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Abstract

This thesis deals with the design and hardware realization of the cellular neural/non-

linear network (CNN)-type processors operating on data in the form of black and white

(B/W) images. The ultimate goal is to achieve a very compact yet versatile cell struc-

ture that would allow for building a network with a very large spatial resolution. It

is very important to be able to implement an array with a great number of cells on a

single die. Not only it improves the computational power of the processor, but it might

be the enabling factor for new applications as well. Larger resolution can be achieved

in two ways. First, the cell functionality and operating principles can be tailored to

improve the layout compactness. The other option is to use more advanced fabrication

technology – either a newer, further downscaled CMOS process or one of the emerging

nanotechnologies.

It can be beneficial to realize an array processor as two separate parts – one dedi-

cated for gray-scale and the other for B/W image processing, as their designs can be

optimized. For instance, an implementation of a CNN dedicated for B/W image pro-

cessing can be significantly simplified. When working with binary images only, all

coefficients in the template matrix can also be reduced to binary values. In this thesis,

such a binary programming scheme is presented as a means to reduce the cell size as

well as to provide the circuits composed of emerging nanodevices with an efficient

programmability. Digital programming can be very fast and robust, and leads to very

compact coefficient circuits. A test structure of a binary-programmable CNN has been

designed and implemented with standard 0.18 µm CMOS technology. A single cell

occupies only 155 µm2, which corresponds to a cell density of 6451 cells per square

millimeter. A variety of templates have been tested and the measured chip performance

is discussed.

Since the minimum feature size of modern CMOS devices has already entered

the nanometer scale, and the limitations of further scaling are projected to be reached

within the next decade or so, more and more interest and research activity is attracted

by nanotechnology. Investigation of the quantum physics phenomena and develop-

ment of new devices and circuit concepts, which would allow to overcome the CMOS
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limitations, is becoming an increasingly important science. A single-electron tunnel-

ing (SET) transistor is one of the most attractive nanodevices. While relying on the

Coulomb interactions, these devices can be connected directly with a wire or through

a coupling capacitance. To develop suitable structures for implementing the binary

programming scheme with capacitive couplings, the CNN cell based on the floating

gate MOSFET (FG-MOSFET) has been designed. This approach can be considered

as a step towards a programmable cell implementation with nanodevices. Capacitively

coupled CNN has been simulated and the presented results confirm the proper op-

eration. Therefore, the same circuit strategies have also been applied to the CNN cell

designed for SET technology. The cell has been simulated to work well with the binary

programming scheme applied. This versatile structure can be implemented either as a

pure SET design or as a SET-FET hybrid. In addition to the designs mentioned above,

a number of promising nanodevices and emerging circuit architectures are introduced.

Keywords: Integrated Circuits, Cellular Neural/Nonlinear Networks, Cellular Array

Processors, CMOS, Nanotechnology, Single-Electron Tunneling
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Chapter 1

Introduction

1.1 Motivation

For decades, the processing of information has been based on high precision compu-

tation. This approach has led to a development of digital processors with enormous

computing power. However, a number of applications exist, in which the traditional

strategy is insufficient. Especially in tasks of real-time image processing, e.g., vision

systems, conventional computers are still far behind the neurobiological systems of

living organisms. For instance, when a small insect flies, it performs an environment

perception and navigation tasks among others. Such a complex computation is done

at a fraction of time and power that would take with the advanced digital computer.

Obviously, there is a huge gap in terms of the overall robustness, performance, and en-

ergy efficiency that engineers need to bridge. Through millions of years the evolution

has developed and optimized the functionality and architectures of nervous systems.

Therefore, a great lesson on the efficiency in complex computation can be learned from

the nature. Studies of the physiological phenomena, on which biological receptors and

nervous systems are based, reveal a substantial difference in conceptual and architec-

tural approach to information processing between the systems developed by nature and

engineers. In recent years, many endeavors to adapt the strategies known from neuro-

biology to the electronics have resulted in new theories and paradigms. Among them,

the concept of cellular neural/nonlinear network (CNN) [1]-[3] is one to play a crucial

role in the development of artificial vision systems [4]-[7].

The traditional information processing has largely been benefiting from a rapid

progress in the semiconductor technology. For many years, a gain in computational

power has been supported by the continuous down-scaling of CMOS technology. With

smaller devices, higher chip densities and higher clock frequencies can be reached,

yielding to more powerful processors. Even though the CMOS scaling limitation pre-
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dicted in the past turned out not to be the ultimate boundary, there definitely are some

physical limits beyond which no MOS device will be operational [8],[9]. Alternatively,

the skyrocketing costs of fabrication will far exceed the performance improvements of

scaled devices1. Since CMOS technology has already entered the nanometer scale,

quantum effects are increasingly important and at some point will become the dom-

inant phenomena. Therefore, they need to be investigated thoroughly. For the near

future, techniques to prevent these effects from destroying the performance of a MOS

device are sufficient. However, eventually designers will need ways of employing

them instead of trying to avoid them. At a point where the rules of quantum physics

become dominant, new devices will be required. Supposedly, such components will

rely on different operation principles than MOS transistors, and therefore a new ar-

chitectural approach will be needed as well. Classical digital designs are not suitable

for devices and circuit blocks that lack the large gain, fan-in and fan-out, and worst

of all are inherently unreliable. Moreover, traditional architectures become inefficient

with scaling CMOS as well. Modern digital circuits as a whole scale down less than

MOS transistors themselves due to the growing problem of interconnections. Longer

and longer wires introduce larger parasitic components to the circuit. It is also in-

creasingly difficult to route them efficiently. Moreover, the wire width is not scaling

down as fast as the MOSFET channel length causing a new density bottleneck. Cir-

cuit speed is often limited by the RC delays of the connecting lines rather than by the

device switching. This problem gets even worse with emerging nanostructures, due

to their inherent low gain and driving capabilities. Hence, more and more attention

is brought to the locally-interconnected array-architectures like CNN, which at given

circumstances have multiple advantages over the traditional approach.

CNN theory allows to describe convolution-based local operations in a convenient

way. It also stands for an architectural approach to realize a massively parallel proces-

sor. A computing array consists of (usually) identical and locally interconnected pro-

cessing elements (PE) called cells. The state of a such cell has a nonlinear activation

function and its evolution depends on the initial data, control terms and continuous-

time spatio-temporal convolutions. The computing power of a CNN substantially

depends on the array size. However, the implementation of a large array is a very

challenging task. One of the possibilities to increase the cell density is to realize the

gray-scale and black-and-white (B/W) image processing parts separately. Since the

number of gray-scale operations used in many CNN applications is very limited and

the majority of CNN algorithms contain many B/W image processing tasks, a full pro-

grammability seems to be needed only for the B/W processing part. Therefore, both

1Currently, high fabrication costs concern the nanotechnology as well. However, the tergeted nanode-

vices should have much simpler structures than MOSFETs, and thus would allow the use of alternative

cost-effective fabrication processes like, e.g., a self-assembly.
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gray-scale and B/W processing cores can be significantly simplified [10]. Reducing

the number of analog memories and analog weight multipliers potentially brings down

the total chip area as well as power consumption and the time spent for processing

(performing B/W operations with general-purpose gray-scale image processor takes

much more time and energy). Moreover, such dedicated cores can reach a higher ro-

bustness. With a focus on the core for processing data in the form of binary images,

a binary-programming scheme has been developed to enable a significant simplifica-

tion of the coefficient circuits. As the number of analog transistors is minimized, the

cell density grows. All elements of the template matrices are limited to binary val-

ues. Many operations can be performed with a single binary template. Some more

complex tasks are computed as a consecutive evaluation of subtasks, and thus the pro-

cessor remain versatile. Due to digital programming, the template terms can be loaded

fast and the overall performance stays competitive. Moreover, this approach can pro-

vide the nanodevice-based implementations with fast and robust programmability. The

realization of a binary-programmable CNN in single-electron tunneling (SET) technol-

ogy, presented in this thesis as a proof of concept, can be a starting point for a future

development of programmable architectures for nanotechnology integration.

1.2 Research Contribution

This thesis proposes a solution to the cell density limitations encountered in the design

of CNN hardware. The separation of the gray-scale and the B/W image processing

parts of a CNN system provides the means to optimize their implementations. With

a focus on the structures for processing B/W images, the minimum programmability

requirements, which preserve the cell versatility, have been studied resulting in the

proposed binary programming scheme. Based on this approach, novel compact struc-

tures of a binary CNN have been developed for extremely dense implementations with

CMOS, floating gate MOSFET (FG-MOSFET), and SET technologies. The proposed

CMOS realization enables the cell densities previously thought to be impossible to

obtain with CMOS technology. The CNN cell based on FG-MOSFET structure illus-

trates the method for applying the binary programming scheme to effectively control

the networks with capacitive interconnections. Following this method, the SET imple-

mentation of a binary CNN cell is proposed, which to the best knowledge of the author

is the first programmable SET CNN presented so far and one of the most versatile

CNN realizations with nanodevices. It is due to the binary programming scheme that

the nanostructures can be provided with fast and robust programmability. The material

presented in this thesis can be used to assess and develop the programing schemes for

architectures based on other emerging nanodevices as well.

The idea of binary programming scheme had been proposed by Prof. Ari Paasio,
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and it was further developed by the author, Prof. Paasio, and Dr. Mika Laiho. Cells

in all of the presented designs use the positive-range high-gain output-nonlinearity de-

veloped by Prof. Paasio. The author’s main contribution was in transforming the tradi-

tional templates into binary form. The mathematical formulation of the templates and

cell modeling was done by Dr. Laiho. The coefficient structures for CMOS implemen-

tation as well as the basic architecture concept of a cell were proposed by Prof. Paasio

and further developed by the author. The simulations, layout drawing, and test mea-

surements were performed by the author. Structures developed for implementations

with FG-MOSFET and SET transistors result from the author’s independent research

carried out under the guidance of Dr. Laiho and supervision of Prof. Kari Halonen. A

majority of the material included within this thesis has already been published or has

been submitted for publication [11]-[20].

1.3 Organization of the Thesis

The thesis consists of nine chapters. Chapter 2 introduces the basics of the CNN theory.

Definitions and implementation oriented models are given. The importance of B/W

image processing as a special subclass of CNN operations is emphasized.

Chapter 3 presents different approaches to the implementation of parallel image-

processing. A selection of hardware realizations of array processors are described to

give a view on the prior state-of-the-art.

The binary programming scheme is introduced in Chapter 4. The basic rules for

designing the binary templates are given, and a selection of examples are used to form

their classification.

Chapter 5 is focused on the CMOS implementation of a binary CNN. System ar-

chitecture and functionality, cell circuit and operating principles are presented. A brief

analysis of the robustness is given and a number of implementation issues are dis-

cussed. The measurement results of the fabricated chip are shown as well.

Chapter 6 briefly introduces the concept of the neuron MOSFET (νMOS) structure,

i.e. the multi-input floating gate MOSFET (FG-MOSFET). Next, the FG-MOSFET

implementation of a binary-programmable CNN is depicted. This design can be con-

sidered as a step toward a programmable CNN implementation with nanodevices. It al-

lows for a conceptual development and tests of the capacitive couplings with ON/OFF

programmability in the well known MOS technology. The designed cell structure is

presented, and the simulation results of an 8×8 network are shown.

Chapter 7 is dedicated to the binary CNN implemented with SET technology. First,

the basic features of the SET technology are introduced. Then, basics of artificial

neural networks (ANN) and prior state-of-the-art SET ANN designs are presented.

Finally, a structure of a binary-programmable CNN cell designed for implementation
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either with SET transistors only or as a SET-FET hybrid is depicted and simulation

results are shown.

Chapter 8 constitutes a compact review of other promising nanodevice and archi-

tecture concepts. Resonant tunneling diode (RTD) as a computing device is described

in more detail due to its higher degree of maturity. A number of other device concept

are shown to give a broader view on this exciting research field. Additionally, the inter-

esting idea of quantum cellular automata (QCA) as an alternative computing approach

and CMOS-nanowire-MOLecular (CMOL) hybrid architecture, which combines the

standard CMOS logic and the processing array built with nanodevices, are presented.

Finally, Chapter 9 concludes the thesis and gives some projections of what the

further research could be focused on.
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Chapter 2

Cellular Neural/Nonlinear

Networks

The Cellular Neural/Nonlinear Network (CNN) theory [1] describes an analog parallel

processing paradigm. Its hardware implementation is potentially capable of very high

speed computation, while a low power consumption is maintained. A CNN can obtain

this due to its massively parallel architecture. The interconnected processors, called

cells, are arranged in a regular array. Each cell evaluates a global instruction on its

own local data. Therefore, a CNN can be classified as a single-instruction multiple-

data (SIMD) type processor. Such an operating mode is naturally suitable for image

processing, where each cell corresponds to a pixel of an image.

2.1 Definitions

A collection of basic definitions regarding the CNN are given in this section. However,

some of these terms are general and can be used in describing other types of array

processors as well.

2.1.1 Neural vs. Nonlinear

The term “neural” is often used to describe the network behavior, which can mimic

a biological nervous system, while the term “nonlinear network” has a more general

meaning. However, the difference between the ”neural” and the “nonlinear” network

could also refer to how the interconnection weights are obtained. If the weights are

defined by a learning algorithm (adaptation process) implemented within the system,

we talk about a “cellular neural network”. Otherwise, i.e. weights are programmed to

the predefined values, it is a “cellular nonlinear network”.
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(a) (b)

(c)

Figure 2.1 The examples of grids: a) rectangular, b) triangular and c) hexagonal.

2.1.2 Grid Type and Array Dimension

The processing elements of CNN are locally interconnected and organized into one-

or two-dimensional grid. Higher dimensions are theoretically possible but not suitable

for integration. Usually, the cells form a regular rectangular array. However, that

is not the only possible layout. Cells can also be arranged in other grids, such as

hexagonal or triangular. These examples are shown in Figure 2.1. In this thesis, only

the rectangular arrangement is used. To identify an individual cell within the M ×N

sized array, a symbol Ci, j is used to denote a cell in the ith row and jth column; i∈ [1,M]

and j ∈ [1,N].

2.1.3 Neighborhood and Interconnection Types

A cell within a CNN can have different types of neighborhoods and interconnections.

The neighborhood of a cell defines the distance of the furthermost connections. Figure

2.2 presents examples of the 1- and 2-neighborhoods in a rectangular grid.

A cell is not necessarily connected to all of the neighboring cells. For instance, a

cell in a rectangular grid can be 4- or 8-connected with the closest neighbors, as shown

in Figure 2.3. Furthermore, an application may exist where only the cells at a certain

distance within the neighborhood can be of interest. In case of a 3-neighborhood, a

particular cell can interact with the cells at a distance of, say, 1 and 3 without dealing

with the cells in between, i.e. at a distance of 2. An example of such a specific case

can be found in Reference [21].
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(a) (b)

Figure 2.2 The gray cells are connected to the black cell, and thus form the a) 1-neighborhood,

or b) 2-neighborhood.

(a) (b)

Figure 2.3 The CNN cells arranged in the a) 4-connected and b) 8-connected 1-neighborhood.

Dashed line indicates that a cell is a border cell.
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1

-1 1

-1

Figure 2.4 CNN cell output nonlinearity

2.2 Continuous-Time CNN

Each cell in the array has a state and a constant input. The state of a cell is determined

by the inputs and outputs of the directly connected neighborhood cells. All of these

contribute to define the cell output. The standard CNN dynamics can be described with

the state equation [1]

dxi, j

dt
= −xi, j + ∑

Ck,l∈Nr(i, j)

A(i, j;k, l) · yk,l + ∑
Ck,l∈Nr(i, j)

B(i, j;k, l) ·uk,l + z (2.1)

where xi, j is the cell state, uk,l is the input and yk,l is the output of each cell Ck,l within

the neighborhood Nr(i, j) of the cell Ci, j. A and B are the feedback and feedforward

templates, respectively. These templates are the collections of coefficient weights,

which determine the strength of each interconnection between the cell Ci, j and its

neighborhood. Finally, z determines the operating point of the cell and is called a

bias template. The cell output has nonlinear activation function (relation between xi, j

and yi, j), usually in the form of piecewise linear (PWL) sigmoid as shown in Figure

2.4 and given by

yi, j = f (xi, j) =
1

2
(|xi, j +1|− |xi, j −1|). (2.2)

If the feedback and feedforward templates have coefficients set identical for each cell

regardless of its position in the network, the templates are space invariant. In such a

case, assuming the 1-neighborhood, these templates take the form of
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A =







A−1,−1 A0,−1 A1,−1

A−1,0 A0,0 A1,0

A−1,1 A0,1 A1,1






B =







B−1,−1 B0,−1 B1,−1

B−1,0 B0,0 B1,0

B−1,1 B0,1 B1,1






z. (2.3)

So, only 19 terms are required. An operation performed by a CNN is determined by

programming these terms. The matrices A and B are called ”cloning templates” and

z is called bias template or threshold. The center element of the cloning template

matrix represents a self-feedback term. A number of CNN templates with the names

describing the corresponding network-operation have already been proposed [22].

2.3 CNN Model Modifications

2.3.1 CNN Universal Machine

The original CNN has been supplemented by a number of additional functionalities re-

sulting in the CNN Universal Machine (CNN-UM) [23]. The set of cells’ new features

include Boolean logic, control logic, and memories (both analog and digital). More-

over, the global analogic programming unit (GAPU) comprising program registers,

configuration registers, etc. has been added to the system. These extensions enable

algorithmic operations consisting of several templates and logic operations.

2.3.2 Full Signal Range CNN

Even though the CNN theory is a powerful tool for many applications operating on

images, its realization on silicon is a challenging task. Therefore, designers have pro-

posed some implementation-oriented simplifications, e.g., the full signal range (FSR)

model [24], which truncates the cell state between two saturation values: -1 and 1. In

this way, the cell state and cell output become equivalent. The employment of the FSR

model has led to the realization of a CNN-UM with 128 × 128 cells [6].

2.3.3 Positive-Range High-Gain CNN

Positive-range high-gain CNN [25], [26] is another interesting simplification of the

original CNN model. The output nonlinearity is modified to

yi, j(t) = f (xi, j(t)) =

{

0, xi, j(t) < −ε

1, xi, j(t) > ε
, 0 < ε ≪ 1, (2.4)
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resulting in a step function. The cell input and output (I/O) become binary, while the

template terms remain continuously valued. As a consequence of the analog design

being simplified, yielding a more compact layout and improved reliability, gray-scale

operations are no longer possible with binary I/O. Therefore, a part of the functionality

of the network is lost.

2.3.4 Discrete-Time CNN

A Discrete-Time CNN (DT-CNN) [27] has continuously valued inputs and weights

while its output is bipolar. It can be realized with either analog or digital implementa-

tion. In a digital DT-CNN the state can be updated through a variety of digital integra-

tion methods.

2.3.5 Binary CNN

The general purpose approach to CNN implementation, which combines the capability

of processing both black and white (B/W) and gray-scale images, is easy to model with

the CNN theory, but challenging to realize. The large number of in-cell multipliers

extorts a large cell size. Moreover, the coefficient circuits are scaled for a precision

required in analog computation, and thus their power consumption and speed are not

optimized for processing binary images. An alternative approach is to separate the

B/W and the gray-scale processing parts and optimize their implementations.

Binary CNN takes a B/W image as an input and yields a B/W result. The B/W

data processing is an important class of CNN operations covering a wide range of

applications [22]. In fact, most of the proposed templates handle mainly binary data. It

is also an integral part of many algorithms based on sequential execution of templates

and Boolean logic functions.

A CNN implementation dedicated for B/W image processing can benefit from the

programmability of template terms reduced to binary values {0,1}. The coefficient

circuits, thus cell structure, can be significantly simplified resulting in a very compact

layout. Additionally, the power dissipation is significantly reduced. The limitation of

the network functionality due to one-bit programmable template terms is not severe.

More complex templates can be split into sequentially executed simple subtasks and

the processor remains versatile. Moreover, since the weights are binary values, the

reprogramming can be very fast and robust. Therefore, the overall performance can be

competitive. An array with an extremely high spatial resolution can be implemented

on a single chip for low-power, high frame-rate applications.



Chapter 3

Hardware Realizations of Array

Processors

This chapter presents a selection of the state-of-the-art hardware realizations of array

processors. These chips are described to broaden the view on this research field as well

as to give a context in the discussion of motivation for the approach proposed later in

this thesis.

3.1 ACE Series Processors

The appealing features of the CNN paradigm [1]-[3] have served as a driving force in

forming an active research field of CNN hardware realizations. Despite years of de-

velopment, the CNN hardware design remains challenging, and alternative approaches

are considered. The series of ACE1 processors [4]-[6] is an attempt to efficiently im-

plement a network that would resemble the CNN model. The largest and the most

advanced processor in this series, codenamed ACE16k, is a hardware realization of a

CNN-UM with 128 × 128 cells. It combines image acquisition with processing ca-

pabilities. In addition, versatile programming makes ACE16k an attempt to obtain a

vision system on a chip [6]. Each cell in the array incorporates a reconfigurable optical

input module, in which the user can select among two types of photodiodes and a pho-

totransistor. Moreover, either a normal linear integration or a logarithmic compression

sensing mode can be used. In addition to an optical sensor, each processing element

(PE) includes:

• a local analog memory (LAM) with a capacity for 8 gray-scale pixel values with

an 8-bit resolution,

1ACE is the name of a family of CNN chips.
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• a local logic unit (LLU) consisting of a programmable two-input one-output

logic operator,

• a resistive grid module that allows for continuous-time diffusion in a resistive-

grid like manner,

• an address event downloading module to simplify the information extraction

from B/W images (instead of images, the addresses of active array locations

are provided2),

• a configurable bank of analog multipliers and adders for interaction with other

cells in the neighborhood,

• local masks for conditional execution of certain operations upon a locally defined

value.

The analog core (array) is complemented by 128 A/D and 128 D/A data converters

(one of each per array column), instructions memory, a memory for convolution masks

and references with 24 digital-to-analog converters (DACs), and control circuits.

ACE16k is a general purpose SIMD-type processor that can operate on binary and

gray-scale data. Despite the fact that only local cell interconnections are available,

operations with a larger region of influence can be computed by means of the asyn-

chronous information propagation.

3.2 Near-Sensor Image Processing

Another very interesting approach to realizing array-type image processors is the con-

cept of near-sensor image processing (NSIP) [29]-[31]. Unlike the ACE chips, the

NSIP implementation does not try to realize any predefined mathematical model. In-

stead, the functionality of a PE is based on functional and hardware-oriented require-

ments. Since a clear contradiction exists between the PE complexity and a high spatial

resolution, a combination of a nondestructive photodiode readout and a binary image

processing is proposed as a tradeoff solution. The proposed structure can perform lo-

cal and global binary operations. Local operations include Boolean logic functions as

well as interactions with the four nearest neighbors (towards principal compass points).

Global operations (e.g., threshold, smallest circumscribing rectangle, selecting one of

many objects) are handled by a global logic unit (GLU), which provides the asyn-

chronous propagation of binary data over the array and thus working in parallel on the

entire image. Due to a nondestructive sensor readout, the processor can also perform

2Event-based communication is becoming increasingly important. A recent example is the address-event

representation (AER) protocol that has been developed for efficient communication in multichip neuromor-

phic systems [28].
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a number of simple gray-scale operations by, for example, comparing in time the evo-

lution of sensor outputs at different pixel locations. However, the results are always

binary. Since the gray-scale values are coded as bit sequences in time, more com-

plex gray-scale operations require an algorithm with extensive number of steps or even

become impossible to perform. Additionally, a limited amount of in-cell memories

restricts the array programmability, but NSIP can be considered as an image processor

for certain simple applications.

3.3 SIMD Current-mode Analogue Matrix Processor

The SIMD Current-mode Analogue Matrix Processor (SCAMP) series is a very in-

teresting example of realizing a general-purpose vision chip [32]-[34]. The imple-

mentation consists of an array of cells combining an image sensor with processing

capabilities for analog operations. Each cell, called analog processing element (APE),

contains a photodetector, a comparator with activity-flag latch, nine registers (eight

general-purpose ones and one used for exchanging data with the nearest neighbors),

and I/O circuits. The photodetector circuit uses an n-type diffusion diode and can op-

erate in either linear integration mode or in continuous-time log-compression mode.

The registers are designed using switched-current technique (compact memory cells).

In this way, an additional dedicated circuitry such as arithmetic logic unit (ALU) is not

needed to perform the arithmetic operations. Instead, the basic operations (inversion,

addition, division, etc.) are executed in the registers and analog bus. Each register

can store a gray-scale pixel value or a variable with 7 bits of accuracy. The local I/O

register allows for data exchange with only one neighboring APE at a time. More-

over, connections are possible towards cardinal directions only. Therefore, examining

the pixel values of multiple neighbors requires a time-domain multiplexing. As the

computing speed is traded for silicon area, a very compact APE and arrays with rea-

sonably high spatial resolutions can be achieved. However, operations relying on the

asynchronous propagation of information throughout the array are no longer possible.

To overcome this limitation, a new architecture for cellular image processor has re-

cently been proposed, which allows for both synchronous and asynchronous operation

modes [35]. Additionally, the SCAMP chip is equipped with simple and robust digital

control/programming.

An interesting feature of SCAMP chips is the flexible global readout architecture

[36] designed to enhance global communication and data extraction. The addressing

is extended by the capability of having don’t care bits in the address word. There-

fore, a number of rows/columns in the array can be addressed simultaneously. This

enables addressing groups of APEs in the array (block section of an image or periodic

pixel-locations) in addition to single APE and entire array selections. Such a flexible
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readout is useful in performing certain global operations. For instance in the binary

readout mode, a logic OR can be computed on the selected group. In the analog read-

out mode, a global summation is performed. Moreover, this addressing scheme allows

for calculating global image descriptors (pixel counts, histograms, etc.), object coordi-

nate extraction, multiresolution image processing, and control of iterative procedures.

It can be also used together with a global input, e.g., to replace a local value in selected

APEs with a global one.

3.4 Digital SIMD Processor

An image processor performing a single instruction on multiple data can also be re-

alized with digital circuits only. The implementation proposed in references [37] and

[38] has an array of 64 × 64 processing elements, column adders as well as column

and row shift registers. Each PE in the array occupies 67.4 × 67.4 µm2 on a 0.35 µm

CMOS process. The vision system is completed by an off-chip real-time controller

and a DAC. Each PE consists of a photodetector with readout circuit, a bit-wise local

RAM and a bit-serial ALU composed of a full adder combined with I/O multiplexers

and carry register. The ALU has two binary inputs and executes a logical or arithmetic

operation. Different types of image processing tasks can be performed as a sequence

of such single-bit operations. The PE can also act as an analog-to-digital converter

(ADC), which utilizes a software-controlled conversion of pixel illumination to dig-

ital pixel values. Additionally, each PE can communicate with its four neighbors at

cardinal directions for spatial image processing.

Interestingly, by keeping the output latches transparent, adjacent PEs can be joined

into blocks and treated as a single logic circuit. Each PE in such a block has two

functions. It can be used as a pixel of an image or as a bit in a word, which provides

effective memory use. The PE-joining feature enables the obtained blocks to execute

global cumulative operations such as global summation and global OR, or multi-bit

addition. This architecture can also emulate the column-parallel processor by chaining

PEs in columns. Moreover, self-generated PE chains are possible based on the results

from image processing.

3.5 Binary I/O CNN-UM

An alternative approach to the hardware realization of a CNN-UM has been proposed

[25], in which the cells are based on the positive-range high-gain (PRHG) CNN model.

A revised version of this design resulted in a standardized QCIF resolution (176 × 144

cells) CNN-UM for very low bit-rate video coding systems [39]. An algorithm for
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such applications of CNN has been proposed in [40]. The observation that a dominant

portion of this algorithm relies on manipulating B/W images explains the design focus

on the B/W image processing part. Additional motivation comes from the fact that

some of the required gray-scale operations are not implemented in any CNN hardware

so far, and thus a separate design dedicated for such operations is assumed.

In this approach, each PE consists of:

• a comparator in form of a CMOS inverter to realize the cell output nonlinearity,

• synapse multipliers (fully-connected first-order neighborhood) based on a three-

transistors structure (one for each positive and negative coefficient, plus a control

switch),

• four local memories for storing intermediate results (the number is due to the

algorithm of [40]),

• a memory controlling unit, which provides a cell-level buffer for global OR oper-

ation, memory I/O control as well as refreshing or inverting the memory content,

• programmable local logic structure,

• a cell I/O circuit with buffer and a number of control switches.

In addition to the QCIF-sized processing array, the chip contains a ring of constant

border cells, DACs, a block of I/O buffers for driving the pads, row selection unit for

addressing purposes, and a global OR evaluation block. While the PRHG CNN model

limits the cell state to a single-bit value, the template coefficients remain analog with

6-bit programmability (5 magnitude bits and the sign) and the bias term is controlled

with 9 bits. To increase the speed and reliability these analog values are generated

by the on-chip DACs. The converters comprise a 6-bit coefficient memory (9 bits for

bias term), binary weighted current sources, current steering switches, I/V converters

for P- and N-type device in synapse, and buffers (over 25000 transistor gates load each

voltage-line). The block of I/O buffers incorporate multiplexing of the 16-bit incoming

data to a 176-bit wide image row for writing the initial values to the array.

Unlike the SCAMP or ACE16k chip, this implementation is not a general purpose

image processor due to the lack of capabilities for gray-scale data processing. Neither,

it belongs to the class of vision systems as the cell design does not incorporate any

optical sensor. However, this limited functionality and novel design techniques allowed

to increase the cell density to over 3000 cells/mm2, a significant step towards arrays

with a large spatial resolution.
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Figure 3.1 Conceptual view of a content-addressable memory containing w words. Shaded box

indicates the location (w−2) with data matching the search word [41].

3.6 Memory-based Approaches to Parallel Processing

This section presents two very interesting methods of exploiting the regular structure

of a memory for implementation of parallel data processing – the content addressable

memory and the computational RAM. Although, they are not directly related to the

CNN paradigm, they offer properties (parallel search/write, bit-serial processing) that

might be considered as useful extensions of the CNN functionality.

3.6.1 Content Addressable Memory

Content addressable memory (CAM) [41] can be regarded as a hardware search engine

that can be much faster than algorithmic approaches for search-intensive applications.

It is composed of a conventional memory (usually SRAM) with added comparison

circuitry that enable performing a complete search operation in a single clock cycle, as

shown in Figure 3.1. The search operation takes a data word as input and returns the

address to a memory location containing the matching data. In case of multiple hits,

the priority encoder selects the highest priority matching location.

The primary commercial application of CAMs is to classify and forward Internet

protocol (IP) packets in network routers. However, if a CAM architecture is comple-

mented with a parallel write function, it becomes a promising candidate for a com-

pact hardware realization of a highly parallel image processing system with high data

throughput. An example of such a processor is presented in [42]. The system consists

of a chip controller and 32 CAM blocks, each with 512 words. The adjacent blocks are

connected by an 8-bit horizontal bus and 1-bit vertical bus. Since these buses are also
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Figure 3.2 Integration of PEs within a basic DRAM structure [43].

distributed outside the chip, a larger CAM array can be obtained by using several chips.

This processor can handle 128 × 128 pixels in parallel, and perform two-dimensional

SIMD-type processing including global data operations. Various advanced functions

such as bidirectional hit-flag shift, block read/write, and hit-flag counting are imple-

mented in the chip.

3.6.2 Computational RAM

The computational RAM (C•RAM) architecture [43] is an attempt to implement pro-

cessing elements within a memory chip. The motivation comes from the appealing

idea of utilizing the very high internal bandwidth of a memory. This can be achieved

only through a tight integration of logic and memory. For example, a pitch-matched

PE can be placed at each column of a memory, as shown in Figure 3.2. In this way,

the capabilities of a conventional DRAM chip are extended to the functionality of a

SIMD-type processor with distributed, nonshared and uniformly addressed memory. It

is worth noting that this extension can be obtained at the cost of only slightly increased

area and power consumption.

Figure 3.3 presents the structure of a C•RAM processing element which supports

bit-serial computation. It consists of an ALU based on an 8-to-1 multiplexer, and

three registers. The ALU can perform a Boolean operation of three inputs coming

from X and Y registers and memory. The result can be written back to either the

memory or the X, Y or write-enable register. The X and Y registers can also act as

destinations for left and right shift operations, providing the means for communication

with neighboring PEs. The write-enable register is used for conditional writing to the

memory. The bidirectional bus transceiver drives or receives from the broadcasting

bus. During communication operations, the ALU is used to route signals.
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Figure 3.3 A simple processing unit for C•RAM implementation [43].
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The C•RAM chips can be applied in fields of e.g., image processing, computer

graphics, databases or even a real-time video-processing [44], [45]. However, this ar-

chitecture does not allow for pixel-parallel computation since only one PE per memory

column and not per memory cell (pixel) is available.
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Chapter 4

Binary Programming Scheme

In this chapter, a new approach to control the function performed by a CNN – the bi-

nary programming scheme is described. With minimum hardware requirements, this

scheme provides a processor with sufficient versatility to perform all black-and-white

(B/W) operations proposed so far. The basic cell model is presented and template

robustness issues are discussed. Based on the properties, the templates are classified

into groups and the guidelines for template design are presented. The library of binary

templates is given in Appendix A. This chapter is based on Reference [20]. However,

the model cell structure described here differs somewhat from the version proposed in

[20], as to keep a better correspondence with the implementations presented in the fol-

lowing chapters. Examples of template processing with images used in simulations as

well as the analysis of memory usage in template evaluation can be found in [14], [20].

4.1 Motivation

The hardware realization of a cellular nonlinear network (CNN) can significantly ben-

efit from the separation of B/W and gray-scale image processing parts as it allows for

their optimization. In turn, the areal density, power consumption, and/or speed of op-

eration can be improved. A great example of such optimization is the positive-range

high-gain CNN dedicated for processing B/W data [25], [26]. In this model, the output

nonlinearity takes the form of a threshold function resulting in binary cell output. How-

ever, the coupling weights remain analog, i.e. real numbers (positive and/or negative).

It is a real challenge to perform fast programming of analog weights since their values

need to be accurately settled before use. The coefficient circuits are seen as large ca-

pacitive loads attached to the weight lines, and thus slow down the programming due

to RC delays. Reference [10] proposed that the multiplier coefficients are reduced to

binary values as well. In this way, the coefficient circuits, and thus the cell structure,
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can be further simplified, resulting in a very compact layout. That enables a single chip

implementation of an array with extremely high spatial resolution. At the same time,

a very fast reprogramming of the weights comes as a consequence of toggling the bit

lines with minimum load capacitance.

4.2 Introduction

It is an interesting observation that most templates handling B/W images can be modi-

fied so that all of the terms are 1-bit values. The more-complex templates, which cannot

be directly transformed into one binary template, need to be divided into a set of 2 or 3

subtasks (binary templates) run successively. Such a division can be done by, e.g. sep-

arating the positive template terms from the negative ones. The result of each subtask

is either used as an initial state for the following one or it is stored in a local memory

of a cell to be later combined with others (by means of Boolean logic operations) into

the final result. In this programming scheme, also the threshold value is programmed

digitally with 2 bits. Interestingly, in the binary programming scheme there is no need

for a separate control matrix B and a feedback matrix A as in a classical CNN template.

They are replaced with just one template matrix AB, which contains the elements of

either A or B template matrix depending on the type of operation. Selecting the type of

operation is done with a dedicated global control signal. Therefore, programming the

template becomes as simple as loading 12 bits (9 for template terms, 2 for bias, and

1 for choosing the type of template). Obviously, toggling the digital lines can be fast

(in the order of a few nanoseconds) and leads to competitive evaluation times of the

multiple template algorithms.

4.3 Cell Model

4.3.1 Model Definitions

In the presented model, xi, j denotes the state of a cell in the ith row and jth column of

an M×N array (i ∈ [1,M], j ∈ [1,N]) and is determined as follows:

xi, j(t) = yi, j(0) if ei, j +M−E = 2

xi, j(t) = yi, j(0) if ei, j + IM−E = 2

CX ·dxi, j(t)/dt = ∑k,l [ABk,l · yui, j;k,l(t)]− z else

(4.1)

where k ∈ [−1,1], l ∈ [−1,1], yi, j(0) is the initial cell output (yi, j(0) is its inverse), ei, j

is a transient-mask control-value, and CX is a state capacitance. The variables M−E

and IM−E control (enable) the normal and the inverted mask operation. They have
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binary values and only one of them can be active at a time (M−E + IM−E ≤ 1). For

(M−E + IM−E) · ei, j = 1, the transient mask is active and the cell state is forced to

the initial cell output yi, j(0) or its inverse yi, j(0). Otherwise, the transient mask is

inactive and the cell state evaluates. The inverted mask operations are not available

when processing an A-template. The term yui, j;k,l(t) is the neighborhood contribution

defined as

yui, j(t) = ui, j if A−B = 0

yui, j(t) = yi, j(t) if A−B = 1
(4.2)

where A−B is a binary value controlling the template type selection. For A−B = 1

an A-template and for A−B = 0 a B-template is being processed. The term ui, j is the

cell input loaded before a B-template is selected with A−B. Upon A−B, terms ABk,l

are elements of either a feedback matrix A or a control matrix B. The coefficients

ABk,l can be independently programmed to be either 0 or 1. The negative bias term z

defines the threshold of comparison and can be set to four different values: 0.5, 1.5,

2.5 and 3.5. It should be noticed that this bias programmability is sufficient, since any

operation requiring threshold larger than 3.5 can be performed with inverted images.

The cell model uses a unity step function as the output nonlinearity, and the relationship

between the state and output takes the form

yi, j(t) = f (xi, j(t)) =

{

0, xi, j(t) < Vm − ε

1, xi, j(t) > Vm + ε
, 0 < ε ≪ 1 (4.3)

where ε represents an arbitrarily small disturbance, and Vm is a comparator midpoint

value. The introduction of Vm (for comparison, see Equation (2.4)) makes the model

more universal and at the same time more accurate for hardware realizations, since

usually Vm 6= 0 unless complementary supply voltages are used in the cell circuit.

4.3.2 Basic Cell Structure

The concept cell structure implementing the proposed model is sketched in Figure 4.1.

It is just one of many possible realizations. As in most CNN hardware designs, cells

interact with each other using currents. Such a technique is very suitable for a CMOS

implementation. However, the cell model allows for alternative approaches that would

fit best a specific technology and/or application.

The presented cell structure consists of a programmable negative bias, a state ca-

pacitance, and a pair of cascaded inverters working as a comparator and providing the

desired output nonlinearity. The structure also includes local memories, 9 coefficient

circuits and a number of switches partially grouped in a transient mask block. The

switches in the figure are drawn in a position for unset control signal (logic LO). Addi-

tionally, it is assumed that nodes marked as x, x′, e, and yu can be utilized as dynamic
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Figure 4.1 Cell structure implementing functionality required for binary programming scheme.

For clarity, the I/O parts (image acquisition, data transfer) are omitted as implementa-

tion/application specific and irrelevant to the programmability model description.

memories. The values of x′, e, and yu are stored using parasitic capacitances.

The signal START is used to initiate the template evaluation by connecting the

neighborhood contribution and the negative bias to the cell input. The control signal

ZERO sets the cell state to LO. The signal SET−M is used to program the transient

mask by writing y to e. The control signal X−Y enables the nodes x′ and y to follow the

cell state x. For inverted mask operations this signal is unset. When the mask is active

the cell state is forced to the value stored at the node x′, i.e. y(0) because the inverters

inv1 and inv2 are strong enough to override the contribution from neighborhood and

bias. All other signals reflect exactly the corresponding variables described in the

previous section.

4.4 Template Robustness

In a hardware realization, manufacturing process variations may cause devices to have

characteristics different from the desired ones. These imperfections can be classified

into two groups: systematic and random. The influence of systematic differences,

e.g. gradients and wafer-to-wafer variations, can be eliminated (or at least minimized)

with proper circuit topologies, biasing and layout techniques [46]. Random variations

exhibit themselves at a device level, and therefore are called ”device mismatch”. Their

influence depends on the device size, thus limiting the minimum layout area. As the

mismatch is random in nature, it is hard to predict accurately. Therefore, a computation

result of a system is affected, and the probability of incorrect outcome is finite.

To account for the random mismatch and minimize the error probability, the de-

signed system should be insensitive to a certain level of imperfections. Only two mea-
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Bias value Minimum relative robustness

z rrel,min

0.5 33.3%

1.5 14.3%

2.5 9.1%

3.5 6.7 %

Table 4.1 The values of the programmable bias and the corresponding minimum relative ro-

bustness.

sures of the system insensitivity, namely the absolute and the relative robustness are

considered here as they are sufficient for comparison of the robustness of different

templates. A thorough analysis of mismatch impact on the reliability of computation

in binary CNN is described in [47]. The error probability measures described therein

are particularly useful in the design process of very large arrays, as they allow to de-

termine the optimal transistor sizes for requirements of a certain application.

The absolute robustness describes the minimum separation between the two logic

states. In the presented binary CNN model it can be calculated as

rabs = min |D− z| = 0.5 (4.4)

where D is the number of the neighborhood black pixels marked by “1” in the template

matrix, i.e. D = ∑k,l yui, j;k,l ·ABk,l . For given template (and thus a bias value), the

minimum separation between the logic states occurs when D = z±0.5.

The relative robustness refers the absolute robustness rabs to all contributions at the cell

input, i.e. the sum of the positive and negative terms.

rrel =
rabs

D+ z
(4.5)

Therefore, in the presented model the minimum relative robustness given by

rrel,min = min
0.5

D+ z
=

0.5

2 · z+0.5
(4.6)

occurs when D = z + 0.5. The advantage of relative robustness is that it can be used

to qualitatively compare the robustness of different templates. As can be seen, the

template robustness depends on the value of the required bias z. Since all the operations

can be performed with z ≤ 3.5, the worst case in the binary programming scheme takes

place for z = 3.5, which corresponds to rrel,min = 6.7%. The programmable bias values

and the corresponding minimum relative robustness values are collected in Table 4.1.

The bias values of 0.5, 1.5, 2.5 and 3.5 seem a natural choice as the absolute ro-

bustness is maximized and equals 0.5 for both cases of D = z + 0.5 and D = z− 0.5.

However, the corresponding values of rrel differ. Reference [48] has recently suggested
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that the bias values should be chosen with respect to the relative (and not the absolute)

robustness, as the rrel,min determines the minimum device sizes. For example, the bias

value z = 1.5 after the proposed optimization equals 1.41. In this way, a significant

improvement in chip area and/or power consumption can be achieved.

4.5 Performing Local Logic Operations

The proposed cell can perform typical Boolean logic operations locally. In this case,

the control signal START is inactive, and thus there is no information exchange be-

tween the cells. The cell model yields

YL(X(0),Y (0),E) = [X(0)∧E]∨ [Y (0)∧E] if M−E = 1

YL(X(0),Y (0),E) = [X(0)∧E]∨ [Y (0)∧E] if IM−E = 1
(4.7)

where X(0) and Y (0) are matrices containing the initial state and the initial output,

respectively. E is the transient mask matrix, ∧ and ∨ denote logic AND and OR op-

erations performed for matrices element-by-element. The bar over the matrix symbol

denotes the inversion of matrix elements.

If IN1 and IN2 denote the operands, the basic logic operations can be obtained

with

YL,NOT = YL(IN1, IN1,1)

YL,AND = YL(0, IN1, IN2)

YL,OR = YL(IN1, IN2, IN2)

YL,XOR = YL(IN1, IN1, IN2)

YL,NAND = YL(1, IN1, IN2)

YL,NOR = YL(0, IN1, IN2)

(4.8)

Of course, the NAND and the NOR operations can also be obtained by inverting the

results of the AND and the OR functions, respectively. However, computing NAND

or NOR in the way presented in Equation (4.8) is potentially faster than inverting the

results of AND or OR, respectively. In case of NAND, it is clear since no additional

inversion is needed. For the NOR operation, it is not so obvious as the operand written

to the mask needs to be inverted. However, if the NOR function is performed on

the results of consecutive subtasks, there is a possibility that the inverse of one of

the operands is already available. In that case, computing the NOR as described in

Equation (4.8) can result in an algorithm with fewer steps.

The logic functions are also useful for algorithmic template evaluation. For in-

stance, templates that conditionally turn pixels white or black can be performed using

XOR and OR functions between the input image and the result of a subtemplate. The

example of such a case is the Line Removal operation [22].
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4.6 Processing B-Templates

In this section, the evaluation of different B-templates is presented. Based on the oper-

ation properties, three classes are identified: neighborhood threshold logic functions,

operations with transient mask, and templates using pattern matching.

4.6.1 Neighborhood Threshold Logic

Assuming the mask is inactive, the cell model can be simplified to a neighborhood

threshold logic gate described by

Y (AB,U,z) = ϕ(AB∗U − z) (4.9)

where U is the input matrix, AB is the template matrix, ∗ is the convolution operator,

and z is the negative bias that determines the threshold of comparison. If the number of

black neighborhood pixels marked by the nonzero template terms D is larger than the

desired threshold T , the resulting pixel will be black (and otherwise white). As seen

in Section 4.4, the larger the bias term the less robust is the operation. Therefore, if a

large threshold T is desired, the entire operation should be performed on the inverted

image. Namely, an inverted input U should be used instead of U , and the outcome

of template evaluation should also be inverted for the final result. Also, the border

condition should be changed. In this way, the value of the negative bias term z can be

minimized. This procedure can be expressed as

Y (AB,U,z) =







ϕ(AB∗U − (T +0.5)) T < Q/2

ϕ(AB∗U − (Q−T −0.5)) T ≥ Q/2
(4.10)

where Q = ∑k,l ABk,l . In case the resulting pixel should be black when more than

T neighborhood pixels are white, Equation (4.10) can still be used after replacing U

with U (U = U). Examples of such operations are the Junction Extraction and Corner

Detection [22].

Since in all threshold logic operations the in-cell feedforward term can be realized

with the aid of transient mask (as explained in the next section), the center element of

the template matrix AB0,0 can be kept zero. As a result, the Q ≤ 8 and z ≤ 3.5 1.

For the case of bias z = 0.5, Equation (4.9) describes a multiple input OR gate. In

this way, one can process B-templates that determine the output according to one of

the following neighborhood conditions of a pixel in the image data IN:

1This justifies that the bias programmable with two bits (to either 0.5, 1.5, 2.5, or 3.5) is sufficient for all

operations.
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• There is at least one black pixel in the neighborhood that is marked by a nonzero

entry in the template matrix AB. Such locations are represented by black pixels

in YB>0 =Y (AB, IN,0.5). The Object Increase and Dilation are examples of such

templates [22].

• There is at least one white pixel in the neighborhood that is marked by a nonzero

template term. In this case, an inverted image IN is applied as a network input,

and black pixels in YB>0 = Y (AB, IN,0.5) indicate such locations.

Another two conditions can be determined by inverting the results of the above opera-

tions, so that

• Black pixels in YB=0 = YB>0 indicate that there were no black neighborhood

pixels marked by a nonzero entry in AB.

• Black pixels in YW=0 = YW>0 show the locations where no white neighborhood

pixels were marked by a nonzero template term. This type of operations include,

e.g., Erosion and Peel templates [22].

4.6.2 Processing with the Transient Mask

The transient mask is also useful in processing templates that perform conditional

neighborhood logic operations. For instance, it might be desired that only black (or

only white) pixels of an image will able to change their state during the processing.

The use of the noninverting transient mask (M−E = 1) during a B-template evalu-

ation allows the cell model to be written as

Ye(AB,U,Y (0),E,z) = [ϕ(AB∗U − z)∧E]∨ [Y (0)∧E] (4.11)

Data stored in Y (0) determines whether the pixels with active transient mask are black

or white. Here, the Y (0) = 0 yields a white pixel. For instance, the Point Removal and

Edge Detection templates belong to this group [22].

When the inverting transient mask is used (IM−E = 1), the cell model takes the

form of

Ye(AB,U,Y (0),E,z) = [ϕ(AB∗U − z)∧E]∨ [Y (0)∧E] (4.12)

As can be observed, the only difference between Equations (4.11) and (4.12) is the use

of Y (0) instead of Y (0), i.e. an opposite action takes place for the pixels with active

mask. In this case, the Y (0) = 0 yields a black pixel. The Point Extraction template

represents such operations [22].
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4.6.3 Templates Using Pattern Matching

A number of B-templates rely on pattern matching only. These operations can be

processed with the minimum bias value z = 0.5. In general, such templates check if

the pixels at certain neighborhood locations are black as required. Then, another set

of pixels in the neighborhood (which should be white) are tested. The outcomes of

both operations are combined into a final result. This procedure can conveniently be

described by the General Pattern Matching template [22], which can be expressed as

match = Y (AB(b), IN,0.5)∧Y (AB(w), IN,0.5)

= Y (AB(w), IN,0,ϕ(AB(b) ∗ IN −0.5),0.5)
(4.13)

where nonzero elements of AB(b) indicate neighborhood locations at which the pixels

should be black, and nonzero elements of AB(w) point to locations for which the white

pixels are required. To clarify, it should be mentioned that these two tests do not need

to cover the entire neighborhood. In particular operation, states of some pixels may

be indifferent. The examples of templates using pattern matching include: Diagonal

Detection, Right Edge Detection, Local Concave Place Detection, and Skeleton [22].

4.7 Processing A-Templates

The binary-programmable CNN can process the A-templates that rely on a propagating

information wave or a threshold logic. Additionally, the cell allows for the algorithmic

evaluation of A-templates and logic operations.

4.7.1 Computing with the Propagating Wave

The binary-programmable CNN is well suited for evaluation of A-templates in which

the propagating wave changes the pixel values unidirectionally, e.g., from white to

black. Although the operation is continuous in time, it is convenient to describe the

process with an iterative (i.e. discrete time) expression. With A−B = 1 an A-type

operation is selected, i.e. AB contains the A-template coefficients. Assuming that a

noninverting mask is in use (M−E = 1) the following model is obtained.

Yt+1(AB,Y (0),E,z) = [ϕ(AB∗Yt − z)∧E]∨ [Y (0)∧E] (4.14)

As in the case of B-templates, the transient mask can be used to disable selected

pixels from changing their state during the processing, while other pixels evaluate.

Additionally, the mask enables operations with two input images. In that case, one

image (or its inverse) is written to the mask E and the other image (or its inverse) is
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used as an initial state.

The propagating black wave can be initiated from either an object in the input

image (marker), as in the case of Selected Object Extraction [22], or from the network

border (Hole Filler [22]) and stopped by the object contour.

A-templates can also use threshold logic (e.g., Concave Location Filler [22]) and

be combined with local logic operations (e.g., Global Connectivity Detection [22]).

4.7.2 A-Templates with Positive and Negative Coefficients

The proposed programming scheme does not allow for asynchronous processing of the

A-templates that contain both positive and negative coefficients, such as Concentric

Contour Detection or Connected Component Detection [22]. However, these opera-

tions can be performed as a series of B-templates, following the guidelines of Sec-

tion 4.6. Although in this way, the speed of operation gets lower, the robustness is

increased. Moreover, this can be done without an excessive usage of memory for in-

termediate results [14], [20].

4.8 Conclusions

The guidelines presented in this chapter can be used to design a binary template for any

B/W image operation. Additionally, it has been shown that the binary programming

scheme provides the cell with versatility sufficient for all B/W image manipulations

typical of CNN applications. With the coefficient weights and the cell state reduced

to 1-bit values, the requirements for coefficient circuits are significantly loosened. The

implications of this programming scheme on the hardware realization of a CNN are

discussed in the following chapters.



Chapter 5

CMOS Implementation of

Binary CNN

This chapter is devoted to development of the binary CNN implementation with CMOS

technology. The presented array processor is dedicated for operations performed on

B/W images, especially, in case where very fast processing and very limited power con-

sumption are required. In addition to a single-bit representation of an image pixel, the

coefficient weights are also one-bit values. The bias value, which defines the threshold,

can be set to either 0.5 or 1.5. Except for the 1-bit bias programmability, this chip im-

plementation follows the guidelines set by the binary programming scheme presented

in Chapter 4. The main objective of this chapter is to demonstrate the realizability and

measured performance of the proof-of-concept test structure.

Programming analog weights can easily take hundreds of microseconds due to the

accuracy requirements. In the time it takes to program analog weights, the proposed

binary-programmable CNN can be reprogrammed a couple of times and a few oper-

ations can be performed. Additionally, the binary-valued weights of the cells’ inter-

connections lead to a very compact structure of the coefficient circuits, and thus a very

dense layout is obtained. Also, the aspect of power consumption, very important in

array computing, is addressed. The proposed structure can operate with a very low

supply voltage limiting the currents in the circuit. A peak dissipation in the range of

microwatts per cell and the small cell-size open the door for implementation of an array

with extremely high spatial resolution suitable for high-frame-rate applications.

This chapter is organized in the following manner. Section 5.1 describes the archi-

tecture of the proposed CNN hardware realization. The silicon implementation issues

are covered in Section 5.2. A number of operations are described and visualized by

the measurement results in Section 5.3. Discussion regarding the chip performance is
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given in Section 5.4.

5.1 System Architecture

Figure 5.1 presents a block diagram of the chip consisting of a 4 × 4 array of processing

elements (PEs) surrounded by border cells. The cells are organized in a rectangular grid

and they are 8-connected with their 1-neighborhood. In addition, a shift register used

for programming the template terms was placed as a means to minimize the required

number of pins. That is because two other test structures were implemented along with

this one on the same chip. Only 11 bits (9 for the coefficients, 1 for the bias term, and

1 for the control signal A−B to select the type of template) are needed for the template

programing. The supply voltage of the PEs, VDD1, is kept at least one NMOS threshold

voltage lower than the high level of the global control signals. This way the NMOS

switches can convey full logic levels. The supply voltage of shift register, VDD2, is the

same as the logic high level (HI) of the global signals.

5.1.1 Cell Model

The cells in the presented approach use a modified version of the positive-range high-

gain output nonlinearity resulting in an inverting threshold function (see Figure 5.2(a)).

This nonlinearity can be mathematically expressed as:

VY = f (VX ) =

{

VDD1, 0 ≤VX < Vth

VSS, VX ≥Vth

(5.1)

where VY is the cell output, VX stands for the cell state, Vth represents the comparator

threshold, and VSS is the ground potential.

With the modification shown in Figure 5.2(b), the state equation can be written in

the form of

CX ·
d(∼VX )

dt
= ∑

k,l∈N(i, j)

ABk,l ·VYk,l
− z = D− z (5.2)

where CX is the state capacitance, N(i, j) is the first neighborhood of a cell in the ith row

and jth column, ABk,l are the coefficients i.e., the elements of either A or B template

matrix (depending on the global signal A−B), z is the threshold set by the positive bias,

and D is the number of black neighborhood pixels (cells with low logic level at VX )

marked by the template.
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5.1.2 Cell Design

Figure 5.3 presents a block diagram of a cell. Three main building blocks can be

distinguished in the cell. Namely, the bias circuit, the cell’s computing kernel with

four digital local memories, and nine coefficient circuits. This CMOS implementation

of a cell is very similar to the basic cell structure proposed in Section 4.3.2. However,

a number of small differences exist. Mainly, the bias is 1-bit programmable and it

is implemented with a pull-up structure, while the coefficient circuits are of pull-down

type. Due to these, a black pixel is represented by a low voltage at the state capacitance.

The cell has three basic operating modes:

• a multi-input threshold logic gate (TLG) with programmable inputs

• a multi-input threshold logic gate (TLG) with programmable inputs and with a

fixed state map

• a local logic device (transient mask operations).

The first two modes are used for template evaluations. The cell can operate either

in discrete time (B-templates) or in a way that allows asynchronous propagation (A-

templates). The local logic device mode is used for computing Boolean functions

without the neighborhood interactions.

5.1.2.1 Computing Kernel

Figure 5.4 shows the detailed structure of the cell’s computing kernel. It comprises the

state capacitance CX implemented with a 3 µm × 3 µm NMOS, two inverters INV 1 and

INV 2, a transient mask based on the programmable transmission gate, four SRAMs

grouped in the local memories block, and a number of switches. Additionally, four

parasitic gate capacitances CS, CC, Cm, and Cm utilized as dynamic memories are shown

with the small dashed-line symbols. Since these nodes store temporary signal values

for a very short time, no refresh cycles typical for DRAM implementations are needed.

Most of the control signals are named the same as in Section 4.3.2, and the cell

operates as follows. In the multi-input TLG mode, the START switch is used for con-
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Figure 5.4 Schematic of the computing kernel of a cell.



38 CMOS Implementation of Binary CNN

necting the neighborhood outputs and the bias to the cell input, thus initializing the

processing. The input currents set the voltage at the state capacitance CX . The volt-

age VX is thresholded by INV 1, which provides the output voltage VY . The cell state

can be latched in the SRAM-like loop formed by the inverters INV 1 and INV 2, and

the switches HOLD and X−Y . Control signal A−B determines whether an A- or a B-

template is run. When it is kept HI, the cell output contribution is enabled to change

during the processing, and therefore an A-template is evaluated. For a B-template this

signal is active only for a short while in order to write the VY into the parasitic gate

capacitance of the coefficient circuits, CC. Transistor DB−R/W is used to enable the

image data transfer to and from a data bus. The control signals UNIT and ZERO are

used to preset the cell state VX to either VDD1 or VSS, respectively. Although only one

switch (either UNIT or ZERO) would be sufficient, both are implemented as it boosts

the performance (inversion is a rather complex operation with this kernel structure –

see Section 5.3.1) at the minimum area penalty. The transient mask is used for imple-

menting a fixed state map. It can be programmed by writing the desired values via the

SET−M switches into capacitors Cm and Cm. When the mask is inactive (transmission

gate is not conducting), the cell state VX evaluates according to Equation (5.2). When

the mask is active (transmission gate is conducting), VX is forced to either VS or its

inverse VS depending on whether the M−E or the IM−E signal is set HI. Such enforce-

ment is possible because the transistor controlled by the START signal has a small

W/L ratio. The mask is also used for performing Boolean logic operations by means

of conditional writing to the cell state. When the cell operates in the local logic device

mode, the signals START and A−B are kept LO, thus there is no interaction between

the cells.

5.1.2.2 Coefficient Circuits

In the presented approach the coefficient circuits, shown in Figure 5.5, are implemented

with pull-down circuits. The output of INV 1 controls the gate of the analog transis-

tor (shown using a larger symbol than the template term-controlled switch) in each

coefficient circuit. Assuming the corresponding template term (ABk,l) to be ”1”, the

coupling becomes active when the cell output is HI i.e., the cell state VX is LO. Such

an activated coefficient circuit works as an unit current sink (with the analog transistor

serving as an unit current source) at the input of the corresponding neighbor. Since a

low supply voltage is used, the gate of the NMOS current source can be driven to VDD1.

In this way, the unit current is determined by the supply voltage of the cell. Therefore,

the tradeoff between speed and power consumption can be controlled with the value of

VDD1. When a B-template is run, the parasitic gate capacitances of the analog transis-

tors maintain the desired control value (either zero or VDD1 volts). Since the processing
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Figure 5.5 Schematic of the coefficient circuits.

is fast (see Section 5.3.3), the gate parasitics do not need to hold the voltage for a long

time. Therefore, the transistor leakage is not a critical issue.

5.1.2.3 Bias Circuit

The pull-up bias circuit, shown in Figure 5.6, comprises a simple current mirror with a

scaled replication of the current defined by an NMOS current source (that is identical

as in the coefficient circuits). The total bias current is either 0.5 or 1.5 times the unit

current depending on the global signal BIASBIT . The bias programmability could

easily be extended to two bits, by placing another (scaled × 2) current replication path.

The power consumption of a cell after settling is upper bounded by the bias current.
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Figure 5.6 Schematic of the bias circuit.

5.1.3 Border Cells

Each cell in the border ring surrounding the computing array has a structure identical

to the coefficient circuit. A border cell switch is controlled by a suitable template term

(e.g., AB0,−1 in left border), and the analog transistor is driven by the global BORDER

signal. For black border conditions this signal is set to HI, and for white border it is set

to LO.

5.2 Silicon Implementation

5.2.1 Robustness

When implementing an array processor, mismatch caused by processing variations has

to be taken into account. To estimate the probability of an error due to mismatch,

the cell was Monte Carlo-simulated with 1000 iterations. The mismatch parameters

and models provided by the foundry were used within the Eldo simulator. Transistors

with the following sizes (given in micrometers) were used: NMOS transistors with

W/L = 0.5/0.5 (for both the analog transistors in the coefficient circuits and MN in the

bias circuit), and PMOS transistors with W/L = 2.0/0.3 (for MP1), W/L = 2.17/0.28

(for MP3), and W/L = 2.17/0.56 (for MP2). Since the minimum relative robustness

occurs when D = z + 0.5 with bias z at its maximum value, the bias term set to 1.5

and two black neighbors can be considered as the worst case here. Table 5.1 presents

the percentage of incorrect cell states at given bias and neighborhood vs. the supply

voltage. With the bias programmed to 0.5, failure-free results were obtained at each

supply voltage value and neighborhood condition. For the case of the bias programmed

to 1.5, failure-free results were obtained with a supply voltage VDD1 ≥ 0.8 V. With
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Bias and no. of VDD1 [V]

black neighbors 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

z = 1.5, D = 1 0.8% 0 0 0 0 0 0 0

z = 1.5, D = 2 21.1% 11.3% 1.1% 0 0 0 0 0

Table 5.1 Simulated Failure State Percentage vs. Supply Voltage

Figure 5.7 Layout of two cells with marked regions occupied by each of the PE’s components.

scaling the supply voltage down the failure percentage increases. As can be deducted,

the increase of supply voltage (if programmed differently for different templates) can

be used as a means to increase the robustness of a certain template evaluation.

5.2.2 Layout

For maximal density the cells are grouped into pairs of partially overlapping cells,

which share the global control signals for their (identical) SRAM subcircuits. It is

important to mention here that the cell array does not require any additional spacing

(e.g. for signal wires) between those pairs. In fact, they also slightly overlap each

other thus reducing the array area. Figure 5.7 presents the layout of two connected

cells designed for a standard digital 0.18 µm CMOS process from ST Microelectronics,

which was used for fabrication. The process has a single poly layer, while six metal

layers are available for routing. In this design only four metal layers were used, thus

there is room for an improved distribution of the global signals and supply voltage or

a shielding layer, if a large network is to be built. The area of such a two-cell pair is

310 µm2. The entire 4 × 4 array occupies 62.2 µm × 38.5 µm without the border cells,

and 67 µm × 46 µm with the border ring. The layout was designed in a full-custom

manner.
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5.3 Measurements

The chip measurements were conducted with a dedicated test board comprising exter-

nal buffers for a bidirectional data bus. All of the control signals as well as the image

data were provided by a pattern generator with 8ns minimum pulse width. The images

resulting from processing were read out from the chip and the cell states were deter-

mined by a logic analyzer. The presented array has been provided with separate supply

rails. A microampere-meter in series with the power supply source was used for the

measurements of the power consumption.

5.3.1 Logic Operations: NOT, XOR, NAND, NOR

The logic operations (Boolean combinations) can be computed by a CNN-UM either

with the use of templates or by a local logic unit (LLU) placed within each PE as

in [6]. In the presented approach the logic operations do not use templates, neither

is there a dedicated LLU. Instead, a sequence of global control signals makes use of

the programmable transmission gate for computing these functions as explained in

Section 4.5.

Figure 5.8 shows the simplified equivalent cell structures for different logic oper-

ations. For the sake of clarity, the complementary control of the transmission gate’s

PMOS (values stored on Cm) was omitted as obvious. In the XOR case, the comput-

ing kernel performs a conditional inversion of one operand if the other operand is in a

logic HI state. Analogically, the NAND function means conditional inversion of one

operand when the other is HI or otherwise the cell state is set HI. NOR is done by

inverting one operand when the other is LO or otherwise the cell state is set LO.

In the presented approach, the NOT operation is used in many algorithms. Though

it is a trivial function, its evaluation with the proposed cell structure is not so straight-

forward. Therefore, the detailed NOT algorithm is given here to show how this logic

operation translates into a sequence of control signals. The inversion is done with the

aid of the transient mask programmed to conduct.

1. Set the cell state HI: HOLD ց, UNIT ցր

2. Program the transient mask: SET−M րց

3. Read-out the operand from memory: rd1 րց

4. Separate CX from CS: X−Y ց

5. Perform the inversion (force VX to VS): IM−E ր ... ց

6. Charge sharing between CX and CS: X−Y ր
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Figure 5.8 The equivalent cell structures for different logic functions: a) NOT, b) XOR,

c) NAND, and d) NOR.

Since CX/CS ≈ 5, the voltage VS at the input of INV 1 will become close to VX . Then

HOLD ր and the result is latched in the cell ready to be read out or to be used in

further calculation. The evaluation of NOT becomes straightforward if the transient

mask can be bypassed with an additional switch as proposed in [14].

The signal sequences for the two-operand logic functions are designed in a similar way.

In the XOR case the first operand instead of unity is used to program the mask. A sim-

ilar sequence is required for a NAND function. The only difference lies in the need to

initialize the cell to HI (UNIT ցր) before starting the inversion with IM−E ր. That

will ensure the HI state of the cells where no inversion takes place i.e., the first operand

is LO. Only a bit more complicated algorithm is needed to compute the NOR function.

Namely, the first operand needs to be inverted before being written to the transient

mask to ensure the inversion takes place for its LO state (i.e., the NOR algorithm be-

gins with computing the NOT). Also, the cell state needs to be set LO (ZERO րց)

before the signal IM−E ր. Figure 5.9 shows the operands and the measured results

of the two-operand logic functions. In this implementation black pixels correspond to

logical ”0” and are represented by a LO cell state (voltage at VX ), and white pixels

correspond to logical ”1” and are represented by a HI cell state.
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XOR NAND NOROPERAND 1 OPERAND 2

Figure 5.9 The operands and the measured results of the logic operations.

Supply Measured propagation Measured 0.5 bias

voltage time per cell current per cell

1.2 V 4.0 ns 6.58 µA

1.1 V 4.7 ns 5.19 µA

1.0 V 5.3 ns 3.92 µA

0.9 V 6.3 ns 2.78 µA

0.8 V 9.0 ns 1.07 µA

0.7 V 16.3 ns 0.68 µA

0.6 V 41.7 ns 0.35 µA

0.55 V 78.3 ns 0.34 µA

Table 5.2 Measured Wave Propagation Speed and 0.5 Bias Current vs. Supply Voltage

5.3.2 Processing of Templates

5.3.2.1 Wave Propagating A-Templates

The first examined template is the Shadow into South-West (SW) direction, which

takes the form of

AB = A =







0 0 1

0 1 0

0 0 0






z = 0.5 (5.3)

Each cell checks the state of the neighbor specified by the non-zero template term. If

the state is LO (black pixel) the cell also turns black. The center element of a template

matrix is non-zero to assure that pixels without the required black neighbor remain

black. However in this particular case, the same effect could be obtained with the aid

of the transient mask.

The Shadow template gives an opportunity to measure the speed of a wave propagating

throughout the network. The measurements were conducted with a supply voltage

VDD1 varying from 0.55 to 1.2 volts. At each VDD1 value, the minimum time required

for the propagation of a black pixel from one cell through the rest of the array (3 cells)

was measured. Depending on the supply voltage, a wave needs from 4 ns at 1.2 V

to 78.3 ns at 0.55 V to propagate a distance of one cell (see Table 5.2). The table

also shows the measured 0.5 bias currents at the given voltages. The Shadow template

evaluations into the SW and SE directions are shown in Figure 5.10.
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Figure 5.10 Evaluation of the Shadow template: a) into SW direction, b) into SE direction.

5.3.2.2 A-Templates With a Fixed State Map

The Hole Filler is another tested template. It relies on a black wave propagating from

the image borders that is stopped by the object contours [30]. It has the form of

AB = A =







0 1 0

1 0 1

0 1 0






z = 0.5 (5.4)

The Hole Filler causes the white areas surrounded by black pixels to turn black. There-

fore, the white holes within black objects are being filled. Since the operation is per-

formed on an inverted image, the algorithm is more complex than for Shadow, and thus

it is given here along with the corresponding sequence of control signals.

1. Load an image: DB−R/W րց

2. Invert the image: NOT operation as depicted in Section 5.3.1

3. Set the transient mask condition to prevent the cells corresponding to the black

pixels of an image from changing their state during the processing: SET−M րց

4. Initialize the network to contain white pixels only: HOLD ց, UNIT ցր

5. Separate CX from CS: X−Y ց

6. Upon the mask condition force VX to VS: M−E ր

7. Select the template type: A−B ր

8. Set the black border condition (this can be done concurrently with the previous

step): BORDER ր

9. Perform the template evaluation (black wave propagates from the borders through-

out the network, pixels with active transient mask stay white and block the fur-

ther propagation): START ր ... ց

10. Invert the result: NOT operation
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Figure 5.11 Two examples of the Hole Filler template evaluation.

After the algorithm evaluation is completed the result can be read out from the cell or

used in further processing. Figure 5.11 presents the original image and the measured

result of Hole Filler evaluation.

The Figure Reconstruction template (also known as Selected Object Extraction)

extracts from the image the objects marked by the black pixels in the marker image.

In other words, the marked objects are preserved and appear in the result, while all the

other objects are being erased. This template relies on similar operating principles as

the Hole Filler. With the original image written to the mask and the marker as the initial

image the template of Equation (5.5) is evaluated. In this way, the marker initiates the

wave propagation that is stopped by the object contour. The measured examples are

shown in Figure 5.12.

AB = A =







1 1 1

1 1 1

1 1 1






z = 0.5 (5.5)

5.3.2.3 B-Templates

With the proposed implementation, every discrete time CNN (DT-CNN) template [22]

is evaluated as a B-template. For test measurements, the Object Increase template was

chosen, which is expressed as
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Figure 5.12 Evaluation of the Figure Reconstruction template.
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Figure 5.13 Examples of the Object Increase template evaluation.

AB = B =







1 1 1

1 1 1

1 1 1






z = 0.5 (5.6)

This simple operation causes black objects in the image to grow by one pixel into every

direction. As a consequence, every white pixel that has at least one black neighbor will

also turn black. Of course, the object growth into only a selected direction can be

easily obtained through a slight modification of the template matrix. For instance, if

the growth is desired only on the right side of the object, all but AB0,−1 and AB0,0 terms

should be changed to zeros.

To perform a B-template evaluation, signal A−B is set back to LO before the pro-

cessing is initiated with signal START ր. In this way, the asynchronous wave prop-

agation in the network is disabled and stepped (discrete time) operation is obtained.

Figure 5.13 shows the initial image and the measured result.
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Operation Execution Time

Write to memory ≤ 8 ns

Read from memory ≤ 8 ns

Write the transient mask ≤ 8 ns

Load image from data bus 61 ns per row

NOT ≤ 60 ns

XOR ≤ 80 ns

NAND ≤ 96 ns

NOR ≤ 160 ns

B-template 11 ns

A-template 4 ns per cell

Table 5.3 Execution Time of Basic Operations at VDD1 = 1.2 V

5.3.3 Speed of Operation

Due to the output frequency limitation of the pattern generator, the ultimate speed of

some operations could not be determined. The measurements indicated that writing

to and reading from a local memory, writing the transient mask as well as all the op-

erations containing these tasks could be performed faster. Therefore, their execution

times are marked in Table 5.3 as “less or equal to” the minimum measured value.

5.3.4 Power Consumption

The dynamic power consumption was measured as a current dragged from the power

supply during looped evaluation of the B-template:

AB = B =







1 1 1

1 1 1

1 1 1






z = 0.5 (5.7)

The borders were set black, the template terms were programmed, and the initial im-

age, shown in Figure 5.14, was stored in one of the local memories. Then, the loop

consisting of the following operations was executed at the speed of 25 ·106 cycles per

second:

1. read out the initial image from memory,

2. run the template of Equation (5.7).

This loop comprises five lines of code. One line is spent for reading out the image from

memory, two lines for the template evaluation, and additional two lines to assure the

proper sequence of the control signals. With the initial image as shown in Figure 5.14,

all but one of the cells in the array are forced to change the state at the same time,

resulting in a power dissipation of 9.8 µW per cell at the supply voltage VDD1 = 1.2 V.
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INIT RESULT

Figure 5.14 The initial image and the resulting one obtained in the power measurements.

Technology 6M-1P 0.18 µm CMOS

Supply Voltage 1.2 V

Control Signal Voltage 1.8 V

Array Size 4 × 4

No. of Transistors per PE 64

PE Area 155 µm2

State Representation 1-bit

State Dynamics Inverted Positive-Range High-Gain

I/O Digital

Weight Programmability 1-bit

Dynamic Power per PE 9.8 µW

Table 5.4 Chip Characteristics

5.4 Discussion

The measurement results presented in the previous section confirm that the structure

works properly in performing both the Boolean logic combinations and the template

evaluation. If the supply voltage VDD1 is made variable for template-by-template eval-

uation, speed and robustness can be effectively traded for power consumption. The

external buffers in the bidirectional data bus stopped working properly at 0.95 volts

and this limited the minimum supply voltage to 0.55 volts in the measurements. Cor-

rect results with the Shadow template were obtained at VDD1 as low as 0.55 volts, while

with the logic operations the limit was 0.6 volts. The correct and data-independent re-

sults of the more complex algorithms were achieved at a supply voltage of 1.2 volts.

Thus, this value is listed in Table 5.4 as the supply voltage. Also, the given dynamic

power consumption was measured with VDD1 = 1.2 V.

Although the presented cell has the bias term programmable to either 0.5 or 1.5,

only operations requiring 0.5 bias were presented. That is because, in the layout draw-

ing process the bias PMOS transistors were improperly scaled (MP1 with W/L =

0.5/0.3, MP2 with W/L = 0.5/0.6, and MP3 with W/L = 0.5/0.3) according to an

older version of the schematic. Thus, the mirrored currents were made smaller (about

3 times smaller at 1.2 V supply voltage). For the case of 0.5 bias, having a lower value

of the bias than half of the unit current can actually be seen as a means to improve

the robustness [48]. However, for the case of 1.5 bias, the mirrored current should

be close to 1.5 of the unit current. Nevertheless, the functionality of the 1.5 bias was
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verified with the measurements at very low supply voltage (the mirroring of the bias

current works better in the subthreshold region): VDD1 = 0.3 V was used for process-

ing, while the programming and readout were conducted at VDD1 = 0.8 V. If the PMOS

devices in the bias circuit were properly scaled as in the simulations of Section 5.2.1,

the cell size would increase to about 170 µm2. The obtained small cell dimensions and

low power dissipation allow for the implementation of a very large arrays. Even one

million processors on a single chip become feasible with nowadays CMOS processes.

Obviously, upscaling the array would contribute a noticeable power-consumption.

However, it would not increase significantly the per-cell power dissipation. Issuing

instructions to a very large array can impose certain time delays due to signal prop-

agation. It also requires strong drivers and may cause a high instantaneous power

dissipation if many signals change their states at the same time. The input/output (I/O)

operations should not cause performance degradation either. If a large processing array

is designed, it usually incorporates the photo detector in each cell (efficient data input)

leading to the near-sensor image-processing (NSIP) concept [29]. At the same time,

because of the pre-processing in the array, the processor outputs only a small fraction

of initial information, e.g., the extracted features of some objects. In this way, the out-

put bottleneck is avoided. Alternatively, this architecture can be used as co-processor

supporting the general-purpose gray-scale chip. In this case, the image would need to

be loaded through a data bus. However, one should , keep in mind that images are

binary (each pixel value being represented by a single bit).

Table 5.5 provides a comparison of the presented design and other chips. However,

the reported test-structure can fairly be compared with designs of [39] and [25] only,

as they implement similar functionality. The chips of [6] and [31] can operate on gray-

scale images and have built-in photosensors, and are included in Table 5.5 to give a

broader context.
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This design [6] [39] [31] [25]

0.18 µm 0.35 µm 0.25 µm 0.8 µm 0.5 µm

Technology CMOS CMOS CMOS CMOS CMOS

1P-6M 1P-5M 1P-6M 1P-2M 1P-3M

Array size 4 × 4 128 × 128 176 × 144 32 × 32 48 × 48

PE density

(PE/mm2) 6451 180 3027 71 295

Supported

images B/W Gray B/W Gray B/W

Photosensors No Yes No Yes No

♯ Memories 2 B/W

per PE 4 B/W and 6 B/W 8 B/W 4 B/W

8 Gray

♯ Transistors

per PE 64 198 73 97 N/A

Weight

distribution digital analog analog digital analog

Bits per

term in 1,1,1a) 8, 8, 8 6, 6, 9 1, 1, 0a)b) 6, 6, 6

A, B, z

τ 4 ns 135 ns N/A N/A 50 ns

Power

per PE 9.8 µW 180 µW N/A N/A 81 µW
a) No separate bits for the A and B templates.
b) No threshold functionality, 4-connected to the neighborhood.

Table 5.5 Chip Comparison
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Chapter 6

Binary CNN Based on

Floating-Gate MOSFET

In this chapter, another approach to the hardware realization of the binary-programmable

processing element is presented. The design is based on a floating-gate MOSFET

(FG-MOSFET) structure and can be used to build a capacitively coupled cellular neu-

ral/nonlinear network (CNN) for processing black and white (B/W) images. The com-

putation is performed by charge distribution at the input of a FG-MOSFET inverter,

which determines the cell state. There is no current-flow through the interconnections

after the network has settled, i.e. the processing has completed, thus a significant re-

duction in DC power consumption can be achieved. Although the coupling coefficients

are basically implemented with capacitances, the network is a versatile processor due

to the applied binary programming scheme. Along with the cell structure, the operation

principles are described and the simulation results of the 8 × 8 network are presented.

6.1 Motivation

In the very simple structure of the FG-MOSFET, multiple input signals determine the

potential of the floating gate of a MOS transistor by means of the Coulomb interac-

tions. Therefore, the exploration of the FG-MOSFET structure applied to CNN is a

good way to approach the capacitive interconnections between the cells. It is defi-

nitely easier to proceed with the conceptual and architectural development issues in

the well-known MOS technology before facing them in some emerging nanotechnolo-

gies. Indeed, capacitive interconnections are inherent to many devices sized in the

range of nanometers. Practically, all of the nanodevice concepts that rely on the elec-

tron charge transport, e.g. the single-electron tunneling (SET) transistor, feature such
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Figure 6.1 Conceptual drawing of the basic νMOS structure.

couplings. The main objective is to design a coefficient circuit that can be used to build

a programmable network with capacitively interconnected cells. Then, similar strate-

gies could be applied to the development process of a programmable CNN based on

nanodevices.

6.2 Neuron MOSFET Structure

The neuron MOSFET structure has been proposed and described by Shibata and Ohmi

[49]. This floating-gate transistor is capable of performing more advanced functions

than simple current switching. The device can calculate a weighted sum of multiple in-

put signals at the gate level. The result of the sum operation determines the output state

of the transistor. Such a trigger, controlled by numerous inputs, resembles the behavior

of a biological neuron, and thus the structure has been named “a neuron MOSFET”

(abbreviated as νMOS).

The basic structure of the neuron MOSFET is sketched in Figure 6.1. The gate of a

MOS transistor is an electrically floating node, to which multiple input gates are capac-

itively coupled. Such a capacitive network (modeled in Figure 6.2) is used to perform

the weighted sum computation by means of charge redistribution. The potential φF of

the floating gate is determined by the linear sum of the input voltages Vi weighted by

the values of the coupling capacitances Ci as

φF =
∑n

i=0 CiVi

∑n
i=0 Ci

, (6.1)

where V0 is the potential of the substrate, and C0 is the capacitance between the floating

node and the substrate. The neuron MOSFET structure has been further improved to

increase the accuracy [50]. In addition to layout enhancement, calibration techniques

have been proposed as means to reduce the circuit sensitivity to the variations of an IC

fabrication process.

In terms of power dissipation, the voltage-mode summation performed at floating

gate has a clear advantage over the wired sum of currents. Since there is no DC flow
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Figure 6.2 Capacitive network model of the floating gate structure.
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Figure 6.3 Schematic diagram of the neuron CMOS inverter.

in the capacitive network, it is important to keep the power dissipation low in other

parts of a circuit as well. Therefore, the complementary CMOS-like configuration is

essential. It can also enhance the speed performance. Schematic of the neuron CMOS

inverter is shown in Figure 6.3.

A variety of possible applications have been projected for the νMOS structure. It is

naturally suitable for (but not limited to) the hardware realizations of neural networks.

A wide range of applications in binary and multivalued digital as well as analog circuits

have been exploited. For instance, compact νMOS implementations of A/D and D/A

converters have been proposed and tested [50].

6.3 Cell Structure

In the presented approach, the cell structure is based on the neuron CMOS inverter.

The positive-range high-gain output nonlinearity [26] is applied, in which the depen-

dence between the cell state and output takes the form of a threshold function. This

nonlinearity can be mathematically expressed as

VY = f (VX ) =

{

VDD, VX ≥Vth

0, VX < Vth

, (6.2)
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where voltages VY and VX represent the cell output and state, respectively, and Vth is the

threshold voltage of the comparator (inverter). As a consequence of the noninverting

relationship between the cell state and output, black pixels of an image are represented

in this approach by the HI logic value of the cell state VX . This is opposite to the

nomenclature used in the CMOS implementation presented in the previous chapter.

The cell state is determined by the potential of the floating gate (VX = φF ). The

switching threshold voltage of the inverter Vth is defined as the gate voltage at which

the inverter output becomes VDD/2. It can be assessed from the supply voltage and the

n- and p-channel MOSFET threshold voltages (VT n and VT p), [50]:

Vth =
VDD +

√

(WnµnLp)/(WpµpLn)VT n +VT p
√

(WnµnLp)/(WpµpLn)+1
, (6.3)

where Wn (Wp) and Ln (Lp) are the channel width and length of the n-type (p-type)

MOSFET, respectively, while µn (µp) stands for the electron (hole) mobility. Since the

MOS devices of the inverter have the channel W/L ratios designed with respect to their

carrier mobilities, Equation (6.3) reduces to

Vth =
1

2
(VDD +VT n +VT p). (6.4)

To make the CNN processor versatile, the binary programming scheme has been

applied. Assuming that substrate is connected to the ground potential, the state equa-

tion of a cell can be written as

VX (t) =
∑1

k=−1 ∑1
l=−1 C ·VY k,l(t) ·ABk,l

∑1
k=−1 ∑1

l=−1 C ·ABk,l +Csub

, (6.5)

where C is the unit coupling capacitance, ABk,l are the coefficients i.e., the elements of

either A or B template matrix, and VY k,l represents the output signals of the neighbor-

hood. The capacitance between the floating gate and the substrate, denoted by Csub,

includes the parasitic component as well as the total bias capacitance.

The cell structure is depicted in Figure 6.4. Three major circuit blocks can be

distinguished. Namely, the negative bias, the coefficient circuits (both on the left side

in Figure 6.4), and the computing kernel (on the right side in Figure 6.4). Interestingly,

an array consisting of such cells does not need to be surrounded by a ring of border

cells. Instead, a dedicated global signal BORDER replaces the required neighborhood

contribution VY k,l and controls the corresponding switches in the coefficient circuits. If

the black border is required, this signal is set to logical high state (HI) and cause the

driven switches to conduct. Otherwise, it should be set to logical low state (LO).
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Figure 6.4 The structure of a CNN cell based on the νMOS structure.
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6.3.1 Coefficient Circuits and Bias

The coefficient circuits and the bias are composed of capacitors and switches. Capac-

itances participate in the charge redistribution on the floating gate, thus changing its

potential. Actually, as can be observed from Figure 6.4, it is a pseudo floating gate

structure since a number of transistors are connected to it. Each coefficient circuit

(coe f f−1,−1 · · ·coe f f1,1) consists of a unit capacitor C and three control switches. The

neighborhood contributions (VY−1,−1 · · ·VY 1,1, including self-feedback) together with

template terms (AB−1,−1 · · ·AB1,1) determine which of the coefficient circuits are ac-

tive. When the activation requirements are fulfilled, i.e. both VY k,l and ABk,l are high,

the corresponding capacitor is connected to VDD, and the potential of the floating gate

increases. Otherwise, both terminals of the capacitor are electrically floating nodes,

and thus the influence of such coupling can be neglected. The RESET -controlled

switch is used to bring the circuit to the initial state, i.e. discharge the capacitors,

before another template is evaluated.

The negative bias implementation also relies on the charge sharing and is designed

in a very similar manner. The circuit consists of three paths comprising capacitances

with values related to the unit capacitance: 0.5×C, 1×C and 2×C. Additionally,

two of them contain switches that are controlled with the signals BIAS1 and BIAS2.

Therefore, the overall strength of the bias can be programmed to four different values:

0.5, 1.5, 2.5, and 3.5. Since the capacitors are connected to VSS instead of VDD, an

opposite influence on the floating gate potential is obtained.

6.3.2 Computing Kernel

The structure of the computing kernel of a cell is derived from the design proposed in

Section 5.1.2.1. It contains two inverters INV 1 (νMOS) and INV 2, a transient mask

based on the programmable transmission gate, four SRAMs collected in the local mem-

ory block, and a number of switches. Additionally, three parasitic gate capacitances Cs,

Cm, and Cm, utilized as the dynamic memories, are displayed with the small dashed-line

symbols in Figure 6.4. The FG-MOSFET implementation extorts a number of modifi-

cations of the computing kernel structure. Namely, since the coupling capacitances are

an integral part of INV 1, the START switch had to be placed at the cell output. At the

same time the A−B key is moved into the position between the inverters. As a result,

the INV 2 constantly drives the switches in coefficient circuits during the processing

(regardless of the evaluated template type), hence minimum size transistors can be

used for the keys VY k,l . Moreover, the START -controlled switch, which connects the

output to the corresponding coefficient circuits of each cell within the neighborhood,

is implemented with a transmission gate to assure that full logic levels are conveyed

(image data and control signals have the same voltage swing).
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When the charge distribution in the floating gate is initiated with START ր, the

weighted sum of the neighborhood contributions and the bias determine the potential

of the floating gate, and thus the cell state. When this potential exceeds the threshold

voltage of the INV 1, it is considered as HI logic value and the inverter output flips. The

cell state can be latched in the SRAM-like loop formed by inverters INV 1 and INV 2

and switches controlled with global signals HOLD and A−B. Of course, the A−B signal

is also used to choose whether an A- or B-template is run. For the A-template it is kept

HI (the switch is conducting) during the processing so that the cell output follows the

changes of the cell state. For the B-tamplate evaluation the A−B must be brought back

to LO before the processing is initialized (the parasitic gate capacitance CS stores the

desired value). The RESET -controlled switch plays the same role as in the coefficient

circuits, i.e. it brings the floating gate potential to the ground level (VSS) before another

computation begins. Otherwise, the charge accumulating at the floating node during

the algorithm processing would cause the circuit malfunction. Additionally, it can

be used to set the initial state value, thus performing the tasks of the signal ZERO

introduced in the basic cell structure (see Section 4.3.2). The DB−R/W signal serves

as a read/write enable for the image data transfers to and from a global bus. The input

image data and/or intermediate processing results can be stored in the local SRAMs.

One of these memories, namely M1, is connected so that the cell state can be inverted

in a fast and robust way by means of the write-and-read operation sequence. Due to

the fast inversion ability and the placement of A−B switch between the inverters INV 1

and INV 2, the IM−E signal is not used as the input of INV 2 can be a different value

than the actual output of INV 1 (e.g., its inversion). The structure of the transient mask

is based on the programmable transmission gate and utilized to implement a fixed state

map as well as to set the conditions in computing the Boolean combinations.

6.4 Simulation Results

In this section, a selection of operations is presented. The logic functions computed

locally within each cell as well as examples of template evaluations are described to

show the cell versatility. The operations are visualized by the simulation results of an

8 × 8 network. For the sake of clarity, the more complex algorithms are accompanied

by the corresponding sequences of the global control signals.

The cell was designed for a 0.18 µm CMOS process to operate with the supply

voltage VDD = 1.2 V. The simulations of the single cell as well as the network were per-

formed with Eldo, and the level 59 parameters were used for all transistors. Coupling

capacitors were modeled with ideal capacitances. The value of the unit capacitance C

was set to 50 fF, as such a value has been implemented within a neuron MOS structure

using two polysilicon layers for the gates [50].
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Figure 6.5 Cell triggering at different bias values.

6.4.1 Cell State vs. Neighborhood and Bias

To test the operation of charge redistribution, the activation of INV 1 was simulated

with the positive contributions from the neighborhood successively turned on, at dif-

ferent values of the negative bias. The results are presented in Figure 6.5. The cell state

is properly detected as HI each time the number of active coefficient circuits exceeds

the bias set. The visible compression effect in the curve representing the floating gate

potential is not a critical issue, as it gets weaker with the increasing bias. As can be

deducted from the waveforms in Figure 6.5, when |D− z|= 0.5, it may happen that the

INV 1 is driven by a voltage near its threshold value, for which the transistors are not

fully saturated/cut-off. Such a situation concerns the robustness, the speed of opera-

tion and/or the power consumption. Therefore, the minimum size of a unit capacitance

is limited. It is also worth noting that every switch connected to the (pseudo) floating

node introduces parasitics that degrade the performance. In addition to a carefull selec-

tion of the unit capacitor size, the result of each template evaluation should be latched

in the SRAM-like loop (INV 1, A−B, INV 2, HOLD) for a short moment. In this way,

a full logic level at the floating gate is restored, reducing the power consumption at a

small cost in the speed of operation.
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Op1 Op2 AND OR NAND NOR XOR

0 0 0 0 1 1 0

0 1 0 1 1 0 1

1 0 0 1 1 0 1

1 1 1 1 0 0 0

Vm Op1 Op1 Op1 Op1 Op1

VS Op2 Op2 Op2 Op2 Op2

VX (0) 0 1 1 0 Op2

Table 6.1 Two-operand logic functions.

XORNORNANDAND OR

IMAGE 1 IMAGE 2
(OPERAND 2)(OPERAND 1)

Figure 6.6 The operands (IMAGE1 and IMAGE2) and the results of the logic operations.

6.4.2 Logic Operations

Also in this implementation, basic logic functions are computed as a conditional pass-

through operation (or inversion) with the output of an operation VX (0) initialized (pre-

programmed) to a certain desired value. The way these operations are performed fol-

lows the guidelines of Section 4.5 and is analogous to the description of Section 5.3.1.

However, this time, INV 2 and M−E instead of INV 1 and IM−E are used for condi-

tional driving. For clarity, Table 6.1 also contains the values stored at the corresponding

nodes of the cell structure for each logic operation. Vm is the voltage stored at Cm, VS is

the value stored at CS, i.e. the input of INV 2, and VX (0) is the predefined output value

stored at node VX . The RESET signal is used to initialize the result of a function as LO.

In case the outcome should be preset to the high logic level, an additional inversion is

performed (writing to and reading from local memory M1).

The images corresponding to the operands used in the simulations and the obtained

results of logic functions are shown in Figure 6.6.
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INIT RESULT

Figure 6.7 The initial image and the result of SE-Shadow template.

6.4.3 A-Templates

6.4.3.1 Simple A-Template: Shadow

Shadow is one of the simplest A-template operations, forcing black pixels to repro-

duce and propagate into a given direction. Therefore, a shadow-like pattern originating

from the black objects of an image is being created. Since this template is robust and

it allows to estimate in a quite convenient way the speed of a wave asynchronously

propagating throughout the network, it is usefull to test such an operation during the

design process.

Shadowing into South-East (SE) direction was chosen for the simulations. In the

presented design, it translates to the form of:

AB = A =







1 0 0

0 1 0

0 0 0






z = 0.5 (6.6)

Each cell corresponding to a white pixel of an image checks whether the nearest neigh-

bor at the North-West location is black. If so, the cell changes its state to represent a

black pixel as well. Otherwise, it remains white. Due to the non-zero self-feedback

term in the template, the cells corresponding to the black pixels keep their state regard-

less of the neighborhood condition. As a consequence, each black object of an image

will have a shadow into SE direction. The input image used in the simulations and the

obtained outcome image are shown in Figure 6.7. According to the simulation results

(see waveforms in Figure 6.8), it takes only 1.8 nanoseconds for the black wave to

travel a distance of one pixel. In a real implementation, unavoidable parasitics would

slow down the operation.

6.4.3.2 A-Template With a Fixed State Map: Hole Filler

The Hole Filler is another example of an A-template. As a result of this operation,

all white areas of an image, which are enclosed by black pixels, turn black. Similarly

as in Section 5.3.2.2, it serves as a test of the fixed state map implementation. In the

binary programming scheme, this template takes a form of Equation 5.4, repeated here

for convenience:
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Figure 6.8 Successively switching states of the consecutive cells due to asynchronous wave

propagation.

RESULT
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(MASK) INIT RESULT
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Figure 6.9 The initial image and the result of Hole Filler template.

AB = A =







0 1 0

1 0 1

0 1 0






z = 0.5 (6.7)

The algorithm used to perform this operation with a FG-MOSFET CNN is similar

to that used with the CMOS implementation (see Section 5.3.2.2). Small differences

appear mainly due to the different output nonlinearity and interconnection structures.

1. Load an image: HOLD ց, DB−R/W րց

2. Set the transient mask condition: SET−M րց

3. Initialize the network to contain white pixels only: RESET րց

4. Begin the conditional driving of the floating-gate node by INV 2: M−E ր

5. Set the border black and run the template: BORDER ր, START ր ... ց

6. Invert the result: WM1 րց, RM1 րց.

The input image and the result of this algorithm evaluation are shown in Figure 6.9.
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INIT RESULT

Figure 6.10 The initial image and the outcome of the Object Increase evaluation.

6.4.4 B-Templates

6.4.4.1 Simple B-Template: Object Increase

As in case of CMOS implementation, the Object Increase template was chosen to test

the B-template evaluation. For the ease of reading, its cloning template from Equa-

tion 5.6 is repeated:

AB = B =







1 1 1

1 1 1

1 1 1






z = 0.5 (6.8)

The initial image used for simulations and the obtained result of this operation are

presented in Figure 6.10. As can be observed, every white pixel of an image that have

at least one black neighbor turns black.

6.4.4.2 Higher Bias Template: Junction Extraction

As it is very common in the binary programming scheme, the templates presented

above use the smallest possible bias of 0.5. However, a number of applications exist,

in which a higher value of the bias is required. As an example of such a case, the Junc-

tion Extraction template was simulated. The outcome of this operation is the image

that contains only the pixels corresponding to the junction points of a skeleton in the

original image. To be interpreted as a junction, a black pixel needs to have more than

two black neighbors. In the presented approach, this template is expressed as:

AB = B =







1 1 1

1 0 1

1 1 1






z = 2.5 (6.9)

The algorithm for computing the Junction Extraction template is following:

1. Load an image: HOLD ց, DB−R/W րց

2. Invert it: WM1 րց, RM1 րց

3. Set the transient mask to disable the state change during template evaluation in

the cells corresponding to the white pixels of an image: SET−M րց
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Figure 6.11 Evaluation of the Junction Extraction template.

4. Select the B-template operation: A−B ց

5. Set the empty initial image (white pixels only): RESET րց

6. Start the conditional driving of the floating-gate node by INV 2: M−E ր

7. Evaluate the template: START ր ... ց

This evaluation procedure is visualized by the original, the mask, the initial and the

result images presented in Figure 6.11.

6.5 Discussion

Since the computing power of a parallel array processor such as a CNN strongly de-

pends on the array size, a hardware realization featuring a large spatial resolution is

desirable. However, such a design target requires consideration of many implementa-

tion issues. Power consumption, layout dimensions, mismatch and robustness become

as important as system functionality. Unfortunately, these parameters are not inde-

pendent of each other, and thus the final layout is a tradeoff. The influence of the

fabrication process variation should be taken into account, especially when designing

an analog or a mixed-signal system. Obviously, the array architecture requires the cell

layout to be as compact as possible, but the component sizes are lower bounded by the

mismatch and/or parasitics. Too small devices can cause a lower robustness and result

in circuit malfunction.

In the proposed cell structure, most of the transistors operate as simple switches.

Therefore, they are not critically sensitive to the mismatch and can be made very small.

The group of components affected by the fabrication process imperfections comprise

the coupling capacitors and the floating gate comparator (INV 1). They need to be

sized with respect to the robustness requirements to assure a proper network operation.

It should be noticed that a systematic mismatch of the coupling capacitors can occur

due to the parasitic capacitances. However, this effect can be minimized by parasitic

extraction, post layout simulations and appropriate tuning of the design. Additionally,

the implementation of the coupling capacitors within the improved neuron CMOS in-
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verter structure with a simple calibration [50], helps to keep the layout dense. However,

a fabrication process with two polysilicon layers is required.

Another very important aspect in an array processor realization is the power con-

sumption. In the presented design, this issue is addressed in multiple ways. The

voltage-mode summation (computed through a charge redistribution in a floating gate)

minimizes the static dissipation, since no current flows after the processing is com-

pleted. Moreover, complementary structures are used for the state detection and the

output function shaping blocks. On the other hand, the low supply voltage limits the

currents, and thus the dynamic power consumption remains low.



Chapter 7

Binary CNN Designed for SET

Technology

This chapter presents a novel design of a binary CNN in which the cell structure is

suitable for implementation with single-electron tunneling (SET) technology. With the

binary programming scheme applied, the proposed cell is versatile and can be used to

build an ultra-dense CNN processor operating on B/W images.

This chapter is organized so that Section 7.1 gives the motives for choosing SET

technology. Section 7.2 describes the concept and features of SET technology. The

basics of neural networks are introduced in Section 7.3. Section 7.4 presents a selection

of interesting SET-implementations of neural hardware. The SET-based design of the

binary-programmable CNN cell is depicted in Section 7.5. The simulation results are

shown in Section 7.6 and the implementation issues are discussed in Section 7.7.

7.1 Motivation

Through recent decades, the CMOS technology has flourished. Due to the undergoing

development, the device feature size has shrunk by orders of magnitude and the trend

still continues. Such an enormous progress in integration capabilities has contributed to

crowning CMOS as the leading semiconductor fabrication technology. With no doubt,

CMOS will remain a dominant technology for years to come, although the shortcom-

ings of further device shrinking are already in the sight. Nevertheless, the predicted

limitations of the CMOS downscaling have initiated a growing research activity in the

field of emerging nanoscale devices. One of the most promising and relatively well

investigated concepts is the SET technology [51]. It has the appealing potential of

downscaling by orders of magnitude beyond CMOS. Thus, SET circuits can achieve
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an ultra-high integration-density and a very-high-speed operation, while an ultra-low

power-consumption is maintained. Furthermore, a new fabrication technique is not

necessary, and SET junctions can be integrated with CMOS logic on the same chip.

7.2 Single-Electron Tunneling Technology

7.2.1 SET Junction

A basic component in SET technology is a tunnel junction. It is composed of two

conductors (or semiconductors) separated by a very thin insulator as sketched in Fig-

ure 7.1. Such a junction is equivalent to a capacitor as long as no tunneling event takes

place. However, due to the very thin insulation layer, tunneling of electrons through

the potential barrier is possible at certain circumstances. Figure 7.2 presents energy

levels in the junction. When no external excitation is applied, the energy Fermi levels,

EF1 and EF2, at both sides of the tunnel barrier are equal. In this case, no electron

tunneling occurs. The junction is in the state called “Coulomb blockade”. However, if

an additional energy is supplied e.g., the junction is connected to a voltage source, the

energy levels will be shifted by

∆E = EF1 −EF2 = e ·V, (7.1)

where ∆E is the energy shift resulting from the applied voltage V , and e represents an

electron charge. If the supplied energy exceeds the Coulomb energy of

EC = e2/(2CT ), (7.2)

a tunneling event can occur.

There are two main model parameters characterizing the junction:

• tunnel capacitance, CT , is defined by the size of the junction and materials used

for fabrication.

• tunnel resistance, RT , is defined by the voltage across the junction divided by the

current flowing through the junction.

CT ∝ 1/d, and RT ∝ d2, where d is the thickness of the barrier insulator. RT should

be much larger than the resistance quantum RQ to minimize the effect of the quantum

fluctuation noise (EC ≫ EQ =h̄ω/2 = h/2τ = h/2RTCT ⇔ RT ≫ RQ ≡ h/e2 ≈ 26 kΩ).

A practical choice of the RT would be in the order of 105Ω [52]. CT should be small

to minimize the effect of the thermal noise (EC ≫ kBT ). These requirements for the

values of RT and CT suggest a wider insulation layer. However, a too thick barrier

would completely block the tunneling events and the structure would become useless.
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Figure 7.1 SET junction: a) in-line structure b) overlapping structure and c) symbol represen-

tation for schematics. Metallic SET junction is sometimes called a metal-insulator-metal (MIM)

structure.
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Figure 7.2 Potential barrier in SET junction a) without excitation and b) with an external voltage

applied.
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Figure 7.3 The model of a SET transistor.
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Figure 7.4 SET transistor with a) voltage bias and b) current bias.

7.2.2 SET Transistor

A single-electron tunneling transistor was invented in 1985 and first described in 1986

by Averin and Likharev [51]. Figure 7.3 illustrates the model of a SET transistor

structure. It consists of two tunnel junctions connected in series by a very small island

(e.g., a quantum dot). A drain-source bias is applied across the junctions while the

island is capacitively coupled to a gate bias or inputs.

The output can be either a current or a voltage, depending on how the transistor is

biased. The voltage- and the current-biased transistors are shown in Figure 7.4. If the

substrate under the device is connected to either supply voltage or ground potential, the

stray capacitance Csub starts to function as a bias gate. In this way, n- and p-type devices

are obtained as shown in Figure 7.5. Hence, CMOS-like complementary circuits can

be built. However, in contrast to MOS technology, the substrate of the n-type SET

switch it is connected to the positive supply voltage, while the substrate of the p-type

SET device is grounded [53].

An important physical parameter of a SET transistor is the total island capacitance,

given as:

CΣ = CT 1 +CT 2 +Cg +Csub. (7.3)
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Figure 7.5 SET transistor as: a) n-type switch and b) p-type switch.

From a designer’s point of view, the device characteristics are very meaningful.

For instance, the I-V curves shown in Figure 7.6, present a Coulomb blockade phe-

nomenon in a SET transistor. As can be seen, when no gate voltage is present, the

current flow is possible only above a certain threshold value of the drain-source volt-

age, Vds−th. This threshold can be lowered (and eventually eliminated) with a voltage

applied to the gate. Also, the state diagram of a SET transistor, presented in Figure 7.7,

is a useful tool. It demonstrates how the threshold drain-source voltage depends on

the transistor parameters and the applied gate voltage, Vg. The characteristic diamond

shapes show that the value at which the transistor begins to conduct is a periodic func-

tion of Vg. Moreover, it can be observed that at low values of a drain-source bias, the

voltage gain and transconductance of a SET transistor may change sign, upon the gate

voltage. Additionally, the diamond diagram shows that the voltage gain is limited by

the intrinsic capacitance values. For instance, the negative impact of an unavoidable

stray capacitance Csub has been simulated1 and is presented in Figure 7.8, where the

transistor’s current is plotted on the [Vds,Vg] plane. At sufficiently low temperatures,

where:

kBT ≪ EC, EC ≡ e2/CΣ, (7.4)

the transistor’s current within the diamond-shaped regions is exponentially low (due

to the Coulomb blockade phenomenon) and increases rapidly outside these regions.

Therefore, to avoid excessive currents in the system under design, SET circuits should

be biased in a way that the voltage across each transistor is near the threshold value.

Another very interesting feature of a SET transistor can be observed in its transfer

I-V characteristic shown in Figure 7.9, where the drain current and the charge of the

island are plotted versus the gate voltage. When the applied gate voltage spans a range

many times wider than the drain-source bias voltage, periodic current peaks appear

with respect to the electrons transferred to and from the island. This phenomenon is

called Coulomb oscillations. Such a periodic function can be used to implement a de-

1All simulation results shown in this chapter for the SET circuit were obtained with SIMON (SIMulation

Of Nano-structures) software [54].
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Figure 7.6 Coulomb blockade in a SET transistor. I-V curves show the average current flow at

two extreme cases of Vg = 0 and Vg = e/2Cg.

Vds-th

n = 0

Q0 = CgVg

1/CT2 1/(CT1+Csub)n = 1n = -1

e/CΣ

+0.5e-0.5e-1.5e +1.5e

Figure 7.7 State diagram of a SET transistor. e is the electron charge, n is the number of elec-

trons residing on the island, Q0 ≡CgVg is so-called “external charge” (as a continuous variable,

it may be a fraction of the elementary charge e), and CΣ is the total island-capacitance.
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(a)

(b)

Figure 7.8 Stability plots of a SET transistor a) without any substrate capacitance and b) with

the substrate capacitance Csub = 4.5 aF. The following parameters were used in the simulations:

CT = 1 aF, RT = 100 kΩ, Cg = 6 aF, and T = 1 K.



74 Binary CNN Designed for SET Technology

Figure 7.9 The drain current of a SET transistor and the charge of the island (expressed with

number of electrons) as a function of a gate voltage. Simulation parameters: T = 0 K, CT = 1 aF,

RT = 100 kΩ, Cg = 1 aF, and VDD = 10 mV.

sired circuit behavior (e.g., XOR-based logic). It also can be utilized for an alternative

coding of information as a means to make the circuit insensitive to a random back-

ground charge (RBC – explained in Section 7.2.4), thus improving its reliability [55].

7.2.3 Operation Regimes

Depending on the value of the applied bias, a SET circuit can operate in two different

regimes [56]. One possible operation regime is the single-electron transport, where the

information is coded with one or just a few electrons. A SET circuit operating in this

mode can achieve the shortest transition times, the lowest power consumption, and the

highest possible voltage gain at the expense of driving capabilities and limited robust-

ness. The other, so-called “high-current regime”, occurs for relatively high voltages

across junctions, and it uses a large number of electrons to charge and discharge the

load capacitance of a circuit. Usually, this operational mode appears for circuits built

with SET transistors working as current switches. The maximal switching speed of a

SET device operating in this regime is determined by its RC time constant (set by RT
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Figure 7.10 The “hot-electron model” applied to a metallic SET junction (diagram adapted

from [56]).

and CT ). This regime allows for more robust operation and higher fan-out at the cost

of power consumption and speed.

To explain the physical phenomena causing the difference in performance between

the SET circuits operating in these two distinct regimes, a so-called “hot-electron

model” of a metallic SET junction is shown in Figure 7.10. A voltage applied across

the junction causes an energy shift. As a result, an electron from any level within

the energy range marked with a gray shaded area of the metal-region on the left hand

side may tunnel through the barrier towards the metal-region on the right hand side, in

which energy vacancies are available to that electron. As can be deducted, for higher

voltages, a substantial amount of electrons will be able to tunnel. However, no electron

from below the gray-shaded range is allowed to cross the barrier, as all energy levels

below EF2 are filled. A tunneling electron travels through the barrier within a time

period of ∆t1, which is in the order of 10−15 s. After crossing the barrier, it contains

a large kinetic energy, thus it is dubbed a “hot-electron”. From this point, the electron

will drop towards the Fermi level, dissipating a certain amount of energy. The time

spent for that fall, ∆t2, depends on the energy shift, i.e. the value of applied voltage.

For a significant energy shift, this time will be as large as 10−13 s, while for the case

of energy levels almost aligned, ∆t2 may also be in the order of 10−15 s [56]. This

explains the speed and power benefits of the single-electron transport regime.

7.2.4 Random Background Charge Effect

Unfortunately, single-electron tunneling devices suffer from a very serious problem of

random background charge (RBC) effect2. To understand its influence on the operation

of a SET circuit, a following scenario could be considered. A single charged impurity

is trapped on the substrate surface, at a distance r from the island of a SET transistor.

2In fact, this is an issue common to all nanoscale devices.
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If that distance is comparable with the island diameter a, then the island will be po-

larized with a charge of the order of e · a
r

[52]. This charge affects all characteristics

of single-electron device. For instance, in the case of a SET transistor, it will deter-

mine the Coulomb blockade threshold Vds−th, which for r ≈ a may become zero. Even

assuming an extremely low concentration of charged impurities, a certain part of chip

area would be influenced and a set of devices would be unusable. Moreover, it has been

observed that at low frequencies the background (offset) charge is random in size and

slowly fluctuates step-wise. Typically, it remains constant for about one minute to one

hour, and then changes by a few tenth of e. Although the RBC fluctuations resemble

to a certain extent the 1/ f (aka flicker) noise, the exact cause of the RBC appearance

is still not quite clear and different options are considered3. Furthermore, the inten-

sity of these fluctuations varies from sample to sample, and between the measurement

sessions [57]. This makes it even more difficult to apply any counteraction.

7.2.4.1 Circumventing the RBC Problem

A move from capacitively coupled (C-SET) to resistively coupled (R-SET) devices as

they are RBC-insensitive has been suggested [58] to overcome this problem. However,

the R-SET approach is impractical for integration, since large (> 1 MΩ) resistance

with quasi-continuous charge-transfer is required to be able to compensate for RBC

[59]. Such resistors are theoretically feasible, but for the room-temperature operation

they become lengthy4 thus lowering the achievable device density. Moreover, their

stray capacitance is likely to become larger than the total capacitance of a SET island,

CΣ, and disable the room-temperature operation.

The RBC problem remains unsolved at the device level. However, a number of

alternative solutions have been proposed for other levels of the system design. For

instance, due to the periodicity in the transfer characteristic, the information may be put

in the amplitude or frequency component of the signal wave as proposed in [55], [60].

In this way, the information is not affected by RBC as long as the output signal carrier

(either voltage or current) is strong enough to be detected and processed. However, at

certain value of RBC the output signal might be completely blocked (lost). Such a case

could be avoided by adding to the SET circuit a variable capacitor in the atto-Farad

range [60]. Since such small variable capacitors are not available, this approach is not

yet feasible. Another way to conquer the RBC effect is to use calibration circuits to

control the island charges [61]. A tunable voltage source can be coupled via additional

capacitor to the island in order to compensate for the initial island charge as well as

3Taking into account that impurities can migrate and trapped electrons might get released, the presented

scenario can be used to explain the RBC occurrence and fluctuations.
4It should be much longer than the electron-phonon interaction length, which for most materials is well

above 10nm (see [59] and references therein).
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RBC fluctuations. This means that each and every island needs to be supported by

its own calibration gate (capacitor) and voltage source. Obviously, it is impractical

for SET systems with a large number of islands, but may be a good choice for low

complexity circuits. Finally, one can surmount the influence of RBC by means of

hardware redundancy [56]. This approach does not attempt to eliminate the source

of error, but instead, a false output of a particular processing element is tolerated. A

neural network is a possible way to achieve a fault-tolerant system. Recently, a SET-

based spiking-neuron design has been proposed [62], in which the architecture consists

of four layers (the input layer, the logic layer with redundant units, the averaging layer,

and the decision layer) and data is processed in a feed-forward manner.

7.2.5 Fabrication

To the advantage over other nanotechnology concepts, the implementation of SET

junctions does not impose a necessity for a new fabrication technique. Indeed, SET

devices can be defined by a lithography, and even integrated together with a CMOS

logic on the same chip [63]-[66]. On the other hand, for the room-temperature op-

eration, very small junction capacitances (≤ 1 aF) are needed, and thus a very-high

fabrication-accuracy is required. Currently, it is a problem to produce such tiny devices

in big volumes, however, it should be solved by continuous improvement in processing

technology.

Traditionally, SET junctions are made of a metal or semiconductor with a thin in-

sulator (e.g., oxide) forming a tunnel barrier. The first metallic SET junctions were

produced by evaporating aluminum from two angles through a hanging resist mask

(typically created by e-beam lithography on a double-layer resist). This technique,

called “shadow mask evaporation” was developed by Fulton and Dolan [67]. Addition-

ally, a number of alternative fabrication approaches have been reported. An interesting

proposal relies on the extremely narrow Si wire connecting the source and drain termi-

nals [68]. In fabrication, e-beam lithography and reactive ion etching (RIE) are used

to pattern a narrow channel. The noise in e-beam lithography causes variations in the

wire width, which is further enhanced during the oxidation. This effect is known as a

line width roughness (LWR). After complete fabrication process, such a narrow chan-

nel becomes a series of quantum dots, and the smallest dot in that series determines the

behavior of the transistor [68]. Another interesting approach is the SET transistor with

electrically induced barriers that can be fabricated by the conventional Si integration

technologies [69]. Such a technique allows for an ultra-low-power operation, however,

it does not exhibit a potential to surpass CMOS in terms of integration density. The

device structure is based on a dual-gate MOSFET with two polysilicon layers forming

the gates. A narrow inversion layer is induced by a positive voltage of the lower gate,
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and the formation of a quantum dot is extorted by a negative voltage of the upper gate

(which has a form of two parallel closely-spaced tiny lines). In this way, a certain re-

producibility is obtained [69]. A similar concept has recently been used to develop a

SET transistor with tunable barriers fabricated in standard Si MOS technology. Such

a transistor consists of a silicon nanowire channel and polysilicon fine-gates placed

above to induce the electrostatic barriers. Since the barrier parameters depend on the

applied gate voltages, this approach gives a high degree of controllability [70].

7.2.6 Applications

The application range suitable for SET devices is quite restricted5. The traditional ana-

log approach requires excellent device-matching properties that are beyond the capabil-

ities of SET fabrication techniques. On the other hand, the traditional digital approach

demands reliable devices with high ratio of the currents in ON and OFF states. There-

fore, the applications should involve architectures with regular structures that allow for

relatively easy elimination of malfunctioning sub-circuits. Nevertheless, development

of applications for SET devices is an active research field. Especially, multiple-valued

logic and memories have gathered a lot of attention [63], [64], [71]-[74]. Other pro-

posed applications include adders [75] and artificial neural network implementations

[56], [57], [76]-[78]. Yet, not many SET circuits have found their way into products.

For example, the SET electron pump circuit is utilized in metrology as the world’s

most precise current standard and the SET transistors are used as acute charge sensors,

see [52] and references therein.

7.2.7 Discussion

According to the projections in the 2005 Edition Report of the International Technol-

ogy Roadmap for Semiconductors (ITRS) [9], the ultimate CMOS devices will reach

the switching speed of 12 THz and CMOS circuits will operate at 1 THz. For the

SET case, devices are predicted to reach the switching speed of 10 THz, while circuits

would operate at 1 GHz. That means the SET technology could not surpass the CMOS

technology, and thus it is unlikely to become the next leading platform. However, the

SET transistor operating in high-current regime is assumed in [9] as the SET device.

On the other hand, Reference [56] argues that circuits based on SET junctions operat-

ing in the single-electron transport regime can be two orders of magnitude faster and

at the same time more energy-efficient than those biased to the high-current regime, as

was explained in Section 7.2.3. Therefore, a SET circuit needs to operate in the single-

electron transport regime in order to outperform the CMOS counterpart in terms of

power consumption and speed.

5Generally, it applies to most (if not all) of the nanoscale devices
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However, operating with a countable number of electrons limits the circuit fan-out,

i.e. driving capabilities, and the problem of interconnections arises. Hence, the system

architectures with mainly local information exchange (e.g., CNN) are recommended.

Also, a dedicated interface circuit can be useful. Another problem appears in test mea-

surements. It originates from both the small fan-out and the sensitivity of a SET struc-

ture to the disturbance induced by an external probe. This could also be surmounted

with a special interface, e.g., based on SET-FET hybrid circuits. An example of such

a structure has been presented in [66], where a two-stage output buffer is proposed.

The first stage consists of a SET transistor with a FET playing the role of a load resis-

tor. The second stage has the same topology but is built with two FETs. In this way,

the output signal of a SET circuit is amplified and the driving capabilities are increased.

The appealing features of SET technology as well as the obstacles against its wide

employment are collected below to summarize this introduction [56].

Advantages of SET technology:

• No necessity for a new fabrication technology

• Extremely-low power-consumption

• The switching time in the order of femtoseconds

• Small devices with great down-scaling possibility

Problems existing in SET technology:

• Random background charge fluctuations

• Low operating temperature

• Fabrication accuracy

• Interconnections

• Measurements/testing

Due to the device reliability issues harnessing the SET technology6, fault tolerant

architectures are in favor. As indicated in Sections 7.2.4.1 and 7.2.6, implementations

of artificial neural networks (ANN) become attractive due to the inherent ability of

generating hardware redundancy at the system level. In this way, a robust system

based on SET devices can be designed. Since the idea of artificial neural networks and

the CNN paradigm are two distinct concepts, the next section will briefly introduce the

basics of ANN.

6A limited device reliability is generally assumed for all nanotechnologies.
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Figure 7.11 The basic synapse model with weight storage and multiplication.

7.3 Artificial Neural Networks

With the progress in studies of the biological neural systems, engineers attempt to

apply the discovered strategies to electronics. The aim of these efforts is to achieve a

processing throughput, robustness, and power efficiency comparable with those found

in the nervous systems. The basic principles, structures and even name conventions

were transferred from biology to engineering forming the concept of artificial neural

networks (ANN) [56], [57].

7.3.1 Components of a Neural Network

There are two fundamental elements used to compose a neural network: the synapse

and the neuron. Their model structures and functionality are briefly described below.

A combination of a neuron with multiple synapses is called a perceptron.

7.3.1.1 Synapse

A synapse is used to define the connection strength between two neurons or between

a network input and a neuron. With varying synaptic weights, a different network

behavior is obtained. The operation of applying a weight can be conveniently modeled

with multiplication. Therefore, two functions are assigned to a synapse:

• Storage of the weight value

• Multiplication of the input signal by the weight value

A basic structure of a synapse is schematically presented in Figure 7.11. The digital

input signal Xi is multiplied by the corresponding analog weight value Wi. The resulting

output of the synapse Fi is an analog signal that is fed as an input signal to the neuron.

7.3.1.2 Neuron

For the development of an ANN, a simple neuron model, implementing basic function-

ality, is often sufficient. A suitable structure proposed by McCulloch and Pitts [79] is

presented in Figure 7.12.
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Figure 7.12 The McCulloch and Pitts neuron model.

Conventionally, a neuron performs two operations:

• Summation of all weighted input signals

• Classification performed via an activation function.

The weighted input signals Fi are summed and the result is fed to the classifying stage.

The step or sigmoid functions are most often used as the activation function. How-

ever, a number of different nonlinearities may serve the purpose of classification. The

provided threshold value S defines the border between the classes.

7.3.2 Learning Algorithm

A neural network can be taught to perform a particular operation by means of a learning

algorithm. This algorithm is capable of adjusting the weights of the synapses and the

activation thresholds of the neurons in order to obtain the desired behavior. There are

two types of learning:

• supervised

• unsupervised

In the process of supervised learning, a group of input data sets are loaded into the

network. For each data set, the outcome of the neural network is read-out and compared

with the desired output, and the error value is generated. Next, the weights and the

thresholds are modified by the external supervisor in order to reduce the difference

between the desired and the actual output. When the error value is below a certain

edge level for all data sets, the training is completed.

In the process of unsupervised learning, the error signal is produced within the

neural network. The learning algorithm defines the way this error is generated as well

as the procedure for adjusting the weights and the thresholds.
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7.4 ANN in SET Technology

When looking at the properties and requirements of bio-inspired computing paradigms,

the SET implementation of an artificial neural network comes as a natural solution with

multiple advantages. The computing power of a neural network as a parallel processing

platform depends on the network size. The larger the number of processing elements

(PEs) the more powerful the system. This serves as a driving force for building a

network with a huge amount of cells. However, the circuit implementation implies a

number of practical constraints. Each PE should be characterized by small physical

dimensions and a very low power dissipation. Both requirements can be met if cells

are built using SET devices. At the same time, the inherent robustness of a neural

network enables using faulty nanodevices to build large systems with acceptable error

rate. Especially, the persistent problem of RBC could be overcome with either learning

algorithm or hardware redundancy.

7.4.1 Boltzmann Machine Neuron

The Boltzmann machine can be considered as a feedback-type neural network, useful

in solving problems related to combinatorial optimization, classification, and associ-

ation [76]. It consists of many identical PEs bidirectionally interconnected to form

a large network. The neurons have binary outputs and the connections have various

strengths. The stochastic state transition and annealing algorithms are used to obtain

the globally optimal solution without falling into a local optimum. The only differ-

ence between the Boltzmann machine neuron and the neuron model described in Sec-

tion 7.3.1.2 is that the output of the activation function is fed to the stochastic response

unit to generate the output bitstream with the state probabilities controlled by the input.

The stochastic response unit is an integral part of each neuron.

For practical use, the implementation of a Boltzmann machine must integrate thou-

sands of neurons on a chip. Therefore, the efficient implementation of the random

bit generator is a crucial issue. In conventional electronics, it would consist of many

devices, and thus a large network would not be feasible. To overcome this problem,

Akazawa and Amemiya [76] proposed the idea of utilizing the stochastic character

of the tunneling process, inherent for SET circuits operating in high-current regime.

Thus, no extra hardware is needed for the random bit generator. The proposed neuron

has a structure of a complementary SET inverter [53] tuned to operate under unstable

conditions, for which state transitions occur frequently. The required bias levels are

obtained from the state diagram. Transient simulations performed by Akazawa and

Amemiya show that the neuron outputs a random bitstream with the probability of HI

and LO levels depending on the input signal.
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Figure 7.13 Two-input perceptron implemented with just three current-biased SET transistors.

7.4.2 SET Transistor as a Neural Hardware

The neural hardware design in the SET technology proposed by Goossens, Verhoeven

and van Roermund is a fully analog implementation [77],[57]. One current-biased

SET transistor serves as a synapse circuit. Also, the neuron structure is reduced to one

current-biased transistor as shown in Figure 7.13.

The synapse structure applies the weight value stored on voltage source Vw to the

input signal Vin. The sum of these voltages define the effective gate potential of the

synapse transistor. Since the transistor output voltage depends on this gate potential,

the Vw can be considered as an offset determining the voltage gain of the SET tran-

sistor. The contributions from all synapses are summed by the coupling capacitors Cc

in between the two stages. The activation function is a sigmoid with a positive slope,

which results from a cascade of the synapse and the neuron transistors.

A clear advantage of this approach is the compactness. Such a simple structure

enables extremely dense implementations, and the minimal number of islands reduces

the circuit sensitivity to disturbances like RBC fluctuations. Furthermore, a learning

algorithm can easily be applied due to a fully analog operation. However, this circuit

works in a high-current regime, and thus consumes a significant amount of power.



84 Binary CNN Designed for SET Technology

+
−

CLS

CgS

CgS

Vw

Vin

VF

(a)

CLN

CgN

VDD

VY

CgN

Cc

Cc

VF1

VF2

(b)

Figure 7.14 SET-inverter implementation of a) the synapse and b) the two-input neuron. The

SET inverter structure composed of four tunnel junctions connected in series via three quantum

dots (islands) is sometimes called a three island structure (3IS).

7.4.3 Neural Hardware Based on SET Inverter

Van de Haar and Hoekstra proposed a neural hardware, in which each neuron and

synapse are implemented with a SET inverter working in the single-electron transport

regime [56], [78].

The synapse structure is shown in Figure 7.14(a). The digital input signal, repre-

sented by the voltage Vin, can be set either by the supervisor of the neural system or by

the other neuron outputs. The analog weight value, represented by the voltage Vw, is set

by the supervisor. This value is discretized to a number of levels defined by the circuit

parameters. The choice of the parameter values is a tradeoff between the accuracy of

analog signal representation and the speed of operation (and power consumption). The

multiplication of the input signal and the weight is obtained with the input signal used

as the supply voltage of the synapse inverter structure.

Figure 7.14(b) shows a two-input neuron structure. The weighted input signals,

represented by the voltages VF , are summed by the coupling capacitors Cc. The activa-

tion function, in the form of a hard-limiter, is performed by the SET inverter. In order

to achieve output signals in the same voltage range, circuit parameters of the neuron

are scaled with a factor of 0.8 with respect to the synapse.

Since this implementation does not handle signals in a fully analog way (Vin is a

digital signal), the convergence properties may be uncertain for some neural applica-

tions, and thus should be further investigated.
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Figure 7.15 CNN cell based on cascaded SET inverters.

7.4.4 3IS Cascade as a CNN Cell

Figure 7.15 presents the CNN cell proposed by Gerousis and Goodnick for imple-

mentation with SET technology [80]-[84]. It is based on a cascade of SET inverters.

Multiple input signals Vi are weighted by the corresponding coupling capacitors Ci.

Therefore, these capacitors implement the functionality of synapses. A capacitive net-

work computes the sum in the voltage domain by means of charge redistribution. The

resulting potential of the floating node is fed to the SET inverter cascade, which per-

forms the output classification via a step activation function. Therefore, this structure

resembles a neuron. If it is required by a specific application, the inverted output of a

neuron Vout1 is also available for network interconnections.

The proposed cell was used to build networks dedicated to simple B/W-image pro-

cessing, in order to demonstrate the CNN-like behavior. The presented designs, in-

cluding a 1 × 3 network for line detection, 1 × 3 and 1 × 5 networks for shadowing,

and a 3 × 3 network for checkboard-like pattern creation, were probably the first CNN

applications with SET circuits. However, this approach suffers from a number of draw-

backs. First of all, these designs are application specific implementations, in which the

network operation is set by the values (ratio) of coupling capacitances, and thus fixed.

Due to the lack of programming capabilities, such networks are not versatile. More-

over, since the function is specified by the ratio of capacitive couplings, templates can-

not contain negative terms along with positive ones. Therefore, a very limited group

of tasks can be implemented. Alternatively, some template modifications are neces-

sary, but no template design rules are given. Also, a fabrication of a large number of

coupling capacitors with the required accuracy in the range of zeptofarads would be

extremely difficult. Even with the cutting-edge technologies, it is very challenging and

rises the issue of robustness.
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Figure 7.16 Model of a complete cell.

7.5 Binary-Programmable SET-Based CNN Cell

The CNN cell structure proposed in this section is an attempt to adapt the same strat-

egy for programming capacitive couplings as the one utilized in the FG-MOSFET CNN

(see Chapter 6), in order to create a versatile binary CNN processor in SET technol-

ogy. This design has been partially inspired by the works presented in Sections 7.4.3

and 7.4.4. The cell model shown in Figure 7.16 is a perceptron representing the com-

plete processing node of a neural network. Multiple synapses are combined with a

neuron, which is an extended version of the basic McCulloch and Pitts model shown

in Figure 7.12. The added buffer functionality is to assure the signal levels restoration

(voltage gain) in order to avoid information diminishing.

Such a processing element requires a vector of binary input signals, X , a vector of

weight values, W , and a threshold value, S. In this approach the weights are limited to

binary values. The input signals are multiplied by the weights, summed, and fed into a

nonlinear activation function block, which performs the classification. The level of the

signal Y depends on whether or not the weighted sum of the input signals exceeds the

threshold set. Therefore, it is possible to treat the S signal as another input signal Xi

with (typically) an opposite polarization as sketched in Figure 7.16. The buffer assures

that the classified output signal, Y , can be used to drive the subsequent neurons.

The complete cell structure implemented with SET transistors is presented in Fig-

ure 7.17. The backbone of this circuit is the SET inverter operating in the single-

electron transport regime. It performs all of the neuron tasks. The capacitive network

at its input acts as an adder, while the inverter provides the output nonlinearity and

the required signal gain. As seen from the preceding sections, it is quite a standard
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approach to the implementation of neuron functionality. The novelty of this design lies

in the synapse circuitry. Each synapse consists of a unit capacitor, C, used for pro-

portional charge distribution at the floating node (input of the SET inverter), and two

switches. Neighborhood output signals (VY 1,1 – VY 3,3) together with template terms

(AB1,1 – AB3,3) determine which of the coupling capacitors are connected to VDD.

When both of the synapse switches are conducting, the capacitor is connected to VDD.

As a result, the potential of the floating node increases. Otherwise, i.e., at least one of

the keys is not conducting, both the capacitor terminals are floating and the influence of

such a coupling can be neglected. The threshold level is set in the same manner, except

the connection is to the VSS instead of VDD. In this way, the potential changes caused

by the bias and coefficient circuits are opposite. There are three branches in the bias

structure with capacitances scaled with respect to the unit capacitor to 0.5C, C, and 2C.

Therefore, the cell can have a bias programmed to four different values: 0.5, 1.5, 2.5

or 3.5. The potential of the floating node is probed and thresholded by the inverter. If

this potential exceeds the value of VDD/2, the neuron is activated and its output goes

LO. Since the neighborhood contribution signals drive p-type SET switches, a second

inversion is not needed. The additional reset-controlled switch is used to remove the

charge remaining at the floating node after the computation. In this way, the initial

conditions are restored for each consecutive operation.

7.6 Simulation Results

The neuron circuit has been simulated with SIMON software [54]. Starting with the

component values from the van de Haar’s design [56], the following set of parameters

was established and used in the simulations. Each tunnel junction has a capacitance

of CT = 1 aF and a resistance of RT = 100 kΩ. Every SET transistor has a gate ca-

pacitance of Cg = 6 aF and a substrate capacitance of Csub = 4.5 aF. The amplitude of

the global control signals and the supply voltage VDD = 10 mV. The unit capacitance

was C = 80 aF, the load capacitance was CL = 35 aF, and the temperature was up to

T = 400 mK. The selected values do not allow for room-temperature operation, but are

feasible with currently available technologies.

The operation principle is visualized in Figure 7.18. The first waveform shows

the successively activated neighborhood contributions. As a result, the potential of

the floating node rises gradually as can be seen in the second waveform. The visible

compression effect is not a critical issue. When the floating node potential exceeds the

value of VDD/2, the neuron is triggered and the output voltage VY goes LO as shown

in the last waveform. The presented case with the bias set to 3.5 is the least robust (as

explained in Section 4.4), and the fact that no template would require threshold higher

than 3.5 gives confidence about the reliable operation. The waveforms in Figure 7.19
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show the potential of the floating node and the cell output at each bias condition.

The waveforms in Figure 7.20 present the neuron output voltage and the current

dragged by the inverter from the power supply at different bias conditions. The current

peaks appearing at the moment the output flips are in the range of 10−17 A for the

lower two threshold values, and of 10−13 A for the higher thresholds. These results

show how extremely low power is sufficient for operation of SET circuits.

7.7 Discussion

With the use of SET devices, the area occupied by a cell is kept small and bears the

possibility for further downscaling. The power dissipation is kept low as well. With

coupling capacitors of 80 aF, the floating node can store up to about 60 electrons. In

addition to the energy-efficient voltage-mode summation, the complementary struc-

ture of the inverter minimizes the static power consumption. Moreover, the extremely

low supply voltage of only 10 mV keeps the dynamic power consumption low. Many

portable applications that require lots of computational power would benefit from ex-

ploiting such area-speed-power advancements.

Generally, SET transistors feature a low power gain. However, with the use of an

inverter structure to shape the output nonlinearity and short (local) interconnections,

the voltage gain is provided and the signal restoration is ensured. A remaining prob-

lem is the sensitivity to RBC. As the fabrication technologies improve and the SET

devices get even smaller, a certain degree of hardware redundancy can be employed as

a means to deal with faulty devices. How much smaller than CMOS counterparts the

nanodevices have to be to incorporate this redundancy without the penalty in the chip

area, remains to be seen.

The presented neuron design is suitable for both pure SET or SET-FET hybrid

implementations. The AB-controlled switches can be implemented using p-type SET

transistors. That would lead to a SET-only implementation of an entire system. How-

ever, NMOS transistors can also be used for these switches. In contrast to VY -controlled

devices, these are driven by the global signals (template terms), and thus do not require

a SET implementation. However, it would inevitably increase the chip area and would

require a much larger amplitude of the corresponding signals. On the other hand, the

reset and the bias switches, though also driven by the global signals, cannot be re-

placed with NMOS devices for a practical reason. Namely, a long line (for connection

to the outside of the SET array) and a MOS switch as well introduce a relatively large

parasitic capacitance, the influence of which cannot be disregarded. When the MOS

switch is OFF, this large capacitance would determine the potential of the coupling ca-

pacitor terminal, and thus disable it from following the potential of the floating node.

As a result, the NMOS switch would be seen by the SET circuit as always conducting.
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Figure 7.18 Cell operating principle. Neighborhood outputs activate the coefficient circuits

causing the potential of the floating node to rise. For number of active coefficient circuits larger

than bias (set to 3.5 in this case), the floating node potential exceeds the comparator threshold of

VDD/2 and neuron output triggers.
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Figure 7.19 Cell output activation at bias programmed to a) 0.5, b) 1.5, c) 2.5, d) 3.5
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Figure 7.20 The output voltage and the supply current of the inverter at bias programmed to

a) 0.5, b) 1.5, c) 2.5, d) 3.5.
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Since the SIMON software [54] does not support MOS devices, the influence of these

parasitics was simulated with a model 1 pF capacitor. According to the simulation re-

sults, this effect is not an issue for the NMOS switches within the coefficient circuits

since they connect the synapse coupling capacitors to VDD.

Not many CNN designs suitable for implementation with SET technology have

been proposed so far. The most popular is the CNN cell designed by Gerousis and

Goodnick. However, it has multiple disadvantages as depicted in Section 7.4.4. The

SET realization of a CNN cell proposed in Section 7.5 overcomes some of these short-

comings. This design is probably the first programmable CNN implementation in SET

technology. The adopted binary programming scheme is fast and robust, and certainly

makes the cell one of the most versatile nanoimplementation of CNN. Most of the tem-

plates handling B/W images can be computed with the presented structure. However,

to take a full advantage of the applied programming scheme, the cell structure needs to

be extended. Namely, the transient mask is needed for computing local logic functions

as well as for fixed state map implementation. Additionally, local memories are re-

quired for the algorithmic evaluation of the more complex operations. After providing

the cell with these extensions, evaluation of all B/W operations would be possible. On

the implementation side, a coupling capacitor of 80 aF and junctions with 1 aF tunnel

capacitances can be fabricated with the desired accuracy. However, room tempera-

ture operation is not achieved. The proposed cell structure was partially inspired by

the SET implementation of the neural hardware presented in Section 7.4.3, which can

operate on binary images and implements adjustable analog weights. However, since

the process of the weight adjustment remains unspecified, the programming strategy

would need to be developed. Even if the weights were reduced to binary values, it is

not possible to apply the binary programming scheme to that structure. That is due to

the lack of ability to block the influence of a neighbor marked with “0” in the template

matrix. The synapse multiplier in the form of a SET inverter always contributes to the

adder (floating node). As an immediate solution, a tri-state buffer would be applicable,

but seems an unnecessarily large structure.
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Chapter 8

Other Prospective Nanodevices

and Architectures

Over recent years, many concepts of nanometer-scale devices have emerged and suit-

able architectures have been investigated. One of the most promising nanotechnologies

– single-electron tunneling technology – was described in Section 7.2. On the archi-

tecture side, Chapter 2 presented the paradigm of cellular neural/nonlinear network

(CNN), which is commonly believed to be among the most applicable architectures for

use with nanodevices. Partially similar strategies are utilized in the bio-inspired archi-

tectures e.g., the artificial neural networks (ANN) introduced in Section 7.3. However,

a broad spectrum of different approaches to information processing co-exist. In this

chapter, a selection of other interesting proposals are collected and briefly described

to give a broader perspective view on the research field of nanotechnology1. Although

most of these concepts have not yet been used in the CNN hardware realizations, they

offer attractive and unique features, which may be exploited in future CNN designs.

This chapter is organized into two sections – one focused on the device concepts,

and the other dedicated to alternative architectures.

8.1 Emerging Nanodevices

To overcome the obstacles of further miniaturization of FETs, a number of ideas for

nanometer-scale replacements have been suggested2. Usually, solid-state nanodevices

attempt to take an advantage of the effects that occur at such small sizes due to quantum

mechanics.

1Yet, the important scientific area of material development is entirely neglected in this chapter, as it goes

far beyond the scope of this thesis. Curious reader is directed to the ITRS Report [9] and references therein.
2Also, the CMOS technology diverges into many non-classical approaches (e.g., FinFET).
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“Island” is a region or layer different from the surrounding material that can be

composed of metal or semiconductor. A small island is usually the structural backbone

of solid state nanodevices. Proper sizing of the island in each dimension leads to a

distinctive behavior. In this way, a variety of devices can be obtained.

8.1.1 Quantum Dots

Quantum Dot (QD) is a component, in which the island is short in all three dimensions,

confining the electrons with zero classical degree of freedom. Electronic states are

quantized in all three dimensions, and the quantum energy levels for an electron are

widely spaced. This means that the number of electrons residing on the island is very

restricted, and the current flow through the island in any dimension is strictly defined

by externally supplied energy.

The QD device group obviously includes an individual dot, sometimes referred to

as an “artificial atom”, as well as coupled dots, also known as “QD molecule”, and a bit

more complex structure called “QD cell”, in which four or five dots constitute a single

binary device. The QD cell structure has led to a development of computing paradigm

called quantum cellular automata (QCA) to be described in Section 8.2.1.

Recently, an interesting self-assembly technique for fabricating uniform arrays of

individual QDs has led to a development of image processor [85], [86]. The fabrication

process consists of the following steps: evaporation of an aluminum layer on silicon

substrate, complete anodization to produce a nanoporous alumina film on the surface

of silicon, electrodeposition of a semiconductor within the pores, electrodeposition of a

metal above the semiconductor, and cotrolled etching of the alumina to expose some of

the metal dots to the surface. The pore diameter and the alumina thickness between the

neighboring pores depend on the acid used in anodization process. For the sulphuric

acid anodization, the pore diameter and the alumina barrier between pores are both

10 nm, while for the oxalic acid anodization, their sizes are 50 nm and 20 nm, respec-

tively. The simulations based on the experimentally extracted structure-parameters,

show that the device is able to perform operations like vertical or horizontal line de-

tection. However, these operations were obtained with a manual modification of the

interdot conductances. As proposed in [86], the modification could be realized on

chip by e.g., damaging horizontal or vertical row of alumina between the dots with a

scanning ion beam. However, that would lead to a fixed-function processor.

8.1.2 Resonant Tunneling Devices

Resonant tunneling diode (RTD) is a double-barrier quantum-well structure with di-

mensions of a few nanometers [87]. The device has two contacts (emitter and collec-

tor) made of a semiconductor with a small bandgap. Between these contacts are two
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quantum barriers (semiconductor with a large bandgap) separated by a quantum well

(small bandgap semiconductor) as shown in Figure 8.1. Since the well structure is

extremely narrow, it can contain only a single resonant energy level and quantum phe-

nomena like tunneling can occur. Electrons can travel from the emitter to the collector

only if their energy is in line with this resonant level. The most appealing features of

RTDs are the ultra-fast switching capabilities and the region of negative differential

resistance (NDR) in their I −V characteristics shown in Figure 8.1.

With the increase of voltage applied, the energy levels at the emitter and the col-

lector side are shifted upwards and downwards, respectively, as shown in Figure 8.2.

That shift enables more and more electrons to tunnel through the barriers. At certain

voltage value, the conduction band on the emitter side is in-line with the resonant en-

ergy level of the well and a current peak can be observed. Further voltage increase

pushes electrons past the resonant energy level attenuating the tunneling. This can be

observed as a drop in the current forming the valley. For higher voltages, more and

more electrons are able to flow over the top of the quantum barriers and a rise in the

I −V curve occurs.

Similar conducting properties can also be achieved through the adjustment of the

energy levels with a variable voltage applied to a gate, which controls the quantum

well potential. In this way, a resonant tunneling transistor (RTT) is obtained [88]-[90].
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The intrinsic very-high switching-speed and the NDR region in the I−V plot makes

the RTDs potentially attractive as high-speed switching devices. Two RTDs connected

in series have two stable operating points (and one unstable) as shown in Figure 8.3,

and can rapidly switch between the stable points with the aid of gate control. This prop-

erty has attracted research activities e.g., in the field of memory implementation [91]-

[93]. Unfortunately, the peak current of an RTD depends exponentially on the thickness

of the tunneling barrier, which is difficult to fabricate with high uniformity. Therefore,

to improve the device matching, the peak current should also be gate-controlled. Usu-

ally, it is obtained with a transistor integrated together with the series-connected RTDs

[94]. However, this approach has a few drawbacks. First, the resulting structure is

complex, and thus the dimension scaling is limited. Moreover, the inherent high speed

becomes upper-bounded by the RC delays related to charging and discharging of the

transistor gate capacitance. Additionally, a low ION/IOFF ratio impose a challenge as

it is orders of magnitude below the requirements for use in digital circuits.

These issues limit the potential use of RTDs to applications, in which a high speed

is required, while a low dynamic range is acceptable. Nonetheless, a number of at-

tempts to utilize RTDs in the CNN cell design can be found in the literature [95]-[99].

8.1.3 Carbon Nanotubes

An interesting class of nanodevices are the one-dimensional (1-D) structures. This

group includes carbon nanotubes and nanowires. Carbon nanotube (CNT) resembles

a graphite sheet rolled into a seamless and hollow cylinder with the diameter in the

range of a single to a few tens of nanometers made of carbon atoms only, as shown in

Figure 8.4. Nanotubes can be categorized into two groups [100]:

• single-wall nanotubes (SWCNT) made up of a single graphite sheet

• multi-wall nanotubes (MWCNT) consisting of multiple shells
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Figure 8.4 A single-wall carbon nanotube.

Such structures exhibit unique physical properties, which make them useful as

structures and composites in a wide range of scientific fields including electronics,

biotechnology and medicine among others. CNTs are lightweight, highly elastic and

are among the strongest fibers. They can exhibit metallic, semimetallic or semicon-

ducting properties depending on chirality and diameter. Electron transport along the

nanotubes reveals quantum properties. Moreover, an ability to self-heal monatomic de-

fects has been observed, and its underlying mechanisms and controllability are under

investigation [101], [102].

CNTs become attractive for applications like electron field emitters, probes in

scanning-type microscopes, supersensitive sensors, gas (e.g., hydrogen) storage or

electrode materials (see [103], [104] and references therein). 1-D devices have also

been applied to a FET structure, replacing the channel. Such a carbon nanotube FET

(CNTFET) can exhibit a superior characteristics [105]. Despite a significant progress

in the synthesis of nanotubes with controllable properties, existing challenges in their

assembly, processing and fabrication disable their high volume manufacturing.

8.1.4 Molecular Devices

The idea of molecular electronics explore the potential of individual molecules to per-

form logic operations by means of electron transport and controlled switching. A large

number of two- (wires [106], [107], resistive switches [108], diodes [109]) and three-
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terminal (transistor-like [110]) devices could be composed into molecular circuits [9],

[111]. The envisioned potential drives the research activity in this field. A wide range

of the electronic properties of organic molecules may be designed with perfect re-

producibility. Chemically induced self-assembly processes (e.g., [112]) could enable

fabrication of molecular circuits with very high device densities. Extremely low power

consumption may approach the thermodynamic limit, due to low voltages and small

number of electrons involved in molecular switching processes. However, challenges

that need to be faced include the realization of contacts to the molecular building

blocks, the interconnects and the interface to the outside world as well as the stabil-

ity of the materials through many cycles. Additionally, the circuit design will be very

difficult as the contacts and interconnections affect the functionality in the molecule.

8.1.5 Ferromagnetic Logic Devices

Ferromagnetic logic devices use the local orientation of a ferromagnetic material to

store the logic state. These devices exhibit the property of being non-volatile and can

operate at room temperatures. An example of such a device is the moving domain

wall (MDW) [113]. It relies on the segmentation of a ferromagnetic strip into local

nanodomains separated by domain walls. Different field vector orientations induce

local minima and maxima of the field at the domain walls, which can be used to store

bits of information. Logic gates can be formed by applying a rotating magnetic field

to structures patterned to perform certain Boolean operations. However, rather low

operation-speed is projected for this type of a device [114].

8.1.6 Spin Logic Devices

A great interest in logic implementations with devices that utilize the spin degree of

freedom originates from the success of spin-based transport in magnetic storage me-

dia. This class of emerging nanodevices includes (among others) different types of

spin transistors. For instance, a current modulator, proposed in [115], relies on spin-

orbit coupling in narrow-gap semiconductors with ferromagnetic contacts for injec-

tion and detection of specific spin orientations. Another interesting concept is the

spin-torque transistor, in which the drain-source current is modulated by the magne-

tization direction of a ferromagnetic base as it affects the spin accumulation in the

conducting channel [116]. A spin MOSFET, consisting of a MOS structure and half-

metallic-ferromagnets for drain and source contacts, combines the electrostatic and

spin-dependent control of the drain current [117]. It allows to achieve a large mag-

netocurrent ratio, high transconductance and amplification, small power-delay product

and OFF-current, while its simple structure would help to obtain high integration den-

sity and process yield. The operation of a spin-gain transistor [118] is not based on
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spin-dependent current filtering to increase the spin-polarization degree of the current.

Instead, the conditions for ferromagnetic transition are created by injecting enough

carriers and then switching a small spin-polarized control current to break the isotropy

and to induce spontaneous magnetization in the same direction as the control current.

In this way, the spin gain is achieved without an external magnetic field.

The spintronics is a vital scientific field and many attractive concepts have already

been proposed. However, no practical logic device has been demonstrated so far.

8.2 Novel Architectures

8.2.1 Quantum Cellular Automata

The concept of quantum cellular automata was proposed and developed by the group

from University of Notre Dame [119]. Though initially meant as a computing paradigm

with semiconductor quantum dots, the idea evolved into a broader architectural con-

cept, where devices can also be in the form of molecules [120] or nanomagnets [121].

A QCA consists of an array of quantum dot cells that are locally interconnected.

The connectivity is done by means of magnetic or electrostatic field couplings. Tra-

ditional QCA cell has a form of closely spaced quantum dots, where two electrons

occupy the antipodal sites on the cell diagonal in one of two possible configurations

as shown in Figure 8.5. Due to the quantum confinement, Coulomb interaction be-

tween electrons, quantum mechanics and discreteness of electronic charge, such a cell

is always in one of these two possible states. Electrostatic perturbation caused by

the surrounding environment (e.g., from neighboring cells) extorts a rapid nonlinear

switch between the states. That enables the encoding of information bit in the cell.

Since closely spaced components can interact with each other, a chain of cells can

form a wire to propagate the logic state, as seen in Figure 8.6. Figure 8.7 shows how

just a simple geometrical offset in such a chain can perform an inversion. The Boolean

logic operations can be computed with compact arrangements of these cells. For in-

stance, the majority gate takes the form of a cross (intersection of two lines), with the

arms working as three inputs and an output, while a center cell constitutes a computing

device, see Figure 8.8.

The architecture of QCA offers the potential for an extremely low-power operation

and ultra high density. Unfortunately, as the information is transferred from one stage

to another, signal energy is lost to the environment due to unavoidable dissipation

processes. For that reason, QCA circuits are so far impractical for implementation.

However, the investigated possibilities to clock the magnetic QCA with a globally

applied magnetic field and the molecular QCA with an electric field may result in

working solutions.
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Figure 8.5 Bit storage by means of electron positions within bistable quantum cell.

Figure 8.6 Chain of QD cells behaves as a wire.

Figure 8.7 Simple geometrical offset can be used to perform inversion.
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Figure 8.8 The truth table and QCA implementation of the majority gate.
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8.2.2 CMOS-Nanodevice Hybrids

Architectures incorporating both nanodevices and CMOS circuits are increasingly im-

portant. It is not only a need for an interface between the nanostructures and the out-

side world. Neither, should it be considered as just a step towards architectures based

entirely on nanodevices. As the research has progressed, it has become evident that

such hybrid structures have numerous advantages. Indeed, they may turn out to be a

necessity due to the shortcomings of nanodevice such as low gain (≈ 1) and small fan-

out, which may impose a limitation on system functionality. These obstacles could be

overcome by complementing nanocircuits with MOSFET or hybrid structures.

An example of a relatively well developed hybrid approach is the concept called

CMOL (as an abbreviation of CMOS/nanowire/MOLecular) [122], [123]. Its struc-

ture is schematically presented in Figure 8.9. It consists of an advanced CMOS cir-

cuitry, on top of which there are two orthogonal layers of parallel nanowires. At each

nanowire crosspoint a two-terminal molecular device e.g., a single-electron latching

switch [124], is self-assembled.

The main appeal of CMOL circuits is that they would not require any alignment be-

tween nanowire arrays or with the interface pins connecting to CMOS. That opens the

door for different fabrication techniques. For instance, nanoimprint and interference

patterning have a potential for scaling into a-few-nanometer range, bearing a promise

of an enormous device density. However, they come with poor alignment accuracy.

To be free of the alignment restrictions, CMOL requires only a special placement of
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Figure 8.10 Top view of the CMOL structure showing locations of the interface pins. For

clarity, only one CMOS cell is marked.

the pins. As seen in Figure 8.10 they are arranged in rectangular grid that is slightly

inclined versus the nanowires. In this way, each nanowire can be connected to an indi-

vidual CMOS pin 3. Since molecular devices could be formed by chemically-induced

self-assembly at the nanowire crosspoints the alignment would be obtained automati-

cally. Moreover, since the nanowires and the molecular devices are identical, a random

shift by an integer multiplication of nanowire spacing, Fnano, can fully be neglected.

Also, a shift by a fraction of nanowire spacing does not necessarily damage the con-

nections.

Possible applications of the CMOL concept are in line with those projected for

other nanotechnology structures. The targeted architectures need to be suitable for

grid implementations. The restrictions are imposed by the need of the inherent fault

3However, to obtain this when the distance between nanowires is many orders of magnitude smaller

than the size of the underlying CMOS logic cells, the system would require a large array of CMOS cells.

Therefore, the area of a CMOS cell becomes upper bounded, and thus the circuit complexity is limited.
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tolerance, which is required to cope with finite yield of molecular devices.

For instance, memories seem to be a natural CMOL applications, since the regular ma-

trix structure ease the implementation of defect tolerance [125], [126]. For the small

nanodevice defect ratio (below 10%), the CMOL memories with molecular devices as

storage cells and CMOS subsystem used for all other functions (coding, decoding. I/O,

etc.) would provide a higher effective bit density than the pure CMOS implementation.

With the improvement in fabrication yield, CMOL systems could reach terabit sizes in

a single chip with a reasonable die area due to the density limited only by the quantum

tunneling between the nanowires and yield in molecule production.

Another potential is in the artificial neural networks. A new family of bio-inspired

neuromorphic CMOL networks – Distributed Crosspoint Networks (abbreviated as

“CrossNets”) have been proposed [127]-[130]. Despite their hardware-induced limita-

tions, the CrossNets can perform a majority of operations typical for neural networks,

e.g., pattern classification. Reaching the cell density of the cerebral cortex ( 107 cells

per square centimeter) while operating at much higher speed would enable a large

group of new applications. Complex image classification, for instance, recognizing a

face of a person in a crowd – a task that mammal’s brain performs in tens of millisec-

onds – would only take a few microseconds. Such a great performance could naturally

be applied to security systems, production quality control, etc.
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Chapter 9

Conclusions and Future

Research

In this thesis, hardware implementations of binary cellular neural networks targeting

a high spatial resolution were investigated. Processing cells optimized for operations

on binary images were designed for CMOS, floating gate MOS and SET technology.

Since a high cell density was targeted, an effort was put to make the processing el-

ements compact and power-efficient, and thus to make large array implementations

feasible.

The research in this thesis was focused on two aspects. First, the programmability

needs of the binary CNN were examined. As images are binary and so is the cell state,

it seemed natural to investigate whether the template coefficients could be limited to

binary values as well. As a result, a binary programming scheme has been developed.

With the proposed binary programming scheme, coefficient circuits are very simple,

and thus the cell structure is compact. The template write time becomes very short

since the (re-)programming is done digitally. Moreover, these improvements come at

no penalty in processor versatility. All B/W operations can be performed with binary

templates as more complex tasks are performed algorithmically. This programming

scheme also proved to be applicable to structures designed for implementation with

SET devices. Most probably, this is the first such a complete and robust programming

scheme for architectures based on nanodevices.

The second aspect of this thesis was to develop architectures that utilize the bi-

nary programming scheme and are suitable for different technologies, as to demon-

strate their feasibility and possible performance. A hardware realization of a binary-

programmable CNN was designed for CMOS technology, fabricated and tested. Mea-

surements show that besides the limited programmability this very compact imple-
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mention can perform a wide variety of low-level image operations efficiently in terms

of both power consumption and speed of operation. A compact structure of pro-

grammable transmission gate proved useful in the implementation of a fixed state map

as well as in the evaluation of logic functions. The small cell dimensions and low

power consumption enable a very large array (even with 106 cells) to be implemented

on the same chip.

As a step towards nanoimplementations, a binary programmable CNN with cells

based on the neuron MOSFET structure was developed. The floating gate of a neuron

CMOS inverter is naturally suitable for realization of the voltage-mode weighted sum-

mation. The input signals connected via coupling capacitors participate in charge re-

distribution at the floating node. The resulting potential is detected and thresholded. In

this way, a high-gain output nonlinearity is achieved. Since capacitive interconnections

consume power only during the computation process, a low static power dissipation is

obtained. The implementation of coupling capacitors within a νMOS complementary

structure as well as transistors working as switches lead to a compact layout. Again,

the binary programming scheme was applied to make the processor versatile, and sim-

ulation results confirmed the proper network operation. This approach served as a basis

for the development of the effectively programmable CNN implementation based on

SET transistors.

The SET technology is among the most thoroughly investigated nanotechnologies.

Due to its scaling abilities far beyond CMOS projections and very high energy effi-

ciency, it offers a potential for building ultra dense systems operating at high speed

with extremely low power consumption. However, not many designs for SET technol-

ogy exist. A versatile design of binary CNN cell presented in this thesis is suitable for

either pure SET or a hybrid SET-FET implementation. Its accuracy requirements can

be achieved with current fabrication technologies and, with further downscaling, room

temperature operation can be obtained. This design is probably the first programmable

SET CNN and one of the most versatile CNN implementations with nanodevices.

The future work could be focused on the further improvement of the SET CNN

design. To take the full advantage of the binary programming scheme, the cell structure

should be completed with local RAM and transient mask. Also, a number of other

nanotechnology concepts are worth investigating as this research field is very vital and

no dominant approach for the post-CMOS era has been selected.
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Appendix A

Binary Template Library

A.1 B-Templates Performing Neighborhood Logic OR

Object Increase

increase = ϕ(AB∗ IN −0.5) (A.1)

AB = Bincrease =







1 1 1

1 1 1

1 1 1






(A.2)

Dilation

dilation = ϕ(AB∗ IN −0.5) (A.3)

where nonzero entries in AB = Bdilation determine structuring element of dilation.

Erosion

erosion = ϕ(AB∗ IN −0.5) (A.4)

where nonzero entries in AB = Berosion determine structuring element of erosion.

Peel

peel = ϕ(AB∗ IN −0.5) (A.5)

where nonzero entries in AB = Bpeel determine how the object should be peeled. For

instance:

Left Peeler

AB = Bpeelle f t =







0 0 0

1 1 0

0 0 0






(A.6)
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A.2 B-Templates Using Transient Mask

Point Removal

pointrem = Ye(AB, IN, IN, IN,0.5) (A.7)

AB = Bpointrem =







1 1 1

1 0 1

1 1 1






(A.8)

Point Extraction

pointextr = Ye(AB, IN, IN, IN,0.5) (A.9)

AB = Bpointextr =







1 1 1

1 0 1

1 1 1






(A.10)

Edge Detection

edge = Ye(AB, IN,0, IN,0.5) (A.11)

AB = Bedge =







1 1 1

1 0 1

1 1 1






(A.12)

Line Removal

linrem = IN ⊕Ye(AB, IN, IN, IN,0.5) (A.13)

where ⊕ denotes the XOR operator, border is white, and the locations of nonzero terms

in AB define the direction of lines to be removed. For instance:

Diagonal Line Removal

AB = Bdeldiag =







1 0 1

0 0 0

1 0 1






(A.14)

Vertical Line Removal

AB = Bdelvert =







0 1 0

0 0 0

0 1 0






(A.15)

Horizontal Line Removal

AB = Bdelhoriz =







0 0 0

1 0 1

0 0 0






(A.16)
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A.3 B-Templates Using Pattern Matching

General Pattern Matching

match = Y (AB(w), IN,0,ϕ(AB(b) ∗ IN −0.5),0.5) (A.17)

where the nonzero entries in AB(b) (AB(w)) detect black (white) pattern pixels.

Diagonal Detection

detdiag = match (A.18)

AB(b) = B
(b)
detdiag =







0 0 1

0 1 0

1 0 0







AB(w) = B
(w)
detdiag =







1 0 0

0 0 0

0 0 1







(A.19)

Right Edge Detection

rightedge = match (A.20)

AB(b) = B
(b)
rightedge =







0 0 0

1 1 0

0 0 0







AB(w) = B
(w)
rightedge =







0 0 0

0 0 1

0 0 0







(A.21)

Local Concave Place Detection

lcp = Ye(AB1, IN,0,match) (A.22)

AB(b) = B
(b)
lcp =







0 0 0

1 1 1

0 0 0







AB(w) = B
(w)
lcp =







0 0 0

0 0 0

0 1 0







AB1 = B1lcp =







0 0 0

0 0 0

1 0 1







(A.23)
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Skeleton NE

skeletonNE = IN ⊕match (A.24)

AB(b) = B
(b)
skeleton−NE =







0 0 0

1 1 0

0 1 0







AB(w) = B
(w)
skeleton−NE =







0 1 1

0 0 1

0 0 0







(A.25)

Skeleton N

skeletonN = IN ⊕Ye(AB2, IN,0,match) (A.26)

AB(b) = B
(b)
skeleton−N =







0 0 0

0 1 0

0 1 0







AB(w) = B
(w)
skeleton−N =







1 1 1

0 0 0

0 0 0







AB2 = B2skeleton−N =







0 0 0

0 0 0

1 0 1







(A.27)

A.4 B-Templates Using Threshold Logic

Junction Extraction

junction = Ye(AB, IN, IN, IN,2.5) (A.28)

AB = B junction =







1 1 1

1 0 1

1 1 1






(A.29)

Corner Detection

corner = Ye(AB, IN, IN, IN,3.5) (A.30)

AB = Bcorner =







1 1 1

1 0 1

1 1 1






(A.31)



A.5 A-Templates Computing with Propagating Wave 125

A.5 A-Templates Computing with Propagating Wave

Selected Object Extraction, aka Figure Reconstruction

f igrect+1 = Yt+1(AB, IN2, IN1,0.5) (A.32)

AB = A f igrec =







1 1 1

1 1 1

1 1 1






(A.33)

Hole Filler

hole f ilt+1 = Yt+1(AB,0, IN,0.5) (A.34)

AB = Ahole f il =







0 1 0

1 0 1

0 1 0






(A.35)

Concave Location Filler, aka Hollow

hollowt+1 = Yt+1(AB, IN, IN,3.5) (A.36)

AB = Ahollow =







1 1 1

1 0 1

1 1 1






(A.37)

Global Connectivity Detection

connectivityt+1 = IN1⊕Yt+1(AB, IN1⊕ IN2, IN1,0.5) (A.38)

AB = Aconnectivity =







1 1 1

1 1 1

1 1 1






(A.39)
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A.6 A-Templates with Positive and Negative Coefficients

Concentric Contour Detection

1st contour

{

B1 = ϕ(AB, IN,0.5)

M1 = IN ⊕B1

2nd and following contours











B2 = ϕ(AB,B1,0.5)

B3 = ϕ(AB,B2,0.5)

M1 = M1∨ (B2⊕B3)

(A.40)

AB = Bconccont =







0 1 0

1 0 1

0 1 0






(A.41)

Connected Component Detection, aka Horizontal Hole Detection (one iteration)

B1 = Ye(AB1, IN, IN, IN,0.5)

B2 = Ye(AB2,B1,B1,B1,0.5)

B3 = Ye(AB3,B1,B2,B2,0.5)

OUT = Ye(AB4,B1,B3,B3,0.5)

(A.42)

AB1 =







0 0 0

0 0 1

0 0 0







AB2 =







0 0 0

0 0 1

0 0 0







AB3 =







0 0 0

1 0 0

0 0 0







AB4 =







0 0 0

0 1 0

0 0 0







(A.43)
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