
Helsinki University of Technology
Dissertations in Computer and Information Science

Espoo 2007 Report D19

ADAPTIVE COMBINATIONS OF CLASSIFIERS WITH
APPLICATION TO ON-LINE HANDWRITTEN
CHARACTER RECOGNITION

Matti Aksela

Dissertation for the degree of Doctor of Science in Technology to be presented with due

permission of the Department of Computer Science and Engineering for public exam-

ination and debate in Auditorium TU2 at Helsinki University of Technology (Espoo,

Finland) on the 29th of March, 2007, at 12 o’clock.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Computer and Information Science
P.O.Box 5400
FIN-02015 HUT
FINLAND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80701859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distribution:
Helsinki University of Technology
Laboratory of Computer and Information Science
P.O.Box 5400
FIN-02015 HUT
FINLAND
Tel. +358-9-451 3272
Fax +358-9-451 3277
http://www.cis.hut.fi

Available in pdf format at http://lib.hut.fi/Diss/2007/isbn9789512286904/

c© Matti Aksela

ISBN 978-951-22-8689-8 (printed version)
ISBN 978-951-22-8690-4 (electronic version)
ISSN 1459-7020

Multiprint Oy/Otamedia
Espoo 2007

Aksela, M. (2007): Adaptive combinations of classifiers with application

to on-line handwritten character recognition. Doctoral thesis, Helsinki
University of Technology, Dissertations in Computer and Information Science,
Report D19, Espoo, Finland.

Keywords: classifier combining, adaptive classifier, adaptive committee, on-
line handwritten character recognition, pattern recognition.

ABSTRACT

Classifier combining is an effective way of improving classification performance.
User adaptation is clearly another valid approach for improving performance in
a user-dependent system, and even though adaptation is usually performed on
the classifier level, also adaptive committees can be very effective. Adaptive
committees have the distinct ability of performing adaptation without detailed
knowledge of the classifiers. Adaptation can therefore be used even with classifi-
cation systems that intrinsically are not suited for adaptation, whether that be
due to lack of access to the workings of the classifier or simply a classification
scheme not suitable for continuous learning.

This thesis proposes methods for adaptive combination of classifiers in the setting
of on-line handwritten character recognition. The focal part of the work intro-
duces adaptive classifier combination schemes, of which the two most prominent
ones are the Dynamically Expanding Context (DEC) committee and the Class-
Confidence Critic Combining (CCCC) committee. Both have been shown to be
capable of successful adaptation to the user in the task of on-line handwritten
character recognition. Particularly the highly modular CCCC framework has
shown impressive performance also in a doubly-adaptive setting of combining
adaptive classifiers by using an adaptive committee.

In support of this main topic of the thesis, some discussion on a methodology
for deducing correct character labeling from user actions is presented. Proper
labeling is paramount for effective adaptation, and deducing the labels from the
user’s actions is necessary to perform adaptation transparently to the user. In
that way, the user does not need to give explicit feedback on the correctness of
the recognition results.

Also, an overview is presented of adaptive classification methods for single-
classifier adaptation in handwritten character recognition developed at the Lab-
oratory of Computer and Information Science of the Helsinki University of Tech-
nology, CIS-HCR. Classifiers based on the CIS-HCR system have been used in

4

the adaptive committee experiments as both member classifiers and to provide a
reference level.

Finally, two distinct approaches for improving the performance of committee
classifiers further are discussed. Firstly, methods for committee rejection are
presented and evaluated. Secondly, measures of classifier diversity for classifier
selection, based on the concept of diversity of errors, are presented and evaluated.

The topic of this thesis hence covers three important aspects of pattern recogni-
tion: on-line adaptation, combining classifiers, and a practical evaluation setting
of handwritten character recognition. A novel approach combining these three
core ideas has been developed and is presented in the introductory text and the
included publications.

To reiterate, the main contributions of this thesis are: 1) introduction of novel
adaptive committee classification methods, 2) introduction of novel methods for
measuring classifier diversity, 3) presentation of some methods for implementing
committee rejection, 4) discussion and introduction of a method for effective label
deduction from on-line user actions, and as a side-product, 5) an overview of the
CIS-HCR adaptive on-line handwritten character recognition system.

Aksela, M. (2007): Adaptive combinations of classifiers with application

to on-line handwritten character recognition. Doctoral thesis, Helsinki
University of Technology, Dissertations in Computer and Information Science,
Report D19, Espoo, Finland.

Avainsanat: luokittimien yhdistäminen, adaptiivinen luokitin, adaptiivinen
komitea, käsinkirjoitettujen merkkien on-line-tunnistus, hahmontunnistus.

TIIVISTELMÄ

Luokittimien yhdistäminen komitealuokittimella on tehokas keino luokitustark-
kuuden parantamiseen. Laskentatehon jatkuva kasvu tekee myös useiden luokit-
timien yhtäaikaisesta käytöstä yhä varteenotettavamman vaihtoehdon. Järjestel-
män adaptoituminen (mukautuminen) käyttäjään on toinen hyvä keino käyttäjä-
riippumattoman järjestelmän tarkkuuden parantantamiseksi. Vaikka adaptaatio
yleensä toteutetaan luokittimen tasolla, myös adaptiiviset komitealuokittimet
voivat olla hyvin tehokkaita. Adaptiiviset komiteat voivat adaptoitua ilman yksi-
tyiskohtaista tietoa jäsenluokittimista. Adaptaatiota voidaan näin käyttää myös
luokittelujärjestelmissä, jotka eivät ole itsessään sopivia adaptaatioon. Adaptaa-
tioon sopimattomuus voi johtua esimerkiksi siitä, että luokittimen totetutusta
ei voida muuttaa, tai siitä, että käytetään luokittelumenetelmää, joka ei sovellu
jatkuvaan oppimiseen.

Tämä väitöskirja käsittelee menetelmiä luokittimien adaptiiviseen yhdistämiseen
käyttäen sovelluskohteena käsinkirjoitettujen merkkien on-line-tunnistusta. Kes-
keisin osa työtä esittelee uusia adaptiivisia luokittimien yhdistämismenetelmiä,
joista kaksi huomattavinta ovat Dynamically Expanding Context (DEC) -komitea
sekä Class-Confidence Critic Combining (CCCC) -komitea. Molemmat näistä ovat
osoittautuneet kykeneviksi tehokkaaseen käyttäjä-adaptaatioon käsinkirjoitettu-
jen merkkien on-line-tunnistuksessa. Erityisesti hyvin modulaarisella CCCC jär-
jestelmällä on saatu hyviä tuloksia myös kaksinkertaisesti adaptiivisessa ase-
telmassa, jossa yhdistetään adaptiivisia jäsenluokittimia adaptiivisen komitean
avulla.

Väitöskirjan pääteeman tukena esitetään myös malli ja käytännön esimerkki siitä,
miten käyttäjän toimista merkeille voidaan päätellä oikeat luokat. Merkkien
todellisen luokan onnistunut päättely on elintärkeää tehokkaalle adaptaatiolle.
Jotta adaptaatio voitaisiin suorittaa käyttäjälle läpinäkyvästi, merkkien todel-
liset luokat on kyettävä päättelemään käyttäjän toimista. Tällä tavalla käyttäjän
ei tarvitse antaa suoraa palautetta tunnistustuloksen oikeellisuudesta.

Työssä esitetään myös yleiskatsaus Teknillisen Korkeakoulun Informaatioteknii-
kan Laboratoriossa kehitettyyn adaptiiviseen käsinkirjoitettujen merkkien tunnis-
tusjärjestelmään. Tähän järjestelmään perustuvia luokittimia on käytetty adap-
tiivisten komitealuokittimien kokeissa sekä jäsenluokittimina että vertailutasona.

Lopuksi esitellään kaksi erillistä menetelmää komitealuokittimen tarkkuuden edel-
leen parantamiseksi. Näistä ensimmäinen on joukko menetelmiä komitealuokit-
timen rejektion (hylkäyksen) toteuttamiseksi. Toinen esiteltävä menetelmä on
käyttää luokittimien erilaisuuden mittoja jäsenluokittimien valintaa varten. Eh-
dotetut uudet erilaisuusmitat perustuvat käsitteeseen, jota kutsumme virheiden
erilaisuudeksi.

Väitöskirjan aihe kattaa kolme hahmontunnistuksen tärkeää osa-aluetta: on-
line-adaptaation, luokittimien yhdistämisen ja käytännön sovellusalana käsinkir-
joitettujen merkkien tunnistuksen. Näistä kolmesta lähtökohdasta on kehitetty
uudenlainen synteesi, joka esitetään johdantotekstissä sekä liitteenä olevissa jul-
kaisuissa.

Tämän väitöskirjan oleellisimmat kontribuutiot ovat siten: 1) uusien adaptiivis-
ten komitealuokittimien esittely, 2) uudenlaisten menetelmien esittely luokitti-
mien erilaisuuden mittaamiseksi, 3) joidenkin komitearejektiomenetelmien esit-
tely, 4) pohdinnan ja erään toteutustavan esittely syötettyjen merkkien todel-
lisen luokan päättelemiseksi käyttäjän toimista, sekä sivutuotteena 5) kattava
yleiskatsaus CIS-HCR adaptiiviseen on-line käsinkirjoitettujen merkkien tunnis-
tusjärjestelmään.

7

Preface

The work presented in this thesis has been performed at the Helsinki University
of Technology, Laboratory of Computer and Information Science. I would like
to express my gratitude for my supervisor Professor Erkki Oja for making this
research possible and making his vast knowledge and insight available. I have
been given much freedom in performing the work that constitutes this thesis,
but my adviser, Docent Jorma Laaksonen, has always been there for me with
any problems I have encountered along the way. He has offered countless helpful
suggestions and ideas as well as hands-on help with more practical issues. For
this he will always have my utmost gratitude and respect.

I would also like to express my gratitude to Jari Kangas at Nokia Research
Center. Collaboration with him was the starting point of the entire handwritten
character recognition project, which started in a theme under TEKES. Since that
project ended, funding from the ComMIT graduate school and our department
and laboratory have made the completion of this work possible. I would also like
to acknowledge the PASCAL network of excellence, which I have been a member
of, and the grants obtained from the Nokia Foundation.

Special thanks go to all my co-authors, Professor Erkki Oja, Docent Jari Kangas,
Dr. Vuokko Vuori, M.Sc. Ramūnas Girdziušas, and most of all my adviser Docent
Jorma Laaksonen who has spent much time also working on our joint publications.

The pre-examiners of my thesis, Dr. David Windridge and Dr. Jarmo Hurri, truly
made my thesis much better with their thorough examination and offering their
knowledge through a multitude of very insightful comments – for your input I
am most grateful. And I would like to thank the opponent in my dissertation,
Professor Robert P.W. Duin, in advance – and hopefully in hindsight I will be
able to say that I did not make a fool out of myself in the dissertation!

Last but certainly not least I would like to thank the most important thing in my
life, my family. My parents both showed example and supported my aspirations
all the way through and have done their best to help me in any way they could.
And most importantly, my two wonderful sons Otso and Hugo and my beloved
wife Kia – without your support this would not have been possible. And without
my family it would not have meant anything in the end anyway.

Otaniemi, March 2007

Matti Aksela

8

Contents

List of symbols 12

List of abbreviations 15

1 Introduction 17

1.1 Goals and scope of the thesis . 17

1.2 Contributions of the thesis . 20

1.3 Outline of the thesis . 21

1.4 Included publications . 22

1.5 Contribution of the author in the publications 23

2 Related research 25

2.1 On-line handwritten character recognition 26

2.1.1 Problem description . 27

2.1.2 Classification approaches 30

2.2 On-line classifier adaptation . 41

2.2.1 Adaptation of a prototype set 43

2.2.2 Parameter adaptation in statistical methods 44

Contents 9

2.2.3 Adaptation in neural network methods 44

2.2.4 Other adaptive approaches 45

2.3 Committee methods . 46

2.3.1 Types of classifier combination methods 47

2.3.2 Classifier selection . 48

2.3.3 Decision-level combination methods 49

2.3.4 Training set alteration based combination methods 53

2.3.5 Measurement-level combination methods 54

2.3.6 Multi-stage combination . 57

2.3.7 Member classifiers as features 59

2.4 On-line adaptive committee methods 59

2.4.1 Non-neural adaptive committee methods 60

2.4.2 Neural adaptive committee methods 61

3 Label deduction in on-line adaptation 63

3.1 The handheld application . 64

3.2 A method for obtaining correct labeling 65

3.3 Maintaining robustness in presence of erroneous labels 68

4 On-line classifier adaptation – The CIS-HCR system 69

4.1 Data acquisition . 70

4.2 Preprocessing and normalization methods 71

4.3 Feature extraction . 72

4.3.1 Symbol string representations 72

4.3.2 Thickened strokes . 73

10 Contents

4.4 Classification techniques . 74

4.4.1 Dynamic Time Warping . 74

4.4.2 Symbol String Classifier . 75

4.4.3 Local Subspace Classifier 76

4.5 On-line adaptation . 76

4.6 Experiments . 77

4.7 Results of classifier adaptation . 78

5 Adaptive committee classification 81

5.1 Levels of classifier information for combining 82

5.2 Adaptive implementations of committee classifiers 83

5.2.1 Adaptive best . 83

5.2.2 Adaptive voting . 83

5.2.3 Adaptive Behavior-Knowledge Space 84

5.2.4 Adaptive Decision Templates 85

5.3 Modified Current-Best-Learning . 86

5.4 Dynamically Expanding Context 87

5.5 Class-Confidence Critic Combining 89

5.5.1 Distance normalization . 91

5.5.2 Distribution types . 92

5.5.3 Weighting schemes . 94

5.5.4 Combining confidence values 95

5.5.5 Decision mechanisms . 96

5.6 Committee performance . 97

5.6.1 Experimental setup . 98

Contents 11

5.6.2 Committee configuration 99

5.6.3 Performance with non-adaptive member classifiers 100

5.6.4 Performance with adaptive member classifiers 104

5.6.5 Concluding remarks on the experiments 105

6 Rejection with a committee 108

6.1 Rejection methods used . 109

6.2 Experiments and results . 111

7 Classifier selection based on diversity 114

7.1 Diversity of errors . 115

7.2 Measures of diversity . 116

7.2.1 General diversity measures 116

7.2.2 Binary oracle measures . 117

7.2.3 Measures for diversity of errors 119

7.3 Experiments . 121

7.4 Experiment results . 122

8 Conclusions 126

References 130

12

List of symbols

(A)R → B DEC production rule with one-sided context
Bi(x, c) Sum of classes ranked below class c by classifier i for input

sample x, Eq. (2.7)
BC(x, c) Borda count for input sample x and class c, Eq. (2.7)
b kernel bandwidth for CCCC kernel-based distribution

models, Eq. (5.16–5.18)
C number of classes
ci(x) output label of ith classifier for input sample x
ctrue(x) true label of input sample x
ci, i ∈ {1, . . . , C} class labels
cr reject class identifier (r = C + 1)
cm(x) majority voting result for input sample x, Eq. (2.6)
cmcbl(x) MCBL result for input sample x, Eq. (5.7)
cp(x) plurality voting result for input sample x, Eq. (2.5)
cwp(x) weighted plurality voting result for input sample x,

Eq. (5.3)
cprod(x) product rule decision for input sample x, Eq. (5.28)
csum(x) sum rule decision for input sample x, Eq. (5.29)
cmin(x) min rule decision for input sample x, Eq. (5.30)
cmax(x) max rule decision for input sample x, Eq. (5.31)
Cov(·) covariance
dk(x) vector of distances obtained from classifier k for input x
dk

c (x) c:th component of dk(x)
dDR(x) distance rejection averaged distance, Eq. (6.1)
DDTW(·) DTW distance, Eq. (2.2)
DIS(·) Disagreement diversity measure, Eq. (7.6)
DF(·) Double-Fault diversity measure, Eq. (7.7)
DFD(·) Distinct Failure Diversity, Eq. (7.10)

13

DPx(v, s) (v, s):th element of the K×C dimensional Decision Profile
matrix for input x, Eq. (5.6)

DTc(v, s) (v, s):th element of the K × C dimensional Decision Tem-
plate matrix for class c, Eq. (2.8)

EEC(·) Exponential Error Count diversity measure, Eq. (7.13)
fk(ck(x)) MCBL class-wise confidence value for class c of classifier k

and input sample x
I(·) mutual information of classifiers, Eq. (7.3)
IE(·) mutual information of classifier errors, Eq. (7.8)
K number of classifiers
lk(x) MCBL distance ratio for classifier k and input x, Eq. (5.8)
L(A)R → B DEC production rule with two-sided context
MGR(·) MGR score function (2.9)
N total number of samples
Ni number of samples collected into CCCC distribution i
nf (z, i) number of points further from the mean of distribution i

than the the input z, Eq. (5.13)
Nxx

yy (·) various notations for counts of correctness in classifier sets
(Section 7.2.3)

ri(x) rank given by classifier i for the input sample x belonging
to class c, Eq. (2.9)

pi(·) confidence from CCCC distribution model i
pi
gaussian(·) confidence from gaussian distribution model i, Eq. (5.12)

pi
nonparam(·) confidence from nonparametric distribution model i,

Eq. (5.14)
pi
NN(·) confidence from nearest neighbor distribution model i,

Eq. (5.15)
pi
trikernel(·) confidence from triangular kernel distribution model i,

Eq. (5.16)
pi
gausskernel(·) confidence from gaussian kernel distribution model i,

Eq. (5.17)
pi
expkernel(·) confidence from exponential kernel distribution model i,

Eq. (5.18)
P (·) probability of event
P (i|j) conditional probability of event i given event j
qk
c (x) normalized distance to the nearest prototype of class c for

classifier k and input sample x, Eq. (5.11)
Q(·) Q statistic diversity measure, Eq. (7.5)
SF(·) Same Fault diversity measure, Eq. (7.11)
sk

c (x) Support from classifier k for class c for input x, Eq. (5.4)

14

tkc (x) overall CCCC confidence value for input x, class c and
classifier k, Eq. (5.25–5.27)

tkmcbl(x) overall CCCC confidence for input x and classifier k using
the CCCC MCBL decision rule, Eq. (5.32)

tn(·) number of times n versions fail in the Distinct Failure Di-
versity measure(Eq. (7.9)

Tvote Voting Rejection threshold (Section 6.1)
Tr Distance Rejection threshold (Section 6.1)
Tstep Learning Distance Rejection threshold step value,

Eq. (6.2,6.3)
Tr(i) Learning Distance Rejection threshold at time step i,

Eq. (6.2,6.3)
uk

c (x) CCCC classification confidence value for input x, class c
and classifier k, Eq. (5.23,5.24)

va binary vector of correctness for classifier a
V (·) variance of classifier set diversity measure, Eq. (7.2)
V ar(·) variance
wi weight assigned to item i
wi(z) weight from CCCC weighting algorithm for z, Eq. (5.19–

5.22)
w(k) weight for classifier k from weighting function, Eq. (5.2)
WCEC(·) Weighted Count of Errors and Correct results diversity

measure, Eq. (7.12)
x input sample
xj , j ∈ {1, . . . , N} jth input sample
yk(·) neural network output
z shorthand notation for CCCC, z = qk

c (x)
zi

j shorthand notation for CCCC, a previously collected qk
c (x)

value number i in distribution j
∆k(x, c) delta function equaling 1 if classifier k suggests the class c

for sample x and zero otherwise
φ(x, i) angle estimate for discretization at point i of input sample

x
µi mean of CCCC distribution i
σ2

i variance of CCCC distribution i
ρ(·) correlation of classifier errors
θ(·) neural network activation function

15

List of abbreviations

AIME Adaptive Integration of Multiple Experts
ASSOM Adaptive-Subspace Self-Organizing Map
ANN Artificial Neural Network
ART Adaptive Resonance Theory
BKS Behavior-Knowledge Space
BP Back-Propagation
CBL Current-Best-Learning
CCCC Class Confidence Critic Combining
CIS-HCR Helsinki University of Technology Laboratory of Computer and

Information Science Handwritten Character Recognition system
CR Class Rejection
DEC Dynamically Expanding Context
DR Distance Rejection
DTW Dynamic Time Warping
EFCL Elliptical Fuzzy Competitive Learning
EM Expectation Maximization
GA Genetic Algorithm
HCR Handwritten Character Recognition
HMM Hidden Markov Model
k-NN k Nearest Neighbor
KA Kind-of-Area (DTW dissimilarity measure)
KR Knowledge-based Rejection
LDR Learning Distance Rejection
LKR Learning Knowledge-based Rejection
LSC Local Subspace Classifier
LSC-A Local Subspace Classifier with adaptation Always
LSC-E Local Subspace Classifier with adaptation on Errors
LVQ Learning Vector Quantization
MCBL Modified Current-Best-Learning

16

MDL Minimum Description Length
MGR Mixed Group Rank
ML Maximum Likelihood
MLP Multilayer Perceptron
NN Neural Network
NPL Normalized Point-to-Line (DTW dissimilarity measure)
NPP Normalized Point-to-Point (DTW dissimilarity measure)
PDA Personal Digital Assistant
PDL Picture Description Language
PFAM Probabilistic Fuzzy Artmap
PL Point-to-Line (DTW dissimilarity measure)
PP Point-to-Point (DTW dissimilarity measure)
SA Simple-Area (DTW dissimilarity measure)
SCM Supervised Clustering and Matching
SNNS Stuttgart Neural Network Simulator
SSC Symbol String Classifier
SSC-A Symbol String Classifier with adaptation Always
SSC-E Symbol String Classifier with adaptation on Errors
SVM Support Vector Machine
TDNN Time-Delay Neural Network
VR Voting Rejection
1-NN-A 1 Nearest Neighbor classifier with adaptation Always
1-NN-E 1 Nearest Neighbor classifier with adaptation on Errors

17

Chapter 1

Introduction

1.1 Goals and scope of the thesis

The main motivation for the work presented in this thesis is the constant quest
for improving the accuracy of pattern recognition. In this thesis two methods for
classification performance improvement are examined in the setting of handwrit-
ten character recognition, namely on-line adaptation and classifier combination.
In addition, the two are combined to form an on-line adaptive combination of
classifiers for handwritten character recognition. The adaptive combination cul-
minates in a doubly adaptive strategy of using an adaptive committee to combine
member classifiers that are also adaptive by themselves, that is to say an adaptive
combination of adaptive classifiers.

All three aspects alone, i.e. recognition of handwriting, on-line adaptation and
classifier combination, or any two combined, are topics that have already been
addressed in a multitude of publications. However, the combination of all these
is something that has received very little attention. Hereby this thesis hopefully
fills a gap by combining all of these three core ideas to form adaptive committee
classifiers, which are shown to be effective in handwritten character recognition.

The presented methodology has been applied in a scenario where a particular
writer inputs a fairly large amount of handwritten character data consecutively,
and we can be aware of when the writer changes. In this setting it can be expected
that it will be beneficial to use a system that is capable of adapting to the user
at hand. Additionally, we have chosen not to use a specific training phase, but

18 Chapter 1. Introduction

all adaptation must be performed on-line, i.e. during the use of the system. This
is considered to be the most user-friendly approach to adaptation, as no extra
effort from the user is required.

For experiments with such on-line adaptive recognition systems one needs a
database that contains a sufficient amount of data written by each particular
writer. Only with enough data from each writer can the effects of the adaptation
be properly observed. Even though commonly used benchmarking databases do
have a huge number of character samples, there is usually a very limited amount
of samples from each writer. We would desire approximately one thousand char-
acters written by each writer to be able to examine the speed and also the possible
stagnation of the adaptation. Thus the experiments in this thesis have been con-
ducted on a database collected within our laboratory, where we could perform
the data collection to these specifications.

Adaptation to the user is an effective way for improving performance of any
user-centered pattern recognition system. This is the case especially with any
problem where a very large amount of variation exists, but only a subset of it
is being expressed during the use of the system. Just one example of this is
the handwritten character recognition scenario we have explored. A practically
unlimited number of ways for writing a character exist, but each writer uses only
his or her own style with a significantly smaller amount of variation. Individual
classifier adaptation has been shown to provide notable benefits. However, the
implementation of adaptation to the user at the classifier level naturally leads to
a need for accessing that particular classifier in order to tune that classifier to
the style of that particular user.

The constant increase in computational power available in even the smallest con-
sumer devices is continuously making methods that require significant amounts
of computational resources more and more viable for practical application. One
method that can be computationally intensive is classifier combining where sev-
eral classifiers are used to recognize the same input. Although approaches that
suggest combining several less powerful classifiers do exist, many combination
schemes are based on the notion of combining classifiers that are proficient them-
selves, hence effectively multiplying the computational requirements of such sys-
tems. Our studies will examine what benefit can be obtained through combining
classifiers in an adaptive fashion.

The use of adaptation on the committee level enables us, from very little in-
formation about the classifiers themselves, to significantly improve recognition
performance by using a committee that learns the behavior of the classifiers, i.e.
an adaptive committee. Even though the adaptive combination methods are pre-

1.1. Goals and scope of the thesis 19

sented and evaluated in the setting of on-line handwritten character recognition,
all presented committee adaptation methodologies are widely applicable as very
little information on the application area and the classifiers being combined is
required.

Also classifiers that are adaptive in themselves can be combined using an adap-
tive committee classifier. It will be seen that it is possible to obtain even more
benefits through the use of this doubly adaptive scheme. However, the adaptive
and thus intrinsically unstable nature of the classifiers places extra requirements
on the combination rules for obtaining robust behavior. Both the requirements
for adaptive combination of adaptive classifiers and working examples will be
presented.

Rejection is often implemented in classification systems for the purpose of refrain-
ing from classifying difficult samples that are likely to cause errors, or redirecting
them to a part of the system specialized towards handling such samples. The
same view can also be taken with committee classifiers, and some ways of im-
plementing committee rejection are also addressed in this thesis as means for
possible further improvement in classification performance.

The member classifiers used in classifier combination will have a significant effect
on the performance of any committee. Choosing the most suitable classifiers can
be a very difficult task, as the desired set is also dependent on the combination
method used. Thus if a way of evaluating the classifiers in a more general fash-
ion could be used, perhaps a more general set of classifiers, performing well for
a variety of combination methods, could be discovered to speed up the process
of building a classifier combination system. The concept of classifier diversity
is often used to describe the “difference” between classifiers, but it cannot be
strictly defined, and a multitude of measures have been presented. Classifier
diversity and its effects for combining classifiers are also addressed in this the-
sis. A classification-performance-oriented approach to defining classifier diversity,
diversity of errors, is examined and some measures based on this principle are
presented.

The substance of this work is in the presented novel methods and empirical tests
that show their prowess. Deep theoretical analysis of the presented combination
methods would also be an issue very much worthy of attention. However, the pro-
posed combination methods are significantly complex in nature, and theoretical
analysis on their effectivity could well prove extremely challenging. Simplifying
assumptions that would make the analysis feasible could also make the analysis
quite valueless with respect to real world performance. This is an issue with
nearly all the more complex combination methods, and the adaptive nature of

20 Chapter 1. Introduction

the methods causes further complexity. A more analytical investigation into the
behavior of adaptive committee classifiers is still a topic that would be a very
interesting subject for future work, but such discussion will not be in the scope
of this thesis.

1.2 Contributions of the thesis

In this thesis, a novel framework for adaptive combination of classifiers is sug-
gested. The field of the thesis will be first introduced via a literature survey to
form an overview of classifier combination methods particularly suitable for such
a setting where user-specific adaptation can be beneficial.

The most important single methodological contribution of this thesis is a novel
adaptive framework for combining classifiers. The proposed Class Confidence
Critic Combining (CCCC) scheme can be used to combine a wide variety of
classifiers, adaptive or non-adaptive in themselves, in a way that provides user-
dependent on-line adaptation of the system. Several methods for individual clas-
sifier adaptation are discussed and compared . These methods have been im-
plemented in the CIS-HCR adaptive on-line handwritten character recognition
system and used for both member classifiers of an adaptive committee and to
evaluate the benefits of adaptivity on the committee level. Also several other new
adaptive classifier combination techniques are introduced and experimented with.
These methods are the novel Dynamically Expanding Context (DEC) committee,
the novel Modified Current-Best-Learning (MCBL) committee, an adaptive im-
plementations of the Behavior-Knowledge Space (BKS) and Decision Template
(DT) committees, an adaptive voting committee and an adaptive best selection
rule. A thorough evaluation of the performance and the benefits obtained via
the presented adaptive classifier combining methods can be found in the included
publications.

As classifier combining is also highly dependent on the classifiers being combined,
a look at the methodology for selecting classifiers for combination is presented.
It includes both an overview of existing classifier diversity methods and the in-
troduction of a novel classifier diversity measure that has been found effective.
Also some rejection methods applicable for a committee classifier, adaptive or
non-adaptive, are presented along with experimental results supporting their ef-
fectivity.

A smaller, but also important topic is establishing the reasonability of the fun-
damental idea employed, on-line adaptation. If it is not possible to implement

1.3. Outline of the thesis 21

a system where adaptation is possible without explicit label information, which
is commonly available in batch experiments, then what is the practical value of
such methodology? It is clearly necessary to illustrate the feasibility of on-line
adaptation in a handwritten character recognition system without direct feedback
from the user. In practice the problem is how to obtain correctness information
from actual usage, without knowing the true intended class of a sample. A view
on this issue is also presented in the form of a set of label deduction rules that
has been implemented within an application developed for a Personal Digital
Assistant (PDA) system. No explicit evaluation of the performance of the label
deduction rules has been performed. Still, the efficiency of the adaptation when
using the proposed set of rules does clearly suggest that the rules are capable
of obtaining a level of labeling correctness that is sufficient for highly beneficial
adaptation.

1.3 Outline of the thesis

After this introductory chapter, in Chapter 2 a literature survey on related re-
search is presented. The literature survey is divided into sections, of which the
first explores handwritten character recognition, placing extra emphasis on ap-
proaches to adaptation. The latter part focuses on methods for combining clas-
sifiers, again with special emphasis on on-line adaptive approaches in accordance
with the theme of this thesis.

Next, to set the ground for the practical application of on-line adaptivity, Chap-
ter 3 explores the feasibility of implementing on-line adaptation without explicit
information on true labels for the classes. Also one method for attaining that
goal is presented.

In Chapter 4 methods for individual classifier adaptation as implemented in our
CIS-HCR system are examined. The methods are discussed more to illustrate
the differences in adaptivity between classifiers and committees, and are, for the
most part, the work of other members of our research group. Classifiers presented
in this chapter are also used as member classifiers in the committee experiments.

The focal part of this thesis, the methods for adaptive combination of classifiers,
are presented in Chapter 5. The developed methods are described and an ex-
tended comparison of the performance of the committee classifiers used in this
work and the included publications is shown.

22 Chapter 1. Introduction

The following two chapters describe two approaches for further improving clas-
sifier combination performance. The first approach presented in Chapter 6 is
committee rejection, to which goal several methods are presented. The second,
discussed in Chapter 7, is an approach to measuring classifier diversity for select-
ing member classifiers for combining, based on the idea of the importance of the
diversity especially among the errors made.

Finally, Chapter 8 gives the final conclusions of the work presented in this thesis.
This is followed by the references and a set of publications detailing the proposed
methods and showing the results of experiments.

1.4 Included publications

The following three journal articles and five conference papers have been included
in this thesis.

1. Vuokko Vuori, Matti Aksela, Jorma Laaksonen, Erkki Oja, and Jari Kan-
gas. Adaptive character recognizer for a hand-held device: Implementation
and evaluation setup. In Proceedings of the 7th International Workshop on
Frontiers in Handwriting Recognition, pages 13–22, 2000.

2. Matti Aksela, Jorma Laaksonen, Erkki Oja, and Jari Kangas. Application
of adaptive committee classifiers in on-line character recognition. In Pro-
ceedings of International Conference on Advances in Pattern Recognition,
Lecture Notes in Computer Science, 2013:270–279, 2001.

3. Matti Aksela, Jorma Laaksonen, Erkki Oja, and Jari Kangas. Rejection
methods for an adaptive committee classifier. In Proceedings of Interna-
tional Conference on Document Analysis and Recognition, pages 982–986,
2001.

4. Matti Aksela, Ramūnas Girdziušas, Jorma Laaksonen, Erkki Oja, and Jari
Kangas. Class-confidence critic combining. In Proceedings of the 8th
International Workshop on Frontiers in Handwriting Recognition, pages
201–206, 2002.

5. Matti Aksela, Ramūnas Girdziušas, Jorma Laaksonen, Erkki Oja, and Jari
Kangas. Methods for adaptive combination of classifiers with application to
recognition of handwritten characters. International Journal of Document
Analysis and Recognition, 6(1):23–41, 2003.

1.5. Contribution of the author in the publications 23

6. Matti Aksela and Jorma Laaksonen. On adaptive confidences for critic-
driven classifier combining. In Proceedings of International Conference
on Advances in Pattern Recognition, Lecture Notes in Computer Science,
3686:71–80, 2005.

7. Matti Aksela and Jorma Laaksonen. Using diversity of errors for selecting
members of a committee classifier. Pattern Recognition, 39(4):608–623,
2006.

8. Matti Aksela and Jorma Laaksonen. Adaptive combination of adaptive
classifiers for on-line handwritten character recognition. Pattern Recogni-
tion Letters, 28(1):136–143, 2007.

1.5 Contribution of the author in the publica-

tions

In conference paper 1 a PDA implementation of an adaptive recognizer is pre-
sented. The system employs a questionnaire scheme, where the correctness of
each recognition result is deduced from the user’s following actions, without any
direct feedback as to the correctness of the classification. As the first co-author
of that paper, the current author devised the correctness feedback logic in co-
operation with the first author and second co-author of the paper, implemented
all the required methodology in the hand-held device and programmed the ques-
tionnaire program. The first author devised the adaptive classifier itself and
performed the experiments with the constrained character matching algorithm,
and made a tool for analyzing the results of the user experiments. The first au-
thor was mainly responsible for the reporting, but all authors participated in the
reporting.

Conference paper 2 examines the behavior of the DEC committee and perfor-
mance improvements obtainable. The author was responsible for the implemen-
tation of the classification system and experiments, but the original idea of the
adaptive DEC committee was introduced by the first co-author. This paper also
introduces the Modified Current-Best-Learning committee, which was a develop-
ment of the author. All co-authors participated in the reporting.

In conference paper 3 several committee rejection schemes are examined with
application to the DEC adaptive committee classifier. The author devised and
implemented the rejection schemes and performed the experiments, and the co-
authors participated in the reporting.

24 Chapter 1. Introduction

Conference paper 4 introduces the CCCC committee and provides the first ex-
perimental results to show its prowess. The CCCC committee was an original
idea of the author, who also implemented the committee and performed the ex-
periments. The second author implemented the SVM-based member classifier
used in the experiments. All co-authors participated in the reporting.

Journal article 5 provides a thorough overview into several methods for adap-
tive combination of classifiers. The performance of the methods were evaluated
and compared to several reference committee classifiers. The CCCC and DEC
committees were found to perform best. The author devised and implemented
the committees and performed the experiments. The second author implemented
the SVM-based member classifier used in the experiments. All co-authors par-
ticipated in the reporting.

Conference paper 6 introduces weighting schemes and a novel way of evaluating
the confidences to the CCCC scheme. It was found that the weighting schemes
enable robustness in the face of changing circumstances, which is in this paper ex-
amined with experiments that do not take advantage of user-dependent resetting
of the committee. The author devised and implemented the weighting schemes
and improvements to the CCCC committee and performed the experiments. The
co-author participated in the reporting.

In journal article 7 several diversity measures are evaluated and their effectiveness
for choosing the best possible set of classifiers for both non-adaptive and adaptive
classifier combination schemes is examined. The novel exponential error count
diversity measure introduced was found to be very effective. The author devised
the novel “diversity of errors”-based schemes and implemented them and the ref-
erence schemes examined. The author also introduced the taxonomy of diversity
schemes presented. The second author participated in the reporting.

Journal article 8 presents the culmination of our work in the sense that this paper
introduces a formulation of the CCCC committee classifier that is found to work
successfully within the setting of adaptive combination of adaptive classifiers.
The doubly adaptive scheme is capable of improving on its adaptive member
classifiers’ performances. The author devised the necessary improvements to the
CCCC framework to obtain the robustness for this setting, implemented the
committee and performed the experiments. The second author participated in
the reporting.

25

Chapter 2

Related research

In this section an overview of methodology related to the three main themes
of this thesis, on-line adaptivity, classifier combining and on-line handwritten
character recognition, is presented. However, the combined fields of handwritten
character recognition, classifier combining, on-line operation and adaptivity are
far too large to handle in their entirety within the scope of this thesis. Thus
this discussion will focus on methods with applicability to a combination of these
subjects.

This discussion is divided into two main categories. First in Section 2.1 the topic
of handwritten character recognition is discussed, introducing some classification
approaches while focusing on on-line methods. Special emphasis will be on meth-
ods that allow implementation of adaptation. The possibilities for adaptation are
discussed in more detail in the following Section 2.2.

Then, the most central theme of this thesis, the topic of classifier combining
is examined in Section 2.3, again focusing on methodology related to the focal
themes of this thesis. Adaptive committee methods found in the literature, or
methods that could easily be implemented in an adaptive fashion, are discussed
in Section 2.4. The brevity of that section is indicative of the immaturity of the
field and the necessity for more research on the topic.

The purpose of this review is not to present every distinct methodology that has
been used for the studied tasks, or even every more general group of approaches,
but to focus on the most important viewpoints on the subjects and present rep-
resentative examples of recent research directions in the respective topics. The

26 Chapter 2. Related research

discussion on actual results presented in various papers has been completely left
out, as comparing results over different databases, settings and even character
sets in some situations will not reveal much about the true relative effectiveness
of each method; it would potentially just distract from the main focus of the
investigation. For the results obtained in the experiments with each respective
method the reader is directed to the references.

2.1 On-line handwritten character recognition

Handwritten character recognition has been an ongoing research problem for
several decades [197, 113, 155, 15, 220]. One main division to be made within
the field is in off-line versus on-line recognition of handwriting. Basically, off-
line recognition means that the recognition is not performed during writing, as
opposed to on-line recognition where the input is recognized immediately, i.e.
on-line. In practice, data from on-line experiments can be stored in a variety of
formats especially designed for on-line data collection, for example UNIPEN [65].
Such formats include integral elements of the writing process, such as the direction
and speed of writing, in the stored data and hence the data can later be used
as if it were being collected during recognition. Thus the actual methods of
recognition differ more on the level and type of data they use than whether the
actual recognition process is done on-line.

However, there is one additional distinguishing feature between on-line and off-
line recognition: the possibility of interaction between the user and the system.
In on-line recognition it is possible for the system to provide interactive features
such as error correction or other methods of obtaining more information from
the user to aid in the recognition task. The possibility of interaction can in
fact make the entire setting for on-line recognition notably different from that
of off-line recognition, where all available information is in the samples to be
processed.

The practical distinction is often that off-line recognition works with data from
images of written characters [197], whereas on-line recognition uses information
collected during the writing of the characters, that is to say, information on how
the characters were written and not just what the final result is. One example
of how this is often implemented is via collecting the actual pen trace as a list of
(x, y) coordinate pairs, possibly adding other information such as pressure and
time stamps, as has been done in the recognition system described in Chapter 4.
One might even say that it is more a question of off-line versus on-line data
collection that makes the distinction; off-line type data could well be recognized

2.1. On-line handwritten character recognition 27

immediately as it comes in as well as on-line type data stored for later processing
or future experiments. But still, to use the common convention, the terms off-line
and on-line recognition will be used.

As an enormous amount of written documents exist, some dating back hundreds
of years, it is evident that if it were possible to reliably and automatically index
and store any written material, this would have great benefits with regard to both
keeping all that information safe and making it more accessible. The value of
off-line handwriting recognition is evident also in, for example, automatic sorting
of mail and scanning documents to a computer readable form, just to name a few
examples. Commercial systems for off-line recognition have been available since
the middle of the 1950s [63, 187].

In contrast to off-line recognition, where quite little information is available to
the system from how the characters were actually written, on-line recognition is
generally performed by collecting information on the pen trace in some manner.
This generally requires specific writing equipment to be used, which indicates that
the writing is intended to be used with computers. Actual on-line recognition
also provides the possibility of writer interaction, which in turn enables more
efficient mistake correction and adaptation of the system [197]. Of course, also
methods combining approaches from both off-line and on-line fields can and have
been used [64, 194]. From hereon, the discussion will focus on on-line handwriting
recognition.

2.1.1 Problem description

One major reason for the interest in on-line handwriting recognition is the per-
petual search for effective input methods for modern-day hand-held devices, such
as PDAs and mobile phones. In general, the display quality of hand-held devices
has improved drastically in the recent years. Despite the constant desire to keep
devices small, devices with 65 thousand colors and a resolution of 160× 128 pix-
els and above are currently commonplace even in the lower price range mobile
phones [143, 173, 137]. And surely the progress will only continue – even better
quality displays will emerge in the same small space.

However, the input method is one part of the system where the small size can
cause problems. The keyboard, to be a practical method for input, needs to be
large enough for the keys to be pressed without excessive effort. The implemen-
tation of a regular keyboard of that size is not feasible for a hand-held device, as
it would require the devices to be larger than otherwise desired. Devices that do
successfully incorporate the keyboard, such as currently the Nokia Communica-

28 Chapter 2. Related research

tor series [143], are much larger in size and appeal to the minority segment of the
user base that places efficiency of operation and features over mobility and size.
In practice the limit is that if the size of the keys becomes smaller than the size
of the fingertips, the usability of the keyboard deteriorates rapidly.

There have been numerous input methods introduced with variable success, for
example virtual keyboards on-screen – which have been found to produce reason-
ably good accuracies but very slow input rates [125] – and specialized character
sets for recognition, such as the unistrokes alphabet [62] and its commercial
derivation, Graffiti by Palm Computing [132]. The problem with specialized al-
phabets is the need for the user to learn an entirely new character set in order
to interact with the machine, which raises the bar for starting to use such an
interface. Therefore, perhaps the most natural and effective way of input in a
hand-held device is the use of effective and adaptive handwriting recognition.
The users could evoke an input method they are familiar with, and there would
be no need for additional space, as a pressure-sensitive screen could be used also
for input. The inclusion of on-line, transparent, adaptation into the recognition
process may be the deciding factor for usability, as this would allow the user
completely natural input and continuously better performance.

Of course, even though the fundamental problem remains the same, there are sig-
nificant differences caused by the type of character set used. For example Chinese
and Japanese Kanji characters consist of a much larger number of strokes than
the Latin alphabet. Also, the Eastern alphabets consist of several thousands of
characters. They thus provide challenges very different from the recognition of
a subset of the Latin alphabet such as numbers with only ten possible classes.
The work described in this thesis has focused on using the Latin alphabet, in-
cluding the Scandinavian diacriticals, and the problem of handwritten character
recognition will be examined from this viewpoint. Of course, for the classifier
combination aspect, the actual symbols being recognized bear much less signifi-
cance and the combination methods can be applied over a much wider range of
situations than the individual classifiers used.

In general, the pen is a very natural way for humans to input information, since
writing is generally taught in schools and learnt at a young age. Also for reasons
based on human physiology, a pen is a very effective and precise method for input
– for humans positioning the pen-tip is highly accurate due to the high number of
degrees of freedom provided by the fingers and the relatively large portion of the
motor-control areas in the brain dedicated to finger movement [178]. This can
clearly be observed by comparing the precision of input while drawing with a pen
in comparison to drawing with a regular computer mouse. Movement originating
from the wrist is much more coarse as is also the quality of the final output.

2.1. On-line handwritten character recognition 29

Figure 2.1: Examples of ways of writing the lowercase letter ’a’

At first glance handwritten character recognition using the Latin alphabet and
recognizing characters one at a time may not seem like that difficult a problem.
Basically all that is needed is to match the input character to a set of known
characters, which may be stored as, for example, prototypes or model coefficients.
Also the set of characters that can be input is limited to the alphabet in use. The
main problem with unconstrained handwriting recognition arises from the fact
that each writer has his or her own personal writing style, resulting in a huge
amount of variability in the ways each character can be written. This in practice
makes storing all variations, known as allographs, impossible [95]. Figure 2.1
shows just a few examples of ways of writing a lowercase ’a’. Studies have shown
that numerous reasons for using a particular allograph can be identified, such as
positional, contextual, dialectical, and stylistic reasons [68]. But it has also been
discovered that generalizations to other allograph styles from a subset of samples
is not very reliable with a small number of collected samples [217, 212, 209]. In
practice this means that the way some other character will be written cannot
reliably be predicted from characters of known classes.

Taking a slightly different approach, also models focusing on the variability in
handwriting have been presented [219, 94, 84]. The focal idea of these approaches
is to focus on what kind of variability is possible and how to incorporate that
information into the model in a way that makes generalizing these variabilities
over a number of models possible. However, such approaches are quite rare. It

30 Chapter 2. Related research

may be that enumerating variability is in fact not a very simple task in itself.
Also the forms of variability can vary between character classes, which can lead
to problems if one tries to apply a more general model of variability.

Common practice is to train a recognizer with data collected from several writers
thus introducing several writing styles to the system expecting generalizational
ability. Then, if the writing style of the new user is similar to some style in
the training set, the performance of the system for that writer can be adequate.
However, the system will certainly perform poorly for writers whose styles are
not in the training set – and due to the vast amount of variation, it is in prac-
tice impossible for all writing styles to be accounted for. This may lead one to
the conclusion that in order to obtain satisfactory recognition accuracy with all
users without constraining the allowed style of writing, one of the most practical
approaches is to make the recognizer adaptive, i.e., it has to be able to learn and
adjust itself to new writing styles.

2.1.2 Classification approaches

Some of the classification approaches that have been commonly applied to on-
line handwritten character recognition will be discussed next. Not surprisingly,
a vast amount of classification methods can be found in the literature, and they
differ greatly in implementation, complexity and sometimes also effectiveness. It
should also be noted that there is no single method that is known to generally
perform best. The choice of optimal classifier can therefore be confidently said
to depend on the task the method is to be applied to.

All classification methods have basically the same objective, to minimize the over-
all cost of the decisions – taking into account both correct and incorrect decisions.
And since this can be viewed as being a basic property of a Bayesian decision
system, one might argue that all the decision boundaries implicitly or explicitly
defined by various classification approaches can be viewed as approximations of
the optimal decision boundary of a Bayesian classifier. Whatever the viewpoint
taken may be, the statistical reasoning certainly has fundamental value for un-
derstanding classification systems. Generally, whenever attempting to classify
a sample we tend to ignore assigning specific failure costs and simply strive to
choose the most likely class, the one that has the highest posterior probability.
How we reach that decision, i.e. whether the approximation for that probabil-
ity be directly from an application of the Bayes rule, closeness of matching to a
prototype, the relative values of outputs of a neural network or distances from
decision boundaries defined by a set of parameter-space vectors, is where the

2.1. On-line handwritten character recognition 31

classification methods differ.

All in all, any strict grouping of classification strategies is somewhat arbitrary, as
the definitions of what they entail are in many cases overlapping. Some strategies
could be viewed in light of both statistical and structural approaches. Prototype-
based approaches commonly use some decision mechanism such as the nearest
neighbor rule, which on the other hand can also be seen as a non-parametric
statistical method. Thus also the grouping applied in this thesis represents only
one view – and in the end, it perhaps does not really matter how each method is
categorized, or if they are even grouped distinctly at all. In any case, the funda-
mental objective of all classification methods is the same: to correctly recognize
the input. But in hopes of easier reading, one possible taxonomy has been used
and methods have here been labeled under the six different categories presented
below.

Statistical methods

Statistical classification approaches, by definition, take the viewpoint of assuming
that the variation is of stochastic nature. Thus statistical methods more or less
explicity attempt to estimate, for the input x and class ci, class prior probabilities
P (ci), and probability densities of the samples from each class P (x|ci). Bayesian
decision theory is then used to obtain a prediction on the posterior probabilities
P (ci|x),

P (ci|x) ∝ P (x|ci)P (ci), (2.1)

where P (x) has been left out as the equation is generally only used when observing
x.

In practice, statistical methods can be divided into two categories, paramet-
ric and non-parametric. Parametric methods estimate model parameters from
training data, with perhaps the most straightforward case being to use a simple
distribution model for all classes, for example a Gaussian distribution [123, 14].
Non-parametric methods, on the other hand, make no assumptions on the distri-
bution model, but attempt to use the training data directly. This can be done
for example through the use of histograms or kernel functions.

One of the most common decision rules, the k Nearest Neighbor (k-NN) rule [52,
37], can be seen as a non-parametric statistical classification model. In the k-NN
rule the distribution is implicitly defined by all the samples used in the set where
the rule is applied. The k-NN rule has been found to be very accurate with large
databases [186], although the time needed for operation is directly proportional
to the number of models the input is matched against. Figure 2.2 illustrates the

32 Chapter 2. Related research

Figure 2.2: An illustration of the k-NN algorithm

k-NN rule and the benefit of using more than one neighbor; if the classification
were done to just the nearest class, as illustrated by the dotted circle with the
smallest radius around the input, the input marked by the diamond would be
classified to the class with circle markers. Increasing the value of k, as marked
by either dashed circle, would clearly direct the classification to the more appro-
priate class, marked with the filled diamonds. Several modifications of the k-NN
algorithm have been presented to improve the operation speed and performance,
for example the weighted prototype editing algorithm which calculates weights
for the prototypes to enable pruning to improve performance [150].

Non-parametric statistical classification methods are often well-suited for user-
specific adaptation, as the distribution is defined by the set of models, and alter-
ing a particular model can effect the implicit distribution without the need for
extensive recalculations. On the contrary, when information on the distribution
is collected into a more formal model, where the model parameters define the
output and individual samples are not as easily taken into account, adaptation
may not be as easy or effective to implement as with non-parametric models.

The concept of the Hidden Markov Model (HMM) was introduced in the late
1960’s, but has become increasingly popular since the 1980’s. The HMM ap-
proach stems from using a Markov model where the observation is a probabilistic
function of the state, i.e. the model is a doubly embedded stochastic process
with an underlying process that is not observable, but hidden, and hence the
name [160]. The training time for an HMM model is usually rather long, and
thus also adapting the models is often harder than for prototype-based classifiers.

In most cases a separate HMM is created for each allograph (a model for a way
of writing a character) sufficiently represented in the training set [142, 21]. The

2.1. On-line handwritten character recognition 33

most commonly used HMM type is the continuous HMM [24]. Especially in
small databases the interpolating effect of continuous HMMs can be very ben-
eficial [167]. However, also discrete HMMs have their benefits, as the discrete
parameterization helps reduce the amount of training data needed, but at the
cost of loss of information during the quantization step [21].

As with speech recognition, also in handwriting recognition HMMs have been
used in conjunction with language models to improve performance [74]. Some
recent approaches to HMM-based recognition have used both pen direction and
non-stationary pen coordinate features [148] and HMMs for cluster modeling [17].
Some variations on the basic HMM models are fuzzy HMMs [115] and applying
a maximum mutual information optimization scheme with tied mixture density
HMMs [144].

Prototype-based classification

One simple but often very effective approach to classification is to match the
input sample against a set of prototypes whose class is known. Then the task is
to determine the best match using some measure and decision mechanism, with
the matchings acting as a basis for deciding the class of the input.

A significant concern in prototype-based approaches is the proper selection of
the prototypes. There are some fundamental characteristics that a good set
of prototypes should abide by: a prototype set should have sufficient coverage,
reasonable separation, each prototype should be a good representation of a way of
writing a character, and poorly representative prototypes prone to causing errors
should be avoided [13]. Of course sufficient coverage poses a problem, as ideally
this would mean having a prototype for each way of writing a character, which
often is not feasible due to the vast amount of possible ways of writing [95]. Thus,
the design of the prototype set is a task whose success has a very significant effect
on the final performance, and construction of the prototype set can be viewed as
an important research problem in itself [185, 35, 119, 161]. Intuitively one would
desire prototypes that represent distinct ways of writing a character, as depicted
by Figure 2.3 where three very distinct ways of writing the capital ’A’ are shown.
In practice with many classes and large amounts of data, the task is far from
simple.

When using prototypes for matching against, some rule for choosing the correct
class must naturally be employed. Perhaps the most commonly applied decision
rule for matching prototypes is the k Nearest Neighbor (k-NN) rule [52, 37],
which has already been discussed above in the section on statistical methods. In

34 Chapter 2. Related research

Figure 2.3: Three examples of distinct ways of writing the letter ’A’

its simplest form, a single nearest neighbor classifier, the class of the prototype
that is closest to the input, according to the given distance measure, is chosen
for the class of the input sample. It is easy to see why prototype-based systems
are commonly employed in situations where adaptation is desired – adjusting the
prototypes directly influences the classification results, and prototypes can be
effectively adjusted based on even a single input sample.

There is one significant division to be seen among prototype-based methods;
approaches using prototype vectors of fixed length and approaches using variable-
length prototype vectors. Fixed length sample vectors are commonly obtained
whenever calculating some kind of a vector of features extracted from the input.
Prototypes of variable length, on the other hand, are often the result of using the
data points collected for representing the samples, as the number of data points
will vary between characters.

One approach for obtaining fixed-length vectors is just to resample the data
to have a constant number of points and use them as the representations for
the character samples. In such a setting, several types of distance calculation
methods can be used, starting from simple Euclidean distances [153] to more
elaborate metrics like the tangent distance [183, 150]. Another commonly used
approach for obtaining fixed-length prototypes is to calculate some set of features
from the input data. This is, however, more common in off-line recognition.
Storing the dynamic information, speed, distance and ordering, of the points is
natural when using the input coordinate streams as the representations for the
characters. As a result, one often uses all available data points, which results
in variable length samples. Also features dealing with directional attributes are
often used [218, 145], and discussion on such approaches can be found below
under structural methods.

With variable-length vectors, distance computation approaches such as elastic
matching are very useful for handwritten character recognition. The need for
variable-length matching techniques is evident because the number of points may

2.1. On-line handwritten character recognition 35

vary depending on the speed of writing, size of the characters and other similar
factors. One approach to prototype-based character recognition is to use Dynamic
Time Warping (DTW) for matching of elastic templates [196].

In time warping approaches a sequence of metric points of the input charac-
ter is matched against those of the prototypes. The overall distance between a
prototype k and the input x, can be obtained as [101]

DDTW(k, x) = min
w(i)

N∑

i=0

d(i, w(i); k, x), (2.2)

where w(i) is a warping function that maps the time index of the input model
to that of the prototype and d is the distance function. Equation (2.2) can be
solved with dynamic programming by using the recursion relation [101]

D(i, j; k, x) = d(i, j; k, x) + min

D(i − 1, j; k, x)

D(i − 1, j − 1; k, x)

D(i − 1, j − 2; k, x)

, (2.3)

where D(i, j; k, x) is the cumulative distance to the prototype k up to the point
(i, j) and d(i, j; k, x) is the distance between points i and j of prototype k and
input x. The definition of the cumulative distance function D(i, j; k, x) is the
integral point of interest for determining the effectivity of the matching. Some
possibilities will be discussed in Section 4.4.1.

Several variants of different types of elastic matching have been researched. These
include an elastic distance using a centroid computation algorithm [11], optimal
warping of models stored using overall symbol measures such as angle and nor-
malized height from a baseline [101], elastic matching with only one prototype
per symbol [124], warping subject to two-dimensional monotonicity and continu-
ity constraints [200], and the use of a linear combination of eigen-deformations
to alter the prototype [201].

Neural networks

Neural networks (NNs), or artificial neural networks (ANNs), are methods com-
monly applied in a multitude of pattern recognition tasks – including handwritten
character recognition. Neural networks are systems whose fundamental idea is
analogous to the operation of the human brain, which is a highly complex, non-
linear and parallel computer. The human brain, and neural networks modeled in
its image, consist of many simple processing units (neurons) which are combined

36 Chapter 2. Related research

to form large networks that together can perform operations far more complex
than individual neurons. Generally it could be said that the neural network stores
information collected in a learning phase into interneuron connection strengths,
known as synaptic weights. The network has intrinsic generalizational ability,
meaning that it can produce reasonable outputs also for inputs not encountered
in learning. The network constructs a mapping between the input and output
spaces that can be highly non-linear. As a “black-box” type of classifier neural
networks have been used for a wide variety of tasks, including but not limited to
prediction and classification [67].

A simple mathematical expression of a neuron may be obtained via writing yk,
the output of neuron k, as a function of its m inputs xi, bias term bk and activa-
tion function θ. Common examples of activation functions are simple threshold
functions and sigmoid functions such as the hyperbolic tangent function. Each
connection is defined by a synaptic strength wkj , in practice weights for the
inputs. Thus the output of the neuron can be written as

yk(x1, . . . , xm) = θ(

m∑

j=1

wkjxj + bk). (2.4)

In practice, this “black-box” nature of neural networks means that the internal
workings of a network are hard to trace. A notable benefit is that NNs can
often be used without separate preprocessing of the data [139, 229]. This means
that the network can perform all stages of the pattern recognition process, from
feature extraction to delivering the final output. But the “black-box” nature
is not entirely advantageous, as a lack of explicit knowledge on the stages of
the recognition process also makes it much more difficult to incorporate a priori
knowledge on the application domain and to break down possible sources of errors.
Also the need for a very large training set is a notable drawback to NN use –
this makes especially adaptivity much more challenging to implement in pure NN
systems. Adaptation in an NN would require adjusting the network parameters,
which is much harder to implement effectively and reliably when using only a few
incoming samples.

Perhaps the most basic and best-known NN method is to use Multilayer Percep-
tron (MLP) networks and some variant of the Back-Propagation (BP) algorithm
for training. The original BP approach is not very often used anymore since it
suffers from a slow convergence rate [12]. The original BP algorithm can be con-
sidered practically obsolete, and several NN schemes allowing for faster training
and better generalization results have been proposed, for example a supervised
feed-forward fuzzy neural classifier used for recognition of alphanumeric charac-
ters [12], Bayesian decision based neural networks with Chinese characters [57],

2.1. On-line handwritten character recognition 37

enriching artificial neurons with spatio-temporal coding for on-line handwritten
character recognition [139] and using an Adaptive-Subspace Self-Organizing Map
(ASSOM) for handwritten digit recognition [229]. Also approaches for selecting
features that enable simplification of the network structure have been found to
be effective [188].

Another viable neural-net-based approach is to use a sub-sampled Time-Delay
Neural Network (TDNN), a special type of temporal convolutional net [112].
Additionally, also a Space Displacement Neural Network, and a combination of
these, a Space Displacement Time Delay Neural Network, have been successfully
used for on-line character recognition [157]. Neural networks have been widely
studied in a number of contexts. All in all, a vast amount of both different
NN methods and possible application areas exists and only a few examples were
covered here.

Feature space methods

Feature space methods, by definition, are approaches that base their operations
on the idea of using feature extraction to reduce dimensionality and represent
the data as vectors in a multi-dimensional feature space. This is done with the
intention of being able to use a feature space where the classes in the data will be
easily separable. This section will focus on methods attempting to define explicit
decision boundaries in that feature space. Thus methods operating directly on
intrinsically multi-dimensional data, without any feature-space transformations,
such as featureless kernel-based methods, are examples of other methods to be
discussed later.

Naturally, the success of the feature space methods depends greatly on the fea-
tures and the success in their extraction – if good features are found, the classes
may form separable clusters in the feature space, allowing for successful and ef-
ficient recognition with less complex classification rules. A notable problem is
the ever-present “curse of dimensionality” [22] – as the dimensionality grows, the
volume of the space grows exponentially, hence in practice requiring more and
more extrapolation from a learning algorithm. Also along with the increase of
dimensionality, as the data becomes more sparce, many algorithms have a ten-
dency to over-fit the training data, again resulting in a loss of generalizational
ability.

Perhaps the best-known feature space method is the Support Vector Machine
(SVM) approach. SVMs have been widely used in a multitude of classification
tasks. The concept of support vector classifiers is based on the statistical learning

38 Chapter 2. Related research

x

class A

class B

Figure 2.4: An illustration of the LSC principle

theory presented by Vapnik [205, 204] and optimization with quadratic program-
ming. The basic idea of an SVM classifier is to define the decision boundary in
the high-dimensional feature space with the support vectors – hence the name
of the approach. The SVM approach has been shown beneficial, albeit compu-
tationally expensive, especially when dealing with high dimensionality combined
with small sample size [120].

As the SVM approach is computationally quite intensive, a number of effective
methods for speeding up SVM training with very large handwritten character
datasets have been presented in e.g. [41]. Recent examples of studied SVM ap-
proaches include using feature extraction wavelet transform and elastic meshing
and pair-wise SVMs for Chinese character recognition [49]. Other recent stud-
ies have proposed speeding up SVMs using the k-NN algorithm and Manhattan
distance applied with respect to handwritten digit recognition [127] and using a
Gaussian DTW kernel for SVMs in on-line handwriting recognition [18].

In another viewpoint on feature-space-oriented classification, specialized subspace
classifiers [147, 106] have been used with feature vectors of constant dimension.
The characters are recognized with methods which were earlier found to be effec-
tive for off-line recognition of numerals written on paper [103]. As the particular
neural-type classification algorithm an adaptive version of the Local Subspace
Classifier (LSC) is used. An illustration of the principle of the LSC for a two-
class case can be seen in Figure 2.4. The classification of the input x is performed
based on the distances, shown by arrows, to the local subspaces spanned by pro-
totypes in the two classes [103].

2.1. On-line handwritten character recognition 39

0

13

4

5 7

2

6

Figure 2.5: An example of 8 directional chain code and the character
’C’ along with its Freeman’s code word 34566701

Structural methods

The basic idea of a structural recognition system is to consider the input as con-
sisting of several structural components that are joined in some way. In hand-
writing recognition, these primitives can be anything from segments of directional
chain-code to very elaborate structures depicting simple handwriting elements.
Structural recognition is fundamentally a top-down divide-and-conquer strategy,
something that has also been considered closest to the intuition of humans, which
can be considered a merit as humans clearly possess the best pattern recognition
skills when dealing with handwriting recognition [218].

Syntactic methods are often used for parsing together the whole input from
primitives and performing the matching. Some simple approaches for describing
the structure connecting the components include Picture Description Language
(PDL), tree grammars and array grammars [218].

One way to perform structure-based recognition is to define a group of entities
which are first matched to the input, and then describe the order of these entities,
resulting in a sequence of expressions. Simple realizations of this idea are for
example chain-coding approaches, such as Freeman’s code and its extensions and
modifications [218]. An illustration of a simple chain-code with eight directions
can be seen in Figure 2.5. One example of using a chain code is an adaptation
of Freeman’s code with 12 evenly spaced directions and an additional scheme for
coding pen positions [145].

The actual difference calculation between the input and the primitives must of
course also be performed. Due to variations in handwriting, finding absolute
matches is in many cases impossible, and thus several matching schemes which
allow variation have been developed. Two main approaches are elastic structural
matching schemes [30, 83, 182] and deforming models [51, 32]. Also the HMM
models, previously discussed in conjunction with statistical recognition, can be

40 Chapter 2. Related research

used for representing some parts of the input in a structural manner. Naturally
also prototypes may well be used as models of subelements of the handwriting,
and similar matching methods be applied.

A different take on structural characteristics is to use structural features of the
entire sample, such as horizontal, vertical and radial histograms [80]. Yet another
recently published strategy uses a character representation based on joint distri-
butions of the strokes and applies a form of neighbor selection to establish the
structure of strokes [86]. Also methods based on detecting core points for struc-
tural decomposition have been proposed [190], where the core points are defined
as the minimal number of designated segmentation points required to obtain the
segmentation. Yet another example of recent structural recognition approaches is
one that uses direction and transition features for its feature representation [121].

Other methods

Only a very brief survey of some of the fundamental and frequently used classifi-
cation methods relevant to our work has been presented above. Of course, a vast
array of other algorithms and methods have been applied also in the setting of on-
line handwritten character recognition. Two examples of other methods with a
notably different viewpoint on the recognition process include genetic algorithms
and generative models.

Genetic algorithms (GAs) are modeled after the process of evolution, trial and
error and survival of the fittest solutions. GAs can be applied also to handwritten
character recognition, and are especially well suited for the feature-selection pro-
cess. Genetic algorithms have some notable beneficial characteristics that make
them very attractive for example for adjusting weights. Namely, genetic algo-
rithms can operate with a set of solutions, are not based on derivatives and are
effective in exploring and using the parameter space [136]. A variant of the Sim-
ple Genetic Algorithm has been successfully used for feature selection and weight
adjustment in [85]. Genetic algorithms have been used to adjust weighting param-
eters for different groups of features in [29]. Also on a less handwriting-specific,
but nonetheless very interesting technique, a combination of genetic algorithms
and the expectation maximization (EM) algorithm for a setting of Gaussian mix-
ture models was applied in [154]. The results showed that using a Minimum
Description Length (MDL) criterion the proposed GA-EM algorithm explores
the space more throughly than a standard EM algorithm and is thus less likely
to stick to local minima.

2.2. On-line classifier adaptation 41

Generative models represent a slightly different top-down viewpoint on the recog-
nition problem, where the recognition process starts from a model to generate
the output. The approaches that can be labeled under generative models en-
compass a wide array of different techniques, but since the basic approach differs
notably from the one used in our research, this viewpoint will not be discussed
in detail. As practical examples, generative models have been presented for a
Bayesian framework [32], for deformable B-Splines with ink generators [166] and
for a model based on kinematic theory of human movements [156].

2.2 On-line classifier adaptation

Since there exists practically an unlimited number of ways of writing each char-
acter, it is highly impractical, if not impossible, for a recognition system to store
a model for every possibility. Still, the recognition system should perform opti-
mally for the person that is using it, and without any prior knowledge on what
style of writing the user will use. One fundamentally sound approach to solving
this issue is to have the classifier adapt to the particular user.

In general, adaptation to the classification task at hand can be a very effective
method for performance improvement. This is especially true when a high level
of intrinsic variation in the input data exists, but a substantial part of the varia-
tion can be explained by some underlying process or phenomenon. Handwritten
character recognition, as well as for example speech recognition, is such a task. In
handwritten character recognition the data from different users in general varies
greatly, but each user has a style that is reasonably consistent. It is this consis-
tency of each user’s particular style of writing that can be learnt by starting with
a user-independent system which is then adapted for optimal performance for a
particular subject.

Classifier adaptation can be performed either through the use of a separate learn-
ing phase before regular use of the device or during it. In practice the former
means teaching the system how you write during a specialized training phase
before starting to really use the device. While in general least prone to errors,
such a policy of adaptation is not very user-friendly, as time must be spent before
using the device. Also, if only a separate training phase is used, the system will
not be able to adjust to subtle changes in style, but always requires complete
retraining. We refer to this as off-line learning to illustrate that the adaptation
is not performed during regular use. This is in fact just training the classifier
further with the particular user in an additional training phase.

42 Chapter 2. Related research

The alternative is on-line adaptation, or learning during use. This is an attractive
approach due to its un-invasiveness and transparency to the user. If the true
labels of input can be deduced without explicit feedback from the user, this
information can be used to refine the performance of the system while it is being
used. This also enables the system to slowly adapt to changes in the style of the
writer.

One significant issue with on-line adaptation is that while the system adapts to
the user, the user will often try to adapt to the system as well. The user shares
the systems goal of trying to get the input recognized as effectively as possible,
and is hence prone to change the style of writing into one that is easier for the
system to recognize. This results in yet another cause of variation in the user’s
writing style, which is in fact dependant on the recognition system used.

Actually the simultaneous user and system adaptation may have some negative
effects. This could be due to the fact that while the system is adapting to a
style it did not previously recognize, the user might assume that the style was
“bad” from the system’s point of view, and hence refrain from using that style
of writing a character. The problem could of course be avoided by forcing the
user to correct all recognition effects, but in terms of usability this solution is
generally not desirable. However, if all the user input is taken into account in the
adaptation, such conflicts should not arise as the system will adapt towards all
styles of writing a particular character that were input to the system. Thus if the
user starts to emphasize only one allograph in the future, continuous adaptation
is precisely the means for the system to adjust its own behavior accordingly.

The value of on-line adaptation is clear especially when dealing with a personal
input device. Most recognition systems have at least a linear correspondence be-
tween the number of prototypes and the recognition time. Hence it is logical to
limit the number of models – which also makes sense due to the limited storage
space and memory allocation restrictions. Also the fact that a personal device is
generally used by only one user speaks for the value of user adaptation. The most
significant downside to adaptation is the possibility of having the performance
for other users degrade at the expense of improving performance for the one par-
ticular subject the adaptation is performed for. This is naturally a manifestation
of the general over-learning phenomenon.

We have focused our research on on-line adaptation, and hence this viewpoint
is also evident in evaluating the respective methods for adaptation offered by
different recognition paradigms. In the following sections, adaptation approaches
applicable to different classification methods and especially on-line adaptation
are examined.

2.2. On-line classifier adaptation 43

2.2.1 Adaptation of a prototype set

Modification, or adaptation, of the prototype set may be the most effective
method for on-line adaptation. This is due to the fact that changes to the proto-
type set do not require extensive recalculations of model parameters, and hence
changes are easy to make. As such the adaptation can usually be performed in
a very short time frame, and it is easy to perform adaptation even after every
sample obtained. Also the introduction of entirely new styles is as easy as adding
new prototypes to the existing set. Similarly, discarding writing styles or models
that cause a great deal of erroneous results can be performed simply by removing
or inactivating the prototype causing problems.

In our research group, very positive results have been obtained with prototype set
adaptation [207, 208, 213, 215]. The developed classifier uses the k-NN decision
rule with Dynamic Time Warping (DTW) [174] based distance calculations. The
prototype set is modified through either one, or a combination, of three basic
operations: (i) adding prototypes, which is the most effective way to introduce
entirely new writing styles, (ii) adjustment of prototypes based on a variation
of the Learning Vector Quantization (LVQ) learning rule, and (iii) inactivating
prototypes. The system will be discussed in more detail in Chapter 4.

The benefits of adding prototypes have been noted also in several other stud-
ies [161, 141, 159, 118]. Also other researchers have combined similar strategies,
for example the use of prototype deletion, addition, and modification through
weight adjustment for a classifier based on directional features [141]. A slightly
different variation on the theme, using an adaptive template cache, where tem-
plates that have contributed to a positive classification are moved to the top of
the cache and preferred in classification, has also been presented [76].

In [159] a recognition system that also uses a method for adding prototypes on
errors was presented. Although the recognizer works on words, the underlying
classification system is based on character prototypes. Having been applied for
self-supervised adaptation, the study noted the benefits of a strategy combining
prototype addition and inactivation. Another method similar in nature has been
presented in [195], where prototype addition is combined with a form of prototype
modification called Discriminating Templating Transformation.

Overall, adaptation to the user is quite simple and effective with a classifier based
on prototypes. The prototype set can be modified with simple operations that
are not computationally expensive, but still have an instant impact on future
recognition results. The speed and ease of modifying the prototype set make
these approaches especially attractive for on-line adaptation.

44 Chapter 2. Related research

2.2.2 Parameter adaptation in statistical methods

As parametric methods are, by definition, established through training on some
data and storing the information in the parameters of the system, adaptation
requires changing these parameters. This process requires somewhat more effort
than with prototype-based approaches. The computational cost and feasibility
of the adaptation is highly dependent on the parametric model in question – for
example recalculating parameters of a Gaussian is far simpler than completely
retraining a large array of HMMs.

Practical success has been obtained in user adaptation in the setting of tradi-
tional statistical models such as a Gaussian model for cases with continuous style
variation [206]. Other examples of similar approaches are the use of tangent vec-
tors for adaptation when using Gaussian densities, Gaussian mixture densities
and Gaussian kernel densities [82].

Adaptation schemes have been successfully implemented in also more complex
settings such as HMMs. One presented approach is to focus the adaptation of an
HMM-based system using models for different ways of writing characters [34, 36].
In one study [25], traditional parameter estimation techniques for the setting of
HMM parameter adaptation, i.e. maximum likelihood, maximum a posteriori and
maximum likelihood linear regression adaptation models, were compared. As a
result it was noted that the reasonably simple maximum likelihood method was
surprisingly effective. In [179] a writer-adaptation mechanism based on maximum
likelihood linear regression was also employed in a word recognition setting and
promising results were reported. Also a method using user adaptation with sub-
stroke Kanji HMM models has been shown to be successful [140].

In summary, adaptation is an important and viable option also for parametric
recognition systems, although the implementation of on-line adaptation may be
slightly more difficult than for prototype-based systems. Still, several successful
systems based on these approaches have been presented.

2.2.3 Adaptation in neural network methods

As a neural network by nature stores the data in the model coefficients, and the
coefficients as a whole store the desired information. This means that a single
input effects a multitude of connections and thus has a much larger scale of effect
than a single prototype, for example. Hence adaptation in a neural network
setting is often significantly more difficult to implement than in either prototype-
based or parametric systems. Another notable problem with neural networks in

2.2. On-line classifier adaptation 45

the adaptive setting is how to alter the parameters efficiently even with small
amounts of user-specific training data. This is because a complete retraining of
the network with the new data included alongside the original training data is in
most cases practically impossible when operating on-line. Fundamentally there
are two ways of adapting a neural network, either by altering the connection
weights or by altering the network structure.

One interesting approach is to use a Time-Delay Neural Network (TDNN) trained
first on user-independent data and then using it without the final layer to act as a
pre-processor for an optimal hyperplane classifier which can easily be adapted [130].
Thus the effective qualities of the neural network are used, but easier adaptivity
is obtained through using a different final decision mechanism, hereby making
retraining the whole network unnecessary.

Also using self-growing probabilistic decision-based neural networks and imple-
menting user adaptation of the parameters as incremental reinforced and anti-
reinforced learning procedures [56] has been successful. One closely related study,
although within the application framework of speech recognition, shows a method
of efficient adaptation of parameters through adaptive training of polynomial net-
works [28]. All in all, retraining neural networks for adaptive purposes is possible,
but not simple.

2.2.4 Other adaptive approaches

In addition to the three major groups of recognition strategies discussed above,
also other types of adaptive strategies have of course been introduced. This
section presents two examples.

Fuzzy decisions is another view on the classification problem, trying to forsake
the strictness of binary yes-no relationships for fuzzy membership values. In the
context of a fuzzy classifier, a new adaptation technique, inspired by the Learning
Vector Quantization (LVQ) and Elliptical Fuzzy Competitive Learning (EFCL),
has been presented [138].

Also an adaptive structural recognizer where HMMs are used for matching against
a set of primitives to form stroke-level representations has been presented in [128].
In this recognizer, the priors of the character models can be updated on every
new character.

46 Chapter 2. Related research

2.3 Committee methods

Combining classifiers is an approach that has been shown to be useful on nu-
merous occasions when striving for further improvement over the performance of
individual classifiers – see [87] and references listed there, or for example [175,
75, 164, 88] among many others. Many fundamentally different classifier com-
bination structures have been shown to be beneficial, and the identification of
one superior combination approach remains impossible. Different combination
methods may outperform one another in different tasks.

The basic function of a committee classifier is to take the results from a set of
member classifiers and attempt to combine them in a way that improves overall
recognition performance. Since the committee operation is based on the members’
outputs – even though some committee methods do take also the original input
into account in their decisions – the behavior of the member classifiers is obviously
very important for the overall performance of the committee. The two most
important aspects of the member classifiers that affect a committee’s performance
are (i) the error rates of the classifiers and (ii) how similar the errors made by
the classifiers are.

In general it could be said that the more different the mistakes made by the
member classifiers are, the more beneficial their combination can be [96, 6]. Or
in different words, classifier combination can be beneficial as in the outputs of
several classifiers the errors are not always overlapping [73]. It can be seen for
most combination methods that the level of obtainable benefit decreases as the
similarity between the member classifiers increases.

There are basically two types of information that classifiers output, either plain
class information or some measurement values, the latter meaning that the clas-
sification result could be a multidimensional continuous output, not a strict la-
beling decision. There are some fundamentally different issues in how to combine
classifiers that output either type of information. We shall restrict the discussion
to the framework of this thesis and thus deal only with methods where the final
classification is performed into discrete classes, although the member classifiers
may well output values that indicate likelihood, confidence or fuzzy membership
value of belonging to a number of classes. Thus we will restrain from discussing,
for example, a number of linear combination methods that can be very effective
for combining results expressible as numeric values and other approaches suited
only to such a setting.

2.3. Committee methods 47

a) b)

Classifier 1

Classifier K

Recognition
Result

.

.

.

Input
Samples

Committee
Machine

Recognition
Result

Classifier KClassifier 1 . . .

Input
Samples

Figure 2.6: Basic a) serial and b) parallel committee structures

2.3.1 Types of classifier combination methods

Among classifier combination methods one division that can be made is between
parallel and serial, also called multistage or cascade, combinators. In parallel
structures the results of several, often assumedly mutually independent, clas-
sifiers are combined while multistage committees consist of several interrelated
recognition stages further refining the results [87, 164]. The two basic types are
illustrated in Figure 2.6, where we assume that K classifiers are used, and there
are a total of C possible classes. The parallel combination approach is more com-
mon as a whole, and thus for the purpose of this discussion we will assume that
a parallel structure is used unless otherwise specified. In the parallel strategy
the most common approach is to use classifiers that are available and combine
them, but also points of view on the importance of designing and combining the
classifiers to reinforce each other should not be overlooked [192]. Yet another
standpoint on categorizing classifier combination methods is a division to those
that can be trained and those that cannot [44].

Perhaps still the most important distinction is between what information from
the classifiers is used for the combinatory process, in other words, the level of
output that the member classifiers provide the committee classifier with. On the
least informative level the classifiers only output their suggested label. The next
level is a list of outputs, in order of preference. On the third level are classifiers
that output measurement level information, which may be for example estimates
of the posterior probabilities, membership values or belief values. Finally, taking

48 Chapter 2. Related research

Table 2.1: Categorizations of some classifier combination methods

Combination method Ordering Training Information

Voting parallel no label
Borda count parallel no label
Behavior Knowledge Space parallel yes label
Decision Templates parallel yes label
Boosting parallel yes label
Bagging parallel no label
Min, max, sum and product rules parallel no measurement
Expectation Maximization committee parallel yes measurement
Critic-driven voting parallel yes measurement
Pre-classification before classification serial yes measurement
ENCORE both yes measurement
Hierarchical neural gas both yes measurement

a slightly different approach, the classifiers’ outputs are viewed as feature vectors
for the next level classifier [87].

Table 2.1 shows some common classification methods categorized by these char-
acteristics. The column entitled ‘ordering’ refers to the classification stage; the
ordering need not be the same for training and classification. For example the
boosting algorithm is trained in a serial fashion, but can perform classification
in parallel. A more detailed description of each method can be found in the fol-
lowing sections. For the adaptive theme of this thesis it should be noted that in
general a method that is not trainable in itself is incapable of adaptation.

After a brief discussion on the importance of classifier selection in the next section,
some common committee methods will be discussed. The committee methods will
be divided into methods acting primarily on label information, here referred to as
decision-level combining, followed by a separate group of training set alteration
based methods, and methods working mainly with measurement level informa-
tion. Additionally, under a separate topic, some multi-stage or serial combination
strategies will be discussed. And finally, approaches where the second level is ba-
sically another classifier, and the outputs of the members are viewed as the inputs
for this second level classifier, are examined.

2.3.2 Classifier selection

Even though research on committees most often focuses on methods for com-
bining the classifiers in the most effective manner, it should not be forgotten

2.3. Committee methods 49

that the committee’s performance is highly dependent on the member classifiers
used. These two fundamental aspects in committee performance enhancement are
sometimes referred to as decision optimization and coverage optimization [71].

The simplest way of choosing the member classifiers would be a selection based
on their individual accuracies alone. The most straightforward approach is of
course to take the set of the individually best classifiers. However, this is often
not the optimal strategy and the gains that can be achieved may be significantly
amplified through the use of classifiers that behave differently from one another
in a certain sense, i.e. the set of classifiers ought to be diverse. The classifiers
to be combined should be different from one another in a way that makes them
complement each other, or else there will be no benefit from combining them.
Diversity in itself, although not studied that long in the context of classifier
combining, is an old concept. It has been, and continues to be, widely used in
other contexts such as biology [146, 47] and evolutionary algorithms [202, 230],
among others.

So instead of selecting member classifiers based solely on their accuracy, it may
often be more effective to attempt to select the members based on their diversity.
Measuring the diversity of the member classifiers is by no means trivial, and
quantifying diversity has been considered an important research topic by several
authors [100, 170, 38, 2, 110, 181, 152]. As there does not – and most likely cannot
– exist any strict definition as to how diversity should be measured, in most
situations a measure of diversity has some case-specific interpretation. Several
different measures attempting to quantify diversity have been suggested for the
purpose of classifier combining [100, 77, 168, 97, 90, 96, 184, 60, 170, 38].

Naturally there is also a trade-off between diversity and member accuracy – if all
classifiers were completely correct, they would produce the same result every time.
Standard statistics, such as variance or correlation, do not take into account that
for classification purposes a situation where identical correct answers are given
differs greatly from the situation where identical erroneous answers are suggested
– the former being generally the most favorable case and the latter the worst. The
concept of diversity and our approaches for improving classification performance
from the diversity viewpoint will be discussed in more detail in Chapter 7.

2.3.3 Decision-level combination methods

First we will discuss some classifier combination approaches where the committee
operation can be performed using only class label information from the member
classifiers. It should be noted that many of these methods are simple to extend

50 Chapter 2. Related research

by using some weighting scheme based on the measurement-level information
obtainable – in some cases performance benefits may also ensue from this.

Class ranking methods

Arguably the most widely known method of classifier combining is majority vot-
ing. It has in spite of its simplicity been shown to be very effective on numerous
occasions. Majority voting can be seen as a simplified class ranking approach,
as it takes into account only the counts for the highest ranked class from each
classifier. Theoretical consideration into the scheme’s effectiveness has shown
that majority voting does have a solid foundation [111]. In general, with classi-
fiers that are correct on at least half of the inputs, the voting rule’s performance
increases as the number of classifiers involved increases [135].

Strictly speaking, a distinction should be made between majority voting, where
the majority is required for a decision, and plurality voting, where the result
obtaining most votes wins in any case. The term majority voting is often used
for cases that should in fact be referred to as plurality voting – according to the
aforementioned logic the majority vote rule should reject any samples for which
the majority cannot reach a consensus, whereas the plurality vote would always
return the most common label. A plurality voting committee has been used in
the experiments presented in Publications 3, 4 and 8 of this thesis.

The plurality voting rule can be written as selecting that class cp(x) for the input
sample x for which

cp(x) = arg
C

max
i=1

K∑

j=1

∆i(x, j), (2.5)

where we have a total of C classes and K classifiers. ∆i(x, j) equals to 1 if
classifier j suggests the class i as the most likely one for the input sample x
and is otherwise zero. This can be seen as binary hardening of the a posteriori
probabilities of the input belonging to a particular class [87]. The majority voting
rule can be formed by using a class cr to denote rejection and then the majority
voting result for the sample x as

cm(x) =

{
cp(x), if

∑K

j=1 ∆cp(x)(x, j) > K/2

cr , otherwise
. (2.6)

Another well-known class ranking method is the Borda count, which in turn can
also be seen as a generalization of the majority voting rule. The Borda count for

2.3. Committee methods 51

Classifier1 Classifier 2 outputs

outputs 1 . . . j . . . C
1 (1,1) . . . (1,j) . . . (1,C)
...

...
. . .

...
...

...

i
...

... (i,j)
...

...
...

...
...

...
. . .

...
C (C,1) . . . (C,j) . . . (C,C)

Figure 2.7: Illustration of a 2-D Behavior-Knowledge Space model

a class is the negative of the sum of the number of classes ranked below it by
each classifier. Let us use Bi(x, c) to denote the number of classes ranked below
class c for the input sample x by classifier i. Now the Borda count for the sample
x and class c can be written as

BC(x, c) =

K∑

i=1

−Bi(x, c). (2.7)

The results can then be ranked by arranging the classes in the order of their de-
creasing Borda counts [70, 72]. Also several variants of the Borda count method,
such as averaging the ranks given by each voter for each class, or an iterative
Borda elimination procedure have been suggested [203]. Both of these variants
attempt to add the ability to differentiate between classifiers based on their gen-
eral expertise.

Decision space methods

The Behavior-Knowledge Space (BKS) method [75] is based on a K-dimensional
discrete space that is used to determine the class labels. Each dimension corre-
sponds to the decision of one classifier. The committee result is obtained by first
finding the focal unit in the K-dimensional space. The focal unit refers to the
unit which is the intersection of the classifiers’ decisions for the current input.
The idea of the BKS is illustrated in Figure 2.7 for a two-classifier case with a to-
tal of C classes. Assuming that the classifiers output classes i and j respectively,
the focal unit will be (i, j). Then during training, the true classes of the inputs
are stored in their respective focal units and the classification will be based on
this information.

52 Chapter 2. Related research

If samples have been stored in the focal unit and for some class the ratio between
the number of samples for that class and all the focal unit’s samples is above
a threshold, that class is selected. This threshold is used to control rejection,
as unless the ratio is above the given threshold, rejection is performed. It has
been experimentally seen that the BKS method performs well and expresses quasi
monotonic behavior as the number of classifiers increases [89]. In that study, the
addition of more classifiers did not hinder performance even though the classifiers
were correlated and differed greatly in their performance. This means that the
performance of the system is expected not to degrade as the number of classifiers
increases. The BKS committee in its basic form has been used in Publication 8.

Another somewhat similar technique is the use of Decision Templates [98]. In this
method, the combiner uses decision profiles that describe the classifiers’ outputs
for a sample. The decision profile DPx is a K × C matrix where each element
is one classifier’s support, or confidence for the current sample to belonging to
a particular class. The supports of one classifier for each class form one row in
the decision profile matrix, with each column of the matrix corresponding to a
particular class. During the training phase, a decision template is constructed
for each class from the decision profiles obtained through processing the training
samples. The overall decision template for class c can be constructed as an aver-
age over the decision profiles DPxj

for the N training samples xj , j = 1, . . . , N .
The (k, v)th element of the decision template matrix for class c, DTc, is then
calculated as

DTc(k, v) =

∑N
j=1 ∆k(xj , c)s

k
v(xj)

∑N

j=1 ∆k(xj , c)
, (2.8)

where ∆k(xj , c) is again 1 if classifier k suggests the class c for sample xj and
sk

v(xj) is the degree of support given by classifier k for the sample j belonging
to class v. For a classifier k suggesting only crisp labels sk

v(xj) would thus be 1
for the suggested class and 0 for all others. With classifiers suggesting fuzzy or
probabilistic labels, sk

v(xj) can be greater than 0 for more than one class. The
suggested class is commonly selected by choosing the class for which sk

v(xj) is the
greatest. Thus the Decision Template approach can be used as either a decision-
or measurement-level combination method.

Then a similarity measure is used to compare the decision profiles of the input
samples while they are being classified to the decision templates. The similarity
measure can be based on for example the ratio of the relative cardinalities of
fuzzy sets. The classification decision is then made based on the similarity of the
input’s decision profile and the constructed decision templates [98].

2.3. Committee methods 53

2.3.4 Training set alteration based combination methods

With unstable learning algorithms small changes in the training set can cause
large changes in the resulting predictors. For such learning algorithms methods
that divide or alter the training data set in various ways have been found very
effective. The most common example of unstable learning algorithms are neural
networks, but the training set alteration methods can be applied to also other
classification algorithms with similar behavior.

Perhaps the best-known committee approach in this category is boosting. Boost-
ing is a method designed for converting a single learning machine with a finite
error rate into an ensemble with arbitrarily low error rate [175]. It is a committee
method especially suitable for increasing the performance of neural networks and
other unstable learning algorithms.

The original boosting algorithm for training a neural network can be described as
follows. First a set of training samples is used to train the first network. For the
training set of the second network, the training samples are passed through the
first network and the samples for the second network’s training set are collected
so that the first network has classified half of them correctly and the other half
incorrectly. Then the third network will be trained with samples that the first
and second network disagree on. The same training approach can then, if desired,
be iterated in a recursive manner to produce 9, 27, and so on networks [43].

During the recognition phase, the samples are passed through all the three net-
works. If the first two networks agree, that is the output label. Otherwise the
label from the third network is used. In [42] it was also shown that as the train-
ing set size increases, the training error decreases until it asymptotes to the test
error rate. There have also been notable improvements presented to the boosting
framework, namely AdaBoost [55] and its improvements such as using confi-
dences assigned to predictions [177] and RankBoost [54]. The original boosting
algorithm suffered from some notable problems which, for example, AdaBoost
solved [176], but still the focal idea of boosting is perhaps most evident in that
simple form.

Bagging, or bootstrap aggregating from where the acronym stems from, is an-
other commonly used method for improving performance through training data
set manipulation. The main idea for bagging is to train the members of the com-
mittee each on a random redistribution of the training data. Hence each member
classifier has their training set generated by a different random sampling of the
training set, with the size of the sampling remaining constant. The samplings are
not exclusive, so some samples may be repeated in a number of training sets while

54 Chapter 2. Related research

others are not used at all. The final decision can be obtained via averaging when
the output is numerical or via voting if using discrete labels. The fundamental
idea of bagging is the creation of multiple variations of a weak classifier through
the redistribution of the training data. Bagging is also effective especially on
unstable learning algorithms [26].

2.3.5 Measurement-level combination methods

In general it would seem logical to expect that if more information were available
for the combination process than just the label information, it should be beneficial
for classifier combining. There are several methods that are adept at combining
classifiers which output numeric information on their approximated posterior
probability of a class, or belief in correctness, or even just a distance to the
nearest prototype. From a theoretic viewpoint these measures output by the
classifiers pose noticeably different requirements, but they are addressed here
together as combination methods that work on information on the measurement
level.

Probabilistic combination methods

The task of probabilistic combination methods is rather simple in theory, as they
all seek to maximize the probability (or minimize the cost) of the decision being
correct. Thus the main idea of a probabilistic combination method is to obtain
some kind of a probabilistic representation for the posterior probabilities of the
classifiers’ outputs. Then the combination method makes a decision based on
these probabilities. This task is much easier if the classifiers output some mean-
ingful measures that can be interpreted to reflect their probability of correctness,
as the Bayesian probabilities can be derived from the classifier outputs that are
on the measurement level [226]. For the case when measurement-level outputs
are unavailable, [23] presented a method for estimating the probabilities from the
data based on how often and where in the set of suggested results that particular
output occurs.

Perhaps the best known rules for determining the final outcome with posterior
probabilities are the product, sum, min and max rules, referring to choosing
the maximum of the products of the obtained probabilities for each class, the
maximum of their sums, minimums or maximums, respectively [87, 88, 45]. These
rules will be discussed in more detail in Section 5.5.5, where they have been used
in combination with our Class-Confidence Critic Combining committee. The

2.3. Committee methods 55

product rule is based on the assumption of independent classifiers and accurate
probability estimates, and it is equivalent to the logical and function. The sum
rule, on the other hand, reflects the mean of the classifiers. Along similar lines,
the min rule can be thought of as trusting the classifier who is the least confident
in the decision, which could be expected to express caution. As an opposite, the
max rule trusts the most confident classifier, something that can be hazardous if
some classifiers give very bad estimates. Also the median rule can be applied in
a similar fashion, and even the voting methods discussed above can be seen as
an extension applicable through hardening the probabilities of the classes to one
for the most probable and zero for others [87].

Through examination of these methods in one framework it was seen that the
sum rule performed best [87], but this does not seem to be the case in all stud-
ies. An interesting result, which could partially explain this behavior, was that
while the sum rule was analytically shown to perform best for Gaussian distri-
butions of estimation errors, the voting rule can give better results for tail-heavy
distributions and situations with very few experts [88].

Also linear and logistic regression have been used for classifier combining [10].
Furthermore, combinations of probabilistic and class-rank-based methods have
been presented, such as the Mixed Group Ranks (MGR) method which combines
rank selection and logistic regression through a linear combination of minimum
functions [131]. The MGR score function can be written as

MGR(r1(x, c), . . . , rK(x, c)) =
∑

A⊆{1,...,K}

−wA min{rj(x, c) : j ∈ A}, (2.9)

where wA ≥ 0 is a weight for that component of the linear combination and
ri(x, c) denotes the rank given by classifier i for the input sample x belonging to
class c.

Other examples of probabilistic approaches include combining classifiers by min-
imizing the Bayes error rate using higher-order dependencies [78], to use a Fisher
discriminant function on the vector of individual expert score factors [39] (al-
though this was compared to the sum rule and shown to perform poorer). An-
other recent and interesting novel approach of using a tomographic metaphor for
classifier combining [223, 224] has produced very interesting results. This ap-
proach includes the application of tomographic reconstruction theory, regarding
classifiers as probability density functions, and the use of a generalized inverse
Radon transformation.

The Expectation Maximization (EM) algorithm, which can be used for a wide
variety of tasks, including an iterative procedure for Maximum Likelihood (ML)

56 Chapter 2. Related research

parameter estimation, can also be applied to classifier combining. For example a
mixture of experts model can be optimized using the EM algorithm [227].

Also the Dempster-Schafer theory of evidence [180] can be seen as a kind of
generalization to Bayesian combining. It is applicable also when handling weak
evidence that does not fulfill the rather strict assumptions of probability theory.
A computationally very efficient method can be derived from using binary voting.
The votes are given for or against membership, by every expert for each class and
feature space. Each vote can be handled as an independent source of evidence for
the class membership of the input pattern. Thus it is not necessary to compute
the combined belief for all of the possible subsets, but merely for the sets in focus
for the final decision [53].

Critic-driven combination

An interesting enhancement to committee classification strategies is the inclusion
of a critic into the decision scheme. Basically the task of a critic in classifier
combining is just to decide whether the classifier the critic has been assigned to
is correct or incorrect. Due to the fact that the critic only has two classes to
decide from, its predictions can be expected to be more reliable than those of the
classifiers taking on a multi-class problem [134].

Critic-driven approaches to classifier combining have been investigated for exam-
ple in a situation where the critic makes its decision based on the same input data
as the classifier [133] and in a case where scaling schemes and activation func-
tions for critics were examined [66]. Also the Class-Confidence Critic Combining
(CCCC) scheme, originally introduced in Publication 4 and to be discussed in
detail in Section 5.5, is fundamentally an adaptive critic-based committee classi-
fier.

Two approaches to critic-driven combinations are critic-driven voting and critic-
driven averaging of probabilities. Critic-driven voting can be performed through
a standard voting scheme with the exception that if the critic deems the expert’s
prediction to be incorrect, the expert abstains from voting. In one set of ex-
periments [134], simple averaging was outperformed by using either geometric or
arithmetic averaging, but still more information could be gained from the critic.
The critics were used by giving special attention to the situation where zero prob-
ability was obtained from the critic. That was taken to mean that the expert’s
predicted class should be excluded.

2.3. Committee methods 57

Third stage:
Final Combination

D-Recognizer

K-Recognizer

G-Recognizer

H-Recognizer

C-Recognizer

Bayesian

W-Borda

Neural Net

First stage:
Recognition

Second stage:

Bayesian or Voting

Combination

Figure 2.8: A block diagram of the combination system from [149]

2.3.6 Multi-stage combination

Multi-stage combination approaches can be used to make the classification pro-
cess more efficient in terms of computational load. This is possible with systems
where the input is first classified by a simple classifier using a small set of cheap
features and a reject option. Then a more expensive classifier is used to han-
dle the difficult samples that have been rejected by the first level [87]. Another
possibility is to use a pre-classification stage, a simple classifier to prune the pos-
sible number of matches, and have a more complex approach decide the final
matching [164]. Basically any method where the list of possible matches is first
shortened by a simpler method and then the final decision is made without per-
forming every matching should be considered a multi-stage classification system
– for example all prototype pruning approaches [216, 221]. A method that com-
bines a prototype-based first-level classifier that prunes the set of matches for
an SVM-based system for the final decision was proposed in [33], and a method
combining a first level based on a Self-Organizing Map [93] with a second level
based on Learning Vector Quantization [158]. Yet another approach uses geo-
metric, ink and directional features for pruning the prototype set before using a
final elastic matching step for the final classification [222].

As an example, a two-level combination approach where there are five individual
classifiers in the first stage, then three combining methods in the second, and a
final combination in the last stage has been suggested in [149]. All the first-level
recognizers are based on MLP neural networks using different feature vectors as
input. The first recognizer uses a dynamic mesh feature (M-Recognizer), the sec-
ond directional features extracted with a Kirsch mask (K-Recognizer), the third
directional change features through the use of gradient vectors (G-Recognizer),
the fourth histogram-based features (H-Recognizer), and the last one contour

58 Chapter 2. Related research

Perform generalized classification.

Combine decisions.

Input Random Character Stream

Final Classification Results

Assign it to proper group.

Is it a

classification?

possible candidate

Perform group-wise classification.

for group-wise

yes

no

Figure 2.9: A schematic of a strategy incorporating prior knowledge to
choose classes for group-wise classification [162]

chain code for boundary information (C-Recognizer). The first combination stage
uses combiners based on a Bayesian method, Borda function and a neural net-
work. In the final stage, either a Bayesian or voting combiner is used. A schematic
of this committee system is shown in Figure 2.8.

Another option is to use specialized classifiers to re-process classes causing a
notable amount of confusion [165]. Such methods are often tailored to the ap-
plication at hand, for example by using specialized classifiers constructed for
separating precisely those difficult classes. In one such method [163, 162], the
basic classifier first performs an initial separation of the input characters. Based
on the a priori knowledge, groups of character classes likely to cause confusion
undergo group-wise classification, whereas structurally dissimilar characters are
directed to the general classifier. This idea is illustrated in Figure 2.9. The final
decision is then obtained by combining the decisions of the general and special-
ized classifiers. The decision is based on sufficient discrimination with either a
sample, class or overall confidence index obtained from the classifiers.

One approach of combining complementary classifiers sequentially is a method
whereby each classifier is designed to recognize samples misrecognized by the
preceding combined classifier. The approach uses common difference principal
components and difference principal components as features [81]. Another ex-

2.4. On-line adaptive committee methods 59

ample of a multi-stage scheme is the ENCORE system [46]. In ENCORE, the
classifiers are first combined according to the majority rule, but then the concen-
sus is evaluated based on past performance of each classifier in similar situations.
If necessary, the decisions are modified using their confidences before obtaining
the final decision.

2.3.7 Member classifiers as features

Still a different viewpoint on constructing a combination method is to use the
outputs of the member classifiers simply as a feature vector input to the next
classifier. Especially neural networks and similar methods have been used in
this task, for example in [10], as their black-box nature and lack of necessity for
preprocessing are especially suitable for this type of operation.

In a way this can be seen as combining several networks into one large network.
Also other than neural classification methods could be used as either the member
or the final layer – or both layers could be entirely different types of classifiers. If
using neural networks, the networks need not be completely exclusive either. An
example of this kind of a recognition system is the hierarchical overlapped archi-
tecture of neural gas classifiers, where overlapping networks are combined [16].
In [45] it was seen that a nearest mean and a nearest neighbor rule performed
well and seemed stable when used as combination methods. We have also used
a Support Vector Machine to combine classifier outputs in Publication 5 of this
thesis.

2.4 On-line adaptive committee methods

As with classifier adaptation, the purpose of committee adaptation is generally
to improve performance by adapting the system to a particular user. Classifier
adaptation is generally capable of working closer to the data, and hence single
classifier adaptation may alone be more effective than committee adaptation.
This can be the case e.g. when adding entirely new ways of writing to the set of
prototypes. Committee adaptation, on the other hand, is generally based on the
member classifiers’ outputs and their correctness.

Due to operating on a more abstract level than classifier adaptation, committee
adaptation does have some significant benefits. Namely, it is possible to use an
adaptive committee structure to improve the performance of classifiers that for
some reason cannot be made adaptive themselves. Such reasons may include

60 Chapter 2. Related research

a structure that is simply unsuitable for effective adaptation, such as a neural
network that would require recalculation of interneuron weights. Another reason
could be that access to the workings of the classifier is denied due to patent rights,
for example. An adaptive committee can be implemented on top of a classification
system and can improve over the performance of the member classifiers without
even detailed knowledge of the task at hand. Also, committee adaptation can be
combined with classifier adaptation, as has been done in Publication 8 and will
be discussed in Chapter 5.

There are several approaches to committee adaptation, ranging from simple
weighting schemes to very complex rule-based systems and structures with units
specialized on predicting the member classifiers’ performance. The field of adap-
tive committee classifiers is, however, a rather new approach. Therefore not very
many effective on-line adaptive classifier combination methods applicable to our
setting of handwritten character recognition have yet been presented. Here an
overview of some previously published methods will be given. Our own work on
the subject will be discussed in detail in Chapter 5 and Publications 2 through 8.

2.4.1 Non-neural adaptive committee methods

First, some non-neural approaches to committee adaptation will be discussed.
These approaches are mostly based on weighting schemes or storing the results
of previous samples for use in the decision process.

Adaptive weighting schemes

The simplest approach to adaptive combination is probably to calculate adaptive
weights for the classifiers as the classification progresses. These could be based
on for example the classifiers’ overall performance so far or each classifier’s per-
formance for a particular class. The weights can then be used for weighting the
decisions of a voting classifier or for simply selecting the output of the classifier
with the highest weight so far. This approach has been taken in Publication 5.

Another weighting-based strategy is to combine the member classifiers linearly
with the use of some weighting coefficients. These weighting coefficients can, for
example, be dynamically acquired from a combination coefficient predictor [225].
The coefficient predictor is trained to give more precedence to certain member
classifiers in situations where they have provided good results. As a result the
weights enhance the effect of the best classifiers on the decision for every input

2.4. On-line adaptive committee methods 61

sample. Thus the resulting linear combination of classifiers should be biased
towards the best classifiers in each situation.

In the context of data mining, [48] suggests ensemble weighting as the key to
fast adaptation. They employ a three-step strategy to adjust the classifier set,
first training a new classifier on the new data, then replacing the oldest classifier
of the ensemble with it, and finally weighing the classifiers in the committee.
In [50] a kind of a weighting scheme based on Arc-x4, an off-line boosting-style
algorithm, is presented in a branch prediction context where online learning is
very beneficial due to the time constraints.

Adaptive decision space methods

The original implementation of the Decision Template method [98] constructs the
templates based on training data. However, there is no reason why the method
could not be adjusted to work in an adaptive fashion by adjusting the templates
during use.

Also the Behavior Knowledge Space (BKS) system discussed previously could
quite well perform in an adaptive fashion by storing the made decisions during
operation, although this was not included in the original implementation in [75].
An adaptive version of the BKS classifier has been presented and studied in
Publication 5, where it clearly outperforms the non-adaptive version.

2.4.2 Neural adaptive committee methods

Also adaptive committees based on neural networks have been presented. Here
some examples of such approaches will be discussed.

AIME

One of the adaptive committee recognition methods found in the literature is
the Adaptive Integration of Multiple Experts (AIME) system [198], illustrated
in Figure 2.10. The system employs a fuzzy neural logic gating network and an
exceptions expert, both trained using the Supervised Clustering and Matching
(SCM) algorithm [193]. The gating module learns to assess the performance of
the individual experts for the situation at hand based on the experts’ performance
over the data space. AIME is thus capable of giving precedence to experts which

62 Chapter 2. Related research

Domain
Expert

Domain
Expert

Domain
Expert

Gating

Module

Exceptions
Expert

Σ

�
�
�
�

�� �� �
�
�
�

�
�
�
�

I I I I I

O

Figure 2.10: A schematic diagram of the AIME system

have previously performed well in certain situations. The AIME system is suited
for both off-line and on-line learning. It can thus be initially trained and the
performance then further improved through adaptation during operation.

On-line adaptive Bayesian combination of PFAMs

Adaptive Resonance Theory (ART) learning using a Probabilistic Fuzzy Artmap
(PFAM) [116] has been used to combine a set of neural networks. The combina-
tion of the experts in this framework was performed in one of three ways, either
simple voting, by a Bayesian method combining the confidences from a confusion
matrix, or by using the BKS approach above. The experiments were conducted
using both traditional training and an approach called dual-mode training, where
initial training is first performed and then followed by on-line learning.

63

Chapter 3

Label deduction in on-line

adaptation

One key component for the feasibility of using on-line adaptation in a transpar-
ent fashion is obtaining the correct labels for the recognized samples. Sufficient
correctness of the labeling is necessary for the adaptation process to be effective.
In batch experiments, it is often assumed that the correct labeling is available
for the adaptation process. How the labeling would be obtained in practice is all
too easy to overlook.

The influence of incorrectly labeled training samples depends highly on the recog-
nition system used. For the adaptive single classifier classification framework used
in our laboratory, a concerning result was noted. If the probability of incorrect la-
belings reached 3–4 percent, the adaptation could actually cause the performance
to deteriorate to a level below initial if no counter-measures were taken [211].

Thus obtaining the correct labeling is of fundamental importance for successfully
implementing an adaptive recognition system. In Publication 1 we have used a
simple rule-based method that attempts to deduce the intentions of the users
from their behavior after the recognition. The experiments were performed with
an on-line character recognition system, implemented on a handheld device. It
will be described in the following sections.

64 Chapter 3. Label deduction in on-line adaptation

Figure 3.1: The PDA user interface of experiments in Publication 1

3.1 The handheld application

The method for obtaining correct labels for input characters presented in Publi-
cation 1 was implemented for a Personal Digital Assistant (PDA) user interface.
Characters are input one-by-one into a text field and the result of the recognition
is shown on the screen where text appears. The application in question was a
questionnaire program, but the same strategy is valid for any setting where mul-
tiple characters are input. An illustration of the user interface of the application
presented in Publication 1 can be found in Figure 3.1.

Since recognition errors cannot be entirely avoided, a relabeling option in the user
interface is highly recommendable. The relabeling option also makes it possible
for the system to learn entirely new ways of writing a character. By a relabeling
option it is meant that by some simple means the user can give the input sample
the desired label, regardless of how the sample was recognized by the system.
The relabeling option can be implemented as for example pressing a dedicated
relabeling button in the interface and then selecting the correct label from a list.
If such an option is not available, the user may become quite frustrated if his or
her way of writing some character is repeatedly misrecognized by the system. If
the correct label is not obtained through recognition, it is nearly impossible to
teach new writing styles unless the relabeling option exists. A relabeling button
was used in our user interface.

3.2. A method for obtaining correct labeling 65

In our application a specific submission button was used to start the adapta-
tion. However, also other events can be used, like shift of focus away from the
application, saving the text document, etc. In any case, the adaptation should
be performed after the intended message is complete, as then it is quite safe to
assume that a careful writer has corrected all recognition errors. This was easily
implemented in a questionnaire as submitting the answer.

3.2 A method for obtaining correct labeling

For adaptation, it is desirable to obtain as much data as possible. The characters
that were initially recognized incorrectly will in fact have the most information
value to the adaptation. Thus we aim to discard as few samples as possible. Of
course, it is also imperative to make as few labeling errors as possible. Therefore
one will attempt to deduce the correct class of initially incorrectly recognized
samples from the users’ actions as they correct their input message to read as it
was intended to.

The underlying data structure to store samples and their labels we have used is
a simple linked list where each sample is stored along with its label, input index
and position information. This list is modified as the writing process continues,
and the first item with a given position always corresponds to the character left
into the input word. If more than one input sample has been input and retained
for a given position, they all are assigned the label of the topmost sample in the
“pile” of that position.

A schematic example of the data structure is shown in Figure 3.2. The example
depicts the user having written the first six capital letters. The first two were
input successfully and in order, but the character “C” has needed three attempts
for the correct recognition. Then the user has input a character that was later
deleted, as the index number 6 is non-existent. Finally the letters “D” and “F”
were input, and “E” was inserted between them afterwards.

The objective is to assign the correct label for each input sample while discarding
only those inputs for which it is impossible to confidently suggest a label. To
facilitate this, a number of cases and proper actions to be taken can be isolated:

1. A sample has been written and left unchanged after seeing the recognition
result. Such a sample is considered to have been correctly recognized.

2. A single sample has been directly replaced with another sample. Thus it
is deduced that the initial sample was incorrectly recognized and the label

66 Chapter 3. Label deduction in on-line adaptation

label: A
number: 1

label: B
number: 2

label: D
number: 7

label: E
number: 9

label:F
number: 8

label: C

label: C
number: 4

label: C
number: 3

number: 5

Figure 3.2: A diagram illustrating the data structure for deducing the
labels

of the new sample is also assigned to the underlying sample. Both samples
are kept in the input sample list and the older sample (together with all
others in the same location) is relabeled according to the most recent input
for that location.

3. A single sample has been relabeled using the relabeling option presented by
the user interface. Then the label of the sample (and all others in the same
location) is simply changed to that received from the user. The possibility
of manual relabeling should be offered to the user to avoid frustration from
several attempts and still not attaining the desired classification.

4. Several characters have been replaced with one input of any kind. This
is thought to indicate the user’s change of mind, and in such a situation
nothing concerning the labels of the samples being replaced can be as-
sumed. The replaced samples are thus discarded and removed from the list
of learning samples, and only the most recent input is kept.

5. Several consecutive backspaces have been received. Also in this case the
correctness of the samples being deleted cannot be established and as such
they are removed from the list.

Through the use of these rules the list containing the input samples is kept up to
date and the labels therein are assumed correct for the adaptation process. Nat-
urally the possibility of incorrect labels still exists, but through these principles
the labels should be correct if the user has noticed and taken care to correct all
recognition errors.

The one unsolved situation is that of the user’s change of mind for a single
character, meaning that the user writes one character, deletes it and writes an
entirely new one instead. Such situations are confused for case 2 above. It was

3.2. A method for obtaining correct labeling 67

Figure 3.3: An example of a user input and the recognized string

thought that the error correction, the basis for case 2 above, is more important
and common, so the possibility of error was deemed a reasonable risk.

Figure 3.3 shows an example, from Publication 1, of text input with character
labels deduced according to this logic. As can be seen, the first character took
several attempts for correct recognition, as did the third character ’l’. The latest
attempt is shown on top. In this first word the adaptation would function as
desired, as all inputs are clearly representative of their proper classes, and labeled
correctly. In the second word, “world”, the first time the user wrote the second
character it was clearly an ’a’. But since the intention was to write the word
“world”, the user corrected this input to ’o’, resulting in the replaced sample
being labeled (erroneously) also as an ’o’. Such errors can remain with the logic
presented, and this also gives cause for implementing other measures to enhance
the robustness of the system as in real applications deduced labels really cannot
be blindly trusted to always be correct.

Even though no comparative evaluation on the performance of the label deduc-
tion rules has been performed, the results of Publication 1 clearly indicate that
the scheme is effective. Those results showed that while initial error rates are
approximately one out of five characters needs to be resubmitted, this rate im-
proves to roughly one out of 16 with adaptation. This is clearly indicative of the
effectivity of the adaptation, which in turn requires sufficiently correct labeling.
Thus the labeling provided by the presented scheme can be seen to have been
effective by making the impressive recognition accuracy gains obtained through
adaptation possible.

68 Chapter 3. Label deduction in on-line adaptation

3.3 Maintaining robustness in presence of erro-

neous labels

Being aware of the possibility of incorrect labeling, as well as other maverick data
samples, makes it possible to have the system incorporate features that attempt
to adjust to their presence. The objective is to limit the effect of erroneous
samples before they can cause too much harm. In the prototype-based adaptive
recognizer used in our studies and to be discussed in Chapter 4, it was noted that
through aggressive inactivation of mistake-causing prototypes the system could
continue to improve performance through adaptation with even one in ten input
samples being erroneously labeled [211]. The inactivation strategy used was to
inactivate a prototype after only one or two incorrect classification results.

Another way of avoiding long-term effects of incorrect labelings is to have the
adaptation method focus more on the most recent samples, giving less weight to
older ones. Such a method has been implemented for the Class-Confidence Critic
Combining scheme to be discussed in Section 5.5. The main idea of the weighting
scheme is to have a linearly decreasing effect of older samples, with most weight
being given to the most recent one. The weighting scheme is described in detail
in Section 5.5.3 and was experimented with in Publications 6 and 8. This will
in practice limit the effect of older data, including erroneously labeled samples,
which makes corruption of the whole system much less likely.

69

Chapter 4

On-line classifier adaptation

– The CIS-HCR system

An adaptive on-line Handwritten Character Recognition (HCR) system has been
constructed by our research group in the laboratory of Computer and Informa-
tion Science (CIS) of the Helsinki University of Technology [107, 106, 207, 108,
213, 1, 210, 214, 217, 215, 216, 211, 212, 209]. The system will be here referred
to as CIS-HCR. The contributions of the author of this thesis have been the im-
plementation of the symbol string creation, distance computation for the Symbol
String Classifier, and the pre-processing methods for the Local Subspace Clas-
sifier, as well as implementing the system on a standard PDA. As the adaptive
system is used as the main source of member classifiers for the adaptive com-
mittee experiments, an overview of the system in its entirety is given here. The
experiments and results shown in this section are not from any of the included
publications, but are presented to illustrate the performances of the various clas-
sification strategies and justify the selection of classifiers used for the committee
experiments in the included publications and Chapters 5 through 7.

A schematic diagram of the recognition system is presented in Figure 4.1. The
input, in the format described in Section 4.1, is first preprocessed and normalized
as described in Section 4.2. The feature extraction is performed for the Symbol
String Classifier and Local Subspace Classifier approaches as described in Sec-
tion 4.3. The classification approaches are described in Section 4.4 and finally
the adaptation in Section 4.5.

70 Chapter 4. On-line classifier adaptation – The CIS-HCR system

and
Extraction

Preprocessing

Normalization

Classification

Adaptation

Output
Feature

U
s
e
r

fe
e
d
b
a
c
k

Figure 4.1: A schematic diagram of the adaptive recognition system

The adaptive recognition system is based on various forms of template matching.
The system is adapted to new writing styles by either adding, inactivating or
modifying the prototypes in the individual recognizers, or by utilizing some com-
bination thereof. Three main classification techniques have been experimented
with. They are Dynamic Time Warping (DTW) on the points of the strokes, the
Symbol String Classifier (SSC) and the Local Subspace Classifier (LSC).

4.1 Data acquisition

In the prototype version of CIS-HCR, all character data were collected with a
pressure sensitive Wacom ArtPad II tablet attached to a Silicon Graphics work-
station. The collected data consists of the x- and y-coordinates, pen’s pressure
against the writing surface, and a time stamp. The characters were written one
at a time. Writers were advised to use their natural handwriting style. The data
was saved in UNIPEN format [65]. Data collection was performed on a stroke-
wise basis, so that pen-up and pen-down points are stored and the characters
can be classified in a stroke-wise basis when desired. Important details of col-
lecting the databases are summarized in Table 4.1. The necessity of collecting
a new database instead of using publicly available benchmarking databases for
our experiments arose from the need to have a sufficient number of samples from
each particular writer. This is paramount for being able to properly examine the
possible benefits of on-line adaptation. Commonly used databases, while often
consisting of a very large number of samples in total, are usually written by a
large number of different writers and as such are poorly suited for experimenta-
tion with on-line adaptive recognition systems.

Database 1 consists of characters written without any visual feedback, following
dictation given by the data collection program. The data collection was per-

4.2. Preprocessing and normalization methods 71

formed on a workstation. The pressure level thresholding the pen movements
into pen up and pen down movements was set individually for each writer. The
distribution of the classes (a–z, A–Z, å, ä, ö, Å, Ä, Ö, 0–9, (,), /, +, –, %, $, @,
!, ?, :, ., and ,) was similar to that of the Finnish language.

Databases 2 and 3 were collected with a program showing the pen trace on the
workstation screen and recognizing the characters on-line. The minimum writing
pressure for detecting pen down movements was the same for all writers. The
distribution of the character classes (a–z, A–Z, å, ä, ö, Å, Ä, Ö, and 0–9) was
nearly even. None of the writers of Database 1 appeared in Databases 2 or 3.

4.2 Preprocessing and normalization methods

Prior to the classification and adaptation phases, the input characters need to
be preprocessed and normalized. First, an operation called NoDuplicatePoints is
used, where sequential data points having the same coordinate values are merged.

The sampling frequency can be altered with one of two operations, decimate(n)
or interpolate(n). Of these decimate keeps every (n+1)th data point and discards
the intermediate ones, whereas interpolate interpolates n equally-spaced points
linearly between all original data point pairs.

The size variations in the characters are normalized with an operator called Min-
MaxScaling which scales the size of the character so that the length of the longer
side of the character’s bounding box is the same for all characters. The aspect
ratios of the characters remain unchanged. This normalization of course as a side
effect makes the separation of character pairs for whom the main difference is
their size, such as the ’s’ and ’S’ or ’o’ and ’O’, notably more difficult. However,
refraining from scaling causes significant problems as the size of writing was not
enforced, and all distance measures used are sensitive to size variations. Thus it
has been experimentally found that the size normalization is on average clearly
beneficial for recognition accuracy and was thus used.

Table 4.1: Summary of the databases used in the experiments.

Database Subjects Characters

DB1 22 10 403
DB2 8 8 046
DB3 8 8 077

72 Chapter 4. On-line classifier adaptation – The CIS-HCR system

The original character cdlldo cdlldhna

Figure 4.2: Examples of symbol strings created

The unknown character and the prototypes are moved into the same location so
that they can be properly matched. This is carried out by moving their cen-
ter points to the origin of the coordinate system. The normalization method
MassCenter defines the center as the mass center of the sample, while Bounding-
BoxCenter uses the center of the bounding box.

According to experiments, the best average recognition result with the DTW-
based classifier can be obtained if NoDuplicatePoints-operation followed by Dec-
imate(2)-operation is used as a preprocessing method, characters are normalized
with MinMaxScaling- and MassCenter -operations. The BoundingBoxCenter nor-
malization was used for the SSC classifier and to provide variation for the DTW
classifiers in the committee experiments of Chapter 5.

4.3 Feature extraction

With the DTW classifier, no feature extraction methods were needed as the
matching was performed directly with the normalized coordinate sequences. The
SSC and LSC classification methods required specific feature extraction steps.
These features will be described in the following.

4.3.1 Symbol string representations

Before the creation of the symbol string representations all strokes in the char-
acter were joined. When joining the strokes, information on where the pen was
taken off the tablet was stored. The characters were normalized using the Bound-
ingBoxCenter and MinMaxScaling operators. This resulted in a centered and
scaled one-stroke character in a 1000×1000-sized box with the pen-up points
marked.

4.3. Feature extraction 73

The discretization of the character was performed by setting a discretization
distance, or segment length, ls for each directional symbol and following the
pen-trace until this distance was reached, the trace ended, or a pen-up point
was encountered. Then, the direction of the resulting vector was calculated and
quantized. The number of directions ds was varied from 4 to 32. The parts of
the character with the pen up were marked with separate symbols. The actual
length of the corresponding line segment was stored together with the direction
symbol.

In addition, a corner detection method, which was most sensitive to changes near
the center of the character, was applied [1]. An example of the produced symbol
strings is shown in Figure 4.2, where the first symbol string has been formed
without the corner detection algorithm and the second string with the corner
detection active. The first 16 alphabets ’a’ through ’p’ were as direction labels
used to represent 16 directions in clockwise order, with ’a’ being horizontal to
the right.

4.3.2 Thickened strokes

In order to form feature vectors of fixed dimensionality suitable for statistical
classification, two feature extraction methods were used [104]. In the first method,
the straight lines connecting the measured (x, y)-points were thickened to the
width of 2r units in a coordinate system where the image was centered in a
1024×1024-sized frame. The original frame was then down-sampled to the size
of 32×32 by averaging. The initial character sample is illustrated in Figure 4.3
(a) and the result of the first method in Figure 4.3 (b).

In the second variation, two 32×32-sized images were created instead of one.
The directions of the lines connecting the sampled pen positions were used as
additional information when creating the images. In the first one, the vertical
component of the direction of pen movement was used in thickening the path. The
filling value, represented in the image with the brightness of the corresponding
part of the stroke, was obtained as fv = sin θ, where θ is the line direction.
Likewise, the horizontal part fh = cos θ was used in the second image. The
results of this method are shown in Figure 4.3 (c) for the vertical direction image
and Figure 4.3 (d) for the horizontal direction image.

The final feature vector was created through concatenating the pixel values of
the grey-scale images. This gave rise to 1024-dimensional pattern vectors in the
former and to 2048-dimensional vectors in the latter case. The covariance matrix
of the training data set was calculated after the feature extraction, and the first

74 Chapter 4. On-line classifier adaptation – The CIS-HCR system

(a) (b) (c) (d)

Figure 4.3: An example of the thickened stroke preprocessing

64 eigenvectors [69] of the covariance matrix [171] were used in projecting the
pattern vectors using the Karhunen-Loève transform (KLT) [79]. The choice
of using the first 64 eigenvectors was based on earlier experiments with off-line
handwritten digit classification [103].

4.4 Classification techniques

Three different techniques have been used for the classification of handwritten
characters. They are Dynamic Time Warping, Symbol String Classifier, and the
Local Subspace Classifier. These methods will be described below.

4.4.1 Dynamic Time Warping

The Dynamic Time Warping (DTW) algorithm [174] has been used to match the
input strokes to the prototypes through nonlinear curve matching. The algorithm
finds the optimal matching of the data points which corresponds to the minimum
sum of the costs and which satisfies the boundary and continuity conditions.
The continuity condition requires that all data points are matched and in the
same order as they have been produced. In the point-wise distance measures
the boundary conditions require additionally that the first and last points of the
input and the prototype strokes are matched against each other.

Classification is performed by evaluating the dissimilarity measures between the
unknown character and all the prototypes and then applying the k-Nearest Neigh-
bor rule [37]. Only characters with the same number of strokes are matched. The
prototypes are also ordered on the basis of the locations of the starting and end-
ing point of the first stroke. These two techniques improve the time efficiency of
finding the nearest prototypes for the input character.

4.4. Classification techniques 75

Point-to-point: Point-to-line: Simple area: Kind of area:

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

������
�
�
�
�

��
��
��

��
��
��

Figure 4.4: Illustrations of the DTW-based distance measures

Six different dissimilarity measures have been used. All the DTW-based dissimi-
larity measures are described in full detail in [207]. The main difference between
the measures is the associated cost of matching a data point. All the measures
are defined on stroke-wise basis. The dissimilarity measures are the Point-to-
point (PP), Normalized point-to-point (NPP), Point-to-line (PL), Normalized
point-to-line (NPL), Kind-of-area (KA) and Simple-area (SA) distances. The
PP -distance uses the squared Euclidean distance between the data points as a
matching cost. In the PL-distance, the data points are matched to lines inter-
polated between the data points. The NPP - and NPL-distances are otherwise
similar to the PP - and PL-distances, respectively, but the sums of the matching
costs are divided stroke-wise by the number of matchings.

The KA-distance also matches data points against data points, but the Euclidean
distances from the matched data points to their neighboring data points are con-
sidered too. The SA-distance uses the area between the strokes approximated
with triangles or quadrilaterals as the matching cost. These two distances mea-
sure the area left between the matched strokes and are therefore more sensitive to
the shapes of the strokes than their data point densities. The used dissimilarity
measures are illustrated in Figure 4.4.

4.4.2 Symbol String Classifier

The Symbol String Classifier (SSC) uses a distance measure based on the Lev-
enshtein distance [114] for comparing the symbol string representations. Three
kinds of operations are used: replacements, removals and additions. Each of
these can be assigned a specific cost function.

In our experiments, this distance measure was somewhat modified so that in-
formation regarding the neighboring symbols was also used in determining the
modification costs. Extra cost for alteration of special symbols referring to move-
ment when the pen is off the tablet was also added. This additional penalty helps
preserve the stroke information available in the original stroke-based structure,
as the cost of modifying stroke-ending symbols was notably higher than that of

76 Chapter 4. On-line classifier adaptation – The CIS-HCR system

regular alterations. If length information was used the cost was also dependent
on the lengths of the symbols. Details of the symbol string based distance can
be found in [1]. Based on these costs, the actual distance between characters was
calculated with a dynamic programming algorithm [174].

4.4.3 Local Subspace Classifier

The Local Subspace Classifier (LSC) method [102] models the distribution of the
pattern classes in a non-parametric fashion by using existing prototypes to span
lower-dimensional local subspaces in the feature space. The distance is defined
between the input x and the local subspace nearest to it. The LSC method was
also discussed in Section 2.1.2 and an illustration of its operation can be seen
there in Figure 2.4.

When calculating the distance between the input vector x and pattern class j,
the D + 1 prototypes belonging to class j and nearest to x are first searched
for. A D-dimensional linear manifold Lj of the d-dimensional real space can then
be spanned by these prototypes. When x is projected orthogonally onto this
manifold, a residual vector x̃j results. The classification of x is then performed
according to the shortest x̃j among classes j = 1, . . . , C where C is the number
of classes. In any case, the residual length from the input vector x to the linear
manifold is equal to or smaller than the distance to the nearest prototype m0j ,
i.e. ‖x̃j‖ ≤ ||x − m0j||. It can be seen that the LSC method degenerates to the
1-NN rule when D = 0. [104]

4.5 On-line adaptation

With the DTW-based classifiers four different prototype set adaptation strategies
have been applied. They are Add, Inactivate, LVQ, and Hybrid [207, 213]. Add(k)
examines the classes of the k prototypes nearest to the input character. The input
character is added to the prototype set if any one of these prototypes belongs
to a wrong class, even if the classification was correct. Inactivate(N) is used for
inactivating those prototypes which are more harmful than useful. After each
recognition, it is checked if the prototype nearest to the input character has been
the nearest one at least N times and whether its class has been incorrect more
often than correct. In that case, the prototype is removed from the set of active
prototypes.

4.6. Experiments 77

When a character written by the user is similar to a prototype of the correct
class, but of slightly different shape, the existing prototype can be reshaped
instead of adding the input character to the prototype set. This can be performed
with an adaptation strategy called LVQ(α) based on a modified version of the
Learning Vector Quantization (LVQ) [93, 106]. Parameter α controls the degree
of reshaping. With larger values of α the modifications to the prototypes have
more impact. Hybrid(α,k) combines the Add(k) and LVQ(α) strategies. The k
nearest prototypes are examined. If any one of them belongs to the same class as
the input character, the nearest prototype is modified with LVQ(α). Otherwise,
the input character is added to the prototype set.

In the Local Subspace Classifier experiments we started with a user-independent
1-NN classifier created with the K-means algorithm [117, 126]. For each writer,
the user-dependent LSC prototype set was initially empty. The adaptation of
the LSC classifier was then performed according to one of two rules. In the
’E’ rule the prototype was added only if the LSC classifier had misclassified the
input. The ’A’ rule forced the addition of every input character. Every input
character was classified with both the user-independent 1-NN classifier and the
adaptive user-dependent LSC classifier. The joint classification decision of the
two was given by the one with shorter distance to either to the nearest prototype
or the nearest local subspace, respectively. This was possible as both types of
classifiers are based on the Euclidean distance metrics and measure the residuals
in the same units. If the class provided by the 1-NN classifier was incorrect, the
corresponding prototype in the K-means-initialized prototype set was removed.
The input character was added to the LSC prototype set according to either of
the ’A’ and ’E’ rules depending on the experiment. As a result, the size of the
user-independent 1-NN classifier decreased while the size of the user-dependent
LSC classifier increased during the adaptation.

The SSC classifier used similar ’A’ and ’E’ rules as the LSC classifier in adapta-
tion. A notable difference between the two methods was that the prototype set
of the string-based classifier was initialized by using all available samples instead
of a K-means-clustered subset. Also, the initial prototypes were never removed
even when they caused false recognitions.

4.6 Experiments

Database 1 was used for forming the initial prototype set and Database 3 was
used as a test set. The prototype sets were formed by first clustering character
samples of Database 1 written by several subjects and then selecting the middle-

78 Chapter 4. On-line classifier adaptation – The CIS-HCR system

most items of the clusters to present the corresponding styles of writing. In the
SSC classifier, the computational requirements were lowest and it was feasible to
use the entire Database 1 as the prototype set.

In the experiments a character set containing the digits and lower case letters
including three Scandinavian diacriticals (̊a, ä, ö) was used. The recognition error
rates shown have been obtained as the average of the results on Database 3. A
larger dataset that included Database 2 was used for selecting suitable values
for the parameters. These parameters were k, N and α for the respective DTW
adaptation strategies as well as the SSC parameters ds and ls and K and D for
the 1-NN and LSC classifiers.

The experiments were run as batch experiments on previously collected data, and
hence there was no actual feedback from the user to the recognition system. It
was also assumed that the true classes of all characters were known for both the
adaptation and the calculation of recognition accuracies.

4.7 Results of classifier adaptation

The results are grouped in Table 4.2 so that in every group the first line shows
the results of the non-adaptive classifier. Then, results with different adaptation
strategies are shown for each recognition method. Two error rates are calcu-
lated. The total error percentage was measured for each writer during the whole
test run. The final error rate was evaluated for the last 200 characters of each
writer. It thus gives better impression of the obtainable recognition accuracy
after adaptation.

It was noted during the experiments that the writing style of some subjects got
rather poor during the last characters due to fatigue and lowered motivation.
This can also be observed in the results of some non-adaptive classifiers where
the final error rate is higher than the total rate. The numbers of final prototypes
in the last column of the table are the sums of the numbers of the remaining
user-independent and the added user-dependent ones.

With the DTW classifier, the best results were obtained with Add(k) when k = 4,
and with Hybrid(α,k) when k = 3 and α = 0.3. The same value of α worked
also best with LVQ(α). Inactivate(N) did improve the recognition accuracy only
when it was applied with Add(k). In that case, the best value for N was 3. The
best recognition result in the whole series of experiments was obtained with DTW
when adaptation strategy Add(4) was used together with Inactivate(3). It can

4.7. Results of classifier adaptation 79

Table 4.2: The resulting error percentages of the adaptive classifier
experiments

Errors Units

Recognizer total final start end

DTW 14.1 14.1 273 273
DTW-Add(4) 3.1 1.8 273 453
DTW-LVQ(0.3) 9.9 8.6 273 273
DTW-Add(4)+Inactivate(3) 3.0 1.6 273 450
DTW-Hybrid(3,0.3) 4.2 2.5 273 278
DTW-Hybrid(3,0.3)+Inactivate(16) 4.3 2.8 273 278
SSC(ds=32,ls=15) 26.1 27.1 8461 8461
SSC-E(ds=32,ls=15) 15.2 13.4 8461 8549
SSC-A(ds=32,ls=15) 10.5 7.6 8461 9041
1-NN(K=10) 39.0 42.1 390 390
1-NN-E(K=7) 22.0 19.0 273 346
1-NN-A(K=7) 16.1 11.2 273 796
LSC-E(K=10,D=4) 18.6 13.9 390 483
LSC-A(K=9,D=4) 13.5 8.1 351 895

also be seen that the results of the DTW classifier are clearly superior already in
the non-adaptive case when compared with the other methods here.

The SSC classifier produced its best results when using ds = 32 directions and
the discretization distance of ls = 15. The ’A’ rule of adaptation produced only
about one half of the final errors the ’E’ rule made. The non-adaptive version’s
error rate was approximately twice that of the ’E’ rule. The SSC classifiers were
outperformed by the DTW-based method, but still performed better than the
LSC classifier in both adaptive an non-adaptive cases.

In the LSC experiments the two proposed stroke thickening methods for feature
extraction performed equally well. Therefore it was reasonable to use the first
one as it was easier to implement and use. Therefore, Table 4.2 only displays
results for the first thickening method and LSC. The dimensionality of feature
vectors was selected experimentally by decreasing it gradually from 64, which was
the dimensionality of data after the Karhunen-Loève transform. In the reduction
process, feature components were discarded starting from those corresponding to
the smallest eigenvalues. The best result with the non-adaptive 1-NN classifier
was obtained when the dimensionality of the feature vectors was 45. This value
was then used. The optimal value for K, the number of initial user-independent

80 Chapter 4. On-line classifier adaptation – The CIS-HCR system

prototypes per class, was selected individually for each method between 1 and
10.

The table first shows the result for the non-adaptive 1-NN classifier and then an
adaptive 1-NN classifier when both the ’E’ and ’A’ adaptation strategies have
been used. This classifier was formed similarly to the adaptive LSC classifier,
i.e. user-independent prototypes were removed and user-dependent ones added.
It can be seen that the LSC-based adaptive classifier outperforms the adaptive
1-NN classifier in both the ’E’ and ’A’ cases. For both classifiers, the ’A’ strategy
seems to be better than the ’E’ strategy.

In all cases the adaptive classifiers are clearly better than the non-adaptive ones.
It is also evident that DTW-based classifiers are clearly the most effective ones.
This led us to focus on the DTW-based classifier and provide variation through
the use of different distance measures and normalizations. Chronologically the
experiments with diversity measures were performed at a much later stage in
the research, and thus our original determination of taking forward the most
promising set of classifiers was still the deciding factor. That has been the case
for most of the adaptive committee experiments that are discussed in Chapter 5.
Still, in many cases a diverse set of member classifiers can be more beneficial for
classifier combining, and if we had looked into this direction of research at an
earlier stage, the selection of the member classifiers for the adaptive committee
evaluation might well have been different. However, the use of a single type of
member classifiers does help to isolate classifier-specific factors from having an
effect on the adaptive committee experiments, and as such that choice does have
its merits. Diversity and its effects are discussed in more detail in Chapter 7.

81

Chapter 5

Adaptive committee

classification

In addition to using individually adaptive classifiers, committee structures that
are adaptive in themselves can be used. While an adaptive committee has in
general significantly less information to work with than an adaptive classifier,
the higher level of abstraction also provides some benefits. Among these benefits
are applicability to a wide range of scenarios and the ability to provide adaptivity
to classifiers that cannot be made adaptive themselves. Also, it is much easier
to store and adjust the much smaller amount of information that is provided by
the member classifiers.

It is possible to combine adaptive or non-adaptive member classifiers with adap-
tive committee structures. In any case, adaptation on the committee level is
based on some level of consistency in the decisions of the member classifiers,
and it is this consistency that can be learnt by the committee. Thus combining
adaptive members is a much more challenging task than combining non-adaptive
member classifiers.

Experiments with adaptive committee approaches combining both adaptive and
non-adaptive member classifiers have been performed and some novel committee
adaptation approaches and their performance will be discussed in the following
sections. More details can be found in the included publications. It should also
be noted that for all these methods it is assumed that information on the correct
classification result can be used for committee adaptation.

82 Chapter 5. Adaptive committee classification

The application throughout is on-line handwritten character recognition, al-
though other applications would of course be possible as well. Any applica-
tion where a significant amount of variation is present, but only a subset of it is
likely to be expressed is an ideal candidate for performance improvement through
on-line adaptation. At least most human interface applications fall within this
category, as each person tends to have a specific style of writing, talking or ges-
turing while practically infinite amounts of possibilities exist overall. However,
also other applicable scenarios, such as process control, are not difficult to en-
vision. So, the applicability of the presented methods is by no means limited to
the present application.

5.1 Levels of classifier information for combining

One fundamental attribute in defining a classifier combination method is how
much information the committee obtains from the member classifiers. For most
classifier combination methods information on the sample being classified is only
available through the outputs of the classifiers. Even though combination meth-
ods that use also features from the original data do exist, such committees are
definitely a minority.

We will work from the assumption that the committee classifier bases its decisions
solely on information provided by the member classifiers. For these situations,
three distinct levels of information should be considered. The levels of classifier
information were also discussed in Section 2.3.

The least informative output from a classifier is just the label the classifier sug-
gests. At this level, the classifiers produce no information with regard to how
confident they are in their decisions. The next level of additional information
for a classifier is to produce a list of possible classes, in order of preference. An
even more informative alternative is that the classifiers output information on
the measurement level – examples of measurement level information are mem-
bership or belief values and confidences or estimates of the posterior probabilities
of classes. This increase in information enables much more reliable estimation of
the classifiers’ confidences in their classification results.

5.2. Adaptive implementations of committee classifiers 83

5.2 Adaptive implementations of committee clas-

sifiers

Some adaptive committee classifiers that have been used in the work of this
thesis will be discussed and explained in this section, starting from the most
simple adaptation rules. All the combination methods presented in this section
share the feature that they are very simple adaptive extensions to a common
approach. Also, all but the Decision Template method operate solely on label-
level information from the classifiers. Later in Sections 5.3, 5.4 and 5.5 three
novel adaptive committee structures developed will be presented.

5.2.1 Adaptive best

Perhaps the simplest form of committee adaptation is an adjusting best com-
mittee [105], which has been used in Publications 2, 4 and 5. The idea is to
select the best classifier for each individual writer by evaluating the classifiers’
performances during operation and using the result from the classifier that has
performed the best up to that point. The performance evaluation is conducted
by simply keeping track of correct recognitions obtained from each classifier. At
any given time the committee’s decision is thus the result from the classifier with
the highest correct answer count at that point,

c(x) = cj(x), j = arg
K

max
k=1

N(correct classifications for classifier k), (5.1)

with N(correct classifications for classifier k) being the count of correct recogni-
tions for classifier k, ck(x) the class suggested by that classifier for the present
input x and K is the total number of classifiers. In the case of a draw, the result
from the classifier ranked higher on the classifier evaluation data set is used.

5.2.2 Adaptive voting

Another basic approach to adaptive committee decisions is to use a weighted
variation of the original plurality voting rule [87]. Adaptation has been imple-
mented by introducing weights based on a running evaluation of correctness for
each voting classifier. The weight is in the form of the ratio between the count
of correct classifications from a particular classifier and all classifiers,

w(k) =
1 + N(correct classifications for classifier k)

1 +
∑K

j=1 N(correct classifications for classifier j)
, (5.2)

84 Chapter 5. Adaptive committee classification

where w(k) is the weight for classifier k. The addition of one in both the nomi-
nator and denominator has been made to avoid both zero weights and divisions
by zero. The adaptive voting committee has been used in Publications 4 and 5.

With this weighting, the final plurality voting decision is obtained as

cwp(x) = arg
C

max
c=1

K∑

k=1

w(k)∆k(x, c), (5.3)

where C is the total number of classes. ∆k(x, c) is 1 if classifier k suggests the
class c for sample x and zero otherwise. In practice this decision scheme sums
up the confidences for each suggested label and selects the one with the highest
overall confidence.

5.2.3 Adaptive Behavior-Knowledge Space

The Behavior-Knowledge Space (BKS) method [75], which was briefly discussed
also in Section 2.3.3, is based on using a K-dimensional discrete space, with each
dimension corresponding to the decision of one classifier. That discrete space is
used to determine the class labels. The knowledge space is used by first finding
the focal unit in the K-dimensional space, the unit which is the intersection of
the classifiers’ decisions for the current input. In the training phase the unit in
the focal unit collects the count of recognitions and counts for each true class.

For recognition, the focal unit corresponding to the classification results of the
member classifiers is first identified. Then if that unit has gathered samples, the
class with the highest ratio is selected. In our experiments rejection is not used
and thus the output of the committee is taken to be simply the class with the
highest probability in the focal point – in practice the one that has received most
samples. If the focal point has not received any samples, the default rule of using
the highest-ranking classifier’s result is used.

The BKS method can also be used in an adaptive fashion. In the experiments
of Publication 5 the BKS was trained on a separate database and it made its
decisions as in the non-adaptive case described above. Adaptation of the BKS
committee was implemented through adding all classified samples to the knowl-
edge space in a fashion identical to the training phase. The new samples added
to the BKS during adaptive operation are considered to be of equal value as the
stored training data and as such are also treated identically during classification.

5.2. Adaptive implementations of committee classifiers 85

5.2.4 Adaptive Decision Templates

Another committee classification method experimented with is the Decision Tem-
plate (DT) method [98], which was discussed in Section 2.3.3. The main idea of
the DT method is to create decision templates for each class from the training
data, compare a decision profile computed for the input sample to the decision
templates, and select the best-matching class.

Each sample x’s decision profile DPx is a K×C matrix consisting of the supports
of all K classifiers for all C classes. The decision template DTc for a class c is
obtained by averaging over all the decision profiles of samples belonging to that
class in the training data. For implementing the DT method with classifiers that
do not natively produce supports but for example distances, it is first necessary
to transform the distances produced by the classifiers into supports by some
means. Initial experiments revealed that the DT method does not seem to be
very effective when the variability range of the supports is very small, as would
often be the case if simple scaling were used. Hence, a hyperbolic tangent function
was used to scale the resulting supports.

In these experiments the supports were calculated by first finding the largest
finite distance produced by the classifier k for sample x, denoted as dk

max(x).
Then the distances to the nearest prototype of each class c from classifier k were
scaled and transformed to supports as

sk
c (x) =

ŝk
c (x)

∑C

v=1 ŝk
v(x)

, (5.4)

where

ŝk
c (x) =

{
1 − tanh(15

dk
c (x)

dk
max(x)

+ 5) , if dk
c (x) is finite

0 , otherwise.
(5.5)

In the unlikely event that no distance dk
c (c) was finite, supports for all classes

were deemed zero. The numerical values for the hyperbolic tangent scaling, the

multiplier of the ratio
dk

c (x)
dk

max(x)
and the addition constant, 15 and 5 respectively,

were determined experimentally from experiments on the training data set.

The input sample’s decision profile was compared to the decision templates us-
ing the measure of similarity S1(DPx, DTc) that performed best in experiments
of [98]. With K classifiers and C classes the similarity measure between the de-
cision profile DPx for the input x and the decision template DTc for class c is

86 Chapter 5. Adaptive committee classification

calculated as

S(DPx, DTc) =
1

KC

K∑

k=1

C∑

v=1

min(DPx(k, v), DTc(k, v))

max(DPx(k, v), DTc(k, v))
. (5.6)

After the similarity of the input’s decision profile is calculated to the decision
templates of all classes, the most similar class is chosen. Adaptivity was intro-
duced to the system via adapting the decision template of the correct class after
recognition by inserting the classified input’s decision profile into the decision
template of the corresponding class. The classified samples were thus considered
equally valuable as the training data samples in defining the decision templates.

5.3 Modified Current-Best-Learning

The Current-Best-Learning (CBL) algorithm [169] is a framework for learning
general logical descriptions. The CBL algorithm works by maintaining a hypoth-
esis and adjusting it as new examples arrive. The fundamental idea is to ensure
that the hypothesis is consistent for all the examples that have been presented
to the system.

The CBL algorithm has been modified in our experiments to function as a com-
mittee classifier. Even though the implementation differs significantly from the
original CBL algorithm, the implemented committee is referred to as the Modi-
fied Current-Best-Learning (MCBL) committee due to the source of inspiration.
The MCBL committee was introduced and used in Publications 2 and 5.

In the MCBL committee, the system can be described with a two-dimensional
grid, with each column, 1, . . . , K, representing a member classifier and each row
1, . . . , C corresponding to a particular class. The values stored in the grid are
simple estimates for the confidence of a member classifier’s decision for classifying
an input to that particular class. Thus each point of the continuous hypothesis
space corresponds to a particular combination of the confidence values in the
grid. The operations of the CBL algorithm, specialization and generalization,
now correspond to changing the confidence values, which is equivalent to moving
the point of the current hypothesis in the hypothesis space.

The decision of the committee is simply that member classifier’s result which has
the largest class-wise confidence value fk(ck(x)),

cmcbl(x) = cj(x), j = arg maxK
k=1f

k(ck(x)), (5.7)

5.4. Dynamically Expanding Context 87

where k is the index of the classifier and ck(x) the class suggested by that classifier
for the input x.

When forming the class-wise confidence values the MCBL committee uses meas-
urement-level information from the member classifiers. In Publications 2 and 5
we used distances dk

a(x) and dk
b (x) which in a prototype-based classifier k are

the distances from the input calculated to the nearest prototypes in the first and
second-ranked classes, respectively. From those, we can calculate

lk(x) = 1 − dk
a(x)

dk
a(x) + dk

b (x)
, (5.8)

which is an increasing function of the unambiguity of the single classifier’s deci-
sion.

By combining the values lk(x) into class-wise confidence values fk(ck(x)), a table
consisting of each classifier’s classification result and its confidence can be formed.
To modify the hypothesis, the values fk(ck(x)) are adjusted when the committee
as a whole is incorrect. For all classifiers k of the committee that are correct,
the lk(x) value for that classifier is added to the confidence of the class for that
classifier. Let us use the notation ctrue(x) for the true class of sample x. When
a classifier produces an incorrect result, its confidence for that class is reduced
by multiplying it with the value lk(x). The value fk(ck(x)) is always reduced
through multiplication as 1/2 ≤ lk(x) < 1 for all lk(x). This can be formulated
as

∀k ∈ {1, . . . , K} : fk(ck(x)) :=

{
fk(ck(x)) + lk(x), if ck(x) = ctrue(x)

fk(ck(x)) · lk(x) , otherwise.

(5.9)

When the committee produces a correct result, the current hypothesis is con-
sidered to be effective and no changes are made. A reasonable initialization for
the confidence values was found to be the inverse of the ordering of the classi-
fiers according to their decreasing recognition performance, i.e. fk(cj) = 1

k
for

all classifiers k and class labels cj, where the indexing of k corresponds to the
classifiers’ ordering.

5.4 Dynamically Expanding Context

The Dynamically Expanding Context (DEC) algorithm was originally introduced
as a method for correcting coarticulation effects between adjacent phonemes in

88 Chapter 5. Adaptive committee classification

speech recognition [91, 92, 199]. The method can be formulated as a set of
context-sensitive production rules L(A)R → (B), where A and B are the input
and output symbols, and L and R are the left and right contexts of the input
symbol. The combined length of the L and R contexts is referred to as the level of
the rule. Each time a rule is found to be in conflict with the actual transformation
needed for correct output, a new higher-level rule is added.

For the setting of classifier combining, the DEC principle has been adjusted to
use a set of classifier outputs as a one-sided context to create production rules to
correct classification errors. We have used the DEC committee in [105, 2] as well
as in included Publications 2, 3, 5 and 7.

In practice, the member classifiers are first initialized and ranked in order of
decreasing performance. Then the result of the best-ranked classifier is taken as
the input, and the results of the remaining classifiers are taken as a one-sided
context for the input. Second-best results from the classifiers can be used too,
thus categorizing the DEC committee as a method based on ordered results from
its members. More than two results from each classifier could be used as well, but
for our experiments we limited the context size to be taken from each classifier
to the two highest-ranked results.

The DEC rules can be written symbolically as

(A)R → B, (5.10)

where (A)R is a string of member classifier outputs, with (A) being the result from
the highest-ranked classifier and r the one-sided context formed from the outputs
of the rest of the members. The output symbol B is the desired recognition result.

When a new character is presented to the system, the input (A) along with the
context R, in practice the list of member classifiers’ outputs, is searched for in the
existing rule base. If no matching rule is found, the default decision is applied.
This default decision can be for example to use the first output of the best ranked
classifier or to output a plurality voting result.

If more than one rule matches the input, the highest-level one, i.e. the most
specific one, or equivalently, the one with the largest context, is used. If the
recognition result is then found to be incorrect, a new rule with more context is
added to the rule base. A schematic diagram of the DEC committee is presented
in Figure 5.1.

As new DEC rules are being added, all the available context information will
eventually be used by the rules. All error situations thereafter would call for

5.5. Class-Confidence Critic Combining 89

Classifier #1

Classifier #2

Classifier #3

a→ p

ab→ q

abc→ r

abcd→ s

DEC rulesmember outputs

1st 2nd

a

b

c

d

e

f

Committee machine

recognition

Figure 5.1: A block diagram of the DEC committee

additional rules, but the context cannot be expanded anymore. Therefore, it is
allowed that there exist more than one highest-level rule for the same context.
In this case, there are some methods for selecting the rule to use. First, the
number of correct applications of each such rule can be maintained and the rule
with the highest correctness value applied. Second, also the count of incorrect
applications may be taken into account by subtracting them from the count
of correct applications in order to select one of the conflicting rules. Third, a
rule may be inactivated upon an incorrect result. An inactivated rule will be
reactivated if a situation arises where the committee was incorrect but that rule
would have produced the correct result.

In practice it often seems to be beneficial to require the output symbol (B)
to be included in the context (A)R, which in fact means that the output of the
committee must be one of its members outputs. This serves to hinder the creation
of erroneous rules from bad inputs, but also makes it impossible for the committee
to learn to correct situations where all classifiers are incorrect. Thus the benefit
of this requirement is highly dependent on the task and member classifier set.

5.5 Class-Confidence Critic Combining

In critic-based approaches there is usually a separate expert that makes a decision
on whether the classifier it is examining is correct or not. This decision must
naturally be made based on information obtainable on the classifier. In our
Class-Confidence Critic Combining (CCCC) approach the focal idea is to try to
produce as good an estimate as possible on the classifier’s correctness based on its

90 Chapter 5. Adaptive committee classification

Member
classifier K

.

.

.

Normalization

.

.

.

NormalizationDistribution

Distribution

Distribution

Distribution

Distribution

Distribution

Distribution

Distribution

K

1d (x)... d (x)
K

C

1

1d (x)... d (x)
1

C

Critic 1

Critic K

1

1q (x)... q (x)
1

C

K

1q (x)... q (x)
K

C

.

.

.

Member
classifier 1

Class C

x

x

Committee
CCCC OutputInput

Class C

x

Class 1

Class 1

t (x)... t (x)

Kt (x)... t (x)1 C

K

1

1 1

C

Figure 5.2: A block diagram of the CCCC committee

prior behavior for the same character class. The method produces a confidence
value which is used to make the final decision.

In practice, the classifiers’ behavior is modeled via collecting normalized distance
values from the classifier and storing these values in distribution models. Thus
the CCCC committee works with classifiers outputting measurement level infor-
mation as well. The distribution models are then used to evaluate the critics’
confidence in a particular decision, and the final decision on the output label is
made based on these confidences. The CCCC method has been introduced, used
and improved in Publications 4, 5, 6, and 8. The system is described here in its
entirety as it is perhaps the most important contribution of this thesis, and also
the various improvements and additions to the framework have appeared in dif-
ferent publications, none of which encompassed all the implemented possibilities.
A schematic diagram of the CCCC committee structure is shown in Figure 5.2.

5.5. Class-Confidence Critic Combining 91

5.5.1 Distance normalization

Let there again be K classifiers, each of which uses some distance measure and de-
termines its output by minimizing that distance. If the classifiers were to produce
some evaluations of confidence or probability, those may be simply translated to
values that decrease as similarity increases. For example, if we have a confidence
measure t ∈ [0, 1], we may simply use 1 − t as the distance. Hence we will here
assume that a metric is used that decreases as similarity increases, a distance
measure d.

As before, let there be C pattern classes and let it be possible for each classifier
to produce a distance value for every class. This would mean for example for a
prototype-based classifier that it has at least one prototype for each class. Let
x be the current input sample, k the classifier index, k ∈ {1, . . . , K}, and c the
class index, c ∈ {1, . . . , C}. Even though it would be desirable for the classifiers
to output distances for all classes, that is not always the case. For example the
DTW-based classifiers we have used, described in Section 4.4.1, will output an
infinite distance if matching to no prototype of that class is possible. As the
classifier is based on stroke-wise matching, this happens whenever the number of
strokes differs between the input sample and all prototypes of a particular class.
Thus in each classifier we may find the shortest distance to the nearest prototype
of each class, dk

c (x) ∈ [0,∞]. As the possibility of infinite distances exists, we
normalize the distances as

qk
c (x) =

dk
c (x)

P

C

v=1
d̂k

v(x)
, if dk

c (x) is finite

1 , otherwise
, (5.11)

where d̂k
c (x) used in the summation equals dk

c (x) if it is finite and is otherwise
zero. However, if the distance to only one class is finite, the normalized distance
to that class is defined to be zero, as the only possible class should naturally
be the one chosen. Also some other scaling approaches have been experimented
with in Publication 5, but they can be seen as special cases of equation (5.11)
that are produced by restricting the examined classes to be either the single or
two nearest classes. Later experiments have shown that the normalization is
in general beneficial due to the abovementioned reasons, and hence it will be
assumed to be always in use here.

92 Chapter 5. Adaptive committee classification

5.5.2 Distribution types

In order to obtain confidences for decisions on previously unseen x, the distri-
bution of the qk

c (x) values must be modeled in some way. The approach used
here is to collect the previous values into distribution models from which a value
for the confidence can be obtained as a function of qk

c (x). One key point in the
effectiveness of a scheme based on confidence values calculated from distribution
models is naturally the ease of creating and modifying the distribution models.
The amount of data that is obtained from each true distribution for the creation
of the models is quite limited, and in a real situation may vary greatly between
distributions due to the fact that some classes occur much more frequently than
others. Thus the methods should be capable of producing reliable estimates even
with small amounts of data. We have experimented with a number of distribution
models in Publications 4, 5, 6, and 8, and they are explained below.

The notation used is that the shorthand distribution index i runs over the dis-
tributions of both correct and incorrect classifications for each class c in each
member classifier k. Each distribution model i contains Ni previously collected
values qk

c (x), for which we use the shorthand notation zi
j, j = 1, . . . , Ni. The nota-

tion for the confidence obtained from the distribution model i stands as pi(qk
c (x)).

For shortening the notation further, we shall use qk
c (x) = z. The index k is used

for indicating both the member classifier and the critic, as there is always exactly
one critic paired with a member classifier. The weight assigned to each sample
by the critic is denoted with wi(z

i
j). When no weighting scheme is in use, the

constant weight of one is used for all samples, wi(z
i
j) = 1, ∀i, j.

Gaussian normal distribution: The Gaussian normal distribution is applied
through calculating the variance and mean from the already obtained samples
and then calculating the values for the confidences from a Gaussian normal dis-
tribution pi

gaussian(qk
c (x)) = pi

gaussian(z) where,

pi
gaussian(z) =

1√
2πσi

e
−

(z−µi)
2

2σ2
i , (5.12)

where µi is the mean and σ2
i the variance estimated for the distribution indexed

with i. Initial values are used for the mean when no samples exist and for
the variance when less than two samples have been received for the particular
distribution.

Non-parametric distribution: The non-parametric model is based on calcu-
lating the number nf (z, i) of points in the distribution that are further from the

5.5. Class-Confidence Critic Combining 93

mean of the distribution µi than the the input z,

nf (z, i) =

Ni∑

j=1

v(z, i, j), v(z, i, j) =

{
1, if |z − µi| < |zi

j − µi|
0, otherwise

. (5.13)

The confidence is then based on the ratio between nf (z, i) and the total number
of points in the distribution Ni so that

pi
nonparam(z) =

nf (z, i)

Ni

. (5.14)

Nearest Neighbor approach: The nearest neighbor (NN) rule is used by
calculating the distance from the input value z to the nearest value already in
the distribution i containing Ni values zi

j,

pi
NN(z) = 1 −

Ni

min
j=1

|z − zi
j|. (5.15)

Triangular kernel distribution estimate: The triangular kernel distribution
estimate is formed through the use of a triangular kernel function,

pi
trikernel(z) =

1
∑Ni

j=1 wi(zi
j)

Ni∑

j=1

wi(z
i
j)max {0, (b − |z − zi

j |)}. (5.16)

defined by the bandwidth b. The estimate is thus calculated by applying a kernel
over all Ni data points zi

j in the distribution i and normalizing.

Gaussian kernel distribution estimate: The Gaussian kernel distribution is
estimated through the use of a Gaussian function with variance of b as the kernel.
The evaluation of the distributions’ values at specific points is performed as for
the triangular kernel,

pi
gausskernel(z) =

1
∑Ni

j=1 wi(zi
j)

Ni∑

j=1

wi(z
i
j)e

−
(z−zi

j
)2

2b . (5.17)

Exponential kernel distribution estimate: The two-sided exponential kernel
distribution estimation is performed using an exponential kernel with the kernel
bandwidth b,

pi
expkernel(z) =

1
∑Ni

j=1 wi(zi
j)

Ni∑

j=1

wi(z
i
j)e

−
|z−zi

j
|

b . (5.18)

94 Chapter 5. Adaptive committee classification

5.5.3 Weighting schemes

A weight can be assigned with each distance value stored in the critic’s distri-
bution model to facilitate emphasizing newer inputs. For the second phase of
adaptation, the weights will be modified to obtain more robust behavior. Three
approaches for adjusting the weights of the sample points have been used, along
with the constant weighting scheme used for reference, in Publications 6 and 8.

Constant weights: The weight for each sample is constant,

wi(z
i
j) = 1, ∀i, j. (5.19)

Class-independent weights: The weights are initially set in an increasing
order by using an increasing counter (sample index) n(zi

j) scaled with a suitable
constant. If known beforehand, the total number of test samples N can be used
for the scaling factor to obtain the weights

wi(z
i
j) =

n(zi
j)

N
. (5.20)

These weights do not depend on the distribution model the sample is inserted
into, so within each distribution there can be large differences in the weights.

Class-dependent weights: For each distribution, the weights are scaled lin-
early every time a new sample is inserted. As a result, each sample has weight
equal to the ratio of its index ni(z

j
i) in that particular distribution model i and

the total number of samples in that model, Ni,

wi(z
i
j) =

ni(z
i
j)

Ni

. (5.21)

This results in the first sample having the smallest weight of 1/Ni and the most
recent sample having the weight Ni/Ni = 1.

Decaying weights: When a new sample is inserted to the distribution model,
the weights are recalculated to decrease in accordance with a decay constant
λ ∈ [0, 1] so that

wi(z
i
j) = max{0, 1 − λ(Ni − ni(z

i
j))}. (5.22)

Effectively the inverse of the decay constant λ states how many previous samples
the distribution “remembers” at any given time point, with the newest samples
being given the most weight.

5.5. Class-Confidence Critic Combining 95

5.5.4 Combining confidence values

Now we obtain two confidences, one from the distribution of correct classifi-
cations denoted pcorrect(qk

c (x)) and the other from the distribution of incorrect
classifications, pincorrect(qk

c (x)). The first approach to obtaining the classification
confidence uk

c (x) given by critic k to the classification result ck(x) of classifier k is
to just use the confidence from the correct distribution as the overall confidence,

uk
c (x) = pcorrect(qk

c (x)). (5.23)

Equation (5.23) was used in experiments of Publications 4, 5, 6, and 8.

The second approach experimented with, applied in Publications 4 and 5, is to
use both the correct and incorrect classification result distribution confidences
pcorrect(qk

c (x)) and pincorrect(qk
c (x)) by subtracting them from one another,

uk
c (x) = pcorrect(qk

c (x)) − pincorrect(qk
c (x)). (5.24)

It should however be noted that equation (5.24) can result also in negative con-
fidences.

For non-adaptive member classifiers additional robustness is usually not necessary
and hence the classification confidence uk

c (x) may be directly used as the overall
confidence tkc (x) given by the critic k for the input x belonging to class c,

tkc (x) = uk
c (x). (5.25)

However when more emphasis needs to be put on the performance of the clas-
sifiers, the overall confidence tkc (x) can also be obtained by weighting the clas-
sification confidence uk

c (x) with a running evaluation of the classifiers’ overall
correctness rate as suggested in Publication 6. This rate p(classifier k correct)
is obtained by tracking how many times classifier k has been correct so far and
dividing that by the total number of samples classified. Hence the overall confi-
dence can be written as

tkc (x) = uk
c (x) · p(classifier k correct). (5.26)

If still more robustness is desired, for example when combining member classifiers
that are adaptive by themselves, the original normalized distance value can be
taken into account as well. In practice, to obtain the final confidence, the result
of (5.26) is multiplied by one minus the normalized distance value derived from
the classifier itself, 1− qk

c (x). This strategy was introduced in Publication 8 and

96 Chapter 5. Adaptive committee classification

is reasonable as the distance value obtained from the classifier can also be seen
as an indication of the classifier’s own current confidence in its output. Hence in
this case the overall confidence tkc (x) becomes

tkc (x) = uk
c (x) · p(classifier k correct) ·

(
1 − qk

c (x)
)
. (5.27)

5.5.5 Decision mechanisms

For determining the final decision, a decision rule that is capable of taking ad-
vantage of the confidences provided by the critics should be used. The decision
rule will take the confidences and attempt to select the best overall result. The
product, sum, min and max rules were introduced in Publication 6, but also the
weighted voting rule used in Publications 4 and 5 can be seen as an application
of the sum rule, as well as the maximum selection of those two publications being
an application of the max rule.

Product rule: For each class, the confidences of the critics are multiplied to-
gether, and then the class with the largest total confidence is chosen,

cprod(x) = arg
C

max
j=1

K∏

k=1

tkj (x). (5.28)

Sum rule: For each class, the confidences of the critics are summed together,
and then the class with the largest resulting confidence is selected,

csum(x) = arg
C

max
j=1

K∑

k=1

tkj (x). (5.29)

Min rule: For each class, the smallest confidence from a critic is used, and then
the class with the largest minimum confidence is chosen,

cmin(x) = arg
C

max
j=1

K

min
k=1

tkj (x). (5.30)

Max rule: For each class, the largest confidence from a critic is discovered, and
then the class with the largest maximum confidence is selected,

cmax(x) = arg
C

max
j=1

K
max
k=1

tkj (x). (5.31)

5.6. Committee performance 97

Modified Current-Best-Learning decision: The MCBL rule, as described
in Section 5.3, has also been applied as a decision scheme for CCCC in Publica-
tions 4 and 5. Here the confidences originally from equation (5.8) were simply
replaced with the overall confidences obtained from the critics, tkc (x), to obtain the
MCBL class-wise confidences fk(ck(x)). The MCBL decision mechanism takes
into account only the confidence for the class that the critic is most confident in.

Prior to the final decision, the obtained confidences were still modified by adding
the critic’s confidence value tkc (x) to the MCBL confidence value when the critic
had a positive confidence and multiplying them if the critic’s confidence was
negative,

tkmcbl(x) =

{
fk(ck(x)) + tkc (x) , if tkc (x) > 0

fk(ck(x)) · tkc (x) , otherwise
. (5.32)

This last step mirrors the logic behind equation (5.27). This MCBL modification
scheme was used as it was the one found to produce best results from a number of
schemes experimented with. It should be noted that tkc (x) can indeed be negative
if equation (5.24) is used for combining the correct and incorrect confidences.

For the final decision from tkmcbl(x), both selecting the result based on the max-
imum value as in equation (5.31) and a scheme using the sum rule of equa-
tion (5.29) were experimented with in Publications 4 and 5, but any of the equa-
tions (5.28) – (5.31) could be used.

5.6 Committee performance

Although experiments with the committee approaches used have been presented
in Publications 2, 4, 5, 6 and 8, an additional set of experiments has been per-
formed for the purpose of being able to easily compare all the presented committee
methods at once. Here they all have been evaluated in an identical setting on
the same database as will be described in Sections 5.6.1–5.6.4. This is in fact a
superset of the experiments of Publication 8 with now all the presented methods
being evaluated in the same setting. Some conclusions from the experiments will
be discussed in Section 5.6.5.

This discussion will be restricted to an empirical evaluation of the presented meth-
ods. The analytical evaluation of the presented committee methods has proven
quite difficult due to the complex nature of the presented combination methods,
especially without making simplifying assumptions that would lessen the appli-
cability to real-life situations. Thus the analytical evaluation has been left out

98 Chapter 5. Adaptive committee classification

from the scope of this thesis, but would definitely provide a very interesting topic
for further work.

5.6.1 Experimental setup

The experiments were performed using a total of six different classifiers formed
through the combinations of the distance measures and normalization techniques
for the DTW-based classifiers described in Section 4.4.1. These classifiers have
been used because they have been found to provide very impressive benefits
through adaptation when used as individually adaptive classifiers, while also per-
forming very well without adaptivity. Combining effective adaptive classifiers was
considered the most difficult scenario for obtaining further improvement through
adaptive combination, and thus the performance in this setting should be of much
interest. Experiments with more diverse classifiers and the effects of diversity on
combination performance will be discussed in Chapter 7.

The data used in the experiments were on-line handwritten characters written
one-by-one. Data collection and preprocessing are covered in detail in [215].
The experiments were performed as batch runs on previously collected data.
Thus there was no feedback from the user to the recognition system, and it was
assumed that the true classes of all characters were known for the adaptation.
All upper and lowercase letters, including the three Scandinavian diacriticals ‘̊a’,
’ä’ and ’ö’, and digits were used as 68 pattern classes.

It should be noted that the character set used for these experiments consisted of
all 68 pattern classes whereas the data used for the experiments of Section 4.6 only
included the lowercase letters and digits, a total of 39 character classes. Thus
also the performances of the individual classifiers seem lower in these experi-
ments. The use of all character classes was deemed appropriate as the committee
classifiers will enhance the performance notably.

The data used was the three independent databases described in Section 4.1.
Database 1 was used for forming the initial user-independent prototype set for
the DTW-based member classifiers. The prototype set consisted of seven proto-
types per class. Database 2 was used for estimating the values for the necessary
numeric parameters for the committee and determining the performance rankings
of the classifiers. Classifiers were always used in order of their rankings based
on their non-adaptive performance on Database 2. Database 3 was used as an
independent test set. In the experiments the adaptive member classifiers were
reset to their user-independent initial state in between writers. The performances

5.6. Committee performance 99

Table 5.1: Single classifier results

Error percentage

Member classifier non-adaptive adaptive

point-to-point, mass center 20.02 9.87
point-to-point, bounding box 21.18 9.90
normalized point-to-point, mass center 20.93 10.24
normalized point-to-point, bounding box 21.18 10.70
point-to-line, mass center 20.77 15.56
point-to-line, bounding box 22.28 16.27

of the member classifiers, in adaptive and non-adaptive configuration, are shown
in Table 5.1.

5.6.2 Committee configuration

In addition to the seven adaptive committee structures described in sections 5.2–
5.5, also three non-adaptive committee structures, namely plurality voting, Behavior-
Knowledge Space and Decision Template methods, have been used. Thus a to-
tal of ten committee structures were applied to combine both non-adaptive and
adaptive member classifiers, and they appear in Tables 5.2 and 5.3.

The Best member refers to using the overall best-performing member classifier for
establishing a performance baseline. The best classifier in this case is the point-
to-point and mass center based DTW classifier on the first row of Table 5.1.
The Adaptive best selection discussed in Section 5.2.1 keeps track of the correct
recognitions of each member classifier and uses the classifier deemed best at the
time.

The Plurality voting rule is a commonly applied committee method. It was dis-
cussed in Section 2.3.3 and is used here as a reference for the adaptive commit-
tees’ performances. The use of the voting committee also illustrates the feasibility
of combining the adaptive member classifiers with a non-adaptive combination
method, and the level of performance enhancement achievable in this manner.
The plurality voting rule applied is simply to choose the label with most occur-
rences among the outputs of the member classifiers as the output of the com-
mittee. In the case of a tie, classifiers are iteratively pruned away starting with
the last ranked classifier until a non-tie result is obtained. In the Adaptive vot-
ing committee of Section 5.2.2 the correctness of each classifier is tracked and
weighted voting is performed based on the classifiers’ performances so far.

100 Chapter 5. Adaptive committee classification

The BKS committee, described in Section 2.3.3, was trained with the data from
Database 2 and operated in a writer-independent fashion. The Adaptive BKS
variant of Section 5.2.3 simply stores all performed recognitions into the BKS in
the same manner as in the training phase and uses them along with the original
training data for further recognitions.

The DT committee, also described in its basic form in Section 2.3.3, was trained
with the data from Database 2 and operated in a writer-independent fashion.
The DT committee bases its decisions on measurement-level information from
the member classifiers. The Adaptive DT committee, presented in Section 5.2.3,
performs in an adaptive fashion via adapting the decision template of the class
the input sample belongs to after recognition. The classified samples are thus
treated identically with the training samples.

The MCBL committee from Section 5.3 simply operated on-line in a user-depen-
dent fashion, collecting data while the recognition proceeded. The classification
result was chosen by selecting the class with the highest confidence according to
equation (5.7).

The DEC committee, described in Section 5.4, was applied through using plural-
ity voting as the default decision rule and requiring the output to be included in
the input. Inactivation of error-producing rules was used as the conflict solution
mechanism. The rule sets created were cleared between writers.

The CCCC committee, discussed in Section 5.5, collected only the distributions of
the correct classifications with an exponential model as in equation (5.18). The
effect of the most recent sample was emphasized by using the final confidence
mechanism of equation (5.27). The committee decision was based on the sum
rule of equation (5.29), and the numeric parameters for the CCCC committee
were established as a kernel bandwidth of b = 0.003 and weight decay constant
λ = 0.18 through evaluation on Database 2. The decaying weights scheme of
equation (5.22) was applied to further enhance robustness. The distributions
were not reset between writers, as the use of the decaying weighting model causes
older data to be ignored eventually in any case.

5.6.3 Performance with non-adaptive member classifiers

In Table 5.2 the performance of the classifier combination methods with non-
adaptive member classifiers is examined. The overall error rate has been calcu-
lated over all the samples, while the tail error rate shows the performance for the
last 200 samples of each writer. The performance of all the member classifiers

5.6. Committee performance 101

Table 5.2: Classifier combination results in error percentages with non-
adaptive members

Committee Section Errors Tail errors

CCCC 5.5 15.53 15.25
DEC 5.4 17.56 16.25
Adaptive DT 5.2.4 17.35 16.50
Adaptive BKS 5.2.3 18.88 17.06
MCBL 5.3 19.32 17.12
DT 2.3.3 18.26 18.31
Adaptive voting 5.2.2 19.76 19.13
Plurality voting 2.3.3 19.68 19.19
Best member 4.4.1 20.02 19.19
Adaptive best 5.2.1 20.09 19.06
BKS 2.3.3 20.72 20.25

used can be seen in the column of Table 5.1 entitled “non-adaptive error rate”,
and the best classifier obtained an overall error rate of 20.02%. The development
of the error rates, represented through a moving average with a window size of
400 samples is shown in Figure 5.3. Note that due to the stronger smoothing
used for clarity in Figure 5.3, the resulting tail errors do not exactly match those
appearing in Table 5.2.

In Figure 5.3 the improvement due to the users adapting their writing style
to the recognizer can be seen as decreasing error rates for also the non-adaptive
committee structures. With an interactive device, it is natural to prefer a writing
style that produces fewer errors. This also showcases the changing nature of
writing, as even though the context did not change, most writers changed their
style slightly to better suit the system. However, the opposite phenomenon can
be seen at the very end, where the accuracies of the classifiers decrease. One can
only speculate that the total number of characters to input for each writer in one
session was slightly excessive, and motivation started to decrease near the end.

Firstly, the BKS committee performs rather poorly, although it does outperform
all but the single best member classifier. Evidently the errors caused by the
writers in Database 2 were not consistent enough to produce significant benefits
in the classification performance for this non-adaptive combination scheme. Also
the tail error rate is the worst of those in Table 5.2.

The adaptive best classifier scheme would initially seem to be outperformed by
the single best member, but looking at the tail error rates we can see that using

102 Chapter 5. Adaptive committee classification

the adaptive best scheme we can obtain better tail error rates. This is possible
because the best classifier overall was not the best classifier for every writer, and
this adaptive scheme aims to discover the truly best member classifier for each
particular writer. This behavior is also evident in the graphs, as when comparing
the best classifier (solid) and adaptive best (dash-dot) lines it can be seen that
initially the adaptive best performs notably poorer as there has not yet been
enough data from the users to provide a good evaluation on which classifier is
best. However, as more samples are classified, that evaluation improves and the
classifier that is truly best for that particular writer is given preference, resulting
in better performance in the end.

This leads us to conclude that even this simplest adaptive mechanism can pro-
duce gains after the period of adjustment. The same can be seen in the voting
approaches: again, even though the plurality voting approach produces a lower
overall error rate, the adaptive voting obtains a better tail error rate.

With non-adaptive member classifiers the DT committee performs very well,
producing an overall error rate better than the MCBL committee even though
its tail error rate is slightly worse. Although the combination scheme is very
effective, the use of distance information may be a deciding factor in making DT
the best-performing non-adaptive committee. The MCBL committee is clearly
capable of improving performance. The fact that the tail error rate is again
notably better than the overall error rate is evidence that also this method of
adaptation is effective. The adaptive BKS committee provides still somewhat
better results. When examining the performance of these combination methods,
it can be seen from Figure 5.3 that while the MCBL committee is better on the
early samples, the adaptive BKS significantly improves performance after enough
samples have been collected. This may be due to the adaptive BKS having all
the previous data stored and hence being less robust to change, as all samples
are considered equally reliable in the implemented scheme.

Practically in a league of their own are the two more sophisticated adaptive
techniques, the DEC and CCCC committees. Both provide significantly more
improvement than the schemes above. The DEC committee can be seen to pro-
vide consistent decrease in the error rate, but the curve for the CCCC committee
is much steeper due to its inherent generalizational traits; a sample input into
the distribution has always significant effect on future confidence evaluations and
the influence of new inputs is emphasized as the older samples get discarded due
to the adaptation scheme. Hence, even though the starting error rates are both
rather similar, the resulting error rates for the CCCC committee are significantly
better due to the fast adaptation.

5.6. Committee performance 103

200 300 400 500 600 700 800

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Sample index

E
rr

or
 r

at
e

BKS
Best classifier
Adaptive Best
Adaptive voting
Plurality voting
DT
MCBL
Adaptive BKS
Adaptive DT
DEC
CCCC

Figure 5.3: An illustration of the development of the error rate with
non-adaptive member classifiers

104 Chapter 5. Adaptive committee classification

Table 5.3: Classifier combination results in error percentages with adap-
tive members

Committee Section Errors Tail errors

CCCC 5.5 7.97 4.13
Plurality voting 2.3.3 8.69 4.81
DEC 5.4 8.91 4.94
Adaptive voting 5.2.2 8.75 5.12
Adaptive best 5.2.1 10.00 5.75
Best member 4.4.1 9.87 5.94
Adaptive DT 5.2.4 9.36 6.38
Adaptive BKS 5.2.3 10.76 6.69
MCBL 5.3 12.17 6.94
DT 2.3.3 11.00 8.31
BKS 2.3.3 11.73 8.44

5.6.4 Performance with adaptive member classifiers

The results of the committee evaluations with adaptive member classifiers have
been collected into Table 5.3. There again the overall error rate has been cal-
culated over all samples and the tail error rate over the last 200 samples. Also
here the best classifier corresponds to the point-to-point mass center DTW clas-
sifier on the first line of Table 5.1. Figure 5.4 illustrates the development of the
error rates for all the evaluated methods, calculated with a moving average of
window size 400. Again, please note that due to the stronger smoothing applied
in Figure 5.4, the visible tail error rates are not fully compatible with those in
Table 5.3.

Firstly it can be seen from Tables 5.3 and 5.1 that the MCBL committee, which
was quite effective with non-adaptive member classifiers, fails to provide any
improvement on the majority of the member classifiers’ error rates in the over-
all performance. Also both the BKS approaches perform distinctly poorly with
adaptive member classifiers, as do both the DT committees. These five classi-
fication schemes share the idea of basing their decisions on prior performance
with a certain combination of outputs from the member classifiers, which is ev-
idently not an effective strategy with adaptive member classifiers. The results
of the adaptive member classifiers change with time, hence making predictions
based on the combination of all their earlier outputs much less reliable. The com-
mittee strategies should clearly not focus too strictly on all prior classifications
when dealing with adaptive classifiers, as predictions may become fragile as the

5.6. Committee performance 105

classifiers’ behavior changes.

The behavior of the adaptive best scheme is very similar to that with non-adaptive
classifiers, as is to be expected. Again in the overall rate it is outperformed by
the best individual classifier, but in the tail error rate that is no longer the case.
This simple strategy seems to be on the long run as viable for adaptive classifiers
as it is for non-adaptive ones.

The overall error rate for the DEC committee produces improvements over all
adaptive member classifiers, and even more clearly with the tail error rates. The
rule-based nature of the DEC committee seems to be capable of successfully
learning the behavior of the members, but is still slightly hindered by the effect
of the adaptation altering the performance of the member classifiers.

Both the traditional plurality voting scheme and its adaptive counterpart perform
notably well with adaptive classifiers. The basic, non-adaptive plurality voting
rule is even more effective, and once again the strength of this simple combination
strategy is obvious. Without making any effort to base its decisions on anything
but the current outputs of the classifiers, the voting approach is clearly effective
when the member classifiers are performing well.

The best performance is again provided by the CCCC committee. It obtains
benefit from both a viable initial strategy and effective adaptation that is robust
towards change, and simply outperforms all the other methods from start to
finish, as can be seen in both the overall and tail error rates of Figure 5.3 and
the error development in Figure 5.4.

5.6.5 Concluding remarks on the experiments

It is evident that classifier combination methods can produce significant perfor-
mance improvements, especially with the non-adaptive member classifiers. How-
ever, obtaining improvements in a situation where the constantly changing behav-
ior of adaptive member classifiers makes evaluating the classifiers’ performance
much more difficult is far from easy.

Some classifier combination methods that perform very well for non-adaptive
classifiers, such as the MCBL, DT, adaptive DT and adaptive BKS committees,
are clearly unsuitable for combining adaptive classifiers. This is most probably
due to their high level of dependency on all prior data collected and lack of
robustness. On the other hand, the plurality voting rule, a strategy that has no
memory for the prior behavior of the classifiers, is very effective in both settings.

106 Chapter 5. Adaptive committee classification

200 300 400 500 600 700 800
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Sample index

E
rr

or
 r

at
e

BKS
DT
MCBL
Adaptive BKS
Adaptive DT
Best classifier
Adaptive Best
Adaptive voting
DEC
Plurality Voting
CCCC

Figure 5.4: An illustration of the development of the error rate with
adaptive member classifiers

5.6. Committee performance 107

Especially with adaptive member classifiers the use of minimal assumptions seems
to be a viable strategy.

Additionally, it may be noted that the DT committee outperformed the BKS
committee in both sets of experiments. The decision rules have fundamental
differences, but in addition the DT method uses measurement-level information.
This finding supports the assumption that increasing the amount of information
is beneficial for the combination process.

In Publication 8 we also examined the statistical significance for the presented
results. The standard error remained reasonably large due to the fact that the
test set consisted of data from only eight writers, and the performances of those
writers varied greatly. In practice two writers, out of the eight in the database,
had notably worse error rates than the others and thus evidently caused the
increase in variation.

Nevertheless, the best results can be obtained with a strategy that combines
the benefits of both types by using information on the earlier behavior of the
classifiers and being robust to change. This has been accomplished with the
CCCC committee. As the focal result we note that the CCCC committee is
clearly an approach that can successfully be applied in both settings. The CCCC
committee produced the best performance in both sets of experiments, as was
the case also in the experiments of the included Publications 4, 5, 6 and 8.

108

Chapter 6

Rejection with a committee

In addition to the development of the adaptive committee classifiers, two related
issues have been studied as well. The first of these is rejection with a committee
classifier, to be discussed in this chapter. The second, classifier diversity for
committee member selection, will be discussed in Chapter 7.

Basically, the objective of rejection is to detect samples that would likely be
misclassified, and either refrain from classifying them entirely or redirect them to
a specialized unit developed for handling such samples, a reject handler. When a
reject handler is used, it should be a classifier or combination of classifiers that is
better suited for the difficult samples. In this case the final recognition accuracy is
affected by both the original classification system and the reject handler, whereas
without a reject handler the rejected samples are usually discarded. These two
approaches to rejection are depicted in Figure 6.1. In the figure, the classification
process is illustrated through the abstracted result of the recognition – a rejected
result can either be accepted and a reject rate calculated, or redirected to a reject
handler and thus the final result of every recognition will be either “Correct” or
“Incorrect”.

Two fundamental types of rejection can be identified, namely distance and ambi-
guity rejection [129]. Distance rejection refers to rejecting a sample that belongs
to a class outside of the learning set, i.e. the sample is too different from any
sample encountered previously. Ambiguity rejection as the naming suggests, is
based on ambiguity, i.e. rejecting samples that cannot be clearly attributed to
one particular class. The methods of rejection that will be explored here are all
concerned with ambiguity rejection, as we assume that each character that is

6.1. Rejection methods used 109

Reject handler
Classifier

Incorrect

Correct

Correct

Incorrect
Incorrect

Correct

C
la

ss
if

ie
r

Incorrect

Correct

C
la

ss
if

ie
r

Rejected Rejected

Figure 6.1: A diagram of rejection, with and without a reject handler

input into the system is supposed to belong to one of the existing classes.

One example of committee rejection is to compare the k nearest neighbors from
several nearest neighbor classifiers and to perform rejection if too many different
classes are suggested by the neighbors [172]. For example the majority voting
rule requires the majority to agree on the classification of the sample, or else the
sample will be rejected – something that can be seen as an example of inherent
committee rejection.

One approach to performing committee classification in general is to base all clas-
sifiers on rejection. Thus rejection could be extensively used through iteratively
rejecting classes until only one class remains as the final result [19].

6.1 Rejection methods used

In Publication 3 we experimented with a number of committee rejection methods
in application with the DEC committee structure. Although the ideas behind the
rejection methods can be found in literature, the actual methods were all designed
and implemented by the author. Methods based on a rejection threshold for some
output provided by the classifier have been suggested e.g. in [61, 189]. Rejection
based on voting is just an extension of using majority voting [111, 109] instead
of plurality voting. Rejection based on prior knowledge of the problem has been
used for example in [191].

The DEC committee was described in detail in Section 5.4. Rejection was imple-
mented in a way that is independent of the committee, so that if the sample is
rejected it is not processed by the committee at all. Thus these rejection methods
are in no way committee dependent, but applicable to a wide array of settings.

The information used for deciding whether to reject a sample x were the first and

110 Chapter 6. Rejection with a committee

second ranking class labels from each of a total of K member classifiers. We also
used the distances to the nearest prototype of the two best result classes, di

a(x)
and di

b(x), respectively, for every member classifier i. The two nearest prototypes
were always of different classes. The proposed rejection methods were based on
either the class labels or on the distances calculated in the member classifiers.
External a priori knowledge on difficult classes was incorporated manually for
some rejection methods.

Voting Rejection (VR) uses a parameter Tvote for determining rejection. If the
number of different class labels suggested by the member classifiers is more than
Tvote, rejection is performed.

Distance-ratio Rejection (DR) examines the averaged ratio of distances from
the member classifiers. If the ratio

dDR(x) =
1

K

K∑

i=1

di
a(x)

di
a(x) + di

b(x)
(6.1)

is greater than a given threshold T DR
r , rejection is performed.

Learning Distance-ratio Rejection (LDR) is identical to the basic DR ap-
proach in operation, but the parameter T LDR

r is adjusted using a step value T LDR
step .

If rejection was performed even though the result would have been correct, the
value of T LDR

r is increased as in

T LDR
r (i + 1) = T LDR

r (i) + T LDR
step , (6.2)

as unnecessary rejections can be expected to become less frequent with a higher
threshold value. If a sample causing an incorrect recognition was not rejected,
T LDR

r is similarly decreased by

T LDR
r (t + 1) = T LDR

r (t) − T LDR
step , (6.3)

as in such a situation it can be expected that easier rejection could have helped in
preventing the error. Thus, LDR is in fact an adaptive rejection method aimed at
finding the optimal rejection threshold through adjusting the current threshold
value.

Knowledge-based Rejection (KR) performs rejection based on a known set
of easily confusable characters, given to the classifier as a priori information.
In our implementation these confusion sets are defined as the groups {o, O, 0},
{c, C}, {s, S},{x, X}, {z, Z} and {v, V }, where the members of each group are
very similar to each other when the size of the inputs is normalized. These groups
were selected simply based on their morphological similarity. Three alternative
approaches are applied, in the order of increasing total rejection:

6.2. Experiments and results 111

KR1: Only the first class labels of the member classifiers are considered. If two
different members of any one confusion group are found, rejection is per-
formed.

KR2: Both the first and second class labels from the member classifiers are taken
into account. If two different members of any one confusion group are
found, rejection is performed.

KR3: If the first class label obtained from any one member classifier belongs to
the confusion set, the result is rejected unless all the member classifiers
agree on the result.

Learning Knowledge-based Rejection (LKR) keeps track of classifications
that have occurred to each character class and the errors that have been made.
If the ratio of errors and classifications is greater than the rejection threshold
T LKR

r , rejection is performed. The adjustment of T LKR
r is performed as in LDR,

but only towards more rejection; when the result was incorrect, the threshold is
lowered in accordance with equation (6.3). Thus LKR can also be considered an
adaptive rejection method.

Class Rejection (CR) is a simplistic and impractical method, but it was applied
for comparison. The method simply disregards a pre-determined set of characters
so that if any of the classifiers suggest a class that has been defined for rejection,
the sample is rejected. The classes, in order of decreasing difficulty as estimated
from the most common error types in earlier experiments, were determined as
“nmurhs0ol9adkbcefgyv1i”. As the rejection is made stricter, progressively more
and more of the aforementioned classes are rejected.

6.2 Experiments and results

Detailed information on the rejection experiments can be found in Publication 3.
The experiments were conducted with four DTW-based member classifiers that
used either the normalized point-to-point or point-to-line distances and either the
mass center or bounding box normalization, as described in Section 4.4.1. The
data used in the experiments is the same as presented in Section 4.1. Database 1
was used for constructing the member classifier prototype set and Database 3 for
testing. Only lowercase letters and digits were used. In hindsight this was not
a good choice as for the Knowledge Rejection scheme, only the confusion pair of
’o’ and ’0’ was then actually in effect. The configuration of the DEC committee,
discussed in Section 5.4, was to use both the first and second-ranking class labels

112 Chapter 6. Rejection with a committee

0 1 2 3 4 5 6 7 8 9 10
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

Reject %

E
rr

or
 %

VR
DR
LDR
KR 1 + DR
KR 2 + DR
KR 3 + DR
LKR
CR

Figure 6.2: Rejection experiment results.

and to use the class label of the highest-ranking classifier as the default decision.
The error percentages of the member classifiers were 14.9%, 15.1%, 18.2% and
19.6%, respectively.

The main results are referenced in Figure 6.2 and Table 6.1. The ’+’-marks in Fig-
ure 6.2 correspond to Voting Rejection, the solid line to Distance-ratio Rejection
and the ’×’-marks to Learning Distance-ratio Rejection. The dotted line is the
first Knowledge-based Rejection method, the dashed the second, and the dash-
dot the third, all in combination with the Distance-ratio Rejection scheme. The
’∗’-marks represent Learning Knowledge-based Rejection and the circles Class
Rejection. While all the other methods were used by themselves, the Knowledge-
based Rejection options were applied in conjunction with Distance Rejection.
The result of the Knowledge-based Rejection alone can be seen at the beginning
of the respective lines.

As is the case with most rejection methods, the error rate can be brought down
at the cost of increased rejection. Without having implemented a particular re-
ject handler, it is hard to determine the true value of the rejection. In Table 6.1
we assume that we could correctly classify 50% of the rejected samples. The
error percentage after rejection is represented with ec and the rejection percent-
age denoted rr. The column etot shows the total overall error percentage if we

6.2. Experiments and results 113

Table 6.1: Best results in error percentages for each rejection method
assuming 50% rejection handler accuracy.

Rejection ec rr Parameters etot

None 11.07 0.00 — 11.07
VR 11.03 0.09 Tvote = 2 11.07
DR 9.22 3.53 T DR

r = 0.47 10.98
LDR 9.76 2.26 T LDR

r = 0.48, T LDR
step = 0.01 10.89

KR 1 8.92 4.16 T DR
r = 0.47 11.00

KR 2 8.81 6.10 T DR
r = 0.47 11.86

KR 3 8.36 6.46 T DR
r = 0.47 11.58

LKR 10.86 0.54 T LKR
r = 1, T LKR

step = 0.66 11.13
CR 10.96 1.66 reject ’n’,’m’ 11.79

were to use a reject handler with an accuracy of 50%. We can see that Learn-
ing Distance-ratio Rejection (LDR: T LDR

r = 0.48, T LDR
step = 0.01), Distance-ratio

Rejection (DR: T DR
r = 0.47) and the first mode of Knowledge-based Rejection

combined with Distance-ratio Rejection (KR1 + DR: T DR
r = 0.47) produce the

best performances. All of them would improve on the original performance if
we could correctly classify 50% of the rejected samples. Also the Voting Rejec-
tion scheme shows promising behavior, producing no increase in error rate with
the same reject handler accuracy. The best performance, assuming 50% reject
handler accuracy, is provided with the adaptive LDR rejection scheme.

It is also evident that the plain class-based rejection methods, LKR and CR,
are suboptimal for the task. It would seem that there are no specific classes
that can be rejected to consistently improve the performance. More details on
the experiments and performance of these rejection methods can be found in
Publication 3.

However, one should keep in mind that the use of rejection should be a conscious
decision. In some applications, it may actually be less user-friendly to reject
inputs than to misclassify them. For example with handwritten notes, it is often
intuitively easier for a human to decipher the meaning of a note if some errors
have been made than if there are characters missing. And also, the need to
resubmit characters can be a significant annoyance especially if in a hurry. So for
the setting of this thesis, on-line handwriting recognition, it could be argued that
if rejection were used, it should be done to a specialized reject handler classifier.
And hence, the value of rejection would be directly proportional to the efficiency
of the reject handler.

114

Chapter 7

Classifier selection based on

diversity

While research is often focused towards developing more efficient methods for
combining classifiers, it should not be forgotten that the used member classifiers
of course have a significant effect on the final performance. In fact, efficient
committee design can well be considered to consist of two fundamental aspects,
decision optimization and coverage optimization [71]. Of these, the former refers
to optimizing the combination method, and the latter the set of classifiers to be
used.

The problem in coverage optimization is how to choose the classifiers. If we know
beforehand the application and have fixed the combination method, then a valid
option is just to use that combination method and some set of applicable data
to evaluate the possible combinations of individual classifiers. However, if we
have yet to decide on a combination method, or are in the beginning stages of
choosing one, it may be beneficial to use a more general method of evaluating
how effective combining of some particular set of classifiers could be. Such a
method could well be based on the expectation that for the combination to be
effective the classifiers should be different in some way, i.e. diverse.

Diversity in itself is a concept that has long been, and continues to be, used in
other fields of science such as biology [146, 47] and evolutionary algorithms [202,
230]. For the purpose of combining classifiers, diversity is quite difficult to de-
fine. Therefore, it has been considered an important research topic and several

7.1. Diversity of errors 115

measures have been presented [100, 77, 168, 97, 90, 96, 184, 60, 170, 38, 2, 110,
181, 152]. Of course, diversity measures can also be used for generating artificial
outputs of desired diversity to examine the behavior of committee methods in
specific situations [99, 231], but this viewpoint was not explored in the research
presented here. We have strictly focused on using diversity for classifier selection.

Optimally, a measure of diversity should indicate a set of member classifiers that
are different from each other in a way that is beneficial for combining, regardless
of the combination method used. Of course in reality the optimal set of classifiers
is also dependent on the combination method. However, there could exist some
measures of diversity that can identify member classifier sets that are consistently
good over a multitude of quite different combination methods.

7.1 Diversity of errors

The most general approach to diversity is a population-theoretic viewpoint, where
diversity is maximized with outputs that are always different. This means that
the actual values of the outputs are not important, just how much they differ.
However, in a classification task, the values of the outputs are very relevant, as
there is generally only one correct class and several incorrect ones. In classifier
combining, the objective is to produce a set of classifiers that provides the best
overall recognition accuracy – not the set that always disagrees by each classifier
suggesting a different class. The latter scheme would in practice mean that all
but one classifier are always incorrect.

Clearly it is desirable to maximize the number of correct outputs suggested in
the set of member classifier outputs, as combination methods generally cannot
predict the correct output from receiving just incorrect ones – at least when that
situation is introduced for the first time. And since there usually is only one
correct result, the inherent problem of overall diversity is evident. It is desirable
that all classifiers agree on the correct class, but disagree whenever making errors.
Hence a diversity approach crafted for classifier combining should focus on the
diversity of the errors that the classifiers make. Agreeing on the correct result
should be rewarded, not penalized, but for incorrect outputs, the opposite should
be true. In Publication 7 we present a view on diversity and define some measures
based on this idea, referred to as diversity of errors.

116 Chapter 7. Classifier selection based on diversity

7.2 Measures of diversity

In Publication 7 a number of diversity measures have been reviewed and a taxon-
omy has been suggested, which will also be used here. The measures have been
grouped into three categories based on their relation to the number of classes
and the type of oracle knowledge. First, methods using information on all classi-
fier labels, named general diversity measures, are presented. Then, five methods
employing oracle knowledge on the correctness of the output in a binary fashion,
binary oracle measures, are shown. Finally, some novel methods that use ora-
cle knowledge on correctness in conjunction with considering all class labels are
introduced as measures for diversity of errors.

An overlapping categorization of diversity measures can be made into pairwise
measures and measures that can be used on a number of classifiers simultaneously.
For pairwise measures the diversity value for a larger group can be obtained as
the average of the pairwise measures. This averaging has the notable effect of
making the selection of the optimal member classifier set size impossible. This
is because after having found the two most diverse classifiers, adding a third to
the set will always decrease the set’s average diversity. Thus methods that are
based on averaging over pairs are not used for comparing over varying member
classifier set sizes.

In the following, the notation again stands as having K member classifiers to
classify N samples. The output from the ith classifier in the set of classifiers K
for the jth sample xj in the set of samples X is denoted ci(xj). This classifi-
cation result is one of C class labels ci, i = 1, . . . , C, with the true label being
ctrue(xj), j = 1, . . . , N .

7.2.1 General diversity measures

According to the general definition of diversity, information on the correctness of
the output is irrelevant to the diversity of the outputs. Diversity increases when
different outputs are produced and diversity is estimated simply from the outputs
produced by the classifiers. Very similar approaches have been often used also for
more general purposes, for example in [20], where approaches based on variance
and uncertainty are examined for population diversity.

Variance is a natural choice for a diversity value, as it measures how the outputs
vary. The bias-variance decomposition [90, 59, 40] can be seen as the basis for

7.2. Measures of diversity 117

creating a diversity measure based on variance. We will study here a simple
approach derived from decomposing the mean squared error, as presented in [59].

For discrete labels, the difference between the output from the ithclassifier ci and
the mean output of all K classifiers, c, is defined as

D(ci(xj), c(xj)) =

{
1 if ci(xj) 6= c(xj)

0 otherwise
. (7.1)

Furthermore, the mean is poorly defined for discrete labels, but the mode can
be used as a replacement of the mean and thus we select the most frequent label
for the sample xj as c(xj) [59]. This is in fact equivalent to the plurality voting
result cp(xj) of equation (2.5). Now we can express the variance part of the
decomposition as

V (K,X) =
1

KN

N∑

j=1

K∑

i=1

D(ci(xj), c(xj))
2. (7.2)

Variance is calculated simultaneously over all member classifiers, and larger vari-
ance is taken as an indication of greater diversity.

The mutual information criterion is another logical choice for a diversity
method, as it by definition measures the amount of information shared between
the classifiers [77]. The pairwise mutual information between two classifiers ca

and cb can be calculated as

I(ca, cb,X) =

C∑

i=1

C∑

j=1

P (ca = ci, c
b = cj) log

P (ca = ci, c
b = cj)

P (ca = ci)P (cb = cj)
, (7.3)

where P (ca = ci, c
b = cj) is the joint probability for classifiers ca and cb producing

the labels ci and cj , respectively, P (ca = ci) is the probability of classifier ca

producing the label ci, etc. The probabilities are estimated from the samples in
X . For a set of more than two member classifiers, the mean of the pairwise values
is used and minimized.

7.2.2 Binary oracle measures

For binary oracle methods, it is assumed that the correct answer is known, and
only the correctness of the classifications is considered for evaluating classifier
diversity. For notation let us have for classifiers a and b the correctness of clas-
sification gathered into N -component binary vectors va and vb. Thus, for each

118 Chapter 7. Classifier selection based on diversity

recognition, the corresponding value in the vector is one if the classification was
correct and zero otherwise. Furthermore, as N is the total number of samples
in X , for a two-classifier case the measure N11(ca, cb,X) is used to denote the
number of times both classifiers are correct, N00(ca, cb,X) the number of times
both classifiers ca and cb are incorrect, and N10(ca, cb,X) and N01(ca, cb,X) the
number of times when just the first or second classifier is correct, respectively.
Naturally N = N11(ca, cb,X) + N10(ca, cb,X) + N01(ca, cb,X) + N00(ca, cb,X).

Correlation between errors is clearly a valid diversity measure if we assume
that negative correlation between errors is beneficial. Here the correlation coef-
ficient for the correctness vectors of classifiers a and b is calculated as

ρ(ca, cb,X) =
Cov(va,vb)√

Var(va)Var(vb)
, (7.4)

where Cov(·) refers to covariance and Var(·) to variance. The best subset of
classifiers is selected by choosing a set with the minimal mean pairwise corre-
lation. While the measure of correlation between errors in this particular form
is the contribution of the author, the benefits of negative correlation have been
previously noted e.g. in [122].

The Q statistic [96] can be used to assess the similarity of two classifiers. It is
defined for two classifiers a, b as

Q(ca, cb,X) =
N11(ca, cb,X)N00(ca, cb,X) − N01(ca, cb,X)N10(ca, cb,X)

N11(ca, cb,X)N00(ca, cb,X) + N01(ca, cb,X)N10(ca, cb,X)
.

(7.5)
The best subset of member classifiers is selected by minimizing the value of the
mean pairwise Q statistic.

The disagreement measure [184] is an intuitive pairwise measure counting the
number of times that one of the classifiers was incorrect and the other correct.
It can thus be defined for two classifiers a and b as

DIS(ca, cb,X) =
N10(ca, cb,X) + N01(ca, cb,X)

N
. (7.6)

Again, the mean of the pairwise measures is used, and a larger value reflects
greater diversity.

The double-fault measure [60] is another measure that is intuitive in the sense
that it examines the rate of how often the classifiers were incorrect. The double-
fault measure is defined for two classifiers a and b as

DF(ca, cb,X) =
N00(ca, cb,X)

N
. (7.7)

7.2. Measures of diversity 119

The mean pairwise value is minimized for selecting the set of classifiers.

The mutual information of errors can be calculated with an equation similar
to (7.3). It can be considered as an application of the idea of mutual informa-
tion [77], just focusing on only two classes, correct vs. incorrect. It is defined
as

IE(ca, cb,X) =

C∑

i=1

C∑

j=1

P (ca = ctrue, cb = ctrue) log
P (ca = ctrue, cb = ctrue)

P (ca = ctrue)P (cb = ctrue)
,

(7.8)
where P (ca = ctrue, cb = ctrue) is the joint probability for classifiers ca and cb

being correct, P (ca = ctrue) is the probability of classifier ca being correct, etc.
The probabilities are estimated from the samples in X . The mutual information
of errors measure should be minimized to select the optimal subset of classifiers,
again using the mean of the pairwise values for a larger set of classifiers.

7.2.3 Measures for diversity of errors

Three new measures for the diversity of errors have been introduced in Pub-
lication 7, where the distinct failure diversity measure [151] has been used for
comparison. All the measures emphasize that differences within the errors made
by the member classifiers truly affect performance. Agreeing on an incorrect clas-
sification is generally hazardous for classifier combination, whereas agreeing on
the correct result is very beneficial. Disagreements in general have less impact
on the committee performance than agreements. Of course the importance of
agreeing or disagreeing is overall very much dependent on the data, classifiers
and combination methods employed, and the level of information the system
works on, but this basic assumption is behind the logic of the diversity measures
presented in this section.

For this setting we introduce a notation where N00
same(c

a, cb,X) stands for the
number of times both classifiers were incorrect and suggested the same output,
and N00

different(c
a, cb,X), where both classifiers were incorrect, but suggested dif-

ferent outputs.

Distinct failure diversity was proposed in the application domain of multi-
version software [151], but is also applicable for classifier combining. The measure
focuses on cases where errors are coincidental but distinct, i.e. resulting in differ-
ent erroneous outputs at the same time. First let us estimate the probability of

120 Chapter 7. Classifier selection based on diversity

exactly n classifiers producing an incorrect result,

tn(K,X) =
number of times n classifiers produce the same incorrect result

total number of distinct erroneous results produced by classifiers
,

(7.9)
where the denominator total number of distinct erroneous results produced by
classifiers is the total number of incorrect classes that were suggested by at least
one classifier. Now distinct failure diversity can be defined as

DFD(K,X) =

N∑

n=1

(N − n)

(N − 1)
tn(K,X) (7.10)

If the total number of distinct erroneous results produced by the classifiers is
zero, DFD(K,X) is defined to be equal to one. The measure is maximized to
obtain the optimal set of classifiers.

The same-fault measure is an extension to the idea of the double-fault measure.
Starting from the double-fault measure, one can further restrict the simultaneous
fault consideration to situations where both classifiers were incorrect and sug-
gested the same classification result. This can be defined for two classifiers a and
b as

SF(ca, cb,X) =
N00

same(c
a, cb,X)

N
. (7.11)

The mean of the pairwise measures is used as the measure value for a larger set.
The optimal classifier set is then selected by minimizing the measure.

The weighted count of errors and correct results is one way to take infor-
mation on correct classifications into account. It places more emphasis on the
situation where classifiers agree on either the correct or incorrect result. In this
approach one counts the occurrences of the different correctness combinations
and gives suitable weights to the “both correct”, a favorable situation, and “both
same incorrect”, an unfavorable situation:

WCEC(ca, cb,X) = N11(ca, cb,X) + 1
2 (N01(ca, cb,X) + N10(ca, cb,X))

−N00
different(c

a, cb,X) − 5N00
same(c

a, cb,X)
.

(7.12)

The weighting is arbitrary, and the presented values have been chosen to penalize
for errors – especially the same or identical errors. For multiple classifiers, the
mean of the pairwise counts is used. The optimal subset can be selected by
maximizing the measure.

The exponential error count is a diversity measure taking the concept of the
diversity of errors one step further. As it is assumed that the member classifiers

7.3. Experiments 121

will hinder the classification the most when they agree on the same incorrect
result, that situation can be given even more emphasis in the selection criterion.
The errors can be counted and weighted in an exponential fashion by the number
of classifiers making the error. The count of errors made by a total of i classifiers
to the same class is denoted N i×0

same(K,X) and added to the sum after rising to
the ith power, or

EEC(K,X) =

∑K

i=1(N
i×0
same(K,X))i

NK×1(K,X) + 1
. (7.13)

This measure considers all member classifiers of the set at the same time, and
the best combination is selected by minimizing the measure. Here also the cor-
rect classifications are taken into account by scaling the exponential sum with
NK×1(K,X), the number of samples for which every member classifier was cor-
rect. The addition of the constant value one safeguards against situations where
the classifiers are never simultaneously correct.

It should be noted that one input sample can contribute to more than one
N i×0

same(K,X) value – if i classifiers agree on one erroneous output and j clas-
sifiers on another, both N i×0

same(K,X) and N j×0
same(K,X) are increased.

7.3 Experiments

In Publication 7 three different committee methods were used for evaluating the
diversity methods. The first committee, plurality voting, has been discussed in
Section 2.3.3. The second one, the Behavior-Knowledge Space (BKS) committee,
was also described in Section 2.3.3. Finally, also an adaptive committee presented
in Section 5.4, the Dynamically Expanding Context (DEC) committee classifier,
was applied. The configuration of the DEC committee was such that both the first
and second outputs from all the classifiers were used for the context. Additionally,
it was required that the output is included in the inputs.

The data used in the experiments was the same as presented in Section 4.1.
Database 1 was used for member classifier construction and training. Database 2
was used for training the BKS, and Database 3 for testing. All databases featured
68 character classes; digits and both lower and uppercase letters, including three
Scandinavian characters ä, ö and å.

122 Chapter 7. Classifier selection based on diversity

Table 7.1: Member classifiers and their error percentages

Classifier Errors Errors Classifier
index Member classifier (ranking) (test) rank

1 DTW PL Bounding box 30.96 23.06 4
2 DTW PL Mass center 25.32 20.02 2
3 DTW PP Bounding box 27.45 21.16 3
4 DTW PP Mass center 23.31 19.30 1
5 Point-sequence SVM 46.21 23.93 7
6 Grid SVM 39.15 26.49 5
7 Point-sequence NN 55.75 50.22 8
8 Grid NN 45.54 35.74 6

The member classifier construction can be found in detail in Publication 7. Four
member classifiers were based on the DTW-based stroke matching classifier dis-
cussed in Section 4.4.1, using either the point-to-point (PP) or point-to-line (PL)
distance and either mass center or bounding box center normalization.

Two member classifiers based on Support Vector Machines (SVMs) [27] were
constructed. The SVM classifiers were implemented using the libsvm package
version 2.36 [31]. The first of the SVM member classifiers takes its data as a list
of points from the character. The second SVM member classifier takes a feature
vector of values calculated from a spatial 3×3 grid representation of the character.
Also two member classifiers based on Neural Networks (NNs) were included in the
experiments. A fully connected feed-forward network structure [67] was created
using the Stuttgart Neural Network Simulator (SNNS) version 4.2 [228]. The
first NN classifier used the same preprocessing and feature vector type as the
first SVM classifier and the second used the same grid-based approach as the
second SVM classifier, but with a larger 5× 5 grid. Details on the SVM and NN
based member classifiers can be found in Publication 7. The member classifiers
and their performances have been collected into Table 7.1.

7.4 Experiment results

The most important results from Publication 7 are shown also here. The ex-
periment aimed to determine the best selection of k = 4 member classifiers,
as the diversity result of several metrics is dependent on the number of mem-
ber classifiers. Thus the methods could not be directly fairly compared when
freely adjusting the number of member classifiers. Additional experiments with

7.4. Experiment results 123

Table 7.2: Comparison of the diversity measures, the optimal classifier
selection for each measure and the error percentage obtained with each
respective committee combiner

Criterion Members Vote BKS DEC

Variance 1,6,7,8 20.39 20.68 16.07
Mutual information 1,6,7,8 20.39 20.68 16.07
Correlation of errors 4,6,7,8 18.64 18.23 15.35
Q statistic 4,6,7,8 18.64 18.23 15.35
Disagreement measure 4,6,7,8 18.64 18.23 15.35
Double-fault measure 3,4,5,6 18.21 19.16 15.06
Mutual information of errors 3,5,7,8 18.60 21.00 16.35
Distinct Failure Diversity 4,6,7,8 18.64 18.23 15.35
Same-fault measure 4,6,7,8 18.64 18.23 15.35
Weighted count of errors and corr. 1,4,5,6 17.92 20.31 15.21
Exponential error count 4,5,6,8 17.67 18.13 14.54
Best individual rates 1,2,3,4 19.34 20.07 18.17
All 8 members 1–8 17.89 22.36 16.17

both varying member classifier size and the effect of leaving the worst-performing
member classifier out have been presented and discussed in Publication 7.

The best combinations of the eight available member classifiers produced by the
different selection criteria, and the resulting accuracies from the three commit-
tee structures used for evaluation, have been collected into Table 7.2. Also the
recognition rate obtained by using the four individually best member classifiers
has been included for comparison as ’Best individual rates’, as well as the perfor-
mance with all eight member classifiers. Additionally, for comparing the results
with the best accuracies obtainable with the fixed classifier set size of four member
classifiers, the brute force approach of evaluating all the 70 possible combinations
with each of the three combination methods was also applied. These results are
shown in Table 7.3.

The most prominent difference between the selections of the general diversity
measures and those that emphasize also correctness is that almost all the gen-
eral methods use the poorest-performing classifier number 7. The one exception
to this is the double-fault measure. The methods that emphasize also correct-
ness, i.e. the weighted count of errors and correct results and the exponential
error count, did not select classifier 7. In a general view of diversity it is logical

124 Chapter 7. Classifier selection based on diversity

Table 7.3: Three best brute force error percentages for each committee

Vote BKS DEC

Members Errors Members Errors Members Errors

Best 4,5,6,7 17.14 2,3,4,7 17.46 2,5,6,8 14.05
2nd 2,5,6,7 17.31 2,3,6,8 17.83 4,5,6,8 14.54
3rd 3,5,6,7 17.57 3,4,6,8 17.85 2,3,6,8 14.70

to use classifier 7 as it does produce the most different results due to its low
accuracy. The general measures, variance and mutual information, show con-
sistently the poorest performance, because their selection encompasses mostly
poor-performing classifiers – as is to be expected.

The correlation of errors, Q statistic, and the disagreement measure selected ex-
actly the same set of member classifiers, and produced notably better committee
results than the most general methods. The double-fault measure avoids making
errors on the same sample, which seems to be a reasonable base strategy. As for
the error diversity approaches, neither the distinct failure diversity nor the very
simple same-fault measure provide any real advantage. They choose the same set
as the majority of the binary-oracle methods.

The weighted count of errors and correct results criterion provides a combination
that is the second best for both the voting and DEC committees, but notably
poor for the BKS committee. The exponential error count approach finds the
best-performing selection of all the criteria and for all combination methods in
Table 7.2. This is in accordance with the initial assumption about the importance
of the classifiers not making exactly the same mistakes too often, combined with
the emphasis on correct outputs.

However, as can be seen from Table 7.3, none of the diversity measures were
capable of discovering the truly best set of member classifiers for any of the
combination methods. The exponential error count measure’s selection {4,5,6,8},
the true second-best set for the DEC committee, is the only one in the top three
for any of the combination methods. As is evident from the varying content
of the best brute force selections, the truly best member classifier set is highly
dependent on the combination method.

An interesting difference of behavior can be noted with the BKS committee in
comparison to the two other combination methods. The best member classifier
set from Table 7.3 for the BKS committee is {2, 3, 4, 7}, three members with the

7.4. Experiment results 125

best individual accuracies and one with the worst. This could be at least partly
due to the fact that the separate training phase teaches the committee the types
of errors that commonly occur. Hence the overall diversity of the set becomes a
less important factor.

The behavior of the DEC committee is in line with the nature of the rule creation
process: it is highly beneficial that the first classifier is as accurate as possible
for the lowest-level rules to be maximally general. Correspondingly, one of the
two best classifiers is consistently chosen for the first member. The increasing
context size of the rules is most beneficial when there is variability in the member
classifiers results, but consistently incorrect results are of no benefit.

In the experiments of Publication 7 we also found that the resulting accuracies
of the combinations selected by many diversity measures increased when we left
the one worst-performing member classifier out of the pool of classifiers. The
methods that had chosen the worst-performing classifier as the most “different”
classifier could no longer select it as it was not available. This in practice resulted
in selecting combinations that provided better overall recognition accuracy in
spite of the decrease in diversity according to the majority of the more general
measures. This again supports the line of thinking that, for classifier combination
purposes, both the diversity of the errors and the frequency of correct outputs
are important.

As the final note, it must not be forgotten that the selection of member clas-
sifiers is dependent on the combination method’s characteristics. This fact was
also concluded in [58] among others and can also be clearly seen in our exper-
iments. A particular set of classifiers, while optimal in some sense, does not
guarantee the best results for all combination methods. Naturally also the data
set used has a very significant effect. However, a suitable measure may still pro-
vide useful generalizational ability. The exponential error count, a novel diversity
measure focusing on the diversity of errors, was seen to produce a selection that
consistently provided good results, at least for this classifier pool and data set.

126

Chapter 8

Conclusions

In this thesis a novel framework for on-line adaptive combination of classifiers has
been presented in the setting of on-line handwritten character recognition. The
classifiers to be combined can be adaptive or non-adaptive themselves. The main
contribution on the methodological level is the Class-Confidence Critic Combining
(CCCC) technique, but also other adaptive committee structures have been pre-
sented and they showcase distinct approaches to implementing committee adapta-
tion. These different approaches include a rule-based system in the Dynamically
Expanding Context (DEC) committee and a scheme working with and updating a
table of classifier and label-specific values in the Modified Current-Best-Learning
(MCBL) committee. These classifier combination schemes were evaluated and
compared to several reference committees. With non-adaptive member classifiers
it is evident that adaptive committee classifiers can produce notable benefits.

The proposed CCCC technique is a very modular classifier combination scheme
that can be applied to a wide variety of settings. The distribution models, decision
rules, and other components of the system can be altered or changed to better
suit the application. The performance of the CCCC committee has been found
to be impressive, as it produced the best results in all experiments.

In addition to the actual problem of how to combine the classifiers, the the-
sis has addressed the question of how to select the classifiers to combine. The
experiments also showed that a diverse set of classifiers can clearly outperform
another set that consists of the classifiers that are best in their own right. There-
fore, how the classifier set is selected is of utmost importance. Some diversity
measures have the tendency of preferring classifiers that have high error rates as

127

this policy produces the most different inputs to the committee. This is often
suboptimal for classifier combining, where the overall objective is to obtain the
best recognition accuracy. The concept of diversity of errors has been success-
fully used to form measures that can be used to compute the diversity between
member classifiers. In the performed experiments this strategy has shown good
performance with a number of different combination strategies. Measures based
on the diversity of errors were found to produce a classifier set that resulted in
the best combined accuracy among the diversity measures examined.

Also committee rejection and the process of deducing true labels from the user’s
actions have been given attention. These both are integral components for the
practical implementation of an on-line handwritten character recognition system.
In our experiments with committee rejection the most effective scheme used was
also adaptive by nature. This rejection method, based on an adaptive threshold,
outperformed static methods, even ones making use of task-specific prior infor-
mation. Also label deduction was shown to be effective, as the labeling provided
by the suggested scheme was clearly sufficient for effective adaptation.

All in all, combining classifiers can be justified from several viewpoints. Perhaps
most notably because in most recognition tasks one cannot find a single globally
best classifier. Therefore it can be beneficial to combine the benefits of several
classifiers. The main point is of course that the classifiers should be combined in a
way that results in their errors becoming collectively canceled. Such a committee
could be obtained in many ways, for example through combination of weaker
classifiers which each are successful for some part of the data, or with combination
schemes where the committee attempts to learn to correct the mistakes made by
its members. Computational resources may have earlier been an issue limiting
the use of several classifiers simultaneously, but with the constant increase of
computational power, using multiple classifiers has become all the more feasible.

Adaptation to the user is a viable approach for improving performance in any
setting where a large amount of variation is possible, but only a subset of it
is being presented. Our work in handwritten character recognition is a good
example of such an application: everyone writes a particular character in only
a few of the practically infinite number of possible ways. Hence combining the
approaches of adaptivity and classifier combining is well motivated – but far from
simple.

Especially when dealing with member classifiers that are adaptive and thus
change their performance over time, the implementation of an effective adaptive
committee is challenging. In the experiments it was seen that two very different
types of committee classifier could provide additional benefits – very simple com-

128 Chapter 8. Conclusions

bination schemes that do not rely on prior information, such as plurality voting,
and methods especially designed to function in a setting where classifier behavior
is expected to change. In particular the plurality voting rule was surprisingly
effective in this changing environment – in the adaptive member classifier exper-
iments the performance of the plurality voting rule was second only to that of
the CCCC committee. This is most probably due to the voting strategy’s com-
plete lack of dependence on prior behavior. With adaptive member classifiers,
the worst performance was obtained with classifier combination schemes heavily
dependent on prior training.

The work of this thesis is clearly indicative of the fact that it is possible to provide
significant benefit using a combination scheme, such as the CCCC, in a variety
of settings. This has been the case both with very good member classifiers and
also with ones that are not as exceptional on their own, as well as with adaptive
member classifiers. In summary of the adaptive committee experiments it can be
stated that when the best non-adaptive classifier provided an error percentage of
slightly over 20%, combining them using the CCCC committee yielded an error
percentage of approximately 15%. With adaptive member classifiers, the best
individual member produced roughly 10% errors, with a tail error percentage of
6%, and the adaptive combination lowered the overall error percentage to slightly
below 8%, with the tail error percentage dropping to roughly 4%. Additionally,
the computational cost associated with any of the examined combination schemes
is negligible in comparison to the cost of classification in the member classifiers.

The substance of this thesis is in the novel methods presented and in the thor-
ough empirical evaluation on their effectiveness. No theoretical analysis of the
methods’ effectiveness has been presented, and the author is aware of the limits
of using only empirical evidence as a proof of concept. The empirical experi-
ments performed were not actual on-line user experiments with adaptivity, but
data collected on-line and later evaluated repeatedly in batch runs. The issue is
two-fold – on one hand we now do not see the effects of the adaptation of the
user to the system, but without a fixed data set it would have been impossible to
compare methods. The value of comparable results with different algorithms was
seen as more important at this point, but the value of interactive experiments
is certainly recognized. Theoretical analysis of the effectivity of such complex
combination methods proved to be a more difficult task than expected, at least
without making so many simplifying assumptions that would have seriously com-
promised the applicability of the analysis to a real-world scenario. Theoretical
studies were thus left out of the scope of this thesis and will remain an interesting
problem for future work.

129

The research presented in this thesis has successfully combined the ideas of adap-
tivity and classifier combining to form effective adaptive classifier combination
schemes for the application at hand. The methodology is likewise suited for other
application areas where there exists a significant amount of variation, but only
a subset of it is being expressed. Such applications include, for example, speech
recognition and other human interface tasks. The methodology can of course be
applied to a wide variety of tasks, but as adaptive classifier combining is based on
the idea of on-line learning from samples, it will inevitably be suboptimal with
very unstable or even randomly occurring input patterns.

The main points of this thesis, i.e. recognition of handwriting, on-line adapta-
tion and classifier combination, have all been studied before. The use of all
three together, however, is something that has so far gained very little attention.
Hopefully this novel combination of approaches will provide a new view on an
old problem.

130

Bibliography

[1] M. Aksela. Handwritten character recognition: A palm-top implementation
and adaptive committee experiments. Master’s thesis, Helsinki University
of Technology, 2000.

[2] M. Aksela. Comparison of classifier selection methods for improving com-
mittee performance. In Proceedings of the Fourth International Workshop
on Multiple Classifier Systems, pages 84–93, Guildford, United Kingdom,
June 11–13 2003.

[3] M. Aksela, R. Girdziušas, J. Laaksonen, E. Oja, and J. Kangas. Class-
confidence critic combining. In Proceedings of the 8th International Work-
shop on Frontiers in Handwriting Recognition, pages 201–206, Niagara-on-
the-Lake, Canada, August 6–8 2002.

[4] M. Aksela, R. Girdziušas, J. Laaksonen, E. Oja, and J. Kangas. Methods
for adaptive combination of classifiers with application to recognition of
handwritten characters. International Journal of Document Analysis and
Recognition, 6(1):23–41, 2003.

[5] M. Aksela and J. Laaksonen. On adaptive confidences for critic-driven clas-
sifier combining. In Proceedings of International Conference on Advances
in Pattern Recognition, volume 2, pages 71–80, Bath, United Kingdom,
August 22–25 2005.

[6] M. Aksela and J. Laaksonen. Using diversity of errors for selecting members
of a committee classifier. Pattern Recognition, 39(4):608–623, 2006.

[7] M. Aksela and J. Laaksonen. Adaptive combination of adaptive classi-
fiers for handwritten character recognition. Pattern Recognition Letters,
28(1):136–143, 2007.

Bibliography 131

[8] M. Aksela, J. Laaksonen, E. Oja, and J. Kangas. Application of adaptive
committee classifiers in on-line character recognition. In Proceedings of
International Conference on Advances in Pattern Recognition, pages 270–
279, Rio de Janeiro, Brazil, March 11–14 2001.

[9] M. Aksela, J. Laaksonen, E. Oja, and J. Kangas. Rejection methods for an
adaptive committee classifier. In Proceedings of International Conference
on Document Analysis and Recognition, pages 982–986, Seattle, Washing-
ton, USA, September 10–13 2001.

[10] F. M. Alkoot and J. Kittler. Multiple expert system design by combined
feature selection and probability level fusion. In Proceedings of the In-
ternational Conference Information Fusion, volume 2, pages THC5/9 –
THC5/16, Paris, France, July 10–13 2000.

[11] F. Andrianasy and M. Milgram. A new learning scheme for the recogni-
tion of dynamical handwritten characters. In IEEE Workshop on Neural
Networks for Signal Processing, pages 371–379, Cambridge, Massachusetts,
USA, August 31 – September 2 1995.

[12] S. Annadurai and A. Balasubramaniam. Classification of handwritten al-
phanumeric characters: a fuzzy neural approach. In International Con-
ference on High Performance Computing, pages 36–41, Trivandrum, India,
December 19–22 1996.

[13] Anonymous. Global prototype establishment procedure for handwritten
character recognition. IBM Technical Disclosure Bulletin, 31(9):114–116,
February 1989.

[14] H. Arakawa. On-line recognition of handwritten characters – alphanumer-
ics, Hiragana, Katakana, Kanji. Pattern Recognition, 16(1):9–16, 1983.

[15] N. Arica and F. T. Yarman-Vural. An overview of character recognition
focused on off-line handwriting. IEEE Transactions on Systems, Man and
Cybernetics, 31(2):583–592, 2000.

[16] A. S. Atukorale and P. N. Suganthan. Combining classifiers based on con-
fidence values. In Proceedings of International Conference on Document
Analysis and Recognition, pages 37–40, Bangalore, India, September 20–22
1999.

[17] C. Bahlmann and H. Burkhardt. The writer independent online handwrit-
ing recognition system frog on hand and cluster generative statistical dy-
namic time warping. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(3):299–310, 2004.

132 Bibliography

[18] C. Bahlmann, B. Haasdonk, and H. Burkhardt. On-line handwriting recog-
nition with support vector machines - a kernel approach. In Proceedings of
the 8th International Workshop on Frontiers in Handwriting Recognition,
pages 49–54, Niagara-on-the-Lake, Canada, August 6–8 2002.

[19] S. Baker and S. K. Nayar. Pattern rejection. In Proceedings of the con-
ference on Computer Vision and Pattern Recognition, pages 544–549, Los
Alamitos, California, USA, June 18–20 1996.

[20] M. Bedau, M. Zwick, and A. Bahm. Variance and uncertainty measures of
population diversity dynamics. Advances in Systems Science and Applica-
tions Special Issue I, pages 7–12, 1995.

[21] E. J. Bellegarda, J. R. Bellegarda, D. Nahamoo, and K. S. Nathan. A
discrete parameter HMM approach to on-line handwriting recognition. In
Proceedings of International Conference on Acoustics, Speech and Signal
Processing, pages 2631–2622, Detroit, Michigan, USA, May 9–12 1995.

[22] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Uni-
versity Press, 1961.

[23] D. Bouchaffra and V. Govindaraju. A methodology for mapping scores to
probabilities. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 21(9):923–927, 1999.

[24] A. Brakensiek, A. Kosmala, and D. Willett. Performance evaluation of a
new hybrid modeling technique for handwriting recognition using identi-
cal on-line and off-line data. In Proceedings of International Conference
on Document Analysis and Recognition, pages 446–449, Bangalore, India,
September 20–22 1999.

[25] A. Brakensiek, A. Kosmala, and G. Rigoll. Comparing normalization and
adaptation techniques for on-line handwriting recognition. In Proceedings
of the 16th International Conference on Pattern Recognition, volume 3,
pages 73–76, Quebec, Canada, August 11–15 2002.

[26] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[27] C. J. C. Burges. A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[28] W. M. Campbell and C. C. Broun. Method for adaptive training of poly-
nomial networks with applications to speaker verification. In Proceedings
of International Joint Conference on Neural Networks, volume 2, pages
1510–1515, Washington, DC, USA, July 15–19 2001.

Bibliography 133

[29] S.-H. Cha, C. C. Tappert, and S. N. Srihari. Optimizing binary feature
vector similarity measure using genetic algorithm and handwritten charac-
ter recognition. In Proceedings of International Conference on Document
Analysis and Recognition, pages 662–665, Edinburgh, Scotland, August 3–6
2003.

[30] K.-F. Chan and D.-Y. Yeung. Elastic structural matching for online hand-
written alphanumeric character recognition. In Proceedings of International
Conference on Pattern Recognition, volume 2, pages 1508–1511, Brisbane,
Australia, August 17–20 1998.

[31] C.-C. Chang and C.-J. Lin. Libsvm : a library for support vector machines
version 2.36. http://www.csie.ntu.edu.tw/∼cjlin/libsvm/, October 2002.

[32] K. Cheung, D. Yeung, and R. Chin. A Bayesian framework for deformable
pattern recognition with application to handwritten character recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(12):1382–1388, 1998.

[33] C.-H. Chou, C.-C. Lin, Y.-H. Liu, and F. Chang. A prototype classification
method and its use in a hybrid solution for multiclass pattern recognition.
Pattern Recognition, 39(4):624–634, 2006.

[34] S. D. Connell and N. K. Jain. Writer adaptation of online handwriting
models. In Proceedings of International Conference on Document Analysis
and Recognition, pages 434–437, Bangalore, India, September 20–22 1999.

[35] S. D. Connell and A. K. Jain. Learning prototypes for on-line handwrit-
ten digits. In Proceedings of the 14th International Conference on Pattern
Recognition, pages 182–184, Brisbane, Australia, August 17–20 1998.

[36] S. D. Connell and A. K. Jain. Writer adaptation for online handwriting
recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(3):329–346, 2002.

[37] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, IT-13(1):21–27, January 1967.

[38] P. Cunningham and J. Carney. Diversity versus quality in classification
ensembles based on feature selection. In Proceedings of the 11th European
Conference on Machine Learning, volume 1810, pages 109–116, Barcelona,
Spain, May 30 – June 2 2000.

[39] J. Czyz, J. Kittler, and L. Vandendorpe. Combining face verification ex-
perts. In Proceedings of the 16th International Conference on Pattern
Recognition, volume 2, pages 28–31, Quebec, Canada, August 11–15 2002.

134 Bibliography

[40] P. Domingos. A unified bias-variance decomposition and its applications.
In Proceedings of the 17th International Conference on Machine Learning,
pages 231–238, Standford, California, USA, June 29 – July 2 2000.

[41] J.-X. Dong, A. Krzyzak, and C. Y. Suen. Fast SVM training algorithm
with decomposition on very large data sets. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(4):603–618, 2005.

[42] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik. Boosting and
other ensemble methods. Neural Computation, 6(6):1289–1301, September
1994.

[43] H. Drucker, R. Schapire, and P. Simard. Boosting performance in neu-
ral networks. International Journal of Pattern Recognition and Artificial
Intelligence, 7(4):705–719, 1993.

[44] R. P. W. Duin. The combining classifier: to train or not to train? In
Proceedings of the 16th International Conference on Pattern Recognition,
volume 2, pages 765–770, Quebec, Canada, August 11–15 2002.

[45] R. P. W. Duin and D. M. J. Tax. Experiments with classifier combin-
ing rules. In Proceedings of International Workshop on Multiple Classifier
Systems, pages 16–29, Santa Margherita di Pula, Italy, June 21–23 2000.

[46] M. C. Fairhurst and A. F. R. Rahman. Enhancing consensus in multi-
ple expert decision fusion. IEE Proceedings on Vision, Image and Signal
Processing, 147(1):39–46, 2000.

[47] D. P. Faith. Quantifying biodiversity: a phylogenetic perspective. Conser-
vation Biology, 16(1):248–252, 2002.

[48] C. Fang, W. Yizhou, and C. Zaniolo. An adaptive learning approach for
noisy data streams. In Proceedings of International Conference on Data
Mining, pages 351–354, Brighton, United Kingdom, November 1–4 2004.

[49] J. Feng and D.-E. Chen. Handwritten similar chinese characters recognition
based on multi-class pair-wise support vector machines. In International
Conference on Machine Learning and Cybernetics, volume 7, pages 4405–
4409, Guangzhou, China, August 18–21 2005.

[50] A. Fern and R. Givan. Online ensemble learning: An empirical study.
Machine Learning, 53(1-2):71–109, 2003.

[51] A. Filatov, A. Gitis, and I. Kil. Graph-based handwritten digit string recog-
nition. In Proceedings of International Conference on Document Analysis

Bibliography 135

and Recognition, volume 2, pages 845–848, Montreal, Canada, August 11–
15 1995.

[52] E. Fix and J. L. Hodges. Discriminatory analysis—nonparametric discrimi-
nation: Consistency properties. Technical Report Number 4, Project Num-
ber 21-49-004, USAF School of Aviation Medicine, Randolph Field, Texas,
1951.

[53] J. Franke and E. Mandler. A comparison of two approaches for combining
the votes of cooperating classifiers. In Proceedings of the 11th International
Conference on Pattern Recognition, volume 2, pages 611–614, The Hague,
The Netherlands, September 1992.

[54] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. In J. W. Shavlik, editor, Proceedings
of the 15th International Conference on Machine Learning, pages 170–178,
Madison, Wisconsin, USA, July 24–27 1998.

[55] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journan of Computer and System
Sciences, 55(1):119–139, 1997.

[56] H.-C. Fu, H. Y. Chang, Y. Y. Xu, and H.-T. Pao. User adaptive handwriting
recognition by self-growing probabilistic decision-based neural networks.
IEEE Transactions on Neural Networks, 11(6):1373–1384, 2000.

[57] H.-C. Fu and Y. Y. Xu. Multi-linguistic handwritten character recogni-
tion by Bayesian decision-based neural networks. In Proceedings of IEEE
Workshop on Neural Networks for Signal Processing, pages 626–635, Amelia
Island, Florida, USA, September 24–26 1997.

[58] G. Fumera and F. Roli. Performance analysis and comparison of linear
combiners for classifier fusion. In Proceedings of the Joint IAPR Interna-
tional Workshops on Syntactical and Structural Pattern Recognition and
Statistical Pattern Recognition, pages 424–432, Windsor, Canada, August
6–9 2002.

[59] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the
bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

[60] G. Giancinto and F. Roli. Design of effective neural network ensembles
for image classification purposes. Image Vision and Computing Journal,
19:697–705, 2001.

136 Bibliography

[61] N. Giusti, F. Masulli, and A. Sperduti. Theoretical and experimental anal-
ysis of a two-stage system for classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(7):893–904, 2002.

[62] D. Goldberg and C. Richardson. Touch-typing with a stylus. In Proceed-
ings of International Conference on Human Factors in Computing Systems,
pages 80–87, Amsterdam, Netherlands, April 24–29 1993.

[63] V. K. Govindan. Character recognition – a review. Pattern Recognition,
23(7):671–683, 1990.

[64] S. Guberman. Off-line and online handwriting recognition-common ap-
proach. In IEE European Workshop on Handwriting Analysis and Recog-
nition, volume 6, pages 1–2, London, United Kingdom, July 14–15 1998.

[65] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet.
Unipen project of on-line data exchange and recognizer benchmark. In
Proceedings of International Conference on Pattern Recognition, pages 29–
33, Jerusalem, Israel, October 9–13 1994.

[66] H. Hao, C.-L. Liu, and H. Sako. Confidence evaluation for combining clas-
sifiers. In Proceedings of International Conference on Document Analysis
and Recognition, pages 755–759, Edinburgh, Scotland, August 3–6 2003.

[67] S. Haykin. Neural Networks - a Comprehensive Foundation. Prentice-Hall,
1998.

[68] E. M. Herrick. Letters with alternative basic shapes. Visible Language,
13(2):133–142, 1979.

[69] D. Hilbert. Grundzge einer allgemeinen theorie der linaren integralrech-
nungen. (erste mitteilung). Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse, pages 49–
91, 1904.

[70] T. K. Ho, J. J. Hull, and S. N. Srihari. Combination of decisions by multi-
ple classifiers. In H. S. Baird, H. Bunke, and K. Y. (Eds.), editors, Struc-
tured Document Image Analysis, pages 188–202. Springer-Verlag, Heidel-
berg, 1992.

[71] T. K. Ho. Hybrid Methods in Pattern Recognition, chapter Multiple Clas-
sifier Combination: Lessons and Next Steps. World Scientific Press, 2002.

[72] T. K. Ho, J. J. Hull, and S. N. Srihari. Decision combination in multiple
classifier systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(1):66–75, 1994.

Bibliography 137

[73] L. Holmström, P. Koistinen, J. Laaksonen, and E. Oja. Neural and sta-
tistical classifiers - taxonomy and two case studies. IEEE Transactions on
Neural Networks, 8:5–17, 1997.

[74] J. Hu, M. K. Brown, and W. Turin. HMM based on-line handwriting recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(10):1039–1045, 1996.

[75] Y. S. Huang and C. Y. Suen. A method of combining multiple experts for
the recognition of unconstrained handwritten numerals. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 17(1):90–94, 1995.

[76] N. Iwayama, K. Akiyama, and K. Ishigaki. Hybrid adaptation: Integration
of adaptive classification with adaptive context processing. In Proceedings
of the 8th International Workshop on Frontiers in Handwriting Recognition,
pages 169–174, Niagara-on-the-Lake, Canada, August 6–8 2002.

[77] H. J. Kang and S. W. Lee. An information-theoretic strategy for construct-
ing multiple classifier systems. In Proceedings of the 15th International
Conference on Pattern Recognition, volume 2, pages 483–486, Barcelona,
Spain, September 3–7 2000.

[78] H.-J. Kang and S.-W. Lee. Combining classifiers based on minimization of a
Bayes error rate. In Proceedings of International Conference on Document
Analysis and Recognition, pages 398–401, Bangalore, India, September 20–
22 1999.

[79] K. Karhunen. Zur spektraltheorie stochastischer prozesse. Annales
Academiae Scientiarum Fennicae, 34:1–7, 1946.

[80] E. Kavallieratou, N. Fakotakis, and G. Kokkinakis. Handwritten character
recognition based on structural characteristics. In Proceedings of the 16th
International Conference on Pattern Recognition, volume 3, pages 11–16,
Quebec, Canada, August 11–15 2002.

[81] T. Kawatani. Handwritten Kanji recognition using combined complemen-
tary classifiers in a cascade arrangement. In Proceedings of International
Conference on Document Analysis and Recognition, pages 503–506, Banga-
lore, India, September 20–22 1999.

[82] D. Keysers, W. Macherey, H. Ney, and J. Dahmen. Adaptation in statistical
pattern recognition using tangent vectors. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):259–274, 2004.

138 Bibliography

[83] N. A. Khan and H. A. Hegt. A flexible and robust matching scheme for
character recognition to cope with variations in spatial interrelation among
structural features. In International Conference on Systems, Man and Cy-
bernetics, volume 5, pages 4166–4171, San Diego, California, USA, October
11–14 1998.

[84] N. A. Khan and H. A. Hegt. Recognition of real-life character samples using
a structural variation and degradation model. In Proceedings of Interna-
tional Conference on Document Analysis and Recognition, pages 225–228,
Bangalore, India, September 20–22 1999.

[85] G. Kim and S. Kim. Feature selection using genetic algorithms for hand-
written character recognition. In Proceedings of the 7th International Work-
shop on Frontiers in Handwriting Recognition, pages 103–112, Amsterdam,
Netherlands, September 11–13 2000.

[86] I.-J. Kim and J.-H. Kim. Statistical character structure modeling and its ap-
plication to handwritten chinese character recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(11):1422–1436, 2003.

[87] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining clas-
sifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(3):226–239, 1998.

[88] J. Kittler and F. M. Alkoot. Sum versus vote fusion in multiple classifier
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(1):110–115, 2003.

[89] J. Kittler, M. Ballette, J. Czyz, F. Roli, and L. Vandendorpe. Enhancing
the performance of personal identity authentication systems by fusion of
face verification experts. In IEEE International Conference on Multimedia
and Expo, volume 2, pages 581–584, Lausanne, Switzerland, August 26–29
2002.

[90] R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one
loss functions. In L. Saitta, editor, Proceedings of the Thirteenth Interna-
tional Conference on Machine Learning, pages 275–283, Bari, Italy, July
3–6 1996.

[91] T. Kohonen. Dynamically expanding context, with applications to the
correction of symbol strings in the recognition of continuous speech. In
International Conference on Pattern Recognition, volume 2, pages 1148–
1151, Paris, France, October 27–31 1986.

Bibliography 139

[92] T. Kohonen. Dynamically expanding context. Journal of Intelligent Sys-
tems, 1(1):79–95, 1987.

[93] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Infor-
mation Sciences. Springer-Verlag, 1997. Second Extended Edition.

[94] K. Ku and P. Chiu. Variability model of a handprinted chinese character.
Electronic Letters, 31(9):711–712, 1995.

[95] T. T. Kuklinski. Components of handprint style variability. In Proceedings
of the 7th International Conference on Pattern Recognition, pages 924–926,
Montreal, Canada, July 30 – August 2 1984.

[96] L. I. Kuncheva, C. J. Whittaker, C. A. Shipp, and R. P. W. Duin. Is
independence good for combining classifiers. In Proceedings of the 15th
International Conference on Pattern Recognition, volume 2, pages 168–171,
Barcelona, Spain, September 3–7 2000.

[97] L. I. Kuncheva. That elusive diversity in classifier ensembles. In Proceedings
of First Iberian Conference on Pattern Recognition and Image Analysis,
pages 1126–1138, Mallorca, Spain, June 4–6 2003.

[98] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Decision templates for
multiple classifier fusion: an experimental comparison. Pattern Recognition,
34(2):299–314, 2001.

[99] L. I. Kuncheva and R. K. Kountchev. Generating classifier outputs of fixed
accuracy and diversity. Pattern Recognition Letters, 23(5):593–600, 2002.

[100] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier
ensembles. Machine Learning, 51:181–207, 2003.

[101] J. M. Kurtzberg and C. C. Tappert. Symbol recognition system by elastic
matching. IBM Technical Disclosure Bulletin, 24(6):2897–2902, 1981.

[102] J. Laaksonen. Local subspace classifier. In Proceedings of the Interna-
tional Conference on Artificial Neural Networks, pages 637–642, Lausanne,
Switzerland, October 8–10 1997.

[103] J. Laaksonen. Subspace Methods in Recognition of Handwritten Digits. PhD
thesis, Helsinki University of Technology, 1997.

[104] J. Laaksonen, M. Aksela, E. Oja, and J. Kangas. Adaptive local subspace
classifier in on-line recognition of handwritten characters. In Proceedings
of International Joint Conference on Neural Networks 1999, Washington,
DC, USA, July 10–16 1999.

140 Bibliography

[105] J. Laaksonen, M. Aksela, E. Oja, and J. Kangas. Dynamically Expanding
Context as committee adaptation method in on-line recognition of hand-
written latin characters. In Proceedings of International Conference on Doc-
ument Analysis and Recognition, pages 796–799, Bangalore, India, Septem-
ber 20–22 1999.

[106] J. Laaksonen, J. Hurri, E. Oja, and J. Kangas. Comparison of adaptive
strategies for on-line character recognition. In Proceedings of International
Conference on Artificial Neural Networks, pages 245–250, Skövde, Sweden,
September 2–4 1998.

[107] J. Laaksonen, J. Hurri, E. Oja, and J. Kangas. Experiments with a self-
supervised adaptive classification strategy in on-line recognition of isolated
handwritten latin characters. In Proceedings of Sixth International Work-
shop on Frontiers in Handwriting Recognition, pages 475–484, Taejon, Ko-
rea, August 12–14 1998.

[108] J. Laaksonen, V. Vuori, E. Oja, and J. Kangas. Adaptation of prototype
sets in on-line recognition of isolated handwritten latin characters. In S.-W.
Lee, editor, Advances in Handwriting Recognition, pages 489–497. World
Scientific Publishing, 1999.

[109] L. Lam and S. Suen. Application of majority voting to pattern recogni-
tion: an analysis of its behavior and performance. IEEE Transactions on
Systems, Man and Cybernetics, 27(5):553–568, 1997.

[110] L. Lam. Classifier combinations: Implementations and theoretical issues.
In Proceedings of the First International Workshop on Multiple Classifier
Systems, pages 77–86, Santa Margherita di Pula, Italy, June 21–23 2000.

[111] L. Lam and C. Y. Suen. A theoretical analysis of the application of majority
voting to pattern recognition. In Procedings of International Conference on
Pattern Recognition, volume 2, pages 418–420, Jerusalem, Israel, October
9–13 1994.

[112] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Handwritten digit recognition with a back-
propagation network. In L. P.G.J., editor, Neural Netwotks, current ap-
plications, 1992.

[113] C. Leedham. Historical perspectives of handwriting recognition systems.
In IEE Colloquium on Handwriting and Pen-based input, pages 1/1–1/3,
1994.

Bibliography 141

[114] V. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):107–710, 1966.

[115] C. Li, H. Ji, and J. Pei. Multilayer fuzzy HMM for online handwriting
shape recognition. In Proceedings of International Conference on Signal
Processing, volume 2, pages 1427–1430, Istanbul, Turkey, December 15–17
2004.

[116] C. P. Lim and R. F. Harrison. Online pattern classification with multiple
neural network systems: An experimental study. IEEE Transactions on
Systems, Man and Cybernetics, 33(2):235–247, 2003.

[117] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer de-
sign. IEEE Transactions on Communications, COM-28(1):84–95, January
1980.

[118] C.-L. Liu, S. Jaeger, and M. Nagakawa. Online recognition of chinese
characters: the state-of-the-art. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(2):198–213, 2004.

[119] C.-L. Liu and M. Nakagawa. Prototype learning algorithms for nearest
neighbor classifier with application to handwritten character recognition. In
Proceedings of International Conference on Document Analysis and Recog-
nition, pages 378–381, Bangalore, India, September 20–22 1999.

[120] C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten digit
recognition: benchmarking of state-of-the-art techniques. Pattern Recogni-
tion, 36(10):2271–2285, 2003.

[121] X. Y. Liu and M. Blumenstein. Experimental analysis of the modified
direction feature for cursive character recognition. In Proceedings of the
9th International Workshop on Frontiers in Handwriting Recognition, pages
353–358, Tokyo, Japan, October 26–29 2004.

[122] Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural
Networks, 12(10):1399–1404, 1999.

[123] W. Loy and L. Landay. An on-line procedure for recognition of handprinted
alphanumeric characters. Pattern Recognition, 4(4):422–427, July 1982.

[124] P.-Y. Lu and R. W. Brodersen. Real-time on-line symbol recognition using
a DTW processor. In Proceedings of International Conference on Pattern
Recognition, volume 2, pages 1281–1283, Montreal, Canada, July 30 – Au-
gust 2 1984.

142 Bibliography

[125] I. S. MacKenzie, B. Nonnecke, S. Riddersma, C. McQueen, and M. Meltz.
Alphanumeric entry on pen-based computers. International Journal of
Human-Computer Studies, 41:775–792, 1994.

[126] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathe-
matical Statistics and Probability, pages 281–297, 1967.

[127] U. Markowska-Kaczmar and P. Kubacki. Support vector machines in hand-
written digits classification. In International Conference on Intelligent Sys-
tems Design and Applications, pages 406–411, Wroclaw, Poland, September
8–10 2005.

[128] S. Marukatat, R. Sicard, T. Artieres, and P. Gallinari. A flexible recognition
engine for complex on-line handwritten character recognition. In Proceed-
ings of International Conference on Document Analysis and Recognition,
pages 1048–1052, Edinburgh, Scotland, August 3–6 2003.

[129] L. Mascarilla, C. Frelicot, and E.-H. Zahzah. Combining: an alternative
for choosing between reject-first and accept-first classifiers. In Proceedings
of the International Conference of the North American Fuzzy Information
Processing Society, pages 253–257, New York, New York, USA, June 10–12
1999.

[130] N. Matic, I. Guyon, J. Denker, and V. Vapnik. Writer-adaptation for on-line
handwritten character recognition. In Proceedings of International Confer-
ence on Document Analysis and Recognition, pages 187–191, Tsukuba City,
Japan, October 20–22 1993.

[131] O. Melnik, Y. Vardi, and C.-H. Zhang. Mixed group ranks: Preference
and confidence in classifier combination. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(8):973–981, 2004.

[132] A. Meyer. Pen computing, a technology overview and a vision. ACM
SIGCHI bulletin, July 1995.

[133] D. J. Miller and L. Yan. Critic-driven ensemble classification. IEEE Trans-
actions on Signal Processing, 47(10):2833–2844, 1999.

[134] D. J. Miller and L. Yan. Ensemble classification by critic-driven combining.
In Proceedings of International Conference on Acoustics, Speech and Signal
Processing, volume 2, pages 1029–1032, Phoenix, Arizona, USA, March
15–19 1999.

Bibliography 143

[135] D. J. Miller and L. Yan. Some analytical results on critic-driven ensemble
classification. In Proceedings of IEEE Workshop on Neural Networks for
Signal Processing, pages 252–263, Madison, Wisconsin, USA, August 23–25
1999.

[136] M. Mitchell. Book review: Handbook of genetic algorithms (L. D. Davis).
Artificial Intelligence, 100(1-2):325–330, 1998.

[137] Motorola. Motorola web site. http://www.motorola.com, April 2006.

[138] H. Mouchere, E. Anquetil, and N. Ragot. On-line writer adaptation for
handwriting recognition using fuzzy inference systems. In Proceedings of
International Conference on Document Analysis and Recognition, volume 2,
pages 1075–1079, Seoul, Korea, August 29 – September 1 2005.

[139] N. Mozayyani, A. Baig, and G. Vaucher. A fully-neural solution for on-
line handwritten character recognition. In Proceedings of International
Joint Conference on Neural Networks, volume 2, pages 160–164, Anchor-
age, Alaska, USA, May 4–9 1998.

[140] M. Nakai, N. Akira, H. Shimodaira, and S. Sagayama. Substroke approach
to HMM-based on-line Kanji handwriting recognition. In Proceedings of
International Conference on Document Analysis and Recognition, pages
491–495, Seattle, Washington, USA, September 10–13 2001.

[141] A. Nakamura. A method to accelerate writer adaptation for on-line hand-
writing recognition of a large character set. In Proceedings of the 9th In-
ternational Workshop on Frontiers in Handwriting Recognition, pages 426–
431, Tokyo, Japan, October 26–29 2004.

[142] K. Nathan, J. R. Bellegarda, D. Nahamoo, and E. J. Bellegarda. On-
line handwriting recognition using continuous parameter hidden Markov
models. In Proceedings of International Conference on Acoustics, Speech
and Signal Processing, volume 5, pages 121–124, Minneapolis, Minnesota,
USA, April 27–30 1993.

[143] Nokia. Nokia web site. http://www.nokia.com, April 2006.

[144] R. Nopsuwanchai and A. Biem. Discriminative training of tied mixture
density HMMs for online handwritten digit recognition. In Proceedings
of International Conference on Acoustics, Speech and Signal Processing,
volume 2, pages 6–10, Hong Kong, April 6–10 (Conference not held due to
SARS) 2003.

144 Bibliography

[145] F. Nouboud and R. Plamondon. A structural approach to on-line charac-
ter recognition: System design and applications. International Journal of
Pattern Recognition and Artificial Intelligence, 5(1&2):311–335, 1991.

[146] U. Nūbel, F. Garcia-Pichel, M. Kūhl, and G. Muyzer. Quantifying micro-
bial diversity: Morphotypes, 16s rRNA genes, and carotenoids of oxygenic
phototrophs in microbial mats. Applied and Environmental Microbiology,
65(2):422–430, 1999.

[147] E. Oja. Subspace Methods of Pattern Recognition. Research Studies Press,
England, and Wiley, USA, 1983.

[148] D. Okumura, S. Uchida, and H. Sakoe. An HMM implementation for on-line
handwriting recognition based on pen-coordinate feature and pen-direction
feature. In Proceedings of International Conference on Document Anal-
ysis and Recognition, volume 1, pages 26–30, Seoul, Korea, August 29 –
September 1 2005.

[149] J. Paik, S. b. Cho, K. Lee, and Y. Lee. Multiple recognizers system using
two-stage combination. In Proceedings of International Conference on Pat-
tern Recognition, volume 4, pages 581–585, Banff, Canada, August 25–29
1996.

[150] R. Paredes, E. Vidal, and D. Keysers. An evaluation of the WPE algorithm
using tangent distance. In Proceedings of the 16th International Conference
on Pattern Recognition, volume 4, pages 48–51, Quebec, Canada, August
11–15 2002.

[151] D. Partridge and W. Krzanowski. Distinct failure diversity in multiversion
software. University of Exeter Technical Report, 348, 1997.

[152] E. Pekalska, R. P. W. Duin, and M. Skurichina. A discussion on the classifier
projection space for classifier combining. In Proceedings of the Third Inter-
national Workshop on Multiple Classifier Systems, pages 137–148, Cagliari,
Italy, June 24–26 2002.

[153] C. Perez, C. Held, and P. Mollinger. Handwritten digit recognition based
on prototypes created by euclidean distance. In Proceedings of Interna-
tional Conference on Information, Intelligence and Systems, pages 320–323,
Rockville, Maryland, USA, October 31 – November 3 1999.

[154] F. Pernkopf and D. Bouchaffra. Genetic-based EM algorithm for learning
gaussian mixture models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(8):1344–1348, 2005.

Bibliography 145

[155] R. Plamondon and S. N. Srihari. On-line and off-line handwriting recogni-
tion: a comprehensive survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(1):63–84, 2000.

[156] R. Plamondon and W. Guerfali. The generation of handwriting with delta-
lognormal synergies. Biological Cybernetics, 78(2):119–132, 1998.

[157] E. Poisson, C. V. Gaudin, and P. M. Lallican. Multi-modular architecture
based on convolutional neural networks for online handwritten character
recognition. In Proceedings of the 9th International Conference on Neural
Information Processing, volume 5, pages 2444–2448, Singapore, November
18–22 2002.

[158] K. Prema and N. S. Reddy. Pattern recognition. Sadhana, 27(5):585–594,
2002.

[159] L. Prevost and L. Oudot. Self-supervised adaptation for on-line script text
recognition. Electronic Letters on Computer Vision and Image Analysis,
5(2):87–97, 2005.

[160] L. R. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of IEEE, 10(2):257–286, 1989.

[161] B. S. Raghavendra, C. K. Narayanan, G. Sita, A. G. Ramakrishnan, and
M. Sriganesh. Prototype learning methods for online handwriting recogni-
tion. In Proceedings of International Conference on Document Analysis and
Recognition, volume 1, pages 287–291, Seoul, Korea, August 29 – Septem-
ber 1 2005.

[162] A. F. R. Rahman and M. C. Fairhurst. A comparative study of deci-
sion combination strategies for a novel multiple-expert classifier. In Inter-
national Conference on Image Processing and Its Applications, volume 1,
pages 131–135, Dublin, Ireland, July 14–17 1997.

[163] A. F. R. Rahman and M. C. Fairhurst. Exploiting second order information
to design a novel multiple expert decision combination platform for pattern
classification. Electronics Letters, 33(6):476–477, 1997.

[164] A. F. R. Rahman and M. C. Fairhurst. Introducing new multiple expert
decision combination topologies: a case study using recognition of hand-
written characters. In Proceedings of International Conference on Docu-
ment Analysis and Recognition, volume 2, pages 886–891, Ulm, Germany,
August 18–20 1997.

146 Bibliography

[165] A. Rahman and M. Fairhurst. Generalised approach to the recognition of
structurally similar handwritten characters using multiple expert classifiers.
IEE Proceedings on Vision, Image and Signal Processing, 144(1):15–22,
1997.

[166] M. Revow, C. K. Williams, and G. E. Hinton. Using generative models for
handwritten digit recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(6):592–606, 1995.

[167] G. Rigoll, A. Kosmala, J. Rottland, and C. Neukirchen. A comparison
between continuous and discrete density hidden Markov models for cursive
handwriting recognition. In Proceedings of International Conference on
Pattern Recognition, volume 2, pages 205–209, Banff, Canada, August 25–
29 1996.

[168] F. Roli and G. Giacinto. Hybrid Methods in Pattern Recognition, chapter
Design of Multiple Classifier Systems. World Scientific Press, 2002.

[169] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[170] D. Ruta and B. Gabrys. New measure of classifier dependancy in multi-
ple classifier systems. In Proceedings of the Third International Workshop
on Multiple Classifier Systems, pages 127–136, Cagliari, Italy, June 24–26
2002.

[171] L. R̊ade and B. Westergren. BETA Mathematics Handbook for Science and
Engineering, 2nd edition. Chartwell-Bratt Ltd, 1990.

[172] M. Sabourin, A. Mitiche, and D. Thomas. Classifier combination for hand-
printed digit recognition. In Proceedings of the International Conference on
Document Analysis and Recognition, pages 163–166, Tsukuba City, Japan,
October 20–22 1993.

[173] Samsung. Samsung web site. http://www.samsung.com, April 2006.

[174] D. Sankoff and J. B. Kruskal. Time warps, string edits, and macro-
molecules: the theory and practice of sequence comparison. Addison-Wesley,
1983.

[175] R. E. Schapire. The strength of weak learnability. Machine Learning,
5:197–227, 1990.

[176] R. E. Schapire. The boosting approach to machine learning: An overview.
In Proceedings of the MSRI Workshop on Nonlinear Estimation and Clas-
sification, pages 149–172, Berkeley, California, USA, March 19–29 2001.

Bibliography 147

[177] R. E. Schapire and Y. Singer. Improved boosting using confidence-rated
predictions. Machine Learning, 37(3):297–336, 1999.

[178] L. Schomaker. From handwriting analysis to pen-computer applications.
Electrics & Communication Engineering Journal, pages 93–101, June 1998.

[179] A. Senior and K. Nathan. Writer adaptation of a HMM handwriting recog-
nition system. In Proceedings of International Conference on Acoustics,
Speech, and Signal Processing, volume 2, pages 1447–1450, Munich, Ger-
many, April 21–24 1997.

[180] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

[181] A. Sharkey and N. Sharkey. Combining diverse neural nets. The Knowledge
Engineering Review, 12(3):231–247, 1997.

[182] N. Sherkat, R. Whitrow, and R. Evans. Wholistic recognition of hand-
writing using structural features. In IEE Colloquium on Document Image
Processing and Multimedia, pages 12/1–12/4, London, United Kingdom,
March 25 1999.

[183] P. Simard, Y. LeCun, J. Denker, and B. Victorri. Transformation invariance
in pattern recognition, tangent distance and tangent propagation. In G. Orr
and M. K., editors, Neural Networks: Tricks of the trade, 1998.

[184] D. Skalak. The sources of increased accuracy for two proposed boosting
algorithms. In In Proceedings of the Workshop on Integrating Multiple
Learned Models for Improving and Scaling Machine Learning Algorithms,
Portland, Oregon, USA, August 4–5 1996.

[185] D. B. Skalak. Prototype selection for composite nearest neighbor classifier.
PhD thesis, University of Massachusetts Amherst, May 1997.

[186] S. J. Smith, M. O. Bourgoin, K. Sims, and H. L. Voorhees. Handwritten
character classification using nearest neighbor in large database. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16(9):915–919,
1994.

[187] S. Srihari. Encyclopedia of Artificial Intelligence (Second Edition), chapter
Character Recognition, pages 138–150. John Wiley, 1992.

[188] J. A. Starzyk and N. Ansari. Feedforward neural network for handwritten
character recognition. In Proceedings of the International Symposium on
Circuits and Systems, volume 6, pages 2884–2887, San Diego, California,
USA, May 3–6 1992.

148 Bibliography

[189] C. D. Stefano, C. Sansone, and M. Vento. To reject or not to reject: that
is the question-an answer in case of neural classifiers. IEEE Transactions
on Systems, Man and Cybernetics, 30(1):84–94, 2000.

[190] J. Sternby and A. Ericsson. Core points - a framework for structural pa-
rameterization. In Proceedings of International Conference on Document
Analysis and Recognition, volume 1, pages 217–221, Seoul, Korea, August
29 – September 1 2005.

[191] N. Strathy and C. Suen. A new system for reading handwritten zip codes. In
Proceedings of International Conference on Document Analysis and Recog-
nition, volume 1, pages 74–77, Montreal, Canada, August 11–15 1995.

[192] C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam. Computer recog-
nition of unconstrained handwritten numerals. Proceedings of the IEEE,
7(80):1162–1180, 1992.

[193] A.-H. Tan and L.-N. Teow. Learning by supervised clustering and matching.
In Proceedings of International Conference on Neural Networks, volume 1,
pages 242–246, Perth, Australia, November 27 – December 1 1995.

[194] H. Tanaka, K. Nakajima, K. Ishigaki, K. Akiyama, and M. Nakagawa. Hy-
brid pen-input character recognition system based on integration of online-
offline recognition. In Proceedings of International Conference on Document
Analysis and Recognition, pages 209–212, Bangalore, India, September 20–
22 1999.

[195] H. Tanaka, N. Iwayama, and K. Akiyama. Online handwriting recognition
technology and its applications. Fujitsu Scientific and Technical Journal,
40(1):170–178, 2003.

[196] C. C. Tappert. Adaptive on-line handwriting recognition. In Proceedings of
International Conference on Pattern Recognition, pages 1004–1007, Mon-
treal, Canada, July 30 – August 2 1984.

[197] C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in on-
line handwriting recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(8):787–808, 1990.

[198] L.-N. Teow and A.-H. Tan. Adaptive integration of multiple experts. In
Proceedings of International Conference on Neural Networks, volume 3,
pages 1215–1220, Perth, Australia, November 27 – December 1 1995.

[199] K. Torkkola and T. Kohonen. Correction of quasiphoneme strings by the
dynamically expanding context. In International Conference on Pattern
Recognition, volume 1, pages 487–489, Rome, Italy, November 14–17 1988.

Bibliography 149

[200] S. Uchida and H. Sakoe. Handwritten character recognition using mono-
tonic and continuous two-dimensional warping. In Proceedings of Interna-
tional Conference on Document Analysis and Recognition, pages 499–502,
Bangalore, India, September 20–22 1999.

[201] S. Uchida and H. Sakoe. Handwritten character recognition using elastic
matching. In Proceedings of International Conference on Document Analy-
sis and Recognition, pages 163–167, Edinburgh, Scotland, August 3–6 2003.

[202] R. K. Ursem. Diversity-guided evolutionary algorithms. In Proceedings
of Parallel Problem Solving from Nature, pages 462–471, Granada, Spain,
September 7–11 2002.

[203] M. vanErp and L. Schomaker. Variants of the Borda count method for
combining ranked classifier hypotheses. In Proceedings of the 7th Interna-
tional Workshop on Frontiers in Handwriting Recognition, pages 443–452,
Amsterdam, Netherlands, September 11–13 2000.

[204] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[205] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag
New York, Inc., New York, NY, USA, 1995.

[206] S. Veeramachaneni and G. Nagy. Adaptive classifiers for multisource OCR.
International Journal of Document Analysis and Recognition, 6(3):154–166,
2003.

[207] V. Vuori. Adaptation in on-line recognition of handwriting. Master’s thesis,
Helsinki University of Technology, 1999.

[208] V. Vuori. Adaptive methods for on-line recognition of isolated handwritten
characters. PhD thesis, Helsinki University of Technology, 2002.

[209] V. Vuori. Clustering writing styles with a self-organizing map. In Proceed-
ings of the 8th International Workshop on Frontiers in Handwriting Recog-
nition, pages 345–350, Niagara-on-the-Lake, Canada, August 6–8 2002.

[210] V. Vuori, M. Aksela, J. Laaksonen, E. Oja, and J. Kangas. Adaptive char-
acter recognizer for a hand-held device: Implementation and evaluation
setup. In Proceedings of the 7th International Workshop on Frontiers in
Handwriting Recognition, pages 13–22, Amsterdam, Netherlands, Septem-
ber 11–13 2000.

[211] V. Vuori, J. Laaksonen, and J. Kangas. Influence of erroneous learning sam-
ples on adaptation in on-line handwriting recognition. Pattern Recognition,
35(4):915–926, 2002.

150 Bibliography

[212] V. Vuori, J. Laaksonen, and E. Oja. A comparison of techniques for au-
tomatic clustering of handwritten characters. In Proceedings of the 16th
International Conference on Pattern Recognition, volume 3, pages 168–171,
Quebec, Canada, August 11–15 2002.

[213] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. On-line adaptation in recog-
nition of handwritten alphanumeric characters. In Proceedings of Interna-
tional Conference on Document Analysis and Recognition, pages 792–795,
Bangalore, India, September 20–22 1999.

[214] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. Controlling on-line adapta-
tion of a prototype-based classifier for handwritten characters. In Proceed-
ings of the 15th International Conference on Pattern Recognition, volume 2,
pages 331–334, Barcelona, Spain, September 3–7 2000.

[215] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. Experiments with adapta-
tion strategies for a prototype-based recognition system of isolated hand-
written characters. International Journal of Document Analysis and Recog-
nition, 3(2):150–159, 2001.

[216] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. Speeding up on-line recogni-
tion of handwritten characters by pruning the prototype set. In Proceedings
of 6th International Conference on Document Analysis and Recognition,
pages 501–505, Seattle, Washington, USA, September 10–13 2001.

[217] V. Vuori and E. Oja. Analysis of different writing styles with the self-
organizing map. In Proceedings of the 7th International Conference on
Neural Information Processing, volume 2, pages 1243–1247, Taejon, Korea,
November 14–18 2000.

[218] P. S.-P. Wang and A. Gupta. An improved structural approach for au-
tomated recognition of handprinted character. International Journal of
Pattern Recognition and Artificial Intelligence, 5(1&2):97–121, 1991.

[219] J. R. Ward and T. Kuklinski. A model for variability effects in hand-
printing with implications for design of handwriting character recognition
systems. IEEE Transactions on Systems, Man, and Cybernetics, 18(3):438–
451, May/June 1988.

[220] J. R. Ward. History of pen computing: Annotated bibliography in
on-line character recognition and pen computing. http://rwservices.no-
ip.info:81/pens/biblio70.html, November 2006.

Bibliography 151

[221] S. M. Watt and X. Xie. Prototype pruning by feature extraction for hand-
written mathematical symbol recognition. In Proceedings of Maple Confer-
ence, pages 423–437, Waterloo, Canada, July 17–21 2005.

[222] S. M. Watt and X. Xie. Recognition for large sets of handwritten mathe-
matical symbols. In Proceedings of International Conference on Document
Analysis and Recognition, volume 2, pages 740–744, Seoul, Korea, August
29 – September 1 2005.

[223] D. Windridge and J. Kittler. A morphologically optimal strategy for clas-
sifier combination: Multiple expert fusion as a tomographic process. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(3):343–353,
2003.

[224] D. Windridge and J. Kittler. Performance measures of the tomographic
classifier fusion methodology. International Journal of Pattern Recognition
and Artificial Intelligence, 19(6):731–753, 2005.

[225] B. H. Xiao, C. H. Wang, and R. W. Dai. Adaptive combination of classi-
fiers and its application to handwritten chinese character recognition. In
Proceedings of the 15th International Conference on Pattern Recognition,
volume 2, pages 327–330, Barcelona, Spain, September 3–7 2000.

[226] L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classi-
fiers and their applications to handwriting recognition. IEEE Transactions
on Systems, Man and Cybernetics, 22(3):418–435, 1992.

[227] L. Xu, M. I. Jordan, and G. E. Hinton. An alternative model for mixtures of
experts. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances
in Neural Information Processing Systems 7, pages 633–640, Cambridge,
MA, 1995.

[228] A. Zell, N. Mache, and G. M. e. al. Snns : Stuttgart neural network
simulator. http://www-ra.informatik.uni-tuebingen.de/SNNS/, September
2002.

[229] B. Zhang, M. Fu, H. Yan, and M. Jabri. Handwritten digit recognition by
adaptive-subspace self-organizing map (ASSOM). IEEE Transactions on
Neural Networks, 10(4):939–945, 1999.

[230] E. Zitzler. Evolutionary Methods for Design, Optimisation, and Control,
chapter Evolutionary Algorithms for Multiobjective Optimization, pages
19–26. CIMNE, 2002.

152 Bibliography

[231] H. Zouari, L. Heutte, and Y. Lecourtier. Controlling the diversity in clas-
sifier ensembles through a measure of agreement. Pattern Recognition,
38(11):2195–2199, 2005.

