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Abstract

Magnetoencephalography (MEG) enables noninvasive measurements of cerebral
activity with excellent temporal resolution, but localising the neural currents gen-
erating the extracranial magnetic fields admits no unique solution. By imposing
some mathematical constraints on the currents, reasonable solutions to this elec-
tromagnetic inverse problem can be obtained.

In this work, we adopt the statistical formulation of the inverse problem in
which the constraints are encoded as Bayesian prior probabilities. The prior is
combined with a statistical MEG observation model via Bayes’ theorem to yield
the posterior probability of the unknown parameters, that is the currents, given the
MEG data and modeling assumptions. Apart from the currents, the prior probabil-
ity density may contain further parameters which are subject to uncertainty. These
parameters are not related directly to the MEG observations and are called second-
level parameters or hyperparameters, giving the model a hierarchical structure.

The thesis considers hierarchical generalisations of the classical Minimum-
Norm and Minimum-Current Estimates (MNE and MCE). The MNE and MCE
are distributed source reconstruction methods from which the former is known to
produce spatially diffuse distributions and the latter more focal. The here studied
extensions of the MNE and MCE prior structures allow more general and flexible
modeling of distributed sources with properties in between MNE and MCE.

The first two studies included in this thesis involve more theoretical Bayesian
analyses on the properties of the hierarchical distributed source models and the
resulting inverse estimates. The latter two studies focus on validation of the mod-
els with empirical MEG data, practical analyses and interpretation of the inverse
estimates.





Tiivistelmä

Magnetoenkefalografia (MEG) mahdollistaa pään ulkopuolelta tapahtuvan aivo-
toimintojen mittaamisen hyvällä ajallisella tarkkuudella, mutta nämä magneet-
tikentät synnyttävien aivokudoksen sähkövirtojen paikallistaminen vaatii ns. säh-
kömagneettisen käänteisongelman ratkaisun, joka ei ole yksikäsitteinen. Jos vir-
takonfiguraatioille asetetaan sopivia matemaattisia rajoitteita, on kuitenkin mah-
dollista löytää käyttökelpoisia ratkaisuja tähän käänteisongelmaan.

Tässä työssä käänteisongelmaa lähestytään tilastollisesti, ja matemaattiset ra-
joitteet muotoillaan Bayesilaisittain a priori todennäköisyyksinä. Tämä priori-
jakauma yhdistetään tilastollisen MEG-havaintomallin kanssa, jolloin saadaan Bay-
esin teoreeman avulla tuntemattomien parametrien eli virtakonfiguraatioiden a
posteriori -jakauma, joka kertoo eri virtakonfiguraatioden todennäköisyydet, an-
nettuna havaittu data sekä tehdyt mallioletukset. Virtojen lisäksi priorijakaumaan
saattaa liittyä muita tuntemattomia suureita, jotka sisältävät epävarmuutta. Nämä
parametrit eivät kytkeydy suoraan MEG-mittauksiin, joten ne ovat siis sähkövir-
toihin verrattuna seuraavalla mallitasolla. Näitä priorin parametreja kutsutaan hy-
perparametreiksi, ja mallilla on hierarkinen rakenne.

Väitöskirjassa tutkitaan klassisten miniminormi- ja minimivirtaestimaattien
hierarkisia yleistyksiä. Miniminormi- ja minimivirtaestimaatit ovat lähdejakau-
mamalleihin liittyviä menetelmiä, joista ensimmäinen tuottaa paikallisesti varsin
laajalle levineitä ja jälkimmäinen fokaalimpia käänteisongelman ratkaisuja. Näi-
den menetelmien tässä työssä tutkitut laajennukset mahdollistavat myös yleisem-
pien ja joustavampien, ominaisuuksiltaan miniminormi- ja minimivirtaoletusten
väliin sijoittuvien lähdejakaumien mallintamisen.

Kaksi ensimmäistä osatyötä keskittyvät esitettyjen hierarkisten Bayesilaisten
lähdejakaumamallien sekä niiden tuottamien käänteisongelman ratkaisujen teo-
reettiseen tutkimiseen. Kahdessa jälkimmäisessä osatyössä pyritään validoimaan
menetelmät käyttäen mitattua MEG dataa, sekä selventämään näiden hierarkisten
käänteisongelman ratkaisujen käytännön merkitystä ja tulkintaa.
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Chapter 1

Introduction

1.1 Covering note

The organisation of the material presented in the “overview of research” part of
the thesis deviates slightly from the canonical form. For this there are a couple
of reasons, first of which was the lack of purpose in duplicating what has already
been said in the included research articles. The second is that the subject is rather
multidisciplinary – the people behind the presented articles are physicists, engi-
neers, psychologists and medical doctors. It has become very clear that writing
for such a wide audience is a huge challenge; people with less mathematical back-
ground become frustrated with unfamiliar formulae and we, who consider them
as friends are always glad to see one.

This first chapter tries to explain and introduce the basic concepts and ideas
verbally with minimal mathematical intervention. The second chapter introduces
briefly the models and methods, supplied with (at least some) intuitive explana-
tions and afterthoughts. In third chapter the performed studies are outlined on a
general level, taking more of a bird’s-eye perspective than trying to scratch the
surface on few selected spots. The discussion of chapter four concludes the pre-
sentation. The auxiliary material presented here is in a sense complementary to
the included articles, and hopefully serves as a multidisciplinary bridge between
the vast existing literature and the original research articles.

1.2 Overview

Research on nervous systems ranges from molecular biology of individual neu-
rons to cognitive processes behind conscious experience, and is in general termed
neuroscience. In one way or another, most disciplines of this enormous field ask
the same question “how does the brain work?”, only on different levels of the sys-
tem. While there is seemingly an endless, impassable road from the microscopic
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molecular level neural science to the studies of higher mental processes, some of
the gaps have been bridged (or at least circumvented) relatively recently.

For instance, it has become possible to develop genetically modified animals
to study how specific mutations affect the functioning of the nerve cells, and fur-
thermore, how this is reflected in the animal’s behaviour. At the other end of the
neuroscience spectrum, emergence of neuroimaging technologies, most promi-
nently functional Magnetic Resonance Imaging (fMRI), has opened the way for
studying activity in the intact, living human brain. Even though the fMRI (in its
present basic form) provides an indirect measure of neural activity and is some-
what limited in temporal resolution, being based on the dynamics of the cerebral
blood flow, it can produce spatial images of brain activations even without any
foreign contrast agents injected to the subject.

Besides fMRI, several other methods are available for noninvasive studies of
brain function, all of which have their virtues and limitations. The most traditional
of these is electroencephalography (EEG) whose magnetic counterpart magne-
toencephalography (MEG) is the method central to the present work. EEG and
MEG measure respectively the electric potentials and magnetic fields generated
by activity in the nervous tissue. As both methods are based on electromagnetic
coupling their temporal resolution is excellent, in the millisecond range. In EEG
the electrodes are placed on the scalp, and in MEG the superconducting sensors
are embedded in liquid helium inside an insulating helmet. Consequently, nei-
ther of these methods is capable of producing direct spatial images of the neural
activations, as the measurements are obtained from the outside of the head.

The localisation of the neural currents generating the observed extracranial
fields is tantamount to solving the electromagnetic inverse problem, which has no
unique solution. With a given measurement and conductor (head) geometry, it is
possible to arrange currents to configurations in which their electromagnetic fields
mutually cancel out causing the MEG and EEG measurements to vanish. Such a
current configuration can be added to the “solution” of the inverse problem and
the new solution will generate identical MEG and EEG measurements; hence the
nonuniqueness.

By imposing suitable constraints on the solutions, reasonable reconstructions
of the neural sources based on EEG and MEG can be obtained. In this work, we
will take the route of encoding these constraints as Bayesian a priori probabilities
on the space of possible current configurations. The Bayesian formulation casts
the inverse problem to the realm of statistical inference. The prior probabilities
are combined with the likelihood which quantifies how likely different current
configurations would generate the obtained data. The resulting posterior proba-
bility distribution tells how probable each of the candidate solutions is, given the
data and our modeling assumptions, and it is our “solution” to the inverse prob-
lem. In principle, the Bayesian framework provides a coherent way to incorporate
any kind of prior information, anatomical or physiological, to the electromagnetic
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inverse problem.
While looking perfectly foolproof theoretically, the Bayesian approach has its

own obstacles. Calculation of the posterior distribution in practice is a compli-
cated mathematical task, analytically intractable for all but the simplest models.
Several numerical approximation methods have been developed for this matter
– from these stochastic Markov chain Monte Carlo (MCMC) and deterministic
Variational Bayesian (VB) methods are studied in this thesis. Furthermore, the
inference is always conditioned on some more or less arbitrary modeling assump-
tions, and how sensitive the inferences are in this respect is a crucial question from
the viewpoint of interpretation of the results.

The established researcher with years of experience in practical MEG anal-
ysis will now ask what else is new. In less laconic terms, what are the motives
for the studies presented here, and how are the methods different from the stan-
dards routinely used in hundreds of MEG and EEG laboratories. Firstly, the in-
creasing computational resources and methodological development in statistical
modeling enable the application of more complex (and hopefully also more real-
istic) models to the electromagnetic inverse problem. The more complex models
also necessitate more careful validation and theoretical inspection, and above all,
demonstration of practical utility and usability before getting foothold among the
experimental scientists. Secondly, the increase in data collection rate puts a heavy
load on developing software and efficient data analysis procedures which can be
automatised and handle large subject populations, and for which the analyses can
be easily replicated if necessary.

Here we have studied hierarchical Bayesian generalisations of models presently
used in practical MEG analysis. To obtain a realistic view on the properties of the
models and methods, we have used both empirical data and simulations for vali-
dation. We have tried to be objective also in pinpointing the possible weaknesses
and potential problems in the methods, for these are really the forces that drive
the methodological development forward.

1.3 General references

As the studies involve several measurement techniques, statistical models and
computational methods, the space for introductory material per topic is limited.
Fortunately, excellent textbooks and review articles exist for reference. The ex-
ception is the last section which contains a survey of the recent Bayesian MEG
inverse literature and is the only topic to which the author has contributed sci-
entifically. Therefore, I here list the “textbook-level” general references with the
purpose of increasing the readability of the parsimonious presentation, and in a
sense to acknowledge the sources from which the author has absorbed much of
this chapter’s material over the years. Explicit references are provided for those
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matters which are considered to be nonelementary or more difficult to find in the
literature.

The definite reference for general neuroscience is (Kandel et al., 2000). Purves
et al. (2001) give a condensed presentation covering approximately the same top-
ics. Modeling of neural systems on various levels is presented by Dayan and
Abbot (2001), which may help the mathematically oriented minds to get a more
concrete grip of the subject. MEG is thoroughly exposed by Hämäläinen et al.
(1993) and various aspects of MRI and fMRI by Jezzard et al. (2001) and Huet-
tel et al. (2004). Foundations of Bayesian statistics are developed in detail by
Bernardo and Smith (2000) and practical matters of Bayesian data analysis along
with numerical sampling methods by Gelman et al. (2003). Introduction to Varia-
tional Bayesian methods can be found from (Lappalainen and Miskin, 2000) and
(Opper and Saad, 2001, especially chapters 10 and 11). Kaipio and Somersalo
(2005) provide an up-to-date view on inverse problems, with special emphasis on
statistical and computational methods and practical examples. Finally, the more
established MEG and EEG inverse methods are reviewed by Baillet et al. (2001).

1.4 Electromagnetic measures of brain activity

1.4.1 Origins of the MEG signal

Main cellular constituents of the brain are neurons and glial cells; neurons are
the information processing units while glia mainly provide metabolic and struc-
tural support. Neurons typically consist of a soma (cell body), dendrites (receive
and integrate information from other neurons), and an axon (sends information
to other neurons). Broadly speaking, information is transferred within a neuron
electrically and between neurons chemically.

The neuron is surrounded by a membrane, across which an electric potential is
maintained. If the magnitude of this potential exceeds a certain threshold near the
beginning of the axon, the neuron “fires” an action potential which travels along
the axon like a localised wave. The action potential eventually reaches a terminal
of the axon localised near a dendrite or soma of another neuron. The junction is
called a synapse between the two neurons and they are termed presynaptic and
postsynaptic neurons in this respect.

The action potential triggers a release of a neurotransmitter substance to the
synaptic space between the neurons, which conveys the information about the ac-
tion potential to the postsynaptic neuron chemically. The neurotransmitter binds
to the membrane of the postsynaptic neuron and alters its biochemical properties.
As a consequence, the membrane voltage is changed, a process which is called a
postsynaptic potential. The postsynaptic potential causes an electric field, and a
flow of current into (or out of) the cell (depending on the sign of the potential).
This current flows along the dendrite decaying exponentially. Thus, looking at a
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distance, the postsynaptic potential looks like a small current dipole with a source
and a sink. When these dipolar currents suitably sum up, the resulting electro-
magnetic field can be measured even from the surface or outside of the head. The
intracellular dipolar currents are called primary currents. Because current can-
not accumulate anywhere, secondary or volume currents flow in the extracellular
space to complete the loop.

For a cohesive summation of the dipoles caused by individual postsynaptic
potentials, these must be temporally synchronised and they must be oriented in a
parallel fashion. The cortex has indeed a laminar structure, and the main dendrites
of the neurons are predominantly oriented perpendicular to the cortical surface. In
rough numbers, tens of square millimeters of cortex must be activated to elicit a
current dipole of 10 nAm, which corresponds to field strengths typically observed
in MEG. So, the MEG measurement reflects the “summed” or “average” synaptic
activity of a rather large population of neurons.

Why then, we do not see the action potentials themselves with MEG? The
traveling wave potential, under suitable circumstances, can be modeled with two
oppositely oriented dipoles, that is a quadrupole. As a function of distance r , the
quadrupole field decays as 1/r 3 whereas dipole field decays as 1/r 2. Hence, at
the slower timescales of the postsynaptic potentials, the dipole field dominates
at large distances. Whether the action potentials manifest themselves in the high
frequency content of extracranial brain signals is under debate.

1.4.2 The MEG device

The neuromagnetic fields are extremely small in comparison with the earth’s mag-
netic field; approximately by a factor of 10−9. Consequently, the MEG measure-
ment system involves several components of high technological sophistication.
The detection of the tiny fields is based on Superconducting QUantum Interfer-
ence Device (SQUID) sensors. To maintain the SQUIDs in superconducting state,
they are embedded in liquid helium. The SQUIDs are coupled to the external mag-
netic field via superconducting flux transformers of different types. Gradiometers,
for instance, are sensitive to spatial changes in the magnetic field but insensitive to
a static homogeneous field, thereby suppressing effects of spatially slowly vary-
ing external disturbances. In the modern multichannel magnetometer devices, the
whole head is covered with sensors arranged inside a helmet-shaped dewar.

The sensors must be also shielded from external interference, and the MEG
device is usually located inside a room constructed from several layers of alu-
minum and µ-metal to obtain an effective shielding over wide range of frequen-
cies. Inevitably, the recorded MEG signal will always contain some noise: the
human heart produces a magnetic signal, the thermal noise of the dewar, geomag-
netic distortions and so forth. Eye movements, blinks and movements of magnetic
objects attached to the subject can produce artefactual components to the recorded
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signal. Some of the noise sources can be removed afterwards or online by signal
processing techniques, but good quality of the recorded “raw” data can never be
overemphasised.

1.4.3 Differences between EEG and MEG

Even though EEG measures in theory exactly the same postsynaptic currents as
MEG, there are differences in practice. As discussed in the context of the forward
problem (see below), MEG is not very sensitive to dipoles with certain orienta-
tions, whereas EEG in principle is sensitive to all primary current components.
The skull is a good electric insulator but magnetically transparent, and conse-
quently, creating a good conductor model necessary for solving the forward prob-
lem (see below) is more difficult for EEG than MEG. Instrumentation of EEG
is much less expensive as it is based on relatively simple electric potential mea-
surements. In what follows we will consider MEG solely; however, all inverse
methods and models discussed apply in principle also to EEG. It is possible to
measure EEG simultaneously with MEG and theoretically this would give the
best results as they provide complementary measures of the same neural currents.

1.4.4 The forward problem

Calculating the external magnetic fields generated by a primary current dipole
located inside the volume conductor (i.e., the head) is called the forward problem
of MEG. While solving the forward problem is straightforward in principle, via
quasistatic Maxwell’s equations, analytical solutions exist only for special cases
and otherwise numerical strategies must be employed. For the “spherical head”
model analytical solution is available, along with some important consequences.
The most important of these is that primary current components oriented along the
radius of the sphere do not generate magnetic fields outside the head. Thus, MEG
is sensitive mostly1 to the currents located in the walls of the cortical fissures.
More realistic conductor models can be obtained with aid of additional anatomical
information. In this study, we use a boundary-element model (BEM) in which
bounding surfaces between different tissue types are mathematically constructed,
based on anatomical MRIs. For MEG, the boundary of the inner skull is typically
sufficient, assuming the inside a homogeneous conductor and the outside a perfect
insulator.

Whatever numerical strategy is adopted for the solution of the forward prob-
lem, the Maxwell’s equations are linear and the principle of superposition applies.
That is, if we know the magnetic fields of dipoles with unit magnitude at the loca-
tions of interest, fields of the current configurations with all other amplitudes can

1Exactly spherical heads are rather rare.
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be obtained as linear combinations of these. So, if we divide the volume of inter-
est to N grid points, and we know the locations of the M sensors with respect to
the head, the solution of the forward problem at time t can be written as a matrix
equation:

B(t) = G J(t). (1.1)

The matrix G is called the gain matrix, and its element G i j is equal to the
magnetic field recorded with sensor i , if a current dipole of unit magnitude and
fixed orientation is placed at grid point j . The forward equation (1.1) is merely
a manifestation of the superposition principle: the vector of obtained MEG mea-
surements B(t) depends linearly on the vector of the current amplitudes J(t)
through the gain matrix G. The gain matrix thus contains all information about
the geometry of the sensor array and the conductivity properties of the head, and
it is the output of the forward computation. The gain matrix is usually assumed
to stay constant over time, and thus is computed only once. Physically this means
that the positions of the sensors with respect to the head should remain constant.
Minimising subject’s head movement during the MEG recording is thus very im-
portant.

It is noteworthy that the measured fields depend linearly only on the ampli-
tudes of the dipoles, not on their positions or orientations. If we constrain the
possible locations of the source dipoles to the cortical sheet, we can also utilise
the anatomical information in constraining the orientations of the dipoles perpen-
dicular to this surface. If anatomical information is not available, unit dipoles for
the three dimensions of the cartesian space can be considered for each grid point
location.

1.4.5 The inverse problem

Suppose now that we are given a set of observed MEG measurements, Bobs(t), t =
1, . . . , T . The inverse problem is to solve the matching currents J sol(t), t =
1, . . . , T, so that these together satisfy equation (1.1). As already mentioned, the
inverse problem admits no unique solution. Before showing how this stems from
equation (1.1), let us consider the basic taxonomy of the inverse solution strate-
gies; there are two main approaches to the neuromagnetic inverse problem. For
simplicity, we consider a single timepoint of the MEG data.

The multidipole modeling approach tries to explain the observed fields with
few equivalent current dipoles (ECDs). Now, one dipole is characterised by po-
sition (three coordinates), direction (two coordinates) and amplitude (one coordi-
nate), that is altogether six parameters. Recalling that the observed fields depend
nonlinearly on the position and orientation variables of the dipole, finding the
ECD that best explains the measured fields is a nonlinear optimisation problem in
six-dimensional parameter space. For a single dipole this can be efficiently solved,
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but with increasing number of dipoles the optimisation becomes very hard due to
the combinatorial explosion of local optima and the increasing dimensionality of
the parameter space. One problem is also that the number of the ECDs needed is
not known beforehand.

In any case, a modern multichannel MEG device provides hundreds of chan-
nels, say 306, while one dipole contains six parameters. So, as long as we are
fitting less than fifty dipoles to the data, there are more equations (channels) than
unknowns (dipole parameters), and in this respect the multidipole fitting is con-
sidered an overdetermined inverse problem. With more equations than unknowns,
it is possible that a “perfect” solution does not exist. If in reality the data were
generated by two dipoles, and we are trying to find one ECD, it will explain only
part of the observed data, no matter how hard we optimise the dipole parameters.

On the other hand, forming a discrete grid to cover the space of possible
sources, we must only estimate the amplitude of the current at each location,
which seems more of a linear problem. To cover each potentially activated brain
location with reasonable accuracy, several thousands of grid points are needed.
In the case of unknown dipole orientation, three amplitude parameters (or more
properly, current components) are associated with each gridpoint, leading to the
number of unknowns being more than tenfold in comparison with the number of
equations. This approach is termed distributed source modeling, as a distribution
of the source current throughout the brain is searched. Because now the number
of unknowns is vast in comparison with the number of equations, the distributed
source estimation is an underdetermined inverse problem.

Now we are in position to look at the basic properties of the distributed inverse
problem under study in this thesis. For simplicity, let us assume that we know the
orientations of the dipoles at each of the N grid points and that we still consider
a single timepoint (index t is then dropped from the notation). Now we have M
MEG channels and the gain matrix G is of dimension M × N , where N � M .
The rows of the gain matrix, denoted by Li , are called lead fields, and there is
one for each sensor. The lead field tells how each unit dipole of the grid shows
up in that sensor – it is actually a distributed current configuration reflecting how
sensitive the sensor is to each grid location. All MEG measurements in accord
with our forward model can be explained by a linear combination of the lead field
current configurations. Not all MEG channels are necessarily linearly indepen-
dent; the number of linearly independent lead fields is equal to the dimension of
the range space of the gain matrix G, and we denote it by dim(L); this may actu-
ally be smaller than M . Let us then define the space of magnetically silent current
configurations:

N = {J |G J = 0} . (1.2)

Mathematical term for the spaceN is the null space of gain matrix G, let us call
its dimension dim(N ).
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Now, an arbitrary current J can be decomposed into components which either
1) produce observable MEG fields or 2) are magnetically silent. The dimension
of the subspace for components of 1) is dim(L) and for components of 2) it is
dim(N ). Because the dimension of all possible source configurations is N , we
have the following:2

dim(L)+ dim(N ) = N . (1.3)

As the number of linearly independent lead fields is always smaller or equal to the
number of MEG channels M , we get

dim(N ) ≥ N − M. (1.4)

In concrete numbers, assuming a grid of 3000 source points and 306 MEG
channels yields an estimate for the dimension of the magnetically silent current
configurations: dim(N ) ≥ 2694. It turns out that a vast majority of all possi-
ble current configurations belong to the magnetically silent subspace! Any such
current, or a linear combination of these, can always be added to our “inverse
solution”, and the corresponding MEG measurements remain the same. Even
though it seems awkward that the currents can twist and turn in this overwhelm-
ingly high-dimensional space at will, the real moral of the story is that with 306
measurements there are 306 things to learn from the data. Thus, in order to obtain
sensible inverse estimates, we must limit the space of possible solutions in some
suitable manner. The manner in which this is done, is from a mathematical view-
point largely a matter of taste, but of course the physiological plausibility of the
solutions plays a crucial role.

The simplest way to obtain a solution which is well-defined and unique, would
be to formulate it as a linear combination of the lead fields, and find the coeffi-
cients which best match the observed MEG data. Because there is one lead field
for each sensor and these generate the space of possible measurements, we would
get a unique representation of the solution in this basis, if the lead fields are lin-
early independent. A slightly modified version of this procedure, including effects
of measurement noise, is widely used in practical MEG analysis. The lead fields
are, however, spatially rather diffuse as the distances from the sources to the sen-
sors are typically centimeters. In other words, a MEG sensor picks up signal over
a large area of cortex. Hence, estimates of this type also easily spread over several
distinct anatomical structures, even if it would be physiologically more plausible
to assume that the MEG response is generated by a spatially well-defined area. In
search of ways to obtain additional anatomical and physiological information, we
turn to the magnetic resonance imaging.

2This is the basic rank-nullity theorem for matrices, which can be found, for instance, from
(Harville, 1999, p. 585).
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1.5 Magnetic resonance imaging

1.5.1 Physical principles

Atomic nuclei with odd mass number have a nonzero intrinsic quantum-mechan-
ical angular momentum called spin. The angular momentum gives the nucleus a
magnetic moment, which is proportional to the spin, the constant of proportional-
ity being called the gyromagnetic ratio. For sake of concreteness, let us consider
a hydrogen nucleus, that is a proton. Hydrogen is the most abundant chemical
element and constituent of water, and hence plays a central role in many magnetic
resonance studies.

When placed in an external homogeneous static magnetic field, quantum the-
ory dictates that the component of the spin magnetic moment along the axis of the
external field has two possible states, either parallel or anti-parallel. These states
have different energies, the parallel being the ground state, and the energy differ-
ence increases linearly with respect to the strength of the magnetic field. The most
efficient excitation of the spins from the ground state to the antiparallel state, by
electromagnetic radiation, happens when the energy of the quanta of this radiation
exactly matches the difference of the energy states. This resonance frequency is
also called Larmor frequency and it is equal to the product of the gyromagnetic
ratio and the external field strength (divided by 2π). The phenomenon of Nu-
clear Magnetic Resonance (NMR) thus leads to a resonance frequency peak in the
spectrum of electromagnetic radiation emitted by the substance when the excited
spin(s) return to the ground state.

Suppose now that we have a population of protons inside a sample volume. In
room temperature and small external static fields, roughly half of the protons will
be spontaneously excited to the antiparallel state of higher energy, because the en-
ergy difference of the two states is small in comparison with the thermal energy.
However, if the external field is so strong that the spontaneous transition becomes
sufficiently improbable, there will be a macroscopic net magnetisation, because
more protons will stay in the ground state. The direction of the net magnetisation
vector is along the static magnetic field in equilibrium. Now, if a suitable time-
varying electromagnetic field is applied to the sample at the resonant frequency,
the magnetic moment vector will be knocked out of its equilibrium position, even-
tually returning back. This process can be detected from the electromagnetic field
which the moving magnetisation vector generates. The resonant frequency for
hydrogen is in the radiofrequency band, about 42 MHz/Tesla and therefore the
excitation pulses are referred to as rf-pulses.
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1.5.2 Image formation

Even though the basic physical phenomenon of NMR was experimentally studied
already in the mid 40’s, the first NMR-based images were obtained in the early
70’s. How the NMR signal could be manipulated to provide spatial information
and how to form images from the resulting data are indeed nontrivial problems;
the Nobel Prize in Medicine 2003 was awarded partly for this work. The encoding
is actually done by superimposing spatially varying magnetic fields on top of the
large homogeneous field. These gradient fields have the effect that the Larmor
frequency will be altered for different spatial locations in the object. By applying
the rf-pulses and gradient fields in suitable temporal sequences, information from
different spatial frequencies of the object can be acquired, and the resulting data
comprises the Fourier transformation of the object. The direct spatial image is
then obtained computationally by the inverse Fourier transform.

1.5.3 Contrast mechanisms

The 3D imaging object such as the human brain is divided into volume elements or
voxels, the voxels in a 2D plane or “slice” corresponding to the basic images from
which 3D object is reconstructed. For each voxel we can imagine an individual
macroscopic magnetisation vector, which in equilibrium points to the direction
of the static main field. When the longitudal magnetisation vector is tipped from
the equilibrium position with a suitable rf-pulse, it will have also a component
perpendicular to the main magnetic field. This component is called transversal
magnetisation vector.

How these components of the magnetisation return to the equilibrium state is
phenomenologically described by two time constants, (longitudal) T1 and (transver-
sal) T2. The constant T1 stems from how quickly the microscopic spins (protons)
return back to the ground state due to the interactions with their local environ-
ment. The value of T2 depends upon how much the spins interact with each other.
The upshot is that for different substances such as biological tissues, these values
are different and thus reflected in the contrast values of the MRIs obtained, for
instance, from the brain.

Along with the basic proton density, the T1 and T2 contrasts are always present
in the MRIs but with manipulation of the pulse sequence used in the image col-
lection a particular contrast can be enhanced for visualisation of specific tissues.
For instance, T1-weighted images portray the spatial distribution of T1 values in
the brain, and voxels with short T1 (containing, e.g., axons) will appear bright,
and those voxels with long (containing, e.g., cerebrospinal fluid) will appear dark.
There are many other contrast mechanisms; dynamic contrasts which can give
information about diffusion or perfusion of water in the brain and so forth.
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1.5.4 Functional MRI

In the early 90’s, the possibility of obtaining MRIs which somehow reflect the
activity of the brain was demonstrated. The T2 relaxation constant is affected
by small local disturbances to the external magnetic field – in presence of such
a disturbance, the transversal magnetisation will decay faster and the contrast is
called T ∗2 . The hypothesis was, that an activation of some local area of the brain
is accompanied by increased regional blood flow to meet the metabolic demands.

The first fMRIs were obtained by using a magnetically susceptible contrast
agent which, after injection to the bloodstream, would flow in larger proportions
to the activated area altering its T ∗2 -value. It was already well known that depend-
ing whether oxygen is bound to haemoglobin or not, it has different magnetic sus-
ceptibility. Soon after the fMRI studies with an external contrast agent, the first
Blood Oxygen Level Dependent (BOLD) fMRIs were obtained. The dependence
of the BOLD fMRI signal only on the endogenous balance of oxyhaemoglobin vs.
deoxyhaemoglobin, made the technique highly noninvasive and popular. A cru-
cial preliminary stage for making fMRI feasible was development of echo-planar
imaging, a MRI protocol which allows a rapid acquisition of the images. This
work was also in part awarded in the 2003 Nobel Prize.

The BOLD contrast does not directly measure the electric activity of the neu-
rons, but relies on changes in regional cerebral blood flow and oxygen consump-
tion, which is generally termed haemodynamics. The fMRI-haemodynamic re-
sponse following stimulus-triggered activity lasts from ten to twenty seconds, and
shows significant variability over brain regions and between subjects. BOLD sig-
nal can be generated by large blood vessels which drain the activated area, but
may still be located relatively far away. Despite its limitations, fMRI provides
direct spatial information about brain activity in a noninvasive way, and as such is
an invaluable method for experimental brain research.

1.6 Bayesian data analysis

1.6.1 Basics of inference

Suppose we have a set of observed dataD, which could be a functional or anatom-
ical magnetic resonance image, a vector of MEG fields at a timepoint, or some-
thing completely different. In the dataset there is usually a component we are
interested in, the “signal”, reflecting the underlying phenomenon which the data
collection procedure was designed to reveal. There is also some variability in the
data that we consider unrelated to the phenomenon of interest, and is here called
“noise”. To distinguish signal from noise, we must make assumptions about the
process which generates the data.

In this presentation we focus on parametric generative models, that is, we set
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up a mathematical model which quantifies how the data are generated as a function
of a set of some unknown parameters, denoted by vector θ . In the Bayesian ap-
proach, all variables, data and parameters, are considered to be random or stochas-
tic by nature. This merely expresses the philosophical or practical attitude that
observables or unknown parameters are always subject to some uncertainty. Of
course, the models can contain constants or variables, which are considered to be
known for all practical purposes. The data variables are singled out only in that
they are fixed to their observed values in the process of inference. The goal of the
Bayesian statistical inference is to obtain the conditional probabilities of different
parameter values given the observed data. One could then ask questions such as
what is the expected value of this parameter given the data, how much uncertainty
there is in the expected value and so forth.

The first task is to set up a law which quantifies the probability of obtaining a
set of dataD if the parameter value was θ . This conditional probability is denoted
by p(D|θ ,M), and when looked as a function of the parameters it is called the
likelihood. We note that constructing the likelihood is quite similar in nature to the
forward problem, which asks “if we know the currents inside the conductor, what
are the MEG measurements it generates”. The symbolM is introduced to remind
that the whole probability model is also subject to the specific assumptions that
we make about the data generation process. Because everything is conditioned on
M, it is a redundant symbol and as such often omitted, but we keep it throughout
the presentation for its pedagogic value.

Based on our knowledge of the phenomenon under study, we might have some
idea about parameter values which are more probable, perhaps by related studies,
physical constraints or otherwise. We call the mathematical formulation of this
information the prior probability of the parameters, and it is denoted by p(θ |M).
According to its name, it reflects our beliefs and knowledge about the parame-
ter values prior to obtaining the data. It is precisely this prior probability den-
sity which will provide the mechanism to limit the space of possible solutions or
currents, which we found inevitable in the context of the underdetermined MEG
inverse problem.

By using basic probability calculus, we may then derive the conditional proba-
bility of the parameters after observing the data, descriptively named the posterior
distribution p(θ |D,M):

p(θ |D,M) = p(D|θ ,M)p(θ |M)
p(D|M) . (1.5)

This is called Bayes’ theorem and it is the cornerstone of Bayesian inference. The
denominator p(D|M) does not depend on the parameter values but is the impor-
tant normalising constant of the posterior, taking care that the posterior probabili-
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ties sum up to unity:

p(D|M) =
∫

p(D|θ ,M)p(θ |M) dθ . (1.6)

Being equal to the conditional probability that the data come from the model M
given our modeling assumptions, the normalising constant is called the marginal
likelihood or evidence for modelM. The evidence can be used to perform Bayesian
model selection or model averaging, under certain circumstances. The posterior
distribution contains all information about parameter θ conveyed from the dataD
by our modelM.

There is no fundamental distinction between the prior and the posterior. As
discussed, we might construct the prior based on some previous experiments or
related studies, combine this with the constructed likelihood after obtaining the
data, and calculate the posterior distribution, which essentially is a product of
these two. Hence, the data “shift” the prior to the direction of the observed data,
giving the posterior distribution. Now, if we acquire more data, we can use the
old posterior as the “prior” for the new data, combine it with the likelihood by the
Bayes’ rule and obtain an updated posterior. This coherent way of incorporating
new data is one of the most attractive aspects of Bayesian data analysis.

Unfortunately, there is no universal recipe for how to construct a good gen-
erative model for the data, which is absolutely critical to obtain reliable results.
Sometimes parts of the data generation mechanism are based on known physical
principles, as is the case for the MEG inverse analysis, where the forward equation
(1.1) dictates how the MEG data are generated by the cortical electric currents. To
specify the likelihood, we assume that the real MEG observation is a sum of the
forward calculated fields and random Gaussian noise. For the prior, there are vari-
ous more or less obvious candidates, some of which will be introduced in the next
chapter.

Each of the models produce posterior estimates for the currents with different
properties, they can all be theoretically justified, and none of them is the “correct”.
Still, it may and will turn out that some of the models are more useful in practice.
In any case, it should be by now evident that the Bayesian framework is a very
natural choice for the MEG inverse analysis. The prior constrains the solutions,
likelihood incorporates the forward model and gives the probability of the MEG
data given the currents, and the posterior yields the “converse” probability of the
currents given the data, which is our inverse solution.

1.6.2 Hierarchical models

The true power of the Bayesian approach comes from the possibility to construct
and analyse hierarchical models. It might be the case that we feel uncertain about
our specification of the prior, and would like to include some unknown parameters
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to express this. Adding more parameters to a model is always a risk, as it makes
the model more flexible but also prone to overfitting, which means including ef-
fects of noise to our estimates of parameters that we think should only be related
to the signal. In hierarchical modeling, we introduce unknown parameters to the
prior, so that the prior is now expressed conditional on these parameter values.

For concreteness, let us introduce a scalar parameter φ to the prior in this way:
p(θ |φ,M). The parameters of the prior are called hyperparameters, as they are
on a subsequent level with respect to the data (the parameters appear also in the
likelihood, whereas the hyperparameters do not). The hyperparameter then has its
own prior distribution which is suggestively called a hyperprior, and denoted by
p(φ|M). The increase of flexibility without overfitting is possible because in the
hierarchical model, the hyperparameter φ binds different parameter components θi

of the vector θ rather than being a completely separate and independent parameter.
Analysis of the hierarchical models proceeds in theory exactly as for nonhier-

archical models. We can find the joint posterior distribution of the parameters and
hyperparameters, and marginalise (integrate over) the hyperparameters to obtain
the posterior of the parameters only, if the hyperparameters are considered to be
auxiliary or nuisance parameters. Even if the introduction of the hyperparameters
followed by their immediate marginalisation seems at first like futile juggling, this
is not the case – the uncertainty about the hyperparameter values is now included
in the marginal distribution of the parameters.

In theory, the number of possible levels of hierarchy is not limited in any
way. That is, the hyperprior might also contain some unknown parameters, and
we could impose a further prior on these. But the hyperparameters depend on
the data only via the parameters: given the values of the parameters, the data and
hyperparameters are independent (Goel and Degroot, 1981; Dawid, 1979). There-
fore the information about the hyperparameter values comes from the data through
the parameters, and it can be shown (for certain models) that this information be-
comes increasingly vague the higher the parameters lie in the hierarchy (Goel and
Degroot, 1981).

Intuitively it is also clear that only as long as there are several exchangeable
parameters under the prior at a certain level, the data can tell us something useful
about the parameters of this distribution. Exchangeability of a certain set of pa-
rameters means that their joint distribution is invariant to any permutation of these
parameters (see, e.g., Bernardo and Smith, 2000, pp. 167–172). For instance, if
the θi ’s are exchangeable, and there are N > 1 such parameters, the posterior dis-
tribution of the parameter φ could be in principle determined from the data. But
if we were to impose a further prior for φ with parameter ξ , we would have in a
sense only one “degree of freedom” to which we would base our inference on ξ .

In order to complete the model specification, one must assume fixed values
to the parameters of the ultimate prior or to choose this prior to be uniform or
uninformative in some sense, so that it does not contain any further parameters.
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How sensitive the inferences are on this ultimate prior is an important question,
and will be of interest in the MEG inverse models studied in this thesis.

1.7 Computational methods

1.7.1 Motivation

Even though theoretically simple and sound, Bayesian data-analysis has practical
challenges. The first is calculating the posterior distribution itself: the normali-
sation factor is an integral over the parameter space. If the parameter vector was
the current vector of distributed MEG currents, the dimension would be several
thousands, let us say modestly N = 1000. If the normalisation constant (1.6) is
not analytically solvable, it has to be calculated numerically. The most straightfor-
ward way to accomplish this would be to discretise each variable into k possible
values, and transform the continuous integral into a sum. The number of terms
in this sum would be k N , for two possible values (k = 2) this being already
21000 ≈ 10301. With a supercomputer, performing 1013 floating point operations
per second, it would take 10288 seconds or about 10280 years to evaluate the sum if
one floating point operation per term would be required. In comparison, estimated
age of the universe is 1010 years.

The explosion of the sum terms is exponential as a function of the dimension
of the parameter space N , and more efficient ways to calculate the integral are
needed. Even if we could analytically solve the normalisation constant and obtain
the posterior, it would be a function of thousands of variables and difficult to
visualise and handle in the general case. Some posterior summary quantities,
such as the posterior expectation value of the currents are desired, leading to other
high dimensional integrals.

One quantity which is easier to obtain is the parameter values which (locally
or globally) maximise the posterior probability density, since this can be calcu-
lated without knowing the normalisation constant which does not depend on the
parameter values. This is called the Maximum A Posteriori (MAP) estimate, and
it can be obtained by optimisation techniques, but the MAP-estimate does not
reflect in any way how the posterior probability mass is distributed around this
maximum. In the following we introduce the computational methods used in this
thesis to evaluate these high-dimensional integrals.

1.7.2 Markov chain Monte Carlo

In Markov chain Monte Carlo (MCMC) the evaluation of high dimensional in-
tegrals is performed implicitly. Markov chain is a stochastic process for which
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the probability3 of the next state depends only on the last of the previous states,
whereas Monte Carlo refers to a wide class of computational methods in which
solution to a problem is obtained by simulating a stochastic system. The MCMC
construction is such that the equilibrium or stationary distribution of the Markov
chain is the distribution of interest, the posterior distribution in our case. After
the chain “forgets its initial state” or converges to the stationary distribution, the
states of the Markov chain are distributed according to the target distribution, and
we have numerical samples from the posterior. From these samples, any quantity
of interest can be obtained: the posterior mean can be obtained just as a sample
average and so forth.

Tailoring a suitable Markov chain for a given problem is an art in itself. There
are several alternatives, all which give asymptotically correct results, but can per-
form very differently in practical situations with finite computational resources.
Most of the methods have a proposal distribution, from which we know how ob-
tain numerical samples, for example, a Gaussian. This has usually the Markovian
property that the new candidate state is randomly proposed based on the previ-
ous state only. If the proposal distribution is symmetric meaning it is equally
probable to “jump” from the old state to the new and vice versa, the procedure
is particularly simple. First, the target distribution (posterior) is evaluated at the
new proposed state and the old state and their probability ratio is calculated. If
the ratio is greater than one, that is the new state has higher posterior probability
than the old, the new state is accepted. If the proposed state has lower probability
and the ratio thus is smaller than one, it is accepted with probability equal to this
ratio. If the new state is rejected, the new state is set to be the old state, and a new
candidate state is proposed.

The basic algorithm just described is called the Metropolis algorithm accord-
ing to its inventors, and the generalisation to nonsymmetric proposal distribu-
tion is called Metropolis-Hastings. In cases where the conditional posteriors of
separate parameter components given the others can be directly sampled, these
conditional distributions can be used as “proposal distributions” and the method
is called Gibbs sampling; with Gibbs sampling the proposed states are always
accepted. With Reversible Jump MCMC (RJMCMC), models with unknown pa-
rameter dimensionality can be handled. These can be mixed in all manners, for
instance in our hypothetical hierarchical model, the hyperparameter φ could per-
haps be sampled with Metropolis and the parameters θ given the hyperparameter
with Gibbs and so on.

The efficiency of MCMC over the brute force “uniform” numerical integra-
tion comes from the fact that the chain drifts towards those regions of the pa-
rameter space where the posterior probability is high (with a symmetric proposal
distribution, jumps to more probable parameter states are always accepted). No

3In this informal treatment we use the word probability for discrete and continuous densities.
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time is wasted for the regions where the probability is zero anyways, contributing
nothing to the integrals. A key feature of Metropolis-type algorithms is that the
acceptance/rejection calculation is based on posterior probability ratios and the
normalising constant does not need to be known as it cancels out. Even though
we can calculate in principle arbitrary expectations and marginal distributions over
the posterior with the numerical samples, we cannot directly calculate the normal-
isation constant based on these, because it is a different type of integral4. There
are suitable sampling techniques for this purpose also, but they tend to be compu-
tationally very intensive.

Of course, many difficulties pertain to the MCMC approach. Establishing the
convergence of the chain, which means determining when the states begin to be
true representatives of the posterior, is a nontrivial problem. The convergence is
not deterministic, and it can be a very slow process. If the consecutive states of
the Markov chain are correlated, the number of independent posterior samples ob-
tained is much smaller than the number of MCMC iterations. This can happen, for
instance, if the proposal distribution is badly chosen – then there can be either too
many rejections, and the chain will stay in the same state for several steps, or too
few rejections, and the chain will explore the parameter space in too small steps,
showing up as slow drifts in the trends of the chain. If the posterior distribution
is multimodal, that is, there are many separate areas of high probability, the chain
can have difficulties in jumping between the modes. This is especially true if the
areas of high probability are separated with areas of extremely low probability,
because jumps to parameter states of smaller probability are also accepted with
a smaller probability. In this case the samples may not represent the posterior in
full.

1.7.3 Variational Bayes

Because MCMC tends to be computationally heavy, different analytical approx-
imation methods have also been developed for performing Bayesian inference.
Whereas MCMC represents the intractable posterior by numerical samples, in
Variational Bayesian methods a simpler, analytically tractable approximate for
the true posterior is searched. Similar approximations have been used in prob-
lems of statistical physics, where the term mean-field method is used. The class
of variational approximations is rather diverse, but most of the methods still fol-
low roughly the same logic.

First, we must define the form of the approximative distribution in some sense.
We could say, for instance, that we want a Gaussian approximation for the pos-
terior, as we know how to calculate various statistics for Gaussian distributions.
These kinds of approximations are called fixed-form. If the full model belongs

4A different sort of Monte Carlo estimate for the evidence can be calculated from the MCMC
samples, but it is generally unstable (see, e.g., Kass and Raftery, 1995).
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to a suitable subclass of models, notably to the conjugate-exponential family, we
may obtain a tractable approximation by assuming that the posterior factorises
over some subsets of variables. The form of the factorial distributions then falls
off the conjugate-exponential model structure, and such approximations are called
free-form. For instance, if our hierarchical model was a conjugate-exponential,
we might assume that the joint posterior factorises into separate terms containing
parameters θ and hyperparameter φ.

Second important component of the variational analysis is to choose a mathe-
matical measure of similarity/distance/closeness of two probability distributions,
for then we can search for the approximate posterior distribution which is in this
sense as close as possible to the true5. The asymmetric Kullback-Leibler (KL) di-
vergence is one of the most popular choices, because it often leads to convenient
analytical calculations6. The minimisation of the KL-divergence yields also a
lower bound on the (logarithm) of the normalisation constant of the true posterior.

The VB-approach in a nutshell is that we define the form of the approximate
distribution and choose a cost function, such as the KL-divergence, and seek the
distribution which extremises this cost function. The setup resembles calculus of
variations, whence historically the name Variational Bayes. The VB-method is
intimately connected with the Expectation-Maximisation (EM) algorithm, which
is an iterative method to find, for instance, a MAP-estimate for marginal posterior
of the parameters, integrated over the hyperparameters in hierarchical models.

The VB-scheme seems attractive as we get not only an approximate posterior
but a lower bound for the normalising constant of the true posterior, the evidence.
This lower-bound functional is called free energy by the analogy to statistical
physics, and plays a central role in many VB-analyses. The KL-minimisation
is more of an optimisation problem (the integrations involved are analytically
tractable, because of the simplified posterior), leading to considerable compu-
tational savings. The algorithm itself is deterministic, and the convergence can be
mathematically proven for some approximation classes.

The key question is, of course, how good the approximation of the posterior
and the lower bound on the evidence actually are, and there is no straightfor-
ward way to answer this. The VB-results can be compared for instance to those
obtained by sampling techniques, as is done in this thesis. Again, if the true poste-
rior is multimodal and the variational approximation (by definition) unimodal, the
inferences based on the variational distribution underestimate the real uncertainty.

5Selection of a suitable distance measure is naturally connected to the form of the approximate
posterior.

6The choice of KL-divergence is sometimes identified with the term Variational Bayes.
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1.8 Recent Bayesian approaches to the inverse problem

Despite being rather extensively studied from the very beginning of MEG mea-
surements, the inverse problem field has remained very active. This is partly due
to the increase in computational resources opening possibilities to study more
elaborate models and algorithms – especially the Bayesian approach has gained
increasing popularity. Here we will give a run-through of those recent studies and
ideas which are closest to and have most influenced the present work.

One of the early papers, containing the key elements of modern Bayesian
analysis, was by Schmidt et al. (1999), entitled “Bayesian inference applied to
the electromagnetic inverse problem”. While not in any way the first Bayesian
inverse approach, the authors took the first steps to scan the space of “all” probable
solutions to the inverse problem with MCMC, in contrast to just trying to find the
MAP or some other “best fitting” point estimate.

As most of the inverse approaches, the prior distribution for the currents was
set to be a Gaussian with zero mean. As a novelty, the authors defined a set of
activation parameters: the number, locations and spatial extents of the activations.
The covariance of the Gaussian prior was then affected by these: if belonging to
an “activated area”, the prior covariance for those locations was increased, thus
allowing larger currents in that region. The Gaussian prior enabled reducing the
dimension of the parameter space by analytical marginalisation over the currents,
and the remaining unknown parameters of the posterior were the activation pa-
rameters. The posterior was sampled with MCMC, upon which the following
inferences were based.

Interestingly, the posterior distribution for the number of the activated regions,
as well as their spatial extents, was obtained. Even though simulated and empir-
ical data were analysed with the model, very little details were given about the
exact implementation of the MCMC-scheme, convergence results, possible mul-
timodality and so forth. Thus the feasibility of these rather aspiring ideas were
subsequently analysed by several other researchers.

1.8.1 Multidipole models

The problem of determining the number of activations with MCMC was further
analysed by Bertrand et al. (2001a,b), with the more straightforward way of using
ECDs as an alternative to the activation parameters. In these articles, MCMC-
techniques of Parallel Tempering (PT) and RJMCMC were applied to construct a
chain which can jump between inverse solutions with different number of dipoles.
The method was tested with simulated and empirical data, and it showed that
the number of dipoles in the chains indeed vary, giving a distribution of different
possible solutions. Even though the authors give the probability distribution of
“number of dipoles” in Bertrand et al. (2001a), it is briefly discussed in Bertrand
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et al. (2001b) that the different runs of the MCMC chain do not always contain all
of the solutions. This indicates that the MCMC-method does not necessarily mix
between all of the modes – strictly speaking the chains may have not converged
globally but only locally. If that is the case, one can not reliably calculate the true
posterior probability mass proportions of the solutions with different numbers of
dipoles, based on the separate MCMC runs.

In another study, Kincses et al. (2003) looked at the possibility of estimating
the spatial extent of sources. An MCMC-based estimator was constructed, with
a similar “activation parameterisation” to Schmidt et al. (1999), but the activation
was anatomically constrained to be a cortical patch and flat priors were assumed
for the parameters. Simulation results and analysis of empirical somatosensory
data were provided. The results support the feasibility of estimating the spatial
source extent. However, only one source is assumed, which makes the inverse
problem much easier. The location parameter space is not the whole cortex, but
limited close to the true source location – if the algorithm would have been ini-
tialised far from the true source, it might have been trapped in a local minimum,
a manifestation of the multimodality again. There is even a small technical is-
sue in the implementation, as the location parameters are sampled with MCMC
and the amplitude is obtained by a least-squares fit: the Markov chain will not be
reversible producing a slight bias to the results.

Jun et al. (2005) reformulated the model of Schmidt et al. (1999) in terms of
ECDs and RJMCMC, and generalised it to contain a temporal smoothness con-
straint for the activation timecourses. Considerable effort was also put to including
a full spatio-temporal model for the noise covariance as well as its initial estima-
tion. The noise covariance was later marginalised from the posterior, with the aim
of producing a smoother distribution. Once again, the method is shown to provide
reasonable estimates for simple simulated and empirical data, but the questions
of the existence of multiple modes and if the chain actually jumps between these,
and whether it is possible to really perform “full Bayesian analysis” on the poste-
rior, are not explicitly addressed. In Jun et al. (2006), the model was augmented to
incorporate the possibility of a dipole being active only a part of the time window
under analysis.

Our group has adapted the model of Jun et al. (2005) to the cortically con-
strained case (Auranen et al., 2007a), with some improvements to computational
efficiency, and studied the structure of the solutions with empirical and simulated
data. The results show that the multimodality is an issue, especially with empir-
ical data and larger number of sources. Subsequently, in (Auranen et al., 2007b)
we studied the performance of the algorithm with a visual MEG dataset and com-
pared the source localisations to corresponding fMRI data. We also investigated
the possibility of using the fMRI data to create a better, informed proposal distri-
bution to aid the mixing of the chain.

Finally, there are Bayesian multidipole approaches which are not based on
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MCMC but to different Monte Carlo sampling techniques, such as particle filters
(Somersalo et al., 2003). Whether these provide a more efficient alternative than
MCMC in practical MEG data analysis will be seen in the future.

1.8.2 Distributed models

Most of the approaches to the distributed inverse problem are based on assum-
ing a Gaussian prior with zero mean for the currents. This is mainly motivated
by mathematical convenience: assuming also Gaussian noise, the posterior of the
currents will be a Gaussian. Actually, this is true only if we know the covari-
ance of the Gaussian prior. The most simple kind of a prior covariance would be
proportional to the identity matrix, the constant of proportionality being the prior
variance of the currents. The prior variance determines how large the currents
can be, and with a usually assumed smallish value dictates that the currents are of
rather similar magnitude throughout the brain.

The prior variance corresponds to what is called a regularisation parameter in
the classical inverse problem literature, as it is used to constrain the overall “mag-
nitude” of the inverse solution. How to determine a suitable value for the prior
variance is an immediate question. In the classical literature, methods such as the
“L-curve” (Hansen, 1992) have been used, where the inverse solutions are calcu-
lated with several values of the regularisation parameter, and the value which pro-
vides a compromise between the data fit and the solution magnitude is found. The
generalisation to more complicated prior covariance structures is not so straight-
forward for these types of methods.

In the Bayesian terminology the prior variance is a basically a hyperparame-
ter, that is an unknown parameter of the prior, and methods used in hierarchical
modeling can be used for its estimation. The basic problem is that the joint pos-
terior of the currents (parameters) and the prior variance (hyperparameter) is not
of tractable form. Phillips et al. (2002) solve this with an EM-type algorithm,
in which the values of the hyperparameter and the current amplitudes can be si-
multaneously estimated. The method finds the marginal or “restricted” maximum
likelihood estimate of the hyperparameter, and given this, the MAP estimate for
the currents.

In Phillips et al. (2005), the procedure is generalised to handle several covari-
ance components. This is useful if we have fMRI data, for instance, and would
like to let the prior variance be possibly larger for the fMRI-active source loca-
tions. Then the Gaussian prior would comprise of two covariance components,
each with its own hyperparameter. The framework is further extended by Mattout
et al. (2006) to include comparison of different prior combinations, by using a
second-level inference procedure based on the evidence. With this, in theory, best
combinations of the fMRI, smoothness, or whatever prior covariance components
could be selected. How to select the candidates for prior covariance components
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is, once again, not completely trivial.
In the approach of Trujillo-Barreto et al. (2004), the cortex is initially parcel-

lated to (about 70) anatomical patches, and each of these, or any combination,
can be assumed to contain a source, and hence to contribute a larger variance
component. The evidences of the models obtained in this manner are estimated,
and a Bayesian model average of the corresponding solutions is calculated. The
practical problem is the combinatorial explosion of the number of possible prior
covariance models. For one active area, there are 70 possible priors, for two 2415,
for three 54740, and so forth. To overcome this problem, the authors choose the
models in a nested way, so that those with vanishing evidence are not estimated,
but the process is still somewhat heuristic. The performance of the method with
a larger number or closely located sources has not been demonstrated, to the best
of authors knowledge.

A framework, which in a sense contains the above covariance component
models as special cases, is presented by Sato et al. (2004), as each of the cortical
locations can have an individual prior variance parameter7. A second-level hy-
perprior is imposed on these prior variances. The currents and their variances are
estimated from the MEG data with a VB-method. The Gaussian prior with same
small variance throughout the brain produces solutions, which tend to be diffuse –
small current “ripples” are distributed over the whole reconstruction grid, but the
hierarchical model of Sato et al. (2004) allows some of the currents and their prior
variances to obtain large values, while setting the others close to zero leading to
more focal estimates.

This is the model which most of the work presented here concerns. We com-
pare the estimates obtained by MCMC and VB, discuss the multimodality of the
posterior, see how the hyperprior selection affects the inverse solutions, and how
the model performs in empirical data analysis (Nummenmaa et al., 2007a,b,c). In
(Auranen et al., 2005) we also study another continuous family of prior models,
which include the Gaussian case, but also others which have been used to produce
more focal inverse solutions. We then attempt to obtain a hierarchical estimate
with MCMC methods, which includes the uncertainty about the prior selection.

7Actually, the model is formulated with precision or inverse variance parameters.
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Chapter 2

Models and methods

2.1 The MEG observation model

In this work, we adopt the simple statistical model for the generation of the MEG
data, in which the forward computed fields are mixed with additive Gaussian
noise:

B(t) = G J(t)+ N(t). (2.1)

The measurement noise N(t) is assumed to be independent of time and to have a
Gaussian distribution with zero mean and inverse noise covariance6G . We do not
include any possible uncertainties of the forward model (1.1) to the observation
model and hence we get the likelihood1 by solving N(t) from Eq. (2.1) and
substituting to its postulated Gaussian distribution:

p(B(t)|J(t),M) = (2.2)

|6G|1/2
(2π)M/2

exp

(
−1

2
(B(t)− G J(t))′6G(B(t)− G J(t))

)
,

where M is the number of MEG sensors. We have included the assumption of the
Gaussianity of the noise, and the (fixed) noise covariance 6G and gain matrix G
to the symbolM; in what follows, we will incorporate all fixed modeling assump-
tions to this symbol, assuming that its meaning can be deduced from context.

In most conventional MEG experiments, the same stimulus is presented sev-
eral times, and a mean of these “trials” is calculated to enhance the signal-to-noise
ratio (SNR). The noise in the averaged B(t) is an averaged random variable, and
the central limit theorem justifies the Gaussianity assumption even if the noise in
the single trials was not Gaussian, if the number of trials is reasonable.

1The likelihood function is the probability of the data given the parameters considered as a
function of the parameters and hence it is not a probability density as such.
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2.2 The minimum-norm and minimum-current priors

The work presented in this thesis involves hierarchical Bayesian generalisations of
models related to two “traditional” inverse estimation techniques, the Minimum-
Norm Estimate (MNE) and Minimum-Current Estimate (MCE), and these models
are briefly introduced first.

The MNE stems from the assumption that the currents have a Gaussian prior
distribution with zero mean, and a uniform precision (inverse variance) ρ2 through-
out the brain:

pM N E(J(t)|ρ2,M) ∝ exp

(
−ρ

2

2
J(t)′ J(t)

)
= exp

(
−ρ

2

2
‖J(t)‖2

)
, (2.3)

where the Euclidean norm of a vector X is defined as

‖X‖ =
(∑

i

X2
i

)1/2

. (2.4)

Consequently, the prior considers less probable such current configurations for
which the Euclidean norm of the currents is larger.

This is not the only reasonable functional choice to limit the current magni-
tudes; equally well, we could define another norm, denote it by ‖X‖1,

‖X‖1 =
(∑

i

|X i |
)
. (2.5)

The corresponding prior, which now penalises for the sum of the absolute values
of the currents and not their squares, gives rise to the MCE:

pMC E(J(t)|τ,M) ∝ exp
(
−τ

2
‖J(t)‖1

)
. (2.6)

The prior of the MCE model is formally a Laplace distribution.
In both MNE and MCE models, the hyperparameters ρ2 and τ are used to

“regularise” the solutions, that is they set the overall scale for the currents. The
smaller the prior width, the smaller the currents are constrained to be. Some
properties of the inverse solutions associated with these priors can be deduced
directly. Because a Gaussian distribution has very short tails, none of the currents
can be particularly large in comparison with the others, as the prior precision is
the same for the amplitudes at different locations. This causes the MNEs to be
spatially diffuse, as the current is distributed quite evenly throughout the brain.
Same is true for the MCE model, but to a lesser extent as the Laplace distribution
has heavier tails, and the MCE prior can advocate also more focal solutions.
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2.2.1 The minimum-norm estimate

Because in the MNE-model both the prior and the noise distributions are Gaus-
sian, the posterior of the currents given the hyperparameter ρ2 is Gaussian, and the
posterior expectation (which coincides with the MAP in this case) of the currents
can be analytically obtained. This procedure gives the MNE for the currents:

Ĵ M N E(t) = 1

ρ2
G′6B B(t) ≡ W B(t), where 6−1

B =
1

ρ2
GG′ + 6−1

G . (2.7)

The MNE is computationally very efficient, as an inverse operator (matrix) W can
be formed, and the estimate is simply obtained by multiplying the observations
with this matrix.

2.2.2 The minimum-current estimate

Because the prior of the MCE model is not Gaussian but Laplacian, calculating
the posterior expectation or MAP estimate is not tractable analytically. In the
implementation of Uutela et al. (1999), for instance, the problem is formulated as
seeking a solution to the optimisation problem

min ‖J(t)‖1 (2.8)

constrained by the observation equation

B(t) ≈ G J(t). (2.9)

The problem can be solved efficiently by linear programming.

2.3 The `p-norm prior

Both of the norms defining MNE and MCE belong to the class of ` p-norms, which
is defined as:

‖X‖p =
(∑

i

|X i |p
)1/p

, p ≥ 1. (2.10)

The MNE corresponds to the case `2 and MCE to `1, and intermediate values of
p yield norms and models with properties in between these. The ` p-norm gives
rise to prior

p`p(J(t)|κ, p,M) ∝ exp

(
−κ

p

2
‖J(t)‖p

p

)
. (2.11)

We note that the `p-model contains two hyperparameters, namely the prior
width (regularisation) parameter κ and the norm order p. While these are certainly
subject to uncertainty, the norm order has been typically fixed in previous studies,
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for computational convenience. But we have in principle no reasons a priori to
exclude continuous norm orders and “mixture” models between the MCE and
MNE. We therefore consider the model as a hierarchical Bayesian generalisation
of the MCE and MNE, and attempt to estimate the joint posterior of the parameters
and hyperparameters.

2.3.1 Estimating the `p-norm model

With the general `p-model, the posterior is analytically intractable, and we resort
to MCMC methods. More specifically, the method of Slice Sampling (SS) is used
(Neal, 2003), which is based on the idea of sampling uniformly under the graph of
a one-dimensional distribution. The virtue of SS is that it can automatically adapt
to different scales of the sampled distribution, does not require an explicit pro-
posal distribution or the target distribution to be of any specific functional form.
Samples of the joint posterior are obtained by sampling in turn the conditional
distribution of each individual unknown variable (currents and hyperparameters)
given the others.

2.4 The hierarchical Gaussian prior

Because the prior precision of the MNE-model is assumed to be uniform over the
current reconstruction grid, more dipole-model like solutions where the current is
large at few locations while being close to zero elsewhere, do not emerge from
this framework. Hence, we study another hierarchical generalisation of the MNE-
model (here called hMNE-model) in which individual prior precision parameters
are allowed at each cortical location.

If α = [α1, . . . , αN ]′ is the vector of the prior precisions and A = diag(α) the
corresponding diagonal matrix, the prior for the currents becomes

phM N E(J(t)|α,M) = |A|
1/2

(2π)N/2
exp

(
−1

2
J(t)′A J(t)

)
. (2.12)

Then, a Gamma-hyperprior is assumed for the prior precisions

phM N E(αi |α0, γ0,M) = 1

αi

(
αiγ0

α0

)γ0

0(γ0)
−1 exp

(
−αiγ0

α0

)
, (2.13)

where 0(·) is the Euler Gamma function.
The hyperprior contains further parameters, namely the mean α0 and the de-

grees of freedom γ0 of the Gamma-distribution. Thus, α0 sets the scale of the
prior precisions, and γ0 then determines how much they can vary around this mean
value. Consequently, by letting γ0 → ∞, all αi ’s are constrained to be equal to
α0, and we get the basic MNE model. However, assuming a smaller value for
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γ0 makes it possible for some of the source locations to acquire a small prior
precision and large current, while the others remain small yielding more focal or
multidipole-like inverse solutions.

The hMNE-model stems also from a well-known scale mixture representation
of the Student t-distribution (Gelman et al., 2003; Geweke, 1993). Namely, with
fixed α0 and γ0, marginalising the αi ’s from the prior yields an independent Stu-
dent t-distribution prior for the distributed current at each source location with
zero mean (exists when γ0 > 1/2), degrees of freedom 2γ0, and variance γ0

α0(γ0−1)
(exists when γ0 > 1), with the t-distribution parameterised as in (Gelman et al.,
2003). This offers an alternative way of considering how the prior becomes more
Gaussian with large γ0, and more heavy-tailed endorsing focal solutions when γ0

gets smaller.

2.4.1 Estimating the hMNE-model

Again, the joint posterior of the currents J(t) and their prior precisions α is not
of tractable form. With this model, we perform the estimation with both VB and
MCMC to obtain a more complete view on the structure of the posterior distribu-
tion and the inverse estimates.

Because the model has the conjugate-exponential structure, a free-form vari-
ational posterior can be obtained by assuming that it factorises over the currents
J(t) and their prior precisions α. The minimisation of the KL-divergence from
the true posterior to the approximate yields update equations for the parameters of
the variational distribution (this turns out to be a product of Gaussian and Gamma-
distributions), for which a fixed-point can be iteratively found.

With MCMC, the conjugate-exponential model enables using Gibbs sampling
for posterior simulation. Namely, the joint conditional posterior of the currents
given the prior precisions is Gaussian, and these can all be updated in one step.
The joint posterior of the prior precisions given the currents is a product of univari-
ate Gamma-distributions, and the prior precisions can be independently sampled.
We also study the possibility of estimating the parameter α0 from the data, and in
this case SS is used to sample from its conditional posterior given the rest of the
variables.

2.5 Afterthoughts

Since the introduction of the MNE by Hämäläinen and Ilmoniemi (1984), it has
been widely used and studied from various viewpoints, such as incorporation of
anatomical and physiological constraints and combining MEG with EEG (Dale
and Sereno, 1993; Liu et al., 1998, 2002), noise-sensitivity normalisation (Dale
et al., 2000), depth-weighting (Köhler et al., 1996; Lin et al., 2006b), and utili-
sation of the cortical orientation constraint (Lin et al., 2006a). By generalising
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the prior (inverse) covariance to be proportional to a nondiagonal matrix, current
estimates with spatial smoothness constraints and the corresponding “standard-
ised” versions can be obtained (see, e.g., Pascual-Marqui, 2002). No matter how
much the MNE-model is turned, the estimates will be spatially rather diffuse, if
the prior is assumed to be of the basic `2-form and our MCMC-studies of the
`p-norm brings nothing new to this aspect.

For MCE, there are some interesting differences in the characteristics of the
solutions obtained by MCMC, in comparison with those obtained by a classical
implementation (such as by Uutela et al., 1999). In their method the solutions are
also regularised by making a Singular Value Decomposition (SVD) to the observa-
tion equation, and leaving only the “most significant” MEG sensor combinations.
The SVD cutoff value determines the number of constraining equations and the
number of nonzero currents allowed in the solution, and the “MAP-solutions” are
sparse (number of nonzero currents is less than or equal to the number of equa-
tions). In our MCMC studies we find “small current ripples” in the solutions,
almost everywhere, and the solutions are not sparse.

One immediate explanation for this difference would be the additional regular-
isation provided by the SVD cutoff, but even without it the number of nonzero cur-
rents would still be less than 306 in the classical MCE. It could be also related to
the differences of MAP-estimate and posterior expectation of the currents, which
are not necessarily equivalent for the MCE model. Practically, the marginal den-
sities of the currents could have maximum at zero, but posterior probability mass
distributed asymmetrically. In our approach, the solutions are “averaged” over
the prior variance, whereas in MCE the SVD-regularisation is fixed. Interestingly,
Rao et al. (2003) analyse the `p-prior model2 with a generic linear “inverse prob-
lem” and their general results imply also that the MAP-estimate of the `1-norm
model is sparse, when estimated with fixed regularisation parameter.

One could also argue that the presence of the small values is only due to
the Monte Carlo error in the estimated posterior expectation values. We have
reasons to believe that the difference is real as the Laplace prior does not really
force the currents to be zero in any way. Our results are in a sense concordant
with those of Lassas and Siltanen (2004), where the use of total variation prior
for edge-preserving Bayesian inversion was studied. Their results show, among
other things, that the MAP and posterior expectation estimates are quite different,
especially when the number of discretisation points is increased. Why this matter
of the small vs. exactly zero currents is of any importance is that as we will later
see, the small current ripples can give rise to large MEG fields if they suitably
sum up – therefore the thresholding of the estimates is not a completely trivial
operation.

In context of MEG inverse problem, the `p-norm model has been analysed by

2In this study the parameter p is actually allowed to be smaller than unity.
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Beucker and Schlitt (1996); Bücker and Beucker (2004), but more from an opti-
misation point of view than Bayesian estimation. Solutions for different values of
p are obtained, but no quantitative means for comparison of these solutions are
discussed. We note also that our actual analysis involves a slightly different but
equivalent parameterisation of the `p-norm prior (see, pp. 156-160, Box and Tiao,
1973).

Relatives of the hierarchical Gaussian prior have been used to perform Auto-
matic Relevance Determination (ARD) based input selection for artificial neural
networks (Neal, 1996) and Sparse Bayesian Learning (SBL) of regression and
classification models (Tipping, 2001). As a basis for MEG inverse estimation it
was first officially published by Sato et al. (2004) using the VB-method. Unaware
of this work, we were simultaneously analysing the same model with MCMC and
presented preliminary results in Nummenmaa et al. (2004). It turned out that, with
proper understanding of some technical aspects of the model, the VB-algorithm
produces similar results to the MCMC but with considerably less computational
effort. Therefore, we give Sato et al. (2004) full credit of inventing the method.

Finally, we mention that both the `p- and the hierarchical Gaussian model
were studied in a setup where the noise covariance actually contained an unknown
scale parameter, which was estimated from the data as well. This detail was delib-
erately left out from the introduction of the models and methods to keep the focus
on the relationships of the different priors.
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Chapter 3

Summary of studies

3.1 General methodology

We acknowledge the following general methods, software tools and measuring
instruments used in this work. The MEG measurements were obtained with Neu-
romag Vectorview device (Elekta Neuromag Oy), located at the Brain Research
Unit, Low Temperature Laboratory, Helsinki University of Technology. MRI and
fMRI measurements were made with GE Signa EXCITE 3T scanner, at the Ad-
vanced Magnetic Imaging Centre, Helsinki University of Technology (MRIs of
previous studies acquired elsewhere were also utilised in part). The FreeSurfer
software was used to segment the grey matter – white matter surface from the
anatomical MRIs (Dale et al., 1999; Fischl et al., 1999, 2001), which then served
as the space of possible source locations. The orientations of the sources were
constrained to be perpendicular to this surface. The forward computations were
made with the MNE software package by Matti Hämäläinen, Martinos Center
HMS/MGH/MIT, using the one layer boundary-element method (see, e.g., Hämä-
läinen et al., 1993). FMRIB’s Software Library was used in analysing the fMRI
data (Smith et al., 2004). MEG signal processing, inverse estimation, and visuali-
sation of the results were implemented with MATLAB (The Mathworks, Inc.).

3.2 Bayesian analysis of the `p-norm model (P I)

3.2.1 Rationale

The `p-norm family includes the prior models of MCE (`1) and MNE (`2) as
special instances. In previous studies, MCE has been shown to produce more
focal estimates, whereas MNEs are spatially very diffuse. Any norm order p
between 1 and 2 could equally well be used, and these evidently produce estimates
“between” the MCE and MNE models. It seems natural to pose questions such as



34 Summary of studies

what do the MEG data tell about the posterior distribution of the norm order p,
and would it be feasible to infer whether MCE or MNE or any norm in between is
more appropriate for a given dataset. Since MCE is known to produce more focal
solutions than MNE, it would be also interesting to see if the spatial extent of the
source is somehow reflected in the posterior distribution of p.

3.2.2 Methods

We use both simulated and empirical data in this study. In simulations, sources
of different spatial extent are created to the cortical surface, and the forward cal-
culated fields are corrupted with Gaussian noise of various levels. The empirical
data consist of averaged MEG fields evoked by self-paced index finger lifts. By
using slice sampling, the joint posterior of the hyperparameters (norm order, prior
width) and the parameters (noise covariance scale, current amplitudes) is numeri-
cally estimated. The inverse solutions are obtained for several source spaces with
different grid densities. Due to the computational intensiveness of the MCMC-
scheme, the analysis is restricted to a single timepoint.

3.2.3 Results

The results show that the information about the norm order p in the MEG data
is rather limited. The marginal distribution of p “leans” strongly to p = 1 for
almost all studied cases, and is rather flat for larger values. With increasing re-
construction grid sizes and decreasing SNR, there seems to be more mass in the
p = 2 side of the distribution. The reason for this could be just the increase of
uncertainty with more parameters and noise. On the other hand, there can also
be some mathematical subtleties involved – in the study of Lassas and Siltanen
(2004), it is shown that the “edge-preserving” total variation prior becomes effec-
tively Gaussian when the number of discretisation points becomes very large. The
spatial extent of the source affects the marginal posterior of p very weakly, if at
all. The analysis of the empirical somatomotor data gives largest current peaks
close to the expected areas.

3.2.4 Comments

The value of this brute-force analysis is rather the theoretical insight obtained than
the ability of the `p-method to produce “better” solutions than MCE or MNE in
some sense. Actually, the results indicate that the value of p would “like” to be
even smaller than 1, which was not allowed in this study as the ` p-norm is actually
a norm only for p ≥ 1. In other respects, the `p-prior parameterisation could be
used also for 0 < p ≤ 1. In this range, even simple MAP-estimation with fixed
hyperparameters and optimisation techniques becomes more difficult due to the
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nonconvexity of the (negative natural logarithm) of prior. Extrapolating the results
a bit for the MCMC and unknown p, it is very likely that the posterior of p would
lean on its smallest admitted positive value, and the obtained solutions would
become more focal, but the prior’s “less restrictive” nature would probably cause
multimodality and convergence problems for the MCMC-method. The MCMC-
based estimates with different values of 1 ≤ p ≤ 2 and are not really that different
and the focality of the solutions is also partly a matter of thresholding.

3.3 Theoretical aspects of the hierarchical Gaussian model
(P II)

3.3.1 Rationale

The hierarchical Gaussian prior offers an alternative way to construct a more flex-
ible model for the distributed MEG source reconstruction problem. The question
of how to choose the hyperparameters α0, γ0 immediately raises, and what are
the effects of this selection. In the VB-approach of Sato et al. (2004), this matter
was solved by letting γ0 → 0 and α0 = undefined, which leads to the “nonin-
formative” Jeffrey’s prior (see, Eq. 2.13), which is an improper (unnormalisable)
distribution. Improper priors are often used, but in this case the improper prior
causes the posterior also to become improper. With proper posteriors, MCMC
is in theory capable of numerically representing the true posterior, whereas the
VB-approach assumes inherently an analytically simpler form for the posterior.
We therefore discuss the theoretical consequences of using the noninformative
hyperprior, and make a comparison of the VB and MCMC estimates to obtain a
more complete view on how the algorithms behave with different selections of the
Gamma-hyperprior.

3.3.2 Methods

Since this is more of a theoretical article we use only simulated data, so that a
“ground truth” of some sort is available for comparison. The data are generated by
assuming two sources with similar timecourses and additive Gaussian noise. We
demonstrate how the posterior becomes singular both by analytical calculations
and by studying the numerical behaviour of the VB and MCMC algorithms. Then
we analyse the hyperprior sensitivity and consider the possibility of estimating
the hyperprior parameter α0 from the data, and augment the previously presented
VB-algorithm in this respect. Possible multimodality of the posterior is studied
by initialising the algorithms randomly and observing whether they converge to
different regions of the parameter space.
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3.3.3 Results

The results show that especially the parameter γ0 has a clear effect on the solu-
tions and the behaviour of the both algorithms. When the γ0 gets smaller and
closer to the singular case, convergence of the algorithms slows down. Estimates
obtained with different γ0’s also show significant variability. Estimating the hy-
perparameter α0 from the data is technically possible for fixed γ0, but the compu-
tational cost increases significantly for the present methods. The multimodality
of the true posterior is evident as several different “solution candidates” emerge
from the randomly initialised MCMC- and VB-algorithms. The multimodality is
not to be confused with the (possibly multiple) spatial current peaks indicating
likely source locations. The posterior distribution is difficult to handle because
the Markov chain does not mix between the different modes, at least for feasi-
ble computational times. For such values of α0 and γ0 that the algorithms show
robust (local) convergence, both methods produce rather similar estimates, the
VB-method being computationally much more efficient.

3.3.4 Comments

Technically, the Markov chain used in this analysis does not converge globally
at all, but only locally, since it gets trapped in different regions of the parameter
space depending on initialisation and does not jump between these regions (for
feasible computation times). Calculation of the posterior probability mass pro-
portions of the different modes based on the separate MCMC-runs is not directly
possible. For the VB-method used in this study, the variational posterior is always
unimodal. From theoretical viewpoint, using the unimodal variational posterior
as a proxy for the multimodal true posterior can lead to overinterpretations of the
results, if the limitations of the technique are not properly understood.

3.4 The hierarchical model in practical MEG analysis (P
III)

3.4.1 Rationale

The studies of the hierarchical Gaussian model with the simplistic simulated data-
sets give limited information on how the model behaves with more complex real
MEG data. Hence, we analyse an empirical dataset with several experimental
stimulus combinations with the hierarchical method and study how the theoretical
aspects such as hyperprior selection and multimodality show up in practical MEG
data analysis. Tutorial-like elements are included to this presentation in order to
make it more attractive and accessible from the empirical researcher’s viewpoint.
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3.4.2 Methods

The experimental data consist of MEG fields evoked by simple auditory tones and
visual checkerboard images, presented alone in conditions (A) and (V), and in
combination (AV). The stimuli are such that drastic audiovisual integration effects
should be absent, and the MEG fields add roughly linearly: (A) + (V) ≈ (AV).
We demonstrate one specific virtue of the hierarchical approach in its ability to
produce more focal and dipole-like solutions, which is related to the thresholding
of the estimates. With the basic MNE-model, all current amplitudes are of rather
similar magnitude, and contribute roughly equally to the “data fit”. Thus, showing
heavily thresholded estimates can lead to a situation in which the subthreshold
amplitudes actually explain a larger proportion of the variability in the data. By
“favouring” the more focal solutions we do not mean to say that the activations
would in reality be pointlike or dipolar, but being able to model the data with a
drastically smaller “effective number of parameters” makes the interpretation of
the results in a sense more robust. We also demonstrate that the nature of the
inverse problem causes difficulties to model selection based on the evidence or
its variational free energy approximate. The role of the γ0 as a regularisation
parameter is studied by comparing data fits (and free energies) associated with
its different values. We study the nonlinearity of the VB-algorithm by fixing the
hyperprior and calculating the inverse estimates for the different data cases (A),
(V), and (AV). Finally, we discuss the circumstances under which the free energy
value could be used to calculate approximate posterior mass proportions of the
different modes, and study the multimodal structure of the solutions obtained by
random initialisation of the VB-algorithm.

3.4.3 Results

With thresholding, the hierarchical inverse estimate is able to produce the same
degree of data fit with only a couple of sources for which hundreds of MNE-
sources are needed. In the model selection, the free energy based procedure leads
to choosing a very sparse reconstruction grid and a small value of γ0, but for which
the solution looks visually quite implausible. The regularisation analysis shows
that larger values of γ0 correspond to more regularised solutions which is quite
natural as the hyperprior becomes more “informative” and restricting. Studying
the nonlinearity shows that with particular hyperprior selections, the nonlinearity
effects can be rather drastic – for the (A) and (V) cases reasonable estimates with
large source amplitudes are obtained, but with the (AV)-case the auditory sources
remain very small. It means that even when the data add linearly, the solutions
necessarily do not. Analysis of the multimodality suggests that the hyperprior
selection can have a significant effect also on the free energy estimated posterior
mass proportions, and as the hyperprior selection is done on an ad hoc basis, the
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trustworthiness of these numerical estimates is suspect.

3.4.4 Comments

The thresholding problem most likely touches not just MNE but all methods in
which the variance of the currents is assumed to be rather uniform over the cor-
tex, and their noise sensitivity normalised and standardised versions. Actually, in
the original article we refer to this as the “nonstatistical” thresholding problem
in contrast to statistical thresholding of fMRI activation maps. From theoretical
viewpoint, this study in a sense demonstrates that the full Bayesian analysis of
this general hierarchical model is very difficult, if not impossible. Still, after the
disenchantment, the VB-method provides reasonable and robust inverse estimates
in a rather automated way and computationally efficient manner, appearing as a
viable option for practical MEG inverse analysis.

3.5 Sparse hierarchical solutions and comparison with
fMRI (P IV)

3.5.1 Rationale

The thresholding problem could be circumvented by obtaining sparse solutions to
the MEG inverse problem, that is, forcing the small amplitude values to be zero.
The mathematically most elegant way of obtaining this property would be to as-
sume a (Dirac delta) point mass prior for the current being exactly zero, but such
a cosntruction would possibly lead to similar problems as in multidipole models
with an unknown number of dipoles. Hence, we study how to obtain effectively
sparse solutions by using the hierarchical Gaussian prior. Complex visual re-
sponses have been successfully analysed by manual multidipole approaches, and
hence it is interesting to see how well a largely automated inverse algorithm can
perform in a similar situation. The visual system has been rather extensively stud-
ied, electrophysiologically and otherwise, and the evoked responses are challeng-
ing to analyse because the sources of different visual areas are spatially close and
have temporally overlapping activation patterns. Data from fMRI can be used as a
qualitative reference for the MEG source locations in the absence of the “ground
truth”.

3.5.2 Methods

Three subjects participated in identical experiments carried out in MEG and fMRI.
The stimulus was a drifting grating located in the lower left quadrant of the visual
field. The drifting grating stimulus activated the retinotopic areas and the motion
sensitive area. In addition, the retinotopic visual areas were localised by using a



3.6 Corrigenda for (P II)-(P III) 39

multifocal fMRI paradigm developed by one of the co-authors in order to facilitate
the functional identification of the drifting grating activations. The sparsity is
obtained by setting the α0 parameter controlling the overall magnitude of the prior
precisions to a very large value, which forces most of the current amplitudes to be
effectively zero. Using several values of γ0, the inverse estimates are calculated,
and the value which produces intermediate degree of regularisation is chosen. We
also study the possibility of utilising the fMRI information in the inverse estimates
by initialising the algorithms according to this.

3.5.3 Results

The fMRI activations to the drifting grating stimulus are found to be physiolog-
ically plausible. However, both fMRI data and MEG responses show significant
intersubject variability, especially in terms of SNR. Consequently, there is also
significant variability among the inverse estimates, especially in the number of
locations estimated to contain a large current amplitude. The overall source lo-
cations and timecourses are found to be consistent with previous studies. The
locations are somewhat superficial in comparison to the fMRI, which is due to the
fact that the hierarchical method also favours solutions with small amplitudes. The
initialisation with the fMRI data has only a slight effect on the inverse estimates.

3.5.4 Comments

The sparsity assumption and implementation with the hierarchical prior appears to
be quite strong, as the fMRI-initialisation produces very little effects. The reason
is also in that the prior precisions, which dictate where the large amplitudes are
located, are really estimated from the MEG data only; a more symmetric model
should be considered for true integration of MEG and fMRI.

3.6 Corrigenda for (P II)-(P III)

Unfortunately, there was a small error in the numerical implementation of the free
energy used in P II and P III, see the Appendix of (Nummenmaa et al., 2007a).
In the code, 0(γ0) was erroneously written as 0(γ0 + T/2). This has no effects
whatsoever on the estimates themselves – it only causes errors to comparisons of
the free energies obtained with different values of γ0. This computational error ac-
tually promoted the conclusions, too hastily drawn, that the free energy increases
and approaches a finite value in the limit γ0 → 0. This matter is not so easily
settled and it is actually quite dangerous to write equations related to the improper
distributions, such as p(αi ) = 1/αi , because there is an infinite normalising con-
stant missing. By looking at the Gamma-distribution in the limit γ0 → 0, this
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normalisation actually is precisely the 0(γ0)-term miscalculated in the free en-
ergy. One should be more careful with taking limits and notation with improper
distributions. Even if these infinite normalisation constants do not affect the VB-
update equations, which are basically obtained by taking derivatives of the free
energy, they might affect model selection or other conclusions made based on the
free energy approximation of the evidence.

We also note that due to insuperable typesetting difficulties beyond the au-
thors’ control, the manuscript version of P II is included instead of the official
print which has limited readability.
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Discussion

The MEG inverse problem has been subject for intensive study during several
decades and real progress is hard won. In this thesis we have studied some hier-
archical Bayesian generalisations of the classical MEG inverse models and meth-
ods. The tenacious reader who has waded through the material presented up to
this point may also have realised that the more theoretical results are largely in-
dependent of the physical realisation of MEG. Analogous analyses could be per-
formed for whatever inverse problem, where the forward problem is linear (for
other instances of linear inverse problems, see, e.g., Kaipio and Somersalo, 2005).
The practical results of course depend on the special characteristics of the sys-
tem under study. Having said that, actually a very similar variational setup has
been introduced for Bayesian regression and classification (Bishop and Tipping,
2000), as is studied here in the context of MEG inverse problem. While the algo-
rithms and mathematical formulae are closely related, there are differences. The
hyperprior selection and the potential improperness of the posterior that we found
to have such a drastic effect on the inverse solutions is left rather untouched in
(Bishop and Tipping, 2000; Tipping, 2001). The reason could be simply that ba-
sic regression is a somewhat less ill-posed problem than the MEG inverse, despite
the mathematical similarities. The simulated datasets used in the regression ex-
amples are also of quite different complexity from empirical MEG data.

This brings us to the subject of inverse crimes in simulation studies. Inverse
crimes are committed by assuming aspects of the model and data generation pro-
cess which are in reality subject to uncertainty to be exactly known when inverting
the data. For MEG these unknown aspects could include conductivity values of
the biological tissues, locations of the MEG sensors with respect to the head, ac-
curacy of the cortical surface reconstruction, forward model computation and so
on. Most fundamental of these crimes is simulating the data with exactly the same
discretisation of the cortex which is later used in the inverse estimation. This type
of procedure yields always too optimistic results, to what extent depends again
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on the inverse model. In more general terms, the data generation and inverse es-
timation are both based on a “true” model, a case which is seldom realised in
practical analyses. The effect of having the “true parameter” which generates the
data among the candidate solutions gives too good results especially when max-
imisation of model evidence is involved in the model or solution selection. We
have tried to avoid at least the most aggravating circumstances in our simulations,
but admittedly simulated data tend to be just too simple, especially for cases in-
volving complex cognitive functions. More such empirical datasets are needed
where fMRI or other imaging modalities are used to assess the performance of
different inverse approaches – in a recent study Bai et al. (2007) compared many
different distributed inverse algorithms using intracranial electrocorticograms and
fMRI as a reference.

In the present work, especially the approach based on the hierarchical Gaus-
sian prior is found to yield plausible solutions for both empirical and simulated
data, when the properties of the estimates are properly understood. As with most
inverse methods, there are limitations and room for improvement. Because the
hierarchical prior still favours solutions with smaller current amplitudes, the esti-
mated source locations tend to be somewhat too superficial. The depth weighting
used with classical MNE could be implemented also to the hierarchical method,
but the effects would most likely be similar to those obtained by the simple fMRI
initialisation. The basic reason for the “depth bias” in the MNE-type estimates
is simply physical: the magnetic field of a current dipole dies off like inverse
square as a function of distance, hence deeper sources produce smaller fields.
If both smaller superficial and larger deep source configurations produce simi-
lar MEG observations, a “minimum-something” estimate will always favour the
more superficial. Of course, the depth weighting can be used to push the esti-
mates deeper and is mathematically a perfectly viable operation. From statistical
inference viewpoint, such a procedure incorporating conflicting priors seems a bit
dissatisfying.

By adopting a specific normalisation scheme for the currents, spatial acti-
vation maps with “zero localisation error” have been reported (Pascual-Marqui,
2002). Afterwards, the zero localisation error property was demonstrated analyti-
cally to hold for case of one dipolar source (Sekihara et al., 2004) and high signal
to noise ratio. While this is theoretically and practically interesting, Wagner et al.
(2004) also showed by simulations that for several sources and noisy data, the
localisation error is nonzero, which hardly comes as a big surprise. The zero lo-
calisation error just means that the maximum peak of the possibly spatially rather
diffuse activity map is concordant with the true source location. Almost needless
to say, the concepts of true source and zero localisation error are prone to our
previous discussion on inverse crimes.

Things that are not concerned in the present work at all include spatial and
dynamical modeling of the sources. That is, we could incorporate some prior
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assumptions about smoothness of the spatial and temporal characteristics of the
sources into the model. These types of models have been introduced, but typically
the computational cost of estimating such a model is rather high. Of course, the
integration of fMRI and MEG/EEG is and will continue to be an area of special
interest, and the way in which this could be realised in the hierarchical framework
is currently under investigation. Very recently, a more symmetric method for
EEG/fMRI fusion based on a VB-framework rather similar to the one studied
here was introduced by Daunizeau et al. (2007). Hopefully in the future these
types of models and methods will help to add some pieces to the puzzle of human
brain functions.
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