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Chapter 1

Introduction

1.1 Background

Mobile communication systems had gained high market penetration by the time of writ-

ing this thesis. Competition has forced the price of mobile communication down, thereby

forcing the system manufacturers to cut costs in order to gain higher profit margins. In

particular, mobile telephony has seen fierce competition; not only does this competition

put pressure on the prices of mobile phones and calls, but also on the prices of the hard-

ware used in the base stations. In addition to mobile telephony, the newest generations

of mobile communications also provide mobile internet services where the clients tend

to demand higher and higher bandwidths all the time. Thus the development is towards

reduced cost and higher bandwidths.

Also, the transition from older to newer generations sets demand for support of mul-

tiple standards as the generation shift is not instantaneous; also, integration of several

standards into a single chip involves higher volumes for the chip and thereby aids the

reduction of its unit cost. Thus the pressure is on to demand flexibility from the base sta-

tion to accommodate transmission of multiple standard communication signals and to be

able to service an increasing number of clients simultaneously. Moreover, the cost pres-

sure motivates a movement towards the digitalization and higher integration level of the

transmitters as the analogue parts tend to be more costly, less flexible and require more

tuning.

The switching-mode power amplifiers have theoretically superior efficiencies com-

pared to those of linear power amplifiers. Also, in practice, in many applications they

attain significantly higher efficiencies than linear power amplifiers.

Therefore, this thesis contributes to this digitalization effort by presenting research

on multicarrier, multimode digital modulators and digital quadrature modulators. At

the digital-analogue interface both Nyquist-rate D/A converters and oversampling ∆Σ-

modulation based D/A converters are researched. Finally switching-mode power amplifi-
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ers are studied in combination with ∆Σ-D/A converters.

1.2 Objectives of the work

The research described in this thesis focuses on the design of digital modulators based

on direct digital frequency synthesis, digital quadrature modulator based upconversion of

the digital baseband signal to IF, D/A conversion using a Nyquist-rate current-steering

D/A converter and ∆Σ-modulator-based D/A conversion at IF. Another objective was to

investigate the suitabilities of a 1-bit bandpass ∆Σ-modulator and a bandpass pulse-width

modulator to drive a Class-D power amplifier.

1.3 Contents of the thesis

The thesis is organised into two parts. In the first part, an overview of the design issues

related to the digital modulation, upconversion, D/A conversion and power amplification

in wireless communication base station transmitters is given to put into context and sum-

marize the technical work that has been carried out. First, Chapter 2 reviews transmitter

architectures for wireless communication base station applications. In Chapter 3, issues

related to the design of digital modulators for wireless communication base station trans-

mitter systems are discussed and CORDIC and LUT-based direct digital synthesizers are

reviewed. Chapter 4 summarizes different digital-analogue conversion methods for wire-

less communication base station transmitter systems, concentrating on current-steering

D/A converters and D/A converters utilising ∆Σ modulation. In Chapter 5, switching-

mode power amplifier topologies are briefly reviewed and the theory and fundamental

concepts behind Class-D power amplifiers are introduced. The second part of this thesis

is composed of the published papers.



Chapter 2

Transmitter architecture in wireless

communication base stations

Conventionally, the signal processing in wireless communication takes place in the digital

domain with signal frequencies significantly lower than the radio frequency (RF) that is

needed for transmission. Thus, in order to perform the transmission, an upconversion of

the baseband signal is needed. This upconversion can be accomplished in various man-

ners including analogue mixing, direct digital conversion and combined digital/analogue

upconversion.

2.1 Analogue Up-mixing

In a fully analogue upconversion the digital baseband signal is converted into an analogue

signal and then upconverted into a radio frequency signal in the analogue domain. The

upconversion chain can consist of one, two or more mixer stages.

2.1.1 Direct-Conversion Transmitters

If the transmitted carrier frequency equals the local oscillator frequency, the architec-

ture is called direct conversion. In this case, the modulation and upconversion coin-

cide [Razavi 98]. A block diagram of the architecture is shown in Figure 2.1. In this

architecture, the power amplifier may disturb the transmit local oscillator; this is because

the output of the power amplifier is a modulated high-power signal centred at the LO fre-

quency. Despite the existence of difference shielding techniques employed to isolate the

VCO, it is still difficult the avoid the problem completely [Razavi 98].
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BPFLO
+45o

-45o

I

Q

PA

Figure 2.1 Direct conversion transmitter

BPF BPFLO
+45o

-45o

LO

I

Q

PA

Figure 2.2 Two-step transmitter

2.1.2 Two-Step Transmitters

One approach to circumventing the LO pulling problem is to upconvert the baseband

signal in two or more steps so that the power amplifier output spectrum is far from the

frequency of the VCOs. For example, the architecture could look as in Figure 2.2, where

the baseband I and Q channels are quadrature modulated at a lower frequency ω1and the

result is upconverted to ω1 +ω2 by mixing and bandpass filtering. The first bandpass filter

suppresses the harmonics of the IF signal, whilst the second one removes the undesired

sideband around ω1−ω2 [Razavi 98].

2.2 Digital/Analogue

In digital/analogue upconversion, the signal is first upconverted digitally into an interme-

diate frequency (IF) signal using a digital quadrature modulator and then mixed up to the

radio frequency using analogue techniques. This decreases the need for analogue com-

ponents in the system. In addition, performing the quadrature modulation digitally yields

high precision and a perfect I/Q-channel matching. Figure 2.3 shows an example block
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BPF BPF

LO

PA
BPF DAC16Digital

Modulators

Figure 2.3 Block diagram of a digital/analogue upconversion chain

Vin

Main Amplifier

Amplitude
modulator

Envelope
detector

Limiter

VDD

Figure 2.4 EER system block diagram

diagram of the system.

2.3 Transmitter architectures utilising non-linear

power amplifiers

2.3.1 Envelope Elimination and Restoration

An envelope elimination and restoration (EER) architecture endeavours to achieve high

efficiency on non-constant envelope signals by feeding in the envelope of the transmitted

signal to a non-linear, i.e. Class-E [Funk 96, Saari 05], Class-D [Raab 94b, Raab 94a] or

Class-F [Weiss 01], power amplifier through its supply voltage, whilst the power amp-

lifier is driven with a phase modulated signal. The idea is based on the fact that any

narrow-band signal is equivalent to simultaneous amplitude and phase modulation of a

carrier [Weiss 01]. So, in this architecture, the signal is split into an amplitude modulated

(AM) and a phase modulated (PM) signal, which are then processed separately before

combining them at the non-linear power amplifier, as shown in Figure 2.4. The amplitude

and phase modulated signals can be generated with analogue circuitry or by digital signal

processing [Saari 05], in which case it can also be called polar modulation. Polar modula-

tion can also be used to create multimode operation in a transmitter [Heinbach 01]. This
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Vin

Main Amplifier

Amplitude
modulator

VDD
DSP

LO

Figure 2.5 EER with digital generation of the PM and AM signals

S(t)=2E(t)ejφ(t)

Component
separator

S2(t)=Emej(φ(t)-α(t))
G

G
S1(t)=Emej(φ(t)+α(t))

GS(t)

Figure 2.6 LINC amplifier system

kind of system is illustrated in Figure 2.5.

2.3.2 Linear Amplification with Nonlinear Components

Linear amplification with non-linear components (LINC), which is also known as Chireix

outphasing, is based on the idea of separating the signal to be amplified in two constant

amplitude signals, whose phases are modulated in such a way that their sum after ampli-

fication is the desired amplified signal. A block diagram of a LINC system is depicted in

Figure 2.6.

The incoming signal (S(t)), which may be both amplitude and phase modulated, can

be expressed as

S(t) = 2E(t)e jφ(t), (2.1)

where E(t) represents the envelope of the signal. If we denote the maximum value of E(t)
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Digital
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Figure 2.7 Direct Digital Conversion Architecture

as Em, then the signal S(t) can be separated into two constant envelope signals, S1(t) and

S2(t), as follows [Cox 74, Zhang 01].

S1(t) = Eme j(φ(t)+α(t))

S2(t) = Eme j(φ(t)−α(t))
(2.2)

where

α(t) = arccos

(

E(t)
Em

)

(2.3)

Both the constant envelope signals are then amplified with two nonlinear PAs with the

same gain G, which yields:

G(S1(t)+S2(t)) = GS(t). (2.4)

The resulting signal is a linearly amplified version of the incoming signal. The system

has potential for higher efficiency than a system utilising a linear PA, since it employs

high-efficiency non-linear amplifiers [Raab 85]. The system is vulnerable to the mis-

match either in the phases of the branches or in the gains of the amplifiers, which cause

distortion. In an endeavour to quit the phase mismatch problems, both analogue [Shi 00]

and digital [Zhang 01,Zhang 00,Gerhard 05] component separators have been developed.

2.4 Direct Digital Conversion

In direct digital conversion, the baseband signal is generated with a digital modulator us-

ing a Direct Digital Frequency Synthesizer (DDFS). Then it is upconverted with a digital

upmixer to radio frequency. The D/A conversion is performed at RF and the D/A con-

verter is followed by a power amplifier. However, a multi-bit D/A converter is susceptible

to glitches and spurious noise (as the output frequency increases), which is difficult to

remove by filtering. Moreover parts of the digital circuitry are processing RF frequency

signals, therefore their sampling frequency needs to be very high. This causes high power

dissipation. Figure 2.7 illustrates the architecture.
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Figure 2.8 Block diagram of a digital upconversion chain using a Delta-Sigma DAC [Ketola 04]

2.5 Delta-Sigma Direct Digital Conversion

A transmitter architecture based on Delta-Sigma Direct Digital Conversion is similar to

the aforementioned Direct Digital Conversion, but the multi-bit D/A converter is replaced

with a 1-bit ∆Σ D/A converter, which, due to its noise shaping, is suitable only for re-

latively narrowband signals. However, in many wireless communication standards, the

signal bands are relatively narrow compared to the RF carrier frequency and therefore the

narrowband nature of the ∆Σ D/A converter does not impede its application in them.

The 1-bit ∆Σ D/A converter overcomes some of the problems related to the multi-bit

D/A converter. Since the output of the 1-bit ∆Σ D/A only has two levels, any misplace-

ment of the levels results only in gain error or offset. Neither of those is of great import-

ance in many transmitter applications. The 1-bit ∆Σ D/A converter is an all-digital circuit,

which has several advantages over analogue signal processing, such as flexibility, noise

immunity, reliability and potential improvements in performance and power consump-

tion, because of the scaling of the technology. In addition, the design, synthesis, layout

and testing of digital systems can be highly automated [Lindeberg 05]. The combination

of a Direct Digital Frequency Synthesizer (DDFS) with a 1-bit ∆Σ-D/A converter is at-

tractive in digital transmitters, since it allows the power amplifier to be a switching-mode

power amplifier, which may thus attain a high efficiency [Norsworthy 97].

2.6 Direct Digital RF Modulation

Direct Digital RF Modulation (DDRM) architecture is depicted in Figure 2.9. It is built

around a Direct Digital RF Converter (DRFC) that combines the functionalities of a D/A

converter and mixer [Eloranta 05]. The DRFC is based on a conversion cell of a current-

steering D/A converter such that the current source and the current switches have been

replaced with a mixer structure. The output currents from the conversion cells are summed

at the output. The architecture is reminiscent of the Direct Conversion Transmitter of

Section 2.1.1, but uses fewer analogue circuit blocks.
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Figure 2.9 Direct Digital RF Modulator Architecture [Eloranta 05]

2.7 Transmitter architectures researched

The digital modulators presented in papers P1 and P2 have their output signals centered

between (11 and 16.5) and 19.2 MHz respectively. Therefore they are meant for the two-

step transmitter architecture presented in Subsection 2.1.2. The architecture-level novelty

of paper P1 is the multicarrier modulator that combines the carriers in the digital domain,

whilst paper P2 presents a novel multimode modulator with GSM, EDGE, and WCDMA

realised with the same modulator circuitry.

Paper P4 presents an upconverter for the Digital/Analogue architecture described in

Section 2.2. The concept would also be applicable for a direct digital conversion archi-

tecture (Section 2.4), either when the transmitted RF frequency is low enough or if the

digital circuits and D/A converter could be operated at a higher frequency.

The architecture-level novelty of the implementation is the multiplier-free digital quad-

rature modulation at a quarter or half of the sampling frequency. The circuit was one of the

first digital quadrature modulators operating at 500 MHz. In the state of the art found in

the literature the implementation of paper P4 is best compared with the hybrid CORDIC-

based implementations in [Wu 03] and [Caro 07] or the multiplier-free implementation

based on circular shift registers in [Lin 97].

Paper P5 presents a digital quadrature modulator with a 1-bit bandpass ∆Σ D/A con-

verter, which could be used as part of a Delta-Sigma direct digital conversion architecture

as described in Section 2.5. However, as in Paper P4, the circuit implemented did not

reach operation at a high enough RF frequency for GSM, EDGE, or WCDMA, although

the concept worked at a sampling frequency of 700 MHz and a signal frequency of 175

MHz in the VHF band.
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The novelty is the combination of a multiplier-free digital quadrature modulator with

a bandpass Delta-Sigma D/A converter. Therefore it is best compared to the same state

of the art as paper P4. A similar architecture with a multi-bit ∆Σ modulator is discussed

in [Neitola 01].

Paper P6 presents a DDFS combined with a tunable ∆Σ D/A converter capable of

phase, amplitude, and quadrature amplitude modulation, which could be used as part

of a transmitter architecture such as the ∆Σ direct digital conversion architecture. The

architecture is general-purpose in that it allows the IF to be selected freely within the

Nyquist range. In the implemented circuit the maximum output frequency was 100 MHz,

in the VHF band.

Papers P7-P9 present research on the switching mode power amplifier part of the

Delta-Sigma direct digital conversion architecture described in Section 2.5. The architec-

ture is best compared with those presented in the literature in [Jayaraman 98, Midya 02]

and [Larson 05]. The state of the art is extended by simulations and measurements on to-

pologies not found in prior art encountered in the literature. Experimental research on the

transformer coupled voltage mode Class-D topology with ∆Σ-modulated input is presen-

ted in paper P8 and research into the bandpass PWM-controlled Class-D power amplifier

presented in [Midya 02] is extended to measurements in paper P9.



Chapter 3

Digital modulator architectures for

wireless communication base station

transmitters

In this chapter, the most prominent methods of digital modulation based on direct digital

frequency synthesis are concisely reviewed. The perspective is that of a wireless com-

munication base station transmitter. The two most important direct digital frequency syn-

thesis methods are based on the use of a coordinate rotation digital computer (CORDIC)

or look-up tables (LUT).

A direct digital frequency synthesizer is composed of a phase accumulator followed

by a phase-to-amplitude converter, as illustrated in Figure 3.1.

3.1 Phase accumulator

An operational block diagram of phase accumulator is depicted in Figure 3.2. The phase

accumulator calculates the phase of the sine wave to be generated by adding a phase

increment to the phase in an accumulator each clock cycle. The rate of the overflows of

the accumulator gives the output frequency

phase
accumulator

phase to
amplitude
converter

WL D

Figure 3.1 Direct digital frequency synthesizer
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z-1
L

L

W
Fr

Figure 3.2 Phase accumulator

fout =
Fr

2L fclk (3.1)

where Fr is the phase increment (which is also called frequency control word), L the phase

accumulator word length and W the word length of the output of the phase accumulator,

which is usually truncated. Fr is an integer, hence the frequency resolution is obtained by

substituting Fr = 1:

∆ f =
fclk

2L (3.2)

The maximum output frequency is limited by the sampling theorem to fout = fclk/2.

Phase truncation to W -bits causes spurs in the output spectrum of the DDS. The effects

of the phase truncation have been analyzed in [Nicholas 87, Cheng 04]. Modified phase

accumulator structures that reduce the worst-case spur levels exist [Nicholas 87].

3.2 CORDIC

The coordinate rotation digital computer (CORDIC) algorithm was introduced in [Volder 59].

It is a simple and efficient algorithm used to calculate hyperbolic, trigonometric and linear

functions. CORDIC is based on the idea of decomposition of the desired rotation angle

into the weighted sum of a set of predefined elementary rotation angles with the purpose

of enabling the rotation without a multiplier, with shift and add operations [Hu 92b] and

small LUT [Walther 71]. Therefore, it is found in applications such as simple microcon-

trollers and FPGAs. The algorithm is suitable for pipelining.

The tasks in the CORDIC algorithm are formulated as rotations of a 2×1 vector. The

rotations can be performed in three different coordinate systems, i.e. hyperbolic, linear

and circular coordinate systems, and can be used for the calculation of hyperbolic and

trigonometric functions, amongst others.

There are two modes in which a CORDIC algorithm can be operated:

• Rotation mode [Valls 06, Timmermann 92], which has also been called vector ro-

tation mode, [Hu 92b] or forward rotation mode. The desired rotation angle θ is

given. The objective is to compute the final coordinate [x f y f ]
t [Hu 92b].

• Vectoring mode [Valls 06, Timmermann 92], which has also been called angle ac-

cumulation mode [Hu 92b] or backward rotation mode. The desired rotation angle
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θ is not given. The objective is to rotate the given initial vector [x(0) y(0)]t to the

x-axis so that the angle between them can be accrued [Hu 92b].

CORDIC in circular coordinate system

The circular variant is of interest in this chapter since it can be used for direct digital

frequency synthesis [Kang 06, Yang 03, Kang 02]. Therefore rest of the section concen-

trates on it. The rotation angle θ is decomposed into the weighted sum of the elementary

rotation angles as follows [Hu 92b].

θ =
N−1

∑
i=0

µiai (3.3)

where N is the number of elementary angles, µi ∈ −1,1 is the rotation sequence and

ai = arctan(2−i) [Wu 01].

The inputs to the algorithm are x0,y0,z0. The algorithm executes the following loop

from i = 0 through N.

(

xi+1

yi+1

)

=

(

1 −µi2−i

µi2−i 1

)(

xi

yi

)

= ki

(

cos(ai) µi sin(ai)

−µi sin(ai) cos(ai)

)(

xi

yi

)

i

zi+1 = zi−µiai

(3.4)

where µi =sign(zi) in rotation mode (in vectoring mode µi =−sign(xiyi)) and ai = arctan2−i,

i = 0,1,2, ...,N− 1 [Kang 06, Wu 01] and ki =
√

1+2−2i. The algorithm has a gain of

∏N−1
i=0 ki. In order to maintain the norm the same as that of the input vector, scaling is

needed:

(

x f

y f

)

= 1
∏N−1

i=0 ki

(

xN

yN

)

= 1
∏N−1

i=0

√
1+2−2i

(

xN

yN

)

(3.5)

where [x f y f ]
t is the final output vector and zN is the output phase [Wu 01]. When the gain

can be tolerated, the scaling can be omitted and [xN yN ]t and zN can be output instead.

In a hardware realisation of the CORDIC algorithm, the loop is replaced by consecutive

micro-rotation stages, each realising Equation (3.4). The quantization errors due to the

finite word lengths of xi,yi and zi and the number of iterations N determine the accuracy

of the algorithm; the effect of these parameters have been studied in [Kota 93, Hu 92a,

Vankka 00].

CORDIC can be used in polar-to-cartesian conversion [Gielis 91] for high-speed wave-

form synthesis. Here, its rotation mode is used in a circular coordinate system by setting

y0 = 0. CORDIC has also been used for cartesian-to-polar conversion, as in [Gerhard 05],

where it operates as a LINC digital component separator in a WCDMA transmitter. Here
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Figure 3.3 Rotation-mode CORDIC used for digital modulation [Valls 06]

the vectoring mode is employed in a circular coordinate system.

Rotation-mode CORDIC can be operated as a phase-to-amplitude converter of a direct

digital frequency synthesizer (DDFS) [Kang 02]. The use of CORDIC as part of a direct

digital synthesizer is explained in detail in [Valls 06]. A recent implementation of DDFS

using differential CORDIC is reported in [Kang 06].

The rotation-mode CORDIC has also been used to perform quadrature modulation;

e.g. in [Kosunen 01], it has been used in a QAM-modulator for a WCDMA base station

and in [Vankka 02a] for a multimode base station. In both, the quadrature modulation has

been accomplished by feeding the baseband I and Q data, as in Figure 3.3, and taking the

quadrature modulated signal output from XN .

Modified CORDIC algorithms

Latency time reduction and chip area savings have been sought in [Timmermann 89] by

use of a modified CORDIC algorithm that employs multiplication and division operations

in order to decrease the number of iterations. In [Wang 97], a hybrid CORDIC algorithm

for rotation mode that replaces the least significant rotation angles with radix-2 coeffi-

cients is introduced.

Angle recoding is a modified CORDIC algorithm for vector rotation that is based on

the idea of introducing a null rotation in the set of possible operations in the CORDIC

iteration stages, i.e. µi ∈ −1,0,1 in (3.4) [Hu 93, Wu 02]. This can be interpreted as

adding flexibility to the conventional CORDIC algorithm with an intention of making it

faster and more accurate. A similar approach is that of the modified vector rotational

(MVR) CORDIC [Wu 01]. In Extended Elementary Angle Set (EEAS)-based CORDIC

in addition to relaxed µi as above, the elementary angle set is extended [Wu 00].

A differential CORDIC algorithm utilizing redundant arithmetic [Dawid 96] has been

used in [Kang 06] to realise a digit-pipelined DDFS where the phase-accumulator has

been incorporated in the digit-level pipelining framework.

Hybrid LUT/CORDIC algorithms presented in [Janiszewski 01b,Janiszewski 01a,Jan-

iszewski 04, Janiszewski 02] that combine the speed of LUTs and precision of CORDIC
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have been developed for direct digital frequency synthesis applications, which are suitable

especially when quadrature modulation is not needed.

Fine/coarse coordinate rotation

In fine/coarse coordinate rotation, the rotation is decomposed in three parts as follows

[Song 04]:

θ =
π
2

κ+
π
16

γ+
π

128
η+δ (3.6)

The components are called quadrant, coarse and fine rotation ( π
128η+δ), respectively. κ,γ

and η are integers and γ,η ∈ [0,7]. The quadrant rotation only needs interchange and/or

negation operations. For the coarse rotation, the values of cos( π
16γ) and sin( π

16γ) are

stored in LUT and for the fine rotation the cos( π
128η+δ) and sin( π

128η+δ) are calculated

utilizing linear interpolation. The fine and coarse rotations are performed by complex

multipliers. The fine/coarse approach results in a LUT size that increases polynomially

with the resolution, whilst, in a pure LUT DDFS the dependence is exponential [Song 04].

This method has been used in [Torosyan 03, Song 04] for implementation of a Quadrat-

ure Direct Digital Synthesizer/Mixer with an output resolution of 13 and 15 bits and a

sampling frequency of 300 and 330 MHz, respectively.

3.3 Direct Digital Synthesizer based on Look up Tables

In Direct Digital Frequency Synthesizers (DDFS) based on Look-up Tables (LUTs) the

phase-to-amplitude converter of Figure 3.1 is realised with a random access memory

(RAM), often mostly a read-only memory (ROM), since, in most DDFSs found in the

literature, no remapping of the phase-to-amplitude characteristic have been needed as

in [Gotoh 94, Prasad 06].

3.3.1 Sine memory compression

The most elementary technique of sine memory compression is to utilise the quarter wave

symmetry of the sine function for memory compression and store only one quarter of the

full period of the sine function in the memory and generate the rest from it as presented

in Figure 3.4.

Further methods of compressing the quarter wave memory can be divided into three

categories, angular decomposition, amplitude compression and interpolation, which, in

turn, can be categorized by the order of the approximation polynomial.



16 Direct digital synthesis and modulation

2’s
Comple-
menter

1’s
Comple-
menter

Phase

2nd MSB

MSB

1/4 Sine
LUT

W W-2

D-1

D-1 DW-2

Figure 3.4 Sine memory compression by quarter wave symmetry

Coarse
ROM

ROM
Fine

a

b

a

c

a+b+c
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Compression by angular decomposition

The compression of quarter sine memory through angular decomposition is based on the

idea of splitting the phase into smaller fractions and using these fractions to address two

or more smaller LUTs, such that the total amount of LUT memory is decreased.

Sunderland architecture [Sunderland 84] (illustrated in Figure 3.5) is based on split-

ting the argument of sine function into three fractions: φ = α + β + γ, where the word

lengths of the terms are a, b and c, respectively. α, β and γ are such that [Sunder-

land 84, Goldberg 96].

α <
π
2

, β <
π
2

2−a , γ <
π
2

2−(a+b). (3.7)

Thus, using trigonometric identities, we have

sin(α+β+ γ) = sin(α+β)cos(γ)+ cos(α)cos(β)sin(γ)− sin(α)sin(β)sin(γ) (3.8)

This can be approximated as

sin(α+β+ γ)≈ sin(α+β)+ cos(α)sin(γ) (3.9)

The values of the first term of (3.9) are stored in the coarse ROM and the values of
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Figure 3.7 Amplitude compression circuit for memory compression in DDFS [Langlois 01]

the second term are stored in the fine ROM. A similar technique is presented in [Cur-

ticapean 01].

An improvement to the Sunderland method is to calculate the values of coarse and fine

ROM such that either the mean square error (MSE) or the maximum error is minimized

[Nicholas 88, Tang 02].

Amplitude compression

The amplitude compression techniques for sine memory exploit the redundancy between

the value of the phase angle and the corresponding sine amplitude [Langlois 01]. The

sine-phase difference algorithm is the simplest of these techniques. It approximates the

sine function as a straight line, as shown in Figure 3.6. Only the approximation error is

stored in a LUT. A generic block diagram of the amplitude compression method is shown

in Figure 3.7. The double trigonometric approximation architecture [Yamagishi 98] com-

bines the sine-phase difference algorithm with the subtraction of another triangular wave-

form, as shown in Figure 3.7. The implementation of this algorithm requires an additional

complementer as additional logic hardware. More sophisticated amplitude compression

methods have been presented in [Kim 03, Langlois 01, Yang 04], and [Sodagar 00]. The
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Figure 3.8 Linear interpolation [Langlois 03b]

latter approximates the sine function with a parabolic function, therefore the implementa-

tion requires a multiplier. Second-order polynomial approximation with fixed coefficients

utilizing canonic signed digit (CSD) hyperfolding has been presented in [Caro 04].

Linear interpolation

In a DDFS based on linear interpolation, the first quadrant of the sine function is divided

into segments that are approximated with a piecewise linear function f (x) in (3.10) [Lan-

glois 03a, Langlois 03b, Bellaouar 00]

f (x) = yk +mk(x− xk), for x ∈ [xk,xk+1), for all k ∈ Z, 0≤ k ≤ s−1,x0 = 0,xs = 1,

(3.10)

where s is the number of segments and mk and yk are the slope and initial amplitude of

each segment, respectively. The values of mk and yk are stored in LUTs. Figure 3.8

shows a block diagram of an implementation of a quadrant phase to amplitude converter

of a DDFS based on linear interpolation. It needs two smaller LUTs and a multiplier to

replace the 1/4 sine LUT of a pure LUT-based DDFS, as shown in Figure 3.4.

The dual slope approach [Strollo 03,Strollo 04] is a variation of the linear interpolation

concept in that, instead of one slope per segment it utilizes two slopes per segment. Linear

and nonlinear addressing schemes for the LUTs in a linear interpolation DDFS have been

studied and implemented in [Chimakurthy 06].

Second-order polynomial interpolation

In a DDFS based on second-order polynomial interpolation. the first quadrant of the

sine function is divided into segments that are approximated with a piecewise polynomial
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function f (x) of second order as follows:

f (x) = yk +mk(x− xk)− pk(x− xk)
2 (3.11)

where the interpolation coefficients: yk,mk,pk are stored in LUTs. The implementation

requires 2 multipliers. The compression method is also called parabolic interpolation

[Fanucci 01] or piecewise polynomial approximation [Caro 05].

Quasi-linear interpolation [Ashrafi 05] is a hybrid between linear and second-order

polynomial interpolation using parabolic interpolation for the more curved part and linear

interpolation for the more linear part of the quadrant.

Other variations of the concept involve multi-stage linear interpolation [Hikawa 04]

and piecewise parabolic interpolation using a Farrow structure [Eltawil 02b,Eltawil 02a].

Conclusion of compression methods

The sine memory compression methods trade computational complexity for memory. The

key is to find a balance between performance in terms of SFDR and area and power

consumption [Langlois 03a]. A study of this balance for an FPGA realisation is presented

in [Cardells-Tormo 03]. The different methods of memory compression can be combined

in order to find a balance for design as has been done in [Yang 04], which uses a quad-line

approximation method for amplitude compression and Sunderland architecture for angle

decomposition with fine and coarse ROMs and quantization and error ROM technique

for additional ROM compression [Yang 04]. Comparisons of the compression ratios,

SFDRs, memory sizes etc. of different compression methods have been reported in, for

example, [Vankka 00, Yang 04, Kim 03, Chimakurthy 06, Langlois 03a] and [Said 03].

Finite Word Length Effects in LUT based DDFSs

The phase-to-amplitude converter introduces two different types of errors to the signal:

the error due to memory compression nonlinearity and the error due to the amplitude

quantization of the sine samples [Nicholas 88]. The deterioration of the SFDR of the

signal caused by these errors has been studied in, for example, [Nicholas 88, Cheng 04,

Vankka 00].

3.4 Conclusion and implemented DDFSs

Direct Digital Frequency Synthesizers can be realised using a variety of methods and ar-

chitectures that can be divided into two categories, i.e. CORDIC based and LUT based.

The computational complexity of CORDIC involves higher circuit complexity compared

to a pure LUT-based DDFS with no computational complexity and high requirement of
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memory. Between these two extremes, there is a trade-off with multiple solutions of

CORDIC that utilize LUTs and LUT-based DDFSs that utilize adders and multipliers to

save memory. One prominent difference between CORDIC and LUT-based DDFS is,

however, found in their application in QAM modulation, where an LUT-based DDFS

requires 2 multipliers [Vankka 01] and complex QAM 4 multipliers [Valls 06], but no

multipliers are needed in CORDIC-based implementation [Valls 06]. However, CORDIC

requires higher datapath precision than LUT, in order to attain the same spectral pur-

ity [Song 04]. CORDIC and LUT-based DDFSs have been further compared in [Jan-

iszewski 02]. Table 3.1 compares various implemented DDFSs.

3.4.1 Implemented DDFSs

Papers P1 and P6 present LUT-based DDFS designs. The DDFS in paper P6 employs

second-order polynomial interpolation for sine memory compression, achieving an SFDR

of 87.09 dBc with an fclk of 200 MHz. The total ROM size was 1600 bits, resulting in a

high compression ratio of 123. The phase resolution (W) 14 and the output resolution (D)

of the DDFS was 12. The chip was fabricated on a CMOS technology of 0.13 µm with a

total chip area of 2.02 mm2.

The DDFS in paper P1 employs an angular decomposition method for sine memory

compression called the modified Nicholas architecture, attaining an SFDR of 87 dBc with

an fclk of 52 MHz. The phase resolution (W) was 14 and the output resolution (D) of the

DDFS was 12. The total ROM size was 3840 bits, resulting in a compression ratio of 51:1.

The chip was fabricated on a BiCMOS technology of 0.35 µm. The paper demonstrates

the use of LUT-based DDFS for a multicarrier modulator architecture.

Paper P2 presents a CORDIC-based DDFS design. The resolution of the CORDIC is

18 bits, attaining an SFDR of 90 dBc with an fclk of 76.8 MHz. The paper demonstrates

the use of CORDIC for the realisation of a multimode GSM/EDGE/WCDMA modulator.

The implementation was the first published multimode GSM/EDGE/WCDMA modulator

with an on-chip D/A converter.

Paper P1 introduces a novel digital power ramping and control unit based on a re-

cursive digital sinusoidal oscillator and an enhanced version with more configurability is

presented in paper P2. Conventionally, LUT- or FIR-based units were used.
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Table 3.1 Comparison of implemented DDFSs .
Ref. Type ROM comp. SFDR Area fclk resol. Tech com-

size ratio dBc mm2 MHz W,D µm ments

[Caro 05] Polyn. - - 84 0.05 526 15 0.25 IQ

Interp. 12

[Sunderland 84] Angular 3840 51.2 65 48 7.5 14 3.5 DAC

decomp. 12

[Langlois 03a] Linear 448 402:1 84 0.28 320 16 0.35

interp. 11

[Yang 04] Amplit. 368 200:1 55 1.47 800 32 0.35 DAC

compr. 9

[Caro 04] Amplit. 0 0 80 0.22 98 14 0.35 IQ

compr. 12

[Strollo 04] Linear - - 80 0.09 600 24 0.25 IQ

interp. 12

[Curticapean 01] Angular 576 455:1 96 0.23 100 16 0.35 IQ

decomp. 16 2 mults

[Tang 02] Angular 3840 51:1 83 2 200 14 0.35 IQ

decomp. 12 mixer

[Nicholas 91] Angular 3072 128:1 90 24 100 15 1.25

decomp. 12

[Chimakurthy 06] Interp. 1216 404:1 90 - 25 15 FPGA

15

[Song 04] CORDIC - - 100 0.51 330 18 0.25 IQ

fine/coarse 15 mixer

[Torosyan 03] CORDIC 442 - 90 0.36 300 15 0.25 IQ

fine/coarse 13 mixer

[Gielis 91] CORDIC - - 60 25 540 12 1 IQ

10 mixer

Paper P1 Angular 3840 51:1 87 52 14 0.35

decomp. 12

Paper P2 CORDIC 90 76.8 18 0.35 IQ

18

Paper P6 Interp. 1600 123:1 87 2.02 200 14 0.13

12
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Chapter 4

Digital/Analogue Conversion in base

station transmitters

As expressed in the chapter that discusses the transmitter and upconversion architectures,

the final output signal from the antenna is analogue, whilst, at baseband, digital signal

processing is utilised. Thus, conversion from digital to analogue is needed at some point

of the transmitter chain. There is a wide range of alternative D/A conversion architectures

available for this purpose, and they can be divided into three subcategories: Nyquist rate

D/A converters, oversampling D/A converters and undersampling D/A converters.

4.1 Performance metrics of D/A converters

The most important performance metrics for D/A converters in wireless communications

transmitters can be divided into two classes: static metrics and dynamic metrics. The

most important static metrics are differential nonlinearity (DNL) [Razavi 95] and integral

nonlinearity (INL) [Razavi 95].

The most important dynamic metrics are signal-to-noise ratio (SNR) [Andersson 05],

signal-to-noise-and-distortion ratio (SNDR) [Andersson 05], spurious-free dynamic range

(SFDR) [Andersson 05] , effective number of bits (ENOB) [Andersson 05] and multi-tone

power ratio (MTPR) [Andersson 05].

4.2 Nyquist rate D/A converters

A Nyquist rate D/A converter samples the input data with a rate that is slightly higher

than twice the bandwidth, as required by the sampling theorem [Shannon 49]. The

most important Nyquist rate D/A converter architectures are current-steering, charge-

redistribution, R-2R ladder and resistor-string D/A converters. Out of these only current-

steering has been found suitable for the transmitter applications.
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Figure 4.1 Current-steering D/A converter [Andersson 05]

4.2.1 Current-steering D/A converters

A current-steering D/A converter is based on switched current technique. Figure 4.1

depicts the structure of a differential current-steering D/A converter. It is composed of

weighted current sources, switches and two load resistors.

The weighted currents are summed in the outputs. Depending on the control bits

bl , the current Il is steered either in the positive or negative load resistor. So the output

currents are [Andersson 05]

I+ = ∑
l

blIl

I− = ∑
l

blIl.

The currents Il may or may not vary, depending on the weighting scheme employed. In

general, the weighting of the current sources can be expressed as follows

Il = wlIunit .

The most common current steering D/A converter architectures are binary, thermometer

(also called unary [van den Bosch 01a]) and segmented. In a binary weighting

wl = 2l,

whilst in a thermometer-coded architecture, the weights are

wl = 1.
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Segmented architecture is a hybrid of the above, i.e. some of the current sources are

binary weighted, while the others are thermometer-coded.

The binary weighted architecture is more vulnerable to glitches than the thermometer-

coded architecture, because a small change in the value of the input signal can trigger a

state transition in many (or all in the worst case) of the binary weighted bits. For example,

a transition from ’100000’ to ’011111’ can cause a glitch if the MSB transition is slower

than the LSB transitions [Kosunen 06]. In a segmented architecture, the glitches due to

the use of a binary weighted LSB end are small, therefore is common that the MSB bits

are thermometer coded and the LSB bits are binary weighted [Razavi 95].

Static performance limitations

Static non-linearities that deteriorate INL and DNL emanate from two categories of non-

idealities: random process variations and gradient process variations.

To enable the prediction of INL variation due to the random variation, the concept of

INL yield has been defined as the percentage of the functional D/A converters with an

INL specification of less than half an LSB [van den Bosch 01b]. This parameter has the

following relationship with the relative unit current source standard variation σ(I)/I and

DAC resolution N [van den Bosch 01b, van den Bosch 01a].

σ(I)
I

=
1

2C
√

2N
with C = inv_norm(0.5+

yield
2

) (4.1)

where inv_norm stands for inverse cumulative normal distribution. Based on (4.1) and the

relation between the size and matching of MOS transistors [Pelgrom 89], the dimensions

of the current sources can be calculated in the case of MOS current sources [van den

Bosch 01c]:

WL =
1

2
(σI

I

)2

[

A2
β +

4A2
V T

(VGS−VT )2

]

(4.2)

where Aβ and AV T are technological parameters and (VGS−VT ) is the gate overdrive

voltage of the current source transistors. This relationship between mismatch and area

imposes a minimum constraint on the area of the D/A converter, depending on the resol-

ution.

Gradient variations mainly emanate from the variation of the oxide thickness on the

wafer and die stress gradients. There are layout design techniques the purpose of which is

to mitigate the effects of gradient process variations that result in static nonlinearity. Two

categories of these techniques can be identified as heuristic [Bastos 98, Deveugele 04]

and analytic [van der Plas 99, Cong 00] methods that require a priori cognizance of the

gradients [Kosunen 06].

Loss of resolution emanating from matching errors such as gradient and random errors

can be compensated for using calibration techniques, two main categories of which can
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Vctrl+

Vctrl-

Figure 4.2 Switch control signal intersection point

be identified as [Kosunen 06] continuous [Groeneveld 89] and quantized [Manoli 89,

Cong 03, Schofield 03, Tiilikainen 01].

Another way to tackle the problem is to use dynamic element matching (DEM) to con-

vert spurious tones caused by matching errors into white or shaped noise [Andersson 05,

O’Sullivan 04].

Dynamic performance limitations

The dynamic performance of a current-steering D/A converter is principally limited by the

imperfect synchronization of the control signals of the switches, drain voltage variation

of the current-source transistors and feedthrough of the control signals to the output of the

switches [van den Bosch 01a].

These problems can be minimized by using differential signals and careful design of

the driving circuitry of the current switches. The switch control signal intersection point

(Figure 4.2) must be such that the switches are never simultaneously off; attention must

therefore be paid to the correct timing of the signals [van den Bosch 01a]. The feedthrough

problem can be decreased by lowering the switch driving signal voltage range [van den

Bosch 01a] or by using dummy switches [Teikari 02].

Time-interleaved current-steering structures

Time-interleaved current-steering D/A converter structures have been published where the

performance of the D/A converter is increased by multiplexing parallel time-interleaved

sub-D/A converters that are operated at the sampling rate divided by the number of sub-

DACs [Yang 01, Vankka 02b], as illustrated in Figure 4.3. The structure increases the

area of the DAC in proportion to the number of sub-DACs. At high frequencies, jitter can

adversely impact the performance of the converter [Yang 01].

Time-interleaved structures have also been applied to L-fold linear interpolation D/A

conversion [Zhou 03], where the time-interleaved structure is created by dividing the

main clock into sub-clocks using delay-elements, as shown in Figure 4.4. Using sub-

clocks, linear interpolation of the output samples is approximated by an L-fold linear

interpolation where the output rises to the next sample value in L steps, as illustrated in
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Figure 4.3 Time-interleaved DAC
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Figure 4.4 Time-interleaved L-fold interpolation current-steering structure

Figure 4.5, which compares the desired signal with the usual zero-order hold DAC output

signal, linear interpolation DAC output signal and L-fold linear interpolation DAC output

signal. The advantage of L-fold linear interpolation over a zero-order hold type DAC is

that its frequency response has the images attenuated approximately by the square of the

sinc function [Zhou 03], thus easing the requirements on the reconstruction filter.

4.2.2 Survey of published current-steering converters

This subsection summarizes some recent current-steering D/A converters that fit the field

of focus of this thesis as far as the resolution and sampling frequency are concerned, i.e.

a sampling frequency range from 100 MHz to 1 GHz and resolution from 10 to 16 bits.

Table 4.1 encapsulates the quoted resolution, sampling rate, die area, power dissipation

and SFDR of the published D/A converters.

4.2.3 Implemented D/A converter

The D/A converter presented in papers P2 and P3 represented the state of the art of

current-steering Nyquist rate D/A converters; we achieved an SFDR of 68 dB at a fre-

quency of 30 MHz and at a sampling frequency of 76.8 MHz, a resolution of 14 bits; the

die area was 3.45 mm2 . The power dissipation was 52 mW with a sampling frequency
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Zero-order hold

time
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Figure 4.5 Time domain DAC responses of zero-order-hold, linear interpolation and L-fold linear
interpolation [Zhou 03]

Table 4.1 Summary of published D/A converters
Publication resolution sampling rate die area power dissi- SFDR (dBc

bits (MHz) (mm2) pation (mW) @ MHz)

[van den Bosch 01a] 10 1000 0.35 110 61 @ 490
[van den Bosch 98] 12 200 140 65 @ 1

[Baek 03] 12 1000 950 72 @ 1.8
[Tesch 97] 14 100 16.7 650 87 @ 10

[Manganaro 04] 10 200 2.28 694 70 @ 34
[Ueno 05] 12 200 0.75 55 @ 60
[Albiol 03] 12 400 40 @ 53

[O’Sullivan 04] 12 320 0.44 82 60 @ 60
[Hwang 04] 10 500 45 65 @ 8

[Yoo 02] 10 300 1.56 84 59 @ 3
Paper P3 14 110 3.45 52 68 @ 30
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of 100 MHz. As can be seen from Table 4.1, the faster D/A converters generally have a

lower resolution than the one in papers P2 and P3.

A novelty of the D/A converter was integrating it on the same chip as a multi-mode

GSM/EDGE/WCDMA modulator. This provided a design challenge, as the digital part

would cause noise and disturbances. The permeation of these to the D/A converter was

impeded by carefully designing the layout and placing a deep-n-well under the D/A-

converter.

Segmented architecture was used for the current sources. The segmentation ratio was

optimized for area and SFDR, resulting in 4 MSBs thermometer-coded and 10 LSBs

binary-coded. A 4¡ LSB digital calibration system was designed to cancel the mismatch

between the differently sized MSB and LSB unit current sources.

Cascode transistors were used to increase the output impedance of the current cells.

Moreover, the effect of the cascode transistors in the output lines was studied experiment-

ally and was found to have a relatively small effect on SFDR.

The switch driver was designed for high dynamic performance. Here the amplitude

and timing of the switch control signal were optimized.

The D/A converter had separate supply voltages from the digital part in order to im-

pede crosstalk and the voltage supply lines were wide in order to decrease their resistance,

which could cause code-dependent fluctuation in the supply voltage and hence cause the

SFDR performance to deteriorate.

4.3 Oversampling D/A converters

An oversampling D/A converter employs interpolation to attain a higher oversampling

ratio (OSR).

OSR = fs/2B, (4.3)

where B is the bandwidth of the signal and fs is the sampling frequency. The use of

oversampling eases the requirements for the reconstruction filter.

This thesis concentrates on oversampling noise-shaping D/A converters that, in ad-

dition to the interpolation, utilize quantization and noise shaping. In particular, the fo-

cus lies on ∆Σ-D/A converters. The motivation for using a ∆Σ-D/A converter is to make

higher accuracy and linearity feasible than those achieved by Nyquist rate D/A converters.

By oversampling and noise shaping the need for expensive trimming or long conversion

time, typical of high-accuracy Nyquist rate converters, can be circumvented and robust

and simple analogue circuitry can be used.

The idea and purpose of quantization is to process input data such that a lower num-

ber of bits can be used in the presentation of the signal in the digital parts of the D/A

converter. This idea is used in conjunction with a noise-shaping technique that moves
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Figure 4.6 Block diagram of an oversampling interpolating DAC with noise-shaping

quantization noise arising from the lowering of the number of bits outside the signal

band, from there it is filtered out to form the final output of the D/A converter. Figure

4.6 depicts a generic block diagram of an oversampling interpolating D/A converter with

noise shaping. The input x is an N0-bit digital signal with a data rate fN ; the interpolation

filter (IF) changes the sample rate to RFN and suppresses the spectral replicas at fN ,2 fN ...,

(R− 1) fN [Norsworthy 97]. The N1-bit signal from the interpolation filter is fed to the

noise-shaping loop (NL) block (for instance a ∆Σ-modulator) that involves quantization

to a drastically smaller number of bits N2. The N2-bit signal is D/A converted and filtered

with an analogue post-filter (PF).

4.3.1 Interpolation

Common to all types of oversampling D/A converters is the presence of interpolation, i.e.

the process of adding samples. An interpolation by an integer factor of L means adding

L− 1 zeros after each sample and filtering out the appearing images from the spectrum

with an appropriate filter while increasing the sampling rate by a factor of L. Only together

with interpolation is it possible to decrease the number of bits by quantization without

losing resolution.

The interpolator can comprise one or more stages. A multi-stage interpolator is usu-

ally preferred to a single-stage interpolator in applications with high sampling rates, due

to the fact that the multi-stage interpolation enables the use of high-efficiency filter struc-

tures, such as half-band filters that are suitable for stages with interpolation ratios of 2,

ternary-encoded FIR filters and sincK filters. The two latter obviate the need of multipli-

ers [Norsworthy 97].

4.3.2 ∆Σ D/A converters

Quantizer

In a ∆Σ D/A converter, the number of bits used in the representation of the signal in the

internal digital parts is decreased by the quantizer. A ∆Σ D/A converter employing a

single-bit quantizer gives a 1-bit output, hence it only needs to be followed by a post-

filter. However, a ∆Σ D/A converter employing a multi-bit quantizer needs to be followed
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Figure 4.7 A first order ∆Σ-modulator

by another D/A converter with a number of bits equal to that of the quantizer.

Quantization is a highly non-linear operation, but a quantizer can be modelled by

linear model that comprises the addition of an error signal e(n).

y(n) = Gx(n)+ e(n), (4.4)

where x(n) is the incoming signal to the quantizer, G is the gain of the quantizer and

y(n) is the output [Norsworthy 97]. In a 1-bit or two-level quantizer, G is arbitrary and a

∆Σ-DAC with such a quantizer has zero INL and DNL [Andersson 05].

The addition of the error signal can be interpreted as the introduction of noise to the

signal by the quantizer. e(n) is fully dependent of the input, but under the condition

that the y changes from sample to sample sufficiently, to enable its position within the

quantization interval to be random, whilst not over-loading, it can be justified to assume

that e is white noise [Schreier 05].

Noise Shaping Loop

Since the error e(n) is only dependent of the input to the quantizer it is possible to design

a noise transfer function for the quantization noise such that it is attenuated inside the

signal band and amplified outside it. This is what is done in ∆Σ-D/A converters with a

∆Σ-modulator. Figure 4.7 shows a model of a first order ∆Σ-modulator, which consists of

an integrator, a quantizer and a feedback loop.

The operation of the ∆Σ-modulator can be described in z-domain as

Y (z) = z−1X(z)+(1− z−1)E(z) (4.5)

In the equation the noise transfer function (NTF) is (1− z−1) and the signal transfer

function (STF) is z−1. It can be seen that the NTF is a high pass function that indeed

attenuates the quantization noise at low frequencies and amplifies it at high frequencies

and that the signal transfer function is an all-pass function.
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Figure 4.8 Cascade of resonators with distributed feedback and input (CRFB) structure
[Schreier 05]

Various noise-shaping loop architectures can be, and have been, used in the imple-

mentation of ∆Σ D/A converters, such as single-stage loops, error-feedback structures

and cascade or multi-stage noise shaping (MASH) structures [Schreier 05].

Single-stage loops

Several different architectures for realizing the desired NTF using a single stage are avail-

able in the literature. Degrees of freedom in the design of the NTF are provided by the

number and location of poles and zeros. The number of poles defines the order of the

NTF and equals the number of zeros. The placement of the zeros can be optimized for the

NTF attenuation on the signal band [Schreier 05], whilst the placement of the poles can

be optimized for stability, taking account of the realizability considerations [Schreier 05].

Typical higher-order single-stage architectures are cascade of integrators feedback

form (CIFB), cascade of resonators feedback form (CRFB), cascade of integrators feed-

forward form (CIFF), cascade of resonators feedforward form (CRFF) [Schreier 05].

Design methodology for the implementation of these are available in literature such as

[Schreier 05].

Error feedback structure

The noise-shaping technique was first introduced with an error feedback structure in

[III 62]. Figure 4.9 shows a block diagram of the error feedback structure. Its opera-

tion can be characterized by Equation 4.6, where NTF is (1−He) and STF is 1. Similar

criteria can be used in the design of the NTF as above [Schreier 05].

Y (z) = X(z)+(1−He(z))E(z) (4.6)
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Figure 4.10 Noise-shaping loop with a cascade structure [Schreier 05]

Cascade structures

Multi-stage noise-shaping (MASH) architectures or cascade structures can circumvent

the problems with stability of higher-order loops and achieve high-order noise-shaping

by cascading separate noise-shaping loops of first or second order [Schreier 05]. Figure

4.10 shows a block diagram of a cascade of two noise-shaping loops. The D/A converter

can be placed either after the last adder, where it needs to be multi-bit, or separate D/A

converters can be used for each stage in which case single-bit D/A converters can be

employed in one [Choi 01] or more of the stages [Schreier 05].

4.3.3 Multi-bit quantization

If in Figure 4.10, we have n2 > 1, the noise-shaping loop with cascade structure involves

multi-bit quantization. In a similar fashion, other noise-shaping architectures can be mod-

ified to accommodate multi-bit quantizers, furthermore there are specific architectures that

only are feasible with multi-bit quantizers.

Noise-shaping loops involving multi-bit quantizers are more stable than their single-
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bit counterparts due to their increased linearity as the variation of the effective gain of the

quantizer varies less with the input signal [Schreier 05] enabling the use of more aggress-

ive NTF. Another advantage of using multi-bit quantization is the relaxed requirements of

analogue post filtering [Schreier 05] since the slewing and out-of-band noise of the D/A

converter are reduced [Schreier 05].

4.3.4 Problems

Idle tones

Single stage ∆Σ-modulator architectures have been found to be susceptible to idle tones

[Norsworthy 97]. The phenomenon plagues the first-order single-bit loops the most and,

to a less severe extent, higher-order and multi-bit and multistage architectures [Norsworthy 97].

Bandpass ∆Σ-modulators are also subject to this problem [de la Rosa 01]. In applic-

ations where idle tones are found to be a problem, dithering has been used to tackle

it [Norsworthy 97].

Stability

Instability in ∆Σ-modulators means the existence of large, but not necessarily unboun-

ded, states, leading to SNR that is degraded compared to that predicted by the linear

model; other typical phenomena exhibited by unstable ∆Σ-modulators are oscillation fre-

quencies at or near the signal band, producing long strings of ’1’s and ’0’s in lowpass

∆Σ-modulators [Norsworthy 97].

In general, ∆Σ-modulators are unstable if the input exceeds a certain level defined as

stable input range, over which it operates properly [Schreier 05].

For the first-order and, to some extent, for the second-order modulators there are the-

ories that accurately predict the stability of the modulator, e.g. the invariant set method

[Goodson 95, Norsworthy 97]. Moreover, the describing function method [Ardalan 87,

Norsworthy 97] can be used for higher order modulators, but it is an approximate method.

Lee’s criterion 4.7 provides a rule of thumb for predicting stability in single-bit higher or-

der modulators [Chao 90, Schreier 05].

max
ω

∣

∣H(e jω)
∣

∣< 1.5, (4.7)

where H(z) =NTF. However, this is neither a necessary nor sufficient condition for mod-

ulator stability. Computer simulations need to be used to ensure the stability of higher

order modulators until rigorous theoretical results appear.

For multi-bit loops, theoretical bounds for the stable input range can be found, due to

the fact that the quantizer gain only slightly varies with the input signal [Schreier 05].



4.3 Oversampling D/A converters 35

4.3.5 Bandpass and quadrature

Most of the literature on ∆Σ-modulation concentrates on low-pass ∆Σ-modulation, how-

ever, the noise-shaping capabilities can also be employed in bandpass cases. Band-

pass ∆Σ-modulation is achieved by, for example, applying z → −z2 transformation to

a low-pass prototype [Norsworthy 97], discrete-time low-pass-to-bandpass transforma-

tion [Norsworthy 97, Lindeberg 05] or by a generalized filter approximator/optimizer

[Norsworthy 97]. A bandpass ∆Σ-modulator has been used in conjunction with digital

quadrature modulation in [Sommarek 04] and [Neitola 01], similarly ∆Σ-noise-shaping

can form an integral part of the digital quadrature modulator [Barkin 04]. The idea

of using bandpass ∆Σ-modulation together with undersampling has been presented in

[Ketola 04] and [Fuji 04].

4.3.6 Post-filter for the out of band noise

The post-filter following the oversampling noise-shaping D/A converter is required to

remove all out-of-band portions of the signal of the internal D/A converter without intro-

ducing nonlinear distortion. The application may impose requirements on linearity of the

phase characteristics. [Schreier 05].

There are various filter architectures available for the realization of an analogue post-

filter [Schreier 05]. But the filtering posterior to the ∆Σ D/A conversion can also be

accomplished utilising an embedded semi-digital FIR reconstruction filter [Taleie 06,Bar-

kin 04].

In an architecture utilizing a bandpass or quadrature ∆Σ-modulation, the post-filter

needs to be a bandpass filter. In a wireless communication transmitter the specification

of the standard imposes requirements on the bandpass-filter through, for example, the

specification of the spectrum emission mask and ACLR [3GPP 00]. However, the post-

filter specifications also depend on the noise-transfer function, i.e., a wider NTF stop band

may widen the transition band of the post-filter.

4.3.7 Pulse-width modulation

In pulse-width modulation (PWM), the duty cycle of a square wave is modulated result-

ing in the variation of the average value of the waveform. When PWM is to be used for

D/A conversion, it needs to be generated digitally, imposing exacting requirements on

the sampling frequency to enable the D/A conversion to attain a high resolution [Sand-

ler 93]. This problem can be tackled by the use of quantization and noise-shaping such

as ∆Σ-modulation. A comprehensive overview of the use of PWM for D/A conversion

is provided in [Sandler 93]. The most common form of PWM uses two-level or binary

pulse, but also three-level or ternary pulses have been used [Rueger 04]. PWM is mostly
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used in audio D/A converters. However, as a method of D/A conversion for IF or RF,

it is less common, although it has been used together with class-S or class-E, class-F

or class-D RF power amplifiers to drive the power amplifier using an optical PWM sig-

nal [Paolella 05] and as part of an EER system with the PWM signal driving the envelope

amplifier [Raab 98] inter alia. Moreover, [Midya 02] introduces a method to produce a

RF modulated signal using digital PWM; however, the method is more computationally

intensive than ∆Σ-modulation and hardware implementations are scarce or non-existent in

the literature. Bandpass-PWM is introduced in [Rosnell 05] as a modulation method for

new transmitter architectures utilizing nonlinear power amplifiers and linearly modulated

signals.

4.3.8 Implemented ∆Σ D/A-converters

Paper P5 presents a digital quadrature modulator integrated on the same chip as a 1-bit

bandpass ∆Σ D/A converter with a centre frequency of 175 MHz and a sampling frequency

of 700 MHz, achieving ACLR1 and ACLR2 of 50.26 and 40.27 dB for WCDMA. This

high-frequency performance is remarkable in comparison to the prior art encountered in

the literature.

The bandpass ∆Σ modulator topology was chosen for the sake of maximum speed.

Since the notch of the noise transfer function is at a quarter of the sampling frequency,

it was possible to construct a fast architecture by z → −z2 conversion from a low pass

topology. Additionally, the coefficients were chosen to be realizable with shift opera-

tions. Because of the two aforementioned design selections, it was possible to employ a

pipelining scheme that utilizes the inherent delay elements of the bandpass ∆Σ modulator,

resulting in a critical path of two full adders and one inverter.

Paper P6 presents a tunable ∆Σ D/A converter integrated on the same chip with a DDS.

The ∆Σ D/A converter is tunable within the whole Nyquist band and it was operated with

a sampling frequency of 200 MHz. The in-band is 2.5 MHz wide, with an SFDR of 83

dBc. In prior art the implemented ∆Σ D/A converters can best be compared with similar

systems in [Neitola 01] or [Barkin 04].

The wideband transmit ∆Σ D/A converter [Neitola 01] was implemented on an FPGA

and involved a 5-bit 12th-order bandpass ∆Σ modulator with a centre frequency of 15.4

MHz and a sampling frequency of 61.4 MHz, achieving ACPR1 and ACPR2 of 69.8 and

70.5 dBc for WCDMA.

The bandpass cascaded ∆Σ D/A converter in [Barkin 04] was integrated in a 0.25um

CMOS technology, providing 83 dB of dynamic range for a 6.25-MHz signal band centered

at 50 MHz with a sampling rate of 200 MHz, and suppresses out-of-band quantization

noise by 38 dB.

A novelty in the ∆Σ D/A converter presented in paper P6 is the tunability of the ∆Σ



4.4 Summary 37

modulator. Tunable ∆Σ modulators are found in A/D converters and in receivers for ex-

ample in [Yang 94,Shoaei 97,Cosand 04]. The ∆Σ modulator was designed using the dis-

crete time low-pass-to-bandpass transform and the tunability was implemented by means

of a multiplier inside the loop filter with a tunable coefficient.

In both papers P5 and P6, 1-bit quantization was chosen in order to benefit from the

linearity features of a 1-bit D/A converter. The 1-bit D/A converter implemented is a

current-steered differential pair with one current source. The differential structure makes

the output rise and fall waveforms symmetrical. In order to ensure that the two switches

of the differential pair are never off at the same time, a differential driver circuitry was

designed to optimize the crossing point and amplitude of the control signals.

4.4 Summary

D/A conversion in wireless communication is usually accomplished using current-steering

D/A converters. Both Nyquist-rate and oversampling D/A converters are applicable; how-

ever, their different characteristics lead to them possessing relative advantages and disad-

vantages in different transmitter architectures. Nyquist-rate current-steering D/A convert-

ers are common in transmitter architectures with a linear power amplifier, whilst in trans-

mitter architectures, utilizing non-linear power amplifier oversampling current-steering

D/A converters such as ∆Σ-DACs have been proposed and PWM has been used in some

of these architectures such as EER architectures for the conversion of the envelope signal.
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Chapter 5

Switching-mode power amplifiers

The idea of the switching-mode power amplifiers is to attain higher efficiency than in

linear power amplifiers at the expense of linearity by using the transistors as switches.

Switching-mode power amplifier classes include D, E and S classes, of which class-D

will be reviewed in more detail in the section dedicated to it. Whilst class-F is not a

switching-mode by the strictest definitions, it is also briefly reviewed.

5.1 Class-E power amplifier

A Class-E power amplifier consists of a single transistor operating as a switch, an RF

choke, a parallel capacitor Cp, a resonant circuit and a load resistance, as depicted in Fig-

ure 5.1 [Krauss 80]. The parallel capacitance consists of the parasitic capacitance between

the drain and the source of the switch transistor and an additional parallel capacitor, whose

purpose is to improve the performance.

The transistor is switched on and off at the signal frequency and the resonant circuit

between the load and the transistor only permits the signal frequency to pass through to

the load, not its harmonics that form a rectangular voltage waveform at the drain of the

transistor. An ideal Class-E power amplifier has an efficiency of 100%.

Class-E also endeavours to attain high efficiency using a method called soft switch-

ing, which involves a load network that is designed in such a way that, 1) the voltage

across the switch is minimised when a current flows through, 2) the current through the

switch is minimised when there is a voltage across, 3) the switching time is minimised,

4) there is delay in the rise of the voltage of the switch at turn-off so that the current has

decreased to practically zero by the time the voltage increases (this can be accomplished

by dimensioning the Cds capacitance appropriately), 5) the voltage of the switch returns

to zero before the current starts flowing at turn-on, 6) and the slope of the voltage is zero

at switch turn-on, allowing some error in the timing of the turn-on without substantial loss

of efficiency 7) the voltage and current waveforms of the switch have flat tops [Sokal 75].
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Figure 5.1 Class-E amplifier
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Figure 5.2 A simple class-D amplifier

5.2 Class-D power amplifier

A Class-D power amplifier is composed of two switches and a tuned output filter. The

switches either switch currents in which case the configuration is called a current-mode

class-D (CMCD) power amplifier, or voltage, in which case it is called a voltage-mode

class-D (VMCD) power amplifier. A voltage-mode amplifier has a constant supply voltage,

whereas a current-mode amplifier has a constant current flowing into the circuit. Usually

the switches are realised with transistors.

Figure 5.2 shows a simple schematic of a class-D power amplifier. The input sig-

nal of a class-D power amplifier can be a pulse-width modulated (PWM) signal or a ∆Σ
modulated signal or a delta-modulated signal [Dallago 97]. Some topologies need a dif-

ferential input in order to enable the use of two identical transistors in an endeavour to

achieve better symmetry. The inverted signal can, for instance, be achieved using a trans-

former [Kobayashi 01, Krauss 80] for the input signal or it can be generated digitally.
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Figure 5.3 Complementary voltage-mode class-D power amplifier

5.2.1 Complementary voltage-mode configuration

In the complementary configuration shown in Figure 5.3, the switches are driven in a

complementary fashion, so that one is on when the other is off. If even the transistors

are complementary, then that is accomplished with the same driving signal, otherwise a

differential driving signal is needed.

If we assume that the two transistors work as ideal switches, we can derive the equa-

tions that describe the operation of the PA in the ideal case as follows: when Vin is low,

Q1 is on and Q2 is off. The potential Vct between the two transistors is Vdd . On the other

hand, when Vin is high, Q2 is on and Q1 is off and Vct is zero. Thus the signal at Vct is a

square wave varying between zero and Vdd . Therefore its Fourier-series representation is

Vct =
1
2

Vdd +
2Vdd

π
(sin(2π f t)+

1
3

sin(6π f t)+ ...). (5.1)

This waveform is then applied to a bandpass filter, whose centre frequency is tuned to

the signal frequency f . Therefore the output voltage Vout is a sine wave with a maximum

value [Krauss 80]

Vout,max =
2Vdd

π
. (5.2)

The output current Iout through the load is a sine wave at the fundamental frequency f :

Iout =
2Vdd

πRload
sin(2π f t) (5.3)

This current flows alternately through transistors Q1 and Q2 and the currents through

them are half-wave rectified sine waves. The average value Idc of the half-wave rectified

current pulled through Q1 is
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Figure 5.4 A current-mode class-D amplifier

Idc =
Iout,max

π
=

2Vdd

π2Rload
. (5.4)

The input power is determined by (5.5). The output power Pout can be calculated by

multiplying the maximum value of the output voltage from (5.2) by the maximum value

of the output current from (5.3) and dividing the product by two (the effective value of a

sine wave). The result shows that output power equals the input power and the efficiency

really equals 100% in the ideal case [Krauss 80].

Pin = Pout = IdcVdd =
2V 2

dd

π2Rload
(5.5)

The voltage-mode configuration may need to provide a path for reverse currents to

protect the transistors if they cannot tolerate reverse currents; in this case the path can be

provided by diodes in parallel with the transistors.

5.2.2 Current-mode class-D amplifier

A current-mode class-D amplifier, shown in Figure 5.4, has a constant current Idc flowing

to the circuit through two current chokes. When Q1 is off and Q2 on, half of the current

Idc goes through the filter circuit to Q2. The other half flows directly to Q2 through the

other choke. The current I1 flowing to the load network is a square wave with amplitude

Idc/2.

I1 =
4Idc

2π

(

sin(ωt)+
1
3

sin(3ωt)+ ...

)

(5.6)

Only the first harmonic flows through the primary winding of the balun, whilst other

frequency components pass through the parallel LC circuit. It is then transformed to the
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Table 5.1 Summary of published Class-D power amplifiers
Publication technology signal η fclk Pout topology

(MHz) (MHz) (W)

[Iwamoto 00] discrete CMOS 10 33 40 0.4 VM
[Kobayashi 01] discrete GaAsFET 900 75.6 0.73 CM

[El-Hamamsy 94] discrete MOSFET 13.56 90 - 300
[Kim 05] discrete LDMOS FET 1800 63 - 50 TC-CM
[Raab 03] discrete MOSFET 21 70 - 100 TC-VM
[Hung 05] integrated GaAs HBT 700 78.5 - 0.89 CM

[Koizumi 94] discrete 1 96 - 1 VM
[Varona 03] CMOS (0.18 µm) audio 76 5.6 7.5 m

[Lee 00] CMOS (0.65µm) audio 90 - 2 VM

secondary winding, where it flows through the load causing output voltage

Vout = RloadIout =
2IdcRload

π
m
n

sin(ωt). (5.7)

The voltage Vd over the primary winding is a sine wave with peak value m/nVout,max.

Since one of the transistors is always on, one extreme of the primary winding is always at

zero potential and the voltage over one transistor is a half-wave rectified sine wave whose

DC-component is Vdd . Since we know by analogy from (5.4) that the maximum value of

Vd is πVdd , the value of Idc can be derived from (5.7).

Idc = (
n
m

)2 π2Vdd

2Rload
. (5.8)

The input power Pin of the current-mode class-D amplifier is given in (5.9). Since the

input power is Idc multiplied by Vdd , which equals the output power, the efficiency of the

amplifier is 100%.

Pin = Pout = VddIdc = (
n
m

)2 π2V 2
dd

2Rload
(5.9)

5.2.3 Survey of published class-D power amplifiers

This subsection summarizes some recent class-D power amplifiers. The focus lies on

implementations at higher frequencies but two audio class-D power amplifiers have been

included for comparison. Table 5.1 encapsulates the quoted signal frequency, drain ef-

ficiency, output power, topology, technology and sampling rate in cases where relevant,

of the published class-D power amplifiers. TC stands for transformer-coupled, CM for

current mode and VM for voltage mode.
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Figure 5.5 Class-S power amplifier

5.3 Class-S power amplifier

A Class-S power amplifier (Figure 5.5) is otherwise similar to Class-D except that instead

of a bandpass filter (or a series resonator) it has a lowpass filter. Therefore, it only permits

the slowly varying DC or average voltage component to pass to the load. Hence it is not,

as such, of much interest in most transmitter architectures; instead it is more frequently

found employed in audio applications. However, in EER transmitters, a Class-S power

amplifier can be used to amplify the envelope signal, fed into a Class-E [Funk 96,Saari 05]

or Class-D [Raab 94b, Raab 94a] or Class-F [Weiss 01] power amplifier as its supply

voltage. Because of the envelope amplification it is called a Class-S amplitude modulator

in this application, although the circuit topology may be the same as in a Class-S amplifier.

5.4 Class-F power amplifier

The main characteristics of a Class-F amplifier is that its load network has resonances at

one or more frequencies in addition to the carrier frequency, whilst the transistor operates

primarily as a current source [Krauss 80]. Figure 5.6 shows an example Class-F amplifier

with a load network containing a third harmonic resonator.

The resonances in the load network produce either zero or infinite impedance at the

harmonic frequencies, in such a way that either voltage or current, but not both, are present

at any given harmonic frequency. In a typical Class-F power amplifier, the voltage wave-

form contains the odd harmonics, whilst the current waveform contains the even harmon-

ics [Raab 97]. The waveforms can then be formulated as follows:
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Figure 5.6 Class-F

vD(ωt) = VDD +Vom sinωt +V3m sin3ωt +V5m sin5ωt + ...

iD(ωt) = Idc− Iom sinωt− I2m cos2ωt− I4m cos4ωt− ...
(5.10)

where ω is the fundamental frequency [Raab 97].

An alternative configuration where the voltage waveform contains the even harmonics

and the current waveform contains the odd harmonics is called an inverse Class-F power

amplifier [Wei 00].

As a result of the non-existence of the same harmonic components in both the current

and voltage waveforms, power is only generated at the fundamental frequency [Krauss 80].

The more the harmonics are contained in this way in the waveforms, the better the effi-

ciency that can be achieved. With an infinite number of resonators, the ideal efficiency

is 100% as with class-D and class-E amplifiers. The effect of the finity of the number

of resonators on the theoretical maximum efficiency has been studied in [Raab 01]. A

typical Class-F power amplifier with resonators up to the third harmonic has a theoretical

maximum efficiency of 81.6% [Raab 01].

5.5 Losses in non-linear amplifier circuits

In fact lossless switches are not available, so power losses and hence efficiency deteriora-

tion due to, for example, saturation, parasitic effects, drain capacitances, finite switching

time and resistances cannot be circumvented [Raab 02]. Power is lost in non-linear power

amplifier circuits with the following principal mechanisms: conduction loss, turn-on and

turn-off switching losses, and gate drive loss [Jayaraman 98, El-Hamamsy 94]. Also any

circuitry driving the amplifier dissipate power.

Conduction loss occurs in the resistive impedances of the circuit, including all para-
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sitic resistances in passive elements such as the output filter and in the resistances associ-

ated with the transistors and in diodes associated with their on voltage.

One of the most important of these conductive losses is the one occurring in the tran-

sistors due to their on-resistance which manifests its existence by a voltage drop VSAT .

Then the power lost in the transistor is

PSAT = IdcVSAT (5.11)

where Idc is the DC current through the transistor. This is the main source of loss in

class-E, class-F and inverse class-F power amplifiers with inverse class-F attaining higher

efficiency because on-resistance causes smaller losses in them [Woo 06].

Conductive loss is dependent on frequency only through skin effect, which causes

only a small portion (1/e part) of the current to flow deeper than the skin depth δs (5.12).

δs =
1√

µ0σπ f
, (5.12)

where µ0 is the permeability in vacuum, σ the conductivity of the material and f the

frequency. At low frequencies, loss due to the skin effect is relatively small if wide and

flat connectors are used [El-Hamamsy 94], but at tens of megahertz or higher, skin effect

cannot be fully ignored, except in the transistors where in the GHz range the skin effect

has a minimal effect.

Turn-on loss occurs when a switch turns on. During transistor turn-on and turn-off

there is always a period of time when neither the drain voltage Vd nor the drain current Id

are zero. During this crossover period power equal to Vd ∗ Id is lost at any given moment.

The value of power lost is proportional to the length of this period.

Another loss mechanism during the switching is the charging and discharging of the

output capacitance of the switches. If FET transistors are used, output capacitance is the

drain capacitance Cd . The drain capacitance is charged to rail voltage Vdd every time

the transistor turns off and then discharged when the transistor is turned on. Each cycle

energy Ed is lost [El-Hamamsy 94]. This causes power loss Pd at switching frequency fsw

in a transistor.

Pd = Ed fsw =
1
2

CdV 2
dd fsw (5.13)

Capacitive power is lost in every transistor placed between the supply voltage and ground.

In voltage-mode class-D amplifiers, the drain capacitance can become a dominant loss

mechanism and hence limit its use at high frequencies, class-E, however, endeavours to

minimise this loss using soft switching, i.e. it allows the drain capacitance to discharge to

the load before the switch turns on.

Inductance Ld in the drain causes power losses when the switch turns off. At the
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Figure 5.7 Zero current switching

moment of turn-off, current Id flows through the transistor and inductive energy EL is

stored to the parasitic inductances. This energy is then released when the current suddenly

stops. EL is lost every cycle, but only when the switch turns off. Power PL is lost at

switching frequency fsw in every transistor connected to ground [El-Hamamsy 94].

PL = EL fsw =
1
2

LdI2
d fsw (5.14)

This loss can be minimised by employing zero-current-switching (ZCS), where the cur-

rent is always zero when the switch turns on or off. The idea is illustrated in Figure 5.7.

In Class-E, ZCS is achieved by a proper design of the load network.

Losses also appear at any capacitive gate during switching. The gate capacitance

charges and discharges as the switch turns on and off. At small frequencies, the loss is

very small, but as the frequency grows, gate drive loss cannot be ignored anymore. The

gate can be modelled as a series RC circuit consisting of a gate resistance Rg and a gate

capacitance Cg [El-Hamamsy 94]. Gate drive loss depends on the drive signal and is thus

different with a sine wave from with a square wave. If the gate is driven with a square

wave, the current to the gate is a pulse whenever the gate voltage changes state. As the

voltage at the gate rises to its maximum (Vgs), charge Q is stored in the gate capacitance.

As the gate is charged and discharged resistively, the energy Eg is lost every time the gate

turns on and off. Total power loss Pgs at the gate with a square wave signal frequency f is

then

Pgs = 2Eg f = VgsQ f . (5.15)

When a sinusoidal gate drive is used, current Ig to the gate is sinusoidal. Power loss Pg,sin

at the gate drive at the frequency f is then

Pg,sin =
1
2

I2
g R =

1
2
(2π f Q)2R, (5.16)

where R is the sum of gate resistance and drive circuit resistance [El-Hamamsy 94].

Turn-on and turn-off switching losses are clearly dominant loss mechanisms in mod-

ern Class-D amplifiers operating at MHz and GHz range. Capacitive loss becomes the

dominant loss mechanism when switching frequencies rise to hundreds of MHz and the
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Figure 5.8 Switching-mode power amplifier driven by an oversampling noise-shaping D/A con-
verter

significance of inductive loss gets smaller [Krauss 80]. In order to reduce the capacitive

loss, the voltage across the switch should be zero when it turns on or off. This is called

zero-voltage-switching (ZVS) and can be achieved with a current-mode class-D amplifier,

if the switching frequency is the same as the signal frequency [Kobayashi 01], by includ-

ing the drain capacitance in the filter as a parallel capacitance. Then voltage over a closed

switch is zero due to the filter resonance.

For a voltage-mode class-D it is more difficult to achieve ZVS. However, it can be

accomplished by using a dead time between the pulses [El-Hamamsy 94, Lau 00]. A

disadvantage of using dead time is that it may cause distortion, however, it has been

shown in [Nyboe 06] that in some cases dead time actually decreases distortion. Class-E

is based on the idea of designing the load network in such a way that the ZVS conditions

are fulfilled [Sokal 75].

5.6 Switching-mode power amplifiers with over-

sampling noise-shaping D/A converters

The switching-mode power amplifier classes are non-linear and, as such, are therefore

most prominently suitable for constant envelope modulation signals. However, many of

the wireless communication standards require the transmitted signal to contain amplitude

modulation in addition to phase modulation. The envelope can be modulated and a high

linearity achieved [Jayaraman 98] if the switching-mode power amplifier is driven by an

oversampling noise-shaping D/A converter using ∆Σ-modulation or pulse-width modula-

tion.

The concept is depicted in Figure 5.8. The digitally upconverted signal is noise-

shaped using a 1-bit bandpass ∆Σ-modulator [Keyzer 01] or a bandpass pulse-width mod-

ulator [Midya 02]. The output signal from this block is D/A converted with a 1-bit D/A

converter. The 1-bit D/A converter drives the switching-mode power amplifier and the

reconstruction filter of the D/A converter is posterior to the power amplifier; this must be

a bandpass filter since the bandpass noise shaping moves the quantization noise to both

sides of the signal band.
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The switching-mode power amplifier class most suitable for amplifying bandpass ∆Σ-

modulated or bandpass pulse-width modulated signals is Class-D. However, in [Dupuy 04],

a variation of the Kahn EER technique is reported, where the envelope of the signal is ∆Σ-

modulated and the phase is modulated with this envelope. The resulting signal drives a

Class-E amplifier.

Whilst switching-mode power amplifiers have the potential for reaching very high ef-

ficiencies [Kobayashi 01], the high efficiencies are difficult to reach with non-constant

envelope modulated signals when the crest factor of the envelope is high since the switch-

ing activity of the 1-bit signal from bandpass noise-shaped oversampling D/A converters

is not dependent on the signal level. Moreover, the proximity of the quantization noise to

the signal band makes the spectral requirements of the communication standard challen-

ging to comply with [Keyzer 01, Larson 05].

5.6.1 Cases researched in the papers

Papers P7, P8, and P9 all study the combination of a Class-D power amplifier with 1-bit

oversampling bandpass noise-shaping D/A converters at high frequencies. The focus is on

1-bit bandpass ∆Σ D/A conversion, but in P9 bandpass PWM is also experimented with.

The ∆Σ cases are best compared in the literature with [Jayaraman 98], which reaches

higher efficiency than the measured cases in papers P8 and P9, but on the other hand

papers P7-P9 experiment with several topologies and use higher sampling frequencies.

The PWM case is best compared with [Midya 02].

Paper P7 compares by simulation different topologies of a Class-D power amplifier

to be driven by a 1-bit ∆Σ modulated signal. Paper P8 extends this comparison to meas-

urements of two of the topologies. Paper P9 compares the 1-bit bandpass ∆Σ modulated

and 1-bit bandpass pulse width modulated drive signals for a Class-D power amplifier.

The comparison includes measurements, unlike in [Midya 02]. The measured efficiencies

were 16.8% for ∆Σ and 20.3% for PWM.

5.7 Comparison of the classes

The application of a voltage-mode class-D amplifier using complementary devices is lim-

ited at RF-frequencies as p-type transistors tend to have low gain bandwidth fT [Krauss 80].

Using two n-type transistors imposes the use of transformers that cannot readily be integ-

rated. Also, the output capacitance of the transistors causes losses that limit the applica-

tions at high frequencies.

In current-mode class-D and in class-E, the output capacitance can form part of the

load network, so that it is not the main factor that deteriorates the efficiency at high fre-

quencies. In other words they endeavour to achieve ZVS. Class-F employs a multihar-



50 Switching-mode power amplifiers

monic resonator to achieve ZVS (or ZCS). Class-E and Class-F have been used in RF

applications and the use of high efficiency current-mode class-D has been demonstrated

at RF frequencies.

Class-S has been used in RF transmitters based on the EER technique to amplify the

envelope signal, but it is obviously more frequently found in low frequency applications.



Chapter 6

Summary of Publications

In this chapter, a brief overview of each publication is given.

[P1] A Multicarrier GMSK Modulator for Base Station

In this paper, a multicarrier Gaussian minimum shift keying (GMSK) modulator with

a 14-bit on-chip digital-to-analogue (D/A) converter is presented. The design contains

four GMSK modulators, which generate GMSK modulated carriers at the user-defined

centre frequencies. In the wireless base stations, the modulated transmit signals are usu-

ally combined at the RF frequency after power amplification. The multicarrier modu-

lator combines four GMSK modulated signals in the digital domain, thereby eliminating

the need for an antenna microwave combiner. A new digital ramp generator and output

power-level controller performs both the burst ramping and the dynamic power control in

the digital domain. The maximum dynamic performance is obtained by multiplexing two

D/A converters with output sampling switches. The digital multicarrier GMSK modu-

lator is designed to fulfil the derived spectrum and phase-error specifications of the GSM

900/1800/1900 base stations for pico-, micro, and macrocells. The circuit was integrated

in a 0.35-µm CMOS technology.

[P2] A GSM/EDGE/WCDMA Modulator With On-chip

D/A Converter for base station

This paper presents a GSM/EDGE/WCDMA modulator with a 14-bit on-chip D/A con-

verter. The modulator consists of several digital signal processing building blocks, in-

cluding a programmable pulse shaping filter, interpolation filters, re-sampler, CORDIC

rotator, programmable output power level controller and ramping unit, and x/sinx filter.

The pre-compensation filter, which compensates the sinc droop above the Nyquist fre-

quency, makes it possible to use WCDMA signal images for up-conversion. The new pro-
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grammable up/down unit allows power ramping on a time-slot basis as specified for GSM,

EDGE and TDD-WCDMA. The multi-standard modulator meets the spectral, phase and

error vector magnitude (EVM) specifications. The integrated circuit was implemented in

a 0.35 µm CMOS technology.

[P3] 14-bit 110 MHz CMOS D/A Converter

This paper provides a more detailed presentation of the 14-bit D/A current steering con-

verter used in the multimode modulator presented in paper P2. The D/A converter utilizes

a segmented current source architecture and well designed and carefully laid out switch

drivers and current switches. The measured INL and DNL are 1.04 and 0.83, respectively.

The D/A converter was fabricated with a 0.35 µm CMOS technology.

[P4] A Digital Quadrature Modulator With On-Chip D/A

Converter

This paper describes a digital quadrature modulator that can replace the first analogue

IF mixer stage of a base station transmitter. It interpolates orthogonal input carriers by

16 and performs digital quadrature modulation at carrier frequencies fs/4, − fs/4 and

− fs/2. A 12-bit D/A converter is integrated on-chip using a segmented current source

architecture and a proper switching technique to reduce spurious components and to en-

hance dynamic performance. The modulator is designed to fulfil the spectral, phase, and

EVM specifications of GSM, EDGE and WCDMA base stations.

[P5] A Digital Modulator with Bandpass Delta-Sigma Mod-

ulator

In this paper, the digital quadrature modulator of the previous paper is further developed

and combined with a bandpass ∆Σ-modulator. It interpolates orthogonal input carriers

by 16 and performs a digital quadrature modulation at carrier frequencies fs/4, − fs/4,

( fs is the sampling frequency). After quadrature modulation, the signal is converted into

an analogue IF signal using a bandpass ∆Σ modulator and a 1-bit D/A converter. The

circuit was integrated in a 0.13µm CMOS technology and operated at a clock frequency

of 700MHz.
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[P6] A 1.5V direct digital synthesizer with tunable Delta-

Sigma modulator in 0.13 µm CMOS

This paper introduces a new direct digital synthesizer architecture that combines a direct

digital synthesizer with a tunable ∆Σ modulator whose signal band of the ∆Σ modulator

can be tuned tuned according to the DDS output frequency. We use a hardware-efficient

phase-to-sine amplitude converter in the DDS that approximates the first quadrant of the

sine function with 16 equal-length piecewise second-degree polynomial segments. The

DDS is capable of frequency, phase and quadrature amplitude modulation. The circuit

was integrated in a 0.13 µm CMOS technology and operated at a clock frequency of 200

MHz.

[P7] Comparison of Different Class-D Power Amplifier To-

pologies for 1-bit RF Band-Pass Delta-Sigma D/A Convert-

ers

In this paper the suitabilities of different class-D power amplifier architectures are com-

pared for using a 1-bit bandpass ∆Σ D/A converter as a driving stage, operating with RF

signals. The objective is to find out which architecture provides the best efficiency. The

architectures considered are voltage-mode, H-bridge voltage-mode, current-mode and

transformer-coupled voltage- and current-mode class-D amplifiers. These architectures

are compared by APLAC simulation for discrete GaAs MESFET realisations.

[P8] Comparison of Different Class-D Power Amplifier To-

pologies for 1-bit Band-Pass Delta-Sigma D/A Converters

This paper is a continuation of the previous paper and it compares the suitabilities of

two different class-D power amplifier architectures for 1-bit bandpass ∆Σ D/A converters

operating with RF signals. The objective is to find out which architecture provides the best

efficiency. The architectures considered are H-bridge voltage-mode class-D amplifier and

transformer-coupled voltage-mode class-D amplifier. These architectures are compared

by APLAC simulation using a ∆Σ modulated signal and by measuring discrete component

GaAs MESFET realisations.
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[P9] A 20 MHz BP-PWM and BP-DSM Class-D PA in 0.18

µm CMOS

This paper juxtaposes a Class-D power amplifier for bandpass pulse-width modulated

(BP-PWM) with a bandpass delta-sigma modulated (BP-DSM) signals at 20 MHz. A 1-

bit sixth order topology is used in the ∆Σ-modulator and 6-bit fourth-order integral noise

shaping is used in the generation of the bandpass pulse-width modulated signal. The

pulse-width modulation is two-sided. The push-pull amplifier part of the Class-D ampli-

fier was fabricated on a 0.18 µm CMOS process and the bandpass filter was composed of

a LC ladder network realised with discrete components.



Chapter 7

Conclusions

In wireless base station transmitters there is a trend towards digitalisation. From the base-

band to radio frequency, more and more parts in the baseband end are being implemented

with digital circuitry. This thesis contributes to various parts of this process of digitalisa-

tion.

In the baseband stage, a multicarrier digital modulator that combines multiple modu-

lated signals at different carrier frequencies digitally at the baseband, has been designed.

The research was motivated by the need to seek cost reductions in base station transmit-

ter circuits by digitalization as the analogue circuitry needed for multicarrier transmitters

needs expensive tuning.

Moreover, a multimode digital modulator that can be operated for three different com-

munications standards was implemented. The research was motivated by the need for

base station transmitters to support multiple communications standards. By integrating

the multistandard modulator in a single chip, the production volume of the chip can be

increased and cost reductions achieved thereby.

Direct digital frequency synthesizers (DDFSs), both LUT- and CORDIC-based, were

found to be suitable for the generation of several different modulations in wireless com-

munication. How they are used for multicarrier or multistandard modulator architectures

was demonstrated. In multicarrier architectures, the integration of the power level control

and ramping unit was motivated by the need to have different power levels for different

carriers and the choice of digital recursive oscillators for this purpose was shown to be

suitable because of its hardware efficiency.

In an endeavour to move the digital-analogue interface antenna-wards in base station

architectures, digital upconversion was researched. Digital quadrature modulation utiliz-

ing a multiplier-free quadrature modulator was found to be an advantageous method to

replace the first analogue mixer stage of a two-step transmitter architecture with digital

circuitry.

The digital-analogue interface in the transmitters was a focal point of the research

in the thesis. The D/A converters in all the implemented circuits were integrated on the
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same chip with a digital modulator circuit, in order to avoid high-speed data crossing over

the inter-chip boundary. A challenge that was posed was to impede the digital part from

disturbing the D/A converter operation; this was successfully achieved in the implemented

D/A converters.

The research on ∆Σ D/A converters was motivated by the lack of high-speed high-

resolution capabilities of the Nyquist-rate D/A-converters shown in Table 4.1. An al-

ternative D/A conversion method for them was therefore sought. The emphasis on 1-bit

bandpass ∆Σ modulators within this ∆Σ D/A converter research was motivated by the

possibility of combining it with a switching mode power amplifier. An advantage of the

selected 1-bit quantization was its inherent linearity. In the implementation of a bandpass

∆Σ modulator for the digital quadrature modulator chip, a fast topology was achieved

utilizing z→−z2 conversion.

Finally, even power amplification can, in a sense, be performed in a digital fashion

by using a switching-mode power amplifier. This was researched experimentally with

both discrete and integrated implementations using 1-bit ∆Σ modulation and pulse-width

modulation as the input signal generation methods.

The combination of switching-mode power amplifiers with 1-bit Delta-Sigma modulator-

based D/A conversion was further motivated by the need to seek more efficient transmitter

architectures and therefore more efficient power amplifiers and was a continuation of the

previous research on Delta-Sigma D/A converters. The combination of a switching mode

power amplifier and a 1-bit Delta-Sigma D/A converter did not prove to be an efficient

transmitter architecture.

7.1 Further work

Digital modulator and upconverter research could proceed towards a completely program-

mable general-purpose architecture that could be configured to accommodate new stand-

ards and different frequency bands according to needs. The research on software-defined

radios and cognitive radios is going in this direction [Devroye 06].

As for ∆Σ D/A converters, further work could include investigating the possibilities

of pipelining further from the extent of paper P5 based on inherent delay elements.

In the field of the transmitter architecture based on 1-bit ∆Σ D/A converters and

switching-mode amplifiers, further work could include the development of better band-

pass filters that would contribute to a good performance and a higher efficiency. The

architecture imposes exigent requirements on the transition bands of the bandpass filter.
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