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Abstract

This thesis is concerned with two central themes in computer vision, the properties
of oriented quadrature filters, and methods for implementing rotation invariance in
an object matching and recognition system. Objects are modeled as combinations
of local features, and human faces are used as the reference objectclass.
The topics covered include optimal design of filter banks for feature detection
and object recognition, modeling of pose effects in filter responses and the
construction of probability-based pose-invariant object matching and recognition
systems employing oriented filters.

Gabor filters have been derived as information-theoretically optimal bandpass
filters, simultaneously maximizing the localization capability in space and spatial-
frequency domains. Steerable oriented filters have been developed as atool
for reducing the amount of computation required in rotation invariant systems.
In this work, the framework of steerable filters is applied to Gabor-type filters
and novel analytical derivations for the required steering equations for them are
presented. Gabor filters and some related filters are experimentally shown to
be approximately steerable with low steering error, given suitable filter shape
parameters. The effects of filter shape parameters in feature localization and
object recognition are also studied using a complete feature matching system.

A novel approach for modeling the pose variation of features due to depth
rotations is introduced. Instead of manifold learning methods, the use synthetic
data makes it possible to apply simpler regression modeling methods. The use
of synthetic data in learning the pose models for local features is a central
contribution of the work.

The object matching methods considered in the work are based on proba-
bilistic reasoning. The required object likelihood functions are constructed using
feature similarity measures, and random sampling methods are applied for finding
the modes of high probability in the likelihood probability distribution functions.
The Population Monte Carlo algorithm is shown to solve successfully pose
estimation problems in which simple Metropolis and Gibbs sampling methods
give unsatisfactory performance.





Tiivistelmä

Tämä väitöskirja käsittelee kahta keskeistä tietokonenäön osa-aluetta, signaalin
suunnalle herkkien kvadratuurisuodinten ominaisuuksia, ja näkymäsuunnasta
riippumattomia menetelmiä kohteiden sovittamiseksi malliin ja tunnistamiseksi.
Kohteet mallinnetaan paikallisten piirteiden yhdistelminä, ja esimerkkikohdelu-
okkana käytetään ihmiskasvoja. Työssä käsitellään suodinpankin optimaalista
suunnittelua piirteiden havaitsemisen ja kohteen tunnistuksen kannalta, näkymä-
suunnan piirteissä aiheuttamien ilmiöiden mallintamista sekä edellisen kaltaisia
piirteitä käyttävän todennäköisyyspohjaisen, näkymäsuunnasta riippumattomaan
havaitsemiseen kykenevän kohteidentunnistusjärjestelmän toteutusta.

Gabor-suotimet ovat informaatioteoreettisista lähtökohdista johdettuja, aika-
ja taajuustason paikallistamiskyvyltään optimaalisia kaistanpäästösuotimia. Nk.
ohjattavat (steerable) suuntaherkät suotimet on kehitetty vähentämään laskennan
määrää tasorotaatioille invarianteissa järjestelmissä. Työssä laajennetaan ohjat-
tavien suodinten teoriaa Gabor-suotimiin ja esitetään Gabor-suodinten ohjaukseen
vaadittavien approksimointiyhtälöiden johtaminen analyyttisesti. Kokeellisesti
näytetään, että Gabor-suotimet ja eräät niitä muistuttavat suotimet ovat sopivilla
muotoparametrien arvoilla likimäärin ohjattavia. Lisäksi tutkitaan muotoparame-
trien vaikutusta piirteiden havaittavuuteen sekä kohteen tunnistamiseen kokon-
aista kohteidentunnistusjärjestelmää käyttäen.

Piirteiden näkymäsuunnasta johtuvaa vaihtelua mallinnetaan suoraviivais-
esti regressiomenetelmillä. Näiden käyttäminen monisto-oppimismenetelmien
(manifold learning methods) sijaan on mahdollista, koska malli muodostetaan
synteettisen datan avulla. Työn keskeisiä kontribuutioita on synteettisen datan
käyttäminen paikallisten piirteiden näkymämallien oppimisessa.

Työssä käsiteltävät mallinsovitusmenetelmät perustuvat todennäköisyyspoh-
jaiseen päättelyyn. Tarvittavat kohteen uskottavuusfunktiot muodostetaanpiirtei-
den samankaltaisuusmitoista, ja uskottavuusfunktion suuren todennäköisyysmas-
san keskittymät löydetään satunnaisotantamenetelmillä. Population Monte Carlo -
algoritmin osoitetaan ratkaisevan onnistuneesti asennonestimointiongelmia, joissa
Metropolis- ja Gibbs-otantamenetelmät antavat epätyydyttäviä tuloksia.
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Chapter 1

Introduction

1.1 Background

Human beings have an innate ability to interpret visual scenes, locating objects in
them, classifying them into different categories and recognizing familiar objects
within the categories. The human brain is so efficient and seemingly effortless in
its processing of visual information that it is perhaps surprising that humanvision
is actually an extremely complex phenomenon, and large parts of the brain are
devoted for processing of visual information.

One of the aims of computer vision and image analysis is to emulate the
visual capabilities of humans, given the assumption that vision is indeed a
computational process, however a complex one, performed by neuronsin the
brain. Indeed, biological vision systems have been successfully used as an
inspiration for artificial vision. In the past 25 years, two-dimensional oriented
filters with spatially local receptive fields have proved to be highly useful ina wide
variety of computational vision tasks, such as estimating the local orientation ofa
detected line or differentiating between textured regions of an image.

Psychophysical experiments suggest that the early stages of mammalian
vision processes are based on similar orientation and frequency specifictwo-
dimensional, approximately linear filters. Deeper structures of the visual cortex
are less well known, and provide little information on how recognition of complete
objects, for example, is performed in the brain. Despite the successes of computer
vision, computers are sorely outperformed by humans in most vision-relatedtasks,
and it is not likely that the situation would change in the near future. Indeed,vision
has turned out to be a very difficult and computationally demanding problem.
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1.2 Overview

In this work, local image features are described using responses of Gabor
filters, which have been proposed as idealized mathematical models for oriented
filter structures in the mammalian visual cortex. In computer vision, the
responses of Gabor filters are commonly used as feature descriptors, due to their
theoretically optimal feature detection properties and good practical recognition
results. Because Gabor filters are orientation-sensitive, their responses change
as the object rotates. Detection and recognition performance of a vision system
based on oriented filters suffers if these effects are not taken into account. The
framework of steerable filters (Knutsson et al., 1983),(Freeman and Adelson,
1991) provides the required rotation-invariant representation of oriented filter
responses while preserving the orientation information about the gray-level
structure of the feature.

Human face recognition is a widely researched problem, with many appli-
cations in access control and other security-related fields as well as forexample
automatic indexing of images. Prominent object matching systems applicable
to human faces include Active Appearance Models (AAM) (Cootes et al.,2001)
and Elastic Bunch Graph Matching (EBGM) (Wiskott et al., 1999). Both are
based on representing the objects as a combination of a shape model and a feature
texture model. AAM represents the whole object texture using a low-dimensional
model of its main variations. In the EBGM model the object representation
is based on a spatially sparse set of local features obtained from Gaborfilter
responses. Tamminen (2005) formulated the object matching problem in the
Bayesian framework, using a local feature based object model similar to the
EBGM model, but emplying random sampling from probability distributions
derived from the similarity function of the oriented filter responses.

The visual tasks considered in this work include generic visual feature
detection, human facial feature matching, face recognition and pose estimation.
The approach of the work is based on parts-based object modeling, where objects
are represented as constellations of local features. The feature descriptors can
be for example local image patches, histograms or image derivatives. Object
detection and recognition are sometimes considered two different subproblems,
especially in the case of human faces, where face detection is typically the first
step in automated face recognition. In the approach employed in this work,
detection and recognition are combined in the same framework. The difference
between the two is the complexity of the object models. Also pose estimation can
be performed in the same framework. This approach can be considered tobelong
in the category of learning-based methods, in which the changes in local features
due to pose changes are learned from a number of example poses.
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1.3 Aims of the thesis and author’s contributions

The primary aims of this thesis are to extend the probabilistic local feature
based object matching model so that the effects of significant in-plane anddepth
rotations can be taken into account, and to develop the required methods forpose
modeling of features and pose-invariant matching. The research problems and
author’s contributions are summarized briefly in the following.

Gabor-type filters are considered in the framework of steerable filters, and it is
shown how Gabor filters can be used as approximately steerable filters. In-plane
rotations of the EBGM object model can be then handled using the frameworkof
steerable filters.

Rotation invariance of features has been typically achieved either by using
features which are themselves rotation invariant, or by discrete approximations.
Using steerability, it is shown how to construct a continuous rotation-invariant
similarity measure for oriented filter responses. This formulation allows more
accurate measurement of feature similarity compared to the discrete approxima-
tions.

In addition to rotation invariance of the feature representation, the design
parameters of the filter bank affects the recognition performance of the object
matching system. These effects are studied using two image databases, and good
design parameters for the filter bank are systematically sought.

A major difficulty in constructing a pose invariant feature based recognition
system is how to measure the similarity of features under out-of-plane rotations.
A regression modeling approach for modeling the responses of oriented filters
under depth rotations is presented. A novel contribution in the work is the use of
synthetic data in learning the feature models.

The pose estimation problem is approached using random sampling methods.
The focus of the work is in presenting the differences of the random sampling
methods.

This thesis is organized as follows. Chapter 2 is introductory in nature and
reviews quadrature based signal analysis and different quadraturefilters. Various
two-dimensional extensions of the Hilbert transform are discussed, andthe most
common families of quadrature filters in the literature are reviewed.

Chapter 3 concerns the steerability of quadrature filters. Traditionally Gabor
filters have not been considered to be steerable, but with the parameterization
presented here and using standard methods of analysis and linear algebra, it is
shown that their approximate steering performance can be quite good. Themain
contribution of the chapter is the novel analytic derivation of steering functions
for Gabor, DC free near-Gabor and angular Gaussian filters and the analysis of
steering error with respect to filter parameters. The idea of exploring similarities
between steerable and Gabor filters arose in discussions between the author and
Veit Schenk.
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Chapter 4 presents the probabilistic approach to image analysis applied in
the work, starting from the similarity function between filter jets and ending in
the joint probability model of a complete object. Additionally, the sampling
algorithms applied in the thesis are briefly presented. The main novel contribution
of Chapter 4 by the author is the application of steerability in the formulation
of rotation invariant similarity functions. The probabilistic formulation of the
similarity function leading to the object probability model is due to Prof. Jouko
Lampinen.

Chapter 5 deals with the effect of the filter shape parameters to recognition
performance in an object matching system. The chapter begins with examples
showing the effects of steerable approximations and undersampled filter banks
to the filter responses and similarity function values and then continues to find
good parameters for the filter bank for simultaneous localization and recognition.
The main contribution of Chapter 5 is the numerical analysis of filter shape
parameters on recognition performance. The results presented in the chapter apply
the object matching system developed by Prof. Jouko Lampinen, Toni Tamminen,
Timo Kostiainen, and the author, with most of the program code written by Toni
Tamminen. The experiments and their analysis have been performed by the
author.

Chapter 6 presents a novel regression modeling approach for the pose
variation in the filter responses. In the literature the problem has been typically
addressed as a manifold learning problem, but by using synthetic data it is possible
to apply simpler regression modeling methods. Two models, a piecewise linear
and a mixture of Gaussian model are considered. The main contribution of
Chapter 6 is the use of a synthetic model in generating a direct regression model of
the features. The idea of using synthetic models and applying regression modeling
was suggested by Professor Lampinen, while the implementation is the author’s
own.

Chapter 7 collects the presented methods into complete human face matching
systems which are able to locate faces in all orientations, serving as a basis for
person identification. Metropolis, Gibbs and Population Monte Carlo samplersare
compared in a setting with one rotation angle, and the PMC sampler is extended
to handle three rotation angles in addition to scale and displacement parameters.
The main contribution of the chapter is the construction of the rotation invariant
recognition system and the application of random sampling algorithms, especially
the Population Monte Carlo algorithm, to the pose estimation problem.

The program codes for the face matching systems are derived from the work
of Toni Tamminen, and the ideas for various samplers originate from discussions
between Professor Lampinen, Aki Vehtari and the author.

Chapter 8 concludes the work.



Chapter 2

Signal analysis with quadrature
filters

2.1 Introduction

We will begin building our object recognition system from the ground up and
first consider the image processing operations which transform the inputimage
into a representation which is easier to analyze. This can be considered a feature
extraction stage. Instead of traditional and well-established optimized edge and
corner feature detectors (Harris and Stephens, 1988) (Canny, 1986), responses
of linear filter banks will be used as feature descriptors. This approachhas the
advantage that the features we can use are not limited to edges or corner points,
but can be any local gray-level structures in the image.

In the first three sections we will review the mathematical background of
quadrature filters which were proposed already by Granlund (1978) as the generic
image processing operation for low-level vision tasks. We will relate the filter
bank approach to the theory of wavelets in section 2.5, and conclude by presenting
in section 2.6 some of the oriented quadrature filter families which will be
employed later on in the work.

2.2 Magnitude, phase and the analytic signal

The Hilbert transform (Oppenheim et al., 1999) of a real-valued function s(t) is
an integral transform

H [s(t)] = 1

π

∫ ∞

−∞

s(τ )

t − τ
dτ, (2.1)

where the improper integral is considered as a Cauchy principal value, which is
necessary due the singularity att = τ . The Hilbert transform is thus a convolution
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Figure 2.1: From left to right: The spectra of a cosine signals(t), its Hilbert transform,
the Hilbert transform multiplied by the imaginary unit, andthe analytic signal resulting
from the sum of the first and third signals.

integralH [s(t)] = (η ∗ s)(t) with the convolution kernelη(t) = 1
π t . The Fourier

transform ofη(t) is

H(ω) = F [η(t)] (ω) = − j · ω|ω| = − j · sgn(ω). (2.2)

We can interpret this to mean that in the frequency domain the Hilbert transform
rotates the positive frequency components of a signal in the complex plane by
−π/2 and negative frequency components byπ/2.

Theanalytic signal(Smith, 2003) of a real-valued time-domain signals(t) is
a complex-valued extension of the original signal defined by

w(t) = s(t)+ iH [s(t)] . (2.3)

As a result, we obtain a signalw(t) with the same unrotated positive frequency
components as the original signals(t) (multiplied by two), and whose negative
(mirror) frequencies have been eliminated completely. Figure 2.1 illustrates the
generation of the analytic signal of a single cosine signal.

The name analytic signal stems from the fact that since its Fourier transform
F [w(t)] = W(ω) is one-sided, the corresponding Z-transformW(z) does not
have poles inside the unit circle and is thus analytic there, in the terminology of
mathematical complex analysis.

In the Hilbert transform the real signals(t) is divided into two parts,
instantaneous magnitude|w(t)| and instantaneous phase arg(w(t)). These signals
are formally given by

|w(t)| =
√

s(t)2 + (H [s(t)])2 (2.4)

and
arg(w(t)) = arctan(H [s(t)] /s(t)) . (2.5)
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Qualitatively speaking, in some loose sense the magnitude tellswheresomething
interesting is happening, and the phase describeswhat is happening there. From
an engineering point of view, the usefulness of the Hilbert transform and the
analytic signal lies in the fact that they can be used to compute useful estimates
of the signal. The magnitude of the analytic signal in particular is a very good
envelope estimator for narrow-band signals regardless of their center frequency.

Figure 2.2 shows a test signal which consists of a Gaussian wave packetwith
non-stationary frequency, a triangle wave and a single pulse. The magnitude of
the analytic signal tracks the wave packet very well. The small ripple is in fact
caused by the other signals, and becomes evident because the Hilbert transform
is a global operation. The peaks of the magnitude locate the edges in the signal.
At these points, the instantaneous phase tells the type of the edge. The peaks
of the triangle wave have even symmetric phase (0 or±π), whereas the edges
of the pulse have odd symmetric phase (−π/2 or π/2). The derivative of the
instantaneous phase is related to the local frequency of the signal.

Oppenheim and Lim (1981) show that much of the perceptual information
in a signal is carried in its phase. They also demonstrate how the amplitude
can be estimated solely from the phase in global Fourier synthesis. The latter
result is less surprising than it perhaps first seems, because in global Fourier
analysis the basis functions (complex exponentials) are spatially unlocalized, and
thus the magnitudes, which should contain information about where things are
in the signal, are also unlocalized. Nevertheless, the examples show that phase
information is both information-theoretically and perceptually very important.

2.3 Quadrature filters

The process of computing the analytic signal can be applied to any signals, and
thus also to filters. The output of a filter pair with the impulse responsesh(t) and
H [h(t)] is equivalent to filtering the complex-valued analytic signal with a single
filter. We can identify outputs of the two filters with the real and imaginary parts
of the analytic signal, and construct a complex-valued filter

h′(t) = h(t)+ iH [h(t)] . (2.6)

Such a filter (or a pair of real-valued filters) is said to bein quadrature(Gabor,
1946). The underlying idea is to restrict analysis into some interesting parts of
the original signal instead of computing the analytic signal which is necessarily a
global process and includes all information present in the original signal.

Quadrature filters should not to be confused with the quadrature mirror filters
(QMFs), which are real-valued filter pairs with a specific alias cancellation
property so that the original signal can be reconstructed perfectly from the
decimated and aliased subband signals (Fliege, 1993).



8 Signal analysis with quadrature filters

−2

−1

0

1

2
test signal

s(
t)

−2

−1

0

1

2
imaginary part of the analytic signal

H
[s

(t
)]

−2

−1

0

1

2
test signal (dotted line) instantaneous magnitude of the analytic signal (solid line)

m
ag

ni
tu

de

0 500 1000 1500 2000 2500 3000 3500 4000

−2

0

2

instantaneous phase of the analytic signal

ph
as

e 
an

gl
e

t

Figure 2.2: A test signal, its Hilbert transform, the instantaneous amplitude of the analytic
signal and the instantaneous phase of the analytic signal. The amplitude of the analytic
signal tracks the envelope of the original signal, plotted with dotted line.
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Figure 2.3: A simple quadrature filter in frequency and spatial domains.Note how the
real and imaginary parts oscillate in the spatial domain with a phase difference ofπ/2.

A straightforward way to design a quadrature pair of filters is to choose
a desired frequency response, ensure that it has no negative frequencies and
compute its inverse Fourier transform. The resulting complex signal has the
impulse responses of the filtersh(t) andH [h(t)] in its real and imaginary
parts. Figure 2.3 shows an example bandpass design with a Gaussian frequency
response. For reasons of convention and convenience, one can start with a purely
real frequency response, which gives a time domain impulse response whose real
and imaginary parts are even and odd symmetric, respectively, about the origin.
The resulting filter is thus non-causal. For real-time systems this deficiency can
be remedied by simply adding a suitable amount of delay. Because the forward
and inverse Fourier transforms differ from each other by a single sign inthe
exponent, it follows that a causal filter has a frequency response in which the
real and imaginary parts are also a Hilbert pair. A causal Hilbert pair of time
domain filters is consequently a Hilbert pair also in the frequency domain.

2.4 Two-dimensional versions of the Hilbert transform

The Hilbert transform is defined only for one-dimensional signals. In order to
construct two-dimensional quadrature filters, a 2D version of the Hilberttransform
is needed. To accomplish this, we need to define an analogy for negative
frequencies in two dimensions.

One possibility is to choose a preference directionEn in the frequency domain
Eu = (u1,u2)

T , and deem the frequencies with〈Eu, En〉 > 0 positive, giving the



10 Signal analysis with quadrature filters

transfer function
HP(Eu) = j · sgn(〈Eu, En〉). (2.7)

This is called thepartial Hilbert transform(Bulow, 1999). The main problem with
this definition is that the choice of preference directionEn is arbitrary and since
the transform is not isotropic with respect to rotations, we get different results
with different choices ofEn. It is however useful for signals which vary only in
a particular direction. Bulow (1999) also discusses thetotal Hilbert transform
(which has the transfer functionHT = − j ·sgn(u1)sgn(u2)) and combinations of
partial and total transforms, but these cannot be considered valid generalizations
of the one-dimensional transform, since they do not perform a phase shift of π/2
in any meaningful one-dimensional domain (Felsberg and Sommer, 2001).

Another approach is to consider the frequency domain in polar coordinates,
since we would like the transform to be equivariant with respect to rotation.The
two frequency coordinates are then the angular frequencyfφ ∈ [−π, π ] which is
cyclic and related to orientation, and the radial frequencyfr ∈ [0,∞] which is
related to scale. The radial Hilbert transform (Davis et al., 2000) has the transfer
function

Hr (r, θ) = exp( j θ) (2.8)

in polar coordinates(r, θ). It has the property that all lines passing through the
origin are equivalents of one-dimensional Hilbert transforms in the sensethat the
two halves of the line on opposing sides of the origin have a phase difference of
π . The problem with this approach is that each line uses a different transform,
and they cannot be readily combined with the original signal in order to construct
a two-dimensional analytic signal.

In computer vision literature the problem has been traditionally addressed in a
manner which has common ground with both partial and radial Hilbert transforms.
In the polar parameterization there are no negative radial frequencies by definition,
so intuition suggests that the Hilbert transform must be done with respect to the
angular frequency. Knutsson and Granlund (1983) already designed Hilbert pairs
of bandpass filters using this approach. As long as the angular component of
the bandpass filter is symmetric with respect to certain angular frequencyfθ and
zero at fθ + π/2, a one-dimensional Hilbert transform in the angular direction
is equivalent to a two-dimensional partial Hilbert transform with the preference
direction fθ , and the lines passing through the origin are also one-dimensional
Hilbert transforms in the same sense as in the radial Hilbert transform.

The existence of the differently defined two-dimensional Hilbert transforms
suggests that there is something unsatisfactory in all of the previous approaches.
Indeed, while they are useful generalizations of the one-dimensional case for
certain narrow-band signals, they cannot be used to compute a two-dimensional
version of the analytic signal of arbitrary two-dimensional signals. A mathe-
matically more elegant extension of the analytic signal into two dimensions has
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been proposed by Felsberg and Sommer (2001), named themonogenic signal.
It consists of a single magnitude and two phase components, one of which is
related to local geometric (orientation) information and the other to local structural
(phase) information. A side effect of this additional information is that the algebra
of complex numbers is not sufficient to embed three quantities of information into
a single point in the two-dimensional signal and we need a quaternionic signal.
Let us denote the base elements of the quaternion with{1, i, j, k}. By embedding
of the three-dimensional signal into the three first elements of the quaternionic
algebra, the monogenic signal has the transfer function

HM(Eu) = |Eu| + (1, k)Eu
|Eu| , (2.9)

whereEu = (u1,u2)
T is a frequency vector with two components. This is in spatial

domain equivalent to

fM(Ex) = f (Ex)− (i, j ) fR(Ex), (2.10)

where fR(Ex) is the Riesz transform off (Ex), i.e. in frequency domain the two
are related byFR(Eu) = i Eu

|Eu| F(Eu). The monogenic signal shares many of the
properties of the analytic signal, but it is not one-sided. Felsberg and Sommer
(2001) note that this property is irrelevant for image recognition, because images
are real-valued and their spectra are therefore symmetric.

Despite the theoretical superiority of the monogenic signal compared to two-
dimensional extensions of the analytic signal, it has not yet been applied widely in
computer vision applications. Due to this, only the analytic signal and quadrature
filter bank based approach is considered in the rest of the work. While quadrature
filters cannot be exactly isotropic, the error in amplitude and phase responses is
often small enough to be negligible in practice, compared to other error sources.

2.5 Wavelets and filter banks

Wavelet analysis (Daubechies, 1990) is in some sense a generalization ofFourier
analysis, and a formal refinement of short-time Fourier analysis, in which
the aim is to describe simultaneously both time and frequency behavior of a
signal. Mathematically, the continuous wavelet transform is a convolution integral
between the signalf (x) and the wavelet kernelgω(x),

f̂ (x, ω) = f (x) ∗ gω(x) =
∫ ∞

−∞
f (ξ)gω(x − ξ)dξ. (2.11)

Since the wavelet transform of a one-dimensional signal is essentially a change
from one-dimensional representation into two dimensions, there is redundancy in
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the representation which can be reduced or eliminated completely by sampling (or
subsampling) the continuous translation-scale space(x, ω), leading to thediscrete
wavelet transform, where we have only a discrete set of waveletsgω(i )(x), and a
discrete set of lattice pointsx(i ).

In dyadic samplingthe time-frequency space is covered so that each discrete
wavelet has equal area and successive scales are related by a factor of two.
This results in having a higher spatial sampling density at higher frequencies.
The sampling is said to becritical if a minimum number of samples is used
to represent the original data perfectly. Oversampling refers to the casewhen
some redundancy is retained in the sampled representation, and undersampling to
the case when the original signal is not represented completely by the samples.
In the two-dimensional case we have even more freedom in the tessellation of
the four-dimensional phase space, as the continuous wavelet transformation of a
two-dimensional functionf (x, y) with the waveletgωr ,ωs(x, y) is a convolution
integral

f̂ωr ,ωs(x, y) = f (x, y) ∗ gωr ,ωs(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
f (ξ, υ)gωr ,ωs(x − ξ, y − υ)dξdυ. (2.12)

Granlund (1978) was among the first to suggest that low-level computer vision
should be based on a generic, parallel, and hierarchical convolution operator. Such
banks of filters can be viewed as implementations of discrete wavelet transforms.
In wavelet analysis the idea of a single universal operator is encapsulated in the
concept of amother waveletwhich is translated and scaled in order to produce
individual wavelets. In order to compute a wavelet transform, we choosesome set
of points(x(i ), y(i ), ω(i )r , ω

(i )
s ) which gives us a finite number of wavelet kernels

(or filters) whose responses are evaluated at a finite number of spatial locations.

For the spatial coordinates, a natural choice is to sample the spatial coordinates
evenly in Cartesian coordinates. The sampling of spatial-frequency (or orientation
and scale) coordinates is less self-evident. Regardless of the choice ofthe filters, a
log-polar-type division of the frequency plane is a popular choice (Knutsson and
Granlund, 1983), (Daugman, 1988), leading to a "daisy petal" arrangement of the
filters (Bovik et al., 1990), where the filters in a single scale are rotated copies
of each other, and successive scales are spaced logarithmically, eachfrequency
scale possessing an equal number of filters. In other words, we use thedyadic
sampling idea for the radial frequency coordinate, but uniform sampling for the
orientation frequency coordinate. Another possibility would be to use Cartesian
coordinates also for sampling the frequency plane. The log-polar samplingidea
lends itself better to handling rotations, a phenomenon which does not exist in
one dimension, since rotations correspond to single-parameter cyclic shiftsin the
log-polar coordinate system.
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In image coding and compression applications the subbands are typically
decimated because their representation is superfluous in the sense that thefilter
responses contain information only in a narrow part of the full bandwidth.The
decimation causes aliasing, but suitably narrow bandpass filters will preserve
information so that perfect reconstruction from the subsampled, aliased signals
is possible under certain conditions. Without decimation, the division of the
signal into subbands produces an expansion of data, a situation hardly beneficial
in general for compression.

In analysis applications, apart from practical computational and memory
storage requirements, there is no need to decimate the subband signals, because
the filter response values need to be known at every pixel location. In fact
decimation should be avoided when possible. Only ideal "brick-wall" filters
eliminate aliasing altogether, and such filters necessarily produce prominent
ringing (Gibbs phenomenon) in the spatial domain (Simoncelli and Adelson,
1990).

However, the dangers of aliasing are still present in the spatial domain even
when we do not subsample the subbands. Care should be taken when designing
discrete filter banks in order to make sure that the spatial extent of the filtersis
not too large. It is possible to compute bounds for the largest possible filter which
can be contained in a given discrete lattice, but in practice spurious boundary
effects become a problem much earlier. It is not possible to compute the filter
responses correctly near the boundaries of the image simply because the spatial
extent of the filters overlaps the image boundary and the values of the signal are
not known outside the image boundary. Filters at low frequencies have thelargest
spatial extent, and thus their responses become unreliable even when the higher
frequencies could be still computed accurately.

2.6 Oriented filter families

Let us review briefly some of the main types of oriented quadrature filters
proposed in the literature. A good review of the properties of different one-
dimensio-nal band-pass quadrature filters can be found in Boukerrouiet al. (2004).

Strongly influenced by the mathematical formalism of quantum mechanics,
Gabor (1946) derived the one-dimensional bandpass filter minimizing the joint
uncertainty in time and frequency domains. As a measure of the uncertainty
of a complex-valued functionψ , Gabor used the normalized root-mean-square
bandwidth

1ω =

√

√

√

√

∫∞
−∞(ω − ω0)2ψ(ω)ψ∗(ω)dω
∫∞
−∞ ψ(ω)ψ ∗ (ω)dω (2.13)
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where

ω0 =
∫∞
−∞ ωψ(ω)ψ

∗(ω)dω
∫∞
−∞ ψ(ω)ψ ∗ (ω)dω (2.14)

is the center frequency of the function (the mean of the Gaussian distribution).
Similarly one can define1x as the effective width in the time domain. The
Heisenberg uncertainty principle then states that sinceω and x are conjugate
variables, the product of the effective widths obeys the inequality

1ω1x ≥ 1

4π
. (2.15)

The term "uncertainty" refers to the fact that in quantum mechanics, the product
ψψ∗ = |ψ |2 is interpreted as the probability density of the quantity associated
with the wave functionψ , and only the probabilities|ψ |2 can be observed. In
signal processing applications we deal directly with the complex-valued signals,
and the uncertainty principle can be considered merely a mathematical property
shared by the signal and its Fourier transform.

The function family which meets the lower bound of the uncertainty product
is the complex exponential

g(x; σ, ω0) = exp

(

− x2

2σ 2

)

exp(iω0x) (2.16)

whereω0 andσ free parameters. Daugman (1985) generalized the argument into
two dimensions and derived 2D Gabor filters which achieve the lower limit of
joint uncertainty in spatial and frequency domains, given by

g(x, y; σx, σy, ωx, ωy) = exp

(

−
(

x2

2σ 2
x

+ y2

2σ 2
y

))

exp
(

i
(

ωxx + ωyy
))

(2.17)

in the spatial domain. These functions are equivalent to the canonical co-
herent states generated by the Weyl-Heisenberg group in quantum mechanics
(Daubechies, 1990) (Lee, 1996). In the sense of the uncertainty principle the
2D Gabor filter then has some optimality properties for pattern recognition.
There is also a strong body of psychophysical evidence supporting thehypothesis
that mechanisms employing oriented linear filters are involved in mammalian
vision, and they are well approximated with 2D Gabor filters (Daugman, 1988).
While 2D Gabor filters are nonorthogonal, they can form a relatively good
approximation of a tight wavelet frame and approximate reconstructions using
direct summation as well as iterative methods are possible (Lee, 1996). Gabor
filters have been used a wide variety in tasks requiring oriented filters. They
have been especially popular in texture analysis and segmentation (e.g., (Dunn
and Higgins, 1995),(S.E. Grigorescu and Kruizinga, 2002)) and facerecognition
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applications (e.g., (Wiskott et al., 1999), (Krüger, 2001). See Shen and Bai (2006)
for a review). In practical applications, a modified form of the 2D Gabor filter
(Ronse, 1993; Lades et al., 1993) is often used, with the transfer function

g(x, y; σx, σy, ωx, ωy) =

exp

(

−
(

x2

2σ 2
x

+ y2

2σ 2
y

))

(

exp
(

i
(

ωxx + ωyy
))

− exp

(

−σ
2
x

2

))

. (2.18)

The additional term subtracts the DC component in the real (symmetric) part of
the filter. It should be noted that this modified filter does not strictly minimize
the uncertainty product, and only approximates a 2D Gabor filter. 2D Gabor-type
filters will be discussed more thoroughly in Section 3.4.1.

Nonetheless, 2D Gabor filters are only optimal in terms of uncertainty in the
Cartesian coordinates. Polar coordinate representations may be considered to be
perceptually more meaningful and have been proposed as more efficientin coding
of natural images (Field, 1987). Defined in the frequency domain, polar Gabor
filters (Haley and Manjunath, 1995), (Ro et al., 2001) with the transfer function

G(ωr , ωθ ;ω0, σr , σθ ) = exp

(

−(ωr − ω0)
2

2σr

)

exp

(

− ω2
θ

2σθ

)

(2.19)

and log-Gabor filters (Field, 1987), (Kovesi, 1999), with the transfer function

G(ωr , ωθ ;ω0, σr , σθ ) = exp

(

− log2(ω/ω0)

2 log2(σr )

)

exp

(

− ω2
θ

2σθ

)

(2.20)

arise as natural modifications of the Gabor filter for polar and log-polar frequency
coordinates, respectively, but do not achieve minimum uncertainty in the spatial
domain. A theoretical drawback of polar and log-Gabor filters is the absence of a
closed-form expression for the filter in spatial domain. Also analytic derivation of
minimum uncertainty filters for polar and log-polar frequency coordinate systems
appears difficult.

There are also several filter types which have qualitatively similar shape
as Gabor filters, although they have been derived from premises other than
minimizing the uncertainty product. One such filter is the Gaussian derivative
filter, which belongs to the larger group ofsteerable filters. Steerability, which
will be discussed more thoroughly in Section 3, poses a constraint for the
orientation bandwidth of the filter so that a rotated copy of the filter can be
computed as a linear combination of the original filter bank (Freeman and
Adelson, 1991). Steerable filters have found applications in many different tasks
in computer vision, including adaptive filtering (Knutsson et al., 1983), (Freeman
and Adelson, 1991), (Simoncelli et al., 1992), (Perona, 1995), (Simoncelli and
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Farid, 1995), motion estimation (Fleet and Jepson, 1990), stereo vision (Fleet
et al., 1991), shape from shading (Freeman and Adelson, 1991), texture analysis
(Knutsson and Granlund, 1983), (Greenspan et al., 1994) and feature detection
(Jacob and Unser, 2004), (Yokono and Poggio, 2004a).

Exactly steerable filters of the formP(x)G(
√

x2 + y2), where P(x) is a
polynomial, such as the examples considered in (Freeman and Adelson, 1991)
are quite inflexible, because orientation and radial frequency selectivities of such
filters cannot be easily chosen independently. Polar-separable oriented filters
were already proposed in (Knutsson and Granlund, 1983), who also used a
special case of steerability for computing the principal local orientation. The
feature localization performance, relating to the uncertainty principle, of exactly
steerable filters is not ideal because steerability, like orthogonality, is a rather strict
constraint on the filters. In practical applications, approximately steerablefilters
can often be used instead, if the required accuracy of orientation estimatesis not
very high, or the orientation estimation is only descriptive by nature. In addition,
noise levels in natural images are often large enough to make the systematic
steering approximation error relatively insignificant in comparison.

Steerable filters with wedge-shaped responses in the spatial domain have
been developed for edge classification (Simoncelli and Farid, 1995), (Yu et al.,
2001). Although influenced by the quadrature filter methodology, Yu et al.(2001)
propose an approach which is a departure from quadrature based signal analysis,
as it is based on the amplitude response and its derivative. The main appealis
that there is no forced symmetry in the responses of the filters and the amplitude
response of the filter bank can be directly interpreted as an orientation signature.
This is possible because the filters are tessellated around the origin both in spatial
and frequency domains. However, this arrangement does not appearto lead to any
obvious advantages in applications which use both amplitude and phase responses
of the filters. The ambiguity caused by the symmetry of the amplitude response is
resolved by the phase response in regular quadrature based analysis. Wedge filters
cannot use phase information in the same sense as other oriented quadrature filters
presented above, because the wedge filters at different orientations do not share
the same spatial support, and there is thus no clear definition of "local phase".



Chapter 3

Steerability properties of
Gabor-type filters

3.1 Introduction

In this chapter the steerability framework is extended to include Gabor filters,
the related DC free Gabor filters and angular Gaussian filters. Novel analytical
derivations of the required inner product functions are given for these three filter
types.

Gabor filters have been considered by some to be "not steerable" (e.g. (Shi,
1999), (Greenberg et al., 2002)), but in this chapter it is shown that their steering
error performance can be quite good with suitable filter shape parameters,and the
error performance in the same order of magnitude with approximately steerable
filters presented in the literature.

Section 3.2 reviews the theory of steerability. Section 3.3 presents the error
metric which is used to evaluate steering performance. The required inner product
functions for the different filter types are derived, and the steering performance is
analyzed in Section 3.4. Section 3.5 discusses the accuracy of the approximations
in computing the analytical inner product functions and the compares the steering
properties of Gabor and angular Gaussian filters. Finally in Section 3.6 the
presented direct steering method is compared to an alternative approach proposed
by Teo and Hel-Or (1999), where Gabor filters are approximated by a set of
exactly steerable basis functions.

Parts of the work in this chapter have been published in (Kalliomäki and
Lampinen, 2005) and (Kalliomäki and Lampinen, 2007).
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3.2 Steerability and shiftability

An oriented filter bank computes the response of the filters in some discrete
orientations, and it would often be useful to be able to know what the response
would be somewhere between the orientations. Subject to certain conditions,it is
possible to adaptively "steer" the filters into arbitrary orientations by computing
the linear sum

f θ (x) =
N
∑

i=1

ki (θ) f θi (x), (3.1)

where f θi (x) are the original filters of the filter bank, also calledbasis filters, and
f θ (x) is the interpolated filter in a new orientationθ . The steering coefficientski

depend only onθ and notx, thus also allowing computations performed with the
linear filters to be interpolated using the same linear weights.

A simple example of a shiftable function is cos(θ). It is exactly shiftable with
two shifted copies of itself, namely

cos(θ − θ̂ ) = cos(θ̂) cos(θ)+ cos(θ̂ − π/2) cos(θ − π/2), (3.2)

whenθ̂ is the amount of (phase) shift. The previous equation is equivalent to the
well-known result that a cosine wave in arbitrary phase can be represented as a
weighted sum of a cosine and a sine wave,

cos(θ − θ̂ ) = k1(θ̂) cos(θ)+ k2(θ̂) cos(θ − π/2)

= k1(θ̂) cos(θ)+ k2(θ̂) sin(θ), (3.3)

where the weightski again depend only on the amount of phase shiftθ̂ , not on the
function parameterθ .

Steerability was proposed by Freeman and Adelson (1991) for the special
case of rotation. Simoncelli et al. (1992) extended the same framework to
include translation and scaling, and coined the term "shiftability". Perona (1995)
proposed the term "deformable" to include interpolation capability of arbitrary
transformations. Teo and Hel-Or (1999) use the term "shiftable" to includeany
Lie transformation groups. The functionf is shiftable if any transformationT(θ)
acting on f can be expressed as a linear combination of a fixed, finite set of basis
functions fi ,

T(θ) f (x) =
N
∑

i=1

ki (θ) f i (x). (3.4)

In feature detection applications our main interest is in orientation steerability.
The features one wishes to detect are typically lines, edges and junctions,which
are locally almost independent of scale, that is, their orientation frequency
response is very similar at all scales. This does not mean that the featuresare
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intrinsically one-dimensional (simple lines or edges). For example the intersection
of two lines has a two-dimensional grey-level structure, but its orientation
response is highly similar at all scale levels. Thus orientation is usually more
descriptive than scale, and the ability to interpolate orientation responses is more
important than the ability to interpolate responses from one scale to another.

When designing the filter bank we must choose how many orientations we
are going to have in the bank. Steerability approaches the same question from a
different direction: how many basis filters do we need in general for the steering
of a given angular component? Freeman and Adelson (1991) proved that the
minimum number of shifted copies needed for fulfilling the steerability condition
exactly is equal to the number of non-zero coefficients (positive and negative
frequencies) in the Fourier expansion of the signal. Note that these do not have to
be theM first coefficients of the Fourier expansion. Thus, for example, the cosine
function requires two basis functions (a cosine and a sine at the same frequency
as the original cosine function). The cosine function is however not very useful
as an angular component of a steerable filter since it has a very wide orientation
bandwidth. Filters with narrow orientation bandwidth are preferable in feature
detection, since their feature representation capability is better, but they also need
more basis filters in order to be steerable.

Perona (1995) proposed a Singular Value Decomposition based method for
finding the optimal basis filters for a given transformation. Computing the SVD
of a matrix of transformed versions of the filter, the optimal basis functions are
the first N left singular vectors corresponding to the largest singular values.
Alternatively, using the theory of Lie groups, a steerable basis can be found
for arbitrary parameter groups by representing or approximating the filters in
an equivariant function space (Michaelis and Sommer, 1995), (Hel-Or and Teo,
1998). For single-parameter 2D rotation expressed in polar coordinates(r, θ), this
function space is{ f (r )exp(inθ)} ,n ∈ Z, i.e. complex harmonics together with
an arbitrary (real-valued) radial componentf (r ) (Teo, 1998). A viable approach
for filter design is to start with an ideal filter prototype (for example, a Gabor
filter) and approximate it in the appropriate equivariant function space (Teo and
Hel-Or, 1999), which is guaranteed to be closed under the same transformational
group.

In the one-dimensional case symmetry considerations can be used to justify
the choice of basis functions which are evenly spaced shifted copies of asingle
function. In multidimensional parameter spaces the basis functions are not
necessarily evenly spaced nor transformed copies of each other, andfinding a
parsimonious basis function set can be a demanding task. Teo and Hel-Or (1999)
propose a method for finding basis function sets with optimal approximation
properties for arbitrary multi-parameter transformations.
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3.2.1 Least-squares steerability of filters

Freeman and Adelson (1991) originally derived the conditions for exactsteerabil-
ity by considering the Fourier series of the angular component of the filter inpolar
coordinates. An alternative approach is to use linear algebra to find the optimal
linear steering functions for an arbitrary set of filters (Greenspan et al., 1994),
which is briefly reviewed here.

Orientation steerability of a (real-valued) linear filterg means that arbitrary
filter orientations can be computed (or at least approximated) by computing the
sum of a set of basis filtersg =

{

gθ1, gθ2, . . . , gθN

}

weighted with steering coeffi-
cientsk = {k1(θ), k2(θ), . . . , kN(θ)},

g(θ) ≈
N
∑

j =1

kj (θ)gθj = kTg. (3.5)

In the case of complex-valued filters, we need separate real-valued steering coef-
ficientskj (θ) for the real and imaginary parts of the Gabor filter and assume that
its basis filtersgθj share the same shape parametersSand frequencyµ.

Let us define the inner product between normalized real-valued functions u
and v as 〈u, v〉 =

∫

ω∈R2 u(ω)v(ω)dω. The functionsu and v are normalized
without loss of generality so that〈u,u〉 = 〈v, v〉 = 1. The optimal steering
coefficientsk can be solved analytically by minimizing the L2 norm of the error
e = g(θ)− kTg,

arg min
k

||e||2 = arg min
k

〈

g(θ)− kTg, g(θ)− kTg
〉

= arg min
k

〈g(θ), g(θ)〉 − 2
〈

g(θ), kTg
〉

+
〈

kTg, kTg
〉

(3.6)

The minimum of this expression is obtained by differentiating it with respect
to k and setting the result to zero, leading to the matrix equation

Gk = γ (3.7)

where the matrixG and vectorγ have the elementsGi, j =
〈

gθi , gθj

〉

andγi =
〈

g(θ), gθi
〉

, respectively. In component form, Eq. (3.7) is written out as











〈

g(θ), gθ1
〉

〈

g(θ), gθ2
〉

...
〈

g(θ), gθN

〉











=











〈

gθ1, gθ1
〉 〈

gθ1, gθ2
〉

. . .
〈

gθ1, gθN

〉

〈

gθ2, gθ1
〉 〈

gθ2, gθ2
〉

. . .
〈

gθ2, gθN

〉

...
...

〈

gθN , gθ1
〉 〈

gθN , gθ2
〉

. . .
〈

gθN , gθN

〉











k(θ) (3.8)

which holds for allθ and can be used to solve the optimal vectork̂(θ) via matrix
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inversion,

k̂(θ) =











〈

gθ1, gθ1
〉 〈

gθ1, gθ2
〉

. . .
〈

gθ1, gθN

〉

〈

gθ2, gθ1
〉 〈

gθ2, gθ2
〉

. . .
〈

gθ2, gθN

〉

...
...

〈

gθN , gθ1
〉 〈

gθN , gθ2
〉

. . .
〈

gθN , gθN

〉











−1









〈

g(θ), gθ1
〉

〈

g(θ), gθ2
〉

...
〈

g(θ), gθN

〉











. (3.9)

Unlike previous approaches ((Greenspan et al., 1994), (Sommer et al., 1998)),
we will proceed by computing the inner productsu(θ) = u(α − β) =

〈

gα, gβ
〉

analytically. The derived results are most similar to the ones given by Maurer
and von der Malsburg (1995), who computed the inner product of two DC-free
near-Gabor kernels with different wave vectorsk and a common uniform shape
parameterσ , but without considering steerability directly. The form ofu(θ)
depends on the type of the oriented filter family. We will derive results for Gabor,
DC-free near-Gabor and angular Gaussian filters in Section 3.4.

3.3 Steering error

The steering property of Gabor-type filters is not exact, but only approximate. The
error in the steering approximation depends heavily on the number of basis filters
and shape parametersS. Let us define the measure for steering error by

Es = max
θ

√

〈

g(θ)− k(θ)Tg, g(θ)− k(θ)Tg
〉

〈g(θ), g(θ)〉 , (3.10)

that is, the L2-norm distance of the maximum relative impulse response error. The
same error measure was used in (Greenspan et al., 1994). In an evenly spaced filter
bank the maximum error occurs always exactly between known filter orientations,
that is, if filters are in orientationsθi = π i

N , i ∈ {0,1, . . . , N − 1}, maximum
error is reached atθ = π

2N . It is, then, straightforward to evaluate numerically the
maximum steering error with different filter shape parametersS. Since we have
separate steering functionsk(θ) for even and odd filters of the quadrature pair, we
define the total steering error as the average of the even and odd filter errors,

Eavg
s = Eeven

s + Eodd
s

2
. (3.11)

The level of acceptable approximation error depends on the application. For
example, the quadrature pair formed by Gabor filters is not exact because of
the infinite support of the Gaussian function. As a guideline, we might allow
a roughly equal maximum error caused by the approximative steering. Alsothe
noise level affects the choice of admissible error. In this context, the term ’noise’
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means the error residual between the object model and the image, which is often
significantly larger than the pixel noise of the image acquisition process.

It is possible to reduce the maximum steering error by having an offset ofπ
2N

in the orientations of even and odd filters or alternatively by having a different
number of basis filters for even and odd filters (Schenk and Brady, 2003). The
steering error then becomes more evenly distributed across the rotation angle and
is nowhere zero. These improvements can be used without complications with
the presented approach, but because of simplicity and clarity we will not consider
them here.

3.4 Steering of Gabor-type filters

3.4.1 Parameterization of Gabor filters

The Gabor filter with a spherical Gaussian envelope function is describedby

f (ξ ; µ, σ, θ) = |µ|2
σ 2

exp

(

−|µ|2
2σ 2

|ξ |2
)

exp
(

iµT Rθξ
)

, (3.12)

whereξ =
[

x y
]T

are the spatial coordinates, the wave vectorµ = [ fc 0]T

determines the center frequencyfc of the filter and also acts as a scaling factor in
this parameterization,σ controls the number and strength of spatial domain side
lobes, andθ determines the orientation of the filter via the rotation matrix

Rθ =
[

cosθ sinθ
− sinθ cosθ

]

.

Following Daugman (1985), we will consider a more general form of Eq.
(3.12), with different scaling constantsσx andσy along the two axes in the spatial
plane,

f (ξ ; µ, S, Rθ ) = |µ|2√
det(S)

exp

(

−|µ|2
2
(Rθξ)

T S−1Rθξ

)

exp
(

iµT Rθξ
)

∝ N(0, |µ|2RT
θ SRθ ) · exp

(

iµT Rθξ
)

. (3.13)

N(0, |µ|2RT
θ SRθ ) denotes the Gaussian distribution with zero mean and covari-

ance matrix

S =
[

σ 2
x 0
0 σ 2

y

]

(3.14)

which is rotated with the matrixRθ and scaled by|µ|2. If σx = σy, Eq. (3.13)
reduces to Eq. (3.12). Note that in this parameterization the resulting filters
have a constant template shape determined byS, and the filter is rotated around
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Figure 3.1: Left: Filter tessellation using the proposed parameterization. The filters retain
their shape under rotation, and center frequency affects also the size of the filter envelope.
Right: Alternative, non-isotropic parameterization. Seetext for explanation.

the origin by the parameterθ . Even more generic parameterizations which still
achieve minimum uncertainty are possible (Daugman, 1985). For example the
wave vectorµ does not need to be aligned with axes of the Gaussian envelope.
Also an arbitrary phase constant can be added so that the real and imaginary parts
of the filter do not correspond to even and odd symmetric real-valued filters, but
are weighted sums of both. We will follow Daugman (1985) and ignore these
complications since our main interest is the effect of the shape parameters onthe
properties of the Gabor filter.

In order to make clear the properties of the proposed parameterization, Fig.
3.1 shows a tessellation of Gabor filters generated by directly changing the
orientation parameterθ and center frequencyfc. It should be noted that the shape
parametersσx andσy control the shape of the unrotated filter along the x- and
y-coordinates. Since the shape of the filter remains constant under rotation in
terms of angular and radial bandwidth, this means thatσx andσy correspond to
the spatial filter width in horizontal and vertical directions only in the unrotated
orientation (θ = 0). In generalσx andσy are related to the radial and angular
frequency bandwidths of the filter, respectively. Fig. 3.1 also shows analternative
parameterization, in which the filter shape is not preserved under rotation.This
kind of filter tessellation is useful in situations where the horizontal and vertical
coordinates themselves have different properties, for example if the sampling rate
is not same in horizontal and vertical directions.

The Fourier transform of a zero-mean Gaussian function is also a Gaussian
function, although no longer normalized, and modulation by complex plane wave
corresponds to a shift from the origin in the Fourier plane by the amount described
by RT

θ µ. The rotation property of 2D Fourier transform states that rotations in the
spatial plane correspond directly to rotations in the Fourier plane. As a result, the



24 Steerability properties of Gabor-type filters

x

y

σ
x

σ
y f

x

f
y

1/σ
x

1/σ
y f

x

f
y

Figure 3.2: Left: Even Gabor filter in the spatial domain. Equal magnitude level of the
complex filter is shown with dashed line. Middle: Even Gabor filter in the frequency
domain. Right: Six complex Gabor filters in the frequency domain, with different
preferred orientationsθ . Only half of the frequency plane needs to be covered.

Fourier transform of the complex Gabor filter is a single Gaussian function

F { f } ∝ N(RT
θ µ, RT

θ S−1Rθ ). (3.15)

We denote the real-valued even and odd Gabor filters withg = Re{ f } andh =
Im { f }, respectively, so thatf = g+ih. Fourier transforms of real and imaginary
parts of the complex filter are sums of two Gaussian functions,

F {g} ∝ N(RT
θ µ, RT

θ S−1Rθ )+ N(−RT
θ µ, RT

θ S−1Rθ ) (3.16)

and
F {h} ∝ N(RT

θ µ, RT
θ S−1Rθ )− N(−RT

θ µ, RT
θ S−1Rθ ). (3.17)

The uncertainty principle states that the product of the areas in spatial and
frequency domains occupied by the filter is constant. This means that if the filter
is made wider in one domain, it becomes narrower in the other. As an example,
an even Gabor filter with shape parametersσx = 3 andσy = 2 is illustrated
schematically in Fig. 3.2. The spatial width1x ∝ σx and height1y ∝ σy

of the filter are conjugate variables with the spectral widths1 fx ∝ 1/σx and
1 fy ∝ 1/σy, so that their product is constant, conforming to the uncertainty
principle. When we use the complex Gabor filter, which is a single Gaussian
function in the frequency domain, only half of the frequency plane needsto be
covered. This is due to the fact that the signals (images) we analyze are real-
valued, and thus their Fourier spectra are symmetric.

3.4.2 Steering of Gabor filters

In the following we assume without loss of generality that the filters have unit
center frequencyµ = [1 0]T . The even and odd Gabor filter both need separate
steering coefficientsk. We begin by computing the inner products in the elements
of the matrixG in Eq. (3.7). The inner product integralu(θ) of two even Gabor
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filters in the frequency space is

〈g, gθ 〉 = 〈F {g} ,F {gθ }〉

=
∫

(

N(µ, S−1)+ N(−µ, S−1)
)

·
(

N(RT
θ µ, RT

θ S−1Rθ )+ N(−RT
θ µ, RT

θ S−1Rθ )
)

dω (3.18)

which, using a symmetry argument, is equivalent to

= 2
∫

N(µ, S−1)N(RT
θ µ, RT

θ S−1Rθ )+ N(µ, S−1)N(−RT
θ µ, RT

θ S−1Rθ )dω.

(3.19)
The inner product of two Gaussian functions (the normalization constant of a
product of two Gaussian functions) is also Gaussian with respect to the parameters
of the functions,

〈N(a, A) · N(b, B)〉 ∝
√

|C|
|A||B| exp

(

−1

2
(aT A−1a + bT B−1b − cTC−1c)

)

,

(3.20)
with C = (A−1 + B−1)−1 andc = C A−1a + C B−1b.

We can now identifya = µ, A = S−1, b = ±RTµ, B = RT S−1R, C =
(S+ RT SR)−1 andc = (S+ RT SR)−1(I ± RT )Sµ in order to compute the two
integral terms. Applying the result gives after some manipulation

〈g, gθ 〉 = 1

Zg

√

|U | exp

(

1

2
νT (U + RθU RT

θ )ν

)

· cosh

(

−1

2
νT (U RT

θ + RθU )ν

)

(3.21)

whereU = (S+ RT
θ SRθ )−1, ν = Sµ = [σ 2

x 0]T andZg is a normalization factor.
It is most conveniently computed by requiring that the inner product equalsto one
at θ = 0, yielding the result

Zg = 1

2
σ−1

x σ−1
y exp

(

1

2
σ 2

x

)

cosh

(

−1

2
σ 2

x

)

. (3.22)

Inner product function of two odd Gabor filtersh andhθ is obtained similarly,

〈h, hθ 〉 = 1

Zh

√

|U | exp

(

1

2
νT (U + RθU RT

θ )ν

)

· sinh

(

−1

2
νT (U RT

θ + RθU )ν

)

, (3.23)
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with the normalization factor

Zh = 1

2
σ−1

x σ−1
y exp

(

1

2
σ 2

x

)

sinh

(

−1

2
σ 2

x

)

. (3.24)

In the case of spherical Gabor filters (σx = σy = σ ), the expressions of the
inner products simplify significantly to

〈g, gθ 〉 = cosh(σ
2

2 cosθ)

cosh(σ
2

2 )
. (3.25)

and

〈h, hθ 〉 = sinh(σ
2

2 cosθ)

sinh(σ
2

2 )
. (3.26)

Having computed the inner products, we can now solve the optimal steering
coefficients using Eq. (3.7). All of the elements in the matrixG are inner products
between two rotated Gabor filters. Specifically, as the value of the inner product
between two filters in orientationsθ1 and θ2 depends only on the difference
between orientationsθ ′ = θ1−θ2, we can fix the coordinate system of the rotation
and define

u(θ ′) =
〈

gθ1, gθ2
〉

= 〈g0, gθ ′〉 . (3.27)

Using only this single inner product function, for which it holds thatu(0) = 1,
Eq. (3.9) is expressed as

k̂(θ) =















1 u(θ1 − θ2) . . . u(θ1 − θN)

u(θ2 − θ1) 1 . . . u(θ2 − θN)

u(θ3 − θ1) u(θ1 − θ2) . . . u(θ3 − θN)
...

...

u(θN − θ1) u(θN−1 − θ2) . . . 1















−1













u(θ − θ1)

u(θ − θ2)

u(θ − θ3)
...

u(θ − θN)















.

(3.28)
The matrix inverse is constant with respect to the steering angleθ , and it is
conveniently solved numerically,N being small. The optimal steering functions
are of the formkj (θ) = ∑

i wj i u(θ − θi ), that is, sums of shifted versions of
a single inner product functionu(θ), the weightswj i being the elements of the
matrixG−1.

The matrix G is in principle not guaranteed to be invertible, and indeed
with basis filters which are highly correlated, it can be numerically close to
being singular. To overcome this difficulty, we can compute the Singular Value
Decomposition ofG and use it to calculate the SVD inverse (Greenspan et al.,
1994).
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Figure 3.3: Base-10 logarithm of steering error in impulse responses ofGabor filters. In
typical applications 1% error (the -2 contour) might be considered acceptable.
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Once we have solved the steering coefficients, it is straightforward to compute
the steered filter approximation as a linear sum of the original filters, using Eq.
(3.5). In order to analyze the steering error performance of the filters,we evaluate
the approximation error numerically using Eq. (3.10).

The error behavior of Gabor filters in banks of three to eight filters is shown
in Fig. 3.3. The overall effects of the filter shape parametersS are similar with
any numberN of basis filters. Steering error becomes progressively lower as
more basis filters are present, and while the spatial domain side lobes are not
prominent. Most importantly, spherical Gabor filters are in general not optimal in
terms of steering, and slightly flattened filters withσy/σx < 1 have considerably
lower steering error. In other words, steerability is improved if the filters are
less specific in the angular dimension than in the frequency dimension. This
behavior is compatible with the properties of derivative of Gaussian filters,which
are similarly flattened in the frequency space although their envelope function is
a spherically symmetric Gaussian.

Fig. 3.4 shows the effect of flattening the filter in Gabor filters and third
derivative of Gaussian filters. The latter are exactly steerable when the exponential
term is a spherical Gaussian (that is,σy/σx = 1). However, exact steerability is a
very brittle property of the filters, and the steerability of derivative of Gaussian
filters quickly breaks down if the exponential term is not exactly spherical.
Steerability has been proposed also to have biological relevance (Edelman, 1996),
but for this reason, it is unlikely that exact steerability, instead of approximate
steerability, could be relevant for biological vision, as the parameter values
of oriented filters in biological systems have significant variation and probably
cannot be specified very accurately. Non-spherical derivative ofGaussian filters
and Gabor filters show more or less similar steering performance. It is also
interesting to note that the optimum values for steering are slightly different for
even and odd Gabor filters.

3.4.3 Steering of DC free near-Gabor filters

In many applications the DC component of the even Gabor filter is problematic,
because it makes the filters sensitive to the absolute brightness of the image, and
it is preferable to use filters with zero DC response. A simple way to remedy the
deficiency is to subtract a second Gaussian term located at origin, forcing the DC
response of the filter to zero (Ronse, 1993),(Lades et al., 1993). The resulting
complex-valued filter

f = N(0, RT
θ SRθ ) ·

(

exp
(

iµT Rθξ
)

− exp

(

−σ
2
x

2

))

(3.29)
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Figure 3.4: Maximum steering error of Gabor and third derivative of Gaussian filters
with respect to elongation of the Gaussian envelope function. Both filter banks are evenly
spaced in orientation and contain 6 filters, withσx = 2.

is no longer a Gabor filter, but approximates one quite well, especially with large
σx when the DC component (and thus also the subtracted exponential term) is
small.

Optimal steering functionsk(θ) can be derived for DC free near-Gabor filters
using the presented approach. The odd real-valued filter remains unchanged. The
inner product function of the even filter

F {g} = N(µ, S−1)+ N(−µ, S−1)− 2 exp(−σ 2
x /2)N(0, S−1) (3.30)

has now four terms,

〈g, gθ 〉 =
∫

N(µ, S−1)N(RT
θ µ, RT

θ S−1Rθ )

+N(µ, S−1)N(−RT
θ µ, RT

θ S−1Rθ )

−4 exp
(

−σ 2
x /2

)

N(µ, S−1)N(0, RT
θ S−1Rθ )

+2 exp
(

−σ 2
x

)

N(0, S−1)N(0, RT
θ S−1Rθ )dω. (3.31)
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Proceeding in the same manner as in the case of the Gabor filter, we obtain

〈g, gθ 〉 = 1

Zg

√

|U |
[

exp

(

1

2
νT (U + RθU )(I + RT

θ )ν

)

+ exp

(

1

2
νT (U − RθU )(I − RT

θ )ν

)

−4 exp

(

1

2
νTUν

)

+ 2

]

, (3.32)

with U = (S+ RT
θ SRθ )−1 andν = Sµ as before, and the normalization factor

Zg = 1

2
σ−1

x σ−1
y

(

exp
(

σ 2
x

)

− 4 exp

(

1

4
σ 2

x

)

+ 3

)

. (3.33)

The effect of the two additional terms of the integrand is however quite small in
practice unlessσx is close to zero. The steering error, depicted in Fig. 3.5, is
similar to that of Gabor filters, but with narrower region of good steerability.

3.4.4 Steering of angular Gaussian filters

Let us consider approximately steerable filters which are separable in polar
frequency coordinates so that the filter can be expressed as a product of two
univariate functions,g(r, θ) = p(r )q(θ). We choose the angular componentq(θ)
to be the Gaussian function

Nq(θ, σθ ) = exp

(

− D(θ, θ ′)2

2σ 2
θ

)

(3.34)

with the 2π-periodic distance measure (Yu et al., 2001)

D(θ, θ ′) = min
(

|θ − θ ′|, |θ − θ ′ − 2π |, |θ − θ ′ + 2π |
)

. (3.35)

Polar Gabor (Haley and Manjunath, 1995) and log-Gabor (log-Normal) filters
(Field, 1987), (Kovesi, 1999) are both examples of this class of filters. Note that
because of the periodicity of the distance measureD, the functionNq is only
Gaussian with respect to the distance measure, but not with respect to the angleθ
directly.

The inner product function of two angular Gaussians is

u(θ) = 1

2

∫ π

−π

(

Nq(0, σθ )± N(π, σθ )
) (

Nq(θ, σθ )± Nq(θ + π, σθ )
)

dθ ′,

(3.36)
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Figure 3.5: Base-10 logarithm of steering error in impulse responses ofDC-free near-
Gabor filters.
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where the choice of sign determines whether the filter is even or odd symmetric
(real or imaginary component of the Hilbert pair). Again because of reasons of
symmetry, it holds that

u(θ) =
∫ π

−π
Nq(0, σθ )

(

Nq(θ, σθ )± Nq(θ + π, σθ )
)

dθ ′. (3.37)

The integral in Eq. (3.37) is difficult to evaluate because of the periodic
distance measureD(θ, θ ′), which causes the metric to wrap around fromπ to
−π . In order to approximate the integral, we approximate the expression

∫ π

−π
Nq(0, σθ )Nq(θ, σθ )dθ

′ (3.38)

by eliminating the periodicity and expanding the latter of the two terms into
∫ π

−π
N(0, σθ ) (N(θ − 2π, σθ )+ N(θ, σθ )+ N(θ + 2π, σθ )) dθ ′, (3.39)

where we have now converted the periodic Gaussian functionsNq into direct

Gaussian functions of the angle parameter,N(θ, σθ ) ∝ exp(− (θ−θ ′)2

2σ2
θ

). Figure 3.6

illustrates the idea of the approximation. The convolving integral term (denoted
with blue line) is expanded into a sum of three shifted versions of the original
function (denoted with dotted black line), taking into account the wrapping effect
of the periodic distance measure.

If the integrands had support only in the interval[−π, π], the approximation
would be exact. A slight error is introduced with functions which have wider



3.4 Steering of Gabor-type filters 33

support. The error due to summing of the shifted versions can be seen in thelowest
point of the curve, where the approximation has slightly higher value than the
original function. Practical oriented filters will have a narrow enough orientation
bandwidth so that the approximation is valid. Further, the integration limits can
be expanded to[−∞,∞] under the same conditions.

The preceding approximation scheme leads to the approximation

u(θ) ≈
∫ ∞

−∞
exp

(

− θ ′2

2σ 2
θ

)

( 1
∑

n=−1

exp

(

−(θ − θ ′ + 2nπ)2

2σ 2
θ

)

± exp

(

−(θ − θ ′ + (2n − 1)π)2

2σ 2
θ

))

dθ ′

(3.40)

for the inner product functionu(θ). Computing the integral, we obtain

u(θ) = 1

Z

2
∑

n=−2

(±1)n+1 exp

(

− 1

4σ 2
θ

(θ − nπ)2
)

, (3.41)

which is a good approximation for the exact integral in the intervalθ ∈ [−π, π]
whenσθ is not too large. The normalization term is now simply

Z =
2
∑

n=−2

(±1)n+1 exp

(

−(nπ)
2

4σ 2
θ

)

. (3.42)

The steering error of angular Gaussian filters, depicted in Fig. 3.7, is easier
to analyze because only the angular width parameterσθ affects the steering
performance. Given the number of basis filters, an optimal filter width exists
with respect to the steering error. The error starts to rise again with largerthan
optimal angular bandwidths. However, such filters are uninteresting for practical
applications, because if a lower resolution is needed, the number of basis filters
can be decreased instead. The useful filters lie in the region with filter bandwidths
equal to or narrower than the optimal width of the given number of basis filters,
and in this region the analytical approximation is nearly indistinguishable from a
numerically computed optimal solution (not shown in the figure), confirming that
the integral approximation is valid. It is possible to trade steering performance for
bandwidth. The optimal width for a bank of eight filters isσθ = 37 degrees, but
if we allow a maximum error of 1% in the impulse response, the filter width can
be reduced to 21 degrees, leading to a significantly improved angular resolution.
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Figure 3.7: Base-10 logarithm of maximum relative steering error of filters with an
angular Gaussian component as functions of their angular bandwidths in degrees.

3.5 Accuracy of analytical and numerical steering equa-
tions

Next, the accuracy of the inner product functions is discussed. Fig. 3.8
shows numerically computed inner product functions of Gabor, near-Gabor and
angular Gaussian filters, compared to the evaluated analytical expressions in Eqs.
3.21, 3.32 and 3.41. The analytical and numerical inner products are nearly
indistinguishable in practice, with a maximum error in the order of 10−12 for
Gabor filters and 10−4 for angular Gaussian filters. While Eq. 3.41 is only an
approximation of the exact inner product integral, the accuracy is good enough
for all practical applications.

Fig. 3.9 shows the angular bandwidths of Gabor filters on top of the steering
error in a bank of eight filters. A difficulty in regular Gabor filters is that
the angular and radial frequency bandwidths depend nonlinearly on theshape
parameters, and cannot be chosen independently if a particular angularor radial
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Compare with Fig. 3.7.

frequency bandwidth is required. Supposing that we need, for example, an
orientation bandwidth ofσθ = 30 degrees, it can be achieved with a Gabor filter
with parametersσx = 3.7 andσy/σx = 0.7, with an error of approximately 1%.
The radial frequency bandwidth is now fixed with these parameters, whichcannot
be significantly changed without increasing the error level. In contrast, an angular
Gaussian filter reaches the angular bandwidth ofσθ = 21 degrees with the same
error level, while still having complete freedom in choosing the radial frequency
bandwidth. The price of this flexibility is the slightly increased joint uncertainty.
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3.6 Exactly steerable filters and their Gabor approxima-
tions

In order to design exactly steerable filters which are close to Gabor filters inthe
sense of the L2-norm, one can start with a Gabor filter prototype and use Singular
Value Decomposition to find the optimal basis giving exact steerability within
an acceptable approximation error margin. We consider here only one-parameter
rotation transformations. Following Perona (1995), we will compute numerically
the exactly steerable basis functions with SVD. Cascade basis reduction (Teo
and Hel-Or, 1999) can be used in order to reduce the dimensionality of the
decomposition, when the number of transformation parameters makes the direct
SVD computationally unfeasible.

In principle, there is no theoretical guarantee that the resulting filter will
have the same properties as the filter it approximates. However, since the
approximation error of the SVD method is constant with respect to orientation
(Perona, 1995), that is, all orientations are approximated equally well bythe basis
functions in the sense of the L2-norm, the resulting filters will generally preserve
their good localization properties. Additionally, zero DC is preserved sincethe
complex harmonic basis functions exp(ikθ) have zero DC themselves.

It is however reasonable to ask how much we gain by computing the SVD in
the case of single parameter rotations. For example, given a DC free near-Gabor
filter with shape parametersσx = σy = 2 and an approximation error of 1%
(measured with Eq.3.10), seven basis functions are needed for the even filter and
six for the odd filter, depicted in Fig. 3.10. From Fig. 3.5 it can be seen that
the steering error when using seven Gabor filters has a similar amount of steering
error (it is exactly 0.99%). Thus we have gained essentially nothing with the SVD
computation.

Table 3.1 gives some additional examples of exactly steerable SVD approx-
imations of Gabor filters. Again the 1% approximation error level was used. In
general the SVD method appears to save one or two basis filters with larger shape
parameter values. It can be concluded that the SVD approach becomes potentially
useful in reducing the number of basis filters when the Gabor shape parameters
are such that a large number of filters is required for steerability, but such high
numbers of basis filters are not widely used in the literature.

If further analysis is performed in the Gabor filter space and not by directly
using the SVD basis filter responses, we need to apply an additional linear
transformation to the SVD basis filter responses in order to obtain the Gabor filter
responses. Depending on the hardware architecture and software implementation,
this additional computation can nullify the computation benefit achieved using
the SVD approach, since the 2D FFT algorithm has computational complexity
O(N2 log N) while the linear transformation of a single filter response of an image
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Figure 3.10: Even and odd DC free near-Gabor filters with shape parametersσx = σy =
2, and the corresponding basis filters (left singular vectors) computed with SVD. The
basis filters consist of angular quadrature pairs of even andodd complex harmonics. The
radial components of the basis filters are quite close to being Gaussian.

has complexityO(N2M), whereN2 is the number of pixels in the image andM
is the number of SVD basis filters. In other words, it can be computationally
less demanding to simply compute additional convolution results using the 2D
FFT algorithm than to apply additional pixelwise processing to the filter reponses,
if the image size is small. Using a straightforward, not particulary optimized
Matlab implementation, it was found that for example in the case ofM = 10
basis filters, the SVD approach combined with the linear transformation to Gabor
space becomes computationally more efficient than performing one additional
direct 2D FFT computation ifN > 150. The exact difference in the amount of
computation using the two methods is naturally both implementation and platform
dependent, but it can be concluded that the SVD approach does not always give
performance savings despite being able to use a slightly lower number of basis
filters than the direct computation of Gabor responses, if the responses need to
be transformed to the Gabor space for analysis. It should be noted herethat
the SVD methods presented in Teo and Hel-Or (1999) have been designedfor
multiparameter transformations where their benefits become apparent.

Conversely, one can consider approximating exactly steerable filters with
Gabor filters. The primary reason for such an excercise is to compare the
properties and practical performance of the filters. The latter will be considered
in Section 5.5.

For example, the derivative of Gaussian filters are classical exactly steerable
filters which are relatively close to Gabor filters. Directly minimizing the
approximation error as defined by Eq. 3.10 one can find the closest Gabor
equivalents to the derivative of Gaussian filters. In addition to shape parameters,
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σx σy Nsvd
even Nsvd

odd EGabor
steer NGabor

<1%

2 1.6 4 5 0.85% 5
2 2 7 6 0.99% 7
4 3 8 8 1.86% 9
2 4 15 15 1.93% 17
3 6 19 20 1.72% 22

Table 3.1: Examples of near-Gabor filter banks with shape parametersσx andσy, and
the number of required basis filtersNsvd

even,N
svd
odd for 1% approximation error with the SVD

method, steering errorEGabor
steer of a filter bank with the same number of Gabor filters, and

number of Gabor filtersNGabor
<1% required for 1% steering error.

target filter σx σy EGabor
approx EGabor

steer

2nd derivative of Gaussian1.96 1.46 8.3% 3.0% (N=4)
3rd derivative of Gaussian 2.49 1.80 6.6% 2.1% (N=5)
4th derivative of Gaussian 2.92 2.06 6.1% 1.4% (N=6)
5th derivative of Gaussian 3.30 2.29 4.8% 0.9% (N=7)

...

10th derivative of Gaussian4.57 3.20 3.4% 0.1% (N=11)

Table 3.2: Shape parametersσx and σy for DC free near-Gabor approximations
of derivative of Gaussian filters, the error performanceEGabor

approx of their Gabor
approximations, and the steering errorsEsteerGabor of the approximations. The steering
errors are given with the same number of basis filters (in parenthesis) with which the
polynomial approximation of the DoG filter pair is exactly steerable.

the center frequency is also optimized, since it is slightly different due to the
different shapes of the response envelopes.

Table 3.2 gives the approximation parameters and the related approximation
and steering errors of DC free near-Gabor filters. As the order of thederivative
increases, the derivative of Gaussian filters become more like Gabor filters, and
the approximation error decreases. The aspect ratio of the approximatingGabor
filter remains remarkably constant, the quotientσy/σx having the value of 0.70
with all derivative orders from the second to the tenth.

Yokono and Poggio (2004b) note that Gabor functions can be regarded
as approximations of high order Gaussian derivatives. However, such an
approximation requires a very particular choice of the Gabor shape parameters.
Conversely, it can be said that derivative of Gaussian filters are increasingly
Gabor-like as their order increases. Very high order derivatives such as the tenth
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derivative have not been widely used in the literature, possibly becausesuch high
order image derivatives have no physical significance, and estimates ofhigh order
derivatives are informally known to be sensitive to noise in the one-dimensional
case. Their close resemblance to certain Gabor filters however suggeststhat there
is no inherent reason why the high order derivative of Gaussian filterswould not
be suitable for applications which use similarily shaped Gabor filters, such as
feature detection and texture classification.

Greenspan et al. (1994) design a steerable filter bank with four orientations
using the SVD approach and report a relative steering error of 0.5% with filters
which are approximations of Gabor filters with shape parameterσ = π/2 ≈ 1.57
using our parameterization. For comparison, directly steering the Gabor filters
with the shape parametersσx = σy = 1.57 has the relative steering error of 8.8%
and flattening the Gabor filter slightly using the shape parametersσ = [1.57 1.29]
has the relative steering error of 1.4%.

3.7 Discussion

As the steerability of a filter (or a function) is dependent only on the Fourier
spectrum of the angular component of the filter, the derived results for Gabor
filters are not entirely surprising, since as a consequence of the samplingtheorem,
any function is steerable given enough basis functions. However, the important
empirical finding of this chapter is that Gabor-type filters can be approximately
steerable (with a tolerable steering error for practical applications) usingonly a
low number of basis functions. Excellent steering performance can be obtained
using 6 or 8 basis filters, a number which is a typical design choice in texture
analysis and feature detection applications.

The practical advantages of Gabor-type filters are mainly that they have a
simple analytical form, which makes the filter bank design problem computation-
ally straightforward, and that the filters can be tuned for different applications by
adjusting the parameters. The steering error of Gabor filters depends dramatically
on the shape parameters, and nonspherical Gabor filters withσx > σy have
significantly better error performance than the more commonly used spherical
Gabor filters.

In filter bank design, steerability gives a guideline for determining an
appropriate number of orientations and scales for given filter shape parameters
in order to obtain (nearly) uniform coverage of the frequency space.Even in
applications which do not use steerability directly, it is typical to aim for covering
the orietation and scale space in some sense "uniformly", so that there are no holes
in the coverage of the frequency space. The usefulness of steerabilityin filter bank
design is that it gives a numerical value to the uniformity of the filter bank with
respect to orientations.



Chapter 4

Probabilistic framework for
inference of images

4.1 Introduction

In this chapter we will proceed to apply the oriented filter banks as generic
local gray-level feature detectors and construct probability distributions which
give information about the location of a feature in the image plane. The local
features are then combined into probabilistic models of complete objects, which
are matched into novel images using probabilistic methods. This combination of
methodology forms the theoretical basis for the probabilistic local feature based
object matching system considered in this work. The system is based on the
framework presented in (Tamminen, 2005).

The object matching system can be divided into four parts or stages of
processing which are independent to some degree:

• Feature representation

• Feature similarity model

• Object similarity model

• Matching method

Local image features are represented in the system by the responses ofthe
quadrature filter banks, in particular, Gabor-type filters. Other possibilities for
local descriptors include steerable filters (Yokono and Poggio, 2004b),local image
patches (Weyrauch et al., 2004), (Rothganger et al., 2003) and histogram-type
representations (Lowe, 2003), (Zhang et al., 2007). It is common to allthese
representations that individual feature models are not typically very strong in
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their predictive capability, and object models are composed of a number of local
features.

The SIFT features (Lowe, 2003) are especially noteworthy as the SIFT
matching algorithm can be considered to be a state-of-the-art method in rigid
object matching. The SIFT features consist of a histogram-type representation
of local image gradients, and have been found to perform very well in redetection
of a previously seen object under new image transformations. Serre et al. (2007)
argues that the SIFT features are unlikely to perform well in generic object
recognition tasks because of their high degree of invariance. However, it is
possible to adapt the core SIFT algorithm to better suit recognition purposes
(Bicego et al., 2006). Compared to the Gabor jet based feature representation,
the main difference is that the SIFT features are intrinsically rotation, translation
and scaling invariant.

Feature similarity defines a distance metric in the feature space, and its
purpose is to assign a numerical value for the resemblance of two local gray-level
image structures. The term similarity stems from the error minimization approach
in (Lades et al., 1993). In a probabilistic framework, the analogue of feature or
object similarity is probability, which follows naturally from the error function or
distance metric.

Most object similarity models considered in this work are based only on the
joint probability of individual features, which is appropriate because theobject
models have a relatively low number of parameters. An exception is Chapter 5,
where the object model contains both feature and shape probability models in
order to perform well in recognition tasks. This object model is directly based on
(Tamminen, 2005).

The matching methods applied in this work are based on probabilistic infer-
ence using random sampling. Traditionally, computer vision applications have
often used straightforward error minimization instead of probabilistic reasoning,
but recently probabilistic approaches have gained popularity in computer vision
applications, especially when handling multiple object classes. In (Fei-Fei et al.,
2003), the PCA-based feature models are somewhat simpler than in our approach,
but the probability model for objects is significantly more sophisticated. Instead
of random sampling, variational methods are used for finding the posterior
distribution of parameters of a multi-dimensional Gaussian mixture model. An
analytic approximation for the posterior would be a viable alternative for random
sampling also in our case. A generative, hierarchical object model based on SIFT
features was presented in (Mikolajczyk et al., 2006). The tree structures for the
object models resemble our local feature based object representation. However,
since the aim is in multiple object class detection, the object models are not very
detailed, and the main modeling effort is spent for building a generic common
codebook for the parts (or features) of all object classes.

Figure 4.1 shows an overview of the levels of processing in our system.
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Figure 4.1: Overview of the object matching system considered in this work. From top
to bottom: I Input image, II Multiscale, multiorientation filter bank, III Filter responses
(magnitude shown), IV Feature likelihood distributions, VLocal feature based object
matching. Computation in stages III and IV is based on feedforward processing (denoted
with black arrows), whereas the object matching in the final stage is based on random
sampling of the feature location distributions (denoted with red arrows).

The image (I) is filtered first using a bank of multiscale, multiorientation filters
(II). This can be considered a feature extraction stage. The responses of all
filters (III) are combined and compared with feature prototypes. This comparison
produces a number of probability distributions, each of which describes the
presence of a single feature in a spatial location in the image (IV). Finally, the
feature points of the object model are matched to image locations by randomly
sampling the posterior distribution of feature location configurations (V). The
system incorporates two different types of computation. The filter responses and
the feature likelihood distributions are computed in a non-iterative, feedforward
manner. In contrast, the random sampling of feature locations in the final stage
proceeds in an iterative fashion. It is possible to implement rotation invariance in
such a system on various levels of processing. The approach we will take in this
work is to use feature detectors which are orientation-sensitive and preserve the
orientation information for higher levels of processing, and handle the orientation
parameter on levels IV and V.
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Section 4.2 shows using examples how the responses filter banks describethe
local structures in images. Section 4.3 reviews the similarity measures presented
in the literature and relates the proposed similarity to them. Section 4.4 shows
how to construct a likelihood probability distribution from the similarity measure.
In Section 4.5 the ideas of the two previous chapters are combined with the
concept of the similarity measure and present rotation-invariant versionsof the
similarity measures and the likelihood functions derived from them. Section 4.6
discusses restricted rotation invariance. Section 4.7 presents the object probability
model considered in this work. The chapter concludes with a brief review of
random sampling methods in Section 4.8. They are necessary in order to obtain
samples from the object likelihood and posterior probability density functions.
The random sampling methods are applied in Chapter 5 to analyze the effect of
filter parameters on recognition, and in Chapter 7 to locate and recognize objects
in rotated poses.

4.2 Quadrature filter banks and local features

Given a filter bankf containing complex-valued quadrature filters in different
scales and orientations, the complex-valued filter responsesf̂w are obtained by
convolving the signal (or image)I with each filter,

f̂w(x, y) = f ∗ I (x, y) = { f1 ∗ I , f2 ∗ I , . . . , fN ∗ I } . (4.1)

We now interpret the response of a filter bank at a certain image plane location
(x, y) as an abstract description of its local gray level structure. The filter bank
responses describe the local gray-level structures in the image simultaneously in
orientation, scale and location.

Figure 4.2 shows the amplitude and phase responses of oriented filters at
two different frequencies (scales) and two different orientations (vertical and
horizontal), using a human face image as a test image. The filters respond to
structures which are different in both orientation and size. The vertical filter
at frequencyπ/4 responds most to the edges of the head, while the horizontal
filter at the same frequency gives largest response at the horizontal line of the
mouth. The vertical filter at frequencyπ/16 gives a response maximum at the
bridge of the nose, while the horizontal filter responds most to the dark andthick
eyebrows. Phase responses of the filters vary at a rate determined largely by the
center frequency, and in an orientation which corresponds to the orientation of
the filter. In addition to the smooth near-linear variation, the phase responses also
have bifurcation points with no well-defined phase especially at regions where the
amplitude response is low.
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Figure 4.2: A test image and the amplitude and phase responses of filters at two different
scales (π/4 andπ/16) and two different orientations (0 andπ/2).

Let us now define a quadrature filter bank response vector, afilter jet (Lades
et al., 1993), by stacking the complex-valued filter responsesJj = ( f j ∗ I )(x, y) ∈
C at an image location(x, y) into a single long vectorJ ∈ CN . N is the total
number of different filters in the bank, for example if we use three different
scales (center frequencies) and six different orientations, we haveN = 18.
An alternative bookkeeping scheme has been proposed in (Kyrki et al., 2004),
where the filter responses are organized in a matrix instead of a vector. This has
the advantage that cyclic shifts of the matrix correspond directly to appropriate
changes in the filter parameters.

In order to make the filter responses at different locations in a single image
and between two different images comparable with each other, it is a common
procedure to normalize the filter responses by dividing the filter jet with its norm,
J = J/||J||, so that the vectorJ has unit length. This normalization causes the
complex-valued responses to have a maximum absolute value of 1.

Figure 4.3 shows the normalized filter responses of a synthetic image in a
single frequency scale at a set of manually selected points, and illustrates how the
filter responses of different gray-level structures occupy different regions in the
four-dimensional unit ball of normalized filter responses.

The filter responses at all image locations have been plotted in black, and they
fill the unit disk in the complex plane quite evenly, with slightly higher density
both near the origin and close to the edge of the disk. The filter responses recorded
at different image locations correspond to different regions inside the unit disk.

Denoted with green, the locations in the synthetic image with a horizontally
oriented edge cause the horizontally oriented filterfπ/2 to respond with its
antisymmetric imaginary part, giving a negative response due to the transition
from dark to white. The response of the vertically oriented filterf0 is almost zero.
Both the vertical and horizontal filters respond with their imaginary antisymmetric
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parts to the upper left hand corner of the light rectangle, denoted with the red cross.
While the filter responses at different features often coincide at a single

orientation, they are well separated from each other in the filter responsespace
if we consider the responses at all orientations simultaneously.
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Figure 4.3: Distribution of normalized filter responses in a synthetic image. Responses
corresponding to manually annotated locations are shown incolor and responses from all
image locations are shown in black. See text for discussion.

4.3 Similarity between filter bank responses

In order to compare, detect and classify local features we can define asimilarity
functionwhich assigns a single numerical value for the discrepancy between two
vectors of filter responses.

Lades et al. (1993) were the first to present a similarity measure between two
filter bank responses, using the magnitude values of the complex-valued filters.
Given two filter jetsJ andJ ′ and denoting vectors which have the magnitude
values as components witha = |J| and a′ = |J ′|, the similarity between the
vectors is defined as

Sa(J, J
′) =

∑N
j =1 aj a′

j
√

∑N
j =1 a2

j

∑N
j =1 a′

j
2

= aTa′

||a||||a′|| , (4.2)

in other words, the inner product of vectors which have been normalizedto
unit length. The normalization of amplitudes achieves invariance to absolute
brightness, and also makes the measure less sensitive to changes in contrast.
However, the use of only absolute values of the filter responses ignoresall phase
information.

The use of only amplitude information causes the similarity measure to
vary very smoothly, which is a good quality for optimization. However, the
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ability to differentiate between features is compromised when ignoring the phase
information. For example line and edge features which are in the same orientation
differ only by their phase, and the similarity measureSa cannot tell the difference
between them. The measure is also invariant to the polarity of the image, in
other words, an edge with a transition from dark to bright is equal to one with
a transition from bright to dark.

A phase-sensitive similarity measure, using not only amplitude but also the
phase responses of the filters, was presented in (Wiskott et al., 1999).The
similarity measure is defined as

Sb(J, J
′) =

∑N
j =1 aj a′

j cos(arg(Jj )− arg(J ′
j )− EdT Ekj )

√

∑N
j =1 a2

j

∑N
j =1 a′

j
2

, (4.3)

where Ed is the displacement vector andEk is the wave vector of the filter. In
addition to using the phase information, Wiskott et al also estimate the optimal
displacementEd which minimizes the phase difference between the jets.

The motivation for the optimization of the displacement vectorEd is that
phase varies spatially very quickly especially in high frequencies. With zero
displacement, similarity values are high only very near the maxima of the
similarity field. Minimization of the phase difference between the jets widens
the peaks in the similarity functions and thus broadens the basins of attraction
near the correct optima in local optimization methods (Wiskott et al., 1999).
Unfortunately it also causes the similarity fields to be much less smooth and
contain discontinuities, which is problematic for most optimization methods.

4.4 Likelihood function

Next we wish to define a probability measure which tells how likely it is that the
filter jet J represents the same feature as a reference jetJ ′. In order to simplify
the notation, define the two vectorsJ = J/||J|| andJ ′ = J ′/||J ′|| normalized to
unit length. For such vectors, we can interpret the square of the L2-norm distance,
multiplied by minus one half, as a similarity measure, and it is equal toSb up to
an additive constant, since

− 1

2
||J − J ′||2 = −1

2
(J − J ′)H (J − J ′)

= −1

2

(

JH J − 2Re
{

JH J ′}+ J ′H J ′)

= −
(

1 − Re
{

JH J ′})

=
∑

j

|Jj ||J ′
j | cos

(

arg(Jj )− arg(J ′
j )
)

− 1. (4.4)
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Now it holds that−1
2||J − J ′||2 = Sb(J, J ′)− 1.

Supposing that the difference between the two filter jets is approximately
a Gaussian distribution with a diagonal covariance matrixβ−1I , the feature
likelihood function has the form

p(J|J ′) ∝ e− β
2 ||J−J ′||2 = e−β(1−Re{JH J ′})

∝ eβRe{JH J ′}. (4.5)

The scalar parameterβ > 0 affects the steepness of the likelihood function. The
likelihood function is however strictly not a Gaussian function with respect to
the unnormalized filter responses, since the value range ofRe

{

JH J ′} is limited
to the interval[−1,1], which causes the tails of the distribution to be truncated.
Our likelihood has only been given in an unnormalized form, that is, up to an
unknown normalizing constant which makes it a proper probability distribution.
The form of the likelihood function also assumes that the responses of the filters
are independent, which is not true as they have been computed partially from
the same image pixels. Williams (2005) shows how such measurements can be
handled theoretically. In Section 5.2 we will consider the effects of the correlated
measurements to the similarity values.

Figure 4.4 illustrates how the probability mass concentrates to the largest
mode when the parameterβ is increased and the distributions are normalized to
unity mass. The three probability distributions have been derived from the same
energy function (or similarity measure). With low values ofβ the distribution is
almost uniform, but whenβ is large, most of the probability mass is contained in
the largest mode of the distribution. On the other hand, with larger values ofβ,
the different modes of the distribution become increasingly separated, with alarge
region of low probability between them.

Following the same idea, we can takeany similarity function S which
is reasonably close to being a L2-norm distance and compute the likelihood
exp

(

β

2 S
)

, which will be close to being a Gaussian distribution.
It should be noted here that as we compute the similarity and likelihood

functions, we implicitly assume that the elements of the feature vectors have more
or less comparable statistics. Natural images have typically a decreasing energy
distribution of approximately 1/ f 2 (Ruderman and Bialek, 1994),(Field, 1987).
Due to this phenomenon, there is considerably less energy in the high frequencies.
This causes filters which are small in the spatial domain and correspond to high
frequencies to have smaller amplitudes in their response, and the assumption
above does not hold.

The problem can be solved on the filter level by scaling the filter outputs with
squares of their center frequencies so that filters with different frequencies have
approximately equal variance (Lades et al., 1993). In our probabilisticframework
this means that the similarity measure becomes a Mahalanobis distanceJHC−1J ′
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Figure 4.4: Three likelihood distributions generated from the same similarity function
with different values of steepness parameterβ.

with a diagonal covariance matrixC where the elements are defined by the center
frequencies of the filters. Supposing that we have for example filters with two
orientations and three scalesfc =

{

π
4 ,

π
8 ,

π
16

}

in the filter bank, we would choose

C = 4

π
diag

(π

4
,
π

4
,
π

8
,
π

8
,
π

16
,
π

16

)

= diag(1,1,1/2,1/2,1/4,1/4). (4.6)

The resulting likelihood function is

p(J|J ′) ∝ eβRe{JH C−1J ′}. (4.7)

In general the scaling constants in the diagonal ofC−1 could be also learned from
data, instead of setting them to be proportional tof 2.

As an example of the shape of the likelihood functions, Figure 4.5 shows three
test images1 and their likelihood fields with a filter jet which has been taken at a
single location in the same images. Each of the bumps in the sewer grating in the
leftmost image produces a clean maximum in the likelihood function, and there
are no significant false maxima. Bumps which are in the different orientation than
the reference feature are however not at all similar to the reference feature, as
measured by our likelihood function.

In the centermost image, the test jet is taken inside one of the nuts, and all
other nuts in the same orientation produce a maximum in the likelihood function.
In addition, there are some spurious local maxima elsewhere in the image. In the
rightmost image, the test jet is located at a petal of the flower. Only some of the
other petals in the same orientation contain a likelihood maximum, and there are
several false maxima in the background.

1The images appear courtesy of http://www.adigitaldreamer.com/
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Figure 4.5: Likelihood functions of three natural images, with the reference jet taken
from a single location at each image.

It can be concluded that while the single feature likelihood function is able
to quantify the relationships of local gray-level structures, it is not by itself a
sufficient solution for recognizing any but the simplest objects in a visual scene.

4.5 Rotation invariant feature similarity

4.5.1 Motivation

One of the properties of the previously defined similarity measures and the
likelihood functions derived from them is that in general only image features
which are in the same orientation are considered similar. There are however
situations in which it would be useful to have a similarity measure which is
invariant to rotation, but would not have to use rotation-invariant features. Figure
4.6 shows face images and the corresponding similarity fields of a mouth corner
feature. The similarity field in Fig. 4.6a) has a maximum at the approximately
correct location, as well as a another local maximum at the left nostril. Fig.
4.6b) has been rotated twenty degrees, which causes the maximum at the mouth
corner to diminish because the orientation of the feature is not correct. Theother
maximum at the nostril withstands rotation better, and becomes the strongest
maximum in the image. However, rotation invariance of individual features can
be useful even when the object as a whole is in the same orientation. In Fig.
4.6c) the corners of the mouth point downward due to individual variation,and
the maximum of the similarity is in an incorrect position at the mouth line.
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a) b) c)

Figure 4.6: Face images and the similarity fields of a mouth corner feature. The reference
jet has bee taken at the location denoted by the red cross in the leftmost image.

4.5.2 Rotation invariant similarity measures

Recall the phase sensitive similarity function (Wiskott et al., 1999)

S1(J
(1), J(2)) =

Re
{

J(1)
H
J(2)

}

||J(1)||||J(2)|| . (4.8)

In order to extend the similarity measure to be rotation invariant, we can compute
the inner product in all 2N relative discrete rotation angles of the filter jets and
choose the largest (Ng et al., 2005), using

S2 = max
i =−N,...,

N−1

S1
(

Shift
(

J(1), i
)

, J(2)
)

, (4.9)

where Shift(J, i ) means an operation where the components ofJ have been
shiftedi index locations, and complex conjugated when they wrap around to the
beginning. In component form this is

S2 = 1

||J(1)||||J(2)||

(

max
i =−N,...,

N−1

N−1
∑

k=0

Re( j (1)k−i j (2)k )

)

. (4.10)

Here a negative index filter−i is interpreted as complex conjugate filter of the
positive indexN − i (this is because the response of the Gabor filter has equal
amplitude and opposite phase when a 180 degree rotation is performed) and
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indicesN + i, i ≥ 0 wrap around to−N + i . Apart from the rather cumbersome
indexing scheme, this is a straightforward, but computationally 2N times more
demanding procedure compared toS1.

Now, an extension of the previous discrete scheme to continuous case is
proposed. Let us expand the discrete filter responseJ(1) into a continuous one with
rotation angleθ using the steering coefficientsk̂i (θ), so that the jetJ(1) consists
of filter responsesj (1)k (θ) = ∑

i k̂i (θ) j (1)i+k. Now we can compute the similarity
betweenJ(1) andJ(2) in anycontinuousrelative orientation angle and choose the
largest,

S3 = max
θ

S1
(

Steer
(

J(1), θ
)

, J(2)
)

, (4.11)

where Steer(J, θ) is the steering operation with a rotation angleθ , in component
form

S3 = max
θ

1

||J(1)||||J(2)||
∑

k

Re

{(

∑

i

k̂i (θ) j (1)i+k

)

j (2)k

}

. (4.12)

The norm of the steered jetJ(1) is preserved exactly only if the steering is exact.
Approximate steering causes slight variation in the norm, but normalization may
still be performed only after maximization to lessen the computational cost, if
the maximum steering error is small. The computational cost of the steerable
similarity measure is dependent on how the optimization of the relative rotation
angle between the filter jets is performed. A simple exhaustive search in a dense
grid increases the computational burden even more compared to the similarity
functionS2.

Alternatively, the optimization of the steering angle can be performed only
using local optimization. This is a similar idea to what Wiskott et al. (1999) used
in estimating the displacement of filter jets: only now, we would try to estimate
the relative rotation of the filter jets.

In Chapter 7, where the similarity functions introduced here will come into
practical use, we will employ the similarity functionS1 and a variation of the
similarity function S3 without the maximization of orientation in this stage,
described below in Section 4.7.2.

We illustrate the behavior of the different similarity functions with two
example images. Fig. 4.7 shows the likelihood fields (derived from the similarity
measures) of a corner feature (marked with a white cross) in a synthetic test image,
computed using Eqs. (4.8), (4.10) and (4.12). A filter bank with four orientations
is used, with shape parametersσ = [2.5 1.75].

The similarity functionS1 provides best localization of the correct feature,
but withstands only small rotations. The similarity functionS2 has generally an
unequal response with respect to rotation, and only orientations which are present
in the filter bank provide the correct response. Orientations between those in the
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bank have their similarity maxima split in two and shifted away from the correct
feature location. The similarity functionS3 has equal response in all orientation
angles. However, as a consequence of rotation invariance, feature specificity is
lower than with the two other measures, and the localization capability is worse.

The normalization factor 1
||J(1)||||J(2)|| , which is present in all three similarity

measures, provides contrast invariance and causes medium similarity values to be
found also among background noise.

Figure 4.7: Behavior of three different similarity functions with a synthetic test image
(top row), with the test feature marked with a red cross. Second row: Normalized inner
product similarityS1. Third row: Discrete angle rotation invariant similarityS2. Bottom
row: Continuous angle rotation invariant similarityS3.

Fig. (4.8) shows the likelihood values evaluated at the correct feature location.
It can be seen that while the likelihood peak fades away without any rotation
invariance and drops quite low with discrete angle rotation invariant measureS2, it
is remarkably stable with the continuous angle rotation invariant measureS3. The
likelihood functions are not highly sensitive to the filter shape parameter values,
and while the filters used in this example do not retain the shape of their impulse
responses very well under steering (error is approximately 6%), thereis hardly
any noticeable variation due to rotation in the likelihood field of the functionS3,
despite the steering error.

Fig. (4.9) shows the likelihood fields ofS1, S2 and S3 of real-world face
images. Here, eight filters with shape parametersσ = [2 4] were used. The
reference Gabor jet feature was obtained from the mouth corner of the leftmost
face, marked with a red circle. The five test images have been rotated 13 degrees,
and the manually annotated feature locations are marked with circles in their
similarity fields. Eight basis filters are useful in making the features specific
so that the mouth corners are recognized well, but without rotation invariance
even small rotations cause the similarity to drop drastically, and detection is not
possible. Only image 2 has a good maximum at the correct location, and in images
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Figure 4.8: Likelihood values evaluated at the correct feature location in different feature
orientations.

1, 4 and 5 the annotated locations have much lower probability than incorrect
maxima elsewhere in the image. In contrast, similarity functionsS2 andS3 provide
very good feature localization, with a clear maximum near the mouth corner in all
test images. In images 2 and 3 the maximum probability is not exactly at the
annotated location, but this caused by the manual annotation being away from
the mouth corner location in the gray-level image. The differences betweenthe
performance ofS2 andS3 are masked by the large variation occurring in natural
images. The similarity measures alone do not suffice in solving the face alignment
problem, and the ambiguities caused by feature variability have to be resolvedby
including the information in the relative locations of the detected features.

We should note here that the rotation invariant feature similarity functions
are not necessarily desirable for local feature based object modeling,which is
the main topic of this work, as it may be better to handle the optimization of
orientation in the object level. Instead, the similarity functionS3 may find use in
other applications such as rotation invariant texture classification using Gabor-
type filters, as steerability allows efficient optimization of orientation without
recomputing the filter responses.

4.6 Orientation analysis with feature similarity

Full rotation invariance is not always a desirable property of a similarity measure.
Its main drawback is that the detected features become unnecessarily generic,
especially if it is known in advance that the features cannot appear in anypossible
orientations.

The probabilistic formulation of the feature likelihood function allows us
to incorporate additional information into the feature matching scheme in a
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R 1 2 3 4 5

Figure 4.9: Similarity of a mouth corner feature, marked with a red circle, between the
reference image R and five independent rotated test images (1-5). Rows from top to
bottom: original images; Normalized inner product similarity S1; Discrete angle rotation
invariant similarityS2; Continuous angle rotation invariant similarityS3. Even a small
plane rotation in the image necessitates rotation invariance because the filters are very
orientation-specific.

theoretically consistent way. Instead of maximizing the similarity with respect
to orientation, we can consider the likelihood function of a feature jetJ, possibly
in any orientationθ and a reference feature jetJ ′,

p(J(θ)|J ′, θ) ∝ exp
(

S(J(θ), J ′)
)

(4.13)

and multiply it with a prior probability of the orientation anglep(θ), obtaining
the joint posterior probability of the filter jetJ and the orientation angleθ ,

p(J(θ), θ |J ′) ∝ p(J(θ)|J ′, θ)p(θ). (4.14)

The role of the prior is to make the likelihood less ambiguous by ruling out
orientations which are not considered probable to begin with. While it may
seem excessive to first compute the likelihood at all orientation angles and then
ignore some of them in further analysis, this is the theoretically correct way to
make inferences about the orientation angle in the Bayesian framework. Practical
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engineering solutions may choose to skip a step in between and rule out some
of the improbable orientations already when computing the likelihood because
of performance reasons. The Bayesian framework is especially useful when all
orientation angles can occur, but it is known in advance that some are more
common than others.

4.7 From features to objects

Once we have defined how to measure the probability of two filter jets repre-
senting the same feature, we will proceed to construct a probability measure
for objects which contain several feature points. In our framework objects are
modeled as collections of filter bank responses at specific image locations, which
are connected by a graph structure, similarly to the object model proposedin
(Lades et al., 1993). This makes is possible to evaluate the probability of a
complete object consisting of local features. Our probability model is mainly
based on the likelihood model of local features.

4.7.1 Object likelihood models

Denote the locations of features in the image plane withx. Assuming that the
filter responses from jets at different locations are statistically independent, we
can write the joint likelihood of all observed filter responsesJ at locationsx as a
product of the independent feature likelihoods,

p(J|J′, x) =
∏

i

p(J(i )|J ′(i ), xi )

∝
∏

i

exp
(

βS
(

J(i )(xi ), J ′(i )
))

= exp

(

β
∑

i

S
(

J(i )(xi ), J ′(i )
)

)

. (4.15)

The likelihood of the object with a feature configurationx is thus simply the sum
of the individual similarity scores, multiplied by the constantβ and exponentiated.

The feature locationsx can be themselves parameterized via an object
geometry modelM . The probabilistic inference is then performed on the
parameters of the modelM . The parameterization ofM may contain for example
pose parametersθ , so that the location of featurei in the image plane is given by
xi = Mi (θ). The resulting likelihood function is then given by

p(J|J′, θ ,M) ∝ exp

(

β
∑

i

S
(

J(i )(Mi (θ)), J ′(i )
)

)

. (4.16)
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In the case when steerability is taken into account, the model jetJ(i ) is dependent
also directly on the poseθ , and the likelihood becomes

p(J|J′, θ ,M) ∝ exp

(

β
∑

i

S
(

J(i )(Mi (θ), θ), J ′(i )
)

)

. (4.17)

The likelihood functions are again only given in the unnormalized form.
The scalar normalization constant which multiplies the unnormalized likelihood
function and scales it so that it is a proper probability distribution with a total mass
of unity, is very hard to compute, as it can be computed only by integrating over
all possible configurations of all possible feature locations.

Sullivan et al. (2001) note that a single object model does not suffice asan
adequate probabilistic account of all image data. In principle the background
should also be modeled, so that we can compute the likelihood function of the
whole image. Constructing a probabilistic model for generic backgrounds is
however plausible only if the object models are also quite simple, such as the
ones considered in (Sullivan et al., 2001). It would appear almost impossible to
construct a probabilistic background model with the same level of complexity
as the ones typically employed in human face recognition, for example. Like
Tamminen (2005) notes, if the competing models do not describe the data with
the same accuracy, we always have to make the decision between explainingthe
data with a complex, but accurate model or a simple, but inaccurate model, and
it is not straightforward to compare the probabilities of the competing models,
because the normalization factors of the likelihood functions are not known.

4.7.2 Posterior analysis

In a Bayesian framework, inference is performed on the posterior distribution of
the random variables of interest. In an object recognition problem these variables
can include for example object poseθ . Using the Bayes’ theorem, the posterior
distribution of the pose is formally obtained as

p(θ |J, J′,M) = p(J|J′, θ ,M)p(θ |J′,M)
∫

θ
p(J|J′, θ ,M)p(θ |J′,M)dθ

∝ p(J|J′, θ ,M)p(θ |J′,M)

(4.18)
The power of Bayesian analysis often stems from the fact that it is possibleto
write the posterior distribution in such a form that effective prior probability
distributions can be constructed. In our case, this information would be included
in the prior distributionp(θ |J′,M). However, it is not obvious what kind on
information should be built into the prior distribution, and for the purposes of
Chapter 7, we will simply choose a flat prior for most elements ofθ . Because
of the flat priors, our apporach is not very different from Maximum likelihood
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analysis, and the focus in Chapter 7 is in the complex shape of the likelihood
distribution p(J|J′, θ ,M) which largely determines the shape of the posterior
distribution.

4.7.3 Practical implementation

Specifically, in Chapter 7 we consider two parameterized rigid object modelsM .
In Section 7.2 which considers rotations in the image plane, the parameterization
of M consists of planar rotationθ , global scales and object centerxc, yc in the
image plane. In absence of strong prior models, we choose a flat prior for the term
p(θ |J′,M), and the posterior distribution is directly proportional to the likelihood
function.

In Section 7.5 which considers rotations in depth, the parameterization ofM
consists of three rotation anglesθ , φ andψ as described in Section 6.3, global
scales and object centerxc, yc in the image plane. The only informative prior
probability term here is the choiceφ ∼ cos(φ) for the elevation angleφ. The
justification for this choice is discussed in Section 6.3.

The rotation invariant feature similarity measures presented in Section 4.5
include optimization of the pose angle. This can be done already in the feature
level for each feature separately, but since all features of a rigid object share the
same orientation, it is typically more appropriate to estimate (or optimize) the pose
of the object as a whole. Instead of maximizing the similarity of each feature in
the measureS3, the approach we will use in Section 7.4 is to define an orientation-
dependent similarity function

S(θ) = 1

||J(1)||||J(2)||
∑

k

Re

{(

∑

i

k̂i (θ) j (1)i+k

)

j (2)k

}

. (4.19)

and handle the optimization of planar rotationθ in the random sampling stage
by finding the largest mode of the posterior distribution ofθ among other model
parameters.

4.8 Monte Carlo sampling algorithms

Regardless of their exact formulation, image likelihood functions are typically
multimodal, having many maxima. Consequently, local optimization methods
require good initialization heuristics in order to find the best maximum, and are
otherwise prone to getting stuck in poor solutions, never finding the stronger
maxima. In order to reliably find good solutions, global methods are required.
In this work we will choose to employ random sampling methods in order to
explore the likelihood and posterior probability distribution functions. Next we
will briefly review some Monte Carlo sampling algorithms, which can be used to
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obtain samples from the distributions even when the distributions are given only
in unnormalized form.

The aim of a Monte Carlo sampling algorithm is to produce random samples
which follow some given target distributionp(x). From the samplesxi we can
compute estimates such as the expected valueE[] of some quantityf by

E[ f (x)] ≈ 1

N

N
∑

i=1

f (xi ). (4.20)

The sampling methods we employ here require the target distribution to be known
in the unnormalized formp(x) = 1

Z p∗(x), as the normalization constantZ
cancels out in the computations. This fact makes the Monte Carlo methods very
useful, as the computation of the normalization constant can be very hard oreven
impossible in practice because of the high dimensionality of the integrals.

4.8.1 Metropolis sampling

The classical Metropolis sampling algorithm, originally devised for problems in
computational physics (Metropolis et al., 1953), uses an acceptance/rejection rule
to converge to the specific target distribution (Gelman et al., 2003). Metropolis
sampling is very straightforward to implement and requires only that the values
of the function defining the target distribution can be computed.

First, the algorithm is initialized by sampling an initial statex0 from astarting
distribution p0(x), for which p0(x0) > 0.

In order to move from one state to another, we sample a candidate statex∗

from a jumping distribution J, which can be chosen freely as long as it holds that
Jt(xa|xb) = Jt(xb|xa), that is, the probability to jump from statea to stateb is the
same as the probability to jump from stateb to statea.

We then accept the candidate statex∗ as the new statext with probability

p = min

(

1,
π(x∗)

π(xt−1)

)

. (4.21)

This rule means that we always move to the new state if it is more probable than
the previous state. In addition we move to the new state also occasionally when
it is less probable, with a probability given by the ratio of the probabilities of the
two states. Otherwise we remain in the same state, andxt = xt−1.

Repeating the jumping procedure over and over again and updating the current
state according to Eq. 4.21, we obtain the sequencex1, x2, . . ., a random walk in
the parameter space, which converges to the target distributionp(·). Typically
some amount of samples from the beginning of the sequence are discardedin
order to eliminate the bias due to the choice of the initial statex0.
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Metropolis-Hastings algorithm is a generalization of the previous procedure
that removes the requirement that the jumping distribution must be symmetric and
modifies the acceptance probability rule accordingly to

p = min

(

1,
π(x∗)/Jt(x∗|xt−1)

π(xt−1)/Jt(xt−1|x∗)

)

(4.22)

in order to account for the asymmetry in the direction of the jumping probabilities.

The components of the parameter vectorx can be even updated one by one,
accepting the proposals according to

p = min

(

1,
π(x∗

j |xt−1
\{ j })/Jt(x∗

j |xt−1
j , xt−1

\{ j })

π(xt−1
j |xt−1

\{ j })/Jt(xt−1
j |x∗

j , x
t−1
\{ j })

)

, (4.23)

where \{ j } denotes all components exceptj . This is thesingle-component
Metropolis-Hastingsalgorithm, where each of the parameter components has
its own jumping distribution, which can depend on the current values of all
components.

4.8.2 Gibbs sampling

Gibbs sampling can be interpreted as a special case of single-component Metropolis-
Hastings algorithm, where we choose the jumping distributions to be the full
conditional distributions of the parameter components,

Jt(x∗
j |xt−1

j , xt−1
\{ j }) ≡ π(x∗

j |xt−1
\{ j }). (4.24)

This results in the acceptance probability being always equal to 1 (Gelman etal.,
2003). Whereas Metropolis and Metropolis-Hastings algorithms only require that
we can compute the joint probability of any parameter valuesx, in Gibbs sampling
we need to be able to compute the full conditional distributions of the parameters,
which can be significantly more difficult to obtain in analytical form. When this
can be done, Gibbs sampling can be very efficient.

If the analytical expressions for the conditional distributions of parameters are
impossible to obtain, one can resort to numerically evaluating the joint distribution
π(x) along the linexj ∈ R (or some smaller subset of possible values ofxj ),
keeping the other parametersx\{ j } fixed, and drawing a random sample from
this empirical full conditional distribution using the inverse-CDF method (Gentle,
1998).
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4.8.3 Population Monte Carlo sampling

Population-based Monte Carlo methods borrow ideas from several sources to
produce a Monte Carlo simulation algorithm which is not concentrated on
generating a single sequence of samples but rather samples the target distribution
in a parallel manner (Cappe et al., 2004). In some respects the PMC algorithms
can be thought to have common ground with genetic optimization algorithms (Liu,
2001), as they sequentially generate a new population of particles (or samples)
based on the previous generation, and the fitness of the members of the population
is measured individually by evaluating the target function. However, unlike
genetic optimization algorithms, which concentrate on finding the maximum of
the target function, Population Monte Carlo sampling produces actual samples
from the whole of the target distribution. The PMC algorithm is given in
pseudocode in the following.

Algorithm 1 PMC SAMPLER

Require: Densityπ(·) to be simulated

for t = 1..T do
for i = 1..N do

Select the generating distributionqi t (·)
Generatext

i ∼ qi t (x)
Computeρ t

i = π(xt
i )/qi t (xt

i )

end for
Normalize theρ t

i ’s to sum up to 1
ResampleN timesxt

i ’s with replacement, using the weightsρ t
i , to create

the sample{xt
1 . . . x

t
N}

end for

A remarkable property of the PMC scheme is that the generating distributions
qi t (·) can be chosen freely for each particlei at each generationt . This makes it
possible to use heuristics which guide the sampler toward the modes of the target
distributionπ(·) while the samples themselves are still guaranteed to follow the
target distribution. These theoretical results are however true only for systems
with an infinite number of particles. In practice, only up to a few thousand
particles are used, and the samples can become biased.

Like Metropolis and Gibbs sampling, also PMC sampling requires initializa-
tion. Initial distributions for the parameters must be chosen, and the particles
in the first iteration are generated from these. The initial distributions can be
significantly wider than the generating distributions at subsequent iterations, so
that the PMC sampler first spreads the particles everywhere in the parameter
space and subsequent iterations will concentrate the samples to regions which
have significant amounts of probability mass.
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Chapter 5

Numerical experiments with
oriented filters

5.1 Introduction

In order to lessen the computational cost and memory storage requirements one
would like to find a generic set of filters and use it for all inference on images.
The problem with this approach is that the desirable filter properties can be
conflicting: good steerability provides rotation invariance, but poses a limitation
for the angular bandwidth and thus for the feature representation capability of the
filters. Feature detection and recognition may benefit from different properties
of the data, and we will attempt to answer the question whether the same bank
of filters can be good for both feature localization and recognition. Further, we
wish to systematically find good design parameters for the Gabor-type filter bank
employed in (Wiskott et al., 1999) and (Tamminen, 2005), who have used rather
different filter bank designs in a highly similar object matching tasks.

In Section 5.2 it is first shown how the similarity values produced by the filter
jets remain usable for recognition even when using shape parameters for which
steering performance is relatively poor. The design parameters of a Gabor filter
bank are experimentally evaluated in Section 5.3 using a full object matching
system, in order to find the best parameters for object localization and recognition.
In Section 5.4 the best parameters of a similar filter bank using angular Gaussian
filters are sought, and their performance is compared to the filter bank with
Gabor filters. Section 5.5 compares the recognition performance of different
filter families and their Gabor-type approximations and Section 5.6 considers the
effect of the complexity of the feature models. We will concentrate on systems
using oriented filters. Comparisons of the localization performance of the object
matching system with respect to other approaches presented in the literature
can be found in (Tamminen, 2005), and extensive comparisons of recognition
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performance between different face recognition approaches using Gabor-type
filters can be found in (Shen and Bai, 2006).

The recognition method we use in the experiments is a simplified version of
the probabilistic object matching system presented in (Tamminen, 2005). Namely,
in our likelihood function the feature models of an individual are based on a
single example image, whereas Tamminen (2005) uses distribution modeling and
Wiskott et al. (1999) multiple feature prototypes learned from several example
images. The simplified recognition method we employ here realistic, but not state-
of-the-art, and instead of aiming to optimize the filter bank in terms of recognition
performance in a practical setting, the goal of the recognition experiments isto
bring out the differences in the feature representation capability of the filter banks.
The quality of the pairwise feature similarity studied this way is highly relevant
also for methods which use multiple feature prototypes and nearest neighbor
classification, as the distance measure is based on pairwise comparison.

5.2 Filter jets as approximations of continuous responses

In this section, it is investigated how the theoretical results in Chapter 3 concerning
the steerability of a filter bank relate to the filter responses from natural images
in a practical setting, and how the steering approximation affects the similarity
values in natural images.

Filter banks can be considered as a collection of discrete samples from a
continuous filter function, if we consider the filter parameters to take continuous
values. The responses of the continuous filter functions at a given location in
the image plane (filter jets) are then also continuous-valued functions, with filter
parameters as their variables. However, while one can compute closed-form
expressions for the continuous-valued filter jets at image features such at lines
and step edges, these are more useful in theoretical considerations. Inpractical
image analysis in which the images themselves are typically represented only as
samples, a sampled representation of the filter function is appropriate, although
the sampling may in general lose some information.

Having resorted to sampled representations, one would wish that the samples
will provide a good representation of the continuous filter jet. Exact steerability
and shiftability guarantee that the full continuous filter function (and consequently
also the linear filter responses) can be exactly reconstructed from the discrete
samples. For parameters which have unbounded range, such as translation and
scale, this can obviously be possible only in some finite interval. The orientation
parameter is different in this sense because it is limited to a finite interval. Since
orientation is inherently periodic, the exact reconstruction condition is in this case
related to the classical Nyquist sampling theorem which states that in order to
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reconstruct the original continuous signal from samples, the sampling frequency
must be greater than twice the input signal bandwidth. This requirement proposes
a strong constraint to the shape of the possible exactly steerable filters. Onthe
other hand, filter jets with a finite amount of Gabor filters always violate the
sampling theorem because the angular frequency of Gabor filters is not band-
limited in principle.

Steerability allows us to compute a continuous approximation of the filter
response given the discrete basis filter responses, using Eq. 3.5 and keeping
in mind that the even and odd filters require separate steering functions. With
complex Gabor filtersgθj centered on the feature in the imageI , we approximate
the continuous convolution result with

I ∗ g(θ) ≈
N
∑

j =1

kRe
j (θ)

(

I ∗ Re
{

gθj

})

+ ik Im
j (θ)

(

I ∗ Im
{

gθj

})

=
N
∑

j =1

kRe
j (θ)Re

{

Jj

}

+ ik Im
j (θ)Im

{

Jj

}

. (5.1)

In other words, the filter jets are directly weighted with the steering functions of
the basis filters.

Fig. 5.1 shows the real and imaginary parts of the complex orientation
responses at an eye corner feature with filters whose center frequency is π/4.
At this scale, the eye corner is mostly a line feature, corresponding to a large
negative response of the even filter (real part) at a diagonal orientation. The odd
filter (imaginary part) responses are more varied for this feature, depending on the
shape parameters, but all give some response to an approximately horizontal edge
feature.

Because real and imaginary parts of the signal are modeled separately, the
phase of the approximation is less accurate than its magnitude. However,
inaccuracies in phase are large only when the magnitude of the signal is small.
In general the approximations are perhaps even surprisingly good: even though
a filter with the shape parametersσx = 4, σy = 4 is hardly steerable at all with
four basis filters (maximum relative error in the impulse responses of the filters,
measured with Eq. 3.10, is about 68%), the approximations are qualitatively quite
similar. With eight basis filters andσx = 4, σy = 4, maximum relative error in the
impulse response, computed with Eq. 3.10, is still 13%, but the filter amplitude
response approximation is almost indistinguishable from the correct continuous
response.

In general, Eq. 3.10 gives a worst-case estimate of the filter impulse response
error, and the errors in the actual filter responses are much less severe. There
appears to be no breakdown behavior in the filter response approximations,
although the Gabor filters themselves lose their steerability rather quickly if
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Figure 5.1: Steerable approximations of the real and imaginary parts (red and green line,
respectively) of the continuous orientation response (blue line), with different numberN
of basis filters and different filter parameters. Ticks on thehorizontal axis mark the angles
of the basis filters, where the continuous response coincides with the approximation. The
red dot in the eye image denotes the annotated feature location.
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the shape parameters are not suitable. This phenomenon may be related to the
frequency spectra of typical natural images, so that the convolved signals are in
some sense smoother and easier to interpolate than the basis filters themselves.
It should be noted that the continuous response cannot of course be exactly
computed, and we have only approximated it here by using a large number
(N = 100) of basis filters.

In the probabilistic feature detection framework outlined in Chapter 4 the
filter responses are further processed by computing a similarity value between
two filter bank responses. Ultimately, the factor that affects the performance of
the complete object matching system is the quality of the similarity values, not the
filter responses.

It turns out that even severely undersampled filter banks, which do notcover
the whole frequency domain in orientations, give similarity values which are quite
close to the similarity values of the densely oversampled filter bank (withN =
100 orientations).

Figure 5.2 shows correlation plots of the similarity values of annotated feature
locations and random locations. The eye corner was again used as the test feature,
and similarity values were computed in 37 test images. Four different filter shape
parameter values, with 4, 6 and 8 basis filters were used. With low, spherical
shape parameters (σx = σy = 2), even the bank with four basis filters gives very
good approximations of similarity values of the continuous filter bank.

Increasing the radial shape parameter toσx = 4 or the angular shape
parameter toσy = 4 results in additional variance between the medium similarity
values of the two filter banks, but it is noteworthy that similarity values at the
feature locations are less affected.

With larger shape parameters the similarity values of the four basis filter
bank begin to deviate from those of the continuous bank. With shape parameters
σx = σy = 4 there are quite large differences in general in the similarity values
compared to the continuous filter bank. Four basis filters become now insufficient
as the errors in the background similarity values are so large that they beginto
overlap with the similarity values at annotated locations.

The increase in the background similarity values can be seen better with even
larger shape parameters (σx = σy = 8). The similarity values at annotated
locations still correlate quite well, but especially with four basis filters, some of
the random background locations get incorrectly high similarity scores.

In general, larger values of the shape parameters result in compressionof the
similarity values toward zero. As the filters become spectrally very selective,
it becomes rarer and rarer to find a feature location with a similar filter bank
response. This compression effect occurs to some extent regardlessof the number
of filters in the filter bank.

The previous test measures feature representation capability only at a single
orientation. To illustrate the effect of steering approximation in addition to the
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Figure 5.2: Correlation of continuous and discrete similarity values with different
filter shape parameters. Red and blue dots correspond to similarity values at annotated
feature locations and random locations anywhere in the image, respectively. See text for
discussion.
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effect of discrete orientations, we construct a filter bank which consistsof filters
which have been shaped as if they were steered to the intermediate angles, where
the steering approximation has largest error. The filter orientations themselves are
unchanged. This allows us to study the direct effect of the steering approximation
to the similarity values. Figure 5.3 shows correlation plots of the continuous
similarity values and the worst-case steered similarity values. Comparing to
Figure 5.2, it can be observed that the discrepancy between the two similarity
values is larger in general. However, it is noteworthy that even when steering
error is fairly large (for example, 13% with the valuesN = 8, σx = σy = 4), the
similarty values correlate very well.

Using the presented examples one may predict that in feature detection
applications using the similarity function framework, gaps in the frequency plane
coverage of the filter bank are not critical for detection performance: as we
decrease the number of filters in the bank or increase the values of the filter
shape parameters, the discrepancy between the similarity values of the continuous
filter bank evaluated at the feature locations becomes evident later than what one
would expect based on the errors in the steering performance or the function
approximation using Eq. 5.1. Also, the steering error is qualitatively such that
it appears to preserve the similarity values well at the feature locations, andlarger
discrepancies are mostly found in the random background locations. In practice,
this means that in the presented feature detection framework we can use filter
banks which have in principle quite poor steering performance, and still obtain
good rotation invariance. However, it should be kept in mind that becausethe
suitable filter parameters are dependent on the properties of the data, no universal
conclusions can be made about the minimum number of filters in the bank.

5.3 Gabor parameters and recognition performance

In the previous section we saw that although steerability is a very fragile condition,
approximations of continuous responses and especially the similarity values even
without the steering correction can be good enough in practice with a wide range
of filter parameters, even with highly undersampled filter banks which do not
cover the whole frequency space evenly. In this section, the effect offilter
shape parameters and the number of orientations and scales to the recognition
performance of the system is studied. Moreno et al. (2005) consideredthe design
of Gabor filter banks for local feature detection, but limited their analysis to
spherical (isotropic) Gabor functions, withσx = σy.

We measure the recognition performance using different filter banks with
two separate face image databases. Three approximately frontal images of
40 individuals were chosen from the ORL database. Five different images
of 15 different persons were chosen from the image sequences of theBioID
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Figure 5.3: Correlation of continuous and worst-case steered approximations of discrete
similarity values. Red and blue dots correspond to similarity values at annotated feature
locations and random locations anywhere in the image, respectively. Compare with Fig.
5.2.
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database. The first image of each identity was used as the reference image
and the remaining images were classified. The images from the two databases
are show in Appendix A. Since the probabilistic object matching process is
computationally quite intensive, its use for the full BioID with 1511 images is
unfortunately computationally prohibitive, and only the partial BioID database
has be used throughout.

The annotated feature locations included for example eye and mouth corners,
tip of the nose and points at the chin line. A total of eleven feature locations
were annotated in the images from the ORL database. Twenty feature locations
were used in the images from the BioID database. The resolution in the ORL
database images is 112-by-92, with faces quite closely cropped in the images.
The resolution in the BioID database images is 286-by-384 and there is usually
a considerable amount of background visible around the facial region.For
performance reasons the resolution of the BioID database was halved into143-
by-192 in the experiments, unless where noted.

The recognition method is similar to the one used in the Elastic bunch graph
matching procedure (Wiskott et al., 1999). The total similaritySG of the face
graph is defined as the sum of the individual feature similarities between the
reference and test images,

SG(Jre f , Jtest) =
∑

i

S(Jre f
i , Jtest

i ). (5.2)

This is equivalent to the assumption that the features are statistically independent,
and the total probability of all features is the productP = ∏

i pi of the individual
feature probabilitiespi ∝ exp(βSi ). A person is recognized correctly if the test
image has a higher graph similarity with the training image of the same individual
than with any of the other training images. The ORL databases has three images
of a single individual. The first one of these is used by the recognition model as
the training image, and its similarity is compared to all images in two separate test
sets, which consist of the second and third images of all individuals. The partial
BioID database was similarly divided into a training set and four test sets, each
containing all individuals’ images once. The average recognition rate is simply
the number of correct classifications divided by the total number of classification
tests averaged over the test sets. Chance level of recognition is 1/40=0.025 for the
ORL database and 1/15=0.067 for the partial BioID database.

Comparing to the Elastic Bunch Graph Matching method, we are using here
only a single exemplar for each individual. Thus the recognition rate measures
how well the filter responses describe identity in a pairwise comparison. Since
the test images of each person are quite similar to the training image, with
no large variation in pose, illumination or accessories, a pairwise comparison
is appropriate and helps to bring out the differences in feature representation
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Figure 5.4: Classification results with the ORL and partial BioID databases using
annotated feature locations.

capability of the filters.

5.3.1 Recognition performance with annotated locations

In order to separate localization and recognition effects, we first test recognition
performance with different filter parameters using manually annotated feature
locations. We begin by using DC free near-Gabor filter banks which havethree
scales in octave spacing, with the highest frequency at the Nyquist limitfc = π/2.
The tested parameter rangeσx ∈ [1,6], σy ∈ [1,10] covers all reasonable
parameter choices, and at the largest parameter values the filters at the lowest
frequency fc = π/8 already produce prominent edge effects near the image
boundaries.

Figure 5.4 shows the average recognition rate with ORL and partial BioID
databases with varying filter shape parameters. The ORL database is more
difficult of the two, containing larger number of individuals and also larger
variation between the images. Apart from very small parameter values (bothσx

andσy less than 1.5), which lead to poor recognition performance with both test
databases, the recognition rate is not highly dependent on the shape parameters.
The ORL database gives best recognition scores with shape parametersin the
regionσx ∈ [2,3.5], σy ∈ [2.5,7], while the BioID database favors very narrow
and elongated filters, withσx ≈ 1.5 andσy ∈ [4,10].

5.3.2 Recognition with face matching

Next we test the effect of the filter shape parameters in a realistic face matching
application. We use the hierarchical Bayesian feature matching system using
Gibbs sampling presented in Tamminen (2005). The feature likelihood fields
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Figure 5.5: Classification results and average distance of detected features from their
annotated locations using face matching.

are not rotation invariant and are computed with Eq. 4.5, using the likelihood
steepness parameterβ = 10. The Bayesian feature matching system employs
a full covariance model for the feature locations in order to describe their
interrelated correlations.

We begin by using a filter bank of three scales with center frequencies
in octave spacing,fc = (π2

π
4
π
8 ), and six orientations at each scale. Figure

5.5 shows the recognition performance of the feature matching system with
different filter shape parameters, and the average distance of the detected features
from their annotated locations. Comparing the recognition results with the
ones obtained with manually annotated locations, we can conclude that the two
are qualitatively very similar. Recognition performance is in general slightly
worse with face matching, reflecting the fact that the feature matching stage
occasionally fails to find the correct feature locations. The average distance from
the annotated features begins to grow whenσx > 4, causing also the recognition
performance to suffer. While very small filter parameter values (σx = σy ≈ 1)
cause the recognition performance to drop drastically, the average distance from
annotated locations does not become excessively large. Such small filtersstill
localize features quite well, but their responses are too generic to be efficient in
recognition.

The choice of octave spacing in radial frequency bandwidth is not necessarily
the best possible. Let us define radial bandwidth spacingB of the filter bank as a
ratio of the filter center frequenciesfc and f ′

c at successive scales with

B = log2
fc

f ′
c

. (5.3)

This means thatB = 1 gives a filter bank with octave spacing, where the filter
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scales double in size at every level. Figures 5.6 and 5.7 show the recognition
results of ORL and partial BioID databases, respectively, with varying the value
of B. It can be seen that good values for the filter shape parameters do not depend
strongly on the value ofB, but recognition performance does. Best classification
results are obtained withB = 1.6. Note however that as we change the filter
bandwidth spacing while keeping the highest frequency constant, these results
are dependent on the choice of the highest frequency scale. Here wehave used
fc = π/2 which is also the Nyquist limit.

Because the spatial extent of the filter jet grows larger when we add more
scales to the jet, the number of scalesNf has a decisive effect in recognition
performance if we keep the bandwidth spacingB constant. Figure 5.8 shows
the recognition performance of the matching system using three, four and five
levels of scale, with four sets of filter shape parameters. A higher number of
scales favor filter banks with tighter spacing, and it is noteworthy that the best
recognition performance is obtained at all number of scales when the largest
filter is approximately ten times as large as the smallest filter. With very large
filter spacings, the largest filters would become spatially wider than the image
resolution. Each curve ends when the largest scale is approximately thirty times
the size of the smallest scale. It can be seen that the recognition performance does
not improve significantly if we increase the number of scales from three.

Figure 5.9 shows recognition performance with double resolution (286-by-
384) and half resolution (72-by-96) images. The images at double resolution
give nearly as good recognition scores as the regular ones, ane are slightly worse
presumably only because the filters at the highest frequencyfc = π/2 are so small
with respect to the features that they are irrelevant for recognition. In addition, the
best bandwidth spacing is now larger than previously due to this effect. The half
resolution images lose information and thus give worse recognition results. The
octave spacing is now best with three scales, as larger values ofB lead to the
filters being spatially too large. We can however conclude from these results that
the best bandwidth spacing is also dependent on the properties of the databeing
analyzed. Best performance is obtained when the spatial size of the filter matches
that of the local features. Unfortunately it is often not clear what constitutes a
"local" feature.

Because of the object matching algorithm is based on random sampling, there
is some variation in the recognition performance in individual test runs. In order to
reliably compare the recognition performance of the four sets of filter parameters
in the previous experiment, we repeated the feature matching and recognition
procedure with the partial BioID database 30 times, using three frequencyscales
andB = 1.7. The average recognition rates and their standard deviations are given
in Table 5.1. The results certify that the best classification scores are obtained with
the elongated filters.
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Figure 5.6: Classification results with the ORL database using face matching.
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Figure 5.7: Classification results with the partial BioID database using face matching.
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Figure 5.8: Classification results with varying bandwidth spacing and number of
frequency scales in the partial BioID database using face matching. Six different
orientations have been used, except where noted.
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σx σy pc ± σc

2 2 0.85± 0.03
2 4 0.90± 0.02
2 6 0.91± 0.02
4 3 0.72± 0.03

Table 5.1: Mean classification scores and their standard deviations in30 repeated
matching experiments, with four different sets of filter shape parameters. Bandwidth
spacing was set atB = 1.7.

5.4 Recognition with angular Gaussian filters

The same approach for finding good filter shape parameters is next applied to an
angular Gaussian type filter bank. Figure 5.10 shows the recognition performance
using a filter bank of angular Gaussian filters. We used polar Gabor filtersgiven
by Eq. 2.19. Their recognition performance is highly dependent on the radial
bandwidth, controlled by the parameterσr , while angular bandwidth, controlled
by σθ , appears much less crucial. This is the same behavior that we saw with DC
free near-Gabor filters, whereσx, related mostly to the radial bandwidth, had a
stronger effect to the performance thanσy. We have used the bandwidth spacing
B = 1.5. The optimal value ofσr depends to some degree on the choice of the
bandwidth spacing, and also on the properties of the data.

When the angular bandwidth is quite narrow, polar Gabor filters are quite
close to Gabor filters. Indeed, the best recognition scores are not muchworse
than the best scores obtained with DC free near-Gabor filter banks. Comparing
Figure 5.10 with Figure 3.7 one can see that while best recognition performance
is obtained using filters with very narrow bandwidth of approximately 15 degrees,
for best steerability the angular bandwidth should be increased to approximately
40 degrees, where recognition performance already begins to suffer.

5.5 Comparison between filter families

In this section, the recognition performance of the system is compared with
the partial BioID database using the DC free near-Gabor, polar Gabor,raised
cosine type filters (Knutsson et al., 1983) and polynomial (derivative of Gaussian)
(Freeman and Adelson, 1991) filters in order to find out how much the choice of
the filter family affects recognition performance. Additionally, the filter families
and their Gabor-type approximations are compared in order to find out whether
the near-optimality in the sense of the uncertainty principle, discussed in Section
2.6, manifests itself in practical recognition results. Six orientations and three
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Figure 5.10: Classification results of face matching using polar Gabor filters. Six
different orientations and three scales have been used, with bandwidth spacingB = 1.5.

scales were used. The response power of all filter types was equalizedacross
scales using the 1/ f 2 rule.

Good filter parameters found in the previous experiments for Gabor and polar
Gabor filters are used here. The parameters chosen for the polar Gabor filter bank
wereσr = 0.3 andσθ = 17◦, and for the DC free near-Gabor filter bankσx = 2
andσy = 4.5 were used. Bandwidth spacing was set toB = 1.5 in both filter
banks.

The raised cosine filter bank with six orientations is designed following
Knutsson et al. (1983) and use filters with a cos4(θ) shaped angular component.
The angular bandwidth of the filters, defined as the standard deviation about the
angular maximum response, is approximatelyσθ = 26◦, significantly wider than
that of the best polar Gabor filter bank. The radial component suggested in
Knutsson et al. (1983) is a log-Gaussian, and a rough optimization gives best
results with the parameterρ = 0.3. The log-Gaussian profile is disadvantaged by
the fact that the tail of the radial bandwidth profile is quite heavy, which leads to
some aliasing in our filter bank design in the highest frequency scalefc = π/4.

The derivative of Gaussian filter is a popular choice in feature detection
applications because of its simplicity and exact steerability (Boukerroui et al.,
2004). The number of filters needed for exact steerability, as well as theangular
selectivity of the filters, is determined by the order of the derivative. In order to
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have good angular selectivity, we choose to use the fourth derivative of Gaussian
filter, which has a fourth degree polynomial in spatial coordinates and is thus
steerable with five basis filters (orientations). Its Hilbert pair approximation
(from Freeman and Adelson (1991)) is a fifth degree polynomial, and requires six
orientations. A disadvantage in using derivative of Gaussian filters is thatwe can
only choose the derivative order, and the radial and angular selectivities cannot be
chosen independently. Consequently, the only parameter we can adjust tosuit the
feature detection problem at hand is the filter center frequency spacing,for which
the value of approximatelyB = 1.4 gives slightly better detection results than the
spacingB = 1.5 which was used with other filter types.

In addition to the previously considered filter banks, the results of each filter
type are contrasted with those of a DC free near-Gabor filter bank which has been
fitted to have a impulse response with minimum approximation error as defined
in Eq. 3.10. For the Polar Gabor and Derivative of Gaussian filters, this results
in slightly flattened near-Gabor filters (withσ = [3.5 3.3] andσ = [2.9 2.1],
respectively), whereas the raised cosine filters most resemble slightly elongated
near-Gabor filters (withσ = [2.0 2.3]). The steering errors and approximation
errors when applicable are given in Table 5.2.

The response profiles of different filters in the frequency domain are shown
in Figure 5.11. Polar Gabor and Derivative of Gaussian filters have quitesimilar
shape to a near-Gabor filter, whereas the raised cosine filter has a significantly
non-symmetric response along the radial direction in linear coordinates dueto
the log-Gaussian radial part, and the long tail is not captured by the near-Gabor
approximation with equal center frequency. Raised cosine and Derivative of
Gaussian filters have nearly identical angular components, which are wider than
those of Gabor and polar Gabor filters in order to facilitate exact steering.

The matching procedure was repeated nine times in order to reduce variance in
the results due to the random sampling based matching process. Figure 5.12 shows
the average Receiver Operating Characteristic (ROC) curves of the matching
experiments. All filters have highly similar performance with very low false
positive rates. At higher threshold levels where some false recognition events
are tolerated, either DC free near-Gabor or polar Gabor have best performance,
with raised cosine filters performing well at low false positive rates but falling
behind at higher rates. Fourth derivative of Gaussian filters performclearly worse,
suggesting that they have problems in representing the image features compared
to the other filters.

Table 5.2 summarizes the results and some properties of the filter banks in
numerical form. The area under the ROC curve (AUC) is a compact measure of
the recognition capability simultaneously at different detection threshold levels,
and can reliably differentiate between "good" and "bad" models (althoughnot
between models which are "good" in different ways) (Marzban, 2004).

Using the AUC as a measure of fitness, the two Gabor-type filters, angular
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Figure 5.12: Upper left: Average Receiver Operating Characteristic (ROC) curves
using polar Gabor, DC free near-Gabor, raised cosine and 4thderivative of Gaussian
filters. Upper right: Comparison between the average ROC curves, with 25% and 75%
quantiles, of angular Gaussian filters, and similarly shaped DC free near-Gabor filter
approximations. Lower row: Average ROC curves and quantiles of raised cosine (left)
and derivative of Gaussian filters (right), and their similarly shaped DC free near-Gabor
filter approximations.
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filter type area under steering Gabor fit
ROC curve error (N=6) error

angular Gaussian 0.947± 0.014 0.183 -
DC free Gabor fit,σ = [3.5 3.3] 0.942± 0.011 0.126 0.041

DC free Gabor,σ = [2.0 4.5] 0.956± 0.016 0.499 -
raised cosine 0.938± 0.017 2 · 10−5 -
DC free Gabor fit,σ = [2.0 2.3] 0.945± 0.008 0.067 0.292

4/5th order polynomial (4th DoG) 0.917± 0.012 5 · 10−15 -
DC free Gabor fit,σ = [2.9 2.1] 0.919± 0.010 0.014 0.061

Table 5.2: Summarized results of the matching experiments using different filter families,
with the steering errors and Gabor approximation errors.

Gaussian and DC free near-Gabor, perform best although their optimalparameter
choices are quite different. The sampling variation is here larger than the effect
of the shape parameters. Raised cosine filters perform only slightly worsethan
the best Gabor-type filters and have the benefit of being very well steerable.
Derivative of Gaussian filters are exactly steerable to the limit of numerical
precision, but their recognition performance is lacking compared to all other filters
in the test. The difference in recognition performance of the filters and their
DC free Gabor approximations in terms of the AUC measure is smaller than the
sampling variation in all three cases. It can be concluded that the overall filter
envelope shape has a larger effect than the difference between the original filters
and the approximations. A good property of Gabor-type filters for recognition is
that their angular bandwidth is not tied to the number of orientations in the bank.
Consequently it appears that at least part of the good performace of Gabor-type
filters is due to the fact that the shape parameters can be more freely adjusted to
suit the properties of the data, compared to exactly steerable filters.

5.6 Effect of the recognition method

The previous experiments have been conducted using models in which each
feature is represented by a single prototype in the feature space. More robust
recognition can be achieved by using several feature prototypes and defining the
similarity function as the similarity value with the best matching prototype. This
strategy allows the representation of more complicated shapes in the feature space
compared to a single prototype models for filter responses. In order to extend
the relevance of the previous results concerning the filter parameters, recognition
results with single prototype and nearest neighbor features are compared in the
following.
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Figure 5.13 shows the average recognition rate with the full BioID database,
consisting of a total of 1511 images of 25 individuals. One eighth of the image
database is used as training images and recognition performance is tested with
the remaining images in the database. Filter responses for both training and
recognition are computed at the manually annotated locations. Eight orientations
and three scales were used, with the bandwidth spacingB = 1.6. The full
database can be used here as the automatic matching system is not used. These
results are not directly comparable to the ones in Figure 5.4, where perfect
classification was achieved using single models, but the results again show the
preference for elongated filters. It is notable that the recognition resultsof the
nearest neighbor model are almost uniformly good, and depend only slightly on
the filter shape parameters. This is directly due to the fact that ambiguities in
the single filter responses can be remedied by using more elaborate featureand
object models in the classification stage. The filter responses appear to contain
the relevant information for recognition almost independently of the filter shape
parameters, but the features are clustered more tightly with respect to identitywith
elongated filters. Still, even the nearest neighbor model benefits from elongated
filters, as the best recognition rates are achieved withσx ≈ 2 andσy > 4.
The results suggest that a single mean model for Gabor features gathered from
manually annotated locations is not sufficient for reliable recognition of identity
even when the images have a relatively consistent quality. We note that the
results with 5 scales andB = 0.7 (the design choice employed e.g. in Wiskott
et al. (1999)) are highly similar to the presented ones. In order to contrast the
results above with those obtained with single models in Figure 5.4, we note that
while the mean model performs worse than the nearest neighbor model, it is
still much more effective than using a single example image from the training
set. Choosing randomly a single example image of each identity from the same
training set as above and using them to classify the test set achieves a maximum
recognition performace of only 0.585, with filter parametersσx = 3 andσy = 10.
This is significantly worse than the any of the test scores with the mean model.
The difference in performance between the full and partial BioID databases is
therefore due to the fact that the partial database is significantly easier to classify
than the full database.

Figure 5.14 shows the recognition performance with the partial BioID database
using feature locations found with probabilistic object matching. Since the nearest
neighbour approach needs several prototypes for each feature, the recognition
experiments have been performed in a leave-one-out fashion, building the feature
models using four of the images of each individual, and testing the recognition
capability with the fifth image. As a result, both feature models are able of
achieve perfect recognition (all individuals were classified correctly using any
four out of the five images as the training data) with some filter shape parameter
combinations. More important than the absolute recognition rates, however,is the
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Figure 5.13: Recognition results with the full BioID database using meanand nearest
neighbor models for the features, with eight orientations,bandwidth spacingB = 1.6
and 3 scales. Filter responses for recognition are computedat the manually annotated
locations.

fact that difference in the performace of the two models with smallσx vanishes,
and the mean model is equally good in recognition even whenσx = 1.

As the feature models in this experiment are based on automatically found
locations, the features tend to be more tightly clustered in the feature space,
because the feature models are learned using image locations which have been
found using the same similarity measure which is applied in recognition. The
difference is especially evident in high frequencies, where the phase component
varies spatially very quickly, and manual annotations often have inconsistent
phase, which makes their recognition performance poor although the feature
points themselves are very close to locations which would cluster tightly with
respect to identity. Two solutions to this problem of manual annotations are
to either adjust the feature locations automatically or to discard the highest
frequencies which are most sensitive to small displacements.

5.7 Discussion

From the previous experiments we can conclude that in order to achieve good
recognition performance with a face recognition system based on Gabor-like
oriented filters and numerical optimization of point feature locations, the DC free
near-Gabor filter shape parameterσx should be quite small, so that the real and
imaginary parts of the filters have only a few sidelobes in the spatial domain
and do not cause false maxima to the similarity functions. On the other hand,
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Figure 5.14: Recognition results with the partial BioID database using mean and nearest
neighbor models for the features. Feature models for recognition are based on filter
responses at locations which are found automatically usingprobalistic object matching.

the parameterσx should be large enough so that the DC correction does not
worsen localization performance. The value of the parameterσy is less critical,
but recognition performance is slightly improved with filters which are spatially
elongated in the direction orthogonal to the wave vector (in other words, filters
which have wider bandwidth in the angular than the radial frequency dimension),
that is,σy > σx.

As the parameter region where Gabor and near-Gabor filters are best steerable
lies whereσy ≤ σx, regardless of the number of basis filters, we face a dilemma
in the filter bank design when attempting to use steerability as a guideline. Good
recognition performance and good approximate steerability of Gabor-typefilters,
with a low number of basis filters, appear to be conflicting design goals. The same
behavior was also seen with angular Gaussian filters. While DC free near-Gabor
and polar Gabor filters which are approximately steerable can be quite efficient
in recognition, best performance was obtained with filters which are narrower
in angular bandwidth than what is required for good approximate steerability.
Compared to exactly steerable filters, approximately steerable filters have the
benefit that the number of orientations is not tied to the parameter controlling
the radial bandwidth. This gives the filters more flexibility in adapting to the
properties of the data, with the obvious cost that some steering error.

It is interesting to note that the data from physiological measurements of
simple cells found in the mammalian visual cortex suggest filter banks with an
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elongation ratio ofσy/σx = 2/1 and bandwith spacing equivalent toB = 1.5
(Daugman, 1980),(Daugman, 1988). These parameter values are compatible with
the findings of this chapter. However, drawing strong conclusions fromsuch facts
that may be only coincidental should be avoided. Our data represents onlya small
and very specialized feature detection task, whereas the mammalian visual system
has to cope with a much wider variety of scenes. Also, although the EBGM model
is biologically inspired, there is no direct biological evidence for the feature jets
or the feature graph representation which our system uses.

Compared to other artificial engineered recognition systems, we first note that
our findings regarding the shape of the filters are compatible with the features
selected with both Gabor Wavelet Network and Adaboost algorithms (Shen and
Bai, 2006), which both favor elongated filters with only a small number of
sidelobes.

Table 5.3 gives some Gabor-type filter bank designs presented in the literature
for feature detection and texture classification applications, and their shape
parameter values converted to our parameterization.

Compared to the parameter choices in Wiskott et al. (1999), the presented
results indicate that a significantly smaller value thanσx = 2π is beneficial
for both localization and recognition. This may be in part due to the global
optimization approach we use in solving the feature localization problem. If
good initialization methods are available, local optimization are sufficient and the
problem of false similarity maxima caused by the filter sidelobes are alleviated
to some degree. Also the flexibility of the object shape model may affect the
choice of optimal filter bank parameters. Nevertheless, as there appearsto be
no theoretical, biological or practical justification for the relatively widely used
choiceσ = 2π , care in the choice of the shape parameters is advised, as we
have demonstrated that they can affect recognition performance. The bandwidth
spacingB = 0.7 using five scales is in good agreement with our results, but it does
not offer improvement in recognition results compared to using the bandwidth
spacingB = 1.6 and three scales. Both banks have a span of slightly over three
octaves in their center frequencies.

Compared to the parameter choices in (Tamminen, 2005), the presented
results indicate that recognition will benefit from larger values of the shape
parameters, especiallyσy. Also the bandwidth spacing should be increased,
since only three scales are used. Tamminen (2005) considered only feature and
object localization, and the filter bank parameters appear to be suboptimal for
recognition, although the localization performance of the complete system is not
hindered greatly because of the highly powerful matching method.

The filter bank design of Kruizinga and Petkov (1999) is most similar to what
our results indicate, although their work concerns oriented texture classification
applications. Typically, texture classification has preferred Gabor filterswith
relatively largeσx andσy, such as in (Ro et al., 2001). However, in the work
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of Kruizinga and Petkov (1999), Gabor filter outputs were used as inputsfor
nonlinear grating cell operators, which explains why a largeσx is not preferred
in the linear filtering stage. Wu et al. (2000) aim for rotation invariance without
using steering (see also (Haley and Manjunath, 1995)), and consequently choose
filters with smallσ , giving a wide support in the spatial-frequency domain. The
filter bank design in (Serre et al., 2007) is radically different from the others,
with highly undersampled orientation dimension and highly oversampled scale
dimension. It is clear that rotation invariance cannot be achieved in the filter
level if the orientation dimension is significantly undersampled, and must be
implemented higher up in the processing if needed.

σx σy Nθ B Nf

Wu et al. (2000) 1.7 1.7 6 1 4
Kruizinga and Petkov (1999) 3.5 7.0 8 1 3

Ro et al. (2001) 4.4 5.6 6 1 5
Wiskott et al. (1999) 6.3 6.3 8 0.7 5

Tamminen (2005) 1.89 1.89 6 1 3
Serre et al. (2007) 5.0 16.6 4 0.1-0.4 16

Table 5.3: Parameter choices of Gabor-type filter banks found in the literature, converted
to the parameterization in Eq. 3.13.



Chapter 6

Rotations in depth

6.1 Introduction

In this chapter, a regression-based approach for modeling out-of-plane or depth
rotations of oriented filter based features is presented. The effects dueto these
rotations are significantly more varied than the plane rotations considered sofar
in the work, because the features change in a way which is dependent onthe
three-dimensional shape of the object.

The goal is to build a model for the change of appearance in local features
in order to recognize the features and determine pose parameters in arbitrary
pose. The proposed approach is best applicable to textured objects which have
relatively smooth surfaces, so that the out-of-plane rotations cause relatively
smooth variation in the filter responses. Typical object classes of this type include
solid objects such as cans, boxes and human faces. We will continue to usehuman
faces as the reference object class.

The use of synthetic data for learning pose-invariant object models has been
proposed in (Vetter, 1996), who presented synthesis of novel views of human
head models using morphable 3D models. This "interpretation through synthesis"
approach has common ground with Active Appearance Models (Cootes etal.,
2001). A component-based version for 3D face pose modeling using the same
approach was presented in (Weyrauch et al., 2004), using automated generation
of 3D face models from photographs. In this work, synthetic 3D face models
are similarily generated from frontal photographs, and they are used in learning
feature models for the spatially sparse local feature based object representation
which is used in the Elastic Bunch Graph Matching model.

The appearance of features in the human face, such as eyes and mouth,
vary characteristically depending on head pose. For example, the mouth appears
mainly as a horizontal line in a directly frontal pose and neutral expression, but
when the object is rotated, the main orientation of the local gray-level structure
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changes, and so do also any features which are not rotation invariant, such as the
responses of our oriented filters. Some of the variation is similar to what occurs in
the case of plane rotations, but there are also new phenomena such as non-linear
contractions and expansions of the gray level structure, and also self-occlusion.

Section 6.2 discusses object pose modeling in general and the regression
approach employed in this work in particular. Section 6.3 introduces the
parametrization of object pose and gives a justification for prior probability
distributions for the pose angles in estimation problems. Section 6.4 presents two
different regression models for the responses of oriented filters. Thesubsequent
four sections consider human head models in particular. Section 6.5 presents the
method for generating 3D head models from single photographs which has been
used in this work. Section 6.6 discusses the recording of feature data andSection
6.7 considers self-occlusion of the features. The prediction performance of head
feature models is evaluated in Section 6.8 using the feature similarity function.

The work presented in this chapter has been published in (Kalliomäki and
Lampinen, 2003).

6.2 Subspace and regression modeling of object pose

Subspace methods such as PCA have been commonly applied to modeling identity
variation of faces in known pose with good results (Pentland et al., 1994). As
the subspace of identity variation is of unknown dimensionality and nontrivialto
parameterize, the PCA approach is easily justifiable, especially if the values of the
pose parameters are not known in the data. In contrast, the dimensionality ofthe
pose subspace is known to be exactly three, since it is spanned by three rotations,
and it can be fully parameterized by for example Euler angle or quaternion
representations.

In pose modeling, one would expect worse performance from linear methods
such as PCA, as thepose manifold(Gong et al., 1996) (the embedded space
of all possible orientations of the face or its features, spanned by the rotation
parameters) is low-dimensional but typically strongly nonlinear and its shapecan
be very complicated. Subspace methods can be applied also to modeling pose
effects in features, although a single linear subspace is insufficient in explaining
large pose variations. Combinations of several locally linear models have been
proposed to overcome the limitations of linearity (Okada and von der Malsburg,
2001), (Tae-Kyun and Kittler, 2005).

Burns et al. (1993) proved that for point-set and line-segment features, there
are no general-case view invariants, and proposed that view-varyingfeatures and
probabilistic methods should be used for effective 3D object recognition. This
is the approach we will take in this work, and model pose variation directly
in the latent space generated by the pose parameters. This requires data with
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Figure 6.1: Two-dimensional pose manifold in a three-dimensional feature space.
Absolute values of the responses of three oriented filters are used as featuresf1, f2 and
f3. Pose is parameterized with azimuth and elevation angles.

known values of the pose parameters in each training image. Collection and
labeling of real-world training data would be a daunting task, and we will use
synthetic, computer-generated models of the objects in model building stage. A
disadvantage of using synthetic data is that the predictions of the model might not
match real-world data. Also, direct regression modeling of the complicatedly
shaped pose manifold requires a flexible nonlinear regression model, whose
parameters may be difficult to learn from data.

High-dimensional spaces, such as our typical feature spaces, are difficult to
illustrate effectively. As an example, consider the two-dimensional pose manifold
spanned by the azimuth and elevation rotation angles in a three-dimensional
feature space, portrayed in Fig. 6.1. Azimuth and elevation angles were perturbed
at most 45 degrees from the directly frontal view. The value of the azimuth angle
parameter is illustrated with color. It can be seen in Fig. 6.1 that the changes in
the features are quite smooth. The resulting manifold is self-intersecting and has
a difficult twisted shape, qualitatively quite similar to the ones observed in (Gong
et al., 1996), who used global PCA features.

6.3 Parameterization of rotations

In the regression model we consider only 2D rotations and parameterize them
with azimuth and elevation angles(ψ, φ), which act as latent variables, and the
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response of each filter in an oriented filter bank is modeled by a functionfk(ψ, φ).
The third rotation, parameterized as the rotation about the view axis, is easierto
model. If we use a rotationally symmetric filter bank, in which the filters in a
single scale are rotated versions of each other, rotating the filters is equivalent to
rotating the image about the view axis, and we can use the results of Chapter 3to
model the changes in filter responses due to in-plane rotations.

The nonlinear rotation parameters cause some complications that need to be
addressed. Namely, the regression model should consider the points of theview
sphere equally important in principle. In other words, equal modeling effort
should be given to all surface elements

d A = cos(φ)dφdψ (6.1)

of the view sphere. Uniform sampling ofψ andφ does not fulfill this requirement,
since at high elevation angles rotation about the azimuth angle degenerates into
in-plane rotation, and many of the samples describe then the same point in the
view sphere. Speaking in probabilistic terms, in order to sample the surface
elementsd A uniformly, we must assign a cos(φ) prior on the elevation angle
parameterφ. We can design a deterministic sampling scheme of the view sphere
easily by setting the number of sample points at the equatorN0 and sampling each
latitude withN0 · cos(φ) sample points. Fig. 6.2 shows how the sample points are
distributed in the rectangular(ψ, φ)-coordinates.

6.4 Modeling oriented filter responses

We continue using Gabor filters as the recognition features, with a filter bankof
three scales and six orientations. The modeling methodology proposed herecan
be used with any spatial oriented filters, such as steerable filters (Simoncelliand
Freeman, 1995) or derivative of Gaussian filters.

Having obtained the filter response data, we need to model it as functions
f j (ψ, φ), whereψ andφ are the azimuth and elevation angles of the pose andi
refers to filter index. This is a typical regression problem. Fig. 6.3 illustratesthe
modeling setup. In Fig. 6.3a) a single feature, the left corner of the left eye, is
tracked. The responses of a single oriented filter, responding to horizontal lines,
are recorded in the sampling points of the view sphere.

Fig. 6.3 b) shows the measured amplitude responses of the filter tracking
the corner of the eye. Large amplitude responses are obtained when the filter
correlates strongly with the image. This includes a large area in the left half-
plane. In the right half-plane, that is, with positive azimuth angles, the amplitude
responses are low because the feature does not contain strong horizontal structures
in those poses. Fig. 6.3c) shows the measured phase responses of the same filter.
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Figure 6.3: a) Samples from the pose space of the feature (center of the left eye). b)
Measured amplitude response of the filter. c) Measured phaseresponse of the filter. d)
Modeled mean amplitude. e) Modeled mean phase. See text for explanation.

6.4.1 Piecewise linear model for filter responses

A flexible model is needed to capture the highly nonlinear effects in the amplitude
and phase regression functions. In (Kalliomäki and Lampinen, 2003), we
originally proposed a piecewise linear model for the filter responses, covering
a smaller rectangleψ ∈ [−50◦,50◦], φ ∈ [−30◦,30◦] of the whole view
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space. However, the same approach can be applied to the larger pose space
ψ ∈ [−90◦,90◦], φ ∈ [−50◦,50◦] considered here.

The locations of the piece boundaries are not optimized, but fixed, in order
to simplify the modeling process. The complex response of an oriented filter
is modeled as a product of the amplitude componentAk(x; a) and the phase
componentφk(x; b), with

jk(x; a,b) = Ak(x; a)φk(x; b) = aT x eibT x, (6.2)

wherex = [ψ φ 1]T is the pose angle vector anda are the linear model parameters
for amplitude andb for phase, respectively, andk is the filter index. The
prediction of the whole filter bank response is obtained by stacking the models
jk = aT

k x eibT
k x into a vectorJ = [ j1, ... , jn]T .

Amplitude responses in the measurements are typically quite smooth and the
modeling process is straightforward. The model is fitted simply by computing
the pseudoinverse solution which minimizes the square error between the model
predictions and data. Fig. 6.3d) shows the predictions of the piecewise linear
model for the amplitude. Phase information is most important when the amplitude
is large. Because of this, we design the linear models for phase using the weighted
least squares method, with the amplitudes acting as weights. Phase responses are
more complicated to model since they contain discontinuous bifurcations where
the phase jumps quickly from one arbitrary value to another. Because the phase
values are 2π-periodic, we can remedy some of these jumps by changing the phase
values which are lower than some threshold value to their 2π complements before
computing the linear model, and choose the threshold value which produces the
best predicting linear model. Fig. 6.3e) shows the predictions of the piecewise
linear model for mean phase.

The piecewise linear model is easily invertible, and it is possible to quickly
compute the pose parameters that are most similar to a given filter jet. However,
the linearity of the model inside each piece unfortunately also means that the
optimal solutions will very often lie on the piece boundaries. This undermines the
applicability of the approach, as the piece boundaries are not supposedto have a
special status compared to other poses.

6.4.2 Mixture of Gaussians model for filter responses

Next we will consider an alternative, nonlinear regression model for thefilter
responses. As the magnitude of the complex Gabor filter has a Gaussian shape, the
normalized filter jet amplitude data consists of quite smooth effects especially in
the region of the pose space where the feature is visible and thus better predictable.
The piecewise amplitude model is not able to describe the smooth variations very
well, and also the number of parameters in the model grows large because a large
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number of pieces is needed in order to model the nonlinear effects of the data.
As an improved model for the amplitude responses of the filters we consider a

mixture of Gaussians model, in which the amplitude predictions model are given
by

Ak(x;µ, S) =
N
∑

i=1

wik exp

(

−1

2
(x − µi )

T S−1
i (x − µi )

)

, (6.3)

wherex = [ψ φ]T is the view vector, andµi are the centers andSi the covariance
matrices of the regression kernels. The centers and covariance matricesof
the Gaussian kernels are optimized, but in order to reduce the number of free
parameters in the model, all features use same centers and covariance matrices.
The weightswik are the only parameters in the model which are feature-specific.
The resulting predicitions are typically such that only a couple of the weights are
active for each feature.

Phase responses of the filters are typically quite smooth as long as the feature
describes the same gray-level structure in the image. A choice which suits the
properties of the data quite well is to define the fixed piece boundaries using
the centers of the Gaussian kernels such that the phase value is predictedby the
linear model associated to the nearest center. The centers then define a Voronoi
tessellation of the pose space, with a separate linear model in each Voronoicell.

6.5 Synthetic head models

As an example object class, we will considering human faces. In order to
measure the filter responses we generate synthetic head models1. The shape
of the reference head model is deformed to match the feature locations in a
frontal photograph, and texture mapped. Using the IMM-DTU database images
(Stegmann, 2002), we construct 37 different 3D training head models.

We use the annotated feature locations in the images to guide the shape
deformation process. The feature locations are connected by a graph structure
consisting of quadrangles. The three-dimensional models are generatedby
deforming the reference 3D model in such a way that the feature locations in
the image plane match the annotated locations.

We compute the piecewise linear mappingAq from undeformed to deformed
space for each quadrangleq of the feature grid using the Moore-Penrose
pseudoinverse,

Aq = RT P(PT P)−1, (6.4)

whereP contains the screen coordinates of the corners of the reference quadrangle
as row vectors andR contains the screen coordinates of the target feature

1Shape model courtesy of University of Washington
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locations. The depth coordinate remains unchanged in the deformation process,
and thus each piece in the piecewise linear modelAq has six free parameters. As
a quadrangle in two dimensions has eight free parameters, the linear system is
over-constrained, which increases the stability of the solution while introducing
only minor errors in the feature locations of the deformed shape. The mapping Aq

is applied to all object vertices which are inside the quadrangleq.

After the shape deformation, optimal light direction parameters(ψl , φl )

and ambient and diffuse reflection material parameters(A, D) are sought by
minimizing theL1 norm

E(ψl , φl , A, D) =
∑

(x,y)

|I (x, y)− f (x, y;ψl , φl , A, D)|, (6.5)

between the gray-scale modelf () and the perceived imageI . We found that
the L1 norm yields visually more pleasing results compared to theL2 norm.
However, the estimated lighting parameters lead typically to shaded images which
are too dark, because the shading model interprets some parts of the image,such
as eyebrows, as shading phenomena.

Finally, the shape is textured with projective texture mapping. We use a
multiplicative texturing model, where the final pixel color is the product of the
texture value and the gray scale value after lighting computation. The required
textureT is then easily computed by dividing pixelwise the perceived imageI
with the gray-scale image of the rendered modelf (),

T(x, y) = I (x, y)/ f (x, y). (6.6)

Our deformable face model is slightly too flexible, allowing some physically
impossible deformations in the head shapes, which consequently lead to unlikely
texture estimates. The texturing however makes the visual quality of the model
quite good under non-extreme rotations and lighting. Figure 6.4 shows the shape
deformation process which generates the three-dimensional training headmodels.

Three additional reconstruction examples are shown in Figure 6.5. Some
artifacts from texturing become visible as dark stripes, where the frontal texture
estimate is based on the value of only few pixels. Generally the visual quality
of our 3D head models is more or less equal to other image-based modeling
approaches (e.g. (Zhang, 2001), (Liu, 2003)). Modeling based ondata obtained
with 3D scanners achieves better visual quality (Blanz and Vetter, 1999),but the
data acquisition process is rather elaborate.
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a) b) c) d)

Figure 6.4: Head shape reconstruction using point correspondences.a) Test image with
annotated feature locations.b) Reference shapec) Deformed shape.d) Corresponding
texture map.

Figure 6.5: Three test images and the rotated head models

6.6 Recording feature data

We track feature locations in the synthetic face models for varying azimuth and
elevation angles, and store the responses of filters. The filters remain centered to
the feature locations as the head rotates. We have used 45 feature locations in the
inner face and 13 locations in the jaw line in our experiments. A total of 34 head
models were used in collecting the filter response data, and the remaining three
head models were used for validating the performance of the model.

We cover a part of the two-dimensional pose space with a rectangleψ ∈
[0◦, 180◦], φ ∈ [−50◦, 50◦], with the point(ψ, φ) = (90◦,0◦) corresponding to
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Figure 6.6: Left: Synthetic head model. Right: Tracking the center of the left eye across
the pose space. The principal orientation of edges in the eyeimages changes considerably
due to pose. In the rightmost column the eye becomes partially occluded by the nose and
the main feature here is radically different from the others, namely the vertical edge of
the head.

a frontal view. The rotation angles are sampled according to Section 6.3 so that
we get approximately uniform coverage of the view sphere, with a total number
of 321 different views of each head. Fig. 6.6 shows a rendering of thehead model
with white markers added to feature locations for visualization, and zoomed left
eye in several orientations.

Alternatively, it would be possible to take a large number of photographs from
a real head instead of using a synthetic head. However, there are many advantages
of using synthetic data to build the filter response model. In practice the most
important of them is that measuring the filter responses from synthetic data takes
far less time. Instead of taking hundreds of photographs in varied poses, the
head is rendered using efficient 3D graphics hardware, and the filter responses
are computed from the rendered image. Furthermore, head pose and lighting
conditions can be accurately controlled. Reliable control over pose angles is quite
difficult to achieve in real-world photography. The tracking of feature locations
is also easy and precise using a synthetic model. With real-world image data one
must either label the feature locations manually or track them automatically.

Compared to real-world data, the main disadvantage is that the visual quality
of the synthetic model is lower. The model has been built using a single frontal
photograph, and its features become somewhat unrealistic, especially in highly
rotated poses. Also, the used Phong lighting model gives rather unnatural results
for human skin, and lacks cast shadows due to self-occlusions.
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6.7 Self-occlusion of features

As the head model is rotated, some of the feature points in a particular view
become occluded and are not directly detectable. It is then a reasonable question
to ask whether we should spend modeling effort in the view space outside the
occlusion boundary of a feature. The answer appears to be twofold. On one hand,
some of the features have strong effects near or at the occlusion boundary, and the
predictive power of the model can be quite good even to some extent beyond the
occlusion boundary. On the other hand, typically the feature responsesare quite
smooth while the feature is visible, and become much less stable when the feature
is under self-occlusion, because the feature location no longer corresponds to a
stable gray-level structure of the image. The feature data is recorded atthe image
plane location where the feature would be if it were visible, and if the featureis
under self-occlusion, the image plane location of the feature does not anymore
correspond to a single vertex on the 3D surface of the object.

We can determine the visibility of each feature by texture mapping the head
model with a color-coded texture map, in which each pixel of the map has an
unique RGB combination. Determination of visibility is efficiently computed by
the Z buffer of the OpenGL renderer, and the test for visibility is easy. Weneed
only test if the pixel color at the location of the feature is the same as the texture
map color of the corresponding model vertex. Graphs of the face objectwith
visible features are shown in Fig. 6.7.

As the features have been annotated at frontal pose, the feature locations are
best representative of the object in near-frontal poses. Highly rotated near-profile
views would benefit from additional feature points at the profile edge, but as
our feature locations correspond to three-dimensional model vertices, the exact
location of the profile edge is difficult to represent with them, and such vertex
locations would be in most poses either away from the profile line or already
occluded.

6.8 Model evaluation

Finally, we wish to evaluate the prediction performance of the regression model.
As an example, Figure (6.8) shows the predictions of a complete filter jet, tracking
the left eye corner, with the mixture of Gaussians model. The predictions are
very good inside the visible region. The phase data varies quickly outside the
visible region, where the filter responses do not correspond to any stable gray-
level structure, and are difficult to predict.

In order to confirm that the model performs adequately, we compute the mean
feature similarity between filter jetsJtest from the three synthetic test head models
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Figure 6.7: Graphs depicting the visible features of the average head model in varying
poses.

and the regression model predictionsJreg,

1

N

N
∑

k=1

1

|Vk|
∑

(ψ,φ)∈Vk

S
(

Jk
reg(ψ, φ), Jk

test(ψ, φ)
)

, (6.7)

whereVk denotes the region in the pose space where the featurek is visible. This
measure, which is evaluated at the known feature locations, is approximately0.79
for the mixture of Gaussians model and 0.77 for the piecewise linear model. All
of the ten best features have an average similarity of over 0.9 everywhere in the
visible region of the pose space. In comparison, the mean feature similarity with
a constant feature model, taken at a directly frontal pose, is only approximately
0.24, and the mean feature similarity of ten best features is 0.38. From this we
can conclude that the regression models are consistent with the synthetic data and
the predictions of the models are reasonably good and improve significantly the
performance compared to a single frontal model.

Outside the visible region the features behave differently depending on mainly
how far the feature location travels away from the occluding boundary. Feature
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points at eyes, eyebrows and nostrils remain very predictable, with average
similarity of 0.88 with the mixture of Gaussians model, while feature points at the
jaw, mouth and nose lines have average similarities around 0.5 when occluded. It
should be noted however that the similarity scores themselves do not tell much
about the detectability of a feature. When occluded, feature points are often
located in smooth regions in the cheeks with no edges or textures which, while
very similar to each other, are not very specific.

The usefulness of the feature model will come under a true test in the next
chapter, in which we will use it as a reference model in an object matching
problem involving depth rotations.
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Figure 6.8: Blocks clockwise from upper left hand corner: Phase data, amplitude data,
predictions of the amplitude model and predictions of the phase model. The average
visibility region of the feature is denoted by the black line. Note how the phase data is
quite smooth inside the visibility region, and spurious outside it.



Chapter 7

Pose estimation with random
sampling

7.1 Introduction

In this chapter we consider the use of random sampling methods in object pose
estimation problems. Section 7.2 discusses the shape of the likelihood functions
in pose estimation and advocates the use of random sampling methods. Section
7.3 compares three different types of sampling algorithms in a problem in-plane
rotations. Section 7.4 discusses the effect of steering correction of filterresponses
in the same in-plane rotation estimation problem. Finally, Section 7.5 considers
the problem of estimating the model pose in the case of depth rotations.

The random sampling methods applied in this chapter include Metropolis,
Gibbs and Population Monte Carlo (PMC) sampling algorithms introduced in
Section 4.8. Population Monte Carlo methods are related to Sequential Monte
Carlo (SMC) methods which have been applied in computer vision in tracking
problems, such as in (Isard and Blake, 1998). Sequential Monte Carlo methods are
applicable in dynamic state estimation problems, but in this chapter we consider
static pose estimation problems and argue that Population Monte Carlo methods
are applicable to them with better peformance than classic Metropolis and Gibbs
sampling algorithms. Sequential matching of object features using SMC sampling
has been proposed in (Tamminen and Lampinen, 2006), where it was foundto
perform well especially in handling feature occlusions.

Conceptually, our approach to the pose estimation problem is similar to
(Lowe, 1989), where parameterized 3D object models are fitted into images,
as both need relatively detailed, structured 3D models of the objects, and the
pose estimate is based on the result of model fitting. Classical geometric
methods such as (Haralick et al., 1989) and (Faugeras and Hebert, 1986) establish
point correspodences between the model and the image, and solve for thepose
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parameters directly or iteratively. Image-based object modeling methods such
as (Lepetit et al., 2004) have been succesfully applied to the pose estimation
problem. These are most effective if the object has a nearly planar shape in three
dimensions.

The approach we take in this work in the 3D case is to learn the feature
variation due to object pose from synthetic training data. Component-based
face recognition using synthetic training data has been proposed by Huang et al.
(2003), who use local gray level values directly as features and recognition is
performed with a combination of Support Vector Machine classifiers. In thiswork,
we use significantly more sophisticated feature models.

7.2 Object matching with in-plane rotations

In-plane rotations are difficult in local feature based recognition because the
rotation parameter is global and affects the relative locations of all features
simultaneously. In this section we aim to show that the likelihood distribution is
typically multimodal with respect to the rotation and object location parameters,
and local optimization methods do not solve the pose estimation problem reliably.
Consequently, random sampling methods are applicable for finding the largest
mode of the probability distribution, corresponding to the globally optimal pose
parameters. Global optimization methods such as simulated annealing and genetic
algorithms could be alternatively used while remaining in the error-minimization
framework. The probabilistic approach we take in this work allows the use of
a number of powerful random sampling algorithms which have been devisedfor
statistical inference problems.

We will consider a rotation-invariant object matching system which can
recognize objects undergoing in-plane rotations and changes in scale. Our shape
model is very simple in order to highlight the differences of the sampling methods,
and has only four parameters for the locations of the features: orientationangle
θ , global scales, and the centerxc, yc of the feature configuration, as described in
Section 4.7.1. These compose the parameter vectorθ = [θ s xc yc]. The locations
of individual features are given by an overall object shape modelM , which is
simply the mean of the training data. In other words, the object shape model is
rigid, and individual locations of features are not optimized. This is appropriate
because the aim is in pose estimation, not person identification. Feature models
are also computed as mean jets at the annotated locations of the training images.
We have again used the DTU face database with 37 high resolution images in
which 58 features are annotated in each, performing the tests with leave-one-out
cross-validation where all other images except the one to be tested are used in
training the model (computing the mean shape and mean filter responses). The
rotated images are generated synthetically by simply rotating the original image
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into new orientations.
Since displacement, scale and rotation parameters all affect directly the

locations of the individual features, the parameterization makes things quite
difficult although the number of parameters is as low as four. Typically the shape
of the target probability distribution (i.e. the likelihood or posterior probability
distribution of model parameters) is such that it has a very sharp peak at the
parameter combination where all features are well matched. Additionally there
are several weaker local maxima where only some of the features are matched, for
example when the left eye features are matched at the right eye. The relative height
of the peaks is also affected by the parameterβ in the likelihood function (Eq.
4.5). High values ofβ cause the largest maxima to contain most of the probability
mass, but also constraint the mass into a smaller region in the parameter space
and thus make it harder to find. Outside the immediate vicinity of probability
maxima, the probability distribution is often quite flat, especially with respect
to the displacement parameters, and if the current estimates of orientation and
scale parameters are not close to the true values, a wide variety of displacement
parameters appear almost equally probable, giving little information about their
true values.

Figure 7.1 illustrates the difficult shape of the pose probability distribution
with respect to the displacement parameters at seven different pose angles. In
order to simplify matters, the global scale of the object is assumed to be known.
Starting with the poseθ = 20◦, the highest probability peak occurs when the the
left eye has been approximately matched. Let us suppose that we would use a local
optimization scheme and adjust the orientation parameter slightly, simultaneously
with the displacement parameters. The likelihood function grows larger whenwe
decrease the orientation toθ = 17◦ and yet more withθ = 13◦. However, at
this point the optimization path reaches a dead end. The left eye of the model has
been matched approximately correctly, while the right eye of the model is on top
of the eyebrow of the image. We have found a local maximum in the likelihood
function: decreasing the orientation parameter any further lowers the likelihood
peak.

At θ = 13◦, correctly matching either the left or the right eye results in roughly
the same probability, and there is a region of lower probability between the two
peaks. Starting from the other peak, local optimization will lead us to the global
maximum which is the correct solution and also the most probable one. The crux
of the problem is that we will not find it simply by following an uphill path from
the initial pose ofθ = 20◦.

Because of the typically difficult shape of the likelihood landscape (such
as the one seen in the previous example), local optimization methods are often
unable to find the global maximum. A computationally brute force solution for
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Figure 7.1: Bottom row: Two-dimensional slices of the object likelihood functions with
different amounts of plane rotationθ in the matching model. The crosses denote the
maxima of the similarity displacement parameters, and the red and green arrows show two
local optimization paths advancing from one orientation toanother. Average similarity
value at the highest maximum are shown on top of each likelihood field. Top row: Feature
locations corresponding to the local maxima at each orientation. See text for discussion.

finding the most probable combination of parameters would be to evaluate the
target probability distribution at all possible parameter combinations. However,
this turns out to be computationally very demanding with only four parameters.
If we test 50 possibilities of displacement parameters in horizontal and vertical
coordinates at 20 different scales and in 20 different orientations, weneed to
evaluate the target distribution function 50· 50 · 20 · 20 = 106 times. In
higher-dimensional parameter spaces this approach becomes quickly completely
infeasible.

In order to tackle the exponential growth of the parameter space, we will
apply Monte Carlo sampling methods which can lessen the computational cost
if they manage to evaluate the target distribution mostly only in those regions
of the parameters space where the target distribution has significant probability
mass. As many of the modes of our target distribution are caused by incorrect
partial matches of the object, our ultimate goal to find simply the largest mode
of the target distribution. Accordingly, we choose a relatively large valuefor the
parameterβ, which controls the steepness of the likelihood function, so that most
of the probability mass will be contained in the mode with highest probability
density. In this sense our approach has common ground with global optimization
methods.

A common problem with convergence of any Monte Carlo method is that
depending on the choice of the proposal (jumping) distribution, the methods have
a tendency either to converge into some single local mode of the probability
distribution and remain stuck in there, or wander aimlessly in the parameter space,
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never finding any of the modes with significant probability mass. Depending on
the distribution to be simulated, the starting point can cause significant bias in
the results, if the Markov chains systematically converge into some single modes
of the distribution and are incapable in practice in traveling from one mode to
another. These problems are made more severe by the fact that our likelihood
function has a difficult shape compared to the distributions typically encountered
in statistical inference.

7.3 Comparison of sampling methods

We compare the performance of Metropolis, Gibbs and Population Monte Carlo
sampling methods in the in-plane rotation estimation problem. First we consider
the case where the feature jets of the matching model are constant with respect to
in-plane rotations. This makes the feature likelihood fields remain unchanged
even when the orientation parameter changes. To save computational effort,
we can precompute the feature likelihoods and use simple table lookup in
the sampling stage. All sampling algorithms were initialized using samples
from uniform distributions for orientation and displacement with boundsθ ∈
[−60◦,60◦] and x, y ∈ [−10,10] from the image center, and a Gaussian
distribution N(1,0.12) for global scales. The scale is close to the correct value
in order to help even the poorly performing sampling methods to converge to the
correct solution. Our main interest here is the orientation parameter.

The Metropolis algorithm is easy to implement, and can be considered the
baseline method. The proposal distribution is a Gaussian distribution with a
diagonal covariance matrix with standard deviationsσθ = 0.05, σs = 0.05
and σx = σy = 3. The choice of the proposal distribution is crucial for
the performance of the Metropolis algorithm, as new proposals should be small
enough so that the chain will not turn into a blindly wandering search, but large
enough to escape local maxima of the target distribution in search of the global
maximum. The values for deviations above appeared to be suitable with respect
to these concerns, but admittedly we did not systematically search for the optimal
values for fast convergence of the chain.

Gibbs sampling is also very straightforward to implement. The full con-
ditional distributions of the parameters do not have analytical expressions, but
since we have already computed the individual feature likelihoods, numerical
computation of the full conditional distributions is not computationally too
expensive, as we can compute them simply as the products of values from the
feature likelihood lookup tables. The ranges of the parameters were limited to
θ ∈ [−60◦,60◦], s ∈ [0.7,1.3] and x, y ∈ [−20,20], in which we evaluate
the target distribution discretized in twenty steps for each parameter. Since the
Gibbs sampler moves in orthogonal directions in the parameter space, it is prone
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to having problems with traveling from one mode of the distribution to another,
and is best applicable to unimodal estimation problems.

The implementation of the Population Monte Carlo sampler is somewhat
more involved. We use the proposal distribution of the Metropolis sampler as
a guideline when designing the generating distributions of the particles, so that
the differences between results of the methods are not only due to different
proposal distributions. In the basic version of the PMC sampler, each particle
i of a single generation is generated independently and the proposal distribution
of the Metropolis sampler is used as the generating distribution, i.e. a multivariate
Gaussian distribution with covariancesσθ = 0.05,σs = 0.05 andσx = σy = 3.

The PMC sampler can be however made more efficient by clever selection of
the generating distributions. Since the choice of the generating distributions for
each particle is completely free, we can even use the evaluated values of thetarget
distribution when generating the new proposals. The distribution to be simulated
is problematic partly because the strong interconnections of the parameters,and
we generate each new particlei of a single generation in an alternative version of
the PMC sampler which uses a local feature based pose heuristic as follows:

• Evaluate the probabilitiespi j of each feature locationj individually

• Generate new rotation angleθnew
i and scalesnew

i parameters fromθ ∼
N(θold

i , σ 2
θ ) ands ∼ N(sold

i , σ 2
s ) respectively

• Sample a feature location indexj according to their individual probabilities

• Compute the rotated and scaled spatial feature locations, with the feature
index j acting as the origin for rotationθnew

i and scalingsnew
i

• Generate an additive displacement to the feature locations from the distri-
butionsx ∼ N(0, σ 2

x ) andy ∼ N(0, σ 2
y )

The motivation of this scheme is to generate parameter states in which well-
matched feature locations are more likely to remain well-matched, as the rotation
of the features is performed about a feature which has been matched with agood
probability. Each particle is rotated, scaled and displaced independently witha
different set of pose parameters, and multiple good candidates for the feature
locations typically exist simultaneously and independently in a single generation
of particles.

Figure 7.2 shows the samples generated by the three sampling methods. We
have chosen a sampling run where all samplers have converged to the samemode
of the target distribution. The Metropolis sampler finds very quickly a quite good
parameter combination, and the move to the better mode requires a large jump
in the orientation parameter. After this only very few of the proposals become
accepted. The Gibbs sampler, which accepts every move, moves much more
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Figure 7.2: Samples generated by the different sampling methods. For clearer
visualization, only every tenth sample has been plotted.

aggressively through the parameter space. The PMC sampler evaluates awide
range of possible parameter combinations in its first generation of 500 particles, in
a manner not unlike importance sampling, and subsequent generations aremerely
small improvements on the good parameter combination found already in the first
generation.

5000 iterations were performed with all three algorithms. Samples in the
beginning of a Markov chain, which are biased by the initial values, are typically
discarded when computing the results, a procedure which is calledburn-in. In
order to ensure convergence into a single mode, we used only 500 last samples of
the chain when computing the sample averages. 500 particles and ten generations
were used in the PMC sampler.

There are large differences in the capability of the samplers to find the mode
in the probability distribution with significant mass. To evaluate this, we ran
each sampler with all of the DTU images in five different orientations, rotated
by −40, −20, 0, 20 and 40 degrees. The average distance of the features from
their annotated locations were computed, and the sampler was deemed to have
converged into the correct mode if the average distance of the features was less
than ten pixels. Because the feature location model is stiff and includes only
scale changes as deformations, the ten pixel difference in the locations is not
unrealistically large.

Table 7.1 summarizes the results of the matching experiment. When con-
verged, Metropolis, Gibbs and PMC samplers achieve an average distance of a
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method P±40◦ P±20◦ P0◦ Dc (px)
Metropolis 0.51 0.81 0.84 5.79

Gibbs 0.42 0.54 0.62 5.94
PMC, no heuristic 0.92 0.93 0.95 6.22

PMC 0.93 0.97 0.97 5.77

Table 7.1: Probabilities of convergence to the correct mode with Metropolis, Gibbs and
PMC methods (without and with the pose heuristic), and the average distanceDc of
converged mean model matches from the annotated feature locations.

little under 6 pixels. The PMC sampler without pose heuristic appears to converge
slower than the other samplers, and the average distance of features is larger than
with the other samplers when the same number of iterations is performed.

The Gibbs sampler suffers most from the high correlation of the parameters
and is often unable to find the mode with the significant probability mass
especially in the case of rotated images. The Metropolis sampler performs better
and converges to the mode close to the annotated solution with probability 0.84
in the case of unrotated images, but the probability of convergece to the correct
solution decreases with rotated images. The PMC samplers, in contrast, are
very efficient in finding the strongest mode near the annotated solution, and their
performance is almost as good also with highly rotated images. The local feature
based pose heuristic of the PMC is quite efficient in directing the sampler quickly
to the different modes of the probability distribution. The correct mode is found
without the pose heuristic almost equally well.

The presented results do not prove that Metropolis algorithm cannot function
effectively in the pose estimation problem, because we have not systematically
evaluated the performance with all possible proposal distributions. More effective
proposal distributions are likely exist compared to the one we have used.
Nevertheless, the PMC algorithm with the same proposal distribution is more
effective than the Metropolis algorithm, and also more effective than the Gibbs
algorithm. The results suggest that the PMC algorithm is more efficient in general
compared to Metropolis and Gibbs algorithms, regardless of the choice of the
proposal distributions.

The evolution of the particle generations in the PMC sampler can be seen in
Figure 7.3, with 1000 particles in each generation. The descendants in a single
generation are typically the offspring of only a handful of particles, dueto the
difficult spiky shape of the probability distribution. After a few generations, all of
the particles in a single generation share a common ancestor.
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Figure 7.3: Ancestors (green) and descendants (black) of a typical Population Monte
Carlo run.

7.4 Rotation-invariance in the feature level

In-plane rotations cause most significant changes to the configurations ofthe
features, but, as noted before, also the filter responses change due toin-plane
rotations. In order to account for these effects, we can use steerabilityto correct
the feature responses into any given orientation. Unfortunately as the feature
models now change depending on the value of the orientation parameterθ , the
feature likelihood fields can no longer be precomputed, and consequentlyGibbs
sampling becomes computationally infeasible, as its numerical version requires
up to a hundred times more evaluations of the target distribution for each random
sample.

Figures 7.4 and 7.5 show matching results of three individuals in seven
different rotation angles, without and with steering correction in the filter
responses, using the PMC sampler. The matching results themselves are highly
similar, but if we compute the average similarity values, it can be seen that while
without steering correction the similarity values become quite low in the highly
rotated orientations, they are nearly equal when steering correction is applied.
While the feature detection stage is successful even without steering correction,
the invariance of the similarity values in different orientations is crucial for
recognition applications. The price of the better quality of the feature similarity
values is however the increased computational burden, as we can no longer
precompute the feature likelihood fields, and as the steering correction itselftakes
some time to compute.
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Figure 7.4: Rotation-invariant matching results with Population Monte Carlo without
steering, with average similarity scores. The features arematched correctly in all tests,
but the similarity scores are lower in rotated poses becausethe pose variation of features
is not modeled. Compare with Figure 7.5.
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Figure 7.5: Rotation-invariant matching results with Population Monte Carlo using
steering-corrected filter jets, with average similarity scores. The similarity scores are
equally good in any orientation. Compare with Figure 7.4.



7.5 Object matching with depth rotations 113

7.5 Object matching with depth rotations

Finally we consider the case with three independent rotation angles. The
parameter vectorθ = [ψ φ θ s x y] consists of the azimuth angleψ , the elevation
angleφ, in-plane rotation angleθ , global scales and displacement in the image
planex, y.

The object modelM presented in Section 4.7.3 specifies the locations of
individual features via the object pose parametersθ . In other words, the locations
of individual features are not optimized, similarly to the previous two sections
in this chapter. The predictions of the mixture of Gaussians regression model
generated from synthetic data in Chapter 6 are used as the feature models which
account for the depth rotations. Only the changes in feature locations dueto in-
plane rotations are modeled, and steering correction is not used.

As initial distributions for the parameters, we usedψ ∼ Uni f (0,2π),
φ ∼ Uni f (−0.1,0.1), θ ∼ Uni f (−0.1,0.1), s ∼ N(1,0.12) and x, y ∼
Uni f (−50,50), with the angles given in radians and displacement values in
pixels. This choice of initial distributions initializes the particles of the PMC
sampler so that nearly upright profile, half-profile and frontal poses are present in
the initial particle distribution. This strategy is chosen because we cannot cover
the whole pose space very well, and the azimuth angle presents most difficulties
for the sampler as it is often quite difficult for the sampler to move away from a
profile pose. In a well-mixing chain the choice of the initial distribution should
not affect the results when the sampler has converged, but we want thechain to
converge as soon as possible, and the choice of the initial distribution affects the
speed of convergence to some degree.

The generating distributions for the new particles in the PMC sampler were
set as follows:ψ ∼ N(ψold,0.52), φ ∼ N(φold,0.252), θ ∼ N(θold,0.022),
s ∼ N(sold,0.52) andx, y ∼ xold, yold + Uni f (−3,3). The rotations and scaling
are again performed in the same manner as in the case of in-plane rotations
for each particle separately. We first sample a feature index using the feature
probabilities as weights, which acts as the origin for the rotation and scaling,
and the displacement values are added to the feature locations after rotationand
scaling. The variance in the generating distribution ofθ is kept small, because
the test images do not have variation in the in-plane angle, and only the angles
which produce depth rotations (i.e. azimuthψ and elevationφ) are varied. The
other two angles have a sizable variance in their generating distributions in order
to facilitate efficient travel of the chain from one mode to another. This is needed
because in the case of depth rotations, profile poses with their strong edges often
have some probability mass even when the correct solution does not correspond
to a profile pose, and the sampler should be able to escape these modes in search
of better ones. Ten generations and 500 particles in each generation were used.
The sampling process takes approximately five minutes for a single image using
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an unoptimized Matlab implementation on an Intel P4 1.7GHz based machine.
Figure 7.6 shows the matching results with a synthetic test model. The

matching experiment was repeated ten times and the median graph in terms of
the similarity has been plotted with a red line. The sampling variance in a single
matching experiment is illustrated by plotting the graphs of one standard deviation
estimates of the parameter samples with green lines. The PMC sampler has
managed to find the correct solution in all poses.

Because of the probabilistic nature of the matching process, it is possible that
the sampler gets stuck in an incorrect mode of the likelihood function. We did not
systematically search for good initial distributions for the particles and generating
distributions, which could improve the probability of convergence to the correct
mode. Another possibility would be simply to increase the number of particles,
although this approach is not very elegant.
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Figure 7.6: Median result of ten repeated matching experiments using the synthetic
model, with average similarity scores on top of each pose. Graphs corresponding to one
standard deviation of the samples in a single run have been plotted with green line.

The evolution of the PMC particles can be seen in Figure 7.7. At each
generation the PMC algorithm first generates the candidate states (top row), eval-
uates their fitness and resamples them according to their probabilities, obtaining
samples from the target distribution (bottom row). In the first generation themost
probable particle corresponds to a profile pose. The sampler travels from this
mode into the approximately correct solution after a few generations.
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Figure 7.7: Evolution of the particles in pose-invariant object matching with three
rotation angles. Leftmost image shows the samples from the initial distribution. The
rest of the images in the upper row show particles from the generating distribution at each
generation, and the lower row shows the samples obtained from the target distribution at
each generation. Because of clarity only every 30th sample in the upper row has been
plotted.

The rigid feature location model does not take into account variation in the
locations of features due to identity and expression. Thus the locations are
probably not accurate enough to serve as a basis for recognition of identity.
Modeling of identity variation simultaneously with pose is not trivial, because the
largest variations in feature locations due to identity and due to pose can be highly
similar in non-extreme poses. However, for example a non-rigid probabilistic
object model which allows the feature locations to deviate small distances away
from a mean shape should be quite straightforward to implement.

Finally, the presented system is compared to the approach presented by Baand
Odobez (2004), which uses a probabilistic approach for head trackingand pose
estimation. Particle filtering, which is closely related to Population Monte Carlo
methods, is used for head tracking. For pose estimation, maximum a posteriori
estimation is used. The method is tested using the PIE database which contains
13 different head poses. Strictly speaking, Ba and Odobez are performing pose
classification, not pose estimation, as both the test data and the model assume that
the poses are spaced 22.5◦ apart. Instead of continuous estimation, the pose is
classified into 13 classes. The highest pose classification score reported is 94.8%.

Unfortunately our regression modeling approach is not well suited to data
such as the PIE database, which contains a limited number of discrete poses,as
the feature models need to be built from continuous data which was available only
by using synthetic images, and the feature models do not typically generalize very
well between highly different image databases, such as between syntheticand
natural images. A possible problem in using the same set of poses for both training
and testing the system is that the results can be overly positive compared to test
data with continuos pose changes. We would like to emphasize that object pose is
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a continuous phenomenon and pose estimation error should be measured sothat
either the training data, the testing data, or preferably both contain poses which
adequately cover the whole pose space. Admittedly, a clear problem limiting
the applicability of the presented approach employing regression modeling ofthe
features under depth rotations is that it would be laborious to gather the required
dense training data in the case of real-world images, and often one is forced to use
only sparse data such as the PIE database.

Using a gallery of 13 test poses similar to the PIE database, but synthetic
images from 20 individuals generated according to Section 6.5, the presented
system achieves pose estimation error with the meanµθ = 4.4◦, µφ = −1.7◦ and
standard deviationσθ = 18.3◦, σφ = 7.3◦. When the sampling process converges
to the correct mode in the probability distribution, the estimates are reasonably
accurate with only small bias. The biggest problem in the presented approach is
that when the random sampler does not converge to the correct pose, the error in
pose angle estimates can be very large.

Although a direct comparison to results obtained with the PIE database is
not meaningful, combining the results above with a very simple nearest neighbor
classifier based only on the estimated angles, the presented system achieves a pose
recognition rate of 85% with the same set of test poses. Profile and half-profile
poses are recognized more accurately, and misclassifications are most common
in near-frontal poses. This is a direct consequence of the feature locations we
have chosen, which remain relatively constant in a frontal nodding movement. A
local feature based head pose estimation system would benefit from feature points
outside the inner face region, which would make it possible to infer the pose more
accurately based on the locations of the inner face features in relation to thehead
border, for example.

The obtained results show that synthetic data can be applied in learning
the feature models, and reasonably accurate pose classification is possible even
when the quality of the synthetic models is not very high and contains some
spurious effects. It should be noted that the synthetic data which has been used
is not necessarily easier to classify than real world data obtained in constrained
conditions.



Chapter 8

Conclusions

This thesis has presented a complete rotation-invariant object matching system,
employing a local feature based object representation with parameterized models
for the changes in features due to rotations, and algorithms using random sampling
methods for fitting the models to data. Additionally, the effects of filter shape
parameters on both recognition performance and rotation invariance havebeen
studied.

The analytic derivation of steering functions for Gabor-type filters may be
considered the most important theoretic result of the thesis, as it enables their
use as steerable filters. Gabor filters are very widely employed in various
applications, and the derived results give the opportunity to consider in-plane
rotation invariance without changing the filters of the system and possibly
affecting the performance of the complete system.

The experiments performed with filter parameters suggest that good steerabil-
ity and recognition performance are conflicting design goals. Best steerability
is obtained with Gabor and angular Gaussian filters which have mediocre
recognition performance and vice versa. The best filter banks for rotation-
invariant recognition of human facial features require many more basis filters than
what is necessary for computing the principal orientation of simple edges.

The presented object matching system is able to successfully solve recognition
problems involving in-plane rotations. The PMC algorithm was found to be
clearly the most efficient, whereas the standard Metropolis and Gibbs sampling
algorithms produce only mediocre results, their main problem being the poor
probability of convergence to the mode of the probability distribution correspond-
ing to the correct solution. The case of depth rotations is significantly more
difficult, and also the PMC algorithm begins to have problems finding the correct
solution.

In the object matching scheme presented in Chapter 7 we used a top-down
approach, finding the most probable pose parameters of a complete, detailed



118 Conclusions

object model. Using the same kind of local feature models, it would be possible
to first try to detect parts of the object and their pose, and use these to generate
efficient proposal distributions for the random sampling algorithms. Filter jetsat
single locations may be too generic for this purpose, and combinations of several
spatially separated jets could be used, as in (Yokono and Poggio, 2004a).

Although perceptually very important, human faces are only one of the
numerous object classes humans can distinguish. Good filter parameters for
recognition are necessarily dependent on the object class, and it may well be that
even different features of the human face would benefit from differently-shaped
filters. Thus the aim of using the best generic filtering operation even in the
case of a single object class is a computational compromise. For truly optimal
performance one might have to employ several filter banks with different shape
parameters, and it becomes even more difficult to find the good parameter sets. It
is perhaps interesting to note that while it has been known for a long time that the
mammalian visual cortex contains a plethora of filters with various orientation and
scale sensitivity profiles, computer vision algorithms using Gabor filters typically
use only a single profile, usually either a spherical or a biologically motivated
σy : σx = 2 : 1 one. It would be interesting to know if there anything to be gained
in considering simultaneously the responses of filters with different orientation
profiles, in some sense circumventing the limits which the uncertainty principle
poses for a single oriented filter.

The probabilistic approach that has been used in the work provides a unifying
theoretical foundation for object matching and merits further research. The
Population Monte Carlo class of sampling algorithms is especially interesting
since powerful heuristics about the specific problem can be used in choosing
the generating distributions, while the samples themselves obtained by the
PMC algorithms are guaranteed to follow the target distribution. The pose
estimation method presented in this thesis is computationally rather demanding
compared to the methods found in the literature such as (Lepetit et al., 2004),
requiring at least hundreds of iterations for convergence, and its main use remains
currently in theoretical considerations. Nevertheless, probabilistic algorithms
using random sampling can be computationally rather efficient in demanding
estimation problems, and can be applied even when most other approaches are
intractable.

Synthetic data has been applied the work for learning the pose variation
in features. Because the visual quality of the synthetic data is not completely
lifelike, the feature models do not directly predict features in natural imagesvery
well. Significant improvement has occurred in computer graphics even during the
course of this work, especially in modeling hair and skin, and the approachto
use synthetic learning data in visual tasks is becoming more and more appealing.
The primary benefit for doing so instead of using real measured data is that the
gathering of training data, which is a major hurdle in computer vision researchin
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general, is significantly less laborious.
The aims set for the thesis – to develop pose-invariant methods for local

feature based object matching systems and analyze their performance – have been
achieved, although several unsolved issues remain. In addition, while oriented
filters have been studied for some time, their use continues to be a relevant
research topic in computer vision.
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Image databases

ORL database

Figure A.1: Test images of the ORL database.
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BioID database

Figure A.2: Test images of the partial BioID database.
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