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Chapter 1 

Introduction

The recent development in deciphering the sequences of human genome and other 
organisms leaves us still quite far from fully understanding the structure, function, and 
response these sequences generate at the system level. Such one-dimensional genome 
sequences project themselves to higher dimensional spaces as larger scale structures of 
proteins, cell structures, metabolic networks, and their interactions leading to the vast 
complexity of living things. In addition to the variable complexity between different 
levels of biological constituents and more macroscopically between species there is 
individual variability within species. All of this has recently been a driving force in 
developing affordable and automated ‘high throughput’ methods to study gene 
sequences and networks [1], [2], protein and macromolecular structures [3], [4], 
metabolites [5], and various complexes of them. Such a system level and often holistic 
approach to biology has coined (or revived) a new concept of systems biology [6], 
which - to be more medically target oriented like the ‘father’ of system biology Leroy 
Hood – is seen as ‘predictive, preventive and personalized medicine’.  

In order to understand complex biological systems and their behavior in terms 
of their structure and function requires in many cases the integration of experimental 
and computational research, in which sense the aim of research of systems biology is 
the same with that of structural biology [7]. The focus of structural biology is 
microscopically oriented since it is mainly interested in the architecture and shape of 
biological macromolecules like proteins and what causes them to have the structures 
they have. This is of great importance in biology since the three-dimensional (3D) 
shapes of macromolecules are responsible for most of the functions of a cell. The shape 
of a molecule is its "tertiary structure", which depends in a complicated way on the 
molecule's basic composition, or "primary structure." Then as the quotation by 
Harrison [7] states ‘biology rests on structural observations’ there is a great need for 
new research methodologies and their development for faster and more accurate 
analysis of biological systems. Even in case of much more limited task for studying 
protein structures and their interactions – being one of the main goals of this thesis – is 
so broad that using a single approach or method is not sufficient to get holistic or 
detailed picture of the system.  

In addition to these challenges many of the experimental methods do not have 
sufficient measurement resolution, for example because biomolecules are so small that 
even with the most advanced light microscopes it is impossible to study their details. 
To overcome this difficulty, methods with higher resolution could be used but also 
methods involving measurements on vast numbers of identical molecules at the same 
time, like it is done in X-ray crystallography, NMR, and electron microscopy (EM). 
These methods are most often used to study the static "native states" of 
macromolecules but they are also varyingly used to study nascent or denatured    
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molecules. However, it may turn out that resolution-wise even this may not be 
sufficient for deciphering the details of biomolecules. Thus there is need to combine 
various approaches, experimental and computational, to get more detailed images of 
macromolecular assemblies of interest. This thesis aims to do just this by combining 
the experimental cryo-electron microscopy (cryo-EM) imaging and tomography 
method with novel computational signal and image processing methods. 

1.1 Background for biomolecular structure determination 

In order to determine the structure of a biomolecule, especially in case of proteins and 
protein complexes, one can use either a direct approach of an experiment-based 
sampling and its data processing or indirect computational modeling-based approach. 
In the former approach the data can be collected by using various experimental 
techniques like X-ray crystallography, NMR, and EM, each with its own characteristics 
and thus setting limitations to the method [4] in usability. In the later approach one 
uses already known structures and thus the obvious limitation is the availability of 
known structures. Hence the task for methodological development is still very 
challenging as is evident by the fact that the structures of numerous known and 
unknown protein still remain to be solved [4]. Next the three main experimental 
techniques are briefly described but putting emphasis to EM due to it being the main 
method for generating data in this thesis.  

One of the most commonly used experimental techniques to determine protein 
structure is X-ray crystallography which is based on X-ray diffraction pattern data, 
obtained from crystalline samples [8]. The pattern is influenced by electron density of 
the sample crystal. The patterns of amplitudes and phases in the diffraction data are 
used to calculate an electron-density map of the building units of the crystal. The 
resolution of the electron-density map calculated from the diffraction data is dependent 
upon quality of the protein crystal. However, the time needed for protein crystallization 
and the availability of appropriate particle accelerators used for X-ray generation, has 
discouraged many researcher to use it. The other discouraging factor is that the 
determined structure can not be trusted fully due to lack of natural conditions for 
proteins in crystals. The most stringent limitation of the use of X-ray crystallography is 
that some proteins can not be crystallized or finding the right conditions for 
crystallizing the protein is itself a tedious task. 

Another experimental technique to determine protein structure is NMR 
(Nuclear Magnetic Resonance) which can produce chemically and structurally specific 
spectroscopic data of proteins. NMR-based protein structure determination [9] is 
currently possible both in aqueous solution and solid state and it exploits the fact that 
each nucleus in the molecule experiences a distinct chemical environment and thus 
shows a characteristic chemical shift when an external magnetic field is applied. The 
resulting conformation-dependent dispersion of the chemical shifts is measured and 
used to derive structural constraints for NMR-structure calculation. However, the 
limitations of NMR spectroscopy as the result of low inherent sensitivity [4] of the 
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technique, limits its use for getting high resolution structure of certain proteins, usually 
not more than approximately in mass 40 kDa [10]. 

The third experimental technique to determine protein structures is EM, which 
is the main method for generating micrographic image data in this thesis. In its original 
form of transmission electron microscopy (TEM) [11] technique, a high voltage 
electron beam, controlled by magnetic lenses is focused through a thin layer of a 
prepared sample on a thin film on a supporting grid, to form a highly magnified image 
of the specimen. Since the wavelength of electrons is at sub-Ångström (Å) level the 
practical achievable resolution of an image could even be 1 Å for example with a 
300kV TEM. In ordinary TEM the sample has to be dehydrated to avoid the 
evaporation of water in the vacuum conditions of the microscope column. However, to 
keep samples in hydrated native state and to avoid evaporation in the microscope, the 
technique of using vitrified samples has proven successful. This technique is termed 
"cryo-electron microscopy", in which the sample used in the TEM is rapidly frozen to 
cryogenic temperatures (of around 196 oC) in order to avoid crystallization of the 
water present, i.e. to form amorphous ice [11], [12]. The macromolecules in the 
vitrified sample in the holes of carbon film do not touch the adhering surface so they 
have less chances of deformation of molecular 3D configuration. In the cryo-EM the 
vitrified samples are kept frozen by using liquid nitrogen (or even liquid helium) that 
protects them also from radiation damage [12]. With cryo-EM it is also possible to 
obtain images of trapped samples in different dynamic states like viral fusion, different 
states of cell components and interaction of protein assemblies [13]. This is not usually 
possible by using X-ray or NMR based methods. One can use the cryo-EM images to 
make 3D reconstructions of biomolecules by applying single-particle reconstruction 
(SPR) or electron crystallography techniques. 

The SPR [12] approach using EM image projections of proteins is emerging as 
an affordable and rapid way to solve protein structures in their native state. It has 
aspects of electron tomography [13] where a 3D reconstruction of sample is created 
from tilted 2D images, but SPR method has potential to provide even near-atomic 
resolution using hundreds of thousands of projection images. However, since SPR uses 
cryo-EM images it is not free from problems. It has limitations in different steps of 
reconstruction and processing the EM images. On the other hand, the electron 
crystallography method exploits similar features as X-ray crystallography, that the 
periodic ordering of proteins in two dimensions as well as along one-dimensional 
helices can be used to determine important structural features [11]. The periodically 
ordered protein structures in a two dimensional (2D) plane are referred to as 2D 
crystals. In comparison to 3D crystals, the 2D crystals are easier to produce for certain 
kinds of proteins and can also give high-resolution structures with EM techniques. 
However, the methods involved in this are not necessarily rapid, for example, it took 
years to obtain the 2D crystals for NhaA protein that were used to generate its 3D 
reconstruction [14]. 

As mentioned above, a totally different approach to determine protein structure 
is to use entirely computational techniques by utilizing the knowledge of known 
protein structures. This approach relies on molecular modeling methods, 
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sequence-pattern matching and optimization methods. One of the methods using purely 
computational approach is called protein threading [15] where the target sequence is 
threaded through the backbone structures of a collection of template protein structures 
to show sequence similarity partially or fully. Recently such methods have been used 
to support or complement the experiment-based methods described above [7].  

The structure of protein complexes and interaction sites in them also belongs to 
the realm of structure determination of biomolecules. In this for example, finding 
protein interaction structure to high resolution is a very challenging task by using 
solely the X-ray crystallography method. To do it properly one would need to have 
crystals of two or more proteins in a tight complex. One of the structure determination 
methods is protein threading which would work only for one protein not for the 
interacting structures. Also, it is well known that the protein folding and interactions 
involve forces at quantum level, in which case the use of conventional laboratory 
methods or structure determination is insufficient to understand the real forces 
involved. It is now quite well accepted that integrated approaches that combine 
biochemical and computational analyses with reconstructed structures have 
increasingly important roles in providing the framework for understanding the structure 
and function of biomolecules. 

1.2 Purpose of the research 

The main research goal in this thesis is to find and develop an efficient way of 3D-
structure determination of proteins and biological complexes by using cryo-EM SPR 
methods and by modeling the interaction structures of protein. A schematic diagram of 
different methodologies used in this thesis is shown in Figure 1.1. 

The SPR method for making 3D reconstruction of proteins and biological 
complexes has shown promising results for some very symmetric structures [16]. 
However, high-resolution reconstruction using cryo-EM images for asymmetric 
biological structures still poses a formidable challenge. Various factors responsible for 
limiting the resolution are dependent upon contrast transfer function (CTF), noise and 
alignment techniques [12]. The CTF is an image aberration oscillating function 
generated in cryo-EM due to different factors like acceleration voltage for electrons, 
spherical aberration of magnetic lenses and defocus values of sample grid [12]. At 
large focus level CTF has more oscillations in high spatial-frequency domain causing 
disruption and loss of high resolution information [11], [12]. In images taken close to 
focus, high-resolution information dominates the low resolution information so the 
noisy particles are no longer discernible against the background [12], hence causing 
problems in alignment. Hence there is a need for denoising methods to highlight the 
features of samples without loosing its high frequency details. Several studies for CTF 
correction and alignment techniques and their development have been adopted as 
integral parts of SPR method. However, noise removal from the 2D cryo-EM images 
still needs considerable attention as it can improve the efficiency of other steps in SPR
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Figure 1.1: Schematic diagram representing different scientific methods used in this thesis for 
augmenting current understanding and developing methodologies involved in solving structures 
of biomolecules, ranging from minimum description length (MDL) principle to protein folding. 
Overlapping regions describe the common grounds of research between different methods.   

method tremendously. The state of the art in SPR is such that its methods have matured 
so much that if they are supported by an optimized denoising method, there could be a 
paradigm shift in the field of structure determination of biomolecules. Inspired by such 
speculations, the research done here is to analyze the noise in cryo-EM micrograph 
images and to develop methods for removing noise to enable better picking and 
alignment of particles from cryo-EM micrograph images. This leads to very significant 
improvements in high resolution structure determination of proteins and their 
complexes.  The denoising methods are developed theoretically such that they can be 
applied in other fields as well, since noise has similar statistical properties in many 
applications. The concept followed here for denoising is based on the minimum 
description length (MDL) principle [17] which is strongly connected to information 
theory and statistics through the interdependencies between code length and probability 
distributions. For the denoised micrographs, some new particle picking methods have 
also been introduced in Publication I as discussed in Chapter 3.

The other prominent research question considered in this thesis is how to 
predict protein structures involved in the quaternary structure of the proteins and how 
to validate such predictions? The quest for doing such a prediction leads to study of 
forces and patterns involved in protein interactions. Here, the study has been done with 
hantavirus nucleocapsid protein whose structure determination through crystallization 
is still under progress. In our study we have not only predicted its interaction structure 
but also explained the role of amino acids and different forces involved in the 
interaction.  Similar approaches are needed for many proteins and complexes like 
lipoproteins and pathogenic viral proteins which need to be studied in order to advance 
to the stage of targeted drug development, being one of the key ideas of systems 
biology. The fulfillment of this promise is near since it is soon possible to get insights 
into the structures of the targeted proteins even at the level of individual amino-acid 
residues.
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Chapter 2 

Minimum description length based 
denoising

In signal processing in general and specifically in 2D image processing, one of the 
main tasks is to reduce noise to improve signal to noise ratio (SNR). The search for 
efficient signal and image denoising and image restoration methods is important for 
many applications ranging from the field of movies [18] to the field of deep oil 
exploration [19]. It is a valid challenge crossing the borders of statistics, filter design 
and functional analysis.  Denoising is also an important step in cryo-EM SPR in order 
to avoid false solutions and to achieve faster convergence and higher resolution of 
reconstructed 3D structures of biomolecular samples.  

A search across the literature frames a view that many researchers have been 
trying to increase SNR in cryo-EM related data but the detailed survey reveals the fact 
that only few of them have been trying to tackle this problem by treating each 2D 
image individually [20], [21]. Most of them deal with the problem of denoising the 
reconstructed 3D volume [22], [23], [24], [25], which is an average of original images. 
The averaging based denoising method proposed by Mielikäinen and Ravantti [26],
uses information from many images and relies heavily on finding similarity between 
them. Such averaging procedures using alignment partially or fully are already 
embedded in the steps of SPR. Hence the average-based methods do not provide true 
additional benefit to SPR. For SPR the denoising of individual 2D images has to be 
done before the steps of alignment or 3D reconstruction to improve their efficiency to 
have full utility of increasing SNR. In order to denoise 2D cryo-EM images, the first 
problem to be tackled is to define noise and recognize sources of noise. In a pioneer 
research work Doerschuk [27] has quoted that noise due to image recording process in 
cryo-EM images has a Poisson distribution due to electron counting statistics. However 
one has to be aware of that unlike TEM images, noise in cryo-EM images is not only 
due to image recording process but also due to the vitrified buffered water solution 
(amorphous ice) around sample particles. Several other investigators have also tried to 
handle cryo-EM noise by assuming a distribution for it. The assumption of noise 
distribution being Gaussian has been commonly used [27], [28], but no real proof has 
been presented. In fact, noise in cryo-EM images circumvents randomness of electron 
counting statistics, inelastic collisions of electrons with amorphous ice [29] and its 
varying thickness [30]. It also seems to be overlapped with CTF aberration [12] and as 
discussed in Chapter 3, the calculation of a clear separation line between CTF 
aberration and noise is not a trivial task.        

To understand different approaches for denoising and their potential to filter 
cryo-EM images this chapter gives an overview of denoising methods. Later it explains 
the MDL principles with its application to improve SNR. The approaches by other 
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researchers to denoise cryo-EM related data, are mentioned with an overview of 
denoising methods.  

2.1 Denoising methods 

To have an understanding about noise present in the observed data  it can often be 
written in following mathematical form  

,y

y A x ,     (2.1) 

where A  is the point spread function (PSF) distorting the original data x by convolving 
with it. The second additive component  is noise which is the unwanted random 
component. Here the PSF matrix ( A ) is without loss of generality, taken as unity and 
data matrices  and y x  and noise  are all taken as 2D matrices. Conventionally noise 
has been considered as independent and identically distributed (i.i.d) for the sake of 
simplicity. On the basis of the central limit theorem most methods claim noise to have 
Gaussian distribution, but this assumption has helped researchers only to some extent 
in real world applications. Noise can be generated due to the source of the data itself or 
due to the observation equipments. Every denoising method has its own assumption 
about the source and statistical property of the noise. 

Currently, most of the proposed image denoising methods can be classified 
according to their original concepts as local smoothing filters or transform domain 
filters or as combination of them. Local smoothing methods are generally believed to 
be based on isotropic linear filtering, anisotropic filtering or total variation 
minimization, which consider neighborhood of the pixels according to their spatial 
location. Some local smoothing methods can also be based on the neighborhood of a 
pixel according to the gray level values such as in case of Susan filter [31]. The 
transform domain filters use basis vectors to project the image in to another frame in 
order to separate the image as a set of  non-noisy coefficients and noisy coefficients. 

Spatial filters 

In isotropic linear filtering [32] one does the smoothing of the image by convolving it 
with the Gaussian kernel of type 

2 2| | / 21( ) 2(2 )
x hG x

h
e .    (2.2) 

Here, the noise reduction exploits the fact that the neighborhood window of size h
involved in the smoothing is wide enough, so that the noise is reduced by averaging. 
The Gaussian convolution works optimally on smooth and regular data but performs 
poorly on other parts of the image, like edges or textures, where the Laplacian gradient 
of the image is large, producing a blurred image.  

On the other hand an anisotropic filter [32] avoids the blurring effect of the 
Gaussian envelope by convolving the image y at pixel  only in the direction ( , )i j



2.1 Denoising methods                                                                                         9

orthogonal to the image gradient ( / , / )yD y i y j . In this case the Gaussian kernel 
is similar to isotropic linear filter except at the location where the gradient . The 
approach of such filter is an extension to the work presented by Perona and Malik [33]
where the properties of the physical process of diffusion have been used to enhance 
edges and the sharp feature of the image. The noise at pixel ( ,  according to 
anisotropic filter is 

0yD

)i j

21( , ) | | ( ( , ))
2 yi j h D curv y i j ,               (2.3) 

when y  and denotes the curvature, i.e. the negative inverse of the 
radius of curvature of the level curve passing through pixel ( ,  There are many 
versions of anisotropic filters, achieving an asymptotic estimate equivalent to the one 
in equation (2.3), one of which is the median filter [34], [35]. The method proposed 
recently by Fernandez and Li [25] for denoising 3D cryo-tomograms, uses such an 
approach to enhance features in 3D electron density maps. Their method is based on 
the hybrid of edge enhancing diffusion and coherence-enhancing diffusion (CED) 
approaches first introduced by Frangakis and Hegerl [23]. It also includes a 3D plane-
enhancing CED diffusion mode, which enhances surface-like or plane-like local 
structures in tomograms.  

0D ( ( , ))curv y i j
).i j

A different kind of spatial filter called the ‘total variation’ [32] minimization 
method assumes the original non-noisy image as a collection of connected objects 
having smooth contours and edges such that the image variance is less inside the 
objects but increases across the boundaries. For image data defined in space , the 
restoration problem using total variation minimization can be written as the solution of 
following form 

y

21( ) min{ ( ) ( || || )}
2x

TVF x TV x x y ,                    (2.4) 

where the regularization function  represents the edge information in 
the image. The Lagrange multiplier

( ) | |TV x x
works as trade-off between the smoothness and 

the sharpness terms. The noise at pixel  is defined as( , )i j

1( , ) ( ( ( , )))
2

i j curv TVF x i j .          (2.5) 

Similar to the anisotropic case, edges are maintained if their curvature is small. 
However, detailed non-connected boundaries and textures could be smoothed out if 
is too small.

There are also other neighborhood filters [32] which take into account grey 
level values to define neighboring pixels. They are fully non-local algorithms, since 
pixels belonging to the whole image are used for the estimation of the pixel at 
location ( , . One such filter, Susan filter [31] proposes a closed formula for the )i j
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denoised image intensity ( , )x i j at pixel  that can be derived from a noisy 
image  as

( , )i j
,y

2

2
| ( , ) ( , )|

( , )

1( , ) ( , ) ,
( , )

y i j y i j
h

B i j
x i j y i j di dj

C i j
e ,                (2.6) 

where ( , )B i j  is a circle of radius around the centre  and ( , )i j

( , )

2| ( , ) ( , )|
2

( , ) ,B i j

y i j y i j

hC i j di dje              (2.7) 

is a normalization factor at pixel ( , ).i j
A similar method with modification of the neighborhood filtering approach is 

bilateral filtering. This filter is worth mentioning here because in a recent publication 
Jiang et al. [20] have claimed their bilateral filtering method to be working efficiently 
on EM 2D images and 3D volumes. They have shown that bilateral filtering improves 
the feature detection in 3D volumes and they demonstrated it using a helix-hunter [36] 
method for the computational identification of helices in P8 protein of rice dwarf virus 
structure with resolution around 8 Å. In principle their formula for denoised image 
intensity ( , )x i j at pixel ( , that can be derived from noisy image , can be written 
in the following form 

)i j y

2 2 2(( ) ( ) ) ( ( , ) ( , ))
2 22( , ) ( )( ) ( , ) ,

i i j j y i j y i j

hx i j e e y i j di dj ,   (2.8) 

which is quite similar to the equation (2.6), except that instead of taking a circular 
window  it uses a Gaussian function with standard deviation ( , )B i j  to control the 
smoothing region in the image. The other term with parameter  controls the 
discrimination between true features and noise with support from the assumption that 
larger pixel intensity value variations are mainly due to true features while smaller 
pixel intensity value variations are due to noise. 

h

The spatial filters assume the difference only between sharp boundaries and 
plain objects; they do not pick patterns or special features. Most of the spatial filters 
need an external parameter, which could be the variance estimate of noise or the 
number of iterations needed for cleaning the noise. The local spatial filters always 
leave artifacts in the denoised image. For instance, the total variation method tends to 
find spurious edges in the noise, shown in Figure 2.1(g) and similarly bilateral filtering 
creates unwanted spurious local artifacts if the smoothing region is small. Picking 
pattern and highlighting some desired informative parts in images is not possible using 
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(a)                     (b)                  (c) 

(d)           (e)              (f) 

(g)           (h)              (i) 

Figure 2.1: Nearly equal success of different methods in removing simulated Gaussian noise 
added to image having projections of the prokaryotic chaperone protein GroEL 3D volume 
(from protein data bank [4]). (a) original image without noise, (b) noisy image with Gaussian 
noise, (c) the denoised image using modified MDL-histo of Publication IV and  wavelet level-
wise weighting  method proposed in Publication I, (d) denoised image using NML based MDL 
denoising method  and  wavelet level-wise weighting, (e) denoised image using wavelet 
shrinkage using BayesShrink [44] based soft thresholding, (f) filtered image using median 
filtering [35], (g) image denoised using total variation method, (h) denoised image by Bilateral 
filtering [20], (i) band-pass filtered image.   
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spatial filters. On the other hand, the transform domain filters have the capacity to pick 
patterns and features by the use of basis vectors suitable for the feature and the pattern 
in the image. A collection of results obtained by using different methods for simulated 
Gaussian noise as shown in Figure 2.1, gives an overview of their performance.  The 
results shown in Figure 2.1 (c), (d), (e) and (i), have been produced using transform 
domain filters. 

Transform domain filters 

Most of the transform domain filters work such that initially the image is transformed 
into coefficients. Some transform coefficients are then thresholded to zero or rescaled 
down to produce a set of non-noisy coefficients which are then inverted back to obtain 
the denoised image. One such Fourier-domain filter is Fourier-Wiener filter [37] where 
the Fourier basis weights global image characteristics more than local ones and create 
periodic pattern as artifacts in the denoised image. To avoid this effect, other basis 
vectors are used to take into account more local features; some of such transforms are: 
wavelet [37], local discrete cosine transform (DCT) [37], bandlet [38] and curvelet [39] 
transforms.  

The wavelet transform is an example of a transform which has adapted 
representation for localized features as well as for long range smoothing functions. 
They have advantages over traditional Fourier methods in analyzing physical 
situations, where the signal contains discontinuities and sharp spikes. Wavelet 
transform is done by decomposing the signal by convolving it with wavelet function 

(t) (i.e. the mother wavelet) for each level. [40] The wavelet function (t) is translated 
and scaled according to equation 

,
1( ) ( )

22
s l ss

t lt      (2.9) 

where s is the wavelet level and is the location for which wavelet coefficient is being 
calculated. The complex conjugate of the translated and scaled wavelet function is then 
correlated with the data 

l

( )x t to get wavelet coefficient at location l and level s as

*
,( , ) ( ) ( )s lw s l x t t dt .    (2.10) 

In order to avoid the infinite number of levels needed, a compact support scaling 
function (t) is used after last level to represent the rest of the information in the signal 
[40]. A wavelet function satisfies the orthogonality property such that its inner product 
with itself is unity and inner product with other functions obtained after dilating or 
shifting it, is zero [40]. Several wavelet functions have been derived to highlight 
different aspects of data. One of the wavelet function (t) called Mexican Hat function 
is represented in equation (1) of Publication I. Wavelet transformations can be 
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classified in to two major types as continuous wavelet transform (CWT) and discrete 
wavelet transform (DWT). The CWT is computed just as explained above i.e. changing 
the scale of the wavelet function and convolving with the signal at every level. In the 
discrete case, filters of different cut-off frequencies are convolved with signal after 
scaling the signal to different levels. For DWT the signal is itself scaled at every level 
and convolved with the scaled wavelet function. The scaled and translated wavelet 
function for DWT can be demonstrated as 

,
1( ) (2 )
2

s
s l s

t t l     (2.11) 

which is almost similar to the one in equation (2.9) except that location in signal is not 
scaled as signal itself is scaled for level . DWT results in lesser and non-redundant 
coefficients and is quite useful in applications like data compression and feature 
extraction [37]. However, CWT which produces redundant coefficients has its own 
applications like time-frequency analysis and denoising [40]. The discussion in thesis 
applies to both types of wavelet transform, however notice that the orthogonality 
criteria is not necessary for derivation of method proposed in Publications III and IV.  

s

The lossy compression [37] based approach for denoising using wavelets has 
been studied by many researchers in different ways. Most of them choose one 
threshold for one wavelet basis vector level coefficients and threshold coefficients 
below the threshold. The pioneer proposal given in a seminal work of Donoho and 
Johnstone, has been followed by series of other proposals by the same researchers with 
different thresholding criteria called the universal threshold [41], SureShrink [42], 
VisuShrink and RiskShrink [41]. These works were based on obtaining near-optimal 
properties in the minimax sense by minimizing the worst case risk over large class of 
signals using nonlinear shrinkage estimators with the help of thresholds. The risk 
associated with threshold rule to achieve estimate x̂  is described as  

2ˆ( , ) {|| || }R x x E x x̂

ˆ

     (2.12) 

where the expectation is calculated over the noise distribution. An estimate that 
minimizes the risk can be written as ˆˆ ( , )x xx inf sup R x x [41]. The optimal operator 
would attenuate all noisy coefficients in order to minimize the risk but Donoho and 
Johnstone explained a simple kind of thresholding criteria of 0 or 1, which can help in 
minimizing the worst case risk. The universal threshold ,U  derived by them as 
optimal in the minimax sense is given by 

ˆ 2log( )U N ,       (2.13) 

where ˆ  is the estimate of standard deviation of noise and is the number of data 
points. The standard deviation of noise is usually estimated by the median absolute

N
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deviation (MAD) estimate 
1

1ˆ (| |) / 0.6745Nmedian c ,    (2.14) 

where,  is the vector of absolute values of the wavelet coefficients at the finest 
detail level with 1  coefficients and 0.6745 being a normalization factor due to the 
Gaussian noise assumption. Anticipating the weakness of such an approach, Donoho 
and Johnstone came up with new approaches for finding thresholds, like Sureshrink, 
Visushrink [42], [43]. Wavelet denoising has been attempted using various Bayesian 
approaches; one of them is adaptive thresholding using generalized Gaussian prior, 
known as BayesShrink [44]. Recently another class of threshold rules has stemmed 
from information theoretic ideas related to minimizing the description length and 
complexity distribution [17], [45] and this we will discuss in next section. 

1
1| Nc |

N

2.2 Minimum description length principle 

In MDL based denoising technique it is assumed that the complexity of noise is greater 
than the complexity of the smooth data. Another way to describe this is that MDL 
principle assumes noise as the incompressible part of data and meaningful information-
bearing signal as the compressible part, given the model class. The model class serves 
simply as a language by which the properties we wish to learn can be described. The 
modeling approach to select the best model and model class, can be formalized in 
different ways. One such way can be explained in terms of complexity. The concept of 
complexity was first described by Solomonoff [45] but the Kolmogorov complexity 
has quite often been referenced [46]. The Kolmogorov complexity of a binary 
string 1 2, ,...n

nX x x x , is defined as the length of its shortest description ( )n
Up X  in 

the language of a universal computer U generating the input string [45], 

( n
UK X ) = min | |.                (2.15) ( )n

UP X

Kolmogorov complexity gives a universal model which can also be represented with a 
probability term [46] as 

( )( ) 2
n

UK Xn
KP X C ,                (2.16) 

where,  is a finite normalization term calculated over the set of 
all binary strings B. The universal distribution  in equation (2.16) has the 
property to represent any computational probability distribution   so that

( )1/ 2 K yUC y B
( )n

KP X
( nQ X )

)
                                       

( ) (n n
KP X AQ X ,              (2.17) 
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for some constant A. The major drawback of Kolmogorov complexity measure is its 
non-computability, so in practical applications it has always to be approximated [45]. 
The current version of MDL principle has evolved around this algorithmic complexity 
theory. In MDL theory instead of working on all possible programs to find the 
complexity, a model class is defined such that it is restricted to be a set of parametric 
probabilistic models. 

The Kolgomorov complexity can be presented in terms of conditional 
complexity ( | )K x y as the length of the shortest program that generates string x  from 
another string y. It can be shown [46] that 

( , ) ( ) ( | )n n n n nK x y K x K y x .              (2.18) 

To describe sequence nx  we can do it in two parts as ( ) log | |K A A , where first part 
describes optimally a set A  with the number of bits given by the Kolmogorov 
complexity  and the second part describes ( )K A nx  in A  with log | |A  bits, with | |A
denoting the number of elements in .A

Another concept with similar idea, called stochastic complexity [47], is also 
used as a founding terminology for explaining MDL and it can be defined as the 
shortest code length for the data given a probabilistic model class. In order to 
understand further and avoid non-computability problem, consider a family of 
probability models ( , , )n kM f x , where 1,...,k

k  are parameters and  is 
the structure index containing information about the subset of included parameters. To 
encode , ,n kx  we need a prior for the parameters and the real valued parameters 
must be quantized to get finite code length for them. For coding prior distribution, 
hyper-prior distributions or hyper-parameters [48] may be needed and so on. To 
truncate this chain of hyper-priors, a constraint can be used such that the highest prior 
included can be calculated without adding it to the total code length. A fundamental 
construct in the theory is a universal distribution ˆ ( ; )nf x M , which has no other 
parameters than the structure index that has the information about the included 
parameters. The code length L(a) for any object a defined by a probability P(a) is taken 
as ( ) log1/ ( )L a P a  [47]. This implies that with a universal model and a code length 
for the structure index ( )L  the optimum index ˆ( )nx  can be searched for or 
estimated by using the following minimization 

ˆmin{log(1/ ( ; )) ( )}nf x M L .            (2.19) 

Two-part MDL 

As shown before, to encode a data sequence nx , the MDL principle needs generally 
two main parts, which can be stated as follows; given the data D and the model M, the 
total code length L(D,M) can be written as 

L(D,M) = L(D|M) + L(M) ,               (2.20)
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where L(M) is the length of the description of the model and L(D|M) is the length in 
bits of the description of the data encoded with the help of model M. The explanation 
behind this code length based model selection is simple, see Figure 2.2. If the quality 
of fitness of the model to represent the data is improved by making the model more 
complex, the code length L(M) needed to encode the model increases. The 
minimization of the total code length then finds the balance between model complexity 
and accuracy.  

Figure 2.2: The plot of code length with respect to number of regression variables (model). 
L(M) is the code length of the regression model and L(D|M) is code length of the data with 
given model M represented by number of regression variable in its structure index.  

Supported by the discussions above, it can be shown that minimizing the two- part 
code length   

( , ) log ( ; ) ( )n k n k kL x P x L          (2.21) 

gives a statistical fit and minimized code length [17], [45] for the model (the second 
term). It is equivalent to finding the maximum likelihood (ML) parameters ˆk . Since 
the real-valued parameters must be quantized, the resulting precision should also be 
taken into account. In order to achieve the shortest code length the precision of ML 
parameters must be optimized. A previous work by Rissanen [49] shows that the 
optimized truncation precision ˆ

j  is of the order of 1/ n , when log ( ; )n kP x
grows proportionally to n . With optimal precision the minimization of the total code 
length, given the model class is equivalent to minimizing the expression 

( , ) log ( ; ) log( ).
2

n k n k kL x P x n       (2.22) 
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For a parametric density function =( )nq x ( , ( ), )n k nf x x  the ML code length can be 
used to judge the level of coding performance by the regret 

ˆ( ) log ( ) ( log ( ; ( ), ))n n kq q x f x xn ,     (2.23) 

and as a measure of optimal model solution of the minimax [47] problem  

ˆmin[max ( )] min[max{ log ( ) ( log ( ; ( ), ))}]
n n

n n k n
q qx X x X

q q x f x x .  (2.24) 

The unique solution to this minimax problem is the normalized maximum likelihood 
(NML) density function [47], as a universal model: 

( ; ( ), )ˆ ( )
n n

n
n

f x xf x
C

 ,       (2.25) 

where     
.         (2.26) ( ; ( ))n n n

X

C f x x d nx

The logarithm of the denominator ln( )nC  is a measure of ‘parametric complexity’ of 
the model class. Since this must be bounded, it may be necessary to restrict the range 
X of the integration by hyper parameters. For the Gaussian family, Rissanen [50] 
describes an elegant renormalization scheme, where the hyper parameters [48], [50] 
defining the range of the data are optimized and a second normalization is performed 
such that the resulting code is complete. This renormalized NML can be used for 
model selection in linear regression and denoising. In denoising, the MDL model 
selection is performed by considering each subset of the regression coefficients as a 
model class and minimizing the stochastic complexity ˆlog ( )nf x of the data given 
the model class. 

Linear regression 

In order to look at the linear regression problem in more detail, we will deal with the 
data of type 1 2( , , ,..., )t t t lty x x x  for  for which we wish to find the 
influence of regression variables it

1, 2,..., ,t n
x  on the corresponding values ty  of the regression 

variable  To find the number of regression variables that are most important we must 
be able to compare the performance of subsets of different sizes. The regression based 
linear model can be written as 

.y

t t t i it
i

y x x t ,                (2.27) 
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where, 1{ ,..., }ki i denotes a subset of the indices of the regression variables and t
denotes independent Gaussian process of zero mean and variance 2.  For such a 
model the observed data  are also normally distributed with the density 
function

1,...,n
ny y y

1 2( )1 2( ; , , ) / 2(2 )

y xt tnf y en
.              (2.28) 

Taking the { ; }itX x i as the k n matrix defined by the values of the regression 
variables with indices in  and taking ,Z X X n  the ML solution for the 
parameters is given by  

1ˆ( )ny Z X yn                  (2.29) 

21 ˆˆ( ) ( ( ) )n n
t t

t
y y y

n
x .                (2.30) 

The derivation of NML density function for the given model class, is not a trivial task 
and has been attempted using different approaches [47], [51]. An exact formula has 
been derived by Rissanen [50] to avoid unbounded complexity as follows  

0

0
( , )

ˆ ˆ( ; , ( ), ( ))ˆ ( ; , , ) ˆ ˆ( ; , ( ), ( ))

n n n
n

n n n
Y R

f y y yf y R nf z z z dz
 ,             (2.31) 

where 0( , )Y R  represents the set of all the data value ny such that 

0 0
ˆ ˆˆ( , ) { : ( ) , ( ) ( ) }n n n nY R z z y y R .            (2.32) 

The renormalization process [50] yields another NML density of limited support for 
each pair of parameters 0( , )R , which can be written as

( , )0

ˆ ˆˆ( ; , ( ), ( ))ˆ ( ; ) ˆ ˆˆ( ; , ( ), ( ))

n n n
n

n n n
Y R

f y y R yf y nf z z R z dz
.             (2.33) 

After setting 0 ˆ  and varying ˆ over the range 1 2[ , ]  and setting ˆR R  and 
varying R̂  over the range 1 2[ , ]R R  and integrating the function 0

ˆ ( ; , , )nf y R  it can 
be shown that the negative logarithm of  ˆ ( ; )nf y  is given by 

ˆln ( ; )f y = 2 2

1 1

ˆˆln ln ln ( ) ln ( ) ln( ) ln[ln ln ]
2 2 2 2 2

Rn k k n k k nR n
R

            (2.34)
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The last term in this equation can be ignored if the value of ˆ  and R̂ do not vary too 
much as a function . For detail derivation of this NML criteria, see the references 
[50], [51]. After applying Stirling’s approximation to the function we get the NML 
criterion for 0  as: k n

1 1 1ˆˆmin { ln ln ln ln ln ln[1 ln(1 )]}
2 2 2 2

n k k n k kR k k k
n k

,

                     (2.35) 

where  denotes the number of elements of k .  The last two terms represent the code 
length needed to code integer  which can be ignored for usual regression problems as 
their value is relatively too small. This criterion has been used in various applications 
and also in modified forms. 

k

2.3 MDL denoising and wavelet shrinkage 

The linear regression based approach presented above can be extended to regression 
matrix-based transformations of observed data. The regression matrix can represent 
many transforms like wavelet or discrete cosine transform [37]. Taking example of 
wavelet transform which is an orthonormal transform, the transformation can be 
written as

c Wy                           (2.36) 
Ty W c                         (2.37) 

with  describing the data matrix and  describing the wavelet coefficient matrix and 
W representing the wavelet transformation matrix. If the subsets of the regression 
variables are taken as model class then the approach of MDL is to find the model 
which gives minimum code length when used to code the data. In other words, the 
problem is to choose the subset 

y c

 of the basis vectors or the corresponding parameters 
in such a way that the stochastic complexity of the given data is minimized. The 
denoised signal can be written as  

ˆ ( )Tx W c y ,                (2.38) 
where is the regression matrix and  is the vector of coefficients 
corresponding to the optimal model specified by

TW ( )c y
.  In  only the selected 

coefficients are present and it represents the ML estimate 
( )c y

ˆ.  Other ML estimate ˆ  in 
equation (2.35) is now given by 

2

1
ˆ( )

ˆ ˆˆ

n

t t
t

y x
c c c c

n n
,               (2.39) 
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where  is the vector of non-selected coefficients [50]. The criterion for finding the 
best subset 

ĉ
 is then equivalent to  

ˆ ˆ ˆ ˆ 1min { ln ln ln( ( )) ln ln(ln( ))]}
2 2 2

n k c c c c k c c k n k k k
n k k

.     (2.40)

Using Parseval’s equality, Rissanen [50] has proved that the sum of the squared 
deviations ˆ  is minimized by the k  largest coefficients in absolute value. This can be 
achieved by sorting the coefficients according to their absolute value and start checking 
for minimization from the largest value. The sorting would lead to loss of location 
information of the coefficients, so the locations have to be coded [52]. This leads to the 
code length to be minimized as 

         ˆ ˆ ˆ ˆ 1min { ln ln ln( ( )) ln ln ln(ln( ))]}
2 2 2

nn k c c c c k c c k n k k k
kn k k

,

                     (2.41) 
which after ignoring small valued terms, can be written as  

3 3
ˆ ˆ ˆ ˆ 1min { ln ln ln( ( ))}

2 2 2( )
n k c c c c k c c k n k

n k k
.            (2.42) 

The term  determines the threshold k  for the coefficients, such that all coefficients 
larger than  in absolute value are only selected and other coefficients are set to zero. 
The minimization criteria mentioned above need the regression matrices to be 
orthonormal. It is quite similar to using threshold by other proposed methods to 
truncate wavelet coefficients to achieve denoised data, but in most of the other methods 
the prior information about noise variance should be known. 

Such approaches to pick one threshold as the boundary between noise 
coefficients and data coefficients could perform satisfactorily for low variance of noise. 
However, when the statistical properties of noise get very similar to that of data or 
when the distribution of noise is unknown, such single threshold method would be 
insufficient to demarcate noise from data. But, the question arises how to model the 
noise if we cannot know or assume any distribution? The answer to this lies in 
approach of coding the data without assuming any distribution of the data. Using such 
non-parametric coding and dividing the code in two parts would lead to their automatic 
separation in to two parts, where one part would have more complexity than the other. 
The part of the signal with more complexity can be demarcated as noise. The approach 
used in Publication III follows this policy and employs histogram based coding of the 
wavelet coefficients. Histograms at each level of the data and for the common noise 
can be changed to fit the distribution of the data and noise in a prudent manner. This 
kind of approach automatically fit to the distributions of data and noise, whatever they 
look like. Instead of using one threshold the selection of bins is done such that
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(a)     (b) 

(c)     (d) 

Figure 2.3: Difference between traditional soft thresholding [30] and the proposed wavelet 
level wise weighing and shrinkage method in Publication I using NML criteria to find the 
threshold. (a) The original image, (b) noisy image with Gaussian noise, (c) the traditional soft 
thresholding result [30], (d) denoised image using wavelet shrinking proposed in Publication I. 

distribution of coefficients among the data histograms and noise histogram leads to 
minimum code length. The approach has been demonstrated with equal bin width 
histograms in Publication III, as well as variable bin histograms in Publication IV. The 
simulation results have already shown that such method is able to distribute the 
coefficients among noise and data histograms quite effectively. After the introduction 
of improvements, like gradual iterative picking and greedy approaches in Publication 
IV, this method outperformed other wavelet thresholding methods like Bayesthresh 
[44] and universal threshold [41], in term of image denoising. 
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There are several possible methods to pick non-noisy data coefficients from the 
coefficients of original noisy data, in transform domain. However, the assumed non-
noisy coefficients may not always represent only the required data. The non-picked 
coefficients usually retain some features of non-noisy data, such as in wavelet domain 
the edges and sharp feature coefficients have chances to get categorized as noise. 
Especially when the noise variance is high the resulting denoised image by most of the 
thresholding methods are either left with remnant noise or loose lot of genuine 
information in the image. To avoid such attenuation of denoised image, a new method 
was developed and presented in Publication I, which calculates the shrinkage factor for 
each coefficients based on wavelet level-wise weighing. The purpose of this approach 
is to do denoising and enhance the features of samples without loosing their high 
frequency information from the cryo-EM images. Thus it has the capacity to enhance 
the samples in images taken at low defocus value as well as retrieve their high 
frequency details. Such a method based on code length principle would have a valid 
explanation as the non-noisy data tends to need less code length. This approach assigns 
weight to different basis vector layers or wavelet levels on the basis of compressibility. 
Instead of setting the coefficients below the determined threshold to zero, they are 
scaled to smaller values and the different wavelet level coefficients are weighted 
according to the number of their coefficients above the threshold.  

2.4 Comparison of methods

The shrinking method proposed in Publication I, seems similar to the soft thresholding 
scheme proposed by Donoho and Johnstone [42], but in actuality both methods are 
quite opposite of each other. The traditional soft thresholding approach [42] only helps 
in avoiding artifacts and adjusting contrast in the resulting denoised images but not in 
retrieving back the genuine information lost with the noisy coefficients.  The difference 
can easily be seen from the results shown in Figure 2.3. Such an approach is needed for 
high variance noise of unknown distribution in cryo-EM images, as most of the 
denoising methods tend to either create a lot of artifacts or completely smooth out the 
genuine information in the image. This kind of behavior of traditional denoising 
methods can be explained by the fact that most of them are developed for Gaussian 
noise and have been tested for simulated easy noise. On observing Figure 2.1, it 
becomes clear that all the methods tested gave nearly equal performance for Gaussian 
noise.

The results shown with original cryo-EM images in Figure 2.4 give completely 
different judgment for different methods. Spatial filters produced sharp and edgy 
denoised images with some artifacts, while wavelet based denoising methods produced 
noiseless and little blurred images.  The spatial filters simply can not find difference 
between particle projections and noisy neighboring vitrified water. As shown in Figure 
2.4 (e) and (f), bilateral filter [20] and total variation  filter take high pixel intensity 
locations as genuine data and enhance them even if they are actually lying outside the
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(a)             (b) 

(c)             (d) 

(e)                (f) 

Figure 2.4: Comparison of different denoising methods on real data. (a) original micrograph 
image of LDL particles (by courtesy of Sarah Butcher, University of Helsinki and Kati Öörni, 
Wihuri Research Institute), (b) denoised image using NML based MDL denoising method and 
wavelet level-wise weighting, (c) the denoised image using modified MDL-histo of Publication 
IV and wavelet level-wise weighing method proposed in Publication I, (d) band-pass filtered 
image, (e) image denoised using total variation method, (f) denoised image by bilateral filtering. 



24                                                    Minimum description length based denoising

sample particles. Even frequency domain band-pass filtering (Figure 2.4 d) may give 
better results than spatial filter as shown in Figures 2.4 (e) and (f). 



Chapter 3 

Statistical analysis for single particle 
reconstruction

The SPR method is based on the assumption that the projections used to reconstruct a 
3D structure have been made from structurally congruent particles. At the atomic level 
these particles are dynamic but at nano-resolution level they can be regarded as static. 
Since the noise in TEM and cryo-EM images enhances the differences among 
projections, the success of the steps involved in the SPR method depends on their 
capacity to overcome these differences. For this purpose, it is often necessary to use 
several thousand projections (particles) for reconstructing 3D object from its 2D 
projections. Once particles have been picked and centered, they need to be classified 
and aligned for the reconstruction. These steps provide information on the relationships 
between different particles. The information can then be used towards putting together 
a 3D volume. Figure 3.1 gives a schematic representation of the procedures in SPR. 
This chapter gives an overview of the steps involved in SPR, including particle 
picking, classification, alignment, CTF correction, 3D reconstruction and model 
generation. It also presents the link between the noise and the efficiency of some steps 
and shows results of additional analysis for this thesis through included figures. 

3.1 Particle picking 

For small amount of sample, it is trivial to select or pick the particle projections from 
few micrographs. The procedure for picking thousands of particles from several 
micrographs is a tedious task, which emphasizes the need for automatic picking 
method. Automatic particle picking procedures generally use correlation peak finding 
algorithms to select particles [53], in which an average model of a particle is generated 
and correlated across the whole micrograph. The correlation value between the model 
and the micrograph, gives the probability of particle presence and the area with high 
correlation value is selected and boxed out into a different set. Another approach used 
to select barely visible particles from close-to-focus and noisy micrograph, is to pick 
visible particle locations from the micrograph image of the same position in the same 
sample but far from focus. This can be done if the relative orientation of the two 
micrographs is known [12]. There are also other methods which take into account the 
local variance [54] in the image or the local histogram in the image boxes as proposed 
in Publication I while some other methods employ different transforms to select the 
assumed geometrically shaped particle picked [55], [56]. The prior assumption of 
shape of projections to pick particle works for symmetrical particles but not for all the 
particles. Given the noise in the micrograph the correlation values can be false, so most  
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of the methods have a refinement procedure to drop the picked particles which are 
false-positives. These refinement procedures may themselves serve as independent 
picking methods as proposed in Publication I. One of the refinement method employs 
Gabor filter that posses optimal representation property in both spatial and frequency 
domain with orientation. The Gabor kernel function given in equation (13) of 
Publication I is based on the two-dimensional Gabor function proposed by Daugman to 
model the spatial summation properties of simple cells in the visual cortex [57]. It has a 
single direction sinusoidal part controlled by frequency and a global Gaussian blurring.  
The function has both real and imaginary part, however only one part is used to 
convolve it with the boxed images to obtain coefficients in different orientations. The 
corrected version of real part of the function for direction  at location ( , )x y  would 
be

2 2

, , , 2( , ) cos( )exp ,
2f

x yx y x    (3.1) 

where  is the standard deviation for Gaussian blur and  is the elongation parameter. 
The corrected versions of x  and y  are such that ( cos( ) sin( ))x x y f  and 

( sin( ) cos( ))y x y f for frequency f . As mentioned in Publication I, the array 
of the sum of the coefficients of one image is then convolved with similar array of 
other image to get the similarity index.  

3.2 Classification 

Doing classification and making class averages of cryo-EM images is a traditional way 
to reduce noise and simplify the reconstruction process. The picked projection images 
of the sample particles can be classified using various methods that are efficient with 
high SNR, when a model representation (reference images) for the data is available 
[58]. To achieve the model representations from the image data, a commonly used 
method is multivariate data analysis [59] based on either principle component analysis 
(PCA) or correspondence analysis (CA). While PCA is done on the basis of Euclidean 
distances, the CA method [60] is dependent on the statistical 2 distances between the 
relative frequencies. The relative frequencies are obtained after the data in each row 
and column are normalized such that they add up to one. The rows contain the images 
and columns contain the pixel values. Thus correspondence analysis [60] technique   
does statistical analysis of such two way tables in order to find important representative 
features among several images [58]. After using data reduction technique such as CA 
or PCA to make reference images, it is possible to decide the classes of all particles 
The reference-based classification can be done on the basis of features or direct pixel. 
information of the images. Classification methods have evolved with different 
approaches such as hard or fuzzy classification approach [61], partitional-hierarchical 
ascendant merging [62] and self-organizing approaches of classification. Although
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classification is meant to increase the SNR in images, it may also produce worse 
results due to its failure to deal with high variance noise and images could be assigned 
wrong classes producing false projection averages and hence lead to false 3D volumes. 
When the image set is heterogeneous, the multi-reference classification of the entire set 
of images can also be done after reference-free alignment or after having projection 
from different 3D volumes. The class averages made by multi-reference classification 
can be used to make multiple 3D volumes. The classification process is followed by 
further alignment and making class averages.      

3.3 Alignment 

Usually, picking algorithms can put the picked particles in the centre of the selected 
area (boxes). Though the need for centering of projections in boxes for asymmetrical 
particles has been questioned, researchers still do fine adjustments for centering to 
increase the efficiency of other steps of SPR.  The centering methods employ different 
approaches to find the centre of particles. Some make pixel value based weighted 
average of spatial locations while other use only intensity peaks. In the later approach, 
image is translated so that number of intensity peaks near the centre is maximum. For 
finding orientations, the alignment method heavily relies on template based cross-
correlation rather than the pair-wise features matching and optimization like computer 
vision techniques. In contrast to other fields like computer tomography [63] and 
computer vision, the sequence of the projection images taken, does not exist for SPR. 
A possible matching among each pair of images from a set of several thousands of 
images could be quite tedious task to do, so the alignment methods use common 
templates for calculating cross-correlation with particle images. The templates are 
generally the projections of the 3D volume reconstruction made during previous 
iteration or using initial model generation methods. The mode of orientation 
representation vary for different methods and users as some use Euler angles , ,
format while others use vector format [64] representation. Different methods use 
different transformed space to calculate correlation coefficients to align the particles. 
PFT2 [65] software uses polar Fourier transform to align the particles and has been 
proved to be quite effective for aligning icosahedral viruses [66], [67]. Sinogram [12] 
based alignment have also been used to align noisy images. Conventional cross-
correlation functions are ‘squared’ correlation functions which can bias towards the 
low frequency components in the data. In order to avoid this biasing, mutual cross-
correlation function can be used for alignment in final iteration of processing to focus 
on the high resolution data components [12]. One projection can be assigned either one 
or many orientations based on choice and complexity of data. The assigned 
orientations are used to make the 3D reconstructions which can be further used for tem 
template based matching and alignment in an iterative manner, see Figure 3.1.
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Figure 3.1: The schematic diagram of the process steps and cycle involved in single particle 
reconstruction. The process names are underlined and are in grey color. The grey box represents 
the set of process involving denoised image.  (cryo-EM images by courtesy of Sarah Butcher, 
University of Helsinki) 

3.4 Contrast transfer function correction

The data measured by a TEM and cryo-EM can be presented in following function 
form 

( , ) ( ) ( ) ( , ) ( , )I s C s E s F s N s ,   (3.2)

where is the measured data,  is the CTF, ( , )I s ( )C s ( )E s  is the envelope function 
and  represents random noise and ( , )N s ( , )F s  is the projection of the 3D structure 
in orientation . The knowledge of and( )C s ( )E s  is important for estimating .
Since noise 

( , )F s
( , )N s  properties are unknown, it can not be subtracted directly 



3.5 Three dimensional reconstruction                                                                29

from the images. To determine  and( )C s ( )E s , examination of the rotationally 
averaged power spectra of projection image, helps effectively [58]. C(s), E(s) and N(s)
can all be parameterized based on simulated theoretical models and comparison of the 
modeled power spectra with the original average power spectra. The mean noise level 
then can be reduced by averaging, when the actual CTF correction is done while 
generating class averages from aligned 2D single particle images or while making 3D 
reconstruction. The CTF based averaging method weights different images in Fourier 
space and the weights vary for different spatial frequencies depending on the quantity 
of information they have.  

The CTF correction technique described above makes suppositions for models 
which may not be always correct and lead to suboptimal estimation of parameters. To 
solve this problem, few methods [35], [62] incorporate Wiener filter into the correction 
equations, but accurate Wiener filtering needs an accurate measure of the spectral SNR 
in the final averaged image. Wiener filter can then do the correction as such  

*

2

( ) ( , )( , ) 1| ( ) | ( )

H s I sF s
H S

SNR

       (3.3) 

where  represents the CTF determined for one micrograph and 
 is the complex conjugate of .

( ) ( ) ( )H s C s E s
*( )H s ( )H s

A relative SNR measure may not be adequate for optimal Weiner filtering in 
the case of noisy TEM and cryo-EM images. To get a more optimal measure, the CTF 
parameter determination can be performed using structure factor [68] if it can be 
obtained. An approximate structure factor not only helps in estimating CTF parameters 
but also provides more accurate estimation of the SNR in class averages. The Wiener 
filter can then be applied to the class-averages. While making the 3D reconstruction, 
the additional averaging can lead to higher SNR but if the CTF correction is not done 
optimally for cryo-EM images, the 3D reconstruction may be lacking detailed 
information about some structural details. Better alignment and reconstructions can be 
achieved when the estimation of CTF parameters is improved iteratively at every cycle 
of the reconstruction process [69].  

3.5 Three dimensional reconstruction 

After the orientation determination for particles the 3D reconstruction from a set of 2D 
projections or class average or projections, can be done using the principle first 
explained by Radon [70]. This is the backprojection method which is the inverse of the 
projection method. In Fourier space the backprojection corresponds to simple 
combining of central sections associated with projections. Different variants of
backprojection method such as weighted backprojection and filtered backprojection 
have been able to produce better result.  
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Theoretically, the projection of 3D object is assumed as a summation along rays that 
extend from minus infinity  to plus infinity  and which represent an infinitely 
thin central section in Fourier domain. In reality the 3D reconstruction extends only 
over maximum finite distance D. This causes the central section in the Fourier 
transform to be a slab with thickness of (1/D) rather than an infinitely thin plane, which 
lead to overlap of the Fourier slabs in the low frequency region causing in to a blurred 
3D reconstruction [12]. Also as the denoising has tendency to suppress high frequency 
information, the resulting 3D reconstruction from denoised image may tend to be 
blurred. To avoid this situation one can use original noisy images for making 3D 
reconstruction based on orientations, determined for corresponding denoised images. 
Such 3D reconstructions are called here as ‘hybrid 3D reconstruction’. Figure 3.2 
shows the results of reconstruction using the hybrid method. To avoid the blurring 
problem, high pass filtering of the projections can also be used just like in some fields  

Figure 3.2: The Fourier shell correlation [58] plot to show resolution achieved by using single 
particle reconstruction for 10,000 projections taken from 3D volume of the prokaryotic 
chaperone protein GroEL Protein X-ray structure. Noise of high variance was added to 
projections which were randomly translated. The noisy images were later denoised and single 
particle reconstruction was performed using EMAN [19], assuming no symmetry and running 
for 9 iterations. The hybrid method used denoised images only for classification and noisy 
images to make class averages and 3D reconstruction. The resolution achieved with denoised 
images and hybrid approach was 17.92 Å and resolution achieved by processing only original 
noisy images is 22.01Å. 

of computer tomography. Instead of using single approximate filter for all images it is 
possible to have a specific filter computed for each image used in the reconstruction 
[12]. Besides this, the high frequency regions in the 3D Fourier reconstruction have 
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gaps between Fourier 2D projection slices, causing missing values of the high 
resolution information in the resulting 3D reconstruction. Methods like MEM 
(Maximum Entropy Method) [71] and POCS (Projection onto Convex Sets) [72] for 
filling the missing 3D information seem to improve the high frequency details but their 
results of recovered 3D volumes could still be objected and termed as too much 
extrapolation of data. The original estimate of 3D volume by backprojection method 
can also be further refined by using methods such as ART (Algebraic Reconstruction 
Technique) [73], which is more practical in theoretical explanation for restoration of 
high resolution information. 

3.6 Generation of initial 3D volume

For an inverse problem like SPR, in which the source of data is modeled and found 
iteratively, starting from an initial model, the properties of initial model can effectively 
influence final results. When alignment has not been done and orientations of 2D 
projections are unknown, making approximately correct initial 3D reconstruction is 
extremely important.  A commonly employed method for this purpose, is the common 
line method [12] which tries to find orientations for two projections i  and p jp  of a 
density map F onto planes corresponding to orientations i  and j , respectively by 
finding common line on the two projections. All one-dimensional projections of 
F onto a line passing through the origin in the plane corresponding to the orientation 

j  can be computed and found in other projection ;ip  this collection of such 
projections is also called the sinogram of ip .

For noiseless projections the pair wise common lines of three projections can 
be used to determine uniquely, the relative orientations of the projections in 3D space. 
The calculation of this is trivial using some arithmetic operations. However, the 
projection images produced by cryo-EM are extremely noisy and so to find one-
dimensional projections that are equal becomes a computationally heavy task. It 
explains the necessity of increasing SNR in the images to be aligned even if some 
resolution in the images is lost. An example simulation has been shown in Figure 3.3, 
where it can be clearly noticed that noisy images could lead to wrong structures with 
common line methods. The same noisy 2D images after denoising gives structures in 
Figure 3.3(e), more similar to original 3D structure shown in Figure 3.3(b). For highly 
symmetrical structures like icosahedral viruses and protein oligomers, the combination 
of denoising and common line method could help in avoiding spurious results caused 
by inefficiencies of other steps in the SPR. 
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Figure 3.3: The difference in the results of common line method. UCSF Chimera [74] was 
used for 3D visualization. (a) an oxidoreductase protein structure, PDB [75] code 1AA1[1], (b) 
the side and top views of 3D volume obtained after converting pdb structure to 3D volume at 
sampling rate of 1.4 Å /voxel, (c) two of the 351 projections made from the 3D volume and 
added with flat band Gaussian noise, (d) the side and top views of 3D volume reconstructed 
using common line method for the noisy projection images and assuming a four fold symmetry 
an axis, (e) the side and top views of 3D volume reconstructed using common line method for 
denoised projection images and assuming four fold symmetry around an axis. 



Chapter 4

Computer modeling and validation 

A protein molecule is a linear polymer composed of amino acids which form a chain, 
known as its ‘primary structure’. In a protein sequence, amino acids are joined together 
by peptide bonds between their amine and carboxyl groups. The terminal of a protein 
sequence with amino acid with a free amine group is called ‘N-terminal’ of the protein. 
Similarly the terminal of a protein with a free carboxyl group is called its ‘C-terminal’. 
The 3D shape of a protein in its native state is critical for its molecular function. The 
short-range forces at the atomic level give rise to the local regular configuration of 
protein sequence, called ‘secondary structure’. The protein's polypeptide chain with 
secondary structure folds further in 3D space to form more complex structures known 
as ‘super-secondary structure’ and ‘tertiary structure’. A protein molecule can interact 
with other protein molecules either after completely folding to its own tertiary structure 
or by folding together with the polypeptide chains of other protein molecules. The 
structure of a complex of many protein molecules is called ‘quaternary structure’.  

Solving the protein structure is mainly to determine the location of atoms of 
amino acids of proteins in 3D space. The 3D structure of proteins and protein 
complexes obtained by experimental methods are mostly docked with the predicted 
molecular structure of the proteins. Sometimes the configurations of the amino acid 
residues are predicted from the details of the 3D reconstruction obtained for the 
protein. At the same time, the characterization of protein interactions is done, in order 
to find answers for problems ranging from rational drug design [76] to analysis of 
metabolic [5] and signal transduction networks. As the number of experimentally 
determined structures for protein and protein complexes is still quite small, methods 
for computational prediction of protein-protein interaction sites are becoming 
increasingly important. An important research field included in the thesis is to 
characterize the interaction location and interaction pattern involved in the 
oligomerization of hantavirus N-protein presented in Publications II and V. Since the 
structure of N-protein is not yet known, the approach followed here is unconventional 
and it reveals the potential of a different perspective about protein folding for 
quaternary structure.  

The overwhelming emphasis on determining tertiary structures, given by the 
current popular opinion about protein folding, might be blocking the study of 
quaternary structures of many proteins. The approach proposed in this chapter is to 
view the phenomenon of protein folding from another perspective and not to stress on 
the tertiary structure. In order to understand the protein structure and to model it in a 
proper way, the basic forces responsible for the folding and the stability of the tertiary 
and quaternary structure of the protein have to be understood properly. Therefore, this 
chapter explains such forces by outlining the role of different amino acids for stability 
of protein and protein complexes. Later in this chapter, insight in to the steps involved  
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in the prediction of proteins and protein interaction structures is given as well as the 
explanation of the approach used for the candidate protein mentioned. 

4.1 Protein structure forces and interaction site prediction 

Most of the forces present in protein structures are local and they influence the folding 
of proteins. Though the origin of these forces can be explained in detail by quantum 
mechanics, a brief description about them would serve as a background to start with. 
Some of the basic forces influencing protein structure are briefly presented here, but 
for more details see [77], [78].  

In proteins the basic covalent bond, formed by covalently sharing an electron 
between two atoms, connects atoms of an amino acid. Besides being in amide bonds 
they are also responsible for cysteine side chains interactions, which provide stability 
to protein structure, folded properly or even improperly [77]. While the covalent 
bonding produces strong short-range forces, electrostatic interactions among amino 
acids bearing electrical charges can be long-range. Due to their long range strength 
they have an important role in the formation of higher order structures like tertiary and 
quaternary structures [77]. Some of the atoms have a partially negative charge which 
they try to reduce by sharing a partially positively-charged hydrogen atom leading to 
formation of hydrogen bond. It leads to the secondary structure formation in proteins as 
most of the hydrogen bonds are present between positively-charged amide and 
negatively charged carboxyl groups in alpha helices and beta sheets. A major force 
responsible for the proper configuration of protein structures [77], [78] is due to 
hydrophobic bonding. They pack hydrophobic side chains in order to shield them from 
interactions with polar water molecules. These side chains at protein surfaces involve 
hydrophobic bonding with neighboring proteins.  

Yet another form of force, called van der Waals force, is due to weak 
electrostatic interactions, among transient dipoles of electron clouds around the pair of 
atoms. Van der Waals forces can be either attractive or repulsive depending on the 
distance between the two atoms [79]. These forces provide an important component for 
protein structure because of the close proximity of atoms with each other. Other types 
of interactions, which are caused by aromatic amino acids, are cation-  interactions 
[80] and aromatic-aromatic interactions [81]. A cation-  interaction occurs when an 
electron cloud of an aromatic ring interacts with a positively-charged cation close to it. 
Also many aromatic side chains (phenylaline, tyrosine and tryptophan), found in 
proteins are involved in aromatic-aromatic pairings [81]. Simulation of such forces, 
suggest that interacting aromatic rings are generally perpendicular to each other such 
that the -electron clouds do not come in contact with each other and hydrogen atom at 
the end of one ring can interact with the -electrons of another ring, e.g. see Figure 4.1. 
The effect of aromatic amino acids for protein folding and stability can be understood 
by the fact that adding aromatic pairs and aromatic clusters in a protein increases its 
thermal stability [81], [82]. These forces have influenced the research done for 
Publications II and V.  
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Figure 4.1: The orientations of benzene rings of phenylaline amino acids relative to each other 
while having aromatic-aromatic interaction in bacteriophage T4 lysozyme protein. All the three 
rings are perpendicular to their neighbors.  The visualization tool UCSF Chimera [74] was used 
to produce the figure from the lysozyme structure (PDB code 112L). 

Protein complexes have different properties depending upon their constituents and the 
function they perform. Cyclic oligomers and dimers tend to have different 
complementary electrostatic surfaces at their monomer interfaces [83]. The protein 
complexes formed by different proteins involved in catalysis, are mostly results of 
interaction among their polar amino acids. Based on these known features of protein 
interaction investigators have claimed to be able to predict quaternary structures from 
primary sequence information [84], [85] using computational methods only. However, 
the task at hand to predict parts of protein molecules involved in interaction, still 
remains as a challenge. For some proteins, even if their structures are known, it may 
not be a trivial to find their interaction sites. This can be understood from the survey 
research for community wide experiment on Critical Assessment of Predicted 
Interactions (CAPRI) [86]. Researchers have used different computational approaches 
and different properties of the amino acid chain in order to predict interaction sites 
[87], [88], [89], [90]. A convincing method proposed by Jones and Thornton [91], for 
predicting interaction site on known protein structures, uses the knowledge of 
interaction sites from other protein structure patches. In their approach, residue patches 
defined on the surfaces of isolated proteins are analyzed for six parameters termed as 
salvation potential, residue interface propensity, hydrophobicity, planarity, protrusion 
and accessible surface area. Such an approach can also be used for a protein using its 
secondary structure, even if the overall folding of the protein is not known. The attempt 
done in Publication II is based on such an approach, combined with modeling of the 
interaction structure. 
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4.2 Systematic approach to predict interaction site  

As mentioned above one of the tasks in this thesis was to characterize interaction of 
hantavirus N-protein monomers of sequence length of 421 amino acids. For such 
proteins, given a set of acting forces, the question is how to proceed such that the 
interacting amino acids and the forces involved can be determined and the structure of 
the protein interaction can be predicted. Taking an example of a dimer forming protein 
composed of 450 amino acids and assuming that 5 amino acids of a monomer binds 
with 7 amino acids of another monomer, the number of possible combinations of 
interacting amino acids would exceed 1020. Hence there has to be reasonable way for 
reducing the search space for active amino acids, for example relying on 
bioinformatics approach. The first step in such a systematic approach would be to align 
all the amino acid sequences of the protein and closely related proteins across all the 
species. For this purpose multiple sequence alignment could be used to align peptide 
positions believed to be homologous, applying various algorithms. The algorithms for 
multiple-sequence alignment use different strategies like dynamic programming [92], 
probabilistic hidden Markov model [93], genetic algorithm [94] and progressive 
alignment with clustering [95]. The sequence alignment technique, which gives priority 
to finding motif [96], is quite useful here as it finds blocks of conserved locations. The 
homologous and conserved amino acid locations give hint about the functional units of 
the protein and the interaction site could be one of such locations on the protein [97]. 
This exploits the evolutionary conservation behavior of proteins to remain functional. 
The next step would be to look for domains and motifs, which are well known for 
interaction of proteins. This approach works quite well with eukaryotic proteins but it 
is hard to find well-known domains in virus proteins. If domains are found, the 
structure of such domains could be determined from the available protein structure data 
bank. The next stage would be to try to dock different domains using some available 
methods for protein ligand docking or protein-protein docking [98], [99]. Such an 
attempt was done in order to find potential interacting partners for type 1 PDZ domain. 
We performed docking with different known and unknown interacting partner protein 
sequences using program GOLD [98]. One such docking result about a known 
interaction is shown in Figure 4.2. 

Chances of getting known domain structures is rare and even if domains are 
found the proteins should be checked for interaction after chopping the conserved 
regions. In most of the cases the probable interacting side (N terminal or C terminal) of 
the protein can be found by such an approach. Another procedure would be to predict 
the secondary structure of the protein using the available tools like PsiPred [100], Sam-
T99 [101], JUFO [102], Profsec [103] and JPRED [104]. These tools use different 
algorithm for predicting secondary structures. PsiPred [100] uses neural network with 
the position specific scoring matrices generated by Psi-BLAST [105] which combine 
statistically significant results produced during sequence alignment. Sam-T99 [101] 
uses a hidden markov model iteratively to analyze sequence homologies and predict  
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(a)                                                  (b) 

Figure 4.2: (a) The structure of PDZ domain of the erbin protein, (b) the van der Waal surface 
shown for protein rebind, PDZ domain docked with ERBB2 C-terminal amino acids, here the 
docking was performed using program GOLD [98], [99]. The ERBB2 C-terminal amino acids 
chain was used as a flexible ligand and no prior information about docking location was given.  
The figures were made using visualisation software UCSF Chimera [74]. 

secondary structure. JUFO [102] and PROFsec [103] servers both use neural network, 
in their own way. Combining results from different prediction servers helps in avoiding 
ambiguities, especially about the boundaries of -helices. Therefore some servers like 
JPRED [104] combine results of different secondary structure prediction methods to 
deliver results. One can combine the predicted secondary structure with the 
information about the hydrophobic property of the peptides to predict the interaction 
sites.  The hydrophobicity plot for proteins gives a measure of burial of different amino 
acids. For non-membrane and non-amphipatic proteins the less hydrophobic sites have 
higher chances of being exposed and hence higher chances of participation in 
heterotypic or enzymatic interaction. The flexibility of the protein hints about the 
clusters in protein 3D structure as these globular clusters would behave as individual 
components and the protein can be chopped on those flexible locations without 
disrupting the structure. The chopped portions of protein can be checked for 
interaction. Figure 4.3 shows the flexibility and hydrophobicity of hantavirus N-
protein. For homotypic interaction the experiments for chopping few amino acids from 
either end or both ends of the proteins would give a strong hint about interaction mode, 
as homotypic interaction often occur by exchange of N-terminal or the C-terminal 
secondary structures. For homotypic interactions if there is any region of high 
hydrophobicity near any of the terminals of the protein, then the experiments with 
mutations at those locations could be given high priority. 

After predicting the secondary structure of the proteins the search can be done 
to find the patterns in amino acid sequence for some well known super-secondary 
structures. Methods like Rosseta [107] and 3D-PSSM [108] would be quite helpful in 
finding those patterns. Rossetta method, combines fragments of known protein 
structures with a Monte Carlo strategy to obtain a feasible native protein
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Figure 4.3: The flexibility and hydrophobicity plots for Tula-virus N-protein sequence, made 
using MATLAB toolbox. The hydrophobicity was calculated using method proposed by Hopp 
and Woods [106]. 

Figure 4.4: The conceptual representation of interacting sequences of different proteins to form 
a super-secondary structure. The patterns P1, P2, P3 and P4 of a super-secondary structure may 
be only in one protein (top-cyan) or across many protein sequences (down-brown and yellow). 

structure for a sequence. Recently it has demonstrated high accuracy for short 
contiguous peptides of 60-80 amino acid residues [107]. The 3D-PSSM method 
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attempts to predict 3D structure using its own library of known protein structures onto 
which the sequence is mapped (threaded) and score calculated using various criteria 
including the secondary structure match, solvation potential and PSSM scores [108].  

For interaction site prediction, one has to extend the search for pattern of 
super-secondary structure beyond a single protein sequence. These patterns can be 
present in a single protein sequence or across more than one sequences giving hints 
about their possible interaction sites. This has been demonstrated in Figure 4.4. It 
represents how a mutual folding of sequences of two proteins to form a super-
secondary structure leads to protein interaction. For a good example see Publication V, 
where there is a description for interaction of N-terminal sequences of different N-
protein monomers to coiled-coil structure. 

4.3 Structure prediction for protein interaction 

Since the first proposal about protein secondary structures ( -helices and -sheets) by 
Pauling and Corey [109], [110] and first description of a full protein structure solved 
by Kendrew and colleagues [111], there have been many developments and now 
researchers are endeavoring to determine interaction structure among proteins. The 
accuracy of the secondary-structure prediction has constantly been improving and 
some methods claim the accuracy to be more than 75 percent [104]. The predicted 
secondary structure not only enables to know the polarity or charge distribution of the 
amino acids in 3D space but also hints at the potential of different parts of the protein 
to form super-secondary structures. Thus after the prediction of secondary structure, 
the folding of protein into super-secondary structure can be done by finding some 
known pattern. Such patterns for super-secondary structure in the protein sequences, 
would lead to formation of linkages among corresponding secondary structures in the 
same protein or in different proteins. Some examples of such super-secondary 
structures are coiled-coil helices, beta barrels and helix-turn-helix [112]. For a non-
membrane protein the search for amino acid patterns for forming super-secondary 
structures with amino acids from other protein molecules, could be possible if their 
tendency of burial into the hydrophobic core is estimated. 

Various computational searches in this field [113], [114], [115] have made 
classifications of different structural domains found in the available structures in PDB 
[75]. Domains are semi-independent 3D sub-units that are compact and may fold 
independently [114], [116], [117], [118]. An increasing number of methods and 
databases address the problem of identifying patterns of structural domains in 
sequences [116]. 

Recently Jinfeng Liu and Burkhard Rost [117] developed a method to chop 
proteins into domain like fragments. Using their chopping methodology, they claimed 
that 70 percent of all dissected proteins contained more than one domain like fragment 
and three-fourth of all domains appeared shorter than 210 residues. This   
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(a)        (b) 

Figure 4.5: Two perspectives of protein folding towards quaternary structure starting from 
primary sequence. 

represents the importance of the localized compact structures in comparison to tertiary 
structure of individual protein in macro-molecular complexes. These small domains 
can be called as super-secondary structures and can be used directly to predict 
quaternary structures of protein complexes. The trend of giving priority in protein 
structure determination is shifting from determining protein tertiary structures towards 
modeling quaternary structure of proteins. An argument is that, with localized folding, 
giving emphasis on tertiary structure is not worthwhile. Such a plausible argument 
supports the work done in Publication II and V. The 3D structure of N-protein trimer, 
obtained by SPR method gave a low resolution structural description of quaternary 
structure for N-protein oligomers. After pondering over two perspectives for protein 
folding for quaternary structures as shown in Figure 4.5 and having other experimental 
results [119], it was clear that the folding of different portions of N-protein monomer is 
more localized and independent from other distant peptides of their sequences. If we 
consider the conservation of quaternary structures [120] of similar sized N-proteins of 
negative stranded RNA viruses, then the structures published for N-protein of two 
similar viruses, Rabies virus [121] and vesicular stomatitis virus [122] and results in  
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Publication II together with the publication S1 all support our conclusion about 
localized folding of N-protein of hantavirus. 

Modeling interacting surfaces 

A survey across the PDB database [75] for quaternary structures leads to knowledge of 
some classes of commonly occurring super-secondary patterns of protein interaction. 
The pattern which came out to be as most dominant for the C-terminal interaction 
among N-protein monomers is ‘domain swapping’. The flexibility of the region around 
such amino acids is also an important factor as those amino acids most often need to 
protrude out to perform swapping of secondary or super-secondary structures. 
Simulations for domain swapping presented in [123], address the fact that model with 
the flexible hinge loop has a lower energy barrier from the one in which the hinge 
dihedral energy barrier must be crossed to swap with neighboring protein.  

Overall, using the approach proposed above could lead to more than one 
potential interaction structures. The models of each possible interaction structure could 
be made by using available tools like Insight-II (Accelerys, Inc.) and Swiss-model 
[124]. The calculation of energy in the interaction structure would give a good hint of 
the most probable interaction structure. It should not only have potential to exist but 
also feasible to be formed by crossing of low energy barrier by the polypeptide chains 
involved, see Publication II. The modeled interaction structures can then be checked by 
using mutations. Even though experiments done with mutants could give some quite 
strong hint about the importance of different amino acids, they cannot confirm the role 
of amino acids in interaction. The solution to this problem can be achieved by 
performing simulation based mutations and further improvement of the simulation 
model based on mutant experiments.  

The presence of tryptophan in the proximity of binding site always hints to its 
important role in the binding of proteins, as tryptophan has the capacity to interact with 
different kinds of forces involving aromatic-aromatic interaction, hydrogen binding 
and cation-  interaction. In order to check the possibility of tryptophan role, the 
modeled secondary structure of N-protein was made to dock such that tryptophans 
could juxtapose to their potential binding amino acids of the other interacting C-
terminal polypeptide chain. The structural constraints filtered out many possible 
interactions of tryptophan, for C terminal interaction of the N-protein. The remaining 
and possible candidate amino acids were then checked by mutating those sites in the 
protein and checking for the interaction. While doing simulations for C-terminal 
interaction of N-protein it became quite clear that the initiation of N-protein interaction 
is done by other parts in the N-protein monomer, while C-terminals only stabilizes this 
interaction. The candidate polypeptide for initiation of N-protein interaction at its N-
terminal was then modeled and its structure was proposed in Publication V. 
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Chapter 5

Summary of results 

The challenge of improving signal to noise ratio in various imaging problems has been 
tackled using a statistical modeling approach in Publications I, III and IV. The methods 
followed here are based on defining noise by the MDL principle, such that noise is that 
part of the data which is random and is incompressible. Under these assumptions, 
coding the data in two parts, the part with higher code length represents noise. The 
principle of MDL has its background in information theory and basically deals with the 
coding of the data using the statistical properties of the data. This principle can be 
applied efficiently in many fields to choose or recognize a model to represent the 
system or data. Each application tends to have its own way of implementing this 
principle but they all share the similar notion of choosing the best model using the 
code-length principle. Some applications use it on data after transforming it using basis 
vectors, regression matrices or eigenvectors, while others apply it directly on the data.  

A completely novel way of choosing the best model after transforming the data 
has been proposed in Publication III and further developed in Publication IV. It is 
different from normal approaches that are derived from the mean squared error (MSE) 
criterion or other conventional methods to minimize theoretical error while estimating 
the parameters. Examples of these conventional methods include the maximum 
likelihood approach and minimum-mean-square error-based methods. The histogram 
coding based model selection proposed in Publication III is completely nonparametric 
and free from any assumption concerning the statistical distribution of the data. 
Although it has been demonstrated with wavelet coefficients in order to denoise noisy 
signals, the general implication of this approach goes beyond denoising. The basic 
theoretical method published in Publications III and IV can also be used for other 
statistical signal processing problems in its original form or in an extended form. Such 
applications could include non-parametric expectation maximization or pattern 
recognition and classification. 

For cryo-EM images the properties of noise and noise source are still being 
studied [29], [30] as it crucially affects the results of the SPR method. However, 
without proper conclusion about noise properties, assumptions of parametric 
distributions of the noise are completely illogical. However a basic property of noise is 
that it cannot be defined properly because it is random. The methods published in 
Publication I, III and IV exploit this property of the noise in denoising and enhancing 
cryo-EM images. In Publication I the method of enhancing the desirable part of the 
data without even knowing what part is desired, exploits the code-length principle. The 
weighting of different basis vectors based on their complexity can be compared to 
choosing best transforms to represent the data, but it is not exactly the same. 
Approaches where researchers tried to find the best wavelet basis vector family, have 
been previously described [44], [125], [126]. According to the method published  



44                                                                                             Summary of results

in Publication I, first the search for the best basis vector family is done and then the 
non-noisy coefficients are chosen after applying the chosen basis vector family, using 
the MDL principle. After these steps, the priority of different level basis vectors among 
the chosen basis vector family can be determined using the code-length criterion. 
Although the initial demonstration of the proposed method has been shown with 
wavelet transform basis vectors, other similar transforms can also be use in order to 
filter and enhance different features. For example, the use of curvelet [39] and edgelet 
[127] basis vectors with the proposed approach would help in removing noise without 
loosing details of sharp features.  

In publication I, we proposed some denoising based methods to automatically 
pick the particle projection from the cryo-EM micrograph images. There is no 
assumption of the particle shape in these methods and they promise to be picking 
particles despite high variance of noise or thick vitrified layers. Each of these methods 
can be individually used for picking particles but in Publication I we propose to use 
them in sequence. A model is needed for some of the proposed methods so that it is 
possible to avoid picking impurities in the micrograph, even if they could not be 
separated during the process of purification of proteins for sample preparation. The 
Gabor filter based method to compare different projections can also be used for 
rotation-invariant classification of images, using multi-resolution features and has been 
demonstrated in Publication I. 

The proposed denoising approach was applied to real and simulated cryo-EM 
data, in order to check the benefits in SPR method. The test samples were real cryo-
EM data of hantavirus N-protein and simulated data of GroEL particles. As expected, 
SPR method with denoised images gave higher resolution and had faster convergence 
in comparison with noisy images, but there is also a possibility of making 3D electron 
density map using ‘hybrid methods’. For obtaining these 3D maps the orientation 
determination can be done with denoised images and the 3D maps can be reconstructed 
by using original noisy images. If the prerequisite of high SNR is satisfied in the 
original cryo-EM images, simple template based classification can help in further 
reduction of noise and making reliable class averages and 3D volumes. If the SNR is 
low in original noisy images then a simple classification process without denoising will 
not be entirely reliable. In such situations, the 3D volumes produced from those class 
averages of noisy images have either less resolution or they are completely different 
from the original 3D structure and can result in misleading or wrong conclusions about 
the structure and function of the biomolecule. The simulations done with denoised 
projection images showed that the 3D volumes generated after processing denoised 
images were always more similar to the original 3D volumes. 

 In Publication II a proposal for structure was given for a protein which is 
sticky and has not yet been crystallized. The approach to model super-secondary 
structures of the C-terminal and N-terminal polypeptides of hantavirus N-protein has 
been explained in Publications II and V. This is a simple example of combining 
electron microscopic 3D data with modeling. Here, a detailed study on the interaction 
of the protein to form homo dimer and homo trimer was done. The modeling of C-
terminal of N-protein was done by starting from the secondary structure prediction to 
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side chain addition, followed by the modeling of the interaction. The 3D structure 
made from EM images for the N–protein trimer was taken as reference for the model. 
In order to model the amino acid forces involved, detailed experiments were planned 
so that determination of the actual forces could be done without ignoring other forces. 
Arriving at the conclusion proposed in Publication II was not a trivial task as there 
could be many possible structures to choose from. The design of initial set of models 
for binding of amino acids was done, using the constraint of side-chain hindrances, 
forces and amino acid charges. The secondary structure prediction for C-terminal 
polypeptide of N-protein reduced the search space, which was still large enough and 
could need few more years to verify them using other instrumental methods. The 3D 
charge and hydrophobic distribution on the modeled secondary structure demonstrated 
the conserved functional pockets in the N-protein monomer. The prediction of binding 
sites and binding mode leads to the prediction of other functional sites in N-protein. 
Thus it became fairly trivial to predict where RNA would fit in the N-protein oligomers 
after having a 3D reconstruction and knowledge about monomer’s binding pattern. The 
proposal given for RNA binding location in N-protein in Publication II was one of the 
first for hantavirus. It has recently been confirmed by the X-ray structure for N-protein 
oligomers of two similar viruses, namely Rabies virus [121] and vesicular stomatitis 
virus [122] and in the publication S1, where a detail model of N-protein has been 
demonstrated.  

Through the series of works presented in this thesis, there has been a serious 
attempt to contribute to the fundamental concepts in three fields. First, in the field of 
signal processing, a novel MDL-based model selection approach has been proposed. 
Second, SPR method from cryo-EM images, has been added with one extra process of 
denoising for improving results. Finally, a different perspective towards protein folding 
has come to light due to the approach followed in publications II and V.     
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