sets of objects do not intersect [Pope]. The type of

a CORBA object is called an interface, which is similar in concept to a C++ class or a

Java interface. An object has methods, state, and a characteristic behaviour. Objects are

Management of Network Elements

Ville Ryhänen 12

a physical manifestation of a class. A CORBA object is an instance of a class

encapsulating operations, attributes, and exceptions. CORBA also admits the possibility

of types that are not objects and types that the OMG documents call pseudo-objects. An

object is a basic computational unit consisting of a defined behaviour and perhaps some

attributes. The attributes retain the effect of behaviour. Requests made on an object are

messages or methods. The visible part of an object is its interface. An interface to an

object is the combined sum of the messaging protocols used to request services.

As distributed middleware CORBA envisions distributed objects (DO) as the union of

concepts from two paradigms – distributed computing and object-orientation, with some

explicit differences [Pope]:

� A client knows an object by its interface.

� Objects are not always local with respect to their clients.

� Dynamic composition may compose objects into new applications.

� Objects hide many of the underlying differences in architecture through

encapsulation.

In summary, distributed objects offer benefits of object-orientation and client-server: the

ability to distribute risk, rightsizing system development with small combinable

subtasks, and having looser coupling with well-defined integration [Pope].

3GPP describes a Managed Object (MO) as a software object that encapsulates the

manageable characteristics and behaviour of a particular network resource and uses this

description in its CORBA solution set [3GPP-1068]. MOs are organised in hierarchical

Managed Object Model similar to that of a file system, where an MO that contains

another one is referred to as the superior (parent), whereas the contained MO is referred

to as the subordinate (child). More of this will be covered in Chapter 3.3.

2.3.2 Object Management Architecture (OMA)

In CORBA, a managed object is an object that is subject to system wide administration

and control. It is a client of services, such as activation, installation, or dynamic

behaviour [Pope]. These managed objects are manifested either as an application object,

an object facility, or an object service.

Management of Network Elements

Ville Ryhänen 13

The object management architecture is composed of two aspects and uses object-

oriented design concepts: a core model that describes the principles for defining objects

along with their properties and interfaces; and a reference model with four components:

object request broker, object services, common facilities, and application objects. The

last two components use the object services as building blocks. The common facilities

are higher level services that may be used by several applications. [Raman]

2.3.3 Object Request Broker (ORB)

The foundation of CORBA is the object request broker which is the mechanism for

objects to interact with each other. Figure 5 in Paragraph 2.3.6 illustrates a request sent

by a client to an object implementation. The client is the entity that wishes to perform

an operation on the object and the object implementation is the code and data that

actually implements the object [OMG3.0.3].

When an object in the client role invokes an operation, the request is processed by an

ORB to identify the server object to perform the request [Raman]. The client is not

aware of either the location or implementation details of the server object. The client

makes the request using the object reference. The ORB is responsible for all of the

mechanisms required to find the object implementation for the request, to prepare the

object implementation to receive the request, and to communicate the data making up

the request [OMG3.1]. The interface the client sees is completely independent of where

the object is located, what programming language it is implemented in, or any other

aspect that is not reflected in the interface of the object. In the client-server model an

object plays roles of a client and a server and an object may assume both client and

server roles for different operations.

When considering security aspects of CORBA, the ORB, by itself, offers only trivial

security without the aid of an underlying secure infrastructure. It enables only a very

minimal security of being able to check that parameters meet requirements and that the

correct target receives a request. The design of security is flexible to the point of being

Management of Network Elements

Ville Ryhänen 14

able to support a wide variety of security mechanisms from the network and hardware.

2.3.4 Object Services

The core part of CORBA is of limited use by itself, in the same way that a programming

language stripped of its standardized library is of limited use. What greatly enhances the

power of CORBA is a standardized collection of object services – called CORBA

Services – that provide functionality useful for the development of a wide variety of

distributed applications [McHale]. The CORBA Services have APIs that are defined in

IDL. The CORBA Services are a distributed, standardized class library. The object

services identified and standardized include [Raman]: Event Service, Life Cycle

Service, Naming Service, Persistence Service, Concurrence Control Service,

Externalization Service, Relationship Service, Transaction Service, Security Service,

Time Service, Query Service, Licensing Service, Trader Service, Change Management

Service, Start-up Service, Properties Service, and Topology Service. For example,

Security Service is defined in a way that is independent of any particular security

technology and developers are given freedom from underlying security technologies

used in a given system without needing to redesign the applications. The architecture

allows new services to be identified if desired.

2.3.5 Interface Definition Language (IDL)

The object interfaces in CORBA are defined using a language called IDL. The structure

of IDL is simple and the method of defining data types and interfaces is very similar to

writing programs in terms of data declarations and function calls [Raman]. IDL is an

object contract language, but IDL is not a complete programming language, it has no

iterators or flow control [Pope]. It is primarily a language in which one can express

complex interfaces, but it does not provide implementation for interfaces.

IDL defines data types such as integer, character string, and enumerated. It is also

possible to define new types using the struct, union, and sequence constructs. The

operations interfaces include name, parameters, result, and exceptions. The IDL

definitions including type definitions, constant deceleration, and interface definitions

Management of Network Elements

Ville Ryhänen 15

may be combined into one or more modules. [Raman]

IDL is used to define the public API that is exposed by objects in a server application.

IDL defines this API in a way that is independent of any particular programming

language. However, for CORBA to be useful there must be a mapping from IDL to one

or a number of particular programming languages. Clients are not written in OMG IDL,

which is purely a descriptive language, but in languages for which mappings from OMG

IDL concepts have been defined. The CORBA standard currently defines mappings

from IDL to the following programming languages [McHale]: C, C++, Java, Ada,

Smalltalk, COBOL, PL/I, LISP, Python and IDLScript. These officially-endorsed

language mappings provide source-code portability of applications across different

CORBA products. There are also proprietary mappings, but they will not guarantee

source-code portability to other CORBA vendor products [McHale]. Typically, a

CORBA implementation comes with a tool called an IDL compiler which converts the

user's IDL code into some language-specific generated code. A language mapping

requires the developer to create some IDL code that represents the interfaces to his

objects. A traditional compiler then compiles the generated code to create the linkable-

object files for the application. Figure 4 illustrates how the generated code is used

within the CORBA infrastructure.

Figure 4: Autogeneration of the infrastructure code from an interface defined using the

IDL

2.3.6 Interoperability and General Inter-ORB Protocol (GIOP)

ORB interoperability specifies a comprehensive, flexible approach to supporting

networks of objects that are distributed across and managed by multiple, heterogeneous

Management of Network Elements

Ville Ryhänen 16

CORBA-compliant ORBs. General Inter-ORB Protocol (GIOP) is the abstract protocol

by which ORBs communicate. This protocol defines the different message types – such

as request and reply messages – that can be exchanged between client and server

applications and also specifies a binary format for the on-the-wire representation of IDL

types.

GIOP does not specify the actual networking technology that is used to transmit

messages between clients and servers. For example, GIOP does not specify if messages

should be transmitted over TCP/IP, X.25, ATM or some other transport. Instead, the

choice of transport mechanism is decided in a specialization of GIOP. The most well-

known GIOP specialization is the Internet Inter-ORB Protocol (IIOP), which is for use

on TCP/IP networks. All CORBA products are obliged to support IIOP, but they may

optionally also support other GIOP-based protocols or environment specific inter-ORB

protocols (ESIOP). Figure 5 illustrates the inter-ORB protocol relationship. An

interoperable object reference (IOR) contains the contact details for all the protocols

that clients can use to communicate with an object in a server. [McHale]

Figure 5: A request being sent through the ORB and Inter-ORB protocol relationship

[OMG3.0.3]

The GIOP specifies eight message types that can be transmitted between client and

server applications. The GIOP message types are: Request, Reply, Fragment,

CancelRequest, CloseConnection, MessageError, LocateRequest and LocateReply.

Management of Network Elements

Ville Ryhänen 17

Table 2: GIOP Messages

TypeName Originator Notes

Request Client

Reply Server (i.e.

Implementation)

Fragment both remaining pieces of a large

Request/Reply

CancelRequest Client sent when client gets a timeout

exception

CloseConnection Server sent before closing the socket

connection

MessageError both normally sent to non-CORBA

applications

LocateRequest Client similar to “ping”, “is the object

here?”

LocateReply Server reply to “ping”

Figure 6 describes an example the GIOP request message and its headers. The fields in

the GIOP header can be described as follows:

• The four characters "GIOP" serve to identify the protocol.

• The GIOP version number (major and minor) is used to create the message.

• A flag byte is currently only used to indicate the byte ordering.

• An integer is used to indicate the message type.

• The message size (excluding the GIOP header itself).

Management of Network Elements

Ville Ryhänen 18

This summarises all information which is sent to the GIOP header. The request message

consists of a Request header followed by a Request body. The header consists of the

following fields:

• The service_contexts field allows service specific context information to

be passed along with a Request. Intended for use in conjunction with the CORBA

services to carry extra information along with the Request, the service contexts are not

needed in the core specification of CORBA.

• The request_id field is used to uniquely identify a Request emanating from

a client so that the client can later match a received Reply with its corresponding

Request (the corresponding Reply is tagged with the same request_id).

• The response_expected flag is used to indicate whether the Request is

one-way or not. A normal Request has response_expected set equal to TRUE.

• The next field is an array of three bytes reserved for future use.

• The object_key field is used at the server end to identify the object which is

being invoked.

• The operation field is simply a string giving the name of the operation being

invoked.

• The requesting_principal field identifies the user making the request.

That is, it is simply the user name of the person running the client.

Figure 6: The format of a GIOP message and message header, and the format of a

Request message header

Management of Network Elements

Ville Ryhänen 19

2.3.7 CORBA and Fault Management

According to OMG many different kinds of applications, developed by the members of

the OMG and the users of CORBA, have a need for fault tolerance [OMG3.0.3]. The

standard for Fault Tolerant CORBA aims to provide robust support for applications that

require a high level of reliability, including applications that require more reliability

than can be provided by a single backup server. The standard requires that there shall be

no single point of failure.

In CORBA fault tolerance depends on entity redundancy, fault detection, and recovery.

The entity redundancy means the replication of objects. This strategy allows greater

flexibility in configuration management of the number of replicas, and of their

assignment to different hosts, compared to server replication. Replicated objects can

invoke the methods of other replicated objects without regard to the physical location of

those objects. Support for redundancy in time is provided by allowing clients to make

repeated requests on the server, using the same or alternative transport paths.

 In a fault-tolerant CORBA system, fault management encompasses the following

activities [OMG3.0.3]:

� Fault detection - detecting the presence of a fault in the system and generating a

fault report.

� Fault notification - propagating fault reports to entities that have registered for

such notifications.

� Fault analysis/diagnosis - analysing a (potentially large) number of related fault

reports and generating condensed or summary reports.

In the fault tolerance infrastructure, fault detectors detect faults in the objects, and report

faults to the fault notifier. The fault notifier receives fault reports from the fault

detectors, filters the reports, and propagates the filtered reports as fault event

notifications to consumers that have subscribed for them. The fault analyser reasons

about the received fault reports, and produces aggregate or summary fault reports. It

propagates these reports back to the fault notifier for dissemination to other consumers.

Typically, there are several fault detectors, including those provided by the

Management of Network Elements

Ville Ryhänen 20

infrastructure to monitor objects, and other fault detectors provided by the infrastructure

or the application. Each fault detector belongs to a particular fault tolerance domain, and

is not shared across fault tolerance domains. Most implementations of fault detectors are

based on time-outs, and use either pull- or push-based monitoring. There can be also

one or more fault analysers.

A problem with the CORBA fault notification is the potential for a large number of

notifications to be generated by a single fault [OMG3.0.3]. This problem is addressed

by filtering within the fault notifier, by fault analysers, and by the

FaultMonitoringGranularity interface.

Figure 7 illustrates the architecture of fault tolerance infrastructure - the interaction

between the fault detectors, fault notifier, fault analyzer, and replication manager in a

relatively simple system.

Figure 7: Interaction between the fault detector, fault notifier, fault analyzer and

replication manager [OMG3.0.3]

Management of Network Elements

Ville Ryhänen 21

2.4 SNMP

SNMP stands for Simple Network Management Protocol and is currently in its third

version – although versions one and two are also still in some use. SNMP is

standardized by the Internet Engineering Task Force (IETF) and it is the standard

network management protocol in the IP realm. Each version of SNMP is specified by

one or more IETF Request for Comments (RFC): RFC 1157 defines SNMP Version 1

(SNMPv1), RFCs from 3416 to 3418 define SNMP Version 2 (SNMPv2) and RFCs

from 3410 to 3418 and RFC 2576 define SNMP Version 3 (SNMPv3).

The initial version of SNMP protocol is nowadays a historical IETF standard; although

SNMPv1 is historical, it is still widely supported by many vendors. The security of

SNMPv1 is based on communities, which are nothing more than passwords. SNMPv2

expanded the functionality of SNMP and broadened its applicability from only TCP/IP-

based networks to also include OSI-based networks. The key enhancements that

SNMPv2 provides to version 1 fall into three following categories: structure of

management information (SMI), manager-to-manager capability, and protocol

operations. SNMPv3 addresses the security problems of the previous versions, but no

other essential changes are made to the protocol [Mauro]. There are several new textual

conventions, but these are really just more precise ways of interpreting the data types

defined in previous versions.

For gathering management information SNMP uses simple messages called protocol

data units (PDU). SNMP uses user datagram protocol (UDP) to transmit PDUs. The

SMI provides a way to define the managed objects of SNMP and their behaviour, and

the management information base (MIB) can be thought as a database of managed

objects.

2.4.1 Basic SNMP Concepts

In SNMPv1 and SNMPv2 there are two kinds of entities: managers and agents. A

manager is a server running a software system handling management tasks for a

Management of Network Elements

Ville Ryhänen 22

network. An agent is a piece of software that runs on the managed network device. It

can be a separate program or it can be incorporated into the operating system; most IP

devices today have some kind of SNMP agent build in [Mauro]. The agent is

responsible for:

• Collecting and maintaining information about its local environment

• Providing that information to a manager, either in response to a request or in an

unsolicited fashion when something noteworthy happens

• Responding to manager commands to alter the local configuration or operating

parameters

The manager station generally provides a user interface so that a human network

manager can control and observe the management process. This interface allows the

user to issue commands (for example deactivate a link, collect statistics on

performance) and provides logic for summarizing and formatting information collected

by the system. SNMPv3 makes a big change to the basic concepts and abandons the

notion of managers and agents, both are now called SNMP entities. Chapter 2.4.2

elaborates this change in more detail.

2.4.1.1 The Structure of Management Information (SMI)

The structure of management information defines the general framework how managed

objects and their resources are named and represented and specifies their associated data

types. The definition of managed object in SMI can be broken down into three attributes

[Mauro]:

• Name: the name, or object identifier (OID), uniquely defines an MO. Names

commonly appear in two forms: numeric and “human readable.” In either case, the

names are long and inconvenient. In SNMP applications, a lot of work goes into helping

the user to navigate through the namespace conveniently.

• Type and syntax: A data type of an MO is defined using a subset of Abstract

Syntax Notation One (ASN.1). ASN.1 is a way of specifying how data is represented

and transmitted between entities, within the concept of SNMP. The benefit of ASN.1 is

that it is machine independent and different machines can communicate without

Management of Network Elements

Ville Ryhänen 23

worrying about such as byte ordering.

• Encoding: A single instance of an MO is encoded into a string of octets using

Basic Encoding Rules (BER). BER defines how the objects are encoded and decoded so

that they can be transmitted over a transport medium such as Ethernet.

2.4.1.2 Management Information Base (MIB)

All MOs in the SNMP environment are arranged in a hierarchical or tree structure. The

leaf objects of the leaf are the actual MOs, each of which represents some resource,

activity, or related information that is to be managed. The tree structure itself defines a

grouping of objects into logically related sets. Figure 8 illustrates the MIB-II sub tree,

which is a very important management group because every device that supports SNMP

must also support MIB-II [Mauro]. The MIB-II standard defines variables for things

such as interface statistics (interface speeds, maximum transmission unit, octets sent,

octets received, and so on) as well as various other things pertaining to the system itself

(system location, system contact, and so on). The main goal of MIB-II is to provide

general TCP/IP management information; it does not cover every possible item a vendor

may want to manage within its particular device.

Management of Network Elements

Ville Ryhänen 24

Figure 8: MIB-II sub tree of the mgmt branch [Mauro]

What gives SNMP its power is the extensive set of standardized MIB structures that has

been defined [Stallings-2]. The MIB at an agent-entity dictates what information that

agent will collect and store. For example, there are a number of variables in the basic

MIB that relate to the operation of the underlying TCP and IP protocols, including

number of packets sent and received, packets in error, and so on. Since all agents

maintain the same set of data variables, applications can be written at the management

station to exploit this information.

2.4.1.3 SNMP Operations

SNMP is designed to be easy to implement and to consume minimal processor and

network resources. It is therefore a tool for building a bare-bones management facility.

Entities send and receive information by PDUs. Each of the following SNMP operations

Management of Network Elements

Ville Ryhänen 25

has a standard PDU format:

• Get: Used by a manager to retrieve an item from an agent's MIB.

• GetNext: Used by a manager to traverse a MIB sub-tree in lexicographic order.

• GetBulk: Used by a manager to retrieve a large section of a table from an agent's

MIB at once.

• Set: Used by a manager to set a value in an agent's MIB.

• GetResponse: Used by an agent to respond to manager’s get, getnext or getbulk

operation.

• Trap: Used by an agent to send an alert to a manager.

• Notification: Used to standardize the PDU format of traps.

• Inform: Used by a manager to send an alert to another manager.

• Report: Allows SNMP engines to communicate with each other.

2.4.2 Protocol Architecture

Each SNMP entity consists of an SNMP engine and one or more SNMP applications.

The revised concepts are important because they define an architecture rather than

simply a set of messages; the architecture helps separate different pieces of the SNMP

system making a secure implementation possible [Mauro].

Management of Network Elements

Ville Ryhänen 26

Figure 9: SNMPv3 entity [Mauro]

2.4.2.1 The SNMPv3 Engine

The engine is composed of four pieces: the dispatcher, the message processing

subsystem, the security subsystem, and the access control subsystem. An SNMP engine

implements functions for sending and receiving messages, authenticating and

encrypting or decrypting messages, and controlling access to managed objects

[Stallings-1].

The job of the dispatcher is to send and receive messages. The dispatcher determines the

version of each received message and hands it to the message processing subsystem.

The dispatcher also sends SNMP messages to other entities. The message processing

subsystem prepares messages to be sent and extracts data from received messages. An

implementation of the message processing subsystem may support a single message

format corresponding to a single version of SNMP, or it may contain a number of

modules, each supporting a different version of SNMP. The security subsystem

provides authentication and privacy services. Each outgoing message is passed to the

security subsystem from the message processing subsystem. Depending on the services

required, the security subsystem may encrypt the enclosed message, and it may generate

Management of Network Elements

Ville Ryhänen 27

an authentication code and insert it into the message header. The processed message is

then returned to the message processing subsystem. Similarly the security subsystem

checks incoming messages for authentication code and performs decryption.

Authentication uses either community strings (SNMPv1 and v2) or SNMPv3 user-based

authentication, that uses the MD5 or SHA algorithms to authenticate without sending a

password in the clear. The privacy service uses the DES algorithm to encrypt and

decrypt SNMP messages. The access control subsystem is responsible for controlling

access to management information base objects. [Mauro]

2.4.2.2 The SNMPv3 Applications

SNMPv3 divides the traditional manager and agent roles of previous SNMP version into

a number of applications presented in Table 3. All applications make use of the services

provided by the SNMP engine of an entity. RFC 3411 allows additional applications to

be defined over time.

Table 3: SNMPv3 Applications

Application Description Traditional

role

Command generator Generates get, getnext, getbulk, and set

requests and processes the responses.

Implemented by an NMS.

manager

Command

responder

Receives and responds to get, getnext,

getbulk, and set requests.

agent

Notification

originator

Monitors a system for particular events or

conditions, and generates SNMP traps and

notifications. A notification originator must

have a mechanism for determining where to

send messages, and which SNMP version

and security parameters to use.

manager

and agent

Management of Network Elements

Ville Ryhänen 28

Notification

receiver

Listens for notification messages, receives

traps and inform messages, and generates

response messages to them.

manager

Proxy forwarder Forwards messages between entities. agent

2.4.3 Messages

In all versions of SNMP information is exchanged between SNMP entities with

messages. Each message includes a message header and a PDU. SNMPv3 message

format is illustrated in Figure 10.

Figure 10: SNMPv3 message format with USM

Management of Network Elements

Ville Ryhänen 29

The user-based security model (USM) and the view access control model (VACM)

together detail the security enhancements added with SNMPv3. RFC 2274 defines the

USM and this specification encompasses [Stallings-1]:

• Authentication: Provides data integrity and data origin authentication. The

message authentication code HMAC, with either the hash function MD5 or SHA-1,

provides authentication.

• Timeliness: Protects against message delay or replay.

• Privacy: Protects against disclosure of message payload. The cipher block

chaining (CBC) mode of DES is used for encryption.

• Message format: Defines format of msgSecurityParameters field, which

supports the functions of authentication, timeliness, and privacy.

• Discovery: Defines procedures by which one SNMP engine obtains information

about another SNMP engine.

• Key management: Defines procedures for key generation, update, and use.

Specifically, USM is designed to secure against the following principal threats

[Stallings-2]:

• Modification of information: An entity could alter an in-transit message

generated by an authorized entity in such a way as to effect unauthorized management

operations, including the setting of object values. The essence of this threat is that an

unauthorized entity could change any management parameter, including those related to

configuration, operations, and accounting.

• Masquerade: Management operations that are not authorized for some entity

may be attempted by that entity by assuming the identity of an authorized entity.

• Message stream modification: SNMP is designed to operate over a

connectionless transport protocol. There is a threat that SNMP messages could be

reordered, delayed, or replayed (duplicated) to effect unauthorized management

operations. For example, a message to reboot a device could be copied and replayed

later.

• Disclosure: An entity could observe exchanges between a manager and an agent

Management of Network Elements

Ville Ryhänen 30

and thereby learn the values of managed objects and learn of notifyable events. For

example, the observation of a set command that changes passwords would enable an

attacker to learn the new passwords.

USM does not secure against denial of service: an attacker may prevent exchanges

between SNMP entities, or traffic analysis: an attacker may observe the general pattern

of traffic between entities.

In any message transmission, either the transmitter or receiver is designated as the

authorative SNMP engine. When an SNMP message contains a payload, which expects

a response (for example, a Get-, GetNext-, GetBulk-, Set-, or Inform-PDU), then the

receiver of such messages is authoritative; when an SNMP message contains a payload,

which does not expect a response (for example, an SNMPv2-Trap-, Response-, or

Report-PDU), then the sender of such a message is authoritative. This designation

serves two purposes [Stallings-2]:

1. The timeliness of a message is determined with respect to a clock maintained by

the authoritative engine. When an authoritative engine sends a message (Trap,

Response, Report), it contains the current value of its clock, so that the non-authoritative

recipient can synchronize on that clock. When a non-authoritative engine sends a

message (Get, GetNext, GetBulk, Set, Inform), it includes its current estimate of the

time value at the destination, allowing the destination to assess the timeliness of the

message.

2. A key localization process enables a single principal to own keys stored in

multiple engines; these keys are localized to the authoritative engine in such a way that

the principal is responsible for a single key but avoids the security risk of storing

multiple copies of the same key in a distributed network.

Access control is a security function performed at the PDU level. An access control

document defines mechanisms for determining whether access to a managed object in a

local MIB by a remote principal (which may be an individual or an application or a

group of individuals or applications) should be allowed [Stallings-2]. The view-based

Management of Network Elements

Ville Ryhänen 31

access control model is defined in RFC 2275 and used to control access to managed

objects in a MIB or MIBs. VACM makes use of a MIB that defines the access policy for

this entity, and makes it possible for remote configuration to be used. VACM

implements the services required for the access control subsystem. VACM makes an

access control decision on basis of the principal asking for access, the security model

and security level used for communicating the request of the principal, the context to

which access is requested, the type of access requested (read, write, notify), and the

actual object for which access is requested [Stallings-1].

2.5 Other Methods of Fault Management

Despite the current strong presence of CORBA and SNMP, there are also other methods

for fault management in the telecommunications field. The nowadays somewhat

outdated common management information protocol (CMIP) is still used to manage

telecommunications devices that do not use the TCP/IP stack. 3GPP includes CMIP in

its solution sets for fault management.

Looking at the wider area of network management there are other methods than

CORBA and SNMP available from different organisations and vendors. Large device

manufacturers such as Cisco and Juniper have offered their own command line interface

for managing their devices, but they do not scale well to managing a large group of

devices. Large manufacturers have also developed their solutions to XML-based agents

and utilised embedded web servers (EWS) on their devices to provide web based

configuration management [Choi-et-al]. These vendor specific solutions do however

mainly configuration management. IETF has started its own project, called Netconf, to

standardise the vendor specific XML-based solutions [IETF-N]. It also though only

concentrates on configuration management. The Internet Research Task Force (IRTF) –

a sister group of the IETF – does research on future ways of fault management, and

network management as a whole. At the moment it has improvement for SNMP, but no

completely new management ways.

Configuration management has been seen as the weakness of SNMP, and therefore new

Management of Network Elements

Ville Ryhänen 32

management solutions have concentrated on that. SNMP has been left on the side of

these solutions to handle fault management. But nothing prevents from developing a

complete XML-based management system as described in an article from Korean

POSTECH [Choi-et-al]. Management information can be defined by XML Schema and

transferred using HTTP over TCP. 3GPP has also done a feasibility study of XML-

based telecommunications management and introduced a solution set to replace their

CORBA solution set [3GPP-XML]. In this solution simple object access protocol

(SOAP) is used to as XML messaging and invocation protocol. With the wide and ever

widening usage of XML, XML/SOAP solutions can be seen as very viable candidates in

the future of fault management.

Conversion between CORBA and SNMP Fault Management

Ville Ryhänen 33

3 Conversion between CORBA and SNMP Fault

Management

The previous section described CORBA and SNMP – the two prominent methods for

fault management. This section focuses on conversion between these two solutions and

presents reasons why a service provider would want to conduct such a conversion.

3.1 Incentives for a CORBA-SNMP Converter

CORBA was taken to fault management use in late 1990s, when CMIP and SNMP were

seen as hard to learn and implement [Deri&Ban]. Also the advent of Java gave wave to

CORBA as it provided language mapping to Java [Henning]. This and other language

mappings promised developers a tool that would allow them to build heterogeneous

distributed applications and their management interfaces with relative ease. Particularly

GSM and UMTS NEs were provided to service providers with almost solely CORBA

management. However, SNMP remained in use and its usability and different

implementations evolved over the years.

The biggest impact of CORBA as a management protocol was in the

telecommunications sector, but after its initial success years, the concept of an all-IP

world started gaining ground also in telecommunications. In this environment SNMP, as

part of the Internet Protocol Suite, became once again the most popular fault

management mode because of its merits, such as ease of implementation and great

interoperability [Yoon-et-al]. CORBA on the other hand was being seen as complex,

inconsistent and downright arcane [Henning]. The bursting of the Internet bubble in

2002 did also not help CORBA as its development wound down, because several

vendors and software companies refocused their efforts. Also according to Henning, the

standardization process of OMG hindered development of CORBA so that it is

presently almost static in the management field.

While SNMP is not without its drawbacks, it is still the strongest choice for monitoring

Conversion between CORBA and SNMP Fault Management

Ville Ryhänen 34

NEs and for fault management on moderate size networks. Having been designed to be

simple it has limitations on scalability, though this affects configuration management

more than fault management. Because most network devices used worldwide are

equipped with an SNMP agent, the best choice for a service provider wanting to manage

all its NEs with a single protocol is SNMP. For an SP operating, both CORBA using

and SNMP using NEs, the solution is to convert the CORBA based fault management to

using SNMP.

3.2 General Aspects of Protocol Conversion

There has been only limited amount of research carried out on protocol conversion

concerning element management or network management. In the late 90s, the trend in

research was converting existing SNMP managed devices to CORBA management

[Mazumbar], [Aschemann], [Deri&Ban], and in the early 2000s studies on SNMP-XML

conversion have been made [Yoon], [Klie], [Choi-et-al]. From these studies similar

general aspects for management protocol conversion can be gathered.

In most cases illustrated in research articles, protocol conversion includes two main

parts, a translator and a gateway [Mazumbar], [Aschemann], [Yoon]. Usually different

protocols have different presentations of information models and to convert this

information a translation algorithm is needed. The translator’s algorithm translates data

type definitions; object references; variable, attribute, and other names between the

protocols involved in the conversion. The loss of information is possible in these

translations and should be taken into consideration when designing the algorithm. Some

loss of less important information may though be justified for the functionality reasons.

In some cases the original protocol has information and functions not needed by the

desired new protocol, so translation of these functions is not always mandatory. The

translator may have to convert one type, definition or name of one protocol to many on

the other protocol or vice versa.

The gateway is needed to convert and map operations, methods and messages from one

protocol to the other. This gateway conversion may also be similar to the conversion in

Conversion between CORBA and SNMP Fault Management

Ville Ryhänen 35

the translator, as one message in the other protocol may require two or more messages

in the other. The gateway may also need to generate messages and monitor entities on

its each side.

Some metrics are needed for the conversion evaluation. The conversion should be able

to convert all desired functions, not add significant load compared to the original

protocol, and not be noticeable to the user – the user will not notice the underlying

protocol.

3.3 Comparison of Fault Management with CORBA and SNMP

As Section 2 illustrated, fault management can be done by using both CORBA and

SNMP, but they have differences in how they execute fault management. There are

differences in protocol stacks, data types, MO presentations, and messages.

The protocol stacks of CORBA and SNMP are presented side by side in Figure 11. Both

SNMP and CORBA protocols – comprising of IIOP, GIOP and a stub or a skeleton –

preside on the application layer. SNMP and CORBA use different protocols on

transport layer; CORBA utilises the more reliable TCP while SNMP uses lighter and

speedier UDP.

Conversion between CORBA and SNMP Fault Management

Ville Ryhänen 36

Figure 11: Protocol stacks of SNMP and CORBA

The messages of SNMP and CORBA used in fault management also differ. In CORBA

all is done basically with two GIOP message types: request and reply. A request can

also be cancelled and both message types can be fragmented. These messages are still

versatile as they can convey different CORBA operations. The operations the EMS can

perform on the NE via these messages and the CORBA services that provide these

operations are the real essence of CORBA fault management. CORBA communications

generally are also more complex than SNMP and have to cope with many aspects such

as encoding of operation calls, or different parameter semantics. Contrary to CORBA,

in SNMP the essence of fault management are the messages the EMS and the NE send

to each other. SNMP uses eight different message types for fault management as

described in Paragraph 2.4.1.3., and communication with these messages is defined very

precisely. In addition to some general information, each SNMP message contains a list

of name-value pairs, a so-called variable binding list. Especially the trap and

notification messages are important as they alert the manager entity of alarms and other

Conversion between CORBA and SNMP Fault Management

Ville Ryhänen 37

events in the NE. The CORBA equivalents to SNMP traps are alarm and event

operations. Since an SNMP message PDU can specify more than one variable that may

span multiple tables and rows, each SNMP PDU can equal more than one CORBA

operation [Mazumdar]. In describing data SNMP uses ASN.1 types in the PDUs while

CORBA uses IDL types.

The MO presentation is quite similar, but there are differences in the details such as

SNMP information modules being SMI documents while those of CORBA are IDL

modules. As explained in Paragraphs 2.4.1.1 and 2.4.1.2 managed objects in SNMP are

organised in a treelike hierarchy defined by unique object identifiers (illustrated in

Figure 8). An object ID is made up of a series of integers based on the nodes in the tree,

separated by dots. Each managed object has a numerical OID and an associated textual

name; the OID textual name pairs pertaining to a specific network element are grouped

in a MIB. In 3GPP CORBA fault management, managed objects are also organised in

treelike hierarchy called name space [3GPP-1068]. Whereas SNMP MOs are similar to

the pairs that IP addresses and URLs make, managed objects of CORBA are more like

objects in object oriented programming languages. A distinguished name (DN) is used

to uniquely identify a CORBA MO within a name space. The distinguished name is

constructed from a series of name components referred to as relative distinguished

names (RDN) such as the MO’s type name and identity number; the full distinguished

name contains the path from the MO to the global root MO similarly as for example file

names in Unix file system. ITU-T Recommendation X.500 defines the concepts of DN

and RDN in detail. The CORBA MOs have also attributes that reference what is their

parent MO and what context does the MO belong.

Table 4 summarises the main differences in fault management of CORBA and SNMP.

Conversion between CORBA and SNMP Fault Management

Ville Ryhänen 38

Table 4: Differences of CORBA and SNMP Fault Management

 CORBA SNMP Main difference

Transport protocol TCP UDP
Retransmissions in

TCP

Messages

2 formal types,

many different

operations, name-

value pairs

8 formal types,

OID-value pairs

Message structure:

CORBA has fixed

fields versus SNMP

having free variable

bindings

MO presentation

IDL modules,

objects with

attributes

SMI modules,

OID-textual name

pairs

Attributes within

MO versus

attributes as

branches of MO

Data types IDL types ASN.1 types

Manager functions

Several different

operations for

modifying and

accessing MO

information

Set-operation for

variable-binding

manipulation, get-

operation for

viewing variable-

bindings

CORBA-operations

are a lot like

programming

language functions,

SNMP-operations

simple and rigid

Security
Security Service

(CORBASEC)
USM and VACM

 Converter

Ville Ryhänen 39

4 Converter

As described in Chapter 1 the objective of the thesis is to study how a network operator

– having network elements using 3GPP’s implementation of CORBA fault management

(FM), while most other of the operator’s NEs as well as the operator’s EMS are using

SNMP for fault management – can unify the fault management of its network and thus

convert the CORBA based NEs into understanding SNMP FM. In order to do this a

CORBA-SNMP converter is needed and designed to carry out the protocol conversion

from one to another. The converter can be added into the NEs or between the EMS and

the NE.

4.1 Structure of a CORBA-SNMP Converter

The structural design of the converter can be divided into five sections representing the

different tasks of the CORBA SNMP conversion. These sections – protocol mapping,

message mapping, managed object mapping, security mapping, receiving and

forwarding messages – are combined to form the whole converter.

4.1.1 Protocol Mapping

To convey messages between the EMS and NE, the converter has to take care of the

different protocol stacks of SNMP and CORBA. The stacks differ on top of the IP layer

and operate on different styles of connections that have to be taken into consideration.

Stallings [Stallings-1] describes a concept of an SNMP proxy agent, where an SNMP

agent acts on behalf of one or more devices that do not implement SNMP. The

CORBA-SNMP converter works similarly and Figure 12 indicates the protocol

architecture. The converter must connect to the EMS according to the SNMP protocol

stack and at the same time connect to the NE according to the CORBA protocol stack.

Once both connections from the converter are set up, the connection between the EMS

and the NE is complete.

 Converter

Ville Ryhänen 40

Figure 12: Proxy configuration of the converter [Stallings-1]

4.1.2 Message Mapping

In both CORBA and SNMP, the essential part of fault management is the NE detecting

faults and other important events and reporting them to the EMS with messages. The

other essential part is the EMS setting filters on the NE – also with messages – which

determine what notifications it wants to receive. In essence, a CORBA-SNMP converter

is a gateway that translates these FM messages that EMSs and NEs send each other. To

the EMS the converter makes the CORBA managing interface of the NE look like a

SNMP agent entity; at the same time the CORBA fault management remains unchanged

for the NE.

As described of the CORBA based fault management in Paragraph 2.3.7, the faults

occurring in CORBA based fault management systems are detected by a fault detector

and reported to a fault notifier. The fault notifier filters these reports and propagates the

filtered reports to consumers that have subscribed to them. The reporting is done by

sending an alarm message or an event message to the EMS. The task of the CORBA-

 Converter

Ville Ryhänen 41

SNMP converter is to translate these alarm or event messages into SNMP trap

messages. The NE maintains a subscription list that also describes, according to filters

applied to some of the subscriptions, which alarms and events are sent to which

managing systems. The EMS can manage the subscription list with SNMP set messages.

The converter needs to map the SNMP set and get messages to CORBA set requests, as

well as the NE responses from CORBA to SNMP. Figure 13 illustrates the tasks and

components of the converter.

Figure 13: The interaction between SNMP manager and CORBA based NE using the
CORBA-SNMP converter

SNMP Trap- and Set-PDUs contain only few mandatory fields or mandatory variable-

bindings. Most information is in variable-bindings that are defined by specific MIB

files. In order for the manager entity to understand information coming from the NE

trough the converter, a MIB file corresponding to the CORBA based NEs must be

defined and loaded to the converter and the EMS. The MIB file defines object types

that correspond to the information fields of CORBA alarm and event notifications. It

also defines the OIDs of each of these object types.

In an SNMP set message every variable-binding field must be valid in order for the

 Converter

Ville Ryhänen 42

intended changes to be made [Stallings-1]. In addition to describing the CORBA based

NE, a MIB file must also define what CORBA operations a SNMP set message can

invoke on the NE. The converter maps these allowed variable-bindings to CORBA

operations and operation parameters, and invokes the operation on the NE’s ORB

through its own ORB. The MIB file must similarly define what information an SNMP

get messages can obtain from the NE.

4.1.3 Managed Object Mapping

The converter needs a MIB file that defines the NE information and characteristics. The

MIB file needs to include – in addition to the traditional SNMP OID-textual name pairs

– additional mapping of SNMP OID and CORBA distinguished name pairings. When

the converter receives a notification from the NE it needs to map the DN of the MO

causing the notification into a corresponding OID. The DN is a line containing every

MO RDN in a direct succession between the root MO and the leaf MO causing the

notification (for example a DN can look like

“DC=CompanyXYZ,Net=DS3BackBone,Station=TMR,Node=1,Port=3”),

and the mapping function needs to map each part separated by a comma to a part of an

OID and append them to a full OID of the MO.

4.1.4 Security Mapping

In addition to protocol stacks, the mapping function has to convert the security functions

of CORBA and SNMPv3. Since the security functions of SNMP and CORBA are

mostly not similar, the converter cannot map security with exactly same parameters

between the EMS and the NE. The most important part of the security mapping is trying

to maintain the same level of security from the EMS through the converter to the NE

and vice versa. The maker of the converter or the operator using the converter needs to

decide what CORBASEC level and features correspond to the desired SNMP USM and

VACM features.

4.1.5 Receiving and Forwarding Messages

In SNMPv3 the manager and agent tasks are represented by applications. A normal

 Converter

Ville Ryhänen 43

SNMP (agent) entity utilises a proxy forwarder application to forward messages from

other SNMP entities. As the converter also has to map and translate messages from the

NE to the EMS and vice versa, messages cannot simply be forwarded by proxy. Each

message needs to be read and a new message needs to be formed according to it. As a

basic initialization, the converter should be configured to listen to the address and port

of the EMS and replace the information of the EMS with its own in the subscription list

of the NE.

One important aspect of message transfer that needs to be considered in the converter’s

design is message blocking. SNMP and CORBA messages can be sent synchronously

(blocking) and asynchronously (non-blocking). If entities are in different threads of

control, they are asynchronous and sending a request in which the sender expects a

response does not halt the operations of the sender while waiting for the response. With

the addition of a converter between the EMS and NE, synchronous message exchange

may block the operations of the managing system for much longer than an

asynchronous straight SNMP exchange. If the converter blocks all other messages while

waiting for a response to its first received request, it can become a bottleneck and

impede performance of the network element. Message receiving and handling should

therefore be threaded by the converter. Figure 14 and Figure 15 illustrate the difference

between blocking and non-blocking message exchange with simplified examples.

Blocked requests from the EMS caused by blocking or other causes are not transmitted

automatically unless the EMS application itself takes care of this. If the EMS is polling

the NE periodically, the loss of some of the management data is acceptable. SNMP over

TCP would help with some loss of management data, but would also increase network

congestion with its retransmissions in situations for which SNMP is designed for, when

networks are in trouble and something has gone wrong in network elements [Mauro].

 Converter

Ville Ryhänen 44

Figure 14: Synchronous message exchange through the converter

Figure 15: Asynchronous message exchange through the converter

In its most robust configuration, the converter handles each task in a different thread of

control. Receiving messages from the NE, sending messages to the NE, receiving

 Converter

Ville Ryhänen 45

messages from the EMS, and sending messages to the EMS are all handled with a

separate thread. As the communication between the converter and the EMS and between

the converter and the NE is done with different transport protocols, using different

threads of control the converter will not block other functions, if a message times out.

4.2 Design of a CORBA-SNMP Converter

The intent of the converter implementation is to prove – as described in the previous

sections – that the concept of converting a network element’s CORBA fault

management to use SNMP via a converter is functional. To make this proof of concept,

the following kind of CORBA to SNMP converter was designed and implemented.

The converter implementation is written in Java programming language; the fault

management of an NE in this thesis utilises Ericsson’s Java implementation of IDL

specifications for Alarm and Notification services defined by 3GPP’s CORBA Solution

Sets [3GPP-1063], [3GPP-1113]. For implementing SNMP managing system

functionality and the SNMP functionality of the converter, an open source SNMP

application programming interface (API) for Java is used [SNMP4J]. Although the

implementation utilises an Ericsson NE, the converter was designed for interoperability

with network elements and managing systems of other manufacturers; the design

follows both CORBA and SNMP standards.

The operating principle of this example implementation is to manage CORBA fault

management operations with SNMP messages and the following restrictions apply. The

implementation only covers fault management conversion; as such no changes to the

MOs or MO models can be made or reconfigurations performed. Also the operating

principle could have been to operate as much as possible like a normal SNMP agent

entity, but as the difference between these operating principles is not of great relevance

to the presented conversion concept, this principle was chosen for testing purposes.

The implementation comprises of five Java classes: a class for handling the SNMP

 Converter

Ville Ryhänen 46

connection and functions (ConverterAgent), a class to function as the converter’s

ORB and for handling the CORBA connection and operations (ConverterORB), a

class that handles the mapping and translation functions (MessageMapping), a class

that represents the converter’s MIB file containing OID textual name DN pairings of

every MO of the network element (SnmpCorbaConstants), and finally the class

that combines the other classes and utilises them to make the converter functional

(Converter). These classes also utilise the previously mentioned SNMP and CORBA

Java libraries. The MIB also contains the CORBA operation parameter OID pairs

needed for the mapping functions. To avoid message blocking the converter object runs

in its own thread as well as running both its agent and ORB objects in their own

separate threads.

To start up the implementation, several tasks are performed. First the converter

implementation sets up both the CORBA connection toward the NE and the SNMP

connection toward the EMS. The converter initiates its ORB to start up the CORBA

runtime system; the converter needs to use CORBA naming service for resolving the

needed CORBA objects from the NE. But before the converter can use the naming

service, it must get a reference to the naming service itself. This is done by fetching an

IOR file that has a stored stringified object reference to the root naming context. Next,

with the resolved naming service, the converter imports references to AlarmIRP and

NotificationIRP CORBA objects; these handle the fault management operations on the

NE. Once the converter has a reference to a CORBA object in the NE, the converter can

invoke operations upon it. For receiving and properly handling notifications from the

ORB of the NE, a sequence push consumer must be connected to the converter’s ORB.

The converter’s ORB can be put to listen for notifications in the start up, or later with a

specific function (attach_push).

To set up the SNMP connection, the converter starts SNMP agent entity processes:

multithreaded message dispatcher, UDP transport mapping with IPv4, message

processing model MPv3, command responder, and security models. The address and

port number of the EMS for sending, and the address and port number of the converter

 Converter

Ville Ryhänen 47

agent for listening are also configured – this information also needs be configured in the

managing system, for communicating with the NE trough the converter. After finishing

its installation the agent starts listening for messages. Figure 16 illustrates the

components and start up processes of the converter implementation.

Figure 16: Converter implementation at start up

Also at the start up of the converter, both the converter agent and the converter ORB set

up security features. Security mapping, or more accurately applying the same level of

security between the EMS and NE, is set up. The agent is set up with USM security

model and VACM access control and in the ORB CORBASEC is set up from an IOR

file.

4.2.1 Protocol Mapping Implementation

A UDP connection between the EMS and the converter is established with the setting up

of the converter’s SNMP agent entity. In setting up the converter’s CORBA ORB, a

TCP connection with IPv4 between the converter and the NE is established. As the

messages that the converter needs to convey between the EMS and the NE require more

than just encapsulating the message payload with new transport protocol headers, no

 Converter

Ville Ryhänen 48

direct protocol mapping between the transportation protocols is done. The converter

receives an SNMP message, reads its contents and based on the information, uses

mapping functions to invoke a new CORBA operation through the ORB. When the

ORB of the converter gets a notification form the NE, a SNMP message is formed and

mapped from the information of the notification. Because of this different philosophy of

working in SNMP and CORBA, the converter maintains two separate transport

connections, instead of directly mapping the transport protocols.

4.2.2 Message Mapping Implementation

In the 3GPP implementation of CORBA fault management alarm and event

notifications are transported in a message called structured event [3GPP-1063]. A

structured event is comprised of three struct constructs: header, filterable data, and the

remainder of body. The header can be further decomposed into a fixed portion and a

variable portion, and the fixed portion of the header divided into event type and event

name. Still further in details the event type has two fields: domain name and type name.

The domain name identifies the particular vertical industry domain in which the event

type is defined (for example telecommunications, finance, or health care); the type name

categorizes the type of the event uniquely within the domain. For both alarm and event

notifications the header part of the structured event is similar, but the number of fields

in filterable data differs to some extent. Filterable data comprises of name-value pairs

called properties. Both alarm and event have fields for managed object class, managed

object instance, event time, notification ID, specific event or problem, system

distinguished name, and additional text and info. The alarm notification has also fields

for probable cause, perceived severity, alarm ID and acknowledgement handling. The

format of these name-value pairs is mostly string-string with a few string-integer and

string-long integer pairs.

The task of the converter is to read the received structured event and construct an

SNMP Trap-PDU. The converter fills the request-id field and variable-bindings of the

PDU based on the information it reads from the structured event. Mandatory value-

name pairs in the Trap-PDU are sysUpTime.0 and snmpTrapOID.0. The field for

 Converter

Ville Ryhänen 49

sysUpTime is filled with system uptime OID and the converter’s own time counter

value; the field for snmpTrapOID is filled with an OID indicating an enterprise SNMP

trap and an OID corresponding to the type name field of the structured event. Other

information fields of the structured event are mapped to an OID corresponding to the

name of the field. The values are mapped as is, except for the managed object instance

field containing the MO’s DN, which will be mapped to the corresponding OID of the

MO, as the following paragraph explains. The converter looks up the OIDs from its

MIB file. After executing mapping functions, the converter sends the new constructed

trap message to the EMS.

The 3GPP specification TS 32.106-8 gives an example of a managed object model and

its corresponding relative distinguished names seen here in Figure 17 [3GPP-1068]. In

this figure the bottom object of NS-B right branch has a DN of

“DC=se.ericsson.lmc,A=9,F=1,G=1,H=2”. The first part represents the DN

prefix of the maker of the MO and will be mapped to the enterprise OID prefix of the

maker (1.3.6.1.4.1.193 for Ericsson). The local DN “A=9,F=1,G=1,H=2” will be

mapped as “9.1.1.2” with each RDN number part appended to the OID; so the full DN

of the example MO will map to an OID of 1.3.6.1.4.1.193.9.1.1.2.

Figure 17: Managed Object Model and Name Space Partitions [3GPP-1068]

 Converter

Ville Ryhänen 50

Upon receiving a get or set message from the EMS, the converter performs the mapping

in the opposite direction. In the 3GPP CORBA FM implementation, the managing

system can perform a set of different configuration operations on the NE. These include

subscribing to notifications, removing a subscription, setting or changing a filter for

subscribed notifications, and setting or removing configuration for the severity of a

specific problem. The converter needs to map variable-bindings in an SNMP set

message to these operations and respond with an error response, if mapping does not

match correctly. The CORBA operations can have several parameters and the

parameters can also be objects with their own parameters. A list of all these parameters

and sub-parameters needs to be in a MIB file, and a corresponding OID and variable-

binding assigned to each of them. In case the set operation is successful, the managing

system gets a response that no errors occurred.

The managing system can retrieve information from the NE with several “get” CORBA

operations. These include retrieving the subscription status (this also keeps the

subscription active), the versions of the notification and alarm services, list of active

alarms, number of active alarms, and a list of modified alarms. Similar to set messages,

the converter needs to map variable-bindings in an SNMP get message to these

operations and the parameters of these operations. The converter generates and maps a

response message from the response information of the NE and sends it to the managing

system.

4.3 Design Evaluation

To test the functionality of the converter implementation, the designed Java classes

were compiled, and three different types of test case sets were run: cases involving

SNMP set messages; cases involving SNMP get messages; and cases involving SNMP

trap messages. During the test environment set up, some modifications to the complete

designed operating environment of the converter were made in order to cope with the

complexity of the complete system. For simplicity, simulated Alarm and Notification

services of the NE – run on the same computer as the converter – were used and the

CORBA security functions turned off. Because of these limitations the tests were

 Converter

Ville Ryhänen 51

focused on the inner functionality of the converter, starting at the point where the

converter receives a generated test message and ending at where the converter would

send the EMS a response or trap message. With this test set up extensive functionality

testing was performed, covering the whole CORBA functionality.

4.3.1 Test Scenarios

As Figure 16 illustrated, the converter creates MessageMapping object and creates

and initializes threads for ConverterAgent and ConverterORB objects.

ConverterORB conveys AlaramIRP and NotificationIRP object references to

MessageMapping. As SnmpCorbaConstans is a static class with no functions, it

does not need initialising.

The first test was to test the converter’s subscribing to notifications. As Figure 18

illustrates a Set-PDU is formed in ConverterAgent containing OID of

attach_push operation. Functions of the MessageMapping object map the

variable-bindings of the PDU and invoke the attach_push operation on the

NotificationIRP object reference. The operation returns the subscription ID of the new

notification subscription and it is put into a Response-PDU. The Response-PDU is

relayed to the ConverterAgent for sending to the managing system. Similar actions

were performed also in all the other modifying operations tested by the set test case

category: detach, attach_push_ext,

change_subscription_filter_ext, and set_severity operations.

 Converter

Ville Ryhänen 52

Figure 18: Using CORBA attach_push with an SNMP Set-PDU

The get category of test cases tested all CORBA operations for information fetching;

they were invoked with Get-PDUs or in case of fetching an alarm list with GetBulk-

PDUs. The CORBA operations controlled with Get-PDUs are

get_subscription_status, get_subscription_status_ext,

get_notification_IRP_version, get_alarm_count,

get_alarm_count_ext, get_alarm_IRP_version, and

get_all_modified_severity; the Get-PDU contains the operation’s OID,

which invokes the specified operation, and the fetched information is packed into a

Response-PDU. As Figure 19 illustrates, although get_alarm_list and

get_alarm_list_ext operations are invoked with GetBulk-PDUs, they function

similarly as test cases invoked with Get-PDU. The difference is that the maximum size

of the response (maximum number of variable-bindings) is determined in the GetBulk-

PDU.

 Converter

Ville Ryhänen 53

Figure 19: Fetching an alarm list with an SNMP GetBulk-PDU

The third and final test case category was cases involving CORBA alarms and events.

Alarms were generated by the AlarmIRP-class instance and events were generated by

the NotificationIRP-class instance, all were passed as structured event to the

ConverterORB object. Figure 20 illustrates how a structured event is mapped to a

Trap-PDU by the MessageMapping object and passed to the ConverterAgent

for sending.

 Converter

Ville Ryhänen 54

Figure 20: A structured event containing an alarm mapped to an SNMP Trap-PDU

4.3.2 Results and Analysis

The test cases showed that the converter implementation enabled invoking all the

CORBA FM operations with SNMP Set- and Get-PDUs as well as monitoring CORBA

notifications as SNMP Trap-PDUs. The implementation was able to map information

correctly in every test case and all tested CORBA operations functioned correctly. As

the different component objects were run in separate threads, the converter

implementation was able to perform different kinds of test cases simultaneously;

notifications were mapped and sent at the same time as invoking a get operation. If a

large number of alarms was generated, they were all mapped and conveyed

consecutively and instantly by the converter and none were discarded. The relevant part

of fault management is to inform managing systems with correct fault information

immediately, with the focus on information details and correctness; these parts the

converter handles well.

As the converter is implemented between the EMS and the NE, it adds processing on

 Converter

Ville Ryhänen 55

the network management. Despite of the limitations set by the test environment, some

performance measurements were made. Fetching an alarm list is by far the most

complex operation for the mapping functions of the converter, so it describes best how

much at most the converter adds to the message delivery time.

Average mapping times of get_alarm_list

0

20

40

60

80

100

120

0 5 10 15 20 25 30

Alarm list size

A
ve

ra
g

e
m

ap
p

in
g

 t
im

e
(m

s)

Figure 21: The average mapping times of different sized alarm lists

The time increase caused by the mapping function was tested with fetching different

sized alarm lists. Because the CORBA operation returns a list of structured events,

every alarm added to the Trap-PDU must be mapped separately. Figure 21 shows that

increasing the size of the alarm list increases the mapping time approximately linearly.

The measurements were made by adding time stamps to the start and the end of the

mapping function. Measurements on each list size were run ten times. The Java

implementation was run with Eclipse SDK 3.2.1 using Java 1.4.2. JRE, and the test

environment was running on a laptop computer with SUSE Linux Enterprise Desktop

10 operating system, Intel Core2 T7200 2 GHz processor and 4 GB of memory. During

the measurements some other processes were also running on the computer; as the scale

of the measurements was in milliseconds, the resource consumption added some

 Converter

Ville Ryhänen 56

fluctuation on the measurements. Still these measurements can be considered giving

indication of the real mapping performance. Approximating from the measurements and

the graph in Figure 21, even with an alarm list consisting of a hundred active alarms it

would still take only approximately 500 ms to map the alarm list operation; this time

addition in the context of transporting management data can be considered quite

harmless as the original CORBA operations take much more time. To the person

running the managing system, the added converter would not create any practical

slowing down compared to the previous, in the common use of fault management.

Measurements of the impact that the converter has on the whole round trip time should

also be measured, but they are left to be made on future implementations.

Measurements were also made on all the other mapped operations: the other get-

operations were mapped in approximately 1 ms, set-operations were mapped in

approximately 15 ms, and alarms and events were mapped in between 7 ms and 30 ms.

It can be concluded that the added delay from these mappings is of no real concern to

the managing system.

There were no clear ways to test how much the converter implementation consumes

memory resources, but some hints could be obtained from how it functions. The

implementation runs three simultaneous threads, but most of the time they just wait for

incoming messages. The converter does not maintain any statistics or lists of variables,

only a static MIB file and the request IDs (four bytes each) for waiting response

messages. So it can be concluded that compared to the original CORBA fault

management, the converter does not add considerable load to the resources of the

managed system, even if the converter were to be added into the NE.

The SNMP management messages handle all managing operations with single request-

response message pair or with a single trap message. As such the converter does not

greatly burden the bandwidth requirements between the EMS and the NE. The lighter

UDP connection between the EMS and the converter will not increase the bandwidth

usage of the network as much as adding another TCP connection would. The original

 Converter

Ville Ryhänen 57

bandwidth usage between the EMS and the NE is now used between the converter and

the NE, and a lighter moderately used UDP connection between the EMS and the

converter is added to the bandwidth usage.

The converter’s handling of errors and incorrect management commands follows SNMP

practises. Unless the information in the request message is completely correct, an error

response is returned, instead of the requested information or command. Error messages

from the NE will be forwarded to the EMS using SNMP error responses. SNMP error

code and error index message fields provide the converter a variety of possible error

responses, although some CORBA error information can be forfeit in the conversion.

Even though the converter implementation was simplified, it gave indication that a

converter would be useful when a CORBA-SNMP conversion is beneficial. The

implementation enabled the testing of the conversion of existing CORBA functionalities

and acts as a good starting point for further examinations.

 Conclusions

Ville Ryhänen 58

5 Conclusions

At the start of this thesis none or very few papers could be found on the specific details

of protocol conversion from CORBA to SNMP. Based on this, the objective was set to

study the conversion of fault management between CORBA and SNMP with focus on

the conversion from CORBA based FM to SNMP. This thesis described the background

and details of the conversion and proved the concepts functional. With a simplified

implementation, a proof of concept for conversion of a CORBA based NE to using

SNMP without changing its inner fault management mechanisms was reached. At the

end it was observed that the added CORBA-SNMP converter was quite simple to

construct, although only the fault aspect of the whole FCAPS-model was considered in

the implementation.

The converter implementation in this thesis was designed with the emphasis on the

working philosophy of CORBA fault management. The managing system utilised the

CORBA operations of the NE by SNMP PDUs, and the notifications from the NE were

in essence in the same CORBA form, only delivered in an SNMP PDU. This is however

not mandatory; the converter implementation can be designed to work in a more SNMP

oriented way and use more elaborate mapping functions. This way some of the CORBA

fault management functionality would have to be forfeit, but the NE could be managed

more in the way of a native SNMP using NE.

It can be concluded that the benefits of the CORBA-SNMP conversion over its

drawbacks are much greater to the operator that is considering the conversion. The

converter does not add considerable delay, strain on bandwidth usage, or consume

memory resources and the benefits of unifying the managing system of all the network

elements of the operator will likely provide performance and cost savings.

5.1 Further Study

This thesis only covered the conversion of network element’s CORBA based fault

management, so the next logical step would be to study the conversion in further detail

 Conclusions

Ville Ryhänen 59

and without test environment limitations. The adding of configuration management

would also add to the fault management conversion, as the presently absent conversion

of managed object models would be covered. Configuration and performance

management would also cover some of the actions needed to be performed as a

consequence of fault management actions. As this study made only a shallow proof of

concept implementation and testing on the CORBA-SNMP converter, a real prototype

of the converter would be needed for more detailed testing. The prototype could be

made with only fault management conversion, but would be perhaps more beneficial

with configuration and performance management conversion added in some form

Adding configuration and performance management conversion to the converter

requires also further consideration on the role of SNMP. SNMP is at its best in

monitoring network elements and as such a natural choice for fault management. But for

configuration and performance management more useful and preferred protocols are in

use. Protocols such as Netconf and other XML based solutions are replacing or have

already replaced SNMP in configuration management [Choi-et-al] [Yoon], and adding

CORBA-Netconf mapping to the converter could be a wiser choice for converting

configuration management of a CORBA based NE. Considering the design of the

converter implementation, adding some other type of protocol conversion to the

converter would seem possible, but its impacts would have to be studied and tested. The

converter could also be expanded to work in a reverse set up, between CORBA based

managing system and SNMP based NE. Studies on this sort of conversion have been

written and mapping functions made as presented in Section 3.2.

Ville Ryhänen 60

References

[3GPP-XML] 3GPP TR 32.809: Telecommunication management; Feasibility study of

XML-based (SOAP/HTTP) IRP solution sets

[3GPP-1063] 3GPP TS 32.106-3: Telecommunication management; Configuration

Management; Part 3: Notification Integration Reference Point: CORBA

Solution Set Version 1:1

[3GPP-1068] 3GPP TS 32.106-8: Telecommunication management; Configuration

Management; Part 8: Name convention for Managed Objects

[3GPP-1113] 3GPP TS 32.111-3: Telecommunication management; Configuration

Management; Part 3: Alarm Integration Reference Point: CORBA

Solution Set

[Agrawal] Agrawal, N.: On the design of Element Management System for Node Bs

in a 3G Wireless Network ; Personal Wireless Communications, 2002

IEEE International Conference on, Publication Date: 15-17 Dec. 2002

[Aschemann] Aschemann G., Mohr T., Ruppert M.: Integration of SNMP into a

CORBA- and Web-based Management Environment, Department of

Computer Science, Darmstadt University of Technology, Germany 1999

[Choi-et-al] Choi M-J., Oh J-M., Hong J.W.: Design and Implementation of an XML-

Based Management Agent, Network Operations and Management

Symposium, 2004. NOMS 2004. IEEE/IFIP, Publication Date: 23-23

April 2004

Ville Ryhänen 61

[Deri&Ban] Deri L., Ban B.:Static vs Dynamic CMIP/SNMP Network Management

Using CORBA, IBM Zurich Research Laboratory, Lecture Notes in

Computer Science, Intelligence in Services and Networks: Technology

for Cooperative Competition Springer Berlin / Heidelberg 1997

[Hanemann] Hanemann A., Sailer M., Schmitz D.: Assured Service Quality by

Improved Fault Management, Proceedings of the 2nd international

conference on Service oriented computing 2004, New York, NY, USA,

ACM 2004

[Henning] Henning M., The Rice and Fall of CORBA, Q focus: component

technologies, York, NY, USA, ACM 2006

[IEC] IEC: Tutorial: Element Management Systems (EMSs),

 http://www.iec.org/online/tutorials/ems/ 2007 [visited 28.4.2009]

[IETF-N] Network Configuration (Active WG): Netconf Status Pages,

http://tools.ietf.org/wg/netconf/ [visited 28.4.2009]

[ITU3000] ITU-T: Recommendation M.3000

[ITU3010] ITU-T: Recommendation M.3010

[ITU3200] ITU-T: Recommendation M.3200

[ITU3400] ITU-T: Recommendation M.3400

[Klerer] Klerer S. M.: The OSI Management Architecture: an Overview, IEEE

Network March 1988

[Klie] Klie T., Strauß F.: Integrating SNMP Agents with XML-Based

Ville Ryhänen 62

 Management Systems, IEEE Communications Magazine, July 2004

[Mauro] Mauro D., Schmidt K.: Essential SNMP, 2nd Edition, O'Reilly 2005

[Mazumdar] Mazumdar S.: Inter-Domain Management between CORBA and SNMP :

WEB-based Management - CORBA/SNMP Gateway Approach, Bell

Laboratories 1996

[Misra] Misra K.: OSS for Telecom Networks: An Introduction to Network

Management, Springer-Verlag London Limited 2004

[McHale] McHale C.: CORBA Explained Simply,

www.CiaranMcHale.com/download/ 2007 [visited 28.4.2009]

[OMG3.0.3] OMG: Common Object Request Broker Architecture (CORBA)

Specification, Version 3.0.3, 2004

[OMG3.1] OMG: Common Object Request Broker Architecture (CORBA)

Specification, Version 3.1, 2008

[Pope] Pope A.: The CORBA Reference Guide: Understanding the Common

Object Request Broker Architecture, Addison-Wesley 1997

[Raman-1] Raman L.: Fundamentals of telecommunications network management,

IEEE Press 1998

[Raman-2] Raman L.: OSI Systems and Network Management, IEEE

Communications Magazine March 1998

[SNMP4J] SNMP4J - The Object Oriented SNMP API for Java Managers and

Agents, Apache 2.0 license, http://www.snmp4j.org/ [visited 28.4.2009]

Ville Ryhänen 63

[Stallings-1] Stallings W.: SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Third

Edition, Addison-Wesley 1999

[Stallings-2] Stallings W.: SNMPv3: A Security Enhancement for SNMP, IEEE

Communications Surveys, Fourth Quarter 1998 Vol. 1 No. 1

[Yoon] Yoon J-H., Ju H-T., Hong J.W.: Development of SNMP-XML translator

and gateway for XML-based integrated network management,

International Journal of Network Management Volume 13 Issue 4, John

Wiley & Sons, Ltd. 2003

