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Abstract

This thesis is concerned with two central themes in computer vision, the fiegper

of oriented quadrature filters, and methods for implementing rotation invarianc

an object matching and recognition system. Objects are modeled as combinations
of local features, and human faces are used as the reference olgsst

The topics covered include optimal design of filter banks for feature tietec

and object recognition, modeling of pose effects in filter responses and th
construction of probability-based pose-invariant object matching aradyrétion
systems employing oriented filters.

Gabor filters have been derived as information-theoretically optimal lzessdp
filters, simultaneously maximizing the localization capability in space and spatial-
frequency domains. Steerable oriented filters have been developedoat a
for reducing the amount of computation required in rotation invariant systems
In this work, the framework of steerable filters is applied to Gabor-type dilter
and novel analytical derivations for the required steering equatiarthéon are
presented. Gabor filters and some related filters are experimentally shown to
be approximately steerable with low steering error, given suitable filtereshap
parameters. The effects of filter shape parameters in feature localizaiibn a
object recognition are also studied using a complete feature matching system.

A novel approach for modeling the pose variation of features due to depth
rotations is introduced. Instead of manifold learning methods, the use fignthe
data makes it possible to apply simpler regression modeling methods. The use
of synthetic data in learning the pose models for local features is a central
contribution of the work.

The object matching methods considered in the work are based on proba-
bilistic reasoning. The required object likelihood functions are constlucsang
feature similarity measures, and random sampling methods are applied fogfind
the modes of high probability in the likelihood probability distribution functions.
The Population Monte Carlo algorithm is shown to solve successfully pose
estimation problems in which simple Metropolis and Gibbs sampling methods
give unsatisfactory performance.






Tivistelma

Tama vaitoskirja kasittelee kahta keskeisté tietokonen&dn osa-aluetta,lisignaa
suunnalle herkkien kvadratuurisuodinten ominaisuuksia, ja nakymaasiann
riippumattomia menetelmia kohteiden sovittamiseksi malliin ja tunnistamiseksi.
Kohteet mallinnetaan paikallisten piirteiden yhdistelming, ja esimerkkikohdelu-
okkana kaytetddn ihmiskasvoja. Tytssa kasitelladn suodinpankin optimaalista
suunnittelua piirteiden havaitsemisen ja kohteen tunnistuksen kannalta, rdkyma
suunnan piirteissa aiheuttamien ilmididen mallintamista sekéa edellisen kaltaisia
piirteitd kayttavan todennéakdisyyspohjaisen, nakymasuunnasta riippumattoma
havaitsemiseen kykenevéan kohteidentunnistusjarjestelman toteutusta.

Gabor-suotimet ovat informaatioteoreettisista |ahtokohdista johdettuja, aika-
ja taajuustason paikallistamiskyvyltdan optimaalisia kaistanpaastdsuotimia. NKk.
ohjattavat §teerabl@ suuntaherkat suotimet on kehitetty vahentamaan laskennan
maaraa tasorotaatioille invarianteissa jarjestelmissa. Tytssa laajennetdan ohja
tavien suodinten teoriaa Gabor-suotimiin ja esitetdaan Gabor-suodinten ségamk
vaadittavien approksimointiyhtaldiden johtaminen analyyttisesti. Kokeellisesti
naytetaan, ettd Gabor-suotimet ja eraat niitd muistuttavat suotimet ovat sopivilla
muotoparametrien arvoilla likimaarin ohjattavia. Liséksi tutkitaan muotoparame-
trien vaikutusta piirteiden havaittavuuteen seka kohteen tunnistamiseen-kokon
aista kohteidentunnistusjarjestelmaa kayttaen.

Piirteiden ndkymdasuunnasta johtuvaa vaihtelua mallinnetaan suoraviivais-
esti regressiomenetelmilla. Naiden kayttdminen monisto-oppimismenetelmien
(manifold learning methodssijaan on mahdollista, koska malli muodostetaan
synteettisen datan avulla. Tyon keskeisia kontribuutioita on synteettisen datan
kayttdminen paikallisten piirteiden ndkymamallien oppimisessa.

TyOssa kasiteltavat mallinsovitusmenetelmét perustuvat todennakdisyyspoh
jaiseen paattelyyn. Tarvittavat kohteen uskottavuusfunktiot muodostgiisteit
den samankaltaisuusmitoista, ja uskottavuusfunktion suuren todennaiessy
san keskittymat |0ydetéén satunnaisotantamenetelmilld. Population Monte Carlo -
algoritmin osoitetaan ratkaisevan onnistuneesti asennonestimointiongelm, joiss
Metropolis- ja Gibbs-otantamenetelmat antavat epatyydyttavia tuloksia.
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Chapter 1

Introduction

1.1 Background

Human beings have an innate ability to interpret visual scenes, locatingisjec
them, classifying them into different categories and recognizing familiactdbje
within the categories. The human brain is so efficient and seemingly effoities

its processing of visual information that it is perhaps surprising that hwisan

is actually an extremely complex phenomenon, and large parts of the brain are
devoted for processing of visual information.

One of the aims of computer vision and image analysis is to emulate the
visual capabilities of humans, given the assumption that vision is indeed a
computational process, however a complex one, performed by neurdhe
brain. Indeed, biological vision systems have been successfully useh a
inspiration for artificial vision. In the past 25 years, two-dimensionalnteid
filters with spatially local receptive fields have proved to be highly usefabhinde
variety of computational vision tasks, such as estimating the local orientataon of
detected line or differentiating between textured regions of an image.

Psychophysical experiments suggest that the early stages of mammalian
vision processes are based on similar orientation and frequency speaific
dimensional, approximately linear filters. Deeper structures of the visuigxco
are less well known, and provide little information on how recognition of cotaple
objects, for example, is performed in the brain. Despite the successampliter
vision, computers are sorely outperformed by humans in most vision-redesties]
and itis not likely that the situation would change in the near future. Indesidn
has turned out to be a very difficult and computationally demanding problem.



2 Introduction

1.2 Overview

In this work, local image features are described using responses lodr Ga
filters, which have been proposed as idealized mathematical models fatredrien
filter structures in the mammalian visual cortex. In computer vision, the
responses of Gabor filters are commonly used as feature descripters their
theoretically optimal feature detection properties and good practical mémog
results. Because Gabor filters are orientation-sensitive, their respchange
as the object rotates. Detection and recognition performance of a visstensy
based on oriented filters suffers if these effects are not taken inta@iccdhe
framework of steerable filters (Knutsson et al., 1983),(Freeman aradséa,
1991) provides the required rotation-invariant representation of tedefilter
responses while preserving the orientation information about the gral-lev
structure of the feature.

Human face recognition is a widely researched problem, with many appli-
cations in access control and other security-related fields as well asdarple
automatic indexing of images. Prominent object matching systems applicable
to human faces include Active Appearance Models (AAM) (Cootes e2@0])
and Elastic Bunch Graph Matching (EBGM) (Wiskott et al., 1999). Both ar
based on representing the objects as a combination of a shape modektatdta f
texture model. AAM represents the whole object texture using a low-dimeadsion
model of its main variations. In the EBGM model the object representation
is based on a spatially sparse set of local features obtained from @kéor
responses. Tamminen (2005) formulated the object matching problem in the
Bayesian framework, using a local feature based object model similar to the
EBGM model, but emplying random sampling from probability distributions
derived from the similarity function of the oriented filter responses.

The visual tasks considered in this work include generic visual feature
detection, human facial feature matching, face recognition and pose estimatio
The approach of the work is based on parts-based object modelincg wijects
are represented as constellations of local features. The featunéptisccan
be for example local image patches, histograms or image derivatives. tObjec
detection and recognition are sometimes considered two different sudmsb
especially in the case of human faces, where face detection is typically she fir
step in automated face recognition. In the approach employed in this work,
detection and recognition are combined in the same framework. The difteren
between the two is the complexity of the object models. Also pose estimation can
be performed in the same framework. This approach can be considdyelbim
in the category of learning-based methods, in which the changes in lataide
due to pose changes are learned from a number of example poses.
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1.3 Aims of the thesis and author’s contributions

The primary aims of this thesis are to extend the probabilistic local feature
based object matching model so that the effects of significant in-plandegpiti
rotations can be taken into account, and to develop the required methquisséor
modeling of features and pose-invariant matching. The research prelaed
author’s contributions are summarized briefly in the following.

Gabor-type filters are considered in the framework of steerable filteddt &
shown how Gabor filters can be used as approximately steerable filtgukana
rotations of the EBGM object model can be then handled using the frame#ork
steerable filters.

Rotation invariance of features has been typically achieved either by using
features which are themselves rotation invariant, or by discrete approxireatio
Using steerability, it is shown how to construct a continuous rotation-invaria
similarity measure for oriented filter responses. This formulation allows more
accurate measurement of feature similarity compared to the discrete approxima
tions.

In addition to rotation invariance of the feature representation, the design
parameters of the filter bank affects the recognition performance of tieetob
matching system. These effects are studied using two image databasespdnd g
design parameters for the filter bank are systematically sought.

A major difficulty in constructing a pose invariant feature based recognition
system is how to measure the similarity of features under out-of-plane ratation
A regression modeling approach for modeling the responses of orietttrg fi
under depth rotations is presented. A novel contribution in the work is thefus
synthetic data in learning the feature models.

The pose estimation problem is approached using random sampling methods.
The focus of the work is in presenting the differences of the random Igagnp
methods.

This thesis is organized as follows. Chapter 2 is introductory in nature and
reviews quadrature based signal analysis and different quadfétiers Various
two-dimensional extensions of the Hilbert transform are discussedharnuost
common families of quadrature filters in the literature are reviewed.

Chapter 3 concerns the steerability of quadrature filters. TraditionallpiGab
filters have not been considered to be steerable, but with the paramieriza
presented here and using standard methods of analysis and linearaaigébr
shown that their approximate steering performance can be quite goodndihe
contribution of the chapter is the novel analytic derivation of steeringtiome
for Gabor, DC free near-Gabor and angular Gaussian filters anchtigse of
steering error with respect to filter parameters. The idea of exploring simidaritie
between steerable and Gabor filters arose in discussions between theanth
Veit Schenk.
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Chapter 4 presents the probabilistic approach to image analysis applied in
the work, starting from the similarity function between filter jets and ending in
the joint probability model of a complete object. Additionally, the sampling
algorithms applied in the thesis are briefly presented. The main novel cditnibu
of Chapter 4 by the author is the application of steerability in the formulation
of rotation invariant similarity functions. The probabilistic formulation of the
similarity function leading to the object probability model is due to Prof. Jouko
Lampinen.

Chapter 5 deals with the effect of the filter shape parameters to recognition
performance in an object matching system. The chapter begins with examples
showing the effects of steerable approximations and undersampled fiitks ba
to the filter responses and similarity function values and then continues to find
good parameters for the filter bank for simultaneous localization and riticogn
The main contribution of Chapter 5 is the numerical analysis of filter shape
parameters on recognition performance. The results presented in phiercaply
the object matching system developed by Prof. Jouko Lampinen, Toni Tanmin
Timo Kostiainen, and the author, with most of the program code written by Toni
Tamminen. The experiments and their analysis have been performed by the
author.

Chapter/ 6 presents a novel regression modeling approach for the pose
variation in the filter responses. In the literature the problem has beenltypica
addressed as a manifold learning problem, but by using synthetic datassiblgo
to apply simpler regression modeling methods. Two models, a piecewise linear
and a mixture of Gaussian model are considered. The main contribution of
Chapter 6 is the use of a synthetic model in generating a direct regressitah ofio
the features. The idea of using synthetic models and applying regressitatingo
was suggested by Professor Lampinen, while the implementation is the author’s
own.

Chapter 7 collects the presented methods into complete human face matching
systems which are able to locate faces in all orientations, serving as a diasis f
person identification. Metropolis, Gibbs and Population Monte Carlo sangiers
compared in a setting with one rotation angle, and the PMC sampler is extended
to handle three rotation angles in addition to scale and displacement parameters
The main contribution of the chapter is the construction of the rotation invariant
recognition system and the application of random sampling algorithms, elfpecia
the Population Monte Carlo algorithm, to the pose estimation problem.

The program codes for the face matching systems are derived fronmoitke w
of Toni Tamminen, and the ideas for various samplers originate from digriss
between Professor Lampinen, Aki Vehtari and the author.

Chapter 8 concludes the work.



Chapter 2

Signal analysis with quadrature
filters

2.1 Introduction

We will begin building our object recognition system from the ground up and
first consider the image processing operations which transform the impge
into a representation which is easier to analyze. This can be considezatiieef
extraction stage. Instead of traditional and well-established optimized edge a
corner feature detectors (Harris and Stephens, 1988) (Canng), i@8ponses

of linear filter banks will be used as feature descriptors. This apprbastihe
advantage that the features we can use are not limited to edges or coimtsr p
but can be any local gray-level structures in the image.

In the first three sections we will review the mathematical background of
quadrature filters which were proposed already by Granlund (1$ABeageneric
image processing operation for low-level vision tasks. We will relate the filter
bank approach to the theory of wavelets in section 2.5, and conclude$gring
in section| 2.6 some of the oriented quadrature filter families which will be
employed later on in the work.

2.2 Magnitude, phase and the analytic signal

The Hilbert transform (Oppenheim et al., 1999) of a real-valuedtfons(t) is

an integral transform
> s(7)

H [s(H)] = %f de, (2.1)

o t—

where the improper integral is considered as a Cauchy principal vahieh\is
necessary due the singularitytat . The Hilbert transform is thus a convolution
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Spectrum of s(t) Spectrum of H[s(t)] Spectrum of iH[s(t)] Spectrum of s(t)+iH[s(t)]

Re( S(w))
b o
Re(.)
Ao
Re(.)
s o
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0 1 0
w 1 m(s@) @ 1 m(.) w 1 m(.) w 1 m(.)

Figure 2.1: From left to right: The spectra of a cosine sigsél), its Hilbert transform,
the Hilbert transform multiplied by the imaginary unit, atie analytic signal resulting
from the sum of the first and third signals.

integral { [s(t)] = (n * S)(t) with the convolution kernej(t) = % The Fourier
transform ofy(t) is

H@) = FInO] @) = =] - = =] - 5. (2.2)
We can interpret this to mean that in the frequency domain the Hilbert transform
rotates the positive frequency components of a signal in the complex pjane b
—m /2 and negative frequency componentsii2.
Theanalytic signal(Smith, 2003) of a real-valued time-domain sigad)) is
a complex-valued extension of the original signal defined by

w(t) = s(t) +iH [st)]. (2.3)

As a result, we obtain a signal(t) with the same unrotated positive frequency
components as the original sigr&t) (multiplied by two), and whose negative
(mirror) frequencies have been eliminated completely. Figure 2.1 illustrates the
generation of the analytic signal of a single cosine signal.

The name analytic signal stems from the fact that since its Fourier transform
Flw()] = W(w) is one-sided, the corresponding Z-transfotiz) does not
have poles inside the unit circle and is thus analytic there, in the terminology of
mathematical complex analysis.

In the Hilbert transform the real signai(t) is divided into two parts,
instantaneous magnitugke (t)| and instantaneous phase@vgt)). These signals
are formally given by

lw(t)] = v/s(t)2 + (H [s()])? (2.4)

and
arg(w(t)) = arctan(H [s(t)] /s(t)) . (2.5)



2.3 Quadrature filters 7

Qualitatively speaking, in some loose sense the magnitudente#sesomething
interesting is happening, and the phase descilies is happening there. From

an engineering point of view, the usefulness of the Hilbert transforththa
analytic signal lies in the fact that they can be used to compute useful estimates
of the signal. The magnitude of the analytic signal in particular is a very good
envelope estimator for narrow-band signals regardless of their ceatgreincy.

Figure 2.2 shows a test signal which consists of a Gaussian wave peéttket
non-stationary frequency, a triangle wave and a single pulse. The magmifu
the analytic signal tracks the wave packet very well. The small ripple is in fac
caused by the other signals, and becomes evident because the Hillbsfdriran
is a global operation. The peaks of the magnitude locate the edges in the signa
At these points, the instantaneous phase tells the type of the edge. Tr&e peak
of the triangle wave have even symmetric phase (&9), whereas the edges
of the pulse have odd symmetric phaser(/2 or 7/2). The derivative of the
instantaneous phase is related to the local frequency of the signal.

Oppenheim and Lim (1981) show that much of the perceptual information
in a signal is carried in its phase. They also demonstrate how the amplitude
can be estimated solely from the phase in global Fourier synthesis. The latter
result is less surprising than it perhaps first seems, because in globaki-
analysis the basis functions (complex exponentials) are spatially unlocadizéd
thus the magnitudes, which should contain information about where things are
in the signal, are also unlocalized. Nevertheless, the examples show #s& ph
information is both information-theoretically and perceptually very important.

2.3 Quadrature filters

The process of computing the analytic signal can be applied to any signdls, a
thus also to filters. The output of a filter pair with the impulse respohggsand

H [h(t)] is equivalent to filtering the complex-valued analytic signal with a single
filter. We can identify outputs of the two filters with the real and imaginary parts
of the analytic signal, and construct a complex-valued filter

N (t) = h(t) + i3 [h(t)] . (2.6)

Such a filter (or a pair of real-valued filters) is said toibejuadrature(Gabor,
1946). The underlying idea is to restrict analysis into some interesting darts o
the original signal instead of computing the analytic signal which is nedlysaar
global process and includes all information present in the original signal.

Quadrature filters should not to be confused with the quadrature mirros filte
(QMFs), which are real-valued filter pairs with a specific alias cancellation
property so that the original signal can be reconstructed perfectim fie
decimated and aliased subband signals (Fliege, 1993).
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magnitude H[s(t)] s(t)

phase angle

test signal

imaginary part of the analytic signal

test signal (dotted line) instantaneous magnitude of the analytic signal (solid line)

instantaneous phase of the analytic signal

1 I 1 1 1
500 1000 1500 2000 2500 3000 3500 4000
t

Figure 2.2: Atest signal, its Hilbert transform, the instantaneouslgoge of the analytic
signal and the instantaneous phase of the analytic sigi.amplitude of the analytic
signal tracks the envelope of the original signal, plottétthdotted line.
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Quadrature filter in frequency domain Quadrature filter in time domain
1 . .
— real
real 07 | imag
— imag
0.8
0.6
0.4
0.2
0
-1 -0.5 0 0.5 1 -0.5 0 0.5

frequency w time t

Figure 2.3: A simple quadrature filter in frequency and spatial domaMste how the
real and imaginary parts oscillate in the spatial domaitwiphase difference af/2.

A straightforward way to design a quadrature pair of filters is to choose
a desired frequency response, ensure that it has no negativeridgs and
compute its inverse Fourier transform. The resulting complex signal has the
impulse responses of the filtetgt) and A [h(t)] in its real and imaginary
parts. Figuré 2.3 shows an example bandpass design with a Gaussiznfreq
response. For reasons of convention and convenience, one dawitita purely
real frequency response, which gives a time domain impulse respomnse wdal
and imaginary parts are even and odd symmetric, respectively, aboutigive o
The resulting filter is thus non-causal. For real-time systems this deficiency ca
be remedied by simply adding a suitable amount of delay. Because the dorwar
and inverse Fourier transforms differ from each other by a single sighdn
exponent, it follows that a causal filter has a frequency response ichwihe
real and imaginary parts are also a Hilbert pair. A causal Hilbert pair of time
domain filters is consequently a Hilbert pair also in the frequency domain.

2.4 Two-dimensional versions of the Hilbert transform

The Hilbert transform is defined only for one-dimensional signals. tfeoto
construct two-dimensional quadrature filters, a 2D version of the Hiltzrsform
is needed. To accomplish this, we need to define an analogy for negative
frequencies in two dimensions.

One possibility is to choose a preference direcfian the frequency domain
U = (uy, ux)T, and deem the frequencies with, i) > O positive, giving the
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transfer function
Hp(0) = j - sgn((d, n)). (2.7)

This is called thgartial Hilbert transform(Bulow, 1999). The main problem with
this definition is that the choice of preference directibis arbitrary and since
the transform is not isotropic with respect to rotations, we get differesults
with different choices ofi. It is however useful for signals which vary only in
a particular direction. Bulow (1999) also discussesttital Hilbert transform
(which has the transfer functiahT = —j - sgn(u;)sgn(u,)) and combinations of
partial and total transforms, but these cannot be considered validadjeatons
of the one-dimensional transform, since they do not perform a ph#tefsh /2
in any meaningful one-dimensional domain (Felsberg and Sommer, 2001).
Another approach is to consider the frequency domain in polar coordinate

since we would like the transform to be equivariant with respect to rotafibe.
two frequency coordinates are then the angular frequépey [ -, 7] which is
cyclic and related to orientation, and the radial frequeficy [0, co] which is
related to scale. The radial Hilbert transform (Davis et al., 2000) reagansfer
function

Hr (r, 6) = exp(jo) (2.8)

in polar coordinatesr, 6). It has the property that all lines passing through the
origin are equivalents of one-dimensional Hilbert transforms in the dbas¢he
two halves of the line on opposing sides of the origin have a phase diffe@n

7. The problem with this approach is that each line uses a different tramsfo
and they cannot be readily combined with the original signal in order taeans

a two-dimensional analytic signal.

In computer vision literature the problem has been traditionally addressed in a
manner which has common ground with both partial and radial Hilbert tremsfo
In the polar parameterization there are no negative radial frequernyilesibition,
so intuition suggests that the Hilbert transform must be done with respedct to th
angular frequency. Knutsson and Granlund (1983) already dekldittgert pairs
of bandpass filters using this approach. As long as the angular contpainen
the bandpass filter is symmetric with respect to certain angular frequigranyd
zero atfy + /2, a one-dimensional Hilbert transform in the angular direction
is equivalent to a two-dimensional partial Hilbert transform with the pezfee
direction fy, and the lines passing through the origin are also one-dimensional
Hilbert transforms in the same sense as in the radial Hilbert transform.

The existence of the differently defined two-dimensional Hilbert transforms
suggests that there is something unsatisfactory in all of the previous appeoa
Indeed, while they are useful generalizations of the one-dimensiosal fca
certain narrow-band signals, they cannot be used to compute a two-dhmans
version of the analytic signal of arbitrary two-dimensional signals. A mathe-
matically more elegant extension of the analytic signal into two dimensions has
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been proposed by Felsberg and Sommer (2001), namedhdn@genic signal

It consists of a single magnitude and two phase components, one of which is
related to local geometric (orientation) information and the other to local staictu
(phase) information. A side effect of this additional information is that thelaig

of complex numbers is not sufficient to embed three quantities of information into
a single point in the two-dimensional signal and we need a quaternionid.signha
Let us denote the base elements of the quaternion{djth j, k}. By embedding

of the three-dimensional signal into the three first elements of the quat&rnion
algebra, the monogenic signal has the transfer function

o i+ @,k
Hy (@ = DL 08 (2.9
|u]
whereii = (U1, Up)" is a frequency vector with two components. This is in spatial

domain equivalent to
fmX) = f(X) — @, |) fr(X), (2.10)

where fr(X) is the Riesz transform of (X), i.e. in frequency domain the two
are related byFg(l) = i%F(U). The monogenic signal shares many of the
properties of the analytic signal, but it is not one-sided. Felsberg amireo
(2001) note that this property is irrelevant for image recognition, becaages
are real-valued and their spectra are therefore symmetric.

Despite the theoretical superiority of the monogenic signal compared to two-
dimensional extensions of the analytic signal, it has not yet been applietiyiid
computer vision applications. Due to this, only the analytic signal and quadratu
filter bank based approach is considered in the rest of the work. Whaldrgture
filters cannot be exactly isotropic, the error in amplitude and phase respm
often small enough to be negligible in practice, compared to other erraresour

2.5 Wavelets and filter banks

Wavelet analysis (Daubechies, 1990) is in some sense a generalizafioaradr
analysis, and a formal refinement of short-time Fourier analysis, in which
the aim is to describe simultaneously both time and frequency behavior of a
signal. Mathematically, the continuous wavelet transform is a convolutiorraiteg
between the signaf (x) and the wavelet kerng,,(x),

o0

f(x, w) = F(X) % Gu(X) = f f(£)g,(X — &)dE. (2.11)

Since the wavelet transform of a one-dimensional signal is essentiallgrayeh
from one-dimensional representation into two dimensions, there is rexdcyia
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the representation which can be reduced or eliminated completely by sampling (o
subsampling) the continuous translation-scale space), leading to thaliscrete
wavelet transformwhere we have only a discrete set of wavelg}s (x), and a
discrete set of lattice points’.

In dyadic samplinghe time-frequency space is covered so that each discrete
wavelet has equal area and successive scales are related by raofatim.
This results in having a higher spatial sampling density at higher frequencie
The sampling is said to beritical if a minimum number of samples is used
to represent the original data perfectly. Oversampling refers to thevdase
some redundancy is retained in the sampled representation, and undergamp
the case when the original signal is not represented completely by the sample
In the two-dimensional case we have even more freedom in the tessellation of
the four-dimensional phase space, as the continuous wavelet traasifan of a
two-dimensional functiorf (x, y) with the waveletg,, ..(X, y) is a convolution
integral

for oG Y) = FOGY) % Gy (X, Y)
= f / f(&, V)0u.0s(X — &,y —v)dédu.  (2.12)

Granlund|(1978) was among the first to suggest that low-level compistenv
should be based on a generic, parallel, and hierarchical convolutiatop Such
banks of filters can be viewed as implementations of discrete wavelet trarssfo
In wavelet analysis the idea of a single universal operator is encagdutathe
concept of amother waveletvhich is translated and scaled in order to produce
individual wavelets. In order to compute a wavelet transform, we chemse set
of points (x®, y, », w{’) which gives us a finite number of wavelet kernels
(or filters) whose responses are evaluated at a finite number of spatitiblus.

For the spatial coordinates, a natural choice is to sample the spatial citesdin
evenly in Cartesian coordinates. The sampling of spatial-frequencyiéotation
and scale) coordinates is less self-evident. Regardless of the chihesfitters, a
log-polar-type division of the frequency plane is a popular choice {§8an and
Granlund, 1983), (Daugman, 1988), leading to a "daisy petal" arnaegeof the
filters (Bovik et al., 1990), where the filters in a single scale are rotatpteso
of each other, and successive scales are spaced logarithmicallyfreqwbncy
scale possessing an equal number of filters. In other words, we uslydde
sampling idea for the radial frequency coordinate, but uniform samptinghe
orientation frequency coordinate. Another possibility would be to use Siarte
coordinates also for sampling the frequency plane. The log-polar samgéag
lends itself better to handling rotations, a phenomenon which does not exist in
one dimension, since rotations correspond to single-parameter cyclicishfits
log-polar coordinate system.
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In image coding and compression applications the subbands are typically
decimated because their representation is superfluous in the sense titgrthe
responses contain information only in a narrow part of the full bandwiditie
decimation causes aliasing, but suitably narrow bandpass filters willrpeese
information so that perfect reconstruction from the subsampled, aliaged s
is possible under certain conditions. Without decimation, the division of the
signal into subbands produces an expansion of data, a situation harafidial
in general for compression.

In analysis applications, apart from practical computational and memory
storage requirements, there is no need to decimate the subband signalsebec
the filter response values need to be known at every pixel location. cin fa
decimation should be avoided when possible. Only ideal "brick-wall" filters
eliminate aliasing altogether, and such filters necessarily produce prominent
ringing (Gibbs phenomenon) in the spatial domain (Simoncelli and Adelson,
1990).

However, the dangers of aliasing are still present in the spatial domamn eve
when we do not subsample the subbands. Care should be taken wiggmirgdes
discrete filter banks in order to make sure that the spatial extent of the fdters
not too large. It is possible to compute bounds for the largest possible fiiiehw
can be contained in a given discrete lattice, but in practice spurious aound
effects become a problem much earlier. It is not possible to compute the filter
responses correctly near the boundaries of the image simply becaugatiad s
extent of the filters overlaps the image boundary and the values of thd aigna
not known outside the image boundary. Filters at low frequencies halartjest
spatial extent, and thus their responses become unreliable even wheghee h
frequencies could be still computed accurately.

2.6 Oriented filter families

Let us review briefly some of the main types of oriented quadrature filters
proposed in the literature. A good review of the properties of differemd- o
dimensio-nal band-pass quadrature filters can be found in Bouketrali{(2004).

Strongly influenced by the mathematical formalism of quantum mechanics,
Gabor (1946) derived the one-dimensional bandpass filter minimizing thie join
uncertainty in time and frequency domains. As a measure of the uncertainty
of a complex-valued functiony, Gabor used the normalized root-mean-square
bandwidth

o0 _ 2 *
Awp — [ (@ = @0)?Y (@)Y (w)dw (2.13)

2 Y (@)Y * (w)do
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where -
[ 0¥ @)yt (@)de

SV (@ (@)do
is the center frequency of the function (the mean of the Gaussian distripution
Similarly one can defineAx as the effective width in the time domain. The

Heisenberg uncertainty principle then states that sincend x are conjugate
variables, the product of the effective widths obeys the inequality

o (2.14)

AwAX > i (2.15)
4
The term "uncertainty” refers to the fact that in quantum mechanics, turipr
vyt = |y|? is interpreted as the probability density of the quantity associated
with the wave functiony, and only the probabilitieg)|?> can be observed. In
signal processing applications we deal directly with the complex-valuedlsign
and the uncertainty principle can be considered merely a mathematical tgroper
shared by the signal and its Fourier transform.

The function family which meets the lower bound of the uncertainty product
is the complex exponential

x2 .
a(X; 0, wp) = exp(——2> exp(i woX) (2.16)
20
wherewy ando free parameters. Daugman (1985) generalized the argument into
two dimensions and derived 2D Gabor filters which achieve the lower limit of
joint uncertainty in spatial and frequency domains, given by

2 2
g(X, Y; ox, Oy, wx, Wy) = €Xp (— (% + y_2)> exp(i (oxx + wyy)) (2.17)

og 20y
in the spatial domain. These functions are equivalent to the canonical co-
herent states generated by the Weyl-Heisenberg group in quantum nizacha
(Daubechies, 1990) (Lee, 1996). In the sense of the uncertaintgiglarthe
2D Gabor filter then has some optimality properties for pattern recognition.
There is also a strong body of psychophysical evidence supportirty ffuehesis
that mechanisms employing oriented linear filters are involved in mammalian
vision, and they are well approximated with 2D Gabor filters (Daugman,)1988
While 2D Gabor filters are nonorthogonal, they can form a relatively good
approximation of a tight wavelet frame and approximate reconstructiong usin
direct summation as well as iterative methods are possible (Lee, 1996pr Gab
filters have been used a wide variety in tasks requiring oriented filtersy The
have been especially popular in texture analysis and segmentation (e.gn (Du
and Higgins, 1995),(S.E. Grigorescu and Kruizinga, 2002)) andrisxagnition
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applications (e.g., (Wiskott et al., 1999), (Krlger, 2001). See SheiBai (2006)
for a review). In practical applications, a modified form of the 2D Galterfi
(Ronse, 1993; Lades et al., 1993) is often used, with the transfetidan

g(xa ya GXa ny, a)Xv a)y) =

X2 y2 ' sz
exp\ — 27 + gg (exp(l (0xX + @yy)) — exp<—7)> - (218)

The additional term subtracts the DC component in the real (symmetric) fpart o
the filter. It should be noted that this modified filter does not strictly minimize
the uncertainty product, and only approximates a 2D Gabor filter. 2D Ggper
filters will be discussed more thoroughly in Section 3.4.1.

Nonetheless, 2D Gabor filters are only optimal in terms of uncertainty in the
Cartesian coordinates. Polar coordinate representations may be ceddmée
perceptually more meaningful and have been proposed as more efficienting
of natural images (Field, 1987). Defined in the frequency domain, polhoiGa
filters (Haley and Manjunath, 1995), (Ro et al., 2001) with the transi@ctfon

_ 2 2
G(wrs (1)9; a)Os Ura 09) = eXp _M eXp _& (219)
20, 209

and log-Gabor filters (Field, 1987), (Kovesi, 1999), with the transfacfion

2
G(wr, wy; wo, 0r, 0p) = exp(—%) exp(—%‘e) (2.20)
r

arise as natural modifications of the Gabor filter for polar and log-patguncy
coordinates, respectively, but do not achieve minimum uncertainty in titeakp
domain. A theoretical drawback of polar and log-Gabor filters is the a@ieseia
closed-form expression for the filter in spatial domain. Also analytic déadwa of
minimum uncertainty filters for polar and log-polar frequency coordinaseesys
appears difficult.

There are also several filter types which have qualitatively similar shape
as Gabor filters, although they have been derived from premises otaer th
minimizing the uncertainty product. One such filter is the Gaussian derivative
filter, which belongs to the larger group sfeerable filters Steerability, which
will be discussed more thoroughly in Section 3, poses a constraint for the
orientation bandwidth of the filter so that a rotated copy of the filter can be
computed as a linear combination of the original filter bank (Freeman and
Adelson, 1991). Steerable filters have found applications in many difféasks
in computer vision, including adaptive filtering (Knutsson et al., 1983gdman
and Adelson, 1991), (Simoncelli et al., 1992), (Perona, 1995), (Sielb and
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Farid, 1995), motion estimation (Fleet and Jepson, 1990), stereo visieet (F
et al., 1991), shape from shading (Freeman and Adelson, 1991 daexdalysis
(Knutsson and Granlund, 1983), (Greenspan et al.,|1994) aturdedetection
(Jacob and Unser, 2004), (Yokono and Poggio, 2004a).

Exactly steerable filters of the for®(x)G(y/x? 4+ y?), where P(x) is a
polynomial, such as the examples considered in (Freeman and Adelsdr), 199
are quite inflexible, because orientation and radial frequency selecivitiguch
filters cannot be easily chosen independently. Polar-separable driftliees
were already proposed in (Knutsson and Granlund, 1983), who a@isd a
special case of steerability for computing the principal local orientatione Th
feature localization performance, relating to the uncertainty principle, adtisx
steerable filters is not ideal because steerability, like orthogonality, iser tict
constraint on the filters. In practical applications, approximately steefitbles
can often be used instead, if the required accuracy of orientation estimaiets
very high, or the orientation estimation is only descriptive by nature. In adiclitio
noise levels in natural images are often large enough to make the systematic
steering approximation error relatively insignificant in comparison.

Steerable filters with wedge-shaped responses in the spatial domain have
been developed for edge classification (Simoncelli and Farid, 1996)ef(dl.,
2001). Although influenced by the quadrature filter methodology, Yu €2@01)
propose an approach which is a departure from quadrature based @malysis,
as it is based on the amplitude response and its derivative. The main &ppeal
that there is no forced symmetry in the responses of the filters and the amplitude
response of the filter bank can be directly interpreted as an orientaticatisign
This is possible because the filters are tessellated around the origin bo#tial sp
and frequency domains. However, this arrangement does not dppead to any
obvious advantages in applications which use both amplitude and phasegsesp
of the filters. The ambiguity caused by the symmetry of the amplitude response is
resolved by the phase response in regular quadrature based anaAbdge filters
cannot use phase information in the same sense as other oriented queddtets
presented above, because the wedge filters at different orientatiamst ghare
the same spatial support, and there is thus no clear definition of "loca'phas



Chapter 3

Steerability properties of
Gabor-type filters

3.1 Introduction

In this chapter the steerability framework is extended to include Gabor filters,
the related DC free Gabor filters and angular Gaussian filters. Novbitiaah
derivations of the required inner product functions are given fasdlibree filter

types.

Gabor filters have been considered by some to be "not steerable” (&ig. (S
1999), (Greenberg et al., 2002)), but in this chapter it is shown te@tsteering
error performance can be quite good with suitable filter shape paranatdrie
error performance in the same order of magnitude with approximately skeerab
filters presented in the literature.

Section 3.2 reviews the theory of steerability. Section 3.3 presents the error
metric which is used to evaluate steering performance. The required iroukrgb
functions for the different filter types are derived, and the steerinfppeance is
analyzed in Sectian 3.4. Section 3.5 discusses the accuracy of the iapgtiors
in computing the analytical inner product functions and the compares thengtee
properties of Gabor and angular Gaussian filters. Finally in Section 3.6 the
presented direct steering method is compared to an alternative appropols¢d
by ' Teo and Hel-Or (1999), where Gabor filters are approximated byt afse
exactly steerable basis functions.

Parts of the work in this chapter have been published in (Kalliomaki and
Lampinen, 2005) and (Kalliomé&ki and Lampinen, 2007).
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3.2 Steerability and shiftability

An oriented filter bank computes the response of the filters in some discrete
orientations, and it would often be useful to be able to know what the negpo
would be somewhere between the orientations. Subject to certain conditisns,
possible to adaptively "steer” the filters into arbitrary orientations by comgputin
the linear sum

N
00 =Y ki) % (x), (3.1)
i=1

where f% (x) are the original filters of the filter bank, also calledsis filters and
f9(x) is the interpolated filter in a new orientatién The steering coefficients
depend only o and notx, thus also allowing computations performed with the
linear filters to be interpolated using the same linear weights.

A simple example of a shiftable function is €6%. It is exactly shiftable with
two shifted copies of itself, namely

cos6 — ) = cogH) cos6) + cosh — /2) cosh — /2), (3.2)

whend is the amount of (phase) shift. The previous equation is equivalent to the
well-known result that a cosine wave in arbitrary phase can be rapiegsas a
weighted sum of a cosine and a sine wave,

cos6 —6) = ky(@) cog0) + ka(§) cos6 — 7/2)
= k(@) cog8) + ky(8) sin(®), (3.3)

where the weightk; again depend only on the amount of phase shiftot on the
function parametef.

Steerability was proposed by Freeman and Adelson (1991) for the bpecia
case of rotation.| Simoncelli et al. (1992) extended the same framework to
include translation and scaling, and coined the term "shiftability". Perdd2b{1
proposed the term "deformable" to include interpolation capability of arkitrar
transformations. Teo and Hel-Or (1999) use the term "shiftable" to incngte
Lie transformation groups. The functidnis shiftable if any transformatioh (9)
acting onf can be expressed as a linear combination of a fixed, finite set of basis
functions f;,

N
TO)f(x) = Z ki () £ (%). (3.4)
i=1
In feature detection applications our main interest is in orientation steerability.
The features one wishes to detect are typically lines, edges and junetioics,
are locally almost independent of scale, that is, their orientation freguenc
response is very similar at all scales. This does not mean that the feataeres
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intrinsically one-dimensional (simple lines or edges). For example the intensec
of two lines has a two-dimensional grey-level structure, but its orientation
response is highly similar at all scale levels. Thus orientation is usually more
descriptive than scale, and the ability to interpolate orientation responsesds mo
important than the ability to interpolate responses from one scale to another.

When designing the filter bank we must choose how many orientations we
are going to have in the bank. Steerability approaches the same questioa fro
different direction: how many basis filters do we need in general fortteriag
of a given angular component? Freeman and Adelson (1991) proveththa
minimum number of shifted copies needed for fulfilling the steerability condition
exactly is equal to the number of non-zero coefficients (positive andtiveg
frequencies) in the Fourier expansion of the signal. Note that theset th@v®to
be theM first coefficients of the Fourier expansion. Thus, for example, theeos
function requires two basis functions (a cosine and a sine at the sanerficq
as the original cosine function). The cosine function is however ngt weeful
as an angular component of a steerable filter since it has a very wid¢abioan
bandwidth. Filters with narrow orientation bandwidth are preferable in featu
detection, since their feature representation capability is better, but tlreyedd
more basis filters in order to be steerable.

Perona| (1995) proposed a Singular Value Decomposition based method fo
finding the optimal basis filters for a given transformation. Computing the SVD
of a matrix of transformed versions of the filter, the optimal basis functioas ar
the first N left singular vectors corresponding to the largest singular values.
Alternatively, using the theory of Lie groups, a steerable basis can dnedfo
for arbitrary parameter groups by representing or approximating thesfilter
an equivariant function space (Michaelis and Sommer, 1995), (Heh@Tao,
1998). For single-parameter 2D rotation expressed in polar coordimatgsthis
function space i$f (r) exp(ind)}, n € Z, i.e. complex harmonics together with
an arbitrary (real-valued) radial compondnt) (Teo, 1998). A viable approach
for filter design is to start with an ideal filter prototype (for example, a Gabor
filter) and approximate it in the appropriate equivariant function spaee éhd
Hel-Or, 1999), which is guaranteed to be closed under the same traasional

group.

In the one-dimensional case symmetry considerations can be used to justify
the choice of basis functions which are evenly spaced shifted copiesinfjie
function. In multidimensional parameter spaces the basis functions are not
necessarily evenly spaced nor transformed copies of each othefindimy a
parsimonious basis function set can be a demanding task. Teo and HE39O) (
propose a method for finding basis function sets with optimal approximation
properties for arbitrary multi-parameter transformations.
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3.2.1 Least-squares steerability of filters

Freeman and Adelson (1991) originally derived the conditions for estaetabil-

ity by considering the Fourier series of the angular component of the filpelar
coordinates. An alternative approach is to use linear algebra to find the bptima
linear steering functions for an arbitrary set of filters (Greenspar.,e1394),
which is briefly reviewed here.

Orientation steerability of a (real-valued) linear filggmeans that arbitrary
filter orientations can be computed (or at least approximated) by computing the
sum of a set of basis filtegs= {ggl, Oops - - - » ggN} weighted with steering coeffi-
cientsk = {ky(0), kxo(9), ..., kn(0)},

N
g0) ~ > ki(0)gy =k'g. (3.5)

j=1

In the case of complex-valued filters, we need separate real-valuethgteeef-
ficientsk; (9) for the real and imaginary parts of the Gabor filter and assume that
its basis filtergy, share the same shape parame8&asd frequency..

Let us define the inner product between normalized real-valued fusation
andv as(u,v) = | g U(w)v(w)dw. The functionsu andv are normalized
without loss of generality so thgu,u) = (v,v) = 1. The optimal steering
coefficientsk can be solved analytically by minimizing the L2 norm of the error
e=g(@®) —k'g,

argminje||* = arg min{g(¢) — kg, g(®) — k' g)
= argmin(g(6). 9(0)) — 2(9(0). k'g) + (k"g.k'g)  (3.6)

The minimum of this expression is obtained by differentiating it with respect
to k and setting the result to zero, leading to the matrix equation

Gk =y (3.7)

where the matrbG and vectory have the element§; ; = (g5, 9 ) andy; =
(g(@), ggi), respectively. In component form, Eq. (3.7) is written out as

(9(6). 9o, (9o Gr) (G612 Gor) -~ (Dor. Gy
(9(6), gs,) (96, 901) (992 Gso) -~ (G,: Gon)

- k(9) (3.8)

(99, gsy) (9. 9o) (Gon. o) -+ (Qon» Goy)

which holds for allp and can be used to solve the optimal vedt@r) via matrix
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inversion,
(991- 901) (901-G00) --- (Gor- Gou) - (99), 9a,)
~ 25 J01 2> JO2f - 25 JON ), %,
(6) — (9 ‘ge> (96, 9o, (9 .ge ) {g( ) %) 39)
(Gon-90) (Gon-G) -~ (Don Gon) (99, gay)

Unlike previous approaches ((Greenspan et al., 1994), (Sommerke8)),
we will proceed by computing the inner product®) = u(e — 8) = <ga, gﬂ)
analytically. The derived results are most similar to the ones given by Maure
and von der Malsburg (1995), who computed the inner product of twdrBE€
near-Gabor kernels with different wave vectiirand a common uniform shape
parameters, but without considering steerability directly. The form wf0)
depends on the type of the oriented filter family. We will derive results fdydga
DC-free near-Gabor and angular Gaussian filters in Section 3.4.

3.3 Steering error

The steering property of Gabor-type filters is not exact, but only aqimiete. The
error in the steering approximation depends heavily on the number of Besis fi
and shape paramete®sLet us define the measure for steering error by

, (3.10)

(9(6) —k(©)Tg,96) —k©®)Tg)
Es = max
> (9(9), 9(0))

that is, the L2-norm distance of the maximum relative impulse response Ehmr
same error measure was used in (Greenspan et al!, 1994). In &nspaced filter
bank the maximum error occurs always exactly between known filter otiemsa
that is, if filters are in orientation§ = = ,i € {0,1,..., N — 1}, maximum
error is reached &t = %. Itis, then, straightforward to evaluate numerically the
maximum steering error with different filter shape parameg&rSince we have
separate steering functiok$?) for even and odd filters of the quadrature pair, we
define the total steering error as the average of the even and odd fittes, er

Eseven 4 Egdd
—2 .

The level of acceptable approximation error depends on the application. F
example, the quadrature pair formed by Gabor filters is not exact eadus
the infinite support of the Gaussian function. As a guideline, we might allow
a roughly equal maximum error caused by the approximative steering.ti#dso
noise level affects the choice of admissible error. In this context, the tasive’

S (3.11)
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means the error residual between the object model and the image, whiténs of
significantly larger than the pixel noise of the image acquisition process.

It is possible to reduce the maximum steering error by having an offs§f of
in the orientations of even and odd filters or alternatively by having a difter
number of basis filters for even and odd filters (Schenk and Bradyg)20the
steering error then becomes more evenly distributed across the rotatieraadg
is nowhere zero. These improvements can be used without complications with
the presented approach, but because of simplicity and clarity we will msiaer
them here.

3.4 Steering of Gabor-type filters

3.4.1 Parameterization of Gabor filters

The Gabor filter with a spherical Gaussian envelope function is desdriped

£ (£ _ |M|2 |M|2 2 T
(&; n,0,0)= ?eXp(—PISI )eXp(lu R€), (3.12)
whereé = [x y]T are the spatial coordinates, the wave vegtoe= [f. 0]"
determines the center frequentyof the filter and also acts as a scaling factor in
this parameterizatiors controls the number and strength of spatial domain side
lobes, and determines the orientation of the filter via the rotation matrix

cosp  siné
Ro = [— sing cos@]’

Following Daugman (1985), we will consider a more general form of Eq.
(3.12), with different scaling constanig andoy along the two axes in the spatial
plane,

. . |M|2 |M|2 Te1 ST
f(& u, S R) = exp| ———(Ro&) " ST'Rs¢ | exp(i ' Ro§)

Jdets) 2
o N(O, [uI?R; SR) - exp(in' Res) . (3.13)
N(O, |x|?R] SR) denotes the Gaussian distribution with zero mean and covari-
ance matrix ,
_|ox O
S= [0 ayz] (3.14)

which is rotated with the matri®, and scaled byu|?. If ox = oy, Eq. (3.13)
reduces to Eq. [ (3.12). Note that in this parameterization the resulting filters
have a constant template shape determine&,lgnd the filter is rotated around
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Figure 3.1: Left: Filter tessellation using the proposed parametédraThe filters retain
their shape under rotation, and center frequency affeststaé size of the filter envelope.
Right: Alternative, non-isotropic parameterization. $o¢ for explanation.

the origin by the paramet&. Even more generic parameterizations which still
achieve minimum uncertainty are possible (Daugman, 1985). For example the
wave vectoru does not need to be aligned with axes of the Gaussian envelope.
Also an arbitrary phase constant can be added so that the real andanygants

of the filter do not correspond to even and odd symmetric real-valued fittets

are weighted sums of both. We will follow Daugman (1985) and ignore these
complications since our main interest is the effect of the shape parametirs on
properties of the Gabor filter.

In order to make clear the properties of the proposed parameterization, Fig
3.1 shows a tessellation of Gabor filters generated by directly changing the
orientation parameteér and center frequenci. It should be noted that the shape
parameters, andoy control the shape of the unrotated filter along the x- and
y-coordinates. Since the shape of the filter remains constant under moitatio
terms of angular and radial bandwidth, this means éhadndoy, correspond to
the spatial filter width in horizontal and vertical directions only in the unrotated
orientation ¢ = 0). In generaby, andoy are related to the radial and angular
frequency bandwidths of the filter, respectively. Fig. 3.1 also shovedtemative
parameterization, in which the filter shape is not preserved under rotathis.
kind of filter tessellation is useful in situations where the horizontal and eértic
coordinates themselves have different properties, for example if thdisgmgte
is not same in horizontal and vertical directions.

The Fourier transform of a zero-mean Gaussian function is also a i@auss
function, although no longer normalized, and modulation by complex plane wav
corresponds to a shift from the origin in the Fourier plane by the amousctited
by RI w. The rotation property of 2D Fourier transform states that rotations in the
spatial plane correspond directly to rotations in the Fourier plane. Asi#i, rée
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Figure 3.2: Left: Even Gabor filter in the spatial domain. Equal magretlelel of the
complex filter is shown with dashed line. Middle: Even Gabtefiin the frequency
domain. Right: Six complex Gabor filters in the frequency dam with different
preferred orientations. Only half of the frequency plane needs to be covered.

Fourier transform of the complex Gabor filter is a single Gaussian function

F{f} o« N(RJ 11, R} ST'Ry). (3.15)

We denote the real-valued even and odd Gabor filters gvith Re{ f } andh =
Im {f}, respectively, so that = g+ih. Fourier transforms of real and imaginary
parts of the complex filter are sums of two Gaussian functions,

F g} o« N(R} 11, RIS™'Ry) + N(—RJ i, R} S'Ry) (3.16)

and
F{h} o« N(RI 1, RIS*Ry) — N(—RJ 11, R] SIRy). (3.17)

The uncertainty principle states that the product of the areas in spatial and
frequency domains occupied by the filter is constant. This means that if thie filte
is made wider in one domain, it becomes narrower in the other. As an example,
an even Gabor filter with shape parametefs= 3 andoy = 2 is illustrated
schematically in Fig.[ 3.2. The spatial widthx o« oy and heightAy o« oy
of the filter are conjugate variables with the spectral widfg « 1/04 and
Afy o 1/oy, so that their product is constant, conforming to the uncertainty
principle. When we use the complex Gabor filter, which is a single Gaussian
function in the frequency domain, only half of the frequency plane nezte
covered. This is due to the fact that the signals (images) we analyzeahe re
valued, and thus their Fourier spectra are symmetric.

3.4.2 Steering of Gabor filters

In the following we assume without loss of generality that the filters have unit
center frequency. = [1 0]". The even and odd Gabor filter both need separate
steering coefficientk. We begin by computing the inner products in the elements
of the matrixG in Eq. (3.7). The inner product integralt) of two even Gabor
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filters in the frequency space is

(9,00) = (F {9}, F{g})
= / (N(, S + N(—p, S™)
(N(RJ i, RJS'Ry) + N(—R] 11, R S 'Ry)) dow (3.18)
which, using a symmetry argument, is equivalent to
—2 [ NGe SHNRI 2 RIS 'R + N S ONGR . RIS HRo)do,
(3.19)
The inner product of two Gaussian functions (the normalization consfaat o

product of two Gaussian functions) is also Gaussian with respect toithmpters
of the functions,

IC|
|AllB

(N(a, A) - N(b, B)) exp(—%(aT Ala+b"'B b — cTclc)> ,

(3.20)
withC = (A '+ B Hlandc=CAta+ CB b

We can now identiffa = u, A= S, b=+R"u, B=R'S'R C =
(S+ RTSRtandc = (S+ RTSRI(l £ R")Su in order to compute the two
integral terms. Applying the result gives after some manipulation

1 1
(9, %) = Z—\/|U|exp<§vT<u + RyU RJ)v)
g
.cosh(—%vT(U RY + RgU)\)) (3.21)

whereU = (S+ RISR)™%, v = Su = [02 0]" andZ, is a normalization factor.
It is most conveniently computed by requiring that the inner product etpalse
até = 0, yielding the result

1 1 1
Zy= 50;10;1 exp(EchZ) cosh(—éoxz) : (3.22)
Inner product function of two odd Gabor filtemsandh, is obtained similarly,

(h, hg) = Z%«lUlexp(%vT(U + RyU RJ)v)

-sinh(—%vT(U RY + RgU)V) , (3.23)
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with the normalization factor
1 1 ) 1
Zh = Eax‘lay‘l exp<§oxz> smh(—éaxz) : (3.24)

In the case of spherical Gabor filteks, (= oy = o), the expressions of the
inner products simplify significantly to

cosr(%2 Ccosb)

3.25
cosh%) (3:29)

(9, %) =

and ,
sinh(%- cost)

h, hy) = ;
(h, hg) Sinh(2)

(3.26)

Having computed the inner products, we can now solve the optimal steering
coefficients using Eq. (3.7). All of the elements in the maBiare inner products
between two rotated Gabor filters. Specifically, as the value of the inndugiro
between two filters in orientation, and 6, depends only on the difference
between orientation® = 0; — 6,, we can fix the coordinate system of the rotation
and define

u®") = (s, %) = (9o, Gor) - (3.27)

Using only this single inner product function, for which it holds th&d) = 1,
Eq. (3.9) is expressed as

1 U@y —6) ... u@—6n)1 [u@®—0oy)]
u@, — 61) 1 ... Ul —06N) u@ — 6y)
k(@ = | U@z —061) u@®—6) ... u;—06n) u® — 6s)
_U(@N —61) Uu@n-1—62) ... 1 | _U(9 — QN)_
(3.28)

The matrix inverse is constant with respect to the steering afigkend it is
conveniently solved numericalljy being small. The optimal steering functions
are of the formk;(0) = >, w;iu(@ — 6), that is, sums of shifted versions of
a single inner product function(¢), the weightsw;; being the elements of the
matrix G—1.

The matrix G is in principle not guaranteed to be invertible, and indeed
with basis filters which are highly correlated, it can be numerically close to
being singular. To overcome this difficulty, we can compute the Singular Value
Decomposition 0ofG and use it to calculate the SVD inverse (Greenspan et al.,
1994).
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Figure 3.3: Base-10 logarithm of steering error in impulse responsésatfor filters. In
typical applications 1% error (the -2 contour) might be ¢desed acceptable.
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Once we have solved the steering coefficients, it is straightforward towemp
the steered filter approximation as a linear sum of the original filters, using Eq
(3.5). In order to analyze the steering error performance of the filiergvaluate
the approximation error numerically using Eqg. (3.10).

The error behavior of Gabor filters in banks of three to eight filters isveho
in Fig. [3.3. The overall effects of the filter shape parameg&ase similar with
any numberN of basis filters. Steering error becomes progressively lower as
more basis filters are present, and while the spatial domain side lobes are not
prominent. Most importantly, spherical Gabor filters are in general nirhapin
terms of steering, and slightly flattened filters witjyo, < 1 have considerably
lower steering error. In other words, steerability is improved if the filtees ar
less specific in the angular dimension than in the frequency dimension. This
behavior is compatible with the properties of derivative of Gaussian filtdrieh
are similarly flattened in the frequency space although their envelope fonstio
a spherically symmetric Gaussian.

Fig. /3.4 shows the effect of flattening the filter in Gabor filters and third
derivative of Gaussian filters. The latter are exactly steerable wherpbaential
term is a spherical Gaussian (thatdg/ox = 1). However, exact steerability is a
very brittle property of the filters, and the steerability of derivative of €3#n
filters quickly breaks down if the exponential term is not exactly spherical.
Steerability has been proposed also to have biological relevance (Eqdig®),
but for this reason, it is unlikely that exact steerability, instead of apprate
steerability, could be relevant for biological vision, as the parameter yalue
of oriented filters in biological systems have significant variation and [agba
cannot be specified very accurately. Non-spherical derivativeaafssian filters
and Gabor filters show more or less similar steering performance. It is also
interesting to note that the optimum values for steering are slightly different fo
even and odd Gabor filters.

3.4.3 Steering of DC free near-Gabor filters

In many applications the DC component of the even Gabor filter is problematic,
because it makes the filters sensitive to the absolute brightness of the imdge, a
it is preferable to use filters with zero DC response. A simple way to remedy the
deficiency is to subtract a second Gaussian term located at origin,daharDC
response of the filter to zero (Ronse, 1993),(Lades et al., 1993). r@3ulting
complex-valued filter

f =N@©O,R]SR) - (exp(i nT RE) — exp(—%)) (3.29)
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Figure 3.4: Maximum steering error of Gabor and third derivative of Gaas filters
with respect to elongation of the Gaussian envelope funcBwoth filter banks are evenly
spaced in orientation and contain 6 filters, with= 2.

is no longer a Gabor filter, but approximates one quite well, especially with larg
ox When the DC component (and thus also the subtracted exponential term) is
small.

Optimal steering functionk(#) can be derived for DC free near-Gabor filters
using the presented approach. The odd real-valued filter remainsngezhal he
inner product function of the even filter

FAg =N, SH 4+ N(—pu, S —2exp—02/2N(©O, S (3.30)

has now four terms,

(0. ) = f NG, SHN(R] 1, RTSIR))
+N(u, SHN(=R] 1, R SRy)
—4exp(—a7/2) N(u, SHN(O, R S 'Ry)
+2exp(—oZ) N0, SHN(0, R} S'Ry)dw. (3.31)
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Proceeding in the same manner as in the case of the Gabor filter, we obtain
1 1 - -
(9, 00) = Z—\/IUI expl 5V U+ RU)(I + Ry)v
g
1 - T
+exp év U -RU)(I —Ry)v
1
—4 exp 5V Uv ) +2{, (3.32)
with U = (S+ RI SR)tandv = Su as before, and the normalization factor
Zy = Totot ) — 4 12) 43 3.33
g = 50 9y exp(os) —4exp 2% ) +3) (3.33)

The effect of the two additional terms of the integrand is however quite small in
practice unlessy is close to zero. The steering error, depicted in Fig. 3.5, is
similar to that of Gabor filters, but with narrower region of good steerability.

3.4.4 Steering of angular Gaussian filters

Let us consider approximately steerable filters which are separable in pola
frequency coordinates so that the filter can be expressed as a pajdueo
univariate functionsg(r, 8) = p(r)q(9). We choose the angular compongi#)

to be the Gaussian function

D@, 9’)2)
Nqg (6, =exp| ———— 3.34
o0.00 = exp( 222 (339
with the 2r-periodic distance measure (Yu et al., 2001)
D@®,0") =min(|6 —¢'|,160 —6" — 2x|,10 — 6" + 2x]). (3.35)

Polar Gabor (Haley and Manjunath, 1995) and log-Gabor (log-Nornigdyi
(Field, 1987), (Kovesi, 1999) are both examples of this class of filteote bhat
because of the periodicity of the distance meaddrehe functionNy is only
Gaussian with respect to the distance measure, but not with respect tathé a
directly.

The inner product function of two angular Gaussians is

u@) = %/ (Ng(0, 09) = N(r, 05)) (Ng(8, 09) £ Nq(0 + 7, 05)) d6’,
- (3.36)
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Figure 3.5: Base-10 logarithm of steering error in impulse responsd3@firee near-

Gabor filters.
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Periodic expansion of the integrand term Nq(e,cre)
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Figure 3.6: Periodic expansion of one integrand tely(6, oy ) over three period lengths.

where the choice of sign determines whether the filter is even or odd symmetric
(real or imaginary component of the Hilbert pair). Again because cfores of
symmetry, it holds that

u@®) = / Nq(0, 09) (Ng(6, 04) = Nq(0 + 7, 09)) db". (3.37)
The integral in Eg. | (3.37) is difficult to evaluate because of the periodic

distance measurB (9, 6"), which causes the metric to wrap around franto

—m. In order to approximate the integral, we approximate the expression

by eliminating the periodicity and expanding the latter of the two terms into

/n N (O, 5) (N(6 — 277, 09) + N(8, 05) + N(@ + 27, 05))d6’,  (3.39)

b/

where we have now converted the periodic Gaussian functignsito direct

Gaussian functions of the angle paramel(g, oy) o exp(—(ez‘a—ezl)z). Figure 3.6
illustrates the idea of the approximation. The convolving intiegral term (ddnote
with blue line) is expanded into a sum of three shifted versions of the original
function (denoted with dotted black line), taking into account the wrappifegtef

of the periodic distance measure.

If the integrands had support only in the interyalz, 7], the approximation
would be exact. A slight error is introduced with functions which have wider
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support. The error due to summing of the shifted versions can be seerontst
point of the curve, where the approximation has slightly higher value than the
original function. Practical oriented filters will have a narrow enougéragation
bandwidth so that the approximation is valid. Further, the integration limits can
be expanded tp—o0, o] under the same conditions.

The preceding approximation scheme leads to the approximation

00 0/2
u@) %/ exp(— 202)
o 5

1

0 — 60 + 2nm)?
(3 ew(-=5)

n=-1

_p _ 2
jEexp(_(e 0+ (2n — 1ym) ))de’

2092
(3.40)

for the inner product function(9). Computing the integral, we obtain

_ 1 2 n+1 1 2
ue) = - n_X_:z(:l:l) exp(—gg(e —n7) ) , (3.41)

which is a good approximation for the exact integral in the intefval [, 7]
whenoy is not too large. The normalization term is now simply

2

2
Z=> @&+t exp(— (ZZ; ) (3.42)
n=-2

The steering error of angular Gaussian filters, depicted in'Fig. 3.7, isreas
to analyze because only the angular width paramejeaffects the steering
performance. Given the number of basis filters, an optimal filter width exists
with respect to the steering error. The error starts to rise again with ltrger
optimal angular bandwidths. However, such filters are uninteresting &atipal
applications, because if a lower resolution is needed, the number of biess fi
can be decreased instead. The useful filters lie in the region with filtembaitnd
equal to or narrower than the optimal width of the given number of basissfilter
and in this region the analytical approximation is nearly indistinguishable from a
numerically computed optimal solution (not shown in the figure), confirming that
the integral approximation is valid. It is possible to trade steering perforenfanc
bandwidth. The optimal width for a bank of eight filtersois = 37 degrees, but
if we allow a maximum error of 1% in the impulse response, the filter width can
be reduced to 21 degrees, leading to a significantly improved anguléutieso
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Steering error of angular Gaussian filters

I I I I I
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angular bandwidth O, (degrees)

Figure 3.7: Base-10 logarithm of maximum relative steering error oefst with an
angular Gaussian component as functions of their angutadvbidths in degrees.

3.5 Accuracy of analytical and numerical steering equa-
tions

Next, the accuracy of the inner product functions is discussed. Fig. 3.8
shows numerically computed inner product functions of Gabor, neboGand
angular Gaussian filters, compared to the evaluated analytical expessiogs.
3.21,13.32 and 3.41. The analytical and numerical inner products arg/ nea
indistinguishable in practice, with a maximum error in the order of'iGor
Gabor filters and 1¢ for angular Gaussian filters. While Eq. 3.41 is only an
approximation of the exact inner product integral, the accuracy is goodgh

for all practical applications.

Fig. shows the angular bandwidths of Gabor filters on top of the steering
error in a bank of eight filters. A difficulty in regular Gabor filters is that
the angular and radial frequency bandwidths depend nonlinearly oshigyee
parameters, and cannot be chosen independently if a particular anguéatial
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inner product of Gabor kernels, 0,.=2, 0y=4
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Figure 3.8: Inner product functions of Gabor and near-Gabor filters wdttape
parametersy = 2,0y = 4, and inner product of angular Gaussian filters with= 0.3.
Solid line denotes the numerical results and dashed linetdsrthe evaluated analytic
results.
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Figure 3.9: Angular bandwidth curves (in degrees) and steering erraigtit Gabor
filters. Angular bandwidth depends nonlinearly on the shameametersyy and oy.
Compare with Fig. 3.7.

frequency bandwidth is required. Supposing that we need, for exaraple
orientation bandwidth o, = 30 degrees, it can be achieved with a Gabor filter
with parametersy = 3.7 andoy/ox = 0.7, with an error of approximately 1%.
The radial frequency bandwidth is now fixed with these parameters, whiuiot

be significantly changed without increasing the error level. In contrastngular
Gaussian filter reaches the angular bandwidth,of= 21 degrees with the same
error level, while still having complete freedom in choosing the radial eqy
bandwidth. The price of this flexibility is the slightly increased joint uncertainty.
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3.6 Exactly steerable filters and their Gabor approxima-
tions

In order to design exactly steerable filters which are close to Gabor filtéh& in
sense of the L2-norm, one can start with a Gabor filter prototype andngel&

Value Decomposition to find the optimal basis giving exact steerability within
an acceptable approximation error margin. We consider here only sameger
rotation transformations. Following Perona (1995), we will compute numibrica
the exactly steerable basis functions with SVD. Cascade basis reducgon (T
and Hel-Or, 1999) can be used in order to reduce the dimensionality of the
decomposition, when the number of transformation parameters makes the direc
SVD computationally unfeasible.

In principle, there is no theoretical guarantee that the resulting filter will
have the same properties as the filter it approximates. However, since the
approximation error of the SVD method is constant with respect to orientation
(Perona, 1995), that is, all orientations are approximated equally wiliddyasis
functions in the sense of the L2-norm, the resulting filters will generallygoves
their good localization properties. Additionally, zero DC is preserved dinee
complex harmonic basis functions €kg) have zero DC themselves.

It is however reasonable to ask how much we gain by computing the SVD in
the case of single parameter rotations. For example, given a DC fre€&abar
filter with shape parametets, = oy = 2 and an approximation error of 1%
(measured with EQ.3.10), seven basis functions are needed for thélemand
six for the odd filter, depicted in Fig. 3.10. From Fig. 3.5 it can be seen that
the steering error when using seven Gabor filters has a similar amouneohgte
error (it is exactly 0.99%). Thus we have gained essentially nothing with\fioe S
computation.

Table 3.1 gives some additional examples of exactly steerable SVD approx-
imations of Gabor filters. Again the 1% approximation error level was used. |
general the SVD method appears to save one or two basis filters with laayer s
parameter values. It can be concluded that the SVD approach becotaeatally
useful in reducing the number of basis filters when the Gabor shapmetms
are such that a large number of filters is required for steerability, biit sigh
numbers of basis filters are not widely used in the literature.

If further analysis is performed in the Gabor filter space and not by ttiirec
using the SVD basis filter responses, we need to apply an additional linear
transformation to the SVD basis filter responses in order to obtain the Ghbor fi
responses. Depending on the hardware architecture and softwareniempgion,
this additional computation can nullify the computation benefit achieved using
the SVD approach, since the 2D FFT algorithm has computational complexity
O(NZ?log N) while the linear transformation of a single filter response of an image
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Figure 3.10: Even and odd DC free near-Gabor filters with shape parametetsoy =

2, and the corresponding basis filters (left singular vesjtoomputed with SVD. The
basis filters consist of angular quadrature pairs of everodddcomplex harmonics. The
radial components of the basis filters are quite close togo@russian.

has complexityO(N?M), whereN? is the number of pixels in the image ami

is the number of SVD basis filters. In other words, it can be computationally
less demanding to simply compute additional convolution results using the 2D
FFT algorithm than to apply additional pixelwise processing to the filter regmn

if the image size is small. Using a straightforward, not particulary optimized
Matlab implementation, it was found that for example in the casdo& 10
basis filters, the SVD approach combined with the linear transformation torGabo
space becomes computationally more efficient than performing one additional
direct 2D FFT computation iN > 150. The exact difference in the amount of
computation using the two methods is naturally both implementation and platform
dependent, but it can be concluded that the SVD approach doesnaytsajjive
performance savings despite being able to use a slightly lower numberisf bas
filters than the direct computation of Gabor responses, if the respoaséstm

be transformed to the Gabor space for analysis. It should be notedhwre
the SVD methods presented\in Teo and Hel-Or (1999) have been des@ned
multiparameter transformations where their benefits become apparent.

Conversely, one can consider approximating exactly steerable filters with
Gabor filters. The primary reason for such an excercise is to compare the
properties and practical performance of the filters. The latter will beiderexd
in Section 5.5.

For example, the derivative of Gaussian filters are classical exacthabtee
filters which are relatively close to Gabor filters. Directly minimizing the
approximation error as defined by Eg. 3.10 one can find the closestr Gabo
equivalents to the derivative of Gaussian filters. In addition to shaereders,
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ox | oy | N&en | Noad | Eqger | NS
2]16] 4| 5| 085% 5
2| 2| 7| 6| 099% 7
4| 3| 8| 8] 186% 9
2| 4| 15| 15| 1.93% 17
3| 6| 19| 20| 172%| 22

Table 3.1: Examples of near-Gabor filter banks with shape parameteendoy, and
the number of required basis ﬁ|ten<§ggn,Nggg for 1% approximation error with the SVD
method, steering errdG28" of a filter bank with the same number of Gabor filters, and

number of Gabor filter$\l<1"’},§’)°r required for 1% steering error.

target filter| ox | oy | ES3% E&abor
2nd derivative of Gaussian1.96 | 1.46 8.3% | 3.0% (N=4)
3rd derivative of Gaussian2.49 | 1.80 6.6% | 2.1% (N=5)
4th derivative of Gaussian 2.92 | 2.06 6.1% | 1.4% (N=6)

5th derivative of Gaussian3.30 | 2.29 | 4.8% | 0.9% (N=7)

10th derivative of Gaussian4.57 | 3.20| 3.4% | 0.1% (N=11)

Table 3.2: Shape parametersy and oy for DC free near-Gabor approximations
of derivative of Gaussian filters, the error performanE&20% of their Gabor

pprox
approximations, and the steering err&gee/G abor of the approximations. The steering

errors are given with the same number of basis filters (inmihesis) with which the
polynomial approximation of the DoG filter pair is exactlgstable.

the center frequency is also optimized, since it is slightly different due to the
different shapes of the response envelopes.

Tablel 3.2 gives the approximation parameters and the related approximation
and steering errors of DC free near-Gabor filters. As the order ofi¢higative
increases, the derivative of Gaussian filters become more like Gabos, faied
the approximation error decreases. The aspect ratio of the approxintGsimy
filter remains remarkably constant, the quotieptoy having the value of 0.70
with all derivative orders from the second to the tenth.

Yokono and Poggiol (2004b) note that Gabor functions can be regdjarde
as approximations of high order Gaussian derivatives. Howevet snc
approximation requires a very particular choice of the Gabor shapenptaes.
Conversely, it can be said that derivative of Gaussian filters areasicrgly
Gabor-like as their order increases. Very high order derivativels as the tenth



40 Steerability properties of Gabor-type filters

derivative have not been widely used in the literature, possibly becagbehigh
order image derivatives have no physical significance, and estimataghadrder
derivatives are informally known to be sensitive to noise in the one-dimeaisio
case. Their close resemblance to certain Gabor filters however sutigastere

is no inherent reason why the high order derivative of Gaussian filteud not

be suitable for applications which use similarily shaped Gabor filters, such as
feature detection and texture classification.

Greenspan et al. (1994) design a steerable filter bank with four oriematio
using the SVD approach and report a relative steering errorséb Qvith filters
which are approximations of Gabor filters with shape parameterr /2 ~ 1.57
using our parameterization. For comparison, directly steering the Gabos filte
with the shape parameterg = oy = 1.57 has the relative steering error 0880
and flattening the Gabor filter slightly using the shape parameterg1.57 129
has the relative steering error a#i%.

3.7 Discussion

As the steerability of a filter (or a function) is dependent only on the Fourier
spectrum of the angular component of the filter, the derived results &G
filters are not entirely surprising, since as a consequence of the sarti@iorgm,

any function is steerable given enough basis functions. However, the inmporta
empirical finding of this chapter is that Gabor-type filters can be approxiynate
steerable (with a tolerable steering error for practical applications) usihga

low number of basis functions. Excellent steering performance can fagnet
using 6 or 8 basis filters, a number which is a typical design choice in texture
analysis and feature detection applications.

The practical advantages of Gabor-type filters are mainly that they have a
simple analytical form, which makes the filter bank design problem computation-
ally straightforward, and that the filters can be tuned for different agiidins by
adjusting the parameters. The steering error of Gabor filters depeamiatically
on the shape parameters, and nonspherical Gabor filtersowitls o, have
significantly better error performance than the more commonly used spherica
Gabor filters.

In filter bank design, steerability gives a guideline for determining an
appropriate number of orientations and scales for given filter shapeneters
in order to obtain (nearly) uniform coverage of the frequency spd®een in
applications which do not use steerability directly, it is typical to aim for doger
the orietation and scale space in some sense "uniformly”, so that theielzoten
in the coverage of the frequency space. The usefulness of steeriadiliiyr bank
design is that it gives a numerical value to the uniformity of the filter bank with
respect to orientations.



Chapter 4

Probabilistic framework for
Inference of images

4.1 Introduction

In this chapter we will proceed to apply the oriented filter banks as generic
local gray-level feature detectors and construct probability distribsitishich
give information about the location of a feature in the image plane. The local
features are then combined into probabilistic models of complete objects, which
are matched into novel images using probabilistic methods. This combination of
methodology forms the theoretical basis for the probabilistic local featigeda
object matching system considered in this work. The system is based on the
framework presented in (Tamminen, 2005).

The object matching system can be divided into four parts or stages of
processing which are independent to some degree:

e Feature representation
e Feature similarity model

Object similarity model

Matching method

Local image features are represented in the system by the resportbes of
guadrature filter banks, in particular, Gabor-type filters. Other possibilitie
local descriptors include steerable filters (Yokono and Poggio, 20@éa),image
patches (Weyrauch et al., 2004), (Rothganger et al., 2003) atmhrasn-type
representations (Lowe, 2003), (Zhang et al., 2007). It is common tthedle
representations that individual feature models are not typically verygtio
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their predictive capability, and object models are composed of a numbecaif lo
features.

The SIFT features (Lowe, 2003) are especially noteworthy as the SIFT
matching algorithm can be considered to be a state-of-the-art method in rigid
object matching. The SIFT features consist of a histogram-type rejatien
of local image gradients, and have been found to perform very weltieteetion
of a previously seen object under new image transformations. Serre(20@v7)
argues that the SIFT features are unlikely to perform well in genericcbbje
recognition tasks because of their high degree of invariance. Howivisr
possible to adapt the core SIFT algorithm to better suit recognition pwpose
(Bicego et al., 2006). Compared to the Gabor jet based feature egpaton,
the main difference is that the SIFT features are intrinsically rotation, tizosla
and scaling invariant.

Feature similarity defines a distance metric in the feature space, and its
purpose is to assign a numerical value for the resemblance of two logaleyel
image structures. The term similarity stems from the error minimization approach
in (Lades et al., 1993). In a probabilistic framework, the analogueaitife or
object similarity is probability, which follows naturally from the error function o
distance metric.

Most object similarity models considered in this work are based only on the
joint probability of individual features, which is appropriate becauseothject
models have a relatively low number of parameters. An exception is Chapter 5
where the object model contains both feature and shape probability models in
order to perform well in recognition tasks. This object model is directlydam
(Tamminen, 2005).

The matching methods applied in this work are based on probabilistic infer-
ence using random sampling. Traditionally, computer vision applications have
often used straightforward error minimization instead of probabilistic reagpn
but recently probabilistic approaches have gained popularity in compisienv
applications, especially when handling multiple object classes. In (Feitlaki e
2003), the PCA-based feature models are somewhat simpler than in coaelpp
but the probability model for objects is significantly more sophisticated. Idstea
of random sampling, variational methods are used for finding the posterior
distribution of parameters of a multi-dimensional Gaussian mixture model. An
analytic approximation for the posterior would be a viable alternative fatoam
sampling also in our case. A generative, hierarchical object modedl loas8IFT
features was presented in (Mikolajczyk et al., 2006). The tree stegcfor the
object models resemble our local feature based object representatb@reveét,
since the aim is in multiple object class detection, the object models are not very
detailed, and the main modeling effort is spent for building a generic common
codebook for the parts (or features) of all object classes.

Figure' 4.1 shows an overview of the levels of processing in our system.
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Figure 4.1: Overview of the object matching system considered in thiskwBrom top
to bottom: | Input image, Il Multiscale, multiorientatioritér bank, I11 Filter responses
(magnitude shown), IV Feature likelihood distributions,L\dcal feature based object
matching. Computation in stages Ill and 1V is based on femedod processing (denoted
with black arrows), whereas the object matching in the fitades is based on random
sampling of the feature location distributions (denotethwéd arrows).

The image (1) is filtered first using a bank of multiscale, multiorientation filters
(IN. This can be considered a feature extraction stage. The resparisall
filters (11l) are combined and compared with feature prototypes. This adsgn
produces a number of probability distributions, each of which describes th
presence of a single feature in a spatial location in the image (V). Finally, the
feature points of the object model are matched to image locations by randomly
sampling the posterior distribution of feature location configurations (Vg Th
system incorporates two different types of computation. The filter resgsoand

the feature likelihood distributions are computed in a non-iterative, feedfor
manner. In contrast, the random sampling of feature locations in the fimggd sta
proceeds in an iterative fashion. It is possible to implement rotation invarianc
such a system on various levels of processing. The approach we eilirtdkis
work is to use feature detectors which are orientation-sensitive andrpecthe
orientation information for higher levels of processing, and handle thatatien
parameter on levels IV and V.
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Section 4.2 shows using examples how the responses filter banks déiseribe
local structures in images. Section 4.3 reviews the similarity measures paksente
in the literature and relates the proposed similarity to them. Section 4.4 shows
how to construct a likelihood probability distribution from the similarity measure.
In Section_ 4.5 the ideas of the two previous chapters are combined with the
concept of the similarity measure and present rotation-invariant versiotie
similarity measures and the likelihood functions derived from them. Section 4.6
discusses restricted rotation invariance. Section 4.7 presents the abjeaiitity
model considered in this work. The chapter concludes with a brief review o
random sampling methods in Section 4.8. They are necessary in order ii® obta
samples from the object likelihood and posterior probability density functions
The random sampling methods are applied in Chapter 5 to analyze the dffect o
filter parameters on recognition, and in Chapter 7 to locate and recognizgsobje
in rotated poses.

4.2 Quadrature filter banks and local features

Given a filter bankf containing complex-valued quadrature filters in different
scales and orientations, the complex-valued filter respofjsese obtained by
convolving the signal (or imagd)with each filter,

fo0Gy) =Fxl (X, y) = (fosl, faxl, ..., fyxl}. (4.1)

We now interpret the response of a filter bank at a certain image plane locatio
(X, y) as an abstract description of its local gray level structure. The filtek ban
responses describe the local gray-level structures in the image simuisineo
orientation, scale and location.

Figure[ 4.2 shows the amplitude and phase responses of oriented filters at
two different frequencies (scales) and two different orientationsti¢at and
horizontal), using a human face image as a test image. The filters respond to
structures which are different in both orientation and size. The vertiitet fi
at frequencyr /4 responds most to the edges of the head, while the horizontal
filter at the same frequency gives largest response at the horizorgabflithe
mouth. The vertical filter at frequency/16 gives a response maximum at the
bridge of the nose, while the horizontal filter responds most to the darkhaoid
eyebrows. Phase responses of the filters vary at a rate determinelg layghe
center frequency, and in an orientation which corresponds to the drentt
the filter. In addition to the smooth near-linear variation, the phase respatsse
have bifurcation points with no well-defined phase especially at regioesanthe
amplitude response is low.



4.2 Quadrature filter banks and local features 45

abs(f") abs(779) angle(") angle("s)

abs(f{)‘“e) angle(fg”s) angle(fT;

e =

Figure 4.2: A test image and the amplitude and phase responses of fitteve different
scales £ /4 andn/16) and two different orientations (0 and?2).

N

Let us now define a quadrature filter bank response vecfiterjet (Lades
etal., 1993), by stacking the complex-valued filter resporises (fjx1)(X, y) €
C at an image locatiofix, y) into a single long vectog € CN. N is the total
number of different filters in the bank, for example if we use three differe
scales (center frequencies) and six different orientations, we have 18.

An alternative bookkeeping scheme has been proposed in (Kyrki,20414),
where the filter responses are organized in a matrix instead of a vecierhdh
the advantage that cyclic shifts of the matrix correspond directly to apptepr
changes in the filter parameters.

In order to make the filter responses at different locations in a single image
and between two different images comparable with each other, it is a common
procedure to normalize the filter responses by dividing the filter jet with itsinor
J = J/1171l, so that the vectod has unit length. This normalization causes the
complex-valued responses to have a maximum absolute value of 1.

Figure 4.3 shows the normalized filter responses of a synthetic image in a
single frequency scale at a set of manually selected points, and illustostehd
filter responses of different gray-level structures occupy differegions in the
four-dimensional unit ball of normalized filter responses.

The filter responses at all image locations have been plotted in black, and the
fill the unit disk in the complex plane quite evenly, with slightly higher density
both near the origin and close to the edge of the disk. The filter respatseded
at different image locations correspond to different regions insiderthalisk.

Denoted with green, the locations in the synthetic image with a horizontally
oriented edge cause the horizontally oriented filfgf, to respond with its
antisymmetric imaginary part, giving a negative response due to the transition
from dark to white. The response of the vertically oriented fiftgis almost zero.

Both the vertical and horizontal filters respond with their imaginary antisymmetric
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parts to the upper left hand corner of the light rectangle, denoted witkdheross.
While the filter responses at different features often coincide at a single

orientation, they are well separated from each other in the filter respmpase

if we consider the responses at all orientations simultaneously.

Im(1+f,)
mee )

05 1
H/Z)

0
Re(1*f

Figure 4.3: Distribution of normalized filter responses in a synthati@age. Responses
corresponding to manually annotated locations are showalor and responses from all
image locations are shown in black. See text for discussion.

4.3 Similarity between filter bank responses

In order to compare, detect and classify local features we can desineilarity
functionwhich assigns a single numerical value for the discrepancy between two
vectors of filter responses.

Lades et al. (1993) were the first to present a similarity measure between tw
filter bank responses, using the magnitude values of the complex-valuesl filte
Given two filter jetsJ and 7' and denoting vectors which have the magnitude
values as components with = |J| anda = |7'|, the similarity between the
vectors is defined as

N

2 i—188 _a'd

N 2xN o2 Al
JoL @y e

in other words, the inner product of vectors which have been normatzed
unit length. The normalization of amplitudes achieves invariance to absolute
brightness, and also makes the measure less sensitive to changes istcontra
However, the use of only absolute values of the filter responses igalh@Esase
information.

The use of only amplitude information causes the similarity measure to
vary very smoothly, which is a good quality for optimization. However, the

S, 7)) = (4.2)
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ability to differentiate between features is compromised when ignoring the phase
information. For example line and edge features which are in the same oriantatio
differ only by their phase, and the similarity meas@eannot tell the difference
between them. The measure is also invariant to the polarity of the image, in
other words, an edge with a transition from dark to bright is equal to one with
a transition from bright to dark.

A phase-sensitive similarity measure, using not only amplitude but also the
phase responses of the filters, was presented in (Wiskott et al., 198%9.
similarity measure is defined as

YN, a8 cosarg(J)) — arg(7) — dTk;)
\/Zszl af Zszl aj/2

$U,7) = ; (4.3)

whered is the displacement vector aridis the wave vector of the filter. In
addition to using the phase information, Wiskott et al also estimate the optimal
displacemenﬁ which minimizes the phase difference between the jets.

The motivation for the optimization of the displacement vedois that
phase varies spatially very quickly especially in high frequencies. With zer
displacement, similarity values are high only very near the maxima of the
similarity field. Minimization of the phase difference between the jets widens
the peaks in the similarity functions and thus broadens the basins of attraction
near the correct optima in local optimization methods (Wiskott et al., 1999).
Unfortunately it also causes the similarity fields to be much less smooth and
contain discontinuities, which is problematic for most optimization methods.

4.4 Likelihood function

Next we wish to define a probability measure which tells how likely it is that the
filter jet 7 represents the same feature as a referencg.jdh order to simplify

the notation, define the two vectads= 7/||7|| andJ’ = 7'/||7’|| normalized to
unit length. For such vectors, we can interpret the square of the tr-digtance,
multiplied by minus one half, as a similarity measure, and it is equ&) tap to

an additive constant, since

1 1
—JPI=J)P = —Z@-HrPa-Y
Sl I 5( )7 ( )

= —% (I"J3—2Re{I" T} 4+ 31

= —(1-Re{J"J})

= > 13l Icos(arg ) —argd)) = 1. (4.4)
i
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Now it holds that-3[]J — J'[|? = $(J, J) — 1.

Supposing that the difference between the two filter jets is approximately
a Gaussian distribution with a diagonal covariance maftixl, the feature
likelihood function has the form

PJIY) o e BII-YIP g p(i-Re3" )
o PRI (4.5)

The scalar parametg > 0 affects the steepness of the likelihood function. The
likelihood function is however strictly not a Gaussian function with respect to
the unnormalized filter responses, since the value range¢fi" J'} is limited

to the interval[—1, 1], which causes the tails of the distribution to be truncated.
Our likelihood has only been given in an unnormalized form, that is, up to an
unknown normalizing constant which makes it a proper probability distribution
The form of the likelihood function also assumes that the responses ofténe fi
are independent, which is not true as they have been computed partialy fro
the same image pixels. Williams (2005) shows how such measurements can be
handled theoretically. In Section 5.2 we will consider the effects of theetlzied
measurements to the similarity values.

Figure[4.4 illustrates how the probability mass concentrates to the largest
mode when the parametgris increased and the distributions are normalized to
unity mass. The three probability distributions have been derived fromatne s
energy function (or similarity measure). With low valuesfothe distribution is
almost uniform, but wheg is large, most of the probability mass is contained in
the largest mode of the distribution. On the other hand, with larger valugs of
the different modes of the distribution become increasingly separated, laithea
region of low probability between them.

Following the same idea, we can takay similarity function S which
is reasonably close to being a L2-norm distance and compute the likelihood
exp(4'S), which will be close to being a Gaussian distribution.

It should be noted here that as we compute the similarity and likelihood
functions, we implicitly assume that the elements of the feature vectors have more
or less comparable statistics. Natural images have typically a decreasngy ene
distribution of approximately Af > (Ruderman and Bialek, 1994),(Field, 1987).
Due to this phenomenon, there is considerably less energy in the higlefregs.

This causes filters which are small in the spatial domain and correspondhto hig
frequencies to have smaller amplitudes in their response, and the assumption
above does not hold.

The problem can be solved on the filter level by scaling the filter outputs with
squares of their center frequencies so that filters with different é&ecjes have
approximately equal variance (Lades et al., 1993). In our probabifisticework
this means that the similarity measure becomes a Mahalanobis distaace J’
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Effect of likelihood steepness parameter 3
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Figure 4.4: Three likelihood distributions generated from the samaeilarity function
with different values of steepness paramgker

with a diagonal covariance matrx where the elements are defined by the center
frequencies of the filters. Supposing that we have for example filters wih tw
orientations and three scalés= {%, %, 116} in the filter bank, we would choose

C= fdiag

(7‘[7‘[7‘[7‘[7‘[7‘[
T

————— ) — diag1, 1,1/2, 1/2, 1/4,1/4). (4.6)
The resulting likelihood function is
p(J|J) oc efREAINCTIY 4.7)

In general the scaling constants in the diagonad of could be also learned from
data, instead of setting them to be proportionaf o

As an example of the shape of the likelihood functions, Figure 4.5 showes thre
test imagesand their likelihood fields with a filter jet which has been taken at a
single location in the same images. Each of the bumps in the sewer grating in the
leftmost image produces a clean maximum in the likelihood function, and there
are no significant false maxima. Bumps which are in the different orientatzon th
the reference feature are however not at all similar to the refereiaterée as
measured by our likelihood function.

In the centermost image, the test jet is taken inside one of the nuts, and all
other nuts in the same orientation produce a maximum in the likelihood function.
In addition, there are some spurious local maxima elsewhere in the image. In the
rightmost image, the test jet is located at a petal of the flower. Only some of the
other petals in the same orientation contain a likelihood maximum, and there are
several false maxima in the background.

1The images appear courtesy of http://www.adigitaldreamer.com/
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Figure 4.5: Likelihood functions of three natural images, with the refece jet taken
from a single location at each image.

It can be concluded that while the single feature likelihood function is able
to quantify the relationships of local gray-level structures, it is not byfige
sufficient solution for recognizing any but the simplest objects in a viaigles

4.5 Rotation invariant feature similarity

45.1 Motivation

One of the properties of the previously defined similarity measures and the
likelihood functions derived from them is that in general only image feature
which are in the same orientation are considered similar. There are however
situations in which it would be useful to have a similarity measure which is
invariant to rotation, but would not have to use rotation-invariant featufgure

4.6 shows face images and the corresponding similarity fields of a mouthrcorne
feature. The similarity field in Fig. 4.6a) has a maximum at the approximately
correct location, as well as a another local maximum at the left nostril. Fig.
4.6b) has been rotated twenty degrees, which causes the maximum at the mouth
corner to diminish because the orientation of the feature is not correcotie
maximum at the nostril withstands rotation better, and becomes the strongest
maximum in the image. However, rotation invariance of individual featuras ca
be useful even when the object as a whole is in the same orientation. In Fig.
4.6¢) the corners of the mouth point downward due to individual variatiod,

the maximum of the similarity is in an incorrect position at the mouth line.
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a)

Figure 4.6: Face images and the similarity fields of a mouth corner featline reference
jet has bee taken at the location denoted by the red croses ieftmost image.

4.5.2 Rotation invariant similarity measures

Recall the phase sensitive similarity function (Wiskott etal, 1999)

Re{j<1>Hj(2>}
NIV

In order to extend the similarity measure to be rotation invariant, we can compute
the inner product in all B relative discrete rotation angles of the filter jets and
choose the Iargeét (Ng et él., 2005), using

Si(J?P, 1@y = (4.8)

S = max S (shift(7%,i),7?), (4.9)

N,...,

where Shif7,i) means an operation where the componentg] dfave been
shiftedi index locations, and complex conjugated when they wrap around to the
beginning. In component form this is

~ IO \ =

N-1
1 (1) -
S=— ( max Y Re(j Jk<2>>> . (4.10)
N-1 k=0

Here a negative index filteri is interpreted as complex conjugate filter of the
positive indexN — i (this is because the response of the Gabor filter has equal

amplitude and opposite phase when a 180 degree rotation is performed) and
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indicesN +1i,i > 0 wrap around te-N + i. Apart from the rather cumbersome
indexing scheme, this is a straightforward, but computationdlytitlnes more
demanding procedure compared3o
Now, an extension of the previous discrete scheme to continuous case is

proposed. Let us expand the discrete filter respghsénto a continuous one with
rotation angled using the steering coefficienks(), so that the jefy® consists
of filter responseg,”(0) = ¥, ki(6)j . Now we can compute the similarity
between7¥ and 7 in any continuouselative orientation angle and choose the
largest,

S = max$, (Steer(7®. 6) . 7?) . (4.11)

where Steef7], 0) is the steering operation with a rotation anglén component
form

= ; Ic. (D)@
S = Mg & Re[ (ZW)JHK) i } - (4.12)

The norm of the steered j&t" is preserved exactly only if the steering is exact.
Approximate steering causes slight variation in the norm, but normalization may
still be performed only after maximization to lessen the computational cost, if
the maximum steering error is small. The computational cost of the steerable
similarity measure is dependent on how the optimization of the relative rotation
angle between the filter jets is performed. A simple exhaustive search irsa den
grid increases the computational burden even more compared to the similarity
function S,.

Alternatively, the optimization of the steering angle can be performed only
using local optimization. This is a similar idea to what Wiskott et al. (1999) used
in estimating the displacement of filter jets: only now, we would try to estimate
the relative rotation of the filter jets.

In Chapter 7, where the similarity functions introduced here will come into
practical use, we will employ the similarity functid®, and a variation of the
similarity function S without the maximization of orientation in this stage,
described below in Section 4.7.2.

We illustrate the behavior of the different similarity functions with two
example images. Fig. 4.7 shows the likelihood fields (derived from the similarity
measures) of a corner feature (marked with a white cross) in a synthetinéese,
computed using Egs. (4.8), (4.10) and (4.12). A filter bank with four taitéons
is used, with shape parameters= [2.5 1.75].

The similarity functionS, provides best localization of the correct feature,
but withstands only small rotations. The similarity functi§nhas generally an
unequal response with respect to rotation, and only orientations whaghresent
in the filter bank provide the correct response. Orientations betweea iftise
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bank have their similarity maxima split in two and shifted away from the correct
feature location. The similarity functiof has equal response in all orientation
angles. However, as a consequence of rotation invariance, fegecdicty is
lower than with the two other measures, and the localization capability is worse.

The normalization factom, which is present in all three similarity
measures, provides contrast invariance and causes medium similarity t@he
found also among background noise.

Figure 4.7: Behavior of three different similarity functions with a shetic test image
(top row), with the test feature marked with a red cross. 8decow: Normalized inner
product similarityS;. Third row: Discrete angle rotation invariant similari8y. Bottom
row: Continuous angle rotation invariant similariy.

Fig. (4.8) shows the likelihood values evaluated at the correct featuagdac
It can be seen that while the likelihood peak fades away without any rotation
invariance and drops quite low with discrete angle rotation invariant me8gute
is remarkably stable with the continuous angle rotation invariant me&ufde
likelihood functions are not highly sensitive to the filter shape parameteesialu
and while the filters used in this example do not retain the shape of their impulse
responses very well under steering (error is approximately 6%), thdrardly
any noticeable variation due to rotation in the likelihood field of the funcBgn
despite the steering error.

Fig. (4.9) shows the likelihood fields &, $ and S of real-world face
images. Here, eight filters with shape parameters- [2 4] were used. The
reference Gabor jet feature was obtained from the mouth corner offtheots
face, marked with a red circle. The five test images have been rotated)fde
and the manually annotated feature locations are marked with circles in their
similarity fields. Eight basis filters are useful in making the features specific
so that the mouth corners are recognized well, but without rotation inearian
even small rotations cause the similarity to drop drastically, and detection is not
possible. Only image 2 has a good maximum at the correct location, and in images
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Figure 4.8: Likelihood values evaluated at the correct feature locatiaifferent feature
orientations.

1, 4 and 5 the annotated locations have much lower probability than incorrect
maxima elsewhere in the image. In contrast, similarity functigrendS; provide
very good feature localization, with a clear maximum near the mouth corner in all
test images. In images 2 and 3 the maximum probability is not exactly at the
annotated location, but this caused by the manual annotation being away fro
the mouth corner location in the gray-level image. The differences bettheen
performance ofS, and S; are masked by the large variation occurring in natural
images. The similarity measures alone do not suffice in solving the face alignmen
problem, and the ambiguities caused by feature variability have to be rednived
including the information in the relative locations of the detected features.

We should note here that the rotation invariant feature similarity functions
are not necessarily desirable for local feature based object modeirigh is
the main topic of this work, as it may be better to handle the optimization of
orientation in the object level. Instead, the similarity funct@may find use in
other applications such as rotation invariant texture classification usingrGab
type filters, as steerability allows efficient optimization of orientation without
recomputing the filter responses.

4.6 Orientation analysis with feature similarity

Full rotation invariance is not always a desirable property of a similarity oreas
Its main drawback is that the detected features become unnecessariticgene
especially if it is known in advance that the features cannot appear ipaasjble
orientations.

The probabilistic formulation of the feature likelihood function allows us
to incorporate additional information into the feature matching scheme in a
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Figure 4.9: Similarity of a mouth corner feature, marked with a red @rdietween the
reference image R and five independent rotated test imagéps (Rows from top to
bottom: original images; Normalized inner product simflaS;; Discrete angle rotation
invariant similarity S; Continuous angle rotation invariant similari§s. Even a small
plane rotation in the image necessitates rotation inveedecause the filters are very
orientation-specific.

theoretically consistent way. Instead of maximizing the similarity with respect
to orientation, we can consider the likelihood function of a featurd jgossibly
in any orientatior® and a reference feature jét,

P(J(0)]J',0) x exp(S(I(©), I") (4.13)

and multiply it with a prior probability of the orientation angfg6), obtaining
the joint posterior probability of the filter jet and the orientation angt&

P(J(©), 013" o p(I(©)]J', 0)p(®). (4.14)

The role of the prior is to make the likelihood less ambiguous by ruling out
orientations which are not considered probable to begin with. While it may
seem excessive to first compute the likelihood at all orientation angles and th
ignore some of them in further analysis, this is the theoretically correct way to
make inferences about the orientation angle in the Bayesian framewaudtidat
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engineering solutions may choose to skip a step in between and rule out some
of the improbable orientations already when computing the likelihood because
of performance reasons. The Bayesian framework is especiallyl wgleén all
orientation angles can occur, but it is known in advance that some are more
common than others.

4.7 From features to objects

Once we have defined how to measure the probability of two filter jets repre-
senting the same feature, we will proceed to construct a probability measure
for objects which contain several feature points. In our frameworkotdbjare
modeled as collections of filter bank responses at specific image locatibits, w
are connected by a graph structure, similarly to the object model proposed
(Lades et al., 1993). This makes is possible to evaluate the probability of a
complete object consisting of local features. Our probability model is mainly
based on the likelihood model of local features.

4.7.1 Object likelihood models

Denote the locations of features in the image plane witbAssuming that the
filter responses from jets at different locations are statistically indepénade

can write the joint likelihood of all observed filter respondest locations< as a
product of the independent feature likelihoods,

P, = []pE®1", %)
l_[exp<,BS<J“)(xi), J’“)))
_ exp(ﬁZS(J(i)(xi),J’(i))>. (4.15)

The likelihood of the object with a feature configuratiois thus simply the sum

of the individual similarity scores, multiplied by the constgrdand exponentiated.
The feature locationx can be themselves parameterized via an object

geometry modelM. The probabilistic inference is then performed on the

parameters of the mod®&. The parameterization & may contain for example

pose parametes so that the location of featuren the image plane is given by

Xi = M;(0). The resulting likelihood function is then given by

R

P10, M) exp(ﬂ 3 S(J(i)(Mi ), J’(”)) . (4.16)
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In the case when steerability is taken into account, the modél'jeis dependent
also directly on the pos#, and the likelihood becomes

p3|1J, 0, M) o exp (ﬂ > S(J<i>(|v|i 0), ), J/“))) : (4.17)

The likelihood functions are again only given in the unnormalized form.
The scalar normalization constant which multiplies the unnormalized likelihood
function and scales it so that it is a proper probability distribution with a totamas
of unity, is very hard to compute, as it can be computed only by integrating ove
all possible configurations of all possible feature locations.

Sullivan et al. (2001) note that a single object model does not suffiem as
adequate probabilistic account of all image data. In principle the backdrou
should also be modeled, so that we can compute the likelihood function of the
whole image. Constructing a probabilistic model for generic backgrounds is
however plausible only if the object models are also quite simple, such as the
ones considered in (Sullivan et al., 2001). It would appear almost isitdego
construct a probabilistic background model with the same level of complexity
as the ones typically employed in human face recognition, for example. Like
Tamminen (2005) notes, if the competing models do not describe the data with
the same accuracy, we always have to make the decision between expiaaing
data with a complex, but accurate model or a simple, but inaccurate model, and
it is not straightforward to compare the probabilities of the competing models,
because the normalization factors of the likelihood functions are not known

4.7.2 Posterior analysis

In a Bayesian framework, inference is performed on the posterior digtibof
the random variables of interest. In an object recognition problem tteesbles
can include for example object poge Using the Bayes’ theorem, the posterior
distribution of the pose is formally obtained as

p|J, 8, M)p@|J, M)
J, PQIJ, 6, M)p(@]J, M)do

p@13,J, M) = x pJ|J, 0, M)p@|J, M)

(4.18)
The power of Bayesian analysis often stems from the fact that it is pogsible
write the posterior distribution in such a form that effective prior probability
distributions can be constructed. In our case, this information would bedediu
in the prior distributionp(#|J’, M). However, it is not obvious what kind on
information should be built into the prior distribution, and for the purposes of
Chapter 7, we will simply choose a flat prior for most element#.oBecause
of the flat priors, our apporach is not very different from Maximum llkeod



58 Probabilistic framework for inference of images

analysis, and the focus in Chapter 7 is in the complex shape of the likelihood
distribution p(J|J’, #, M) which largely determines the shape of the posterior
distribution.

4.7.3 Practical implementation

Specifically, in Chapter|7 we consider two parameterized rigid object mddiels

In Section 7.2 which considers rotations in the image plane, the parameterization
of M consists of planar rotatiofh, global scales and object centex., Y. in the
image plane. In absence of strong prior models, we choose a flat pribefterm
p(@|J, M), and the posterior distribution is directly proportional to the likelihood
function.

In Section 7.5 which considers rotations in depth, the parameterizatibh of
consists of three rotation anglés ¢ andy as described in Section 6.3, global
scales and object centexc, Y. in the image plane. The only informative prior
probability term here is the choigg ~ cog¢) for the elevation anglé. The
justification for this choice is discussed in Section 6.3.

The rotation invariant feature similarity measures presented in Section 4.5
include optimization of the pose angle. This can be done already in the feature
level for each feature separately, but since all features of a rigitoshare the
same orientation, it is typically more appropriate to estimate (or optimize) the pose
of the object as a whole. Instead of maximizing the similarity of each feature in
the measur&;, the approach we will use in Section 7.4 is to define an orientation-
dependent similarity function

—; ” iY@
S6) = Saney ;Re[<i2k.<9)1i+k) ik ] (4.19)

and handle the optimization of planar rotatiérin the random sampling stage
by finding the largest mode of the posterior distributiorf gimong other model
parameters.

4.8 Monte Carlo sampling algorithms

Regardless of their exact formulation, image likelihood functions are typically
multimodal, having many maxima. Consequently, local optimization methods
require good initialization heuristics in order to find the best maximum, and are
otherwise prone to getting stuck in poor solutions, never finding the stronge
maxima. In order to reliably find good solutions, global methods are required
In this work we will choose to employ random sampling methods in order to
explore the likelihood and posterior probability distribution functions. Nest w

will briefly review some Monte Carlo sampling algorithms, which can be used to
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obtain samples from the distributions even when the distributions are givgn on
in unnormalized form.

The aim of a Monte Carlo sampling algorithm is to produce random samples
which follow some given target distributiop(x). From the samples; we can
compute estimates such as the expected vEa[j®f some quantityf by

1 N
E[f(X)] ~ NZ f(x). (4.20)
i=1

The sampling methods we employ here require the target distribution to be known
in the unnormalized fornp(x) = %p*(x), as the normalization constait
cancels out in the computations. This fact makes the Monte Carlo methods very
useful, as the computation of the normalization constant can be very haveror
impossible in practice because of the high dimensionality of the integrals.

4.8.1 Metropolis sampling

The classical Metropolis sampling algorithm, originally devised for problems in
computational physics (Metropolis et al., 1953), uses an acceptgectbe rule

to converge to the specific target distribution (Gelman et al., 2003). Matsop
sampling is very straightforward to implement and requires only that the values
of the function defining the target distribution can be computed.

First, the algorithm is initialized by sampling an initial statefrom astarting
distribution py(x), for which pe(x°) > 0.

In order to move from one state to another, we sample a candidatexstate
from ajumping distribution J which can be chosen freely as long as it holds that
J (XalXp) = J(Xp|Xa), that is, the probability to jump from sta#éeto stateb is the
same as the probability to jump from stéteo statea.

We then accept the candidate states the new state with probability

p = min (1 7 (<) ) . (4.21)

? JT(Xt_l)

This rule means that we always move to the new state if it is more probable than
the previous state. In addition we move to the new state also occasionally when
it is less probable, with a probability given by the ratio of the probabilities of the
two states. Otherwise we remain in the same statexardx' 2.

Repeating the jumping procedure over and over again and updating teatcur
state according to Eq. 4.21, we obtain the sequahce?, . . ., a random walk in
the parameter space, which converges to the target distribption Typically
some amount of samples from the beginning of the sequence are distarded
order to eliminate the bias due to the choice of the initial state
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Metropolis-Hastings algorithm is a generalization of the previous proeedur
that removes the requirement that the jumping distribution must be symmetric and
modifies the acceptance probability rule accordingly to

o 7 (X*)/ R (X*[X )
p = min (1, n(X‘—l)/J[(Xt—1|X*)> (4.22)

in order to account for the asymmetry in the direction of the jumping probabilities.

The components of the parameter vectaran be even updated one by one,
accepting the proposals according to

p=min|1, 70 |X\“ )/Jt(Xi'Xi X)) , (4.23)
7 O IX )/ 0§ X\ )

where \{j} denotes all components except This is thesingle-component
Metropolis-Hastingsalgorithm, where each of the parameter components has
its own jumping distribution, which can depend on the current values of all
components.

4.8.2 Gibbs sampling

Gibbs sampling can be interpreted as a special case of single-comporisspdlis-
Hastings algorithm, where we choose the jumping distributions to be the full
conditional distributions of the parameter components,

JOGITH X = X (4.24)

This results in the acceptance probability being always equal to 1 (Gelnadn et
2003). Whereas Metropolis and Metropolis-Hastings algorithms only re ¢t

we can compute the joint probability of any parameter vak@s Gibbs sampling

we need to be able to compute the full conditional distributions of the parameters
which can be significantly more difficult to obtain in analytical form. When this
can be done, Gibbs sampling can be very efficient.

If the analytical expressions for the conditional distributions of pararmerer
impossible to obtain, one can resort to numerically evaluating the joint distribution
m(x) along the linex; € R (or some smaller subset of possible valuex;f
keeping the other parametexs;, fixed, and drawing a random sample from
this empirical full conditional distribution using the inverse-CDF method (Gentle
1998).
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4.8.3 Population Monte Carlo sampling

Population-based Monte Carlo methods borrow ideas from severatesotw
produce a Monte Carlo simulation algorithm which is not concentrated on
generating a single sequence of samples but rather samples the targmitaistr

in a parallel manner (Cappe et al., 2004). In some respects the PMQlaigor
can be thought to have common ground with genetic optimization algorithms (Liu,
2001), as they sequentially generate a new population of particles (ofesgmp
based on the previous generation, and the fithess of the members of thatipop

is measured individually by evaluating the target function. However, unlike
genetic optimization algorithms, which concentrate on finding the maximum of
the target function, Population Monte Carlo sampling produces actual sample
from the whole of the target distribution. The PMC algorithm is given in
pseudocode in the following.

Algorithm 1 PMC SAMPLER
Require: Densityn(-) to be simulated

fort =1.T do
fori =1..N do
Select the generating distributiopn (-)
Generate! ~ gt (X)
Computep = 7 (x}) /it (X))
end for
Normalize thepj’s to sum up to 1
ResampleN timesx!'s with replacement, using the weight§, to create
the samplgx; ... x\}
end for

A remarkable property of the PMC scheme is that the generating distributions
gi: (-) can be chosen freely for each particlat each generation This makes it
possible to use heuristics which guide the sampler toward the modes of the targe
distribution (-) while the samples themselves are still guaranteed to follow the
target distribution. These theoretical results are however true onlyferss
with an infinite number of particles. In practice, only up to a few thousand
particles are used, and the samples can become biased.

Like Metropolis and Gibbs sampling, also PMC sampling requires initializa-
tion. Initial distributions for the parameters must be chosen, and the particles
in the first iteration are generated from these. The initial distributions can be
significantly wider than the generating distributions at subsequent iteraions
that the PMC sampler first spreads the particles everywhere in the paramete
space and subsequent iterations will concentrate the samples to regimims wh
have significant amounts of probability mass.
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Chapter 5

Numerical experiments with
oriented filters

5.1 Introduction

In order to lessen the computational cost and memory storage requirements o
would like to find a generic set of filters and use it for all inference on images
The problem with this approach is that the desirable filter properties can be
conflicting: good steerability provides rotation invariance, but poses a limmtatio
for the angular bandwidth and thus for the feature representationitigpatthe
filters. Feature detection and recognition may benefit from differermigsties

of the data, and we will attempt to answer the question whether the same bank
of filters can be good for both feature localization and recognition. Fuyrie

wish to systematically find good design parameters for the Gabor-type fittkr ba
employed in/(Wiskott et al., 1999) and (Tamminen, 2005), who have @wdbdrr
different filter bank designs in a highly similar object matching tasks.

In Section 5.2 it is first shown how the similarity values produced by the filter
jets remain usable for recognition even when using shape parameterhitbr w
steering performance is relatively poor. The design parameters of ar Glir
bank are experimentally evaluated in Section 5.3 using a full object matching
system, in order to find the best parameters for object localization angni¢ion.

In Section 5.4 the best parameters of a similar filter bank using angular i@auss
filters are sought, and their performance is compared to the filter bank with
Gabor filters. Section 5.5 compares the recognition performance of efiffer
filter families and their Gabor-type approximations and Section 5.6 considers th
effect of the complexity of the feature models. We will concentrate on systems
using oriented filters. Comparisons of the localization performance of fieetob
matching system with respect to other approaches presented in the literature
can be found in (Tamminen, 2005), and extensive comparisons of mgoog
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performance between different face recognition approaches usigréype
filters can be found in (Shen and Bai, 2006).

The recognition method we use in the experiments is a simplified version of
the probabilistic object matching system presented in (Tamminen, 2005). Namely
in our likelihood function the feature models of an individual are based on a
single example image, whereas Tamminen (2005) uses distribution modeling and
Wiskott et al. (1999) multiple feature prototypes learned from seveainpie
images. The simplified recognition method we employ here realistic, but not state-
of-the-art, and instead of aiming to optimize the filter bank in terms of recognition
performance in a practical setting, the goal of the recognition experimetds is
bring out the differences in the feature representation capability of thelfdtes.

The quality of the pairwise feature similarity studied this way is highly relevant
also for methods which use multiple feature prototypes and nearest neighbo
classification, as the distance measure is based on pairwise comparison.

5.2 Filter jets as approximations of continuous responses

In this section, itis investigated how the theoretical results in Chapter 3 wonge

the steerability of a filter bank relate to the filter responses from natural snage
in a practical setting, and how the steering approximation affects the similarity
values in natural images.

Filter banks can be considered as a collection of discrete samples from a
continuous filter function, if we consider the filter parameters to take contsuo
values. The responses of the continuous filter functions at a givetidoda
the image plane (filter jets) are then also continuous-valued functions, with filte
parameters as their variables. However, while one can compute clased-fo
expressions for the continuous-valued filter jets at image features suicles
and step edges, these are more useful in theoretical consideratiopiactital
image analysis in which the images themselves are typically represented only as
samples, a sampled representation of the filter function is appropriate, giithou
the sampling may in general lose some information.

Having resorted to sampled representations, one would wish that the samples
will provide a good representation of the continuous filter jet. Exact dtditya
and shiftability guarantee that the full continuous filter function (and agunsetly
also the linear filter responses) can be exactly reconstructed from ttretdis
samples. For parameters which have unbounded range, such astivarestal
scale, this can obviously be possible only in some finite interval. The orientation
parameter is different in this sense because it is limited to a finite interval. Since
orientation is inherently periodic, the exact reconstruction condition is in #sis ¢
related to the classical Nyquist sampling theorem which states that in order to
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reconstruct the original continuous signal from samples, the sampliqgeney
must be greater than twice the input signal bandwidth. This requiremgmbgee
a strong constraint to the shape of the possible exactly steerable filtertheOn
other hand, filter jets with a finite amount of Gabor filters always violate the
sampling theorem because the angular frequency of Gabor filters isandt b
limited in principle.

Steerability allows us to compute a continuous approximation of the filter
response given the discrete basis filter responses, using Eq. 3.5eapihd
in mind that the even and odd filters require separate steering functions. With
complex Gabor filtergy, centered on the feature in the imalgave approximate
the continuous convolution result with

N
Lxg®) ~ Y kF%O) (1 xRe{gy}) +ikj™©@) (1 x1m{gy})
j=1

z

= Y _KkFO)Re{J;} +ik/™@)Im {75} . (5.1)

j=1

In other words, the filter jets are directly weighted with the steering functibns o
the basis filters.

Fig. /5.1 shows the real and imaginary parts of the complex orientation
responses at an eye corner feature with filters whose center frggisen¢4.

At this scale, the eye corner is mostly a line feature, corresponding to a large
negative response of the even filter (real part) at a diagonal oriemtdftlee odd

filter (imaginary part) responses are more varied for this feature, depean the
shape parameters, but all give some response to an approximatelyntalrexige
feature.

Because real and imaginary parts of the signal are modeled separagely, th
phase of the approximation is less accurate than its magnitude. However,
inaccuracies in phase are large only when the magnitude of the signal is small.
In general the approximations are perhaps even surprisingly goed: teough
a filter with the shape parametergs = 4, oy = 4 is hardly steerable at all with
four basis filters (maximum relative error in the impulse responses of thesfilter
measured with Eq. 3.10, is about 68%), the approximations are qualitativiédy g
similar. With eight basis filters ang, = 4, oy = 4, maximum relative error in the
impulse response, computed with Eqg. 3.10, is still 13%, but the filter amplitude
response approximation is almost indistinguishable from the correct coosnu
response.

In general, Ed. 3.10 gives a worst-case estimate of the filter impulse respons
error, and the errors in the actual filter responses are much les® selleere
appears to be no breakdown behavior in the filter response approxisiation
although the Gabor filters themselves lose their steerability rather quickly if
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Figure 5.1: Steerable approximations of the real and imaginary pagtsgnd green line,

respectively) of the continuous orientation responseg(bhe), with different numbeN

of basis filters and different filter parameters. Ticks onhltbezontal axis mark the angles
of the basis filters, where the continuous response coiseiité the approximation. The
red dot in the eye image denotes the annotated featuredacati
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the shape parameters are not suitable. This phenomenon may be related to the
frequency spectra of typical natural images, so that the convolvedlsigre in

some sense smoother and easier to interpolate than the basis filters themselves.
It should be noted that the continuous response cannot of coursgabtdye
computed, and we have only approximated it here by using a large number
(N = 100) of basis filters.

In the probabilistic feature detection framework outlined in Chapter 4 the
filter responses are further processed by computing a similarity value dretwe
two filter bank responses. Ultimately, the factor that affects the perforenahc
the complete object matching system is the quality of the similarity values, not the
filter responses.

It turns out that even severely undersampled filter banks, which doaver
the whole frequency domain in orientations, give similarity values which dte qu
close to the similarity values of the densely oversampled filter bank Witk
100 orientations).

Figure 5.2 shows correlation plots of the similarity values of annotated feature
locations and random locations. The eye corner was again used ad featie®,
and similarity values were computed in 37 test images. Four different filtpesha
parameter values, with 4, 6 and 8 basis filters were used. With low, spherica
shape parametersy = oy = 2), even the bank with four basis filters gives very
good approximations of similarity values of the continuous filter bank.

Increasing the radial shape parameteroto = 4 or the angular shape
parameter t@ry = 4 results in additional variance between the medium similarity
values of the two filter banks, but it is noteworthy that similarity values at the
feature locations are less affected.

With larger shape parameters the similarity values of the four basis filter
bank begin to deviate from those of the continuous bank. With shape parame
ox = oy = 4 there are quite large differences in general in the similarity values
compared to the continuous filter bank. Four basis filters become now aisnffi
as the errors in the background similarity values are so large that they toegin
overlap with the similarity values at annotated locations.

The increase in the background similarity values can be seen better with even
larger shape parameters,(= oy = 8). The similarity values at annotated
locations still correlate quite well, but especially with four basis filters, some of
the random background locations get incorrectly high similarity scores.

In general, larger values of the shape parameters result in compre$sien
similarity values toward zero. As the filters become spectrally very selective,
it becomes rarer and rarer to find a feature location with a similar filter bank
response. This compression effect occurs to some extent regastileesrumber
of filters in the filter bank.

The previous test measures feature representation capability only afl@ sin
orientation. To illustrate the effect of steering approximation in addition to the
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Figure 5.2: Correlation of continuous and discrete similarity valueishvdifferent
filter shape parameters. Red and blue dots correspond tastynvalues at annotated
feature locations and random locations anywhere in the énagpectively. See text for
discussion.
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effect of discrete orientations, we construct a filter bank which considtkers
which have been shaped as if they were steered to the intermediate artes, w
the steering approximation has largest error. The filter orientations thesssely
unchanged. This allows us to study the direct effect of the steering@pmation

to the similarity values. Figure 5.3 shows correlation plots of the continuous
similarity values and the worst-case steered similarity values. Comparing to
Figure[ 5.2, it can be observed that the discrepancy between the two similarity
values is larger in general. However, it is noteworthy that even whemirsgee
error is fairly large (for example, 13% with the valulls= 8, ox = oy = 4), the
similarty values correlate very well.

Using the presented examples one may predict that in feature detection
applications using the similarity function framework, gaps in the frequenayepla
coverage of the filter bank are not critical for detection performancewea
decrease the number of filters in the bank or increase the values of the filter
shape parameters, the discrepancy between the similarity values of theioastin
filter bank evaluated at the feature locations becomes evident later thaiomena
would expect based on the errors in the steering performance or thgofun
approximation using Eg. 5.1. Also, the steering error is qualitatively sudh tha
it appears to preserve the similarity values well at the feature location$aayed
discrepancies are mostly found in the random background locationsadtiqa,
this means that in the presented feature detection framework we can use filter
banks which have in principle quite poor steering performance, and stélrob
good rotation invariance. However, it should be kept in mind that bectugse
suitable filter parameters are dependent on the properties of the datayersal
conclusions can be made about the minimum number of filters in the bank.

5.3 Gabor parameters and recognition performance

In the previous section we saw that although steerability is a very fragilétmmd
approximations of continuous responses and especially the similarity vaiees e
without the steering correction can be good enough in practice with a wide ra

of filter parameters, even with highly undersampled filter banks which do not
cover the whole frequency space evenly. In this section, the effeittef
shape parameters and the number of orientations and scales to the renognitio
performance of the system is studied. Moreno et al. (2005) consitiezatesign

of Gabor filter banks for local feature detection, but limited their analysis to
spherical (isotropic) Gabor functions, with = oy.

We measure the recognition performance using different filter banks with
two separate face image databases. Three approximately frontal images of
40 individuals were chosen from the ORL database. Five different emag
of 15 different persons were chosen from the image sequences d&idlie



70 Numerical experiments with oriented filters

N=4;0 =2,0 =2 N=6;0 =2,0 =2 N=8;0 =2,0 =2
y y X y

worst-case steered sim. worst-case steered sim. worst—case steered sim. worst—-case steered sim. worst-case steered sim.

-1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
continuous similarity continuous similarity continuous similarity

Figure 5.3: Correlation of continuous and worst-case steered appwatioms of discrete
similarity values. Red and blue dots correspond to sintjlaralues at annotated feature
locations and random locations anywhere in the image, otisply. Compare with Fig.
5.2.
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database. The first image of each identity was used as the reference image
and the remaining images were classified. The images from the two databases
are show in Appendix A. Since the probabilistic object matching process is
computationally quite intensive, its use for the full BiolD with 1511 images is
unfortunately computationally prohibitive, and only the partial BiolD databas
has be used throughout.

The annotated feature locations included for example eye and mouthsorner
tip of the nose and points at the chin line. A total of eleven feature locations
were annotated in the images from the ORL database. Twenty feature Iacation
were used in the images from the BiolD database. The resolution in the ORL
database images is 112-by-92, with faces quite closely cropped in the images
The resolution in the BiolD database images is 286-by-384 and there ikyusua
a considerable amount of background visible around the facial regieor
performance reasons the resolution of the BiolD database was halvetiiBito
by-192 in the experiments, unless where noted.

The recognition method is similar to the one used in the Elastic bunch graph
matching procedure (Wiskott et al., 1999). The total similaBgy of the face
graph is defined as the sum of the individual feature similarities between the
reference and test images,

SG(JrEf, Jtest) — Z S(J{ef, Jitest). (52)

This is equivalent to the assumption that the features are statistically indeyend
and the total probability of all features is the prodérct= [ [; pi of the individual
feature probabilitieg; o« exp(8S). A person is recognized correctly if the test
image has a higher graph similarity with the training image of the same individual
than with any of the other training images. The ORL databases has three images
of a single individual. The first one of these is used by the recognition hasde

the training image, and its similarity is compared to all images in two separate test
sets, which consist of the second and third images of all individuals. @&t
BiolD database was similarly divided into a training set and four test seth, ea
containing all individuals’ images once. The average recognition rate idysimp
the number of correct classifications divided by the total number of cleestbifin

tests averaged over the test sets. Chance level of recognition is 1/49+6x.@2e

ORL database and 1/15=0.067 for the partial BiolD database.

Comparing to the Elastic Bunch Graph Matching method, we are using here
only a single exemplar for each individual. Thus the recognition rate messur
how well the filter responses describe identity in a pairwise comparisone Sinc
the test images of each person are quite similar to the training image, with
no large variation in pose, illumination or accessories, a pairwise comparison
is appropriate and helps to bring out the differences in feature repetsm
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Figure 5.4: Classification results with the ORL and partial BiolD datsds using
annotated feature locations.

capability of the filters.

5.3.1 Recognition performance with annotated locations

In order to separate localization and recognition effects, we first tesgnétion
performance with different filter parameters using manually annotatedréeatu
locations. We begin by using DC free near-Gabor filter banks which tieee
scales in octave spacing, with the highest frequency at the Nyquistflimaitr /2.

The tested parameter rangg < [1,6], oy € [1,10] covers all reasonable
parameter choices, and at the largest parameter values the filters at ds low
frequency f. = n/8 already produce prominent edge effects near the image
boundaries.

Figure/ 5.4 shows the average recognition rate with ORL and partial BiolD
databases with varying filter shape parameters. The ORL database is more
difficult of the two, containing larger number of individuals and also larger
variation between the images. Apart from very small parameter values ¢poth
andoy less than 1.5), which lead to poor recognition performance with both test
databases, the recognition rate is not highly dependent on the shapecpens.

The ORL database gives best recognition scores with shape parainetiees
regionoy € [2,3.5], oy € [2.5, 7], while the BiolD database favors very narrow
and elongated filters, withy, ~ 1.5 andoy € [4, 10].

5.3.2 Recognition with face matching

Next we test the effect of the filter shape parameters in a realistic faceinwtch
application. We use the hierarchical Bayesian feature matching systeg usin
Gibbs sampling presented in Tamminen (2005). The feature likelihood fields
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Figure 5.5: Classification results and average distance of detectadrésafrom their
annotated locations using face matching.

are not rotation invariant and are computed with Eq.| 4.5, using the likelihood
steepness parametgr= 10. The Bayesian feature matching system employs
a full covariance model for the feature locations in order to describe their
interrelated correlations.

We begin by using a filter bank of three scales with center frequencies
in octave spacingfc = (5 7 %), and six orientations at each scale. Figure
shows the recognition performance of the feature matching system with
different filter shape parameters, and the average distance of théeddmtures
from their annotated locations. Comparing the recognition results with the
ones obtained with manually annotated locations, we can conclude that the two
are qualitatively very similar. Recognition performance is in general slightly
worse with face matching, reflecting the fact that the feature matching stage
occasionally fails to find the correct feature locations. The averagendesteom
the annotated features begins to grow when- 4, causing also the recognition
performance to suffer. While very small filter parameter valugs=£ oy ~ 1)
cause the recognition performance to drop drastically, the averageadistam
annotated locations does not become excessively large. Such smalldiillers
localize features quite well, but their responses are too generic to biemffic
recognition.

The choice of octave spacing in radial frequency bandwidth is notssadéy
the best possible. Let us define radial bandwidth spaBing the filter bank as a
ratio of the filter center frequenciefg and f/ at successive scales with

fe
B =log, T (5.3)

C

This means thaB = 1 gives a filter bank with octave spacing, where the filter
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scales double in size at every level. Figures 5.6/and 5.7 show the recognitio
results of ORL and partial BiolD databases, respectively, with varyiag/étiue

of B. It can be seen that good values for the filter shape parameters depestai
strongly on the value oB, but recognition performance does. Best classification
results are obtained witB = 1.6. Note however that as we change the filter
bandwidth spacing while keeping the highest frequency constant, thegksr
are dependent on the choice of the highest frequency scale. Hemawsaised

fc = /2 which is also the Nyquist limit.

Because the spatial extent of the filter jet grows larger when we add more
scales to the jet, the number of scals has a decisive effect in recognition
performance if we keep the bandwidth spaciBgconstant. Figure 5.8 shows
the recognition performance of the matching system using three, fourand fi
levels of scale, with four sets of filter shape parameters. A higher number of
scales favor filter banks with tighter spacing, and it is noteworthy that tee be
recognition performance is obtained at all number of scales when thestiarge
filter is approximately ten times as large as the smallest filter. With very large
filter spacings, the largest filters would become spatially wider than the image
resolution. Each curve ends when the largest scale is approximately thirty time
the size of the smallest scale. It can be seen that the recognition perte ohaes
not improve significantly if we increase the number of scales from three.

Figure 5.9 shows recognition performance with double resolution (286-by
384) and half resolution (72-by-96) images. The images at double tiEsolu
give nearly as good recognition scores as the regular ones, an@htly svorse
presumably only because the filters at the highest frequéneyn /2 are so small
with respect to the features that they are irrelevant for recognitiordditian, the
best bandwidth spacing is now larger than previously due to this effeethal
resolution images lose information and thus give worse recognition resuies. T
octave spacing is now best with three scales, as larger valuBsledd to the
filters being spatially too large. We can however conclude from theségdisat
the best bandwidth spacing is also dependent on the properties of theetlzga
analyzed. Best performance is obtained when the spatial size of the filtenesa
that of the local features. Unfortunately it is often not clear what conetita
"local" feature.

Because of the object matching algorithm is based on random sampling, there
is some variation in the recognition performance in individual test runs.derao
reliably compare the recognition performance of the four sets of filtenpetexrs
in the previous experiment, we repeated the feature matching and recognition
procedure with the partial BiolD database 30 times, using three freqseatys
andB = 1.7. The average recognition rates and their standard deviations amne give
in Table 5.1. The results certify that the best classification scores aia&ttaith
the elongated filters.
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Figure 5.6: Classification results with the ORL database using face mivagc
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Figure 5.8: Classification results with varying bandwidth spacing andnher of
frequency scales in the partial BiolD database using fac&chivgy. Six different
orientations have been used, except where noted.
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Figure 5.9: Classification results with double and half image resofutioShape
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oy | oy pc £ o¢
2| 21]085+0.03
2| 4| 090+£0.02
2| 6]091+0.02
4| 31|0.724+0.03

Table 5.1: Mean classification scores and their standard deviation30irrepeated
matching experiments, with four different sets of filter pbgarameters. Bandwidth
spacingwas set®& = 1.7.

5.4 Recognition with angular Gaussian filters

The same approach for finding good filter shape parameters is nextchfiphe
angular Gaussian type filter bank. Figure 5.10 shows the recogniticorpexnfice
using a filter bank of angular Gaussian filters. We used polar Gabor fijiteza

by Eq.2.19. Their recognition performance is highly dependent on tfialra
bandwidth, controlled by the parametgr, while angular bandwidth, controlled

by oy, appears much less crucial. This is the same behavior that we saw with DC
free near-Gabor filters, wheeg, related mostly to the radial bandwidth, had a
stronger effect to the performance than We have used the bandwidth spacing

B = 1.5. The optimal value oé; depends to some degree on the choice of the
bandwidth spacing, and also on the properties of the data.

When the angular bandwidth is quite narrow, polar Gabor filters are quite
close to Gabor filters. Indeed, the best recognition scores are not warse
than the best scores obtained with DC free near-Gabor filter banks. &mgp
Figure 5.10 with Figure 3.7 one can see that while best recognition pericema
is obtained using filters with very narrow bandwidth of approximately 15askgr
for best steerability the angular bandwidth should be increased to apateky
40 degrees, where recognition performance already begins to.suffer

5.5 Comparison between filter families

In this section, the recognition performance of the system is compared with
the partial BiolD database using the DC free near-Gabor, polar Gedieed
cosine type filters (Knutsson et al., 1983) and polynomial (derivafizanissian)
(Freeman and Adelson, 1991) filters in order to find out how much the elodic
the filter family affects recognition performance. Additionally, the filter families
and their Gabor-type approximations are compared in order to find out &heth
the near-optimality in the sense of the uncertainty principle, discussed in Bectio
2.6, manifests itself in practical recognition results. Six orientations and three



5.5 Comparison between filter families 79

Recognition performance (BiolD), polar Gabor filters

0.35

0.1
0.15

o~ 0.2}

=

2

E 0.25 10.6
oy

g 03 105
3

5 10.4
8

e}

I

°
>

0.45

0.5

10 20 30 40 50 60
angular frequency bandwidth O, (degrees)

Figure 5.10: Classification results of face matching using polar Gaboerfl Six
different orientations and three scales have been usedpaitdwidth spacin@ = 1.5.

scales were used. The response power of all filter types was equaliress
scales using the/X 2 rule.

Good filter parameters found in the previous experiments for Gabor dad po
Gabor filters are used here. The parameters chosen for the polarfii@bbank
wereo; = 0.3 andoy = 17°, and for the DC free near-Gabor filter bask = 2
andoy = 4.5 were used. Bandwidth spacing was seBte= 1.5 in both filter
banks.

The raised cosine filter bank with six orientations is designed following
Knutsson et al. (1983) and use filters with a4¢6$ shaped angular component.
The angular bandwidth of the filters, defined as the standard deviatian tigo
angular maximum response, is approximately= 26°, significantly wider than
that of the best polar Gabor filter bank. The radial component sughéste
Knutsson et al. (1983) is a log-Gaussian, and a rough optimization gess b
results with the parameter= 0.3. The log-Gaussian profile is disadvantaged by
the fact that the tail of the radial bandwidth profile is quite heavy, whichd¢ad
some aliasing in our filter bank design in the highest frequency dgalen /4.

The derivative of Gaussian filter is a popular choice in feature detection
applications because of its simplicity and exact steerability (Boukerroui,et a
). The number of filters needed for exact steerability, as well asnipalar
selectivity of the filters, is determined by the order of the derivative. tfeoto
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have good angular selectivity, we choose to use the fourth derivdti@awssian
filter, which has a fourth degree polynomial in spatial coordinates and & thu
steerable with five basis filters (orientations). Its Hilbert pair approximation
(from|Freeman and Adelson (1991)) is a fifth degree polynomial, andresgsix
orientations. A disadvantage in using derivative of Gaussian filters isvhagn
only choose the derivative order, and the radial and angular séfiestivannot be
chosen independently. Consequently, the only parameter we can adjuitttee
feature detection problem at hand is the filter center frequency spéairnvghich

the value of approximatel = 1.4 gives slightly better detection results than the
spacingB = 1.5 which was used with other filter types.

In addition to the previously considered filter banks, the results of each filte
type are contrasted with those of a DC free near-Gabor filter bank whibéen
fitted to have a impulse response with minimum approximation error as defined
in Eqg. 3.10. For the Polar Gabor and Derivative of Gaussian filters, éBigdts
in slightly flattened near-Gabor filters (with = [3.5 3.3] ando = [2.9 21],
respectively), whereas the raised cosine filters most resemble slightlya&toing
near-Gabor filters (witle = [2.0 2.3]). The steering errors and approximation
errors when applicable are given in Table 5.2.

The response profiles of different filters in the frequency domain lavers
in Figure 5.11. Polar Gabor and Derivative of Gaussian filters have sjiiéar
shape to a near-Gabor filter, whereas the raised cosine filter has acsigihyfi
non-symmetric response along the radial direction in linear coordinatesodue
the log-Gaussian radial part, and the long tail is not captured by theGedzor
approximation with equal center frequency. Raised cosine and Dgéavatfi
Gaussian filters have nearly identical angular components, which are thiate
those of Gabor and polar Gabor filters in order to facilitate exact steering.

The matching procedure was repeated nine times in order to reduce edrianc
the results due to the random sampling based matching process.|Figuredws2 s
the average Receiver Operating Characteristic (ROC) curves of theéhinwatc
experiments. All filters have highly similar performance with very low false
positive rates. At higher threshold levels where some false recognitiemtseyv
are tolerated, either DC free near-Gabor or polar Gabor have hdstrpance,
with raised cosine filters performing well at low false positive rates but allin
behind at higher rates. Fourth derivative of Gaussian filters perdteanly worse,
suggesting that they have problems in representing the image featuresredmpa
to the other filters.

Table[ 5.2 summarizes the results and some properties of the filter banks in
numerical form. The area under the ROC curve (AUC) is a compact neeasur
the recognition capability simultaneously at different detection thresholds|eve
and can reliably differentiate between "good" and "bad" models (althoagh
between models which are "good" in different ways) (Marzban, 2004)

Using the AUC as a measure of fitness, the two Gabor-type filters, angular
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Figure 5.11: Left: Filter profiles in the frequency domain, with their Gab

approximations drawn in dashed line. Polar Gabor and dervaf Gaussian filters

are quite well approximated with DC free near-Gabor filteshereas raised cosine
filters have significantly larger support than its Gabor agjnation with equal center

frequency. Right: Cross-sections of the filter responsesutih the response maximum
in radial and angular directions.
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Average ROC curves with different oriented filter banks, N=6Average ROC curves with 25% and 75% quantiles, N=6
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Figure 5.12: Upper left: Average Receiver Operating Characteristic @R@urves
using polar Gabor, DC free near-Gabor, raised cosine andldilative of Gaussian
filters. Upper right: Comparison between the average RO@esymwith 25% and 75%
guantiles, of angular Gaussian filters, and similarly sdap€&€ free near-Gabor filter
approximations. Lower row: Average ROC curves and quantiferaised cosine (left)
and derivative of Gaussian filters (right), and their simfl@haped DC free near-Gabor
filter approximations.
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filter type area under steering Gabor fit
ROC curve error (N=6) | error
angular Gaussian 0.947+ 0.014| 0.183 -
DC free Gabor fito = [3.53.3] | 0.9424+ 0.011| 0.126 0.041
DC free Gaborg = [2.0 4.5] 0.956+ 0.016 | 0.499 -
raised cosine 0.9384+0.017| 2-10° -
DC free Gabor fitg = [2.0 23] | 0.945+ 0.008 | 0.067 0.292
4/5th order polynomial (4th DoG) 0.917+ 0.012| 5. 10 ° -
DC free Gabor fitg =[2.9 21] | 0.919+ 0.010| 0.014 0.061

Table 5.2: Summarized results of the matching experiments usingrdifteilter families,
with the steering errors and Gabor approximation errors.

Gaussian and DC free near-Gabor, perform best although their ogtareheter
choices are quite different. The sampling variation is here larger than féet ef

of the shape parameters. Raised cosine filters perform only slightly wase

the best Gabor-type filters and have the benefit of being very wellastieer
Derivative of Gaussian filters are exactly steerable to the limit of numerical
precision, but their recognition performance is lacking compared to alt tiltees

in the test. The difference in recognition performance of the filters and their
DC free Gabor approximations in terms of the AUC measure is smaller than the
sampling variation in all three cases. It can be concluded that the ovéteall fi
envelope shape has a larger effect than the difference betweerighmaldfilters

and the approximations. A good property of Gabor-type filters for neitiog is

that their angular bandwidth is not tied to the number of orientations in the bank.
Consequently it appears that at least part of the good performacehufr@®y/pe
filters is due to the fact that the shape parameters can be more freely dduste
suit the properties of the data, compared to exactly steerable filters.

5.6 Effect of the recognition method

The previous experiments have been conducted using models in which each
feature is represented by a single prototype in the feature space. btorstr
recognition can be achieved by using several feature prototypesedinihd the
similarity function as the similarity value with the best matching prototype. This
strategy allows the representation of more complicated shapes in the fgztoee s
compared to a single prototype models for filter responses. In order tndexte
the relevance of the previous results concerning the filter parameteognigon
results with single prototype and nearest neighbor features are cainpaiee
following.
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Figure 5.13 shows the average recognition rate with the full BiolD database
consisting of a total of 1511 images of 25 individuals. One eighth of the image
database is used as training images and recognition performance is tested with
the remaining images in the database. Filter responses for both training and
recognition are computed at the manually annotated locations. Eight oriestation
and three scales were used, with the bandwidth spaBing 1.6. The full
database can be used here as the automatic matching system is not used. The
results are not directly comparable to the ones in Figure 5.4, where perfec
classification was achieved using single models, but the results again show th
preference for elongated filters. It is notable that the recognition resuttse
nearest neighbor model are almost uniformly good, and depend onlylslah
the filter shape parameters. This is directly due to the fact that ambiguities in
the single filter responses can be remedied by using more elaborate faadure
object models in the classification stage. The filter responses appeart&incon
the relevant information for recognition almost independently of the filtepesha
parameters, but the features are clustered more tightly with respect to idwsittity
elongated filters. Still, even the nearest neighbor model benefits frorgatkah
filters, as the best recognition rates are achieved wjth~ 2 ando, > 4.

The results suggest that a single mean model for Gabor features ghatiwre
manually annotated locations is not sufficient for reliable recognition oftikgen
even when the images have a relatively consistent quality. We note that the
results with 5 scales anBl = 0.7 (the design choice employed e.g. in Wiskott

et al. (1999)) are highly similar to the presented ones. In order to conti@as
results above with those obtained with single models in Figure 5.4, we note that
while the mean model performs worse than the nearest neighbor model, it is
still much more effective than using a single example image from the training
set. Choosing randomly a single example image of each identity from the same
training set as above and using them to classify the test set achieves a maximu
recognition performace of only 0.585, with filter parametgrs= 3 andoy, = 10.

This is significantly worse than the any of the test scores with the mean model.
The difference in performance between the full and partial BiolD daebas
therefore due to the fact that the partial database is significantly easiestifg

than the full database.

Figure 5.14 shows the recognition performance with the partial BiolD ds¢aba
using feature locations found with probabilistic object matching. Since threstea
neighbour approach needs several prototypes for each featereedbgnition
experiments have been performed in a leave-one-out fashion, buildirfigature
models using four of the images of each individual, and testing the recognition
capability with the fifth image. As a result, both feature models are able of
achieve perfect recognition (all individuals were classified correcipgiany
four out of the five images as the training data) with some filter shape parameter
combinations. More important than the absolute recognition rates, hovsetres,
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Figure 5.13: Recognition results with the full BiolD database using maad nearest
neighbor models for the features, with eight orientatidredwidth spacindd = 1.6
and 3 scales. Filter responses for recognition are compmttéte manually annotated
locations.
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fact that difference in the performace of the two models with smallanishes,
and the mean model is equally good in recognition even vehea 1.

As the feature models in this experiment are based on automatically found
locations, the features tend to be more tightly clustered in the feature space,
because the feature models are learned using image locations which leave be
found using the same similarity measure which is applied in recognition. The
difference is especially evident in high frequencies, where the plaspanent
varies spatially very quickly, and manual annotations often have inconfsiste
phase, which makes their recognition performance poor although the deatur
points themselves are very close to locations which would cluster tightly with
respect to identity. Two solutions to this problem of manual annotations are
to either adjust the feature locations automatically or to discard the highest
frequencies which are most sensitive to small displacements.

5.7 Discussion

From the previous experiments we can conclude that in order to achiexk go
recognition performance with a face recognition system based on Gkéor-
oriented filters and numerical optimization of point feature locations, the D& fre
near-Gabor filter shape parametgrshould be quite small, so that the real and
imaginary parts of the filters have only a few sidelobes in the spatial domain
and do not cause false maxima to the similarity functions. On the other hand,
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Figure 5.14: Recognition results with the partial BiolD database usirgamand nearest
neighbor models for the features. Feature models for rétograre based on filter
responses at locations which are found automatically ysiobalistic object matching.

the parameteb, should be large enough so that the DC correction does not
worsen localization performance. The value of the paramstés less critical,
but recognition performance is slightly improved with filters which are spatially
elongated in the direction orthogonal to the wave vector (in other wordssfilte
which have wider bandwidth in the angular than the radial frequency dioréns
that is,oy > oy.

As the parameter region where Gabor and near-Gabor filters ardédasttde
lies whereoy < oy, regardless of the number of basis filters, we face a dilemma
in the filter bank design when attempting to use steerability as a guideline. Good
recognition performance and good approximate steerability of Gaboffitigys,
with a low number of basis filters, appear to be conflicting design goals.arhe s
behavior was also seen with angular Gaussian filters. While DC freeGuadznf
and polar Gabor filters which are approximately steerable can be quitiemffic
in recognition, best performance was obtained with filters which are warro
in angular bandwidth than what is required for good approximate steerability
Compared to exactly steerable filters, approximately steerable filters have the
benefit that the number of orientations is not tied to the parameter controlling
the radial bandwidth. This gives the filters more flexibility in adapting to the
properties of the data, with the obvious cost that some steering error.

It is interesting to note that the data from physiological measurements of
simple cells found in the mammalian visual cortex suggest filter banks with an
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elongation ratio oby /oy = 2/1 and bandwith spacing equivalentB = 1.5
(Daugman, 1980),(Daugman, 1988). These parameter values aretilmenyih

the findings of this chapter. However, drawing strong conclusions $uch facts
that may be only coincidental should be avoided. Our data representa smigl|

and very specialized feature detection task, whereas the mammalian visteahsy
has to cope with a much wider variety of scenes. Also, although the EBGMImode
is biologically inspired, there is no direct biological evidence for the fegjets

or the feature graph representation which our system uses.

Compared to other artificial engineered recognition systems, we first radte th
our findings regarding the shape of the filters are compatible with the feature
selected with both Gabor Wavelet Network and Adaboost algorithms (Siten a
Bai, 2006), which both favor elongated filters with only a small number of
sidelobes.

Table 5.3 gives some Gabor-type filter bank designs presented in the ligeratu
for feature detection and texture classification applications, and theireshap
parameter values converted to our parameterization.

Compared to the parameter choices in Wiskott et al. (1999), the presented
results indicate that a significantly smaller value thgn= 27 is beneficial
for both localization and recognition. This may be in part due to the global
optimization approach we use in solving the feature localization problem. If
good initialization methods are available, local optimization are sufficient and the
problem of false similarity maxima caused by the filter sidelobes are alleviated
to some degree. Also the flexibility of the object shape model may affect the
choice of optimal filter bank parameters. Nevertheless, as there appeaes
no theoretical, biological or practical justification for the relatively widelgdis
choices = 2, care in the choice of the shape parameters is advised, as we
have demonstrated that they can affect recognition performance. aftusvilth
spacingB = 0.7 using five scales is in good agreement with our results, but it does
not offer improvement in recognition results compared to using the bandwidth
spacingB = 1.6 and three scales. Both banks have a span of slightly over three
octaves in their center frequencies.

Compared to the parameter choices in (Tamminen, 2005), the presented
results indicate that recognition will benefit from larger values of the shap
parameters, especially,. Also the bandwidth spacing should be increased,
since only three scales are used. Tamminen (2005) considered onlsefaatl
object localization, and the filter bank parameters appear to be suboptimal fo
recognition, although the localization performance of the complete systenh is no
hindered greatly because of the highly powerful matching method.

The filter bank design of Kruizinga and Petkov (1999) is most similar to what
our results indicate, although their work concerns oriented texture ctadiifi
applications. Typically, texture classification has preferred Gabor filigtts
relatively largeoy, andoy, such as in (Ro et al., 2001). However, in the work
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of IKruizinga and Petkov (1999), Gabor filter outputs were used as irfputs
nonlinear grating cell operators, which explains why a largés not preferred

in the linear filtering stage. Wu et al. (2000) aim for rotation invariance withou
using steering (see also (Haley and Manjunath, 1995)), and comggqcigoose
filters with smallo, giving a wide support in the spatial-frequency domain. The
filter bank design in (Serre et al., 2007) is radically different from theers,

with highly undersampled orientation dimension and highly oversampled scale
dimension. It is clear that rotation invariance cannot be achieved in the filter
level if the orientation dimension is significantly undersampled, and must be
implemented higher up in the processing if needed.

Oy oy | Np B | N

Wuetal. (2000), 1.7| 1.7| 6 1| 4

Kruizinga and Petkov (1999) 35| 70| 8 1 3
Roetal (2001) 44| 56| 6 1| 5

Wiskott et al. (1999) 6.3| 6.3| 8 07| 5
Tamminen (2005) 1.89| 1.89| 6 1] 3

Serre etal. (2007) 5.0| 16.6| 4| 0.1-0.4| 16

Table 5.3: Parameter choices of Gabor-type filter banks found in teeditire, converted
to the parameterization in Eq. 3/13.



Chapter 6

Rotations in depth

6.1 Introduction

In this chapter, a regression-based approach for modeling out+udé-pladepth
rotations of oriented filter based features is presented. The effect®dhbese
rotations are significantly more varied than the plane rotations considerfad so
in the work, because the features change in a way which is dependehe on
three-dimensional shape of the object.

The goal is to build a model for the change of appearance in local feature
in order to recognize the features and determine pose parameters inrarbitra
pose. The proposed approach is best applicable to textured objects havie
relatively smooth surfaces, so that the out-of-plane rotations caudevebia
smooth variation in the filter responses. Typical object classes of this tgjusln
solid objects such as cans, boxes and human faces. We will continueltornse
faces as the reference object class.

The use of synthetic data for learning pose-invariant object models leas be
proposed in (Vetter, 1996), who presented synthesis of novel viéwsiraan
head models using morphable 3D models. This "interpretation through sigithes
approach has common ground with Active Appearance Models (Cootals, et
2001). A component-based version for 3D face pose modeling usingathe s
approach was presented in (Weyrauch et al., 2004), using autormetedatjon
of 3D face models from photographs. In this work, synthetic 3D face mode
are similarily generated from frontal photographs, and they are usedrinirg
feature models for the spatially sparse local feature based objecseepaton
which is used in the Elastic Bunch Graph Matching model.

The appearance of features in the human face, such as eyes and mouth,
vary characteristically depending on head pose. For example, the mqehrap
mainly as a horizontal line in a directly frontal pose and neutral expressidn
when the object is rotated, the main orientation of the local gray-level steuctu
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changes, and so do also any features which are not rotation invatahtas the
responses of our oriented filters. Some of the variation is similar to whatoitu
the case of plane rotations, but there are also new phenomena suailaseao

contractions and expansions of the gray level structure, and alsocsdlfsion.

Section 6.2 discusses object pose modeling in general and the regression
approach employed in this work in particular. Section 6.3 introduces the
parametrization of object pose and gives a justification for prior probability
distributions for the pose angles in estimation problems. Section 6.4 presents two
different regression models for the responses of oriented filters stilhgequent
four sections consider human head models in particular. Section 6.5 frésen
method for generating 3D head models from single photographs whicheleas b
used in this work. Section 6.6 discusses the recording of feature dateatidn
6.7 considers self-occlusion of the features. The prediction perfa@enaihhead
feature models is evaluated in Section 6.8 using the feature similarity function.

The work presented in this chapter has been published in (Kallioméki and
Lampinen, 2003).

6.2 Subspace and regression modeling of object pose

Subspace methods such as PCA have been commonly applied to modeling identity
variation of faces in known pose with good results (Pentland et al., 1984)

the subspace of identity variation is of unknown dimensionality and nonttwial
parameterize, the PCA approach is easily justifiable, especially if the vlthes o
pose parameters are not known in the data. In contrast, the dimensionahty of
pose subspace is known to be exactly three, since it is spanned bydtatens,

and it can be fully parameterized by for example Euler angle or quaternion
representations.

In pose modeling, one would expect worse performance from linear uietho
such as PCA, as thpose manifold(Gong et al., 1996) (the embedded space
of all possible orientations of the face or its features, spanned by thiorota
parameters) is low-dimensional but typically strongly nonlinear and its steape
be very complicated. Subspace methods can be applied also to modeling pose
effects in features, although a single linear subspace is insufficienplaieig
large pose variations. Combinations of several locally linear models have bee
proposed to overcome the limitations of linearity (Okada and von der Malsburg
2001), (Tae-Kyun and Kittler, 2005).

Burns et al. (1993) proved that for point-set and line-segment festtinere
are no general-case view invariants, and proposed that view-vdgaigres and
probabilistic methods should be used for effective 3D object recognitidris T
is the approach we will take in this work, and model pose variation directly
in the latent space generated by the pose parameters. This requiresittiata w
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Figure 6.1: Two-dimensional pose manifold in a three-dimensional ueatspace.
Absolute values of the responses of three oriented filtersised as featurely, f> and
f3. Pose is parameterized with azimuth and elevation angles.

known values of the pose parameters in each training image. Collection and
labeling of real-world training data would be a daunting task, and we will use
synthetic, computer-generated models of the objects in model building stage. A
disadvantage of using synthetic data is that the predictions of the model might no
match real-world data. Also, direct regression modeling of the complicatedly
shaped pose manifold requires a flexible nonlinear regression modekewho
parameters may be difficult to learn from data.

High-dimensional spaces, such as our typical feature spaces, ficaltdib
illustrate effectively. As an example, consider the two-dimensional posédatthn
spanned by the azimuth and elevation rotation angles in a three-dimensional
feature space, portrayed in Fig. 6.1. Azimuth and elevation angles weunetesl
at most 45 degrees from the directly frontal view. The value of the azinnglea
parameter is illustrated with color. It can be seen in Fig. 6.1 that the changes in
the features are quite smooth. The resulting manifold is self-intersectingaasnd h
a difficult twisted shape, qualitatively quite similar to the ones observed indGon
et al.,\ 1996), who used global PCA features.

6.3 Parameterization of rotations

In the regression model we consider only 2D rotations and parameterize the
with azimuth and elevation angl€g, ¢), which act as latent variables, and the
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response of each filter in an oriented filter bank is modeled by a funéti@n ¢).

The third rotation, parameterized as the rotation about the view axis, is &asier
model. If we use a rotationally symmetric filter bank, in which the filters in a
single scale are rotated versions of each other, rotating the filters isataqiito
rotating the image about the view axis, and we can use the results of Chapter 3
model the changes in filter responses due to in-plane rotations.

The nonlinear rotation parameters cause some complications that need to be
addressed. Namely, the regression model should consider the pointsvidwhe
sphere equally important in principle. In other words, equal modelingteffo
should be given to all surface elements

d A= co9¢)dpdy (6.1)

of the view sphere. Uniform sampling ¢fand¢ does not fulfill this requirement,
since at high elevation angles rotation about the azimuth angle degenetates in
in-plane rotation, and many of the samples describe then the same point in the
view sphere. Speaking in probabilistic terms, in order to sample the surface
elementsd A uniformly, we must assign a c@s) prior on the elevation angle
parameterp. We can design a deterministic sampling scheme of the view sphere
easily by setting the number of sample points at the equdgand sampling each
latitude withNp - coS(¢) sample points. Fig. 6.2 shows how the sample points are
distributed in the rectanguldt, ¢)-coordinates.

6.4 Modeling oriented filter responses

We continue using Gabor filters as the recognition features, with a filter tank
three scales and six orientations. The modeling methodology proposedamere
be used with any spatial oriented filters, such as steerable filters (Simarcelli
Freeman, 1995) or derivative of Gaussian filters.

Having obtained the filter response data, we need to model it as functions
fi (¢, ¢), wherey and¢ are the azimuth and elevation angles of the posei and
refers to filter index. This is a typical regression problem. Fig. 6.3 illusttaes
modeling setup. In Fig. 6.8) a single feature, the left corner of the left eye, is
tracked. The responses of a single oriented filter, responding to htaldmes,
are recorded in the sampling points of the view sphere.

Fig. [6.3b) shows the measured amplitude responses of the filter tracking
the corner of the eye. Large amplitude responses are obtained wheltehe fi
correlates strongly with the image. This includes a large area in the left half-
plane. In the right half-plane, that is, with positive azimuth angles, the amelitud
responses are low because the feature does not contain strongitadrshauctures
in those poses. Fig. 6@ shows the measured phase responses of the same filter.
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Figure 6.3: a) Samples from the pose space of the feature (center of ftheyks). b)
Measured amplitude response of the filter. c) Measured plesponse of the filter. d)
Modeled mean amplitude. €) Modeled mean phase. See textgamation.

6.4.1 Piecewise linear model for filter responses

A flexible model is needed to capture the highly nonlinear effects in the amplitude
and phase regression functions. In (Kallioméki and Lampilﬁen, 2008), w
originally proposed a piecewise linear model for the filter response®ricoy

a smaller rectangley < [-50°,50°], ¢ € [—30C°, 30°] of the whole view
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space. However, the same approach can be applied to the larger pose sp
¥ e [-90°, 90°], ¢ € [-50°, 50°] considered here.

The locations of the piece boundaries are not optimized, but fixed, inm orde
to simplify the modeling process. The complex response of an oriented filter
is modeled as a product of the amplitude compon&gix; a) and the phase
componentp (x; b), with

j(x: @, b) = Ac(x; @) (x; b) = a’x &>, (6.2)

wherex = [y ¢ 1]T is the pose angle vector aadre the linear model parameters
for amplitude andb for phase, respectively, arkl is the filter index. The
prediction of the whole filter bank response is obtained by stacking the models
jx = al x d°X into a vectord = [ji, ..., jn]".

Amplitude responses in the measurements are typically quite smooth and the
modeling process is straightforward. The model is fitted simply by computing
the pseudoinverse solution which minimizes the square error between thé mode
predictions and data. Fig. 6B shows the predictions of the piecewise linear
model for the amplitude. Phase information is most important when the amplitude
is large. Because of this, we design the linear models for phase usingititeece
least squares method, with the amplitudes acting as weights. Phase resgpense
more complicated to model since they contain discontinuous bifurcations where
the phase jumps quickly from one arbitrary value to another. Becauséése p
values are 2-periodic, we can remedy some of these jumps by changing the phase
values which are lower than some threshold value to theic@mnplements before
computing the linear model, and choose the threshold value which prodices th
best predicting linear model. Fig. 63 shows the predictions of the piecewise
linear model for mean phase.

The piecewise linear model is easily invertible, and it is possible to quickly
compute the pose parameters that are most similar to a given filter jet. However,
the linearity of the model inside each piece unfortunately also means that the
optimal solutions will very often lie on the piece boundaries. This undermirmes th
applicability of the approach, as the piece boundaries are not supfmbade a
special status compared to other poses.

6.4.2 Mixture of Gaussians model for filter responses

Next we will consider an alternative, nonlinear regression model foffiltes
responses. As the magnitude of the complex Gabor filter has a Gausgienthiea
normalized filter jet amplitude data consists of quite smooth effects especially in
the region of the pose space where the feature is visible and thus betlietgioke.

The piecewise amplitude model is not able to describe the smooth variations very
well, and also the number of parameters in the model grows large becauge a la
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number of pieces is needed in order to model the nonlinear effects oftidue da
As an improved model for the amplitude responses of the filters we consider a
mixture of Gaussians model, in which the amplitude predictions model are given

by
N 1
A 1, S) = ) wik eXp(—E(X — i) g x - Mi)) , (6.3)

i=1
wherex = [y ¢]" is the view vector, ang; are the centers ardl the covariance
matrices of the regression kernels. The centers and covariance maifices
the Gaussian kernels are optimized, but in order to reduce the humbegeof fr
parameters in the model, all features use same centers and covariancesnatric
The weightswik are the only parameters in the model which are feature-specific.
The resulting predicitions are typically such that only a couple of the weighbts a
active for each feature.

Phase responses of the filters are typically quite smooth as long as the featur
describes the same gray-level structure in the image. A choice which suits the
properties of the data quite well is to define the fixed piece boundaries using
the centers of the Gaussian kernels such that the phase value is prégithed
linear model associated to the nearest center. The centers then debnenaiV
tessellation of the pose space, with a separate linear model in each Voedinoi

6.5 Synthetic head models

As an example object class, we will considering human faces. In order to
measure the filter responses we generate synthetic head modéis shape

of the reference head model is deformed to match the feature locations in a
frontal photograph, and texture mapped. Using the IMM-DTU databasgeisna
(Stegmann, 2002), we construct 37 different 3D training head models.

We use the annotated feature locations in the images to guide the shape
deformation process. The feature locations are connected by a dgraptuie
consisting of quadrangles. The three-dimensional models are gendrated
deforming the reference 3D model in such a way that the feature locations in
the image plane match the annotated locations.

We compute the piecewise linear mappifg from undeformed to deformed
space for each quadrangte of the feature grid using the Moore-Penrose
pseudoinverse,

A,=R'P(PTP)?, (6.4)

whereP contains the screen coordinates of the corners of the referencexqgé
as row vectors andR contains the screen coordinates of the target feature

1shape model courtesy of University of Washington
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locations. The depth coordinate remains unchanged in the deformaticgsproc
and thus each piece in the piecewise linear mddghas six free parameters. As

a quadrangle in two dimensions has eight free parameters, the linear system is
over-constrained, which increases the stability of the solution while intinduc
only minor errors in the feature locations of the deformed shape. The ntapgin

is applied to all object vertices which are inside the quadranggle

After the shape deformation, optimal light direction parametefs ¢,)
and ambient and diffuse reflection material parame{é&sD) are sought by
minimizing theL; norm

EG ¢, AD) =) [1(xy) = f(X, Vi vr. 1, A D), (6.5)

(x.y)

between the gray-scale modél) and the perceived image We found that

the L; norm yields visually more pleasing results compared to lthenorm.
However, the estimated lighting parameters lead typically to shaded images which
are too dark, because the shading model interprets some parts of the suege,

as eyebrows, as shading phenomena.

Finally, the shape is textured with projective texture mapping. We use a
multiplicative texturing model, where the final pixel color is the product of the
texture value and the gray scale value after lighting computation. The rdquire
textureT is then easily computed by dividing pixelwise the perceived image
with the gray-scale image of the rendered mofig|,

T, y) =1 y/fXy). (6.6)

Our deformable face model is slightly too flexible, allowing some physically
impossible deformations in the head shapes, which consequently lead tdyunlike
texture estimates. The texturing however makes the visual quality of the model
quite good under non-extreme rotations and lighting. Figure 6.4 showsdbpe sh
deformation process which generates the three-dimensional trainingrioekads.

Three additional reconstruction examples are shown in Figure 6.5. Some
artifacts from texturing become visible as dark stripes, where the fromxtairée
estimate is based on the value of only few pixels. Generally the visual quality
of our 3D head models is more or less equal to other image-based modeling
approaches (e.g. (Zhang, 2001), (Liu, 2003)). Modeling basedata obtained
with 3D scanners achieves better visual quality (Blanz and Vetter, 1888)he
data acquisition process is rather elaborate.
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a) b) c) d)

Figure 6.4: Head shape reconstruction using point correspondemgd®st image with
annotated feature location®) Reference shape) Deformed shaped) Corresponding
texture map.
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Figure 6.5: Three test images and the rotated head models

6.6 Recording feature data

We track feature locations in the synthetic face models for varying azimuth and
elevation angles, and store the responses of filters. The filters rema@meztio
the feature locations as the head rotates. We have used 45 feature moation
inner face and 13 locations in the jaw line in our experiments. A total of 34 head
models were used in collecting the filter response data, and the remaining three
head models were used for validating the performance of the model.

We cover a part of the two-dimensional pose space with a rectahgte
[0°, 18C°], ¢ € [-50°, 50°], with the point(yr, ¢) = (9C°, 0°) corresponding to
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Figure 6.6: Left: Synthetic head model. Right: Tracking the center efl#ft eye across
the pose space. The principal orientation of edges in thinegges changes considerably
due to pose. In the rightmost column the eye becomes pgrtiedluded by the nose and
the main feature here is radically different from the oth@amely the vertical edge of
the head.

a frontal view. The rotation angles are sampled according to Section 6.atso th
we get approximately uniform coverage of the view sphere, with a total eumb
of 321 different views of each head. Fig. 6.6 shows a rendering dfeéhd model
with white markers added to feature locations for visualization, and zoomed lef
eye in several orientations.

Alternatively, it would be possible to take a large number of photograping fr
areal head instead of using a synthetic head. However, there are thamtages
of using synthetic data to build the filter response model. In practice the most
important of them is that measuring the filter responses from synthetic data take
far less time. Instead of taking hundreds of photographs in varied ptses
head is rendered using efficient 3D graphics hardware, and the &kponses
are computed from the rendered image. Furthermore, head pose andglightin
conditions can be accurately controlled. Reliable control over posesisgieite
difficult to achieve in real-world photography. The tracking of featu@atmns
is also easy and precise using a synthetic model. With real-world image data one
must either label the feature locations manually or track them automatically.

Compared to real-world data, the main disadvantage is that the visual quality
of the synthetic model is lower. The model has been built using a single lfronta
photograph, and its features become somewhat unrealistic, especiallyhly hig
rotated poses. Also, the used Phong lighting model gives rather uninaisuls
for human skin, and lacks cast shadows due to self-occlusions.
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6.7 Self-occlusion of features

As the head model is rotated, some of the feature points in a particular view
become occluded and are not directly detectable. It is then a reasonastiog

to ask whether we should spend modeling effort in the view space outside the
occlusion boundary of a feature. The answer appears to be twofoldn®hand,
some of the features have strong effects near or at the occlusiondrguadd the
predictive power of the model can be quite good even to some extentdéyen
occlusion boundary. On the other hand, typically the feature respansegiite
smooth while the feature is visible, and become much less stable when the feature
is under self-occlusion, because the feature location no longer porrés to a
stable gray-level structure of the image. The feature data is recordeel iatage
plane location where the feature would be if it were visible, and if the feasure
under self-occlusion, the image plane location of the feature does nahargy
correspond to a single vertex on the 3D surface of the object.

We can determine the visibility of each feature by texture mapping the head
model with a color-coded texture map, in which each pixel of the map has an
unigue RGB combination. Determination of visibility is efficiently computed by
the Z buffer of the OpenGL renderer, and the test for visibility is easy.néésl
only test if the pixel color at the location of the feature is the same as the texture
map color of the corresponding model vertex. Graphs of the face objétt
visible features are shown in Fig. 6.7.

As the features have been annotated at frontal pose, the feature hecaté®
best representative of the object in near-frontal poses. Highly tbiegar-profile
views would benefit from additional feature points at the profile edge,abu
our feature locations correspond to three-dimensional model vertiGgxtct
location of the profile edge is difficult to represent with them, and suchwerte
locations would be in most poses either away from the profile line or already
occluded.

6.8 Model evaluation

Finally, we wish to evaluate the prediction performance of the regressioelmod
As an example, Figure (6.8) shows the predictions of a complete filter jetingack
the left eye corner, with the mixture of Gaussians model. The predictions are
very good inside the visible region. The phase data varies quickly outside th
visible region, where the filter responses do not correspond to anle sjedy-

level structure, and are difficult to predict.

In order to confirm that the model performs adequately, we compute the mean
feature similarity between filter jetkest from the three synthetic test head models
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Figure 6.7: Graphs depicting the visible features of the average heatehiio varying
poses.

and the regression model predictiohsg,

1, 1
NZT Z S eg(w"p) test(‘ﬁ ¢)) (6.7)

k=1 (W.¢)eVk

whereV denotes the region in the pose space where the felaiarésible. This
measure, which is evaluated at the known feature locations, is approxirdately

for the mixture of Gaussians model and D for the piecewise linear model. All

of the ten best features have an average similarity of o\@e@rywhere in the
visible region of the pose space. In comparison, the mean feature similarity with
a constant feature model, taken at a directly frontal pose, is only aippaitedy

0.24, and the mean feature similarity of ten best features38.0From this we

can conclude that the regression models are consistent with the synthatanda

the predictions of the models are reasonably good and improve significaatly th
performance compared to a single frontal model.

Outside the visible region the features behave differently depending oflymain
how far the feature location travels away from the occluding boundaggture
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points at eyes, eyebrows and nostrils remain very predictable, with ggvera
similarity of 0.88 with the mixture of Gaussians model, while feature points at the
jaw, mouth and nose lines have average similarities around 0.5 when occluded
should be noted however that the similarity scores themselves do not tell much
about the detectability of a feature. When occluded, feature points tee of
located in smooth regions in the cheeks with no edges or textures which, while
very similar to each other, are not very specific.

The usefulness of the feature model will come under a true test in the next
chapter, in which we will use it as a reference model in an object matching
problem involving depth rotations.
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Figure 6.8: Blocks clockwise from upper left hand corner: Phase dataliume data,
predictions of the amplitude model and predictions of thagghmodel. The average
visibility region of the feature is denoted by the black lifdote how the phase data is
quite smooth inside the visibility region, and spurioussiul it.



Chapter 7

Pose estimation with random
sampling

7.1 Introduction

In this chapter we consider the use of random sampling methods in objext pos
estimation problems. Section 7.2 discusses the shape of the likelihood functions
in pose estimation and advocates the use of random sampling methods. Section
compares three different types of sampling algorithms in a problem ie-plan
rotations. Section 7.4 discusses the effect of steering correction of éiffiponses

in the same in-plane rotation estimation problem. Finally, Section 7.5 considers
the problem of estimating the model pose in the case of depth rotations.

The random sampling methods applied in this chapter include Metropolis,
Gibbs and Population Monte Carlo (PMC) sampling algorithms introduced in
Section 4.8. Population Monte Carlo methods are related to Sequential Monte
Carlo (SMC) methods which have been applied in computer vision in tracking
problems, such as in (Isard and Blake, 1998). Sequential Monte Catfhodssare
applicable in dynamic state estimation problems, but in this chapter we consider
static pose estimation problems and argue that Population Monte Carlo methods
are applicable to them with better peformance than classic Metropolis and Gibbs
sampling algorithms. Sequential matching of object features using SMC sampling
has been proposed in (Tamminen and Lampinen, 2006), where it was found
perform well especially in handling feature occlusions.

Conceptually, our approach to the pose estimation problem is similar to
(Lowe, 1989), where parameterized 3D object models are fitted into images,
as both need relatively detailed, structured 3D models of the objects, and the
pose estimate is based on the result of model fitting. Classical geometric
methods such as (Haralick et al., 1989) and (Faugeras and Hed#8), dstablish
point correspodences between the model and the image, and solve forsthe
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parameters directly or iteratively. Image-based object modeling methotls suc
as (Lepetit et al., 2004) have been succesfully applied to the pose estimatio
problem. These are most effective if the object has a nearly planae gh#ipree
dimensions.

The approach we take in this work in the 3D case is to learn the feature
variation due to object pose from synthetic training data. Component-based
face recognition using synthetic training data has been proposed bygtdtiah
(2003), who use local gray level values directly as features andynétan is
performed with a combination of Support Vector Machine classifiers. Imtbikg,
we use significantly more sophisticated feature models.

7.2 Object matching with in-plane rotations

In-plane rotations are difficult in local feature based recognition kscdbe
rotation parameter is global and affects the relative locations of all feature
simultaneously. In this section we aim to show that the likelihood distribution is
typically multimodal with respect to the rotation and object location parameters,
and local optimization methods do not solve the pose estimation problem reliably.
Consequently, random sampling methods are applicable for finding thestlarge
mode of the probability distribution, corresponding to the globally optimal pose
parameters. Global optimization methods such as simulated annealing and genetic
algorithms could be alternatively used while remaining in the error-minimization
framework. The probabilistic approach we take in this work allows the use of
a number of powerful random sampling algorithms which have been defdsed
statistical inference problems.

We will consider a rotation-invariant object matching system which can
recognize objects undergoing in-plane rotations and changes in saalsh&pe
model is very simple in order to highlight the differences of the sampling methods
and has only four parameters for the locations of the features: orientatigia
0, global scales, and the centex, y; of the feature configuration, as described in
Section 4.7.1. These compose the parameter véctofd s % Y.]. The locations
of individual features are given by an overall object shape mddielvhich is
simply the mean of the training data. In other words, the object shape model is
rigid, and individual locations of features are not optimized. This is guate
because the aim is in pose estimation, not person identification. Feature models
are also computed as mean jets at the annotated locations of the training images.
We have again used the DTU face database with 37 high resolution images in
which 58 features are annotated in each, performing the tests with leavedbn
cross-validation where all other images except the one to be tested arénuse
training the model (computing the mean shape and mean filter responses). The
rotated images are generated synthetically by simply rotating the original image
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into new orientations.

Since displacement, scale and rotation parameters all affect directly the
locations of the individual features, the parameterization makes things quite
difficult although the number of parameters is as low as four. Typically tapesh
of the target probability distribution (i.e. the likelihood or posterior probability
distribution of model parameters) is such that it has a very sharp peal at th
parameter combination where all features are well matched. Additionally there
are several weaker local maxima where only some of the features areahdimh
example when the left eye features are matched at the right eye. Therékitiht
of the peaks is also affected by the paramghten the likelihood function (Eq.
4.5). High values of cause the largest maxima to contain most of the probability
mass, but also constraint the mass into a smaller region in the parameter space
and thus make it harder to find. Outside the immediate vicinity of probability
maxima, the probability distribution is often quite flat, especially with respect
to the displacement parameters, and if the current estimates of orientation and
scale parameters are not close to the true values, a wide variety of displaice
parameters appear almost equally probable, giving little information abdut the
true values.

Figure 7.1 illustrates the difficult shape of the pose probability distribution
with respect to the displacement parameters at seven different poles.arg
order to simplify matters, the global scale of the object is assumed to be known.
Starting with the posé = 20°, the highest probability peak occurs when the the
left eye has been approximately matched. Let us suppose that we wewddacsl
optimization scheme and adjust the orientation parameter slightly, simultaneously
with the displacement parameters. The likelihood function grows larger wken
decrease the orientation fo= 17° and yet more withp = 13°. However, at
this point the optimization path reaches a dead end. The left eye of the naslel h
been matched approximately correctly, while the right eye of the model is on top
of the eyebrow of the image. We have found a local maximum in the likelihood
function: decreasing the orientation parameter any further lowers the tkelih
peak.

At 6 = 13, correctly matching either the left or the right eye results in roughly
the same probability, and there is a region of lower probability between the two
peaks. Starting from the other peak, local optimization will lead us to the global
maximum which is the correct solution and also the most probable one. Tke cru
of the problem is that we will not find it simply by following an uphill path from
the initial pose ob = 20°.

Because of the typically difficult shape of the likelihood landscape (such
as the one seen in the previous example), local optimization methods are often
unable to find the global maximum. A computationally brute force solution for
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0=20° 0=17° 0=13° 0=10° 0= 7° 6= 3° 6= 0°

max sim=0.22 max sim=0.24 max sim=0.31 max sim=0.39 max sim=0.46 max sim=0.57 max sim=0.68

vert. displacement

horiz. displacement  horiz. displacement  horiz. displacement  horiz. displacement  horiz. displacement  horiz. displacement  horiz. displacement

Figure 7.1: Bottom row: Two-dimensional slices of the object likeliltbfunctions with
different amounts of plane rotatiah in the matching model. The crosses denote the
maxima of the similarity displacement parameters, andegtde@nd green arrows show two
local optimization paths advancing from one orientatiomtother. Average similarity
value at the highest maximum are shown on top of each liketiiield. Top row: Feature
locations corresponding to the local maxima at each oriiemaSee text for discussion.

finding the most probable combination of parameters would be to evaluate the
target probability distribution at all possible parameter combinations. Haweve
this turns out to be computationally very demanding with only four parameters.
If we test 50 possibilities of displacement parameters in horizontal and alertic
coordinates at 20 different scales and in 20 different orientationsneeel to
evaluate the target distribution function 50 - 20 - 20 = 10° times. In
higher-dimensional parameter spaces this approach becomes quicklietaynp
infeasible.

In order to tackle the exponential growth of the parameter space, we will
apply Monte Carlo sampling methods which can lessen the computational cost
if they manage to evaluate the target distribution mostly only in those regions
of the parameters space where the target distribution has significaraiityb
mass. As many of the modes of our target distribution are caused by iotorre
partial matches of the object, our ultimate goal to find simply the largest mode
of the target distribution. Accordingly, we choose a relatively large vidu¢he
parametep, which controls the steepness of the likelihood function, so that most
of the probability mass will be contained in the mode with highest probability
density. In this sense our approach has common ground with global optimizatio
methods.

A common problem with convergence of any Monte Carlo method is that
depending on the choice of the proposal (jumping) distribution, the metrens h
a tendency either to converge into some single local mode of the probability
distribution and remain stuck in there, or wander aimlessly in the parametey, spac
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never finding any of the modes with significant probability mass. Depending o
the distribution to be simulated, the starting point can cause significant bias in
the results, if the Markov chains systematically converge into some single modes
of the distribution and are incapable in practice in traveling from one mode to
another. These problems are made more severe by the fact that our bkeliho
function has a difficult shape compared to the distributions typically encaahte

in statistical inference.

7.3 Comparison of sampling methods

We compare the performance of Metropolis, Gibbs and Population Monte Car
sampling methods in the in-plane rotation estimation problem. First we consider
the case where the feature jets of the matching model are constant withtriespe
in-plane rotations. This makes the feature likelihood fields remain unchanged
even when the orientation parameter changes. To save computationgl effo
we can precompute the feature likelihoods and use simple table lookup in
the sampling stage. All sampling algorithms were initialized using samples
from uniform distributions for orientation and displacement with bouéds
[-60°,60°] and X,y € [—10,10] from the image center, and a Gaussian
distribution N (1, 0.1%) for global scales. The scale is close to the correct value

in order to help even the poorly performing sampling methods to converge to the
correct solution. Our main interest here is the orientation parameter.

The Metropolis algorithm is easy to implement, and can be considered the
baseline method. The proposal distribution is a Gaussian distribution with a
diagonal covariance matrix with standard deviatieps = 0.05, os = 0.05
andox = oy = 3. The choice of the proposal distribution is crucial for
the performance of the Metropolis algorithm, as new proposals should He sma
enough so that the chain will not turn into a blindly wandering search, bge la
enough to escape local maxima of the target distribution in search of thd globa
maximum. The values for deviations above appeared to be suitable withtrespec
to these concerns, but admittedly we did not systematically search for the bptima
values for fast convergence of the chain.

Gibbs sampling is also very straightforward to implement. The full con-
ditional distributions of the parameters do not have analytical expresdiomns
since we have already computed the individual feature likelihoods, nurherica
computation of the full conditional distributions is not computationally too
expensive, as we can compute them simply as the products of values feom th
feature likelihood lookup tables. The ranges of the parameters were limited to
0 € [-60,60°],s € [0.7,1.3] andx,y € [—20, 20], in which we evaluate
the target distribution discretized in twenty steps for each parameter. Sice th
Gibbs sampler moves in orthogonal directions in the parameter space, ini pro
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to having problems with traveling from one mode of the distribution to another,
and is best applicable to unimodal estimation problems.

The implementation of the Population Monte Carlo sampler is somewhat
more involved. We use the proposal distribution of the Metropolis sampler as
a guideline when designing the generating distributions of the patrticles, so tha
the differences between results of the methods are not only due to differe
proposal distributions. In the basic version of the PMC sampler, eaditlpar
i of a single generation is generated independently and the proposaludistrib
of the Metropolis sampler is used as the generating distribution, i.e. a multivariate
Gaussian distribution with covarianceés = 0.05, 05 = 0.05 andoy = oy = 3.

The PMC sampler can be however made more efficient by clever selection of
the generating distributions. Since the choice of the generating distributions f
each particle is completely free, we can even use the evaluated valuesarfjite
distribution when generating the new proposals. The distribution to be simulated
is problematic partly because the strong interconnections of the paranaeters,
we generate each new particlef a single generation in an alternative version of
the PMC sampler which uses a local feature based pose heuristic as follows

e Evaluate the probabilitiep;; of each feature locationindividually

e Generate new rotation angi'®” and scales"®” parameters fron® ~
N(@©29, 02) ands ~ N(s”9, 02) respectively

e Sample a feature location indgxaccording to their individual probabilities

e Compute the rotated and scaled spatial feature locations, with the feature
index j acting as the origin for rotatiof"® and scalings"®”

e Generate an additive displacement to the feature locations from the distri-
butionsx ~ N(0, o7) andy ~ N(0, o)

The motivation of this scheme is to generate parameter states in which well-
matched feature locations are more likely to remain well-matched, as the rotation
of the features is performed about a feature which has been matchedguitida
probability. Each particle is rotated, scaled and displaced independentlyawith
different set of pose parameters, and multiple good candidates for dhérde
locations typically exist simultaneously and independently in a single generation
of particles.

Figure 7.2 shows the samples generated by the three sampling methods. We
have chosen a sampling run where all samplers have converged to thensaee
of the target distribution. The Metropolis sampler finds very quickly a quitelgo
parameter combination, and the move to the better mode requires a large jump
in the orientation parameter. After this only very few of the proposals become
accepted. The Gibbs sampler, which accepts every move, moves much more
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Figure 7.2: Samples generated by the different sampling methods. Feared
visualization, only every tenth sample has been plotted.

aggressively through the parameter space. The PMC sampler evaluaids a
range of possible parameter combinations in its first generation of 500lesytrc

a manner not unlike importance sampling, and subsequent generationerahg

small improvements on the good parameter combination found already in the first
generation.

5000 iterations were performed with all three algorithms. Samples in the
beginning of a Markov chain, which are biased by the initial values, aiealp
discarded when computing the results, a procedure which is dalledin. In
order to ensure convergence into a single mode, we used only 500rtgdesaf
the chain when computing the sample averages. 500 particles and tertigeisera
were used in the PMC sampler.

There are large differences in the capability of the samplers to find the mode
in the probability distribution with significant mass. To evaluate this, we ran
each sampler with all of the DTU images in five different orientations, rotated
by —40, —20, 0, 20 and 40 degrees. The average distance of the features from
their annotated locations were computed, and the sampler was deemed to have
converged into the correct mode if the average distance of the feataekess
than ten pixels. Because the feature location model is stiff and includes only
scale changes as deformations, the ten pixel difference in the locatioms is n
unrealistically large.

Table[ 7.1 summarizes the results of the matching experiment. When con-
verged, Metropolis, Gibbs and PMC samplers achieve an average @isihac
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method| Pise | Pioer | Poo | Dc (PX)
Metropolis| 0.51| 0.81| 0.84 5.79
Gibbs| 0.42| 0.54| 0.62 5.94

PMC, no heuristic 0.92| 0.93]| 0.95 6.22
PMC | 0.93| 0.97]| 0.97 5.77

Table 7.1: Probabilities of convergence to the correct mode with Mailis, Gibbs and
PMC methods (without and with the pose heuristic), and trerae distancd®. of
converged mean model matches from the annotated featatdos.

little under 6 pixels. The PMC sampler without pose heuristic appears tomgave
slower than the other samplers, and the average distance of featurgerdan
with the other samplers when the same number of iterations is performed.

The Gibbs sampler suffers most from the high correlation of the parameters
and is often unable to find the mode with the significant probability mass
especially in the case of rotated images. The Metropolis sampler performs bette
and converges to the mode close to the annotated solution with probability 0.84
in the case of unrotated images, but the probability of convergece to trector
solution decreases with rotated images. The PMC samplers, in contrast, are
very efficient in finding the strongest mode near the annotated solutidrthaim
performance is almost as good also with highly rotated images. The localdeatu
based pose heuristic of the PMC is quite efficient in directing the samplerlguick
to the different modes of the probability distribution. The correct mode isdou
without the pose heuristic almost equally well.

The presented results do not prove that Metropolis algorithm cannctidan
effectively in the pose estimation problem, because we have not systematically
evaluated the performance with all possible proposal distributions. Mieetiee
proposal distributions are likely exist compared to the one we have used.
Nevertheless, the PMC algorithm with the same proposal distribution is more
effective than the Metropolis algorithm, and also more effective than thesGibb
algorithm. The results suggest that the PMC algorithm is more efficient imrgene
compared to Metropolis and Gibbs algorithms, regardless of the choice of the
proposal distributions.

The evolution of the particle generations in the PMC sampler can be seen in
Figure 7.3, with 1000 particles in each generation. The descendants igla sin
generation are typically the offspring of only a handful of particles, guthe
difficult spiky shape of the probability distribution. After a few generatjailsof
the particles in a single generation share a common ancestor.
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Figure 7.3: Ancestors (green) and descendants (black) of a typical IRtigu Monte
Carlo run.

7.4 Rotation-invariance in the feature level

In-plane rotations cause most significant changes to the configuratiotie of
features, but, as noted before, also the filter responses change ohipladme
rotations. In order to account for these effects, we can use steerabitityrect

the feature responses into any given orientation. Unfortunately as #éberde
models now change depending on the value of the orientation parafneter
feature likelihood fields can no longer be precomputed, and conseq@&bthg
sampling becomes computationally infeasible, as its numerical version requires
up to a hundred times more evaluations of the target distribution for eacbhmand
sample.

Figures/ 7.4 and 7.5 show matching results of three individuals in seven
different rotation angles, without and with steering correction in the filter
responses, using the PMC sampler. The matching results themselves dye high
similar, but if we compute the average similarity values, it can be seen that while
without steering correction the similarity values become quite low in the highly
rotated orientations, they are nearly equal when steering correctiompli€dp
While the feature detection stage is successful even without steerirecton,
the invariance of the similarity values in different orientations is crucial for
recognition applications. The price of the better quality of the feature similarity
values is however the increased computational burden, as we can rer long
precompute the feature likelihood fields, and as the steering correctionateetf
some time to compute.
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0.51 0.63 0.71 0.74 0.72 0.66 0.55

0.68 0.63 0.54

0.48 0.59 0.66 0.68 0.67 0.60 0.49

Figure 7.4: Rotation-invariant matching results with Population Mo@arlo without
steering, with average similarity scores. The featuresvatched correctly in all tests,
but the similarity scores are lower in rotated poses bectugspose variation of features
is not modeled. Compare with Figure [7.5.
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Figure 7.5: Rotation-invariant matching results with Population Mar@€arlo using
steering-corrected filter jets, with average similaritpras. The similarity scores are
equally good in any orientation. Compare with Figure 7.4.
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7.5 Object matching with depth rotations

Finally we consider the case with three independent rotation angles. The
parameter vectdt = [y ¢ 6 S X V] consists of the azimuth angie, the elevation
angleg, in-plane rotation anglé, global scales and displacement in the image
planex, y.

The object modelM presented in Section 4.7.3 specifies the locations of
individual features via the object pose paramefieris other words, the locations
of individual features are not optimized, similarly to the previous two sections
in this chapter. The predictions of the mixture of Gaussians regressionl mode
generated from synthetic data in Chapter 6 are used as the feature mbagis w
account for the depth rotations. Only the changes in feature locationt® diae
plane rotations are modeled, and steering correction is not used.

As initial distributions for the parameters, we us¢d ~ Unif (0, 2r),
¢ ~ Unif(-0.1,0.1), 6 ~ Unif(-=0.1,0.1), s ~ N(1,0.1%) andx,y ~
Unif (=50, 50), with the angles given in radians and displacement values in
pixels. This choice of initial distributions initializes the particles of the PMC
sampler so that nearly upright profile, half-profile and frontal posegiesent in
the initial particle distribution. This strategy is chosen because we canwet co
the whole pose space very well, and the azimuth angle presents most difficulties
for the sampler as it is often quite difficult for the sampler to move away from a
profile pose. In a well-mixing chain the choice of the initial distribution should
not affect the results when the sampler has converged, but we wachaieto
converge as soon as possible, and the choice of the initial distributiarisaffes
speed of convergence to some degree.

The generating distributions for the new particles in the PMC sampler were
set as follows:y¥ ~ N(Wod, 0.5%), ¢ ~ N(¢oid, 0.25), & ~ N(bgq, 0.02%),
S ~ N(Soig, 0.5%) andx, y ~ Xoid, Yoid + Unif (=3, 3). The rotations and scaling
are again performed in the same manner as in the case of in-plane rotations
for each particle separately. We first sample a feature index using thedea
probabilities as weights, which acts as the origin for the rotation and scaling,
and the displacement values are added to the feature locations after ratadion
scaling. The variance in the generating distributiord a§ kept small, because
the test images do not have variation in the in-plane angle, and only the angles
which produce depth rotations (i.e. azimuthand elevationy) are varied. The
other two angles have a sizable variance in their generating distributionden or
to facilitate efficient travel of the chain from one mode to another. This idetbe
because in the case of depth rotations, profile poses with their strong eftige
have some probability mass even when the correct solution does nodpamce
to a profile pose, and the sampler should be able to escape these modeshin sear
of better ones. Ten generations and 500 particles in each generatierusest.
The sampling process takes approximately five minutes for a single image using
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an unoptimized Matlab implementation on an Intel P4 1.7GHz based machine.

Figure/ 7.6 shows the matching results with a synthetic test model. The
matching experiment was repeated ten times and the median graph in terms of
the similarity has been plotted with a red line. The sampling variance in a single
matching experiment is illustrated by plotting the graphs of one standard deviatio
estimates of the parameter samples with green lines. The PMC sampler has
managed to find the correct solution in all poses.

Because of the probabilistic nature of the matching process, it is possible tha
the sampler gets stuck in an incorrect mode of the likelihood function. We did no
systematically search for good initial distributions for the particles and géngr
distributions, which could improve the probability of convergence to thescorr
mode. Another possibility would be simply to increase the number of particles,
although this approach is not very elegant.

0.70
0.71

0.66

0.74
0.59
0.69

Figure 7.6: Median result of ten repeated matching experiments usiegssimthetic
model, with average similarity scores on top of each posapfs corresponding to one
standard deviation of the samples in a single run have begteglwith green line.
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The evolution of the PMC particles can be seen in Figure 7.7. At each
generation the PMC algorithm first generates the candidate states (tqpevaly)
uates their fitness and resamples them according to their probabilities, ofptainin
samples from the target distribution (bottom row). In the first generatiomtist
probable particle corresponds to a profile pose. The sampler travatstfiie
mode into the approximately correct solution after a few generations.
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Figure 7.7: Evolution of the particles in pose-invariant object manchiwith three
rotation angles. Leftmost image shows the samples fromrtitiali distribution. The
rest of the images in the upper row show particles from thegdimg distribution at each
generation, and the lower row shows the samples obtainedtfie target distribution at
each generation. Because of clarity only every 30th sanmptba upper row has been
plotted.

The rigid feature location model does not take into account variation in the
locations of features due to identity and expression. Thus the locations are
probably not accurate enough to serve as a basis for recognition mtityde
Modeling of identity variation simultaneously with pose is not trivial, because the
largest variations in feature locations due to identity and due to pose cagihe h
similar in non-extreme poses. However, for example a non-rigid probabilistic
object model which allows the feature locations to deviate small distances away
from a mean shape should be quite straightforward to implement.

Finally, the presented system is compared to the approach presentedibg Ba
Odobez (2004), which uses a probabilistic approach for head traekidgpose
estimation. Particle filtering, which is closely related to Population Monte Carlo
methods, is used for head tracking. For pose estimation, maximum a posteriori
estimation is used. The method is tested using the PIE database which contains
13 different head poses. Strictly speaking, Ba and Odobez arerpémfppose
classification, not pose estimation, as both the test data and the model assume tha
the poses are spaced.22apart. Instead of continuous estimation, the pose is
classified into 13 classes. The highest pose classification score tkz09te8%.

Unfortunately our regression modeling approach is not well suited to data
such as the PIE database, which contains a limited number of discrete ggses,
the feature models need to be built from continuous data which was avaifdple o
by using synthetic images, and the feature models do not typically generafize v
well between highly different image databases, such as between syrahdtic
naturalimages. A possible problem in using the same set of poses fordiathdr
and testing the system is that the results can be overly positive comparetl to tes
data with continuos pose changes. We would like to emphasize that objedspos
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a continuous phenomenon and pose estimation error should be meastiatl so
either the training data, the testing data, or preferably both contain posels wh
adequately cover the whole pose space. Admittedly, a clear problem limiting
the applicability of the presented approach employing regression modelihg of
features under depth rotations is that it would be laborious to gather thizedq
dense training data in the case of real-world images, and often one id forase

only sparse data such as the PIE database.

Using a gallery of 13 test poses similar to the PIE database, but synthetic
images from 20 individuals generated according to Section 6.5, the pedsen
system achieves pose estimation error with the meas 4.4°, u, = —1.7° and
standard deviationy = 18.3°, o, = 7.3°. When the sampling process converges
to the correct mode in the probability distribution, the estimates are reasonably
accurate with only small bias. The biggest problem in the presented ajpa
that when the random sampler does not converge to the correct pesgrahin
pose angle estimates can be very large.

Although a direct comparison to results obtained with the PIE database is
not meaningful, combining the results above with a very simple nearest meighb
classifier based only on the estimated angles, the presented systemsalpese
recognition rate of 85% with the same set of test poses. Profile and lodilepr
poses are recognized more accurately, and misclassifications are mmyaboo
in near-frontal poses. This is a direct consequence of the featunédos we
have chosen, which remain relatively constant in a frontal nodding movere
local feature based head pose estimation system would benefit fromefpataots
outside the inner face region, which would make it possible to infer the pose mo
accurately based on the locations of the inner face features in relationhedke
border, for example.

The obtained results show that synthetic data can be applied in learning
the feature models, and reasonably accurate pose classification isi@pessib
when the quality of the synthetic models is not very high and contains some
spurious effects. It should be noted that the synthetic data which hasused
is not necessarily easier to classify than real world data obtained in amestr
conditions.



Chapter 8

Conclusions

This thesis has presented a complete rotation-invariant object matchingisyste
employing a local feature based object representation with parameteriziisno
for the changes in features due to rotations, and algorithms using raadophisg
methods for fitting the models to data. Additionally, the effects of filter shape
parameters on both recognition performance and rotation invariancebeave
studied.

The analytic derivation of steering functions for Gabor-type filters may be
considered the most important theoretic result of the thesis, as it enabies the
use as steerable filters. Gabor filters are very widely employed in various
applications, and the derived results give the opportunity to consideiairep
rotation invariance without changing the filters of the system and possibly
affecting the performance of the complete system.

The experiments performed with filter parameters suggest that goodsteera
ity and recognition performance are conflicting design goals. Best biligra
is obtained with Gabor and angular Gaussian filters which have mediocre
recognition performance and vice versa. The best filter banks fotiaota
invariant recognition of human facial features require many more basrs fitten
what is necessary for computing the principal orientation of simple edges.

The presented object matching system is able to successfully solve itemogn
problems involving in-plane rotations. The PMC algorithm was found to be
clearly the most efficient, whereas the standard Metropolis and Gibbs sgmplin
algorithms produce only mediocre results, their main problem being the poor
probability of convergence to the mode of the probability distribution cormdpo
ing to the correct solution. The case of depth rotations is significantly more
difficult, and also the PMC algorithm begins to have problems finding theatorre
solution.

In the object matching scheme presented in Chapter 7 we used a top-down
approach, finding the most probable pose parameters of a complete, dletaile
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object model. Using the same kind of local feature models, it would be possible
to first try to detect parts of the object and their pose, and use these ¢catgen
efficient proposal distributions for the random sampling algorithms. Filtelafets
single locations may be too generic for this purpose, and combinationsaerbsev
spatially separated jets could be used, as in (Yokono and Poggio, 2004a)

Although perceptually very important, human faces are only one of the
numerous object classes humans can distinguish. Good filter parameters fo
recognition are necessarily dependent on the object class, and it idewat
even different features of the human face would benefit from diftireshaped
filters. Thus the aim of using the best generic filtering operation even in the
case of a single object class is a computational compromise. For truly optimal
performance one might have to employ several filter banks with diffefeapes
parameters, and it becomes even more difficult to find the good paramisteit se
is perhaps interesting to note that while it has been known for a long time that the
mammalian visual cortex contains a plethora of filters with various orientation and
scale sensitivity profiles, computer vision algorithms using Gabor filters tiypica
use only a single profile, usually either a spherical or a biologically motivated
oy : ox = 2: 1 one. It would be interesting to know if there anything to be gained
in considering simultaneously the responses of filters with different otienta
profiles, in some sense circumventing the limits which the uncertainty principle
poses for a single oriented filter.

The probabilistic approach that has been used in the work providesyangnif
theoretical foundation for object matching and merits further researche T
Population Monte Carlo class of sampling algorithms is especially interesting
since powerful heuristics about the specific problem can be used wsiclyp
the generating distributions, while the samples themselves obtained by the
PMC algorithms are guaranteed to follow the target distribution. The pose
estimation method presented in this thesis is computationally rather demanding
compared to the methods found in the literature such as (Lepetit et al., 2004),
requiring at least hundreds of iterations for convergence, and its raairemains
currently in theoretical considerations. Nevertheless, probabilistic itigms
using random sampling can be computationally rather efficient in demanding
estimation problems, and can be applied even when most other approaehes a
intractable.

Synthetic data has been applied the work for learning the pose variation
in features. Because the visual quality of the synthetic data is not completely
lifelike, the feature models do not directly predict features in natural imeges
well. Significant improvement has occurred in computer graphics evémgine
course of this work, especially in modeling hair and skin, and the apprimach
use synthetic learning data in visual tasks is becoming more and more appealing
The primary benefit for doing so instead of using real measured datat iéa
gathering of training data, which is a major hurdle in computer vision res@&arch
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general, is significantly less laborious.

The aims set for the thesis — to develop pose-invariant methods for local
feature based object matching systems and analyze their performaneebelea
achieved, although several unsolved issues remain. In addition, wieletext
filters have been studied for some time, their use continues to be a relevant
research topic in computer vision.






Appendix A

Image databases

ORL database

Figure A.1: Test images of the ORL database.
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