
Helsinki University of Technology, Institute of Mathematics, Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2007 A520

GEOMETRIC PROPERTIES OF ELECTROMAGNETIC WAVES

Matias F. Dahl

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80701857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Helsinki University of Technology, Institute of Mathematics, Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2007 A520

GEOMETRIC PROPERTIES OF ELECTROMAGNETIC WAVES

Matias F. Dahl

Dissertation for the Degree of Doctor of Science and Technology to be presented with due permission

of the Department of Engineering Physics and Mathematics, for public examination and debate in

Auditorium C at Helsinki University of Technology (Espoo, Finland) on the 16th of March 2007, at 12

o’clock noon.

Helsinki University of Technology

Department of Engineering Physics and Mathematics

Institute of Mathematics



Dahl: Geometric properties of electromagnetic waves; Helsinki University of Tech-
nology, Institute of Mathematics, Research Reports A520 (2007).

Abstract: This work studies geometrical properties of electromagnetic wave
propagation. The work starts by studying geometrical properties of electro-
magnetic Gaussian beams in inhomogeneous anisotropic media. These are
asymptotical solutions to Maxwell’s equations that have a very characteris-
tic feature. Namely, at each time instant the entire energy of the solution
is concentrated around one point in space. When time moves forward, a
Gaussian beam propagates along a curve. In recent work by A. P. Kachalov,
Gaussian beams have been studied from a geometrical point of view. Under
suitable conditions on the media, Gaussian beams propagate along geodesics.
Furthermore, the shape of a Gaussian beam is determined by a complex ten-
sor Riccati equation. The first paper of this dissertation provides a partial
classification of media where Gaussian beams geometrize. The second paper
shows that the real part of a solution to the aforementioned Riccati equation
is essentially the shape operator for the phase front for the Gaussian beam.
An important phenomena for electromagnetic Gaussian beams is that their
propagation depend on their polarization. The last paper studies this phe-
nomena from a very general point of view in arbitrary media. It also studies
a connection between contact geometry and electromagnetism.

AMS subject classifications: 53B50, 41A60, 53B40, 53Z05, 78A05, 78A40,
78A99, 78M35

Keywords: electromagnetism, Maxwell’s equations, Riemann geometry, Finsler
geometry, contact geometry, symplectic geometry, Hamilton-Jacobi equation, phase
function, complex Riccati equation, Gaussian beams, propagation, polarization,
helicity, Bohren decomposition, Moses decomposition, Craya decomposition, ge-
ometrization of physics

Correspondence

Matias.Dahl@tkk.fi

ISBN 978-951-22-8672-0 (printed)
ISBN 978-951-22-8673-7 (pdf)
ISSN 0784-3143

Helsinki University of Technology

Department of Engineering Physics and Mathematics

Institute of Mathematics

P.O. Box 1100, FI-02015 TKK, Finland

email:math@tkk.fi http://math.tkk.fi/



Swedish abstract: Detta arbete behandlar geometriska egenskaper hos elek-
tromagnetisk v̊agutbredning. Arbetet börjar med att studera egenskaper hos
Gaussiska str̊alar i anisotropa och ohomogena medier. En Gaussisk str̊ale är
en asymptotisk lösning till Maxwell’s ekvationer som utbreds längs en kurva.
(Vid varje tidpunkt är hela energin koncentrerad kring en punkt p̊a kurvan.) I
artiklar av A.P. Kachalov har elektromagnetiska Gaussiska str̊alar studerats
fr̊an en geometrisk synvinkel. Med vissa antaganden p̊a mediet framskrider
Gaussiska str̊alar längs geodeser i en Riemannisk geometri och en olineär
komplex Riccati ekvation bestämmer Gaussiska str̊alens form. Den första ar-
tikeln i denna avhandling ger en partiell karakterisering av medier där Gaus-
siska str̊alar utbreds med hjälp av Riemannisk geometri. Den andra artikeln
visar att den reella delen av en lösning till den komplexa Riccati ekvationen
är form-operatorn till fas-fronten för en Gaussisk str̊ale. Den sista artikeln
studerar polarisering i elektromagnetism med hjälp av en dekomposition i
Fourier rymden. Denna artikel studerar ocks̊a en länk mellan elektromag-
netism och kontakt-geometri.
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Organization

This dissertation is divided into five parts: the introduction, three papers,
and one errata:

[I] M. F. Dahl, Electromagnetic Gaussian beams and Riemannian geom-
etry, Progress In Electromagnetics Research, Vol. 60, pp. 265-291,
2006.

[II] M. F. Dahl, Geometric interpretation of the complex Riccati equation,
Journal of Nonlinear Mathematical Physics, Vol. 14, No. 1, pp. 95-111,
2007

[III] M. F. Dahl, Contact geometry in electromagnetism, Progress In Elec-
tromagnetics Research, Vol. 46, pp. 77-104, 2004.

[E] Errata for [I].

All manuscripts have been prepared by myself. Paper [III] is based on
my master’s thesis, Contact and symplectic geometry in electromagnetism
[Dah02]. Paper [I] is based on my Licentiate thesis, Electromagnetic Gaussian
beams in Riemann-Finsler geometry [Dah06].

[III] represents my own research. The topic of classifying media in [I] was
suggested by the supervisor of this work, Professor Erkki Somersalo. How-
ever, the work was carried out by myself. The main result of [II], Theorem
4.5, was formulated by my instructor Doctor Kirsi Peltonen, and proven by
myself.
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2 Introduction

The aim of this work is to study geometric properties of electromagnetic
wave propagation. However, let us begin with a brief description of inverse
problems, which form an important motivation for this work.

There are many examples where one would like to obtain information
about an object’s interior in a non-invasive way. Natural examples appear in
quality control, geophysical surveying, medical imaging, mine detection, in-
dustrial processes, and archeology. Mathematically, such problems are known
as inverse problems. They are solved by first measuring how an object re-
acts to some physical phenomena, and then fitting this data to some physical
model that depends on the material properties in the interior of the object.
Examples of such physical phenomena can be impedance, acoustic waves,
electromagnetic waves, and seismic waves. For example, using X-rays one
can obtain a 2D projection of an object. By mathematically combining many
such projections from different angles, one can obtain information about the
object’s 3D structure [SKJ+03]. This process is known as X-ray tomography.

For inverse problems, an important class of measurements are boundary
travel-time measurements; one sends in a signal at one point on the boundary
and records when the signal reaches any other point on the boundary. From
such measurements, one can theoretically determine how long it takes for a
signal to travel between any two points on the boundary. A natural inverse
problem is then as follows: Can one reconstruct the material properties inside
the object from the boundary travel-time information? This reconstruction,
when possible, is known as travel-time tomography.

Mathematically, the travel-time tomography problem is known as the
boundary rigidity problem. For a Riemannian manifold M with boundary it
reads as follows. Does the geodesic distance restricted to the boundary of M

determine the metric tensor inside M? A first answer is no. If Φ: M → M

is a diffeomorphism that preserves the boundary, and Φ∗g is the pullback of
metric tensor g, then manifolds (M, g) and (M, Φ∗g) share the same geodesic
distance on their boundaries. In consequence, the boundary rigidity problem
is only relevant up to a boundary-preserving diffeomorphism. A recent result
of L. Pestov and G. Uhlmann [PG05] states that compact, 2-dimensional, and
simple Riemannian manifolds are boundary rigid (up to the aforementioned
obstruction). We shall not here give the definition of a simple manifold.
However, on a simple manifold, there are no conjugate points, and any two
points can be joined by a unique geodesic. A recent review of various rigidity
results for Riemannian manifolds can be found in [SU05].

In view of inverse problems, it is motivated to study the travel-time met-
ric defined by physical wave propagation. Say, how is such a metric defined?
What does it depend on? What are its mathematical properties? And, when
is it a Riemannian metric? A very successful mathematical tool for studying
these types of questions are Gaussian beams. These are asymptotic solu-
tions to hyperbolic equations (that is, wave-type equations) that have a very
characteristic feature. Namely, at each time instant their entire energy is
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concentrated around one point in space. This means that a Gaussian beam
propagates along a curve. An important result is that (under suitable as-
sumptions) this curve is a geodesic in a Riemannian geometry. Moreover,
this geometry is completely determined by the media. Thus, in some sense,
Gaussian beams geometrize wave propagation; the study of propagating of
Gaussian beams reduces to the study of Riemannian geometry. A very im-
portant problem, which is much less understood, is how to decompose an
arbitrary field (or its wave front) into Gaussian beams. We shall not deal
with this question in this work. However, such a decomposition would give a
very rapid way for calculating the travel-time between two antennas. Namely,
to propagate a Gaussian beam one only have to solve the geodesic equation.
Since it is an ordinary differential equation, it is much faster to solve than the
original partial differential equation, say, Maxwell’s equations in the time do-
main. In mathematics, the decomposition-problem is not relevant. If one has
complete control of the boundary of an object, one can generate one Gaus-
sian beam at a time [KL04]. A historical perspective on Gaussian beams can
be found in [BP73, Pop02, Ral82].

This work studies the geometry of electromagnetic wave propagation by
studying geometric properties of electromagnetic Gaussian beams. A fun-
damental paper on this topic is [Kac05]. It shows that in anisotropic me-
dia, propagation of electromagnetic Gaussian beams is determined by two
Hamiltonian functions. Moreover, if these Hamiltonians are smooth, 1-
homogeneous, and strongly convex, they induce two Finsler geometries, and
equations governing propagation of Gaussian beams can be written using
these geometries. Here, Finsler geometry is a natural generalization of Rie-
mannian geometry where the norm does not need to be induced by an inner
product [She01b, She01a, BCS00]. Let us point out that the reason one
needs two Hamiltonians is due to polarization. For example, a plane wave
can be right- and left-hand polarized, and, in anisotropic media, these may
propagate along different paths. Therefore one needs two Hamiltonians; one
for “right hand polarized” Gaussian beams, and one for “left hand polar-
ized” Gaussian beams. For comparison, one needs only one Hamiltonian in
acoustics, where there is no polarization.

This dissertation consists of three papers [I], [II], and [III]. Of these,
[I] form a natural continuation of [Kac05] described above. Namely, [I] stud-
ies the conditions on the Hamiltonians in terms of the anisotropic media pa-
rameters. The main result of [I] is a partial classification of media, where
Gaussian beams geometrize. The somewhat surprising result is that if the
permittivity and permeability matrices are simultaneously diagonalizable,
then there are no non-Riemannian Finsler geometries in the Gaussian beam
framework. A general background on the topic of geometrization of electro-
magnetics is given in Section 3. A short introduction of Gaussian beams is
given in Section 4, and the result of [I] is presented in Section 4.2.

Paper [II] studies geometric properties of the complex tensor Riccati
equation associated with Gaussian beams. This equation determines the
Hessian of the phase function for a Gaussian beam. The main result of
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[II] is that the real part of such a solution is essentially the shape operator
of the phase front. Section 4.3 gives an outline of this result.

Unlike acoustics, wave propagation in electromagnetics depends on po-
larization. This can be seen both from the theory of Gaussian beams, or
from the way plane waves scatter. One difficulty, however, is that there does
not seem to exist a general mathematical definition of polarization for an
arbitrary electromagnetic wave. For example, the concepts of linearly, ellip-
tically, and circularly polarized waves are only defined for plane waves. The
main result of [III] is a very general functional analytic way of viewing po-
larization. This result is outlined in Section 5. Paper [III] also establishes a
relation between contact geometry and electromagnetism.
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3 Maxwell’s equations in differential forms

To study the geometry in electromagnetism it is necessary to formulate
Maxwell’s equations in the same setting as differential geometry, that is,
using differential forms on a smooth manifold. There are at least two main
advantages of this formalism. First, it makes many powerful results and
constructions from differential geometry available. For example, in [I] and
[II] it would be possible to write down the curvature tensor as a function
of the permittivity and permeability matrices. However, this yields quite
complicated expressions [SZWZ97]. Secondly, manifolds provide a natural
framework for studying global objects; that is, objects that do not depend
on their expressions in local coordinates. Due to the natural obstruction
for boundary rigidity (see the introduction), this global view is well suited
for studying inverse problems. Manifolds also provide a natural framework
for physics; a physical phenomena should not depend on the mathematical
coordinates in use. Let us emphasize that in this work, we only study the ge-
ometrization of electromagnetism in 3-space. We also assume that everything
is smooth.

Using traditional vector analysis Maxwell’s equations read

∇× E = −
∂B

∂t
, (1)

∇× H =
∂D

∂t
+ J, (2)

∇ · D = ρ, (3)

∇ · B = 0. (4)

Here, the physical electromagnetic wave is represented using four vector
fields; electric fields E,D and magnetic fields H,B. Thus the wave is repre-
sented by 16 scalar functions. In addition to vector fields, other formalisms
are dyads [Lin92], quaternions [Lou01], tensors [Pos62], and differential forms
[BH96, Lin04]. With differential forms, Maxwell’s equations read

dE = −
∂B

∂t
, (5)

dH =
∂D

∂t
+ J, (6)

dD = 0, (7)

dB = ρ. (8)

Here d is the exterior derivative, E and H are 1-forms representing the elec-
tric and magnetic fields, and D and B are 2-forms representing electric and
magnetic fluxes, respectively. Also, J is the source current 2-form, and ρ is
the charge concentration 3-form [WSA97].

An important observation is that equations (5)-(8) only involve the ex-
terior derivative d. This means that the equations do not depend on local
coordinates, so Maxwell’s equations can be formulated on any smooth 3-
manifold. In particular, Maxwell’s equations do not depend on an inner
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product. Hence the equations do not involve such notions as angle, length,
area, or volume.

To solve Maxwell’s equations one need to complement these with con-
stitutive equations. These equations reduce the number of free variables
in Maxwell’s equations, say, by expressing (D, B) as a function of (E, H).
Physically, the constitutive equations encode properties of the electromag-
netic media, and in general these might be very complicated. For example,
they might include non-linear effects, hysteresis, or time-dispersion. Let us
here assume that the media is anisotropic. Then the constitutive equations
read

D = ε · E,

B = µ · H,

where ε and µ are real, symmetric, and positive definite 3 × 3 matrices that
describe the permittivity and permeability of the media. We assume that
they may depend on location, but not on time nor on frequency.

Unlike Maxwell’s equations, the constitutive equations do not directly
translate into differential forms. The problem is that E is a 1-form, and D is
a 2-form. Hence ε and µ are operators that map 1-forms into 2-forms. Since
ε and µ are symmetric and positive definite, these operators can be realized
using two Hodge operators ∗ε, ∗µ induced by two suitable Riemannian metrics
[Bos01, Dah06, KLS06]. The constitutive equations then reads

D = ∗εE,

B = ∗µH.

In contrast to Maxwell’s equations, the constitutive equations are com-
pletely metrical; they depend only on geometry. One metric describes electric
anisotropy, and one describes magnetic anisotropy. In the variational formu-
lation of electrostatics and magnetostatics, these metrics play an important
role [BH96]. Unfortunately, however, these metrics do not seem to be re-
lated to wave propagation. One sought feature, for instance, would be that
geodesics would describe the path traversed by a ray of light. However, since
such a path depends on polarization, and since the above metrics do not take
polarization into account, the geodesics do not have such properties. As an
example, in isotropic media, the Riemannian metrics are

gε
ij =

1

ε2
δij,

g
µ
ij =

1

µ2
δij.
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4 Gaussian beams

In this section we first give a short mathematical introduction to electromag-
netic Gaussian beams on a manifold. Section 4.1 describes the geometriza-
tion result in [Kac05]. Section 4.2 describes the result of [I], and Section 4.3
describes the result of [II]. Detailed expositions on Gaussian beams that em-
phasize their geometrical natural are [Dah06, Kac02, Kac04, Kac05, KKL01,
KL04] and [I]. See also [Pop02, Ral82].

To define an electromagnetic Gaussian beam, suppose M is a smooth 3-
manifold representing physical space. On M , let us consider an electric field
of the form

E(x, t) = Re {E0(x, t) exp (iP θ(x, t))} , (x, t) ∈ M × I. (9)

Here P > 0 is a large constant, I is an open interval representing time, E0

is a complex 1-form, and the function θ : M × I → C is the phase function
for E. The advantage of the above representation is that qualitatively E0

and θ contain different type of information. One can think of equation (9)
as a separation of variables. The 1-form E0 completely determines how E is
polarized. To understand the role of θ, let us write

exp (iP θ(x, t)) = exp(iP Re θ) exp(−P Im θ).

As P > 0 is large, Re θ describes high frequency oscillations of E. Thus Re θ

describe how the field propagates. On the other hand, Im θ influences the
amplitude of E. In order for E to be stable if one takes P → ∞, let us
assume that Im θ ≥ 0.

Plugging E into Maxwell’s equation yields the Hamilton-Jacobi equation
for θ,

∂θ

∂t
= h(dθ).

Here h is a suitable Hamiltonian function T ∗M → R. In fact, in electro-
magnetism there are two possible Hamiltonian functions. We shall not give
their precise definition here. However, let us make two observations. Since
propagation of electromagnetic waves depend on their polarization, one needs
two Hamiltonians. Essentially, one Hamiltonian describes how “right hand
polarized”waves propagate, and the other describe how “left hand polarized”
waves propagate. The second observation is that the Hamiltonian functions
are completely determined by the electromagnetic media. Thus, once the
media is known, one can solve the phase function, which, in turn, describes
how the wave propagates. This shows how the Hamilton-Jacobi equation is
closely related to travel-time problem.

To define a Gaussian beam, let c : I → M be a smooth curve. (This will
be the curve the Gaussian beam propagates along.) Furthermore, suppose c

is covered with local coordinates xi, and suppose that

φ : I → C, p : I → C
3, H : I → C

3×3
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are the first three coefficients in the Taylor expansion of θ evaluated on c(t).
That is,

φ(t) = θ(c(t), t),

pj(t) =
∂θ

∂xj
(c(t), t),

Hjk(t) =
∂2θ

∂xj ∂xk
(c(t), t).

Then E is a Gaussian beam on c provided that for all t ∈ I,

1. p(t) = (pi(t))i is non-zero,

2. φ(t) and p(t) are real,

3. the imaginary part of H(t) = (Hij(t))ij is positive definite.

One can show that these conditions do not depend on local coordinates, and

θ(x, t) = φ0(t) + pi(t)z
i +

1

2
Hij(t)z

izj + o(|z|3),

where zi = zi(x, t) = xi − ci(t). In consequence,

| exp (iP θ(x, t)) | ≈ exp

(

−
P

2
zi Im Hijz

j

)

. (10)

In other words, at time t, the energy of E is completely concentrated around
c(t), and Im H describes the shape of the field.

Let us point out that E0 in equation (9) is typically replaced by a fi-

nite sum
∑N

k=0
Ek(x,t)
(iP )k , where E0, E1, . . . are complex 1-forms [Kac05, KO90].

Then one can derive an equation for E0 called the transport equation. Fur-
thermore, from Ei, one can solve Ei+1. For electromagnetic Gaussian beams,
these equations are studied in [Kac04]. By studying these equations one can
determine the amplitude behaviour of Gaussian beams.

4.1 Geometrization of Gaussian beams

To determine the shape and the propagation of a Gaussian beam, it suffices to
know φ, c, p, and H. For these, one can derive ordinary differential equations.
Expanding both sides of the Hamilton-Jacobi equation with respect to z, and
identifying the first three zi-terms, gives the following equations:

1. φ is constant.

2. (c, p) is a solution to the Hamilton-equations with Hamiltonian h.

3. H is a solution to a complex matrix Riccati equation ([I], equation
(19)).
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All of these equations are ordinary differential equations. This means that
they are much more well behaved than the original non-linear partial differ-
ential equation. One disadvantage, however, is that the equations are not
geometrical. Although, the second equation can be formulated using sym-
plectic geometry, a problem with the third equation is that H is not even
a tensor. However, suppose Hamiltonian h is smooth, strongly convex, and
1-homogeneous. That is:

1. h is smooth on T ∗M \ {0}.

2. h is a strongly convex function, that is,
(

∂2h2

∂ξj ∂ξk

)

jk
is positive definite

matrix.

3. h is 1-homogeneous: If (x, ξ) ∈ T ∗M , then

h(x, λξ) = λh(x, ξ), λ > 0.

Then equations for c, p, and H geometrize. For electromagnetic Gaussian
beams, this was first proven in [Kac05] (see also [Dah06, Kac02, KKL01]).
In this case, h induces a Legendre transformation [Dah06, She01b] defined as

L : T ∗M \ {0} → TM \ {0}

(x, ξ) 7→

(

x,

(

∂2h2

∂ξj ∂ξk

(x, ξ)ξk

)

j

)

, (11)

and L induces a Finsler norm F : TM → R by F = h ◦ L −1 [BCS00,
She01b]. Then, using F , equations for c, p, H can be written as:

1. c is a geodesic with respect to F .

2. (c, p) = L −1(ċ).

3. Suppose Λ(t) = (Γm
ijpm)ij, where Γm

ij are the coefficients of the Chern-
Rund connection [Dah06, She01b], and

Gij = Hij − Λij. (12)

Then G = Gijdxi ⊗ dxj is a tensor on c (see [I], Appendix B), and it is
determined by the complex tensor Riccati equation

DċG + GCG − R = 0.

Here DċG is the covariant derivative of G along c, and C = C ij ∂
∂xi ⊗

∂
∂xj

and R = Rijdxi ⊗dxj are 2-tensors on c depending on F (see [Dah06]).

The above provides a geometric and coordinate independent formulation
for propagation of Gaussian beams. Namely, the propagation of Gaussian
beams is determined by the phase function θ, and the above equations de-
termine the first three terms in the Taylor expansion of θ.
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4.2 Classification of media

The geometrization-result of [Kac05] shows that if the Hamiltonian functions
satisfy suitable conditions, then electromagnetic Gaussian beams propagate
using Finsler geometry. Since the Hamiltonians are determined by the media,
this poses a natural question. Namely, in what kind of media do Gaussian
beams geometrize? This is the topic of [I]. The somewhat surprising result of
[I] is that if the permittivity and permeability matrices are simultaneously
diagonalizable, then there are no non-Riemannian Finsler geometries in the
Gaussian beam framework.

Mathematically, the Hamiltonians are defined as functions that para-
metrize the positive eigenvalues of a 6 × 6 matrix (see [I]). Due to their
implicit definition, it does not seem to be possible to check the conditions on
the Hamiltonians for the most general media. Therefore it is motivated to
study the Hamiltonians in special classes of media, where they can be solved
explicitly. In [I], this is done for media where ε and µ can be simultaneously
diagonalized. That is, if U is a coordinate chart for M , then there exists a
smooth mapping that to each x ∈ U assigns a rotation matrix R such that

ε = R−1 ·





ε1

ε2

ε3



 · R, µ = R−1 ·





µ1

µ2

µ3



 · R, (13)

where εi > 0, µi > 0 are eigenvalues of ε and µ. We also assume that εi, µi

are smooth functions on U . Three examples of such media are:

1. Isotropic media.

2. Either µ or ε is isotropic: Say, if µ is proportional to the identity matrix,
one can pointwise diagonalize µ.

3. ε and µ are proportional: This class is mostly of theoretical interest.
For example, in [KLS06], an electromagnetic inverse problem was solved
with this assumption on the media.

The motivation for condition (13) is that in this media one can solve
the Hamiltonian functions explicitly. The actual expressions are somewhat
involved, but given in [I], Section 4.1. In [I], the classification of media is
accomplished by introducing three functions that describe the complexity of
the media. These are called the ∆ij-symbols. For i, j = 1, 2, 3 and i < j,
these are defined as

∆ij =
1

εiµj

−
1

εjµi

.

The motivation for studying these symbols is that the Hamiltonians behave
qualitatively differently depending on how many ∆ij-symbols vanish.

One can prove that if two ∆ij-symbols vanish at a point, then the third
symbol also vanishes. In consequence, electromagnetic media divide into 3
classes: (1) all ∆ij-symbols are zero, (2) one ∆ij-symbol is zero, or (3) no
∆ij-symbol is zero. For simplicity, let us assume that the class does not
depend on location in U .
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Class 1: All ∆ij-symbols are zero

This is the most simple class of media, where Gaussian beams geometrize.
A special case of this media is isotropic media, where εi = ε and µi = µ for
i = 1, 2, 3. The induced Riemannian metrics are then

g±ij = εµδij.

Two alternative characterizations of this media are: the two Hamiltonians
coincide, or ε and µ are proportional. Physically, the first characterization
means that propagation does not depend on polarization.

Class 2: At least one ∆ij-symbol is zero

One can prove that if the Hamiltonians are smooth and convex, then one
∆ij-symbol must necessarily vanish. The converse of this is also true (see
[E]); if ∆ij = 0 in U for some i, j, then Gaussian beams geometrize in U .

As an example, suppose that the media is of the form

ε = R−1 ·





ε1

ε2

ε2



 · R, µ = µ0I

for some smooth function µ0 > 0. Then ∆23 = 0, and Gaussian beams
geometrize.

Class 3: All ∆ij-symbols are non-zero

In this class, the Hamiltonians are always non-smooth, and non-convex.
Therefore their study does not seem to be motivated using differential geom-
etry. This is illustrated in Example 5.3 in [I].

4.3 Geometric interpretation of Re G

From equations (10) and (12) it follows that Im G describes how a Gaussian
beam decays in different directions of space. The main result of [II] is
Theorem 4.5. It shows that ReG is essentially the shape operator of the
phase front for the Gaussian beam. This is a natural result in two ways.
First, a similar result is known for Gaussian beams in R3 [Č01]. However, in
the setting of R

3, G is not a tensor, and the shape operator is calculated with
respect to the Euclidean metric. Second, in classical differential geometry,
the shape operator corresponding to a family of surfaces determined by a
distance function satisfies a real tensor Riccati equation [Gra90, She01b].
The main idea of the proof of Theorem 4.5 in [II] is to write the tensor
Riccati equation using Fermi coordinates adapted to the underlying geodesic
[BU81].
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5 Polarization in electromagnetics

From electromagnetic Gaussian beams it is clearly seen that the electromag-
netic travel-time depends on polarization. This fact motivates the last paper
[III], which studies the role of polarization in electromagnetism from a very
general point of view. A main result of [III] is that Maxwell’s equations
decompose into two Maxwell’s equations formulated on different function
spaces. Essentially this means that every electromagnetic field is a sum of
two electromagnetic fields that propagate independently of each other, but
with different polarizations.

In [I], this decomposition of Maxwell’s equations is accomplished by using
a helicity decomposition for vector fields on R3. Essentially this decomposi-
tion is a refinement of Helmholtz’ decomposition [Bla93]. It takes a vector
field F on R3 and decomposes it into three components: F+,F−,F0. Vector
fields F± are in some sense generalizations of right and left hand polarized
waves, and the third component F0 has zero curl. In [III] it is also shown
how the helicity decomposition is related to both the Bohren decomposition
and to contact geometry.

It should be emphasized that the helicity decomposition is well known in
fluid mechanics [CM98, Mac95, Mac98, Mos71, Tur00, Wal92]. The decom-
position has also been studied in electromagnetics [Hil94, Mos71].

5.1 Helicity decomposition of Maxwell’s equations

Let L2 be vector fields on R
3 with square integrable components, and let

L2
curl = {F ∈ L2 : ∇× F ∈ L2}.

Then we define helicity H : L2
curl → R as

H (F) =

∫

R3

F · ∇ × F dx, F ∈ L2
curl.

Helicity appears also in the study of fluid mechanics and plasma physics.
There, however, the definition of helicity is slightly different: ∇×F is replaced
by (∇×)−1(F), and helicity is then only defined for divergence-free vector
fields [AK98]. The advantage of this (fluid mechanical) helicity is that it
can be interpreted in terms of the linking number in knot theory, and the
asymptotic Hopf invariant [AK98]. However, the above definition of helicity
seems more motivated in electromagnetics. First, quantity F ·∇×F is locally
defined, and second, it has a contact geometric interpretation (see Section
5.2).

Helicity can be seen as a global measure of polarization. To see this, let
us consider the quantity F · ∇ × F for an arbitrary plane wave F. In this
case, F · ∇ × F is constant with respect to both time and location. That is,
even if F may oscillates in both intensity and/or amplitude, this oscillation
is not seen in F · ∇ × F. Furthermore,
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1. if F is a linearly polarized plane wave, then F · ∇ × F = 0,

2. if F+ and F− are left and right hand circularly polarized plane waves,
then F± · ∇ × F± are equal, but with opposite signs.

In other words, the sign of F·∇×F acts as an indicator of handed rotation
for F. Furthermore, this quantity is not only defined for plane waves, but
for arbitrary vector fields in L2

curl. (Of course, plane waves are not in L2
curl,

so strictly speaking, helicity is not defined for a plane wave. However, the
above analysis shows what type of information helicity measures. This issue
could also be addressed by replacing R3 with a 3-torus [ASKK99].)

An important property of F·∇×Fd x is that it is a differential-topological
quantity. If α is the 1-form corresponding to F under the usual identification
given by the Euclidean metric, then F ·∇×F d x corresponds to α∧dα [III].
This means that helicity is independent of both metric and local coordinates.

The following theorem is proven in [Dah02].

Theorem 5.1 (Helicity decomposition). Suppose F ∈ L2
curl

. Then F has
the decomposition

F = F0 + F+ + F−,

where F0,F± ∈ L2
curl

and

F 7→ Fλ is linear for λ ∈ {0,±}, (14)

(∇× F)λ = ∇× (Fλ), λ ∈ {0,±}, (15)

∇× F0 = 0, (16)

∇ · F± = 0, (17)

H (F0) = 0, (18)

H (F+) ≥ 0, with equality if and only if F+ = 0, (19)

H (F−) ≤ 0, with equality if and only if F− = 0. (20)

The proof is based on giving explicit expressions for F0,F+,F− in Fourier
space. See Definition 3.1 in [III].

Equations (16)-(17) show that the helicity decomposition is a generaliza-
tion of the Helmholtz’ theorem, or Hodge decomposition on R3. Properties
(19)-(20) show that F+ and F− are in some sense oppositely oriented vector
fields. For example, under a space inversion, F+ and F− exchange places in
the decomposition. These properties also show that on suitable subspaces
of L2

curl, helicity is non-degenerate and, in fact, a norm. It also holds that
the decomposition commutes with rotations, scalings, and dilations of space
[Dah02].

Using properties (14), (15), and (17), and assuming that time deriva-
tives commutes with the helicity decomposition, we can decompose Maxwell’s
equations. The +-components of the first two Maxwell equations 1-2 are

∇× E+ = −
∂B+

∂t
, (21)

∇× H+ =
∂D+

∂t
+ J+, (22)
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the −-components are

∇× E− = −
∂B−

∂t
, (23)

∇× H− =
∂D−

∂t
+ J−, (24)

and the 0-components are

∂B0

∂t
= 0, (25)

∂D0

∂t
= −J0, (26)

∇ · D0 = ρ, (27)

∇ · B0 = 0. (28)

Thus, up to the assumption of the fields, the above equations form a com-
pletely equivalent formulation for Maxwell’s equations.

One can prove that each decomposed field only depends on one real func-
tion R3 → R [III]. This means that the electric field E can be represented
either using Cartesian coordinate functions Ex, Ey, Ez, or using functions
e+, e−, e0 : R3 → R representing E+, E−, E0, respectively. The advantage
with the latter representation is that functions e+, e−, e0 have some physical
interpretation. Say, if e+ is non-zero, then we can deduce that E has a E+

component. The same is not true in the Cartesian representation.
Another advantage of the decomposed equations is that they are com-

pletely decoupled [Mos71]. The +-equations involve only +-fields, the −-
equations involve only −-fields, and the 0-equations involve only 0-fields.
However, this is only valid for fields E,D,H,D. Once the constitutive equa-
tions are introduced, these will couple the fields to each other. Moreover, the
±-equations in the decomposed Maxwell’s equations are structurally identical
with the original equations. This means that the decomposed ±-fields prop-
agate as physical fields. A disadvantage of the decomposition is that it does
not preserve the support of vector fields. This is particularly problematic for
the sources.

5.2 Bohren decomposition

The Bohren decomposition is a very useful tool in electromagnetics and it has
been studied in numerous references (see for example [BH83, Lak94, Lin92,
LSTV94, SSTA01] ). In its simplest form, it takes a solution to Helmholtz’s
equation

∇× (∇× E) = k2E

and decomposes E as E = E+ + E−, where

E± =
1

2

(

E ±
1

k
∇× E

)

.
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The decomposed fields then satisfy

∇× E± = ±kE±.

For example, if we apply the Bohren decomposition to a linearly polarized
wave, the decomposed fields E± will be circularly polarized waves, but with
opposite orientations. A central result in [III] is that the helicity decompo-
sition (at least formally) coincides with the Bohren decomposition.

A vector field F is a Beltrami field if ∇ × F = fF for real function f

[EG00]. Thus E± are both Beltrami fields. A characteristic feature for such
fields is a constant twisting behaviour much like circularly polarized waves.
For example, for E± we have

E± · ∇ × E± = ±kE± · E±.

Hence, as long as E± do not vanish, they exhibit “handed rotation” as de-
scribed in Section 5.1.

A Beltrami field F with ∇ × F = fF is rotational if f is nowhere zero.
An important property of non-vanishing rotational Beltrami fields is that
they are essentially in a one-to-one correspondence with contact structures
[EG00]. (On R3 a contact structure is induced by a vector field F that satis-
fies F · ∇ × F 6= 0 everywhere.) Thus, a motivation for studying the Bohren
decomposition is that it gives a method for generating contact structures
from solutions to Helmholtz’ equation. Examples and figures of such con-
tact structures are given in [III]. Unfortunately, properties (19)-(20) in the
helicity decomposition do not seem to imply that ±F± · ∇ × F± ≥ 0 holds
pointwise. If this would hold, F would induce two contact structures as long
as F± do not vanish. However, if H (F+) > 0, then F+ · ∇ × F+ > 0 on
some open set, and on this set F+ induces a contact structure.

5.3 Other models for polarization

There are also other ways to describe polarization. Examples are the Stokes
parameters for a plane wave [Jac99] and the polarization vector for a time
harmonic solution [Lin92]. Electromagnetic polarization and propagation has
also been studied using microlocal analysis [Den92].
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86 (2006), no. 3, 237–270.

[KO90] Y.A. Kravtsov and Y.I. Orlov, Geometrical optics of inhomoge-
neous media, Springer, 1990.

[Lak94] A. Lakhtakia, Beltrami fields in chiral media, World Scientific,
1994.

[Lin92] I.V. Lindell, Methods for electromagnetic field analysis, Clarendon
Press, 1992.

[Lin04] , Differential forms in electromagnetics, IEEE Press, 2004.

[Lou01] P. Lounesto, Clifford algebras and spinors, Cambridge University
Press, 2001.

28



[LSTV94] I.V. Lindell, A.H. Sihvola, S.A. Tretyakov, and A.J. Viitanen,
Electromagnetic waves in chiral and bi-isotropic media, Artech
House, 1994.

[Mac95] M.A. MacLeod, A new description of force-free magnetic fields,
Journal of Mathematical Physics 36 (1995), no. 6, 2951–2958.

[Mac98] , The spherical curl transform of a linear force-free mag-
netic field, Journal of Mathematical Physics 39 (1998), no. 3,
1642–1658.

[Mos71] H.E. Moses, Eigenfunctions of the curl operator, rotationally in-
variant Helmholtz theorem, and applications to electromagnetic
theory and fluid mechanics, SIAM Journal of Applied Mathemat-
ics 21 (1971), no. 1, 114–144.

[PG05] L. Pestov and G.Uhlmann, Two dimensional compact simple Rie-
mannian manifolds are boundary rigid, Annals of Mathematics
161 (2005), 1089–1106.

[Pop02] M.M. Popov, Ray theory and Gaussian beams method for geo-
physicists, EDUFBA, 2002.

[Pos62] E.J. Post, Formal structure of electromagnetics, Dover publica-
tions, 1962.

[Ral82] J. Ralston, Gaussian beams and the propagation of singularities,
Studies in partial differential equations MAA Studies in Mathe-
matics 23 (1982), 206–248.

[She01a] Z. Shen, Differential geometry of spray and Finsler spaces, Kluwer
Academic Publishers, 2001.

[She01b] , Lectures on Finsler geometry, World Scientific, 2001.

[SKJ+03] S. Siltanen, V. Kolehmainen, S. Järvenpää, J. P. Kaipio, P. Koisti-
nen, M. Lassas, J. Pirttilä, and E. Somersalo, Statistical inversion
for medical X-Ray tomography with few radiographs: I. General
theory, Physics in medicine and biology 48 (2003), 1437–1463.

[SSTA01] A. Serdyukov, I. Semchenko, S. Trekyakov, and A.Sihvola, Elec-
tromagnetics of bi-anisotropic materials. Theory and applications,
Gordon and Breach science publishers, 2001.

[SU05] P. Stefanov and G. Uhlmann, Recent progress on the boundary
rigidity problem, Electronic research announcements of the Amer-
ican mathematical society 11 (2005), 64–70.

29



[SZWZ97] W. Shen, J. Zhang, S. Wang, and S. Zhu, Fermat’s princi-
ple, the general eikonal equation, and space geometry in a static
anisotropic medium, Journal of the Optical Society of America:
A 14 (1997), no. 10, 2850–2854.

[Tur00] L. Turner, Using helicity to characterize homogeneous and inho-
mogeneous turbulent dynamics, Journal of Fluid Mechanics 408
(2000), 205–238.
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