
HELSINKI UNIVERSITY OF TECHNOLOGY

Faculty of Electronics, Communication and Automation

Department of Communications and Networking

Huageng Chi

HARDWARE DESIGN OF DECODER FOR

LOW-DENSITY PARITY CHECK CODES

Thesis submitted in partial ful�lment of the requirement for

the degree of Master of Science in Technology

Espoo, Finland, 3rd August 2009

Supervisor: Prof. Patric Östergård

Instructor: M.Sc. Mika Rautio

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

HELSINKI UNIVERSITY OF TECHNOLOGY

ABSTRACT of the Master's thesis

Author: Huageng Chi

Name of the thesis: Hardware Design of Decoder for Low-Density Parity Check

Codes

Date: 3rd August 2009 Number of pages: x + 62

Faculty: Faculty of Electronics, Communication and Automation

Professorship: Communications Code: S-72

Supervisor: Prof. Patric Östergård

Instructor: M.Sc. Mika Rautio

A hardware decoder architecture is presented in this thesis

for quasi-cyclic (QC) low-density parity check (LDPC)

codes.

The decoder is real-time con�gurable and supports 15 codes

which are combination of 3 rates and 5 lengths. The partly

parallel architecture implements layered decoding. A check

node decoder is serial and implements min-sum correction

algorithm. The proposed design techniques include

out-of-order memory-write, two-stage multi-size shifter,

serial decoding termination.

The decoder consumes about half amount of logic resource

on the Xilinx FPGA chip XC2VP50-5F1152. The worst case

throughput at 20 iterations ranges from 5 Mbits to 60 Mbits

(information bits) per second. Higher throughput can be

obtained by the proposed optimisation. Reuse for similar

codes is possible.

Keywords low-density parity check (LDPC) decoder, FPGA,

multi-rate, multi-length, layered decoding, out-of-order

memory-write, multi-size shifter

Preface

This thesis work was part of a project1 carried out at VTT Technical Research

Center of Finland in 2007. The work started with the codes and certain

directive information provided by project partners. The thesis was written in

Department of Communications and Networking at TKK Helsinki University

of Technology.

I would like to thank Professor Patric Östergård at TKK for being my

supervisor and providing detailed guidelines, instructions, advices and com-

ments.

I would also like to thank the team manager Mika Rautio and the project

manager Jussi Roivainen, both at VTT, for preparing the topic for me,

and also for their support to my work and study. Special thanks go to Mika

Rautio for being my instructor.

I am most grateful to my girl friend Jing Zhang. This thesis would never

be complete without her love and support. I owe so much to her.

Finally, I would like to express my gratitude to my mother, my father, and

my elder brother.

Otaniemi, Espoo, 3rd August 2009

Huageng Chi

1It is a sub project of WINNER II, an EU funded project: http://www.ist-
winner.org/index.html

ii

http://www.ist-winner.org/index.html
http://www.ist-winner.org/index.html

Contents

1 Introduction 1

1.1 LDPC decoder hardware implementation 2

1.2 Scope of thesis . 3

1.3 Thesis organisation . 4

2 Algorithm and architecture 5

2.1 System model . 5

2.2 Parity check matrices and graphs 6

2.3 Encoding and decoding . 8

2.4 Message passing algorithms 9

2.5 Quasi-cyclic (QC) LDPC code 12

2.6 Approaches to reduce complexity 15

2.7 A partly parallel architecture 19

iii

CONTENTS iv

3 Proposed decoder architecture 26

3.1 De�nition of 15 LDPC codes 26

3.2 Decoding algorithm . 27

3.3 Proposed design techniques 28

3.4 Decoder core . 31

3.5 Overall architecture with dual bu�er 40

3.6 Fixed-point issues . 42

4 Results 43

4.1 Introduction to design �ow . 43

4.2 Error correction performance 45

4.3 VHDL design, veri�cation, and synthesis 46

4.4 Decoding throughput . 46

5 Conclusion 49

A Base matrices for 15 LDPC codes 51

B Reference performance 54

Bibliography 57

List of symbols and abbreviations

Cm check node m ∈M

Ci
m′ check node with local index m′ within CNB i

HM×N parity check matrix, size is M ×N

Hi,j submatrix at block row i and block column j of parity check

matrix for QC LDPC code

Ln total information of bit n, generally in LLR form

M number of rows of parity check matrix

M index setM = {0, 1, · · · ,M − 1} for check nodes, or parity check
constraints, or rows of parity check matrix

M (n) all check nodes that checks variable node n

M (n) \m all check nodes that checks variable node n, excluding check node

m ∈M (n)

N number of columns of parity check matrix, equal to length of

codeword

N index set N = {0, 1, · · · , N − 1} for variable nodes, or code bits,
or columns of parity check matrix

N (m) all variable nodes checked by check node m

v

CONTENTS vi

N (m) \n all variable nodes checked by check node m, excluding variable

node n ∈ N (m)

Qn,m V2C message from variable node n to check node m, generally in

LLR form

Qj,i
n′,m′ V2C message from variable node V j

n′ to check node Ci
m′ , generally

in LLR form

Rm,n C2V message from check node m to variable node n, generally in

LLR form

Ri,j
m′,n′ C2V message from check node Ci

m′ to variable node V
j
n′ , generally

in LLR form

Vn check node n ∈ N

V j
n′ variable node with local index n′ within VNB j

z block size of block LDPC code

APP a posteriori probability

C2V check-to-variable

CNB check node block

CND check node decoder

FPGA �eld-programmable gate array

LDPC low-density parity check

LLR log likelihood ratio

QC Quasi-cyclic

TPMP two-phase message passing

TDMP turbo decoding message passing

CONTENTS vii

V2C variable-to-check

VHDL very-high-speed-integrated-circuit hardware description language

VNB variable node block

List of Figures

2.1 System model . 5

2.2 Example: Tanner graph . 7

2.3 Messages and updates . 9

2.4 Message passing viewed from a particular variable node 10

2.5 Layered decoder: an example architecture 20

2.6 Example decoder wave form, non-pipelined 22

2.7 Example decoder wave form, pipelined 22

2.8 Example decoder wave form, pipelined, out-of-order memory-

write . 23

3.1 Example decoder wave form, pipelined, out-of-order memory-

write and -read . 29

3.2 Decoder core . 32

3.3 Shifter, top level . 35

3.4 Shifter, horizontal shifter . 36

3.5 Example, log shifter . 37

viii

LIST OF FIGURES ix

3.6 Check node decoder, pipelined, sample waveform 37

3.7 Check node decoder (CND) structure 38

3.8 Decoder with dual bu�er . 41

4.1 Error correction performance 45

4.2 Decoding throughput . 47

A.1 Base matrix, rate 1/2 . 52

A.2 Base matrix, rate 2/3 . 52

A.3 Base matrix, rate 3/4 . 52

B.1 Codeword error ratio, rate 1
2
, BPSK, AWGN 55

B.2 Codeword error ratio, rate 2
3
, BPSK, AWGN 55

B.3 Codeword error ratio, rate 3
4
, BPSK, AWGN 56

List of Tables

2.1 Example: parity check matrix 6

2.2 Block LDPC code parity check matrix (trivial example) 14

2.3 Block LDPC code base matrix (trivial example) 15

3.1 Illustration: shifter . 30

3.2 Total information organised as columns 33

3.3 Sum memory . 34

3.4 A message block viewed as table 35

4.1 Decoding throughput (decoded bits per clock cycle, 20 itera-

tions) . 47

x

Chapter 1

Introduction

Channel noise causes transmission errors in communication systems. An

e�ective means to improve reliability is to employ forward error correc-

tion (FEC) codes. After Shannon laid down the theoretical foundation of

communications in his 1948 landmark paper [1], a �central objective was to

�nd practical coding schemes that could approach channel capacity on well-

understood channels such as the additive white Gaussian noise (AWGN)

channel� [2]. Turbo codes invented in 1993 [3] is the �rst practical capacity-

approaching code, which is widely deployed nowadays.

Following the success of turbo code, Low-density parity check (LDPC) code,

which was invented by Gallager in early 1960s [4] but forgotten for three

decades, was rediscovered by MacKay et al in mid-1990s [5, 6]. LDPC code

has near Shanon limit performance [7, 8] as well. Unlike turbo code, the

structure of LDPC code is inherently parallel, thus enables �exible imple-

mentations for a wide range of applications.

The rediscovery triggered research on LDPC code. LDPC code has been

adopted in various areas, including new generation standards like DVB-S2,

IEEE 802.22, 802.16e, 802.11n, 802.3an, and so on [9]. However, products

of LDPC decoders are still rare in market, because of implementation chal-

1

CHAPTER 1. INTRODUCTION 2

lenges. E�ective implementation of practical hardware decoder is of great

interest.

1.1 LDPC decoder hardware implementation

LDPC code had been ignored for about 30 years, partly because it was �much

too complex for the technology at that time [2]�. Various decoding algorithms

exist. In a straightforward implementation, a hardware decoder consists of

a large number of small decoders of two kinds. Every small decoder of one

kind is connected to multiple small decoders of the other kind. During decod-

ing procedure, every small decoder receives information from its neighbours,

processes the received information, and sends the processing result to each

neighbour. Information exchanged between a pair of nodes is called mes-

sage, exchange of information is called message passing, and processing of

information is called message update. All small decoders perform message

updates and message passing simultaneously and repeatedly. Stop criterion

is evaluated from time to time.

Updating a message by hardware requires a data path. A data path consists

of basic logical and mathematical operators. Operators are in turn built by

digital circuits. Hardware resource includes logic resource, memory resource,

routing resource, and so on. A small decoder consumes certain amount of

logic resource and memory resource to build data paths. Passing messages

between small decoders require routing resources. A typical LDPC decoder

in the straightforward implementation consists of large number of small de-

coders. For example, a code in this thesis needs 4,608 variable node decoders

and 2,304 check node decoders. 35,328 messages need to be computed, stored,

and passed in every iteration, and the number of iterations can be as many

as 20. Given the hardware technology in the past, such an implementation

is too complex to be practical for high speed applications.

Hardware decoder implementation became realisable only in recent years due

to improvements in code design, algorithm design, decoder architecture de-

CHAPTER 1. INTRODUCTION 3

sign, and microelectronics technology. But new challenges exist due to strin-

gent system requirements such as low hardware cost, high error correction

performance, high decoding throughput, �exibility to support multiple codes

of di�erent rates and codeword lengths. A fully parallel decoder enables high

throughput but requires prohibitively large amount of hardware resource [10];

a completely serial decoder consumes least amount of hardware resource but

its throughput is low. All practical decoders are made partly parallel to

make trade-o�s between hardware cost and throughput. The key task in

architecture design is to parallelize message updates and message exchanges,

and map those algorithmic functionality to limited amount of logic, mem-

ory, and routing resource provided by target hardware device. The task is

harder when a decoder needs support multiple code rates and multiple code-

word lengths. A decoder designed for one application may not �t to another,

as architecture design of LDPC decoder is closely coupled with application-

speci�c decisions such as code's characteristics, decoding algorithm, system

requirements, and hardware resource constraints.

1.2 Scope of thesis

The codes to be implemented in the thesis are Quasi-cyclic (QC) LDPC

codes. 3 base matrices are de�ned for code rates 1
2
, 2

3
, and 3

4
. Each base

matrix consists of 48 columns and expands to 5 parity check matrices corre-

sponding to block sizes 12, 24, 36, 48, and 96. Therefore 15 codes are de�ned.

5 codeword lengths of each rate are [12, 24, 36, 48, 96]×48 = [576, 1152, 1728, 2304, 4608].

The objective of the thesis work was to design a hardware decoder architec-

ture suitable for FPGA device. The implementation aims at small hardware

cost and challenging system requirements, including high decoding through-

put, real-time support to multiple code rates and multiple codeword lengths,

and small degradation of error correction performance caused by hardware

implementation. The decoder is part of a trail system for demonstration

CHAPTER 1. INTRODUCTION 4

purpose, therefore optimisation for hardware cost and decoding throughput

is not prioritised, however, space for future optimisation is considered.

The main result of the thesis is a hardware architecture suitable for FPGA

device. The decoder is real time con�gurable to decode any of the 15 speci�ed

LDPC codes. A partly parallel architecture implements layered decoding, all

check node decoders in a check node block (CNB) operate in parallel, and

each check node decoder is serial and pipelined.

The thesis also presents some design techniques. Out-of-order memory-read

is used to improve throughput. A two-stage multi-size shifter is designed

to perform cyclic shift on �rst z values of of 96-value vector, where z ∈
{12, 24, 36, 48, 96} is the block size. Decoder checks consecutive mb CNBs in

serial manner to evaluate stop criterion, where mb ∈ {12, 16, 24} is number
of block rows. Control signals are saved in memory modules, and updating

those memory content adapts the design to other codes without hardware

redesign, if the new codes are not far di�erent from those used in this thesis.

1.3 Thesis organisation

The rest of the thesis is organised as follows. Decoding algorithms and tech-

niques to reduce complexity in hardware implementation are discussed in

Chapter 2. The proposed decoder architecture and techniques are presented

in Chapter 3. Result of the solution is reported in Chapter 4, and discussed

in Chapter 5. Chapter 6 concludes the thesis. References and appendices are

in the end of the thesis.

Chapter 2

Algorithm and architecture

LDPC codes and decoding algorithms are introduced in this chapter. Various

techniques that reduce hardware implementation complexity can be found in

literature, those employed in this thesis work are brie�y introduced. A partly

parallel decoder architecture is illustrated.

2.1 System model

Figure 2.1 presents a basic model of a communications channel. An encoder

maps a source message s , (s0s1 · · · sK−1) to a codeword c , (c0c1 · · · cN−1) ∈
C, where sk ∈ {0, 1}, cn ∈ {0, 1}, C is a code, K is message length, N is code-

word length. Codeword c is transmitted in form of signal x , (x0x1 · · ·xN−1),

xn ∈ {−1,+1}, using mapping: cn = 0 → xn = +1; cn = 1 → xn = −1.

Figure 2.1: System model

5

CHAPTER 2. ALGORITHM AND ARCHITECTURE 6

row index
↓ 0 1 2 3 4 5 6 7 8 9 ←column index
0 0 0 0 0 1 1 0 1 0 1
1 1 0 1 0 0 1 0 1 0 0
2 0 1 1 0 1 0 1 0 1 1
3 1 0 0 1 0 1 0 1 1 1
4 0 1 1 1 1 0 0 0 0 0

Table 2.1: Example: parity check matrix

The received signal through an AWGN channel is r = x + n, where n ,

(n0n1 · · ·nN−1) is zero mean white Gaussian noise with variance σ² = N0/2.

An decoder produces estimation ĉ of the transmitted codeword c.

2.2 Parity check matrices and graphs

Every (N,K) binary linear block code is speci�ed by its parity check matrix

HM×N , which is assumed full ranked, and whose dimension is M × N . A

column of a matrix corresponds to a code bit. Columns and bits are indexed

from left to right by 0, 1, · · · , N − 1. A row corresponds to a parity check

constraint, rows and parity check constraints are indexed from top to bottom

by 0, 1, · · · ,M − 1. Let h (m,n) be the parity check matrix entry at row m

and column n, parity check m checks bit n if and only if h (m,n) = 1. Table

2.1 presents an example parity check matrix with M = 5 and N = 10.

The graph introduced by Tanner in [11] is referred as Tanner graph, which is

commonly used to represent LDPC code. A graph is a set of nodes connected

by a set of edges. A Tanner graph is a bipartite graph, which has two types

of nodes, and each edge connects a node of one type to a node of the other

type. One type of nodes represent symbols of a codeword, and the other type

of nodes represent parity check constraints. Figure 2.2 presents the Tanner

graph for the example code given in Table 2.1. Circles are variable nodes,

CHAPTER 2. ALGORITHM AND ARCHITECTURE 7

Figure 2.2: Example: Tanner graph

indexed from left to right by 0, 1, · · · , N − 1, with node n corresponding to

bit n. Boxes are check nodes representing parity checks, indexed from left to

right by 0, 1, · · · ,M − 1, with node m corresponding to parity check m. An

edge connects check node m and variable node n if and only if h (m,n) = 1.

Degree of a node is the number of its neighbours.

A one-to-one correspondence links a row of a parity check matrix, a parity

check constraint, and a check node. Another one-to-one correspondence links

a column of a parity check matrix, a codeword bit, and a variable node.

A LDPC code is a linear block codes with sparse parity check matrix. A

sparse matrix contains only a few ones in each row and each column. In

general, parity check matrix of a LDPC code is made large and pseudo-

random in order to obtain good error correction performance. Most recent

practical codes are structured, showing much regularity, but randomness is

still obvious.

Following notations are used in this thesis:

� N , {0, 1, · · · , N − 1} is index set for variable nodes, or code bits, or

matrix columns; M , {0, 1, · · · ,M − 1} is index set for check nodes,

or parity check constraints, or matrix rows.

� N (m) denotes all variable nodes checked bym. N (m) with n ∈ N (m)

excluded is denoted by N (m) \n;M (n) is index set for all check nodes

that are neighbours of variable node n. M (n) with m ∈ M (n) ex-

cluded is denoted byM (n) \m.

CHAPTER 2. ALGORITHM AND ARCHITECTURE 8

� Check node m is denoted by Cm; variable node n is denoted by Vn.

� Check node m's degree is dm = |N (m)|; variable node n's degree is

dn = |M (n)|.

2.3 Encoding and decoding

To design a LDPC code is to �nd a good parity check matrix. Given a parity

check matrix H, the code C is the null space of H, i.e., c ∈ C if and only if

HcT = 0.

Expression c = mG describes encoding message m to codeword c, where G is

the generator matrix that can be obtained from parity check matrix H. This

direct method requires large number of multiplications and additions thus it

is too complex for hardware implementation. For a class of widely used QC

LDPC codes, encoding is e�ciently realised by solving HcT = 0 for c. The

codes are systematic, and a codeword c consists of information part m and

parity part p, written as c = [mp]. When m is given, corresponding p can

be derived by solving H [mp]T = 0. Further discussion of encoding can be

found in literature such as [12], and it is out of the scope of this thesis.

Given received signal r, a maximum likelihood (ML) decoding algorithm �nds

codeword estimation

ĉ = max
c∈C

Pr (r | c)

A maximum a posteriori (MAP) algorithm �nds bit-wise estimation for each

bit, the estimation for bit n is

ĉn = max
cn∈{0,1}

Pr (cn | r)

The message passing algorithm discussed in the following text is a MAP algo-

rithm. The min-sum algorithm, which can be considered an approximation

to message passing algorithm, is a ML algorithm.

CHAPTER 2. ALGORITHM AND ARCHITECTURE 9

Figure 2.3: Messages and updates

2.4 Message passing algorithms

Among various decoding algorithms, a fundamental one and its variants are

referred with di�erent names like message passing (MP), belief propagation

(BP), and sum product algorithm (SPA). Those terms are often interchange-

ably used in literature, so in this thesis. Message passing algorithm is brie�y

illustrated in this section. Detailed treatment of codes on graphs can be

found in a number of references, for example, factor graph and SPA dis-

cussed in [13], Forney graph and SPA discussed in [14], BP discussed in [5]

[6].

Along every graph edge �ow two kinds of information, which are represented

by variable-to-check (V2C) message and check-to-variable (C2V) message.

C2V message from Cm to Vn carries conditional information on Vn's value

being 0 or 1, as illustrated in Figure 2.3 (a). The information is obtained

using all V2C messages from Cm's neighbouring variable nodes excluding Vn.

V2C message from Vn to Cm carries conditional information on Vn's value

being 0 or 1, as illustrated in Figure 2.3 (b). The information is obtained

using channel input to Vn and all C2V messages from Vn's neighbouring

check nodes excluding Cm. Procedures computing V2C messages and C2V

messages are termed as variable update and check update, respectively.

A decoder needs perform large number of updates as fast as possible. Schedul-

ing is needed to allocate update tasks to hardware resource and time resource.

An iteration covers the least number of clock cycles for all messages to be

CHAPTER 2. ALGORITHM AND ARCHITECTURE 10

Figure 2.4: Message passing viewed from a particular variable node

updated. The algorithm runs for multiple iterations to converge. The con-

ventional two-phase message passing (TPMP) is the most straightforward

example to illustrate scheduling. In TPMP, all check nodes perform check

node updates in one phase, all variable nodes perform variable node updates

in the subsequent phase, and those two phases constitute one iteration. In

order to start the iterative procedure, all V2C messages leaving a variable

node are initialised to channel input to that node, then, check node updates

can be performed. At the end of each iteration, every variable node makes

hard decision using latest C2V messages as well as its channel input. Decod-

ing terminates if decisions satisfy all parity check constraints, otherwise, new

iteration starts, until a preset maximum number of iterations is reached.

The e�ectiveness of such algorithms is illustrated by Figure 2.4. The variable

node of interest is drawn in the center of the �gure. Tiers of variable nodes

are indexed to outwards direction by 1, 2, · · · . Only two tiers of variable

nodes are presented due to lack of space. Arrows represent graph edges and

messages. Each variable node also accepts information from corresponding

channel input, which is not shown in the �gure. The key observation is

that, after n iterations, the central variable node collects information from

all variable nodes up to tier n, and the collected information is utilised to

CHAPTER 2. ALGORITHM AND ARCHITECTURE 11

decode the center variable node. Consequently and generally, the more the

number of iterations, the more reliable is the decoding result.

2.4.1 Message de�nition

Messages being exchanged can be probabilities or other quantities derived

from probabilities. For probability messages, let rm,n denote the C2V message

from Cm to Vn, and qn,m denote the V2C message from Vn to Cm. rm,n and

qn,m are two-element a posteriori probability (APP) vectors de�ned as
rm,n ,

 Pr (n = 0 | qj,m, j ∈ N (m) \n)

Pr (n = 1 | qj,m, j ∈ N (m) \n)

qn,m ,

 Pr (n = 0 | rn,ri,n, i ∈M (n) \m)

Pr (n = 1 | rn,ri,n, i ∈M (n) \m)

where rn is channel input for bit n.

Log likelihood ratios (LLRs) are widely used as messages for a couple of ad-

vantages over probabilities: instead of operating on two probabilities, only

one ratio is maintained, multiplication and division in real valued domain be-

come addition and subtraction in LLR domain, �xed-point algorithms using

LLRs are more numerically stable and su�ers less performance loss, expres-

sions like (2.1) are neat in LLR domain, and easier to analyse and approxi-

mate, and so forth. In accordance to rm,n and qn,m, messages in LLR domain

are de�ned as Rm,n , ln
Pr(n=0|qj,m,j∈N (m)\n)

Pr(n=1|qj,m,j∈N (m)\n)

Qn,m , ln
Pr(n=0|rn,ri,n,i∈M(n)\m)

Pr(n=1|rn,ri,n,i∈M(n)\m)

and the channel input LLR to bit n is de�ned as

Lc,n , ln
Pr (cn = 0 | rn)

Pr (cn = 1 | rn)

CHAPTER 2. ALGORITHM AND ARCHITECTURE 12

2.4.2 Equations

The check node update producing C2V message Rm,n is described (e.g., in

[15]) by

tanh
Rm,n

2
= Π

j∈N (m)\n
tanh

(
Qj,m

2

)
(2.1)

The variable node update producing V2C message Qn,m is described (e.g., in

[15]) by

Qn,m =
∑

i∈M(n)\m

Ri,n + Lc,n (2.2)

The LLR of APP for bit n is also referred in this thesis as column sum, or

total information, as it is a sum of all LLR messages to n

Ln , ln

(
p (cn = 0 | r)
p (cn = 1 | r)

)
=

∑
m∈M(n)

Rm,n + Lc,n (2.3)

Ln is sliced to obtain hard decision:ĉn = 0 Ln ≥ 0

ĉn = 1 Ln < 0

2.5 Quasi-cyclic (QC) LDPC code

Quasi-cyclic (QC) LDPC code [16] [17] is also referred as Block LDPC code

[18]. LetHM×N be an M × N parity check matrix of a QC LDPC code.

HM×N consists of mb rows and nb columns of submatrices of size z×z, where
z is block size, M = mb × z, and N = nb × z. A submatrix is either a null

matrix, or a circulant matrix obtained by shifting cyclically each row of an

CHAPTER 2. ALGORITHM AND ARCHITECTURE 13

identity matrix to the right for p steps. De�ne

Pz ,

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0

then, a submatrix of size z × z with shift step p, 0 ≤ p ≤ z − 1, is (Pz)p, the

p-th power of Pz. Conventionally, (Pz)0 is de�ned as identity matrix.

A row of submatrices is called a block row. Block rows are indexed from

top to bottom by 0, 1, · · · ,mb−1. Let the symbol b c denote �oor function

such that bxc returns the largest integer no more than x. Row m locates in

block row bm/zc, and is indexed locally in block row bm/zc by (m mod z).

Accordingly, parity check constraints and check nodes are also grouped to

mb blocks, and indexed globally and locally in the same manner. For in-

stance, check node m is indexed locally by (m mod z) in check node block

(CNB) bm/zc. Similarly, parity check matrix columns, code bits, and vari-

able nodes, are grouped respectively to nb block columns, code bit blocks,

and variable node blocks (VNBs). Those blocks are indexed from left to right

by 0, 1, · · · , nb − 1. A global index n corresponds to local index (n mod z)

in block bn/zc. For instance, code bit n is indexed locally by (n mod z) in

code bit block bn/zc.

Following notations are used. Check node Cm is also written as C
bm/zc
(m mod z),

meaning a check node in CNB bm/zc with local index (m mod z). Like-

wise, variable node Vn can be denoted by V
bn/zc
(n mod z), and total informa-

tion Ln can be written as L
bn/zc
(n mod z). V2C message Qn,m can be written

as Q
bn/zc,bm/zc
(n mod z),(m mod z), meaning the Q message from V

bn/zc
(n mod z) to C

bm/zc
(m mod z),

also, C2V message Rm,n can be written as R
bm/zc,bn/zc
(m mod z),(n mod z).

Suppose submatrix at block row i and block column j is Hi,j = (Pz)p. For

k = 0, 1, · · · , z − 1, check node Ci
k is connected to variable node V j

k+p mod z,

and conversely, variable node V j
k is connected to check node Ci

k+z−p mod z.

CHAPTER 2. ALGORITHM AND ARCHITECTURE 14

0 1 2 3 4 5 6 7 8 9 10 11 ← global indices
0 1 2 0 1 2 0 1 2 0 1 2 ← local indices

0 0 0 1 0 0 0 0 0 1 0 0 0 1
1 1 0 0 1 0 0 0 0 0 1 1 0 0 ← block row 0
2 2 1 0 0 0 0 0 1 0 0 0 1 0
3 0 1 0 0 0 1 0 0 0 1 0 0 0
4 1 0 1 0 0 0 1 1 0 0 0 0 0 ← block row 1
5 2 0 0 1 1 0 0 0 1 0 0 0 0

↑ ↑ ↑ ↑
↑ 0 1 2 3 ← block column index

↑ local indices
global indices

Table 2.2: Block LDPC code parity check matrix (trivial example)

2.5.1 An example

Foregoing de�nitions are illustrated by a trivial example shown in Table 2.2.

In this example, M = 6, N = 12, z = 3, mb = 2, nb = 4, and parity check

matrix is partitioned to 2× 4 = 8 submatrices. For example, the submatrix

in block row 0 and block column 3 is

H0,3 =

 0 0 1

1 0 0

0 1 0

therefore, check nodes 0, 1, and 2 in CNB 0 are connected respectively to

variable nodes 2, 0, and 1 in VNB 3, and the permutation of index vector is

described by 2

0

1

 = H0,2

 0

1

2

 or

 2

0

1

 =

 0 + 2 mod 2

1 + 2 mod 2

2 + 2 mod 2

CHAPTER 2. ALGORITHM AND ARCHITECTURE 15

1 -1 1 2
0 1 2 -1

Table 2.3: Block LDPC code base matrix (trivial example)

2.5.2 Base matrix and expansion

Parity check matrix of a block LDPC code is often described by a mb × nb

base matrix Bmb×nb
. The (i, j)-th entry of Bmb×nb

, denoted by b (i, j), isb (i, j) = −1 when Hi,j = 0z×z

b (i, j) = p when Hi,j = (Pz)p

Table 2.3 presents the base matrix of the code de�ned in Table 2.2.

Expanding one base matrix to multiple parity check matrices with di�erent

block sizes lead to codes of multiple codeword lengths. Given a base matrix, a

parity check matrix for a code of block size z is obtained by setting submatrix

as Hi,j = 0z×z if b (i, j) = −1

Hi,j = (Pz)b(i,j) mod z otherwise

This is the commonly used modulo expansion method.

2.6 Approaches to reduce complexity

The techniques employed in this thesis work to reduce computation complex-

ity and hardware complexity are shortly presented in this section.

CHAPTER 2. ALGORITHM AND ARCHITECTURE 16

2.6.1 Min-sum algorithm and its correction

Comparing (2.1) and (2.2) shows that check nod update dominates com-

putational complexity. Min-sum algorithm (MSA [19] [20]) provides simple

approximation to (2.1) at the cost of small performance loss.

In MSA, the sign part and magnitude part of Rm,n are computed separately.

Let the sign function be sign (x) =

+1 x ≥ 0

−1 x < 0
, the sign part is given by

sign (Rm,n) = Π
j∈N (m)\n

sign (Qj,m) (2.4)

and the magnitude part is related to input magnitudes by

tanh
|Rm,n|

2
= Π

j∈N (m)\n
tanh

(
|Qj,m|

2

)
(2.5)

Equation (2.5) is given in some literature in logarithm form:

|Rm,n| = ψ

 ∑
j∈N (m)\n

ψ (|Qj,m|)

where the psi function is

ψ (|x|) , − ln tanh
|x|
2

= ln

(
e|x| + 1

)
(e|x| − 1)

The key step leading to MSA is to approximate the magnitude (2.5) by

|Rm,n| = min
j∈N (m)\n

({|Qj,m| : j ∈ N (m) \n}) (2.6)

MSA is described by (2.2), (2.4) and (2.6). In the thesis work, correction

with scaling factor [20] [21] is used to reduce performance loss.

CHAPTER 2. ALGORITHM AND ARCHITECTURE 17

2.6.2 Value reuse property

Direct implementation of (2.6) requires large number of adders to �nd min-

imum values. The value reuse property [22] [23] [24] [25] [26] [27] [28] [29]

states that, when a check node performs update according to (2.6), among

all the outgoing magnitudes, there is at most one magnitude which is dif-

ferent from the rest. The outgoing magnitudes can be obtained as follows.

Let {|Qj,m| : j ∈ N (m)} be the set of input magnitudes to check node m.

Suppose |Qk1,m| is a minimum of {|Qj,m| : j ∈ N (m)}, and |Qk2,m| is a min-
imum of {|Qj,m| : j ∈ N (m) \k1}. Denote the two minima by �rst minimum
m1 , |Qk1,m| and second minimum m2 , |Qk2,m|, then, the output magni-
tude given by (2.6) becomes

|Rm,n| =

m2 n = k1

m1 n 6= k1

(2.7)

As an low cost hardware implementation, a check node decoder accepts input

message and sends output messages in serial. When it accepts a stream of

input messages, the check node decoder compares incoming magnitudes to

�nd m1, m2, and k1. These three values are obtained immediately once all

messages are received, and then the outgoing magnitudes can be produced

according to (2.7).

2.6.3 Layered decoding

Turbo-decoding message passing (TDMP) presented in [30, 31] is modi�ed

and referred as layered decoding in [32]. Alternatively, layered decoding can

be considered as a variant of two-phase message passing (TPMP). When

applied to QC LDPC codes, the algorithm is summarised as follows.

CHAPTER 2. ALGORITHM AND ARCHITECTURE 18

Iterations start after initialisationLn = Lc,n ∀n ∈ N

Rm,n = 0 ∀m ∈M,∀n ∈ N (m)

Each iteration consists of mb subiterations, corresponding to mb check node

blocks (CNBs), and a CNB is regarded as a layer. Subiterations are per-

formed sequentially from CNB 0 to mb − 1. In i-th subiteration, for any

check node m in CNB i, following steps are performed.

1. restore variable-to-check messages, ∀n ∈ N (m):

Qn,m = Ln −Rm,n (2.8)

2. check node update, ∀n ∈ N (m):

Rm,n = 2 tanh−1

(
Π

j∈N (m)\n
tanh

(
Qj,m

2

))
(2.9)

3. update total information, ∀n ∈ N (m):

Ln = Qn,m +Rm,n (2.10)

Given QC LDPC code, above computation for a check node in a CNB is inde-

pendent on any other check node in the same CNB, therefore, all check nodes

in a CNB can perform above computation in parallel to increase throughput.

At the end of each iteration, convergence of decoding is checked, and decoding

terminates if stop criterion is met, otherwise, another iteration begins.

Compared with TPMP, layered decoding converges faster in terms of number

of iterations, requires less amount of memory and wiring. In layered decoding,

CNBs decode a codeword sequentially layer by layer. At the end of each

subiteration, newly updated C2V messages are used to perform variable node

update immediately, and the updated variable-to-check messages are used in

CHAPTER 2. ALGORITHM AND ARCHITECTURE 19

subsequent subiterations. For any variable node Vn, instead of storing all V2C

messages Qn,m,∀m ∈M (n), only the total information Ln is maintained as

a running sum, which is updated in every subiteration.

2.7 A partly parallel architecture

Architectures proposed in [33], [34], [35], [36], [27], [37], and [38] are based

on the TPMP or its variants. This kind of architectures are good candidates

for application-speci�c integrated circuit (ASIC), but they were not adopted

in the thesis work because it is complex to make them support multiple rates

and lengths, and they consume more hardware resource. The solution to this

thesis work is motivated by architectures presented in [32], [22], [23], [24],

[25], [28], [26], and [29], those architectures are based on layered decoding.

A decoder architecture for the example code in Table 2.2 is illustrated in

Figure 2.5. Sum memory stores total information Li
j at data lane j in

memory entry address i. The �rst row of the base matrix in Table 2.3 is

[b (0, 0) , b (0, 1) , b (0, 2) , b (0, 3)] = [1,−1, 1, 2], therefore, for check node C0
0 ,

(2.8), (2.9), and (2.10) lead to following equations: variable-to-check mes-

sages to C0
0 are restored as Q0,0

1,0

Q2,0
1,0

Q3,0
2,0

 =

 L0
1

L2
1

L3
2

−
 R0,0

0,1

R0,2
0,1

R0,3
0,2

 (2.11)

where check-to-variable messages R0,0
0,1, R

0,2
0,1, and R

0,3
0,2 are updated in previous

iteration. Check-to-variable messages are updated by R0,0
0,1

R0,2
0,1

R0,3
0,2

 =

 f
(
Q2,0

1,0, Q
3,0
2,0

)
f
(
Q0,0

1,0, Q
3,0
2,0

)
f
(
Q0,0

1,0, Q
2,0
1,0

)
 (2.12)

where f (x, y) , 2 tanh−1 (tanh (x/2) · tanh (y/2)). Finally, total information

CHAPTER 2. ALGORITHM AND ARCHITECTURE 20

Figure 2.5: Layered decoder: an example architecture

is updated by L0
1

L2
1

L3
2

 =

 Q0,0
1,0

Q2,0
1,0

Q3,0
2,0

+

 R0,0
0,1

R0,2
0,1

R0,3
0,2

 (2.13)

Vectors L0
0

L0
1

L0
2

 ,
 L2

0

L2
1

L2
2

 , and
 L3

0

L3
1

L3
2

are read out serially from address 0, 2, and 3 of sum memory, one vector out

of one memory entry per clock cycle. A shifter rotates vectors circularly and

upwards, respectively for b (0, 0) = 1 step, b (0, 2) = 1 step and b (0, 3) = 2

steps to obtain L0
1

L0
2

L0
0

 ,
 L2

1

L2
2

L2
0

 , and
 L3

2

L3
0

L3
1

CHAPTER 2. ALGORITHM AND ARCHITECTURE 21

The topmost elements of the 3 vectors, L0
1, L

2
1, and L3

2, are routed to the

topmost subtractor in serial to form a data stream. Like the memory access

to sum memory, c2v memory 0 is accessed for 3 times, so that old check-

to-variable messages R0,0
0,1, R

0,2
0,1, and R0,3

0,2 are read out and routed in serial

to the same subtractor to form another data stream. The two data streams

are synchronised, so that (2.11) can be done correctly at the subtractor.

The subtractor's output data stream Q0,0
1,0, Q

2,0
1,0, and Q

3,0
2,0 enters check node

decoder (CND) 0 as well as bu�er 0. CND 0 updates check-to-variable mes-

sages according to (2.12). Value reuse property introduced in Section 2.6.2 is

utilised, the updated messages R0,0
0,1, R

0,2
0,1 and R

0,3
0,2 are produced at the CND

0's output immediately after Q0,0
1,0, Q

2,0
1,0, and Q

3,0
2,0 enter into the decoder. Q

0,0
1,0,

Q2,0
1,0, and Q

3,0
2,0 are delayed by bu�er 0 in order to get synchronised with CND

0's output stream R0,0
0,1, R

0,2
0,1 and R0,3

0,2, and the two streams enter into the

adder which produces total information L0
1, L

2
1, and L

3
1, according to (2.13).

As shown in Figure 2.5, when CND 0 decodes on behalf of check node C0
0 ,

CND 1 and 2 decode respectively for C0
1 and C0

2 in parallel. The parallel

operations produce updated total information L0
1

L0
2

L0
0

 ,
 L2

1

L2
2

L2
0

 , and
 L3

2

L3
0

L3
1

The 3 vectors are shifted to obtain L0

0

L0
1

L0
2

 ,
 L2

0

L2
1

L2
2

 , and
 L3

0

L3
1

L3
2

before they are written back to sum memory's locations from which the old

total information vectors are read out. Writing back updated total informa-

tion completes one subiteration, and the subsequent subiteration can start

immediately.

Because messages enter into, and leaves from, a check node decoder in serial

CHAPTER 2. ALGORITHM AND ARCHITECTURE 22

Figure 2.6: Example decoder wave form, non-pipelined

Figure 2.7: Example decoder wave form, pipelined

manner, such a CND is said serial. The overall architecture is said partly

parallel due to multiple copies of CNDs. The parallelism factor is 3 in this

example, and all 3 check nodes in a CNB are processed simultaneously.

2.7.1 Improve throughput of the example architecture

The decoding throughput of the example architecture can be improved by

pipelining [22] and out-of-order memory-write [24].

The behaviour of the decoder in a subiteration can be abstracted as reading

sum memory for a number of clock cycles, and then writing sum memory for

a number of clock cycles, as shown in Figure 2.6. rn in the �gure stands for

�read memory address n�, wn means �write memory address n�, and possible

latencies are not shown in the waveform. The throughput can be increased

if memory read operation overlaps with preceding memory write operation,

as in Figure 2.7. Overlapping is allowed by using dual port memory. In this

example, complete overlap is not possible because write operation to address

0 (w0) must precede read operation to address 0 (r0). Check node decoder is

made serial and two-stage pipelined, so that memory read stage and memory

write stage can operate simultaneously on consecutive check node blocks.

CHAPTER 2. ALGORITHM AND ARCHITECTURE 23

Figure 2.8: Example decoder wave form, pipelined, out-of-order memory-
write

Out-of-order memory-write is illustrated by Figure 2.8. In this example,

during subiteration i, instead of writing messages back to memory in the

order of w0-w1-w2, writing sequence is w2-w0-w1. If the order w0-w1-w2 is

in use, no overlap can be achieved because w2 must precede r2.

2.7.2 Multi-size shifter

A number of architectures include shifter. Given a nonzero submatrix Hi,j =

(Pz)p, where 0 ≤ p < z, z is block size, for k = 0, 1, · · · , z − 1, check node

Ci
k is connected to variable node V j

(k+p mod z), and corresponding messages

on the edge are Qj,i
(k+p mod z),k and Ri,j

k,k+p mod z.

Suppose a partly parallel architecture has z check node decoders (CNDs)

operating in parallel, like the architecture given in Figure 2.5. Let z total

information messages Lj
k, k = 0, 1, · · · , z − 1, be stored together in one

memory entry j. A memory entry is divided to z data lanes indexed by

0, 1, · · · , z − 1. Data lane k in memory entry j stores Lj
k, in other words,

memory entry with address j stores a column vector
Lj

0

Lj
1
...

Lj
z−1

The message required by CND k is stored at lane (k + p mod z), and a

CHAPTER 2. ALGORITHM AND ARCHITECTURE 24

column vector of the messages for
CND0

CND1

...

CNDz−1

 is

Lj

0+p mod z

Lj
1+p mod z

...

Lj
z−1+p mod z

which is obtained by shifting

Lj
0

Lj
1
...

Lj
z−1

upwards and circularly for p step. Therefore a shifter is needed.

To handle codes with multiple block sizes, the shifter is required to shift �rst

z messages of a vector of Z messages, where z is the block size of a code,

and Z is the maximum of all block sizes. It is common to design block sizes

as multiples of the sizes of the smallest block. For instance, in this thesis

work, the block sizes are 12, 24, 36, 48 and 96, consequently, a shifter needs to

perform circular shift on as many as 96 messages for block size z = 96, but for

block size z = 48, the shifter operates on message 0, 1, · · · , 47, while messages

in lane 48, 49, · · · , 95 are ignored and can be processed in any manner.

In short, the di�culty of making such a shifter steps from the large number

of messages to shift, as well as the multi-size requirement.

2.7.3 Remove one shifter

In Figure 2.5 are two shifters: the left one locates in sum memory's memory-

read data path, the right one locates in sum memory's memory-write data

path.

CHAPTER 2. ALGORITHM AND ARCHITECTURE 25

The shifter in memory-write data path can be removed, and the correspond-

ing shift operation can be compensated by the left shifter in memory-read

path. Removal of the shifter reduces latency of decoding data path and

improves throughput. This technique is applied in some works such as [26].

Chapter 3

Proposed decoder architecture

In this chapter, the codes to be implemented are �rst speci�ed, and then the

decoding algorithm is formulated, and mapped to proposed hardware archi-

tecture using old techniques introduced in Chapter 2, as well as techniques

proposed in this thesis work.

3.1 De�nition of 15 LDPC codes

The codes to be implemented in this thesis are QC LDPC codes. 3 base

matrices are speci�ed respectively for code rate 1/2, 2/3, and 3/4, listed in

appendix A. Each base matrix can be expanded to 5 parity check matrices,

with block sizes of 12, 24, 36, 48 and 96. The modulo expansion method

described in Section 2.5 is used. All parity check matrices have nb = 48 block

columns, i.e., every codeword has 48 code bit blocks, hence code lengths are

576, 1152, 1728, 2304, and 4608. Number of block rows, mb, is 24 for rate

1/2 codes, 16 for rate 2/3, and 12 for rate 3/4. The 15 codes are enumerated

in appendix A as code 1, 2, · · · , 15.

26

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 27

3.2 Decoding algorithm

Initialisation is regarded as (−1)-th iteration, described asL
(−1)
n = Lc,n ∀n ∈ N

R
(−1)
m,n = 0 ∀m ∈M,∀n ∈ N (m)

Decoding proceeds iteration by iteration. An iteration consists of mb subit-

erations, executed sequentially from check node block (CNB) 0 to mb − 1.

Let (it) be the iteration index, i be the subiteration index, Mi the set of

check nodes in CNB i, and let quantities updated in the it-th iteration be

labelled with superscript (it). A subiteration includes following sequential

operations.

1. restore variable-to-check messages, ∀m ∈Mi, n ∈ N (m):

Q(it)
n,m = L(it−1)

n −R(it−1)
m,n (3.1)

2. check node update, sign processing and magnitude processing respec-

tively, ∀m ∈Mi, n ∈ N (m):

sign
(
R(it)

m,n

)
= Π

j∈N (m)\n
sign

(
Q

(it)
j,m

)
(3.2)∣∣R(it)

m,n

∣∣ = min
j∈N (m)\n

({∣∣∣Q(it)
j,m

∣∣∣ : j ∈ N (m) \n
})

(3.3)

3. magnitude correction, down scale the magnitude by factor of β = 0.8,

∀m ∈Mi, n ∈ N (m):

∣∣R(it)
m,n

∣∣ = β ·
∣∣R(it)

m,n

∣∣ (3.4)

4. update total information, ∀m ∈Mi, n ∈ N (m):

L(it)
n = Q(it)

n,m +R(it)
m,n (3.5)

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 28

substitution of (3.1) into (3.5) gives

L(it)
n = L(it−1)

n +
(
R(it)

m,n −R(it−1)
m,n

)
= L(it−1)

n + ∆R(it)
m,n (3.6)

it implies that check node update improves total information of every

codeword bit iteration by iteration.

Following stop condition is evaluated sequentially at the end of each iteration:

1. make hard decision, ∀n ∈ N : ĉn =

0 L
(it)
n ≥ 0

1 L
(it)
n < 0

2. decoding converges if H ĉT = 0, where ĉ , (ĉ0ĉ1 · · · ĉN−1), exit decoding

3. if it = 20, decoding fails, exit decoding

4. continue to next iteration: it = it+ 1

3.3 Proposed design techniques

In addition to the techniques presented in literature and summarised in Chap-

ter 2, some other techniques not found in literature are employed in the thesis

work, explained in this section.

3.3.1 Out-of-order memory-read

Out-of-order memory-write introduced in Section 2.7.1 improves throughput.

The example given in Figure 2.8 can be further improved by using also out-

of-order memory-read, as shown in Figure 3.1. When processing CNB i+ 1,

in stead of using read order r2-r3-r4, the order in use is r3-r4-r2, and in this

arrangement, the idle cycle in Figure 2.8 can be removed.

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 29

Figure 3.1: Example decoder wave form, pipelined, out-of-order memory-
write and -read

If memory entry j is to be accessed in both subiteration i and its subsequent

iteration i + 1, it is written in the beginning of memory write operation in

subiteration i, and is read in the end of memory read operation in subiteration

i + 1. This technique is useful because the data path generally has latency

of some clock cycles, which is not illustrated in Figure 2.8 and Figure 3.1.

3.3.2 Two-stage shifter

A multi-size shifter is needed, as described in Section 2.7.2. A two-stage

shifter is presented in this thesis, illustrated by the following example. As-

sume block sizes are 3, 6, and 9. The input and output ports of the shifter

are 9-message wide, and messages are viewed as a column vector, indexed

from top to bottom by 0, 1, · · · , 8.

Suppose current block size is z = 6, shifting step is p = 4, i.e., the shifter

is required to shift elements 0 through 5 circularly upwards for 4 positions,

and ignores the elements 6 through 8.

The process is shown in Table 3.1. In Table 3.1 (a), column vector [0, 1, · · · , 8]T

is reshaped to 3 columns as a 3× 3 table, with column and row indexed by

0, 1, and 2. In general, block sizes are multiples of the smallest block size

zmin, and the number of rows of a table equals to the smallest block size zmin.

In this example, shifting step is p = 4, it is seen that element 4 locates in

row ip = 1 and column jp = 1 in Table 3.1 (a). Table 3.1 (b) is obtained by

left-shifting all rows in Table 3.1 (a) circularly, however, only the leftmost

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 30

column 0
↓ column 1
↓

row 0 → 0 3 6 0 3 × (4) 1 ×
row 1 → 1 (4) 7 (4) 1 × 5 2 ×
row 2 → 2 5 8 5 2 × 0 3 ×

(a) (b) (c)

Table 3.1: Illustration: shifter

z/zmin elements in each row are subjected to shift operation when z < Z,

where Z is the maximum block size, and other elements are ignored, shown

as symbol × in the tables. Shift step for row 0 through ip−1 is jp +1, in this

example, row 0 is left-shifted circularly for 2 steps. Shift step for the rest

of rows is jp, in this example, row 1 and 2 in Table 3.1 (a) are left-shifted

circularly for 1 step. Table 3.1 (c) is obtained by up-shifting all columns

in Table 3.1 (b) circularly for jp steps, i.e., all columns in Table 3.1 (b) are

up-shifted circularly for 1 step. Finally, Table 3.1 (c) is reshaped back to a

column vector, and the shifter realises the required shifting as

[0, 1, 2, 3, 4, 5,×,×,×]T → [4, 5, 0, 1, 2, 3,×,×,×]T

The shifting is done �rst row-wise and then column-wise, and it is a two-stage

shifter.

3.3.3 Iteration termination

Evaluation of stop criterion given in Section 3.2 requires computing H ĉT and

compare it with a long zero vector in the end of each iteration. This method

leads to high computational complexity and latency.

The decoder implemented in this thesis work checks convergence in serial

manner: at the end of subiteration i, new hard decisions for all bits decoded

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 31

by CNB i are compared with the old hard decisions produced in previous

iteration. Decoder checks if all those decisions are equal, also checks if all

decisions satisfy all the parity check constraints in this CNB. A one bit �ag is

set to 1 if and only if both conditions are true, otherwise cleared to 0. With

one �ag corresponding to one CNB, mb �ags make up a register, where mb

is the number of CNBs of a code. If all �ags in the register are set to 1's in

the end of a subiteration, then decoding is regarded converged.

3.4 Decoder core

3.4.1 Operation overview

Main part of decoder architecture is shown as decoder core in Figure 3.2.

The implementation is similar to the example given in Section 2.7.

The algorithm described in Section 3.2 is mapped to hardware resources as

follows. Total information Ln, n ∈ N , stored in sum memory, is read out from

the memory and rotated by a shifter to get aligned with check node decoders

(CNDs). The subtractors implement (3.1) to restore variable-to-check (V2C)

messages. A CND implements min-sum algorithm with scaling factor cor-

rection, which is described by (3.2), (3.3) and (3.4). The adders implement

(3.5) to update total information. Suppose a CND performs computation on

behalf of check node m ∈M, the V2C messages Qn,m, n ∈ N (m), are saved

in the bu�er accompanying that CND for a short while, and then read out

synchronously with the check-to-variable (C2V) messages updated by that

CND, and the two message streams are routed to the adder next to that

CND. Also saved in that bu�er are hard decisions of bits n ∈ N (m) pro-

duced in previous iteration, which are compared with the new decisions based

on total information updated in current iteration. The comparison is done

by a terminator, which evaluates stop criteria and terminates the decoding

process when necessary. The C2V messages updated in current iteration are

saved into c2v memory for use in subsequent iterations. In the beginning

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 32

Figure 3.2: Decoder core

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 33

L0
0 L1

0 · · · L47
0 row 0

L0
1 L1

1 · · · L47
1 row 1

...
...

. . .
...

...
L0

z−1 L1
z−1 · · · L47

z−1 row z − 1
column 0 column 1 · · · column 47

Table 3.2: Total information organised as columns

of current iteration, messages in c2v memory are C2V messages updated in

previous iteration.

The maximum of block sizes {12, 24, 36, 48, 96} is 96. Each section of the

data path in Figure 3.2 operates in parallel on 96 messages. Those messages

are viewed as elements of a column vector, indexed from top to bottom by

0, 1, · · · , 95. For example, the data ports of sum memory are 96-message

wide, so that total information of nodes pertaining to a variable node block

(VNB) can be stored in one memory entry, and accessed in parallel in one

clock cycle. There are 96 identical subtractors, CNDs, bu�ers, and so on. If

block size z is less than 96, only messages 0, 1, · · · , z−1 are under meaningful

operation.

Next, each part of the decoder is brie�y discussed.

3.4.2 Sum memory

A codeword is divided to 48 blocks. A vector of total information

[
L0

0, L
0
1, · · · , L0

z−1, L
1
0, L

1
1, · · · , L1

z−1, · · · , L47
0 , L

47
1 , · · · , L47

z−1

]
is reshaped to 48 columns as shown in Table 3.2. The sum memory in Figure

3.2 is 48 entries deep and 96 lanes wide. The memory layout is shown by

Table 3.3, in which mi,j denotes memory location at address j and lane i.

Table 3.2 is loaded to sum memory by saving Lj
i to memory location mi,j,

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 34

address 0 address 1 · · · address 47
lane 0 m0,0 m0,1 · · · m0,47

lane 1 m1,0 m1,1 · · · m1,47
...

...
...

. . .
...

lane 95 m95,0 m95,1 · · · m95,47

Table 3.3: Sum memory

0 ≤ i ≤ z − 1, 0 ≤ j ≤ 47. One memory entry stores a message block of 48

messages, when z < 96, only message 0 through z − 1 are valid.

3.4.3 Dual port memory

The sum memory is a simple-dual port memory, with one port dedicated to

write access and the other for write access. The two ports operate simulta-

neously, when read port sends out data for subiteration i, write port is able

to receive data of previous subiteration.

Similarly, the c2v memory is also a dual port memory.

3.4.4 Multi-size shifter

In subiteration i, if submatrix Hi,j is not a null matrix, the 96 CNDs access

message block at address j in sum memory. The topmost z messages in the

message vector out of the sum memory are shifted cyclically to get aligned

with check node decoders, as described in Section 2.7.2. The two-stage shifter

proposed in Section 3.3.2 is implemented as in Figure 3.3. The 96 messages

are viewed as elements of Table 3.4. Firstly, each of the 12 rows of the

table are shifted, and then, each of the 8 columns are shifted. A register

separates row operation and column operation, so that the shifter is two-

stage pipelined.

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 35

Figure 3.3: Shifter, top level

Lj
0 Lj

12 · · · Lj
84 row 0

Lj
1 Lj

13 · · · Lj
85 row 1

...
...

. . .
...

...

Lj
11 Lj

23 · · · Lj
95 row 11

column 0 column 1 · · · column 7

Table 3.4: A message block viewed as table

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 36

Figure 3.4: Shifter, horizontal shifter

Because the 5 block sizes {12, 24, 36, 48, 96} are multiples of 12, only the

(z/12) leftmost columns in Table 3.4 are valid. Consequently, only the (z/12)

leftmost messages in a message row are subjected to circular shift operation.

Figure 3.4 presents structure of a row shifter, which contains 5 subshifters.

A subshifter labelled with number n performs leftwards circular shift on the

n leftmost messages, ignoring the rest of the messages. Therefore, subshifter

1 is dummy, it lets the leftmost message pass and ignores others, subshifter

2 either lets the 2 leftmost messages pass or swaps them, ignoring the rest,

and so forth. The step for shifting is given by signal sh, which stands for step

for horizontal shift. As shown in Figure 3.3, sh is driven by a multiplexer

selecting sh1 or sh2, the usage of the two values is described in Section 3.3.2.

12 multiplexers are controlled by signals sel0, · · · , sel11. The column shifters

in Figure 3.3 are controlled by signal sv, which stands for step for vertical

shift.

A column shifter and a subshifters in a horizontal shifter can be implemented

as logarithm shifter. Figure 3.5 presents an example of a log shifter. log2 8 =

3 stages of 2-input multiplexers are needed to implement circular upwards

shifter on 8 elements. The bold lines show the path for shift step of 6.

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 37

Figure 3.5: Example, log shifter

Figure 3.6: Check node decoder, pipelined, sample waveform

3.4.5 Check node decoder (CND)

The main part of the decoder core is a column of 96 CNDs, indexed from

top to bottom by k = 0, 1, · · · , 95 in Figure 3.2. During subiteration i,

CND k performs check node update on behalf of check node Ci
k. A CND

is serial (Section 2.7), pipelined (Section 2.7.1), using out-of-order memory-

write (Section 2.7.1) and out-of-order memory-read (Section 3.3.1). Figure

3.6 presents sample waveforms to illustrate the behaviour of a CND, and

Figure 3.7 presents its structure, which is explained next.

A counter in control block generates indices 0, 1, · · · , ρi − 1 for incoming

messages, where ρi is degree of check nodes in CNB i. Messages are inte-

gers, taking two's complement format outside of CNDs, and sign-magnitude

format inside a CND. A converter at input converts a message from two's

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 38

Figure 3.7: Check node decoder (CND) structure

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 39

complement format to sign-magnitude format, and another converter does

the converse at output. A column of registers in the middle of Figure 3.7 are

grouped to set (a) and set (b). When one set is used to process incoming

messages, the other can be used to produce outgoing messages pertaining to

previous subiteration. First minimum m1, second minimum m2, and index

ind for the �rst minimum (refer to Section 2.6.2), are hold in registers named

m1, m2 and ind, respectively.

Magnitude processing

At the beginning of each subiteration, register m1 and m2 are initialised to

the largest values they can hold . As messages enters into a CND one by one,

those registers are updated by the �nder module. Let mag be the current

magnitude at �nder's input, ind be its index, m1 and m2 be the current

values in the respective registers, and 3 cases are enumerated:
case A: mag ≤ m1

case B: m1 < mag ≤ m2

case C: mag > m2

In case A, mag is saved to m1 register, m1 is saved to m2 register, and ind is

saved to ind register; in case 2, mag is saved to m2 register, and the other two

registers are unchanged; in case 3, all registers are unchanged. The registers

are used to produce C2V messages as described in (2.7), which is reproduced

below

output magnitude of message with index j is:

m2 j = ind

m1 j 6= ind

where the index j = 0, 1, · · · , ρi − 1 is driven by the control block, as shown

in Figure 3.7.

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 40

Sign processing

Equation (3.2) can be written as

sign
(
R(it)

m,n

)
= sign

(
Q

(it)
j,n

)
Π

j∈N (m)
sign

(
Q

(it)
j,m

)
The sign function returns real value ±1. In two's complement representa-

tion, a sign bit of 1 indicates negative number, and 0 indicates non-negative

number. Product of ±1 in the equation are translated to binary sum over

binary �eld {0, 1}, implemented by XOR logic operator in hardware. When

messages step into a CND one by one, their sign bits are saved in a bu�er

memory as shown in Figure 3.7, indices of messages serve as addresses to the

bu�er. The sum register in Figure 3.7 is a 1-bit �ip�op, which is cleared to

zero at the beginning of each subiteration, and then stores the running sum

of sign bits. To produce the sign bit for output check-to-variable message

with index j, the sign bit saved in bu�er memory at address j is read out and

added to the value in sum �ip �op to produce the required sign bit. Addition

is done by the adder in the upper-right corner in Figure 3.7.

Out-of-order memory access

Address sequences for all memory access in the decoder can be determined

by inspecting base matrices in design time, as described in Section 2.7.1 and

Section 3.3.1. Address sequences are saved in on-chip memories.

3.5 Overall architecture with dual bu�er

It takes time to initialise the sum memory in Figure 3.2, and also takes time

to output decoded result from the memory to decoder user. A dual bu�er

con�guration can hide the time and improve throughput. Figure 3.8 presents

decoder core equipped with dual bu�ers. When one memory is in decoding

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 41

Figure 3.8: Decoder with dual bu�er

mode, it is connected with decoder core, which reads out and writes back

data to this memory. Meanwhile, the other memory can operate in input-

output (IO) mode, it is connected with IO control block, which sends out

decoded data to decoder user, or accepts next received codeword data to

initialise the memory.

For the reason illustrated in Section 2.7.3, the decoder core presented in Fig-

ure 3.2 includes only one shifter. Consequently, the IO block shown in Figure

3.8 includes another shifter, which pre-shifts messages before iteration starts

during input mode and post-shifts messages during output mode. Control

bits supplied to this shifter is stored in memory.

The target Xilinx FPGA chip provides Block SelectRAM memory and Dis-

tributed SelectRAM memory [39]. Most memories in the decoder are built

with the former memory type, and the bu�ers in Figure 3.2 are built with

the latter type. The Xilinx block memory can be con�gured to dual port

mode.

A number of memories in the decoder are used to store memory access ad-

dresses. Details of memory addressing is out of scope of thesis writing. The

basic idea is that, the code structure is re�ected by memory address se-

quences, and it is possible to modify those address sequences so that the

implementation can adapt to other codes, as long as the new codes are not

far di�erent.

CHAPTER 3. PROPOSED DECODER ARCHITECTURE 42

3.6 Fixed-point issues

Most parts of data path in Figure 3.2 are two's complement integers repre-

sented by 5 bits, and total information messages are 8 bits wide. A subtractor

has two outputs, the message entering into a bu�er is 8 bits wide, and the

other going to a CND is 5 bits wide. The adder output is 8 bits wide. Sub-

tractor and adder outputs are clipped.

The input data to the hardware decoder are LLR values which are also coded

in format of two's complement integers. As shown in Figure 2.1, the received

signal r is assumed as real valued signal, and consequently LLRs are also real

valued. Quantisation is needed to convert real valued LLR values to two's

complement integers with �nite digits. An interval is determined, and real

valued LLR values falling into this interval are quantised to 5 bits integers.

Real valued LLRs outsides the interval are clipped to the boundary values

of the interval. The selected interval in simulation is

[
−2/σ2 − 3× (2/σ) , 2/σ2 + 3× (2/σ)

]
where σ² is noise power. Interval of this size covers over 99% LLR values.

Decoding performance is related to size of the quantisation interval, as well

as number of bits of each section of data path in the hardware. MATLAB

�xed-point simulation determines input quantisation interval and widths of

sections of data path. Detailed discussion of �xed-point modelling and sim-

ulation is omitted due to lack of space.

Chapter 4

Results

The architecture proposed in Chapter 3 was implemented in the FPGA de-

vice. The implementation results are reported in this chapter.

4.1 Introduction to design �ow

Implementing demanding algorithms to hardware is a complex procedure.

This section presents a simpli�ed design �ow consisting of most important

steps only. Detailed discussion is out of the scope. The hardware design

work �ow is generally iterative, one needs revert to earlier steps if result of

current step does not meet requirement.

1. The thesis work starts with understanding design requirement. Codes

are speci�ed, system requirements are formulated, target hardware de-

vice is studied.

2. During literature review, various algorithms are studied, a variety of

hardware architecture presented in literature are summarised.

43

CHAPTER 4. RESULTS 44

3. Next, algorithms is chosen and draft hardware architecture is made.

This is the step requiring creativity and experience. Decoding through-

put and consumed hardware resource are roughly estimated to check if

the architecture satis�es system requirement.

4. Fixed-point modelling is done for the drafted architecture. Number of

bits for each variable is determined by �xed-point simulation. Simu-

lation also validates the error correction performance, and the result

should be checked against system requirement. One must revert to ear-

lier steps to modify architecture, or even change to another algorithm,

if current one does not meet the system requirement. This step is done

with MATLAB.

5. Following MATLAB simulation, a detailed hardware implementation

speci�cation is made. The overall hardware entity is partitioned to sub

blocks. Interfaces of blocks and their communications between blocks

are formulated, and documented with diagrams and text.

6. VHDL coding is done according to the speci�cation. VHDL stands

for very-high-speed-integrated-circuit hardware description language,

which is used to describe functionality of a digital hardware entity.

7. VHDL models are simulated and debugged with ModelSim software.

8. VHDL model is veri�ed by simulation using reference data. Reference

data are obtained from MATLAB simulation of the �xed-point MAT-

LAB model. Output of VHDL simulation must agree with output of

MATLAB simulation.

9. The task of generating hardware net list from VHDL model is called

synthesis. Net list is a low level description of digital electronics hard-

ware, specifying what elementary hardware resource are used and how

they are connected. For example, a net list may speci�es how logical

gates are connected. The synthesis software utilised in this thesis work

is Synplify Pro. Given synthesis result, more accurate estimation such

CHAPTER 4. RESULTS 45matlab fixed point: rate 1 ,2 & 3, different block size, 3 sigma, biased, 8 bits variable sum message, 5
bits input LLR

1,0E05

1,0E04

1,0E03

1,0E02

1,0E01

1,0E+00
0 0,5 1 1,5 2 2,5 3 3,5

EbNo (dB)

co
de

 w
or

d
er

ro
r r

at
io

r 1/2 z 12 sigma 3 biased
r 1/2 z 24 sigma 3 biased
r 1/2 z 36 sigma 3 biased
r 1/2 z 48 sigma 3 biased
r 1/2 z 96 sigma 3 biased
r 2/3 z 12 sigma 3 biased
r 2/3 z 24 sigma 3 biased
r 2/3 z 36 sigma 3 biased
r 2/3 z 48 sigma 3 biased
r 2/3 z 96 sigma 3 biased
r 3/4 z 12 sigma 3 biased
r 3/4 z 24 sigma 3 biased
r 3/4 z 36 sigma 3 biased
r 3/4 z 48 sigma 3 biased
r 3/4 z 96 sigma 3 biased

Figure 4.1: Error correction performance

as hardware size and decoding throughput can be obtained. Optimi-

sation within synthesis step can improve the result to certain degree.

One must revert to early steps if the result does not meet requirement.

10. There are other tasks left in a complete implementation �ow. For

example, the procedure of generating �nal physical layout from net list

is called place and routing, and post-synthesis optimisation. The wide

sense synthesis also includes this step. This step is not emphasised in

the thesis work, as it is out of the scope of the thesis.

4.2 Error correction performance

Fixed-point model was developed and simulated using MATLAB. It is not

presented in this thesis due to lack of space. Error correction performance

is validated by MATLAB �xed-point simulation. The curves are shown in

Figure 4.1. 15 codes are presented in the �gure. For example, legend �r 1/2

z 12� refers to a code of rate 1/2 and block size 12.

CHAPTER 4. RESULTS 46

The simulation collects 20 error codewords at each signal to noise ratio (SNR)

point. SNR is measured in dB of Eb/N0, where Eb is energy per information

bit, and N0/2 = σ². The performance is measured in codeword error ratio,

rather not bit error ratio.

4.3 VHDL design, veri�cation, and synthesis

The implementation is described by multiple �les in very-high-speed-integrated-

circuit hardware description language (VHDL [40]). VHDL codes are written

in fully synthesizable register transfer level (RTL). VHDL �les are not pre-

sented in this thesis due to lack of space.

The VHDL design is veri�ed by ModelSim simulation using testing vectors

captured from MATLAB �xed-point simulation. It is veri�ed that output

from VHDL model and MATLAB �xed-point simulation are exactly the

same.

XC2VP50-5F1152 [39, 41], a Xilinx Virtex II Pro FPGA chip, was selected

as target device. Trail synthesis of the VHDL design was performed using

Synplify Pro with default setting. It is estimated that about half of logic re-

source on XC2VP50-5F1152 chip is consumed, and clock frequency is around

70 MHz.

4.4 Decoding throughput

For the proposed architecture in this thesis work, throughput varies depend-

ing on channel noise, code rate, and codeword length. When SNR is low,

more iterations are needed and throughput is low. When the number of

decoding iterations and codeword length are �xed, code with higher rate

produces higher throughput. When the number of decoding iterations and

code rate are �xed, code with larger block size produces higher throughput.

CHAPTER 4. RESULTS 47

block size (codeword length)
12 (576) 24 (1152) 36 (1728) 48 (2304) 96 (4608)

rate 1/2 0.0755 0.1511 0.2266 0.3021 0.6042
rate 2/3 0.1011 0.2023 0.3034 0.4045 0.8091
rate 3/4 0.1119 0.2237 0.3356 0.4474 0.8949

Table 4.1: Decoding throughput (decoded bits per clock cycle, 20 iterations)

12 24 36 48 96
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

block size (12, 24, 36, 48, 96)

de
co

de
d

bi
ts

 p
er

 c
lo

ck
 c

yc
le

throughput at 20 iterations

rate 1/2
rate 2/3
rate 3/4

Figure 4.2: Decoding throughput

20 iterations are performed in the worst case. Number of clock cycles to

run 20 iterations are counted in ModelSim simulation of the VHDL designs:

codes of rate 1/2 require 3813 clock cycles, rate 2/3 codes require 3797 clock

cycles, rate 3/4 codes require 3862 clock cycles. Throughput at 20 iterations

is the ratio of number of information bits of a codeword over number of clock

cycles for 20 iterations. Throughput for 15 codes at 20 iterations, measured in

decoded information bits per clock cycle, are presented in Table 4.1, drawn

in Figure 4.2. In this worst case, highest throughput is obtained by rate

3/4 code of block size 96, it is about 0.9 information bits per cycle; lowest

throughput is about 0.075 information bits per clock cycle obtained by rate

1/2 code of block size 12. Other rates and block sizes lead to throughput in

CHAPTER 4. RESULTS 48

between 0.075 bits/cycle and 0.9 bits/cycle.

The throughput increases when the number of iterations drops if channel is

good. For instance, when iteration number drops from 20 to 10, the through-

put will be doubled to reach 0.15 to 1.8 bits per cycle.

Assuming 70 MHz clock frequency, the worst case throughput at 20 iteration

translates to throughput ranging from 5.2 Mbits to 63Mbits (information

bits) per second. If the number of iterations drop to 10 from 20 due to good

channel quality, the throughput will be doubled to reach 10 Mbits to 120

Mbits. Average throughput of a given code depends on the average number

of iterations as well as the code parameters.

Chapter 5

Conclusion

The results presented in Chapter 4 are discussed in this chapter. The result

are evaluated, limit and future work are pointed out.

The objective of the thesis work are met successfully. The consumed hard-

ware resource is within the design constraint. The worst case throughput at

20 decoding iterations is 0.075 to 0.9 information bits per clock cycle. Corre-

sponding throughput at 70 MHz clock frequency is 5.2 Mbits to 63 Mbits per

second. The decoder is real-time con�gurable such at any of the 15 codes can

be decoded. Comparing performance curves in Figure 4.1 and reference �g-

ures in appendix B shows that performance degradation is acceptably small.

The design can be further improved for smaller hardware size and higher

throughput.

The class of LDPC codes is large, and there has not been a universal hard-

ware decoder suitable for many applications. The decoder architecture pre-

sented in this thesis is constrained by limited amount of FPGA resource, and

throughput is sacri�ced to trade for hardware resource. The architecture as-

sumes codes like those de�ned in appendix A, and it is not likely to �t to

other codes which are far di�erent.

Optimisation for speed and hardware cost have not yet been highlighted

in the thesis work. Improvements can be done in following aspects. re-

49

CHAPTER 5. CONCLUSION 50

synthesise VHDL �les with higher optimisation e�ort and apply synthesis

techniques. Currently it is synthesised only with default settings. Insert reg-

isters into critical path can increase clock frequency. However, More e�ective

approach is to modify part of the logic design. For example, handshaking

is used in the decoding data path. In fact, the values of handshaking sig-

nals can be determined in design time, therefore, the handshaking can be

removed. The removal shortens current critical path signi�cantly, thus in-

creases clock frequency and throughput signi�cantly. A second example is

to reduce amount of memory. For check node Cm of degree dm, in current

implementation, all dm check-to-variable (C2V) messages updated by Cm are

saved in c2v memory. Those messages can be compressed by applying the

value reuse property (Section 2.6.2) as in [29], so that large amount of mem-

ory can be saved. Reduction in memory reduces hardware size and increases

clock frequency and throughput. Thirdly, some ine�cient logic design can be

corrected to save hardware and increase clock speed. For example, the shifter

in IO block performs post-shifting (refer to Section 3.5), and the needed con-

trol bits are saved in a memory block in decoding core, rather not locally

in IO block. Each time decoding core writes messages to an entry of sum

memory, it reads out control bits from its local memory and writes them to-

gether with messages to the target memory entry in sum memory. In a more

e�cient way, the storage of those control bits can be moved to IO block, so

that extra memory and data movement can be avoided

In summary, a partly parallel LDPC decoder hardware architecture was de-

signed and implemented successfully in this thesis work. Various design tech-

niques are reviewed in the thesis, and some new techniques are proposed.

Thesis objective are met, and further improvements have been pointed out.

The architecture can be applied to similar codes. The implementation can be

reused for other codes which are not far di�erent, by merely updating con-

tents in read-only-memories (ROMs). LDPC codes will be widely adopted,

research and development on implementing decoders continue. This thesis

provides useful information for practical design tasks.

Appendix A

Base matrices for 15 LDPC codes

The base matrices for codes of rate 1/2, 2/3, and 3/4 are given in Figure A.1,

A.2, and A.3, respectively. All 15 codes, corresponding to block sizes of 12,

24, 36, 48, and 96, can be obtained by modulo expansion method described

in Section 2.5.

The 15 codes are enumerated in the following list. For example, the �rst line

reads as: code 1 is a (n, k) = (576, 288) code of rate r = 1/2 with block size

z = 12 and codeword length N=576.

1. (576, 288) code: rate 1/2, block size 12, word length 48x12= 576

2. (1152, 576) code: rate 1/2, block size 24, word length 48x24= 1152

3. (1728, 864) code: rate 1/2, block size 36, word length 48x36= 1728

4. (2304, 1152) code: rate 1/2, block size 48, word length 48x48= 2304

5. (4608, 2304) code: rate 1/2, block size 96, word length 48x96= 4608

6. (576, 384) code: rate 2/3, block size 12, word length 48x12= 576

7. (1152, 768) code: rate 2/3, block size 24, word length 48x24= 1152

51

APPENDIX A. BASE MATRICES FOR 15 LDPC CODES 52

工作表1

页 1

0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 1 0 -1

-1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 0 0 -1

-1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 31 -1 14 -1 81 -1 -1 -1 -1 0 0 -1

-1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 16 84 -1 -1 39 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 72 -1 78 73 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 17 -1 71 -1 -1 -1 68 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 13 -1 -1 -1 17 16 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 62 3 -1 -1 -1 -1 87 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

79 -1 -1 -1 -1 -1 -1 -1 -1 59 -1 -1 -1 -1 -1 -1 -1 -1 -1 92 2 -1 76 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 73 -1 -1 -1 -1 -1 -1 -1 83 -1 -1 23 -1 25 -1 90 -1 37 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 36 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 91 82 11 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 22 -1 51 -1 -1 -1 -1 -1 -1 65 19 -1 -1 -1 74 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 30 -1 -1 -1 13 -1 -1 -1 -1 -1 -1 -1 -1 93 -1 89 2 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 55 -1 -1 -1 -1 -1 -1 37 30 -1 26 28 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 74 20 -1 -1 -1 67 35 -1 -1 89 25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

61 -1 76 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 66 -1 -1 50 -1 15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 83 -1 -1 83 89 -1 77 36 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 43 -1 -1 -1 -1 -1 -1 45 -1 -1 -1 -1 65 -1 -1 67 56 -1 85 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 37 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 84 43 35 -1 -1 87 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1

-1 21 90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 20 31 -1 37 -1 12 -1 0 0 -1 -1 -1

-1 -1 -1 92 -1 -1 -1 -1 -1 -1 56 65 -1 -1 -1 -1 -1 -1 -1 -1 58 69 -1 51 -1 0 0 -1 -1

-1 -1 -1 -1 57 -1 19 -1 -1 -1 -1 -1 -1 -1 -1 -1 28 -1 -1 5 -1 55 88 -1 0 0 -1

-1 91 -1 -1 -1 -1 -1 22 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 35 2 -1 95 53 -1 0 0

-1 -1 -1 -1 -1 -1 -1 -1 45 -1 -1 -1 -1 -1 -1 85 -1 45 -1 -1 40 66 7 -1 1 -1 0

Figure A.1: Base matrix, rate 1/2

工作表2

页 1

0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 57 -1 -1 0 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 0 -1 0 -1 -1 -1 -1 -1 1 88 -1 -1 -1 -1 -1 58 31 25 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 37 47 -1 -1 -1 14 4 -1 87 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 82 33 -1 69 89 55 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 29 -1 -1 -1 -1 10 -1 -1 -1 -1 -1 -1 74 81 -1 -1 -1 -1 36 -1 3 -1 -1 -1 -1 -1 10 73 -1 -1 92 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

31 -1 -1 27 -1 -1 -1 -1 -1 -1 -1 -1 51 68 -1 43 54 -1 -1 -1 -1 -1 66 -1 -1 -1 -1 93 62 -1 14 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 29 -1 -1 -1 46 -1 1 82 -1 -1 -1 7 -1 79 -1 -1 -1 -1 -1 -1 -1 -1 72 92 62 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 81 -1 -1 -1 39 -1 -1 88 59 -1 -1 -1 -1 -1 -1 -1 -1 69 8 -1 -1 50 20 -1 -1 90 0 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1

-1 -1 18 -1 38 -1 -1 -1 58 -1 -1 -1 -1 74 29 -1 1 81 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 87 -1 84 63 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

94 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 41 47 -1 -1 -1 -1 -1 -1 53 -1 -1 -1 85 31 -1 37 -1 76 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1

-1 15 -1 -1 -1 -1 -1 -1 -1 46 -1 -1 -1 81 -1 68 -1 -1 -1 -1 89 -1 -1 75 -1 -1 -1 4 44 9 62 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1

-1 -1 -1 -1 -1 29 -1 -1 75 -1 49 -1 -1 -1 6 71 -1 85 -1 -1 -1 -1 -1 -1 -1 7 -1 93 40 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 -1 38 -1 73 -1 -1 -1 -1 -1 -1 -1 -1 84 6 -1 -1 -1 35 -1 -1 -1 -1 -1 -1 -1 57 24 -1 91 52 77 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1

-1 -1 -1 -1 -1 35 -1 18 -1 -1 -1 -1 -1 91 -1 17 -1 -1 -1 45 -1 -1 -1 -1 62 -1 -1 -1 -1 40 51 12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0

-1 -1 -1 21 -1 -1 -1 -1 -1 1 -1 -1 34 -1 -1 80 -1 -1 -1 -1 -1 6 -1 -1 -1 47 -1 81 -1 54 -1 22 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

Figure A.2: Base matrix, rate 2/3

工作表3

页 1

0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 3 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 0 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0 78 -1 -1 59 58 0 -1 -1 -1 -1 85 -1 24 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

29 -1 -1 -1 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 0 0 0 -1 0 31 78 -1 -1 -1 -1 -1 76 82 -1 -1 -1 38 51 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 85 -1 -1 -1 0 0 -1 -1 82 0 0 -1 -1 -1 -1 -1 -1 -1 0 -1 54 36 -1 -1 -1 -1 -1 -1 -1 33 45 91 56 16 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1

-1 31 -1 -1 -1 -1 -1 -1 0 0 -1 86 -1 -1 91 25 -1 -1 20 -1 -1 29 -1 39 -1 10 18 -1 -1 -1 -1 -1 -1 45 72 38 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1

-1 -1 27 -1 -1 -1 44 -1 -1 -1 50 55 -1 32 -1 -1 -1 -1 -1 9 -1 -1 4 18 -1 -1 -1 -1 -1 27 -1 2 -1 46 21 68 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

-1 42 -1 -1 -1 21 -1 -1 -1 -1 46 51 -1 -1 -1 -1 73 60 -1 -1 -1 33 76 79 48 -1 -1 57 -1 -1 -1 -1 -1 38 94 -1 0 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1

-1 -1 -1 8 67 -1 -1 -1 -1 82 28 34 2 -1 -1 37 -1 -1 -1 -1 -1 15 -1 23 -1 -1 -1 -1 -1 16 3 -1 -1 37 77 15 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1

70 -1 -1 -1 -1 -1 -1 77 -1 -1 11 20 -1 -1 67 -1 -1 -1 -1 -1 78 88 81 54 -1 -1 -1 3 -1 -1 -1 -1 1 -1 0 52 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 -1 -1 -1 -1 94 -1 -1 35 -1 32 29 -1 15 -1 -1 -1 2 -1 -1 -1 69 20 42 -1 -1 95 -1 10 -1 -1 39 -1 91 -1 67 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1

-1 -1 -1 65 -1 -1 -1 66 -1 26 62 7 -1 -1 -1 -1 -1 -1 84 29 -1 35 85 -1 -1 84 -1 -1 -1 -1 34 -1 49 14 31 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0

-1 -1 -1 -1 21 -1 48 -1 88 -1 -1 70 -1 -1 -1 -1 44 -1 -1 -1 23 41 61 91 35 -1 -1 -1 2 -1 -1 -1 -1 4 42 35 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

Figure A.3: Base matrix, rate 3/4

APPENDIX A. BASE MATRICES FOR 15 LDPC CODES 53

8. (1728, 152) code: rate 2/3, block size 36, word length 48x36= 1728

9. (2304, 1536) code: rate 2/3, block size 48, word length 48x48= 2304

10. (4608, 3072) code: rate 2/3, block size 96, word length 48x96= 4608

11. (576, 472) code: rate 3/4, block size 12, word length 48x12= 576

12. (1152, 864) code: rate 3/4, block size 24, word length 48x24= 1152

13. (1728, 1296) code: rate 3/4, block size 36, word length 48x36= 1728

14. (2304, 1728) code: rate 3/4, block size 48, word length 48x48= 2304

15. (4608, 3456) code: rate 3/4, block size 96, word length 48x96= 4608

Appendix B

Reference performance

Figure B.1, B.2, and B.3 are provided as decoding performance reference,

they are given by project partner designing the codes. AWGN channel and

BPSK modulation are used. Decoding is done by standard believe propaga-

tion algorithm with 50 iterations, and the data are obtained through �oating

point simulation. The hardware implementation uses less optimal algorithm

and is subjected to �xed-point e�ect, hence the performance of hardware

implementation is degraded. The �gures can be found in page 65 and 66 of

[42].

54

APPENDIX B. REFERENCE PERFORMANCE 55

Figure B.1: Codeword error ratio, rate 1
2
, BPSK, AWGN

Figure B.2: Codeword error ratio, rate 2
3
, BPSK, AWGN

APPENDIX B. REFERENCE PERFORMANCE 56

Figure B.3: Codeword error ratio, rate 3
4
, BPSK, AWGN

Bibliography

[1] C. Shannon, �A mathematical theory of communication,� The Bell Sys-

tem Technical Journal, vol. 27, pp. 379�423, 623�656, 1948.

[2] G. D. Forney and D. J. Costello, �Channel Coding: The Road to Channel

Capacity,� Proceedings of the IEEE, vol. 95, no. 6, pp. 1150�1177, June

2007.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, �Near Shannon limit

error-correcting coding and decoding: Turbo-codes. 1,� in IEEE In-

ternational Conference on Communications ICC 93. Geneva. Technical

Program, Conference Record, vol. 2, 23�26 May 1993, pp. 1064�1070.

[4] R. G. Gallager, �Low-density parity-check codes,� Ph.D. dissertation,

MIT, Cambridge, MA, 1963.

[5] D. J. C. MacKay and R. M. Neal, �Near Shannon limit performance of

low density parity check codes,� Electronics Letters, vol. 33, no. 6, pp.

457�458, 13 March 1997.

[6] D. J. C. MacKay, �Good error-correcting codes based on very sparse

matrices,� IEEE Transactions on Information Theory, vol. 45, no. 2,

pp. 399�431, March 1999.

[7] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, �Design of

capacity-approaching irregular low-density parity-check codes,� IEEE

Transactions on Information Theory, vol. 47, no. 2, pp. 619�637, Feb

2001.

57

BIBLIOGRAPHY 58

[8] S.-Y. Chung, J. Forney, G. D., T. J. Richardson, and R. Urbanke, �On

the design of low-density parity-check codes within 0.0045 dB of the

Shannon limit,� IEEE Communications Letters, vol. 5, no. 2, pp. 58�60,

Feb 2001.

[9] K. Gracie and M. H. Hamon, �Turbo and Turbo-Like Codes: Princi-

ples and Applications in Telecommunications,� Proceedings of the IEEE,

vol. 95, no. 6, pp. 1228�1254, June 2007.

[10] A. J. Blanksby and C. J. Howland, �A 690-mW 1-Gb/s 1024-b, rate-

1/2 low-density parity-check code decoder,� IEEE Journal of Solid-State

Circuits, vol. 37, no. 3, pp. 404�412, March 2002.

[11] R. Tanner, �A recursive approach to low complexity codes,� IEEE Trans-

actions on Information Theory, vol. 27, no. 5, pp. 533�547, Sep 1981.

[12] T. J. Richardson and R. L. Urbanke, �E�cient encoding of low-density

parity-check codes,� IEEE Transactions on Information Theory, vol. 47,

no. 2, pp. 638�656, Feb 2001.

[13] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, �Factor graphs and the

sum-product algorithm,� IEEE Transactions on Information Theory,

vol. 47, no. 2, pp. 498�519, Feb 2001.

[14] G. D. Forney, �Codes on graphs: normal realizations,� IEEE Transac-

tions on Information Theory, vol. 47, no. 2, pp. 520�548, Feb 2001.

[15] K. S. Andrews, D. Divsalar, S. Dolinar, J. Hamkins, C. R. Jones, and

F. Pollara, �The Development of Turbo and LDPC Codes for Deep-

Space Applications,� Proceedings of the IEEE, vol. 95, no. 11, pp. 2142�

2156, Nov. 2007.

[16] D. E. Hocevar, �LDPC code construction with �exible hardware imple-

mentation,� in Proc. IEEE International Conference on Communica-

tions ICC '03, vol. 4, 11�15 May 2003, pp. 2708�2712.

BIBLIOGRAPHY 59

[17] H. Zhong and T. Zhang, �Design of VLSI implementation-oriented

LDPC codes,� in Proc. VTC 2003-Fall Vehicular Technology Confer-

ence 2003 IEEE 58th, vol. 1, 6�9 Oct. 2003, pp. 670�673.

[18] ��, �Block-LDPC: a practical LDPC coding system design approach,�

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52,

no. 4, pp. 766�775, April 2005.

[19] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, �Reduced complex-

ity iterative decoding of low-density parity check codes based on belief

propagation,� IEEE Transactions on Communications, vol. 47, no. 5,

pp. 673�680, May 1999.

[20] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,

�Reduced-Complexity Decoding of LDPC Codes,� IEEE Transactions

on Communications, vol. 53, no. 8, pp. 1288�1299, Aug. 2005.

[21] J. Chen and M. P. C. Fossorier, �Near optimum universal belief propa-

gation based decoding of low-density parity check codes,� IEEE Trans-

actions on Communications, vol. 50, no. 3, pp. 406�414, March 2002.

[22] M. Karkooti, P. Radosavljevic, and J. R. Cavallaro, �Con�gurable, High

Throughput, Irregular LDPC Decoder Architecture: Tradeo� Analysis

and Implementation,� in Proc. International Conference on Application-

speci�c Systems, Architectures and Processors ASAP '06, Sept. 2006, pp.

360�367.

[23] Y. Sun, M. Karkooti, and J. R. Cavallaro, �High Throughput, Parallel,

Scalable LDPC Encoder/Decoder Architecture for OFDM Systems,� in

Proc. IEEE Dallas/CAS Workshop on Design, Applications, Integration

and Software, Oct. 2006, pp. 39�42.

[24] K. K. Gunnam, G. S. Choi, W. Wang, E. Kim, and M. B. Yeary, �Decod-

ing of Quasi-cyclic LDPC Codes Using an On-the-Fly Computation,� in

Proc. Fortieth Asilomar Conference on Signals, Systems and Computers

ACSSC '06, Oct. 29 2006�Nov. 1 2006, pp. 1192�1199.

BIBLIOGRAPHY 60

[25] K. K. Gunnam, G. S. Choi, and M. B. Yeary, �A Parallel VLSI Ar-

chitecture for Layered Decoding for Array LDPC Codes,� in Proc. th

International Conference on VLSI Design Held jointly with 6th Interna-

tional Conference on Embedded Systems, 6�10 Jan. 2007, pp. 738�743.

[26] K. Gunnam, W. Wang, G. Choi, and M. Yeary, �VLSI Architectures for

Turbo Decoding Message Passing Using Min-Sum for Rate-Compatible

Array LDPC Codes,� in Proc. 2nd International Symposium on Wireless

Pervasive Computing ISWPC '07, 5�7 Feb. 2007igital Object Identi�er

10.1109/ISWPC.2007.34 2007.

[27] Z. Wang and Z. Cui, �A Memory E�cient Partially Parallel Decoder Ar-

chitecture for Quasi-Cyclic LDPC Codes,� IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 15, no. 4, pp. 483�488,

April 2007.

[28] K. Gunnam, G. Choi, W. Wang, and M. Yeary, �Multi-Rate Layered

Decoder Architecture for Block LDPC Codes of the IEEE 802.11n Wire-

less Standard,� in Proc. IEEE International Symposium on Circuits and

Systems ISCAS 2007, 27�30 May 2007, pp. 1645�1648.

[29] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman,

�VLSI Architectures for Layered Decoding for Irregular LDPC Codes of

WiMax,� in Proc. IEEE International Conference on Communications

ICC '07, 24�28 June 2007, pp. 4542�4547.

[30] M. M. Mansour and N. R. Shanbhag, �Turbo decoder architectures for

low-density parity-check codes,� in Proc. IEEE Global Telecommunica-

tions Conference GLOBECOM '02, vol. 2, 17�21 Nov. 2002, pp. 1383�

1388.

[31] ��, �High-throughput LDPC decoders,� IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 976�996, Dec.

2003.

BIBLIOGRAPHY 61

[32] D. E. Hocevar, �A reduced complexity decoder architecture via layered

decoding of LDPC codes,� in Proc. IEEE Workshop on Signal Processing

Systems SIPS 2004, 2004, pp. 107�112.

[33] Y. Chen and D. Hocevar, �A FPGA and ASIC implementation of rate

1/2, 8088-b irregular low density parity check decoder,� in Proc. IEEE

Global Telecommunications Conference GLOBECOM '03, vol. 1, 1�5

Dec. 2003, pp. 113�117.

[34] M. Karkooti and J. R. Cavallaro, �Semi-parallel recon�gurable architec-

tures for real-time LDPC decoding,� in Proc. International Conference

on Information Technology: Coding and Computing ITCC 2004, vol. 1,

2004, pp. 579�585.

[35] Y. Chen and K. K. Parhi, �Overlapped message passing for quasi-cyclic

low-density parity check codes,� IEEE Transactions on Circuits and Sys-

tems I: Regular Papers, vol. 51, no. 6, pp. 1106�1113, June 2004.

[36] Z. Wang and Z. Cui, �Low-Complexity High-Speed Decoder Design for

Quasi-Cyclic LDPC Codes,� IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 15, no. 1, pp. 104�114, Jan. 2007.

[37] Z. Cui and Z. Wang, �E�cient Message Passing Architecture for High

Throughput LDPC Decoder,� in Proc. IEEE International Symposium

on Circuits and Systems ISCAS 2007, 27�30 May 2007, pp. 917�920.

[38] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, �An 8.29 mm2 52

mW Multi-Mode LDPC Decoder Design for Mobile WiMAX System in

0.13 um CMOS Process,� IEEE Journal of Solid-State Circuits, vol. 43,

no. 3, pp. 672�683, March 2008.

[39] Xilinx, Virtex-II Pro and Virtex-II Pro X FPGA User Guide, March

2007.

[40] P. J. Ashenden, The Designer's Guide to VHDL. Morgan Kaufmann

Publishers, 1995.

BIBLIOGRAPHY 62

[41] Xilinx, Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete

Data Sheet, 2007.

[42] S. Stiglmayr, �IST-4-027756 WINNER II D2.2.1-v1.0 Joint Modulation

and Coding Procedures,� Tech. Rep., 2006. [Online]. Available:

http://www.ist-winner.org/index.html

http://www.ist-winner.org/index.html

	Introduction
	LDPC decoder hardware implementation
	Scope of thesis
	Thesis organisation

	Algorithm and architecture
	System model
	Parity check matrices and graphs
	Encoding and decoding
	Message passing algorithms
	Quasi-cyclic (QC) LDPC code
	Approaches to reduce complexity
	A partly parallel architecture

	Proposed decoder architecture
	Definition of 15 LDPC codes
	Decoding algorithm
	Proposed design techniques
	Decoder core
	Overall architecture with dual buffer
	Fixed-point issues

	Results
	Introduction to design flow
	Error correction performance
	VHDL design, verification, and synthesis
	Decoding throughput

	Conclusion
	Base matrices for 15 LDPC codes
	Reference performance
	Bibliography

