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Chapter 1 

Introduction 

 

The speed of data transmission has increased impressively in the last century.  Nowadays, 

telecommunication is the principal way for data transmission.  This has caused the appearance 

of the Internet and its fast growth, with all its known benefits.  Nevertheless, larger capacity is 

still demanded every day.  For example, the bit-rate requirements for local area and metro 

area networks have increased from 100 Mbps to 10 Gbps.  To achieve these goals, quartz 

fiber has been used as a reliable transport media for information.  Quartz fiber as an optical 

medium has dispersion and attenuation minima at the wavelengths of 1.3 and 1.55 µm, 

respectively.  It also has local attenuation minima at 850 nm and 1.3 µm.  These properties 

have fixed these wavelengths as the optical communications wavelengths.  Therefore, in order 

to use these characteristics profitably, it is fundamental to have lasers lasing in these 

wavelengths. 

 

The first approach for the 1.3 and 1.55 µm wavelengths was done by fabricating lasers using 

InGaAsP bulk layers and quantum well (QW) structures as the active area on InP substrates.  

For the 850 nm wavelength, the GaAs material has been used, due to its suitable band gap, 

and the possibility to grow good quality mirrors, using the well-established AlGaAs material 

system.  This facilitates the use of vertical cavity surface-emitting laser (VCSEL), whose use 

has rapidly spread in the short-range optical telecommunication.  Due to this there has been a 

lot of research in GaAs-based active materials. 

 

Some other promising approaches have been proposed recently to improve the performance 

of the 1.3 and 1.55 µm lasers and to make them cheaper, such as the use of In(Ga)As quantum 

dot structures1, the use of a small fraction of nitrogen to red shift the wavelength of GaAs2 by 

forming GaAsN and GaInNAs3, and recently, it has been found that the real optical bandgap 

of InN is in the order of 0.7 – 1.0 eV4,5, compatible with the optical communications 

wavelengths.  It is also worth to note that many other applications for these materials have 

been proposed, such as heterojunction bipolar transistors6, high-efficiency solar cells7-9 and 

photodiodes10.   Although all these novel approaches have been intensively studied during the 

last two decades, there is still room for improvement in material quality. 

 

It is well known that deep levels can play an important role in the optical properties of 

materials, as they can act as non-radiative recombination centers, hindering the emission of 
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photons, and consequently diminishing the quality of the material for making suitable lasers 

and other optical devices.  Also, it is necessary to know the electrical properties of the 

material such as carrier concentration and mobility, as lasing is usually done via electrical 

stimulation, i.e., by injecting carriers.  Therefore, a thorough knowledge of the electrical 

properties of the material is very useful.  Several techniques are used to study the electrical 

properties.  The major ones among them are: Hall measurements, current-voltage (I-V) 

measurements, capacitance-voltage (C-V) measurements, and deep level transient 

spectroscopy (DLTS). 

 

As the name says, DLTS is a technique for studying deep levels.  Deep levels are localized 

energetic levels close or in the middle of the band gap. DLTS has become a powerful tool to 

study them: it is a practical, fast and easy technique that can distinguish between a minority 

and a majority carrier deep level.  In the basic variant, it provides the deep level energy, 

capture cross section and density of deep levels.  Several improved versions of the technique 

might yield more data: deep level profiling, photonic capture cross sections, temperature 

dependent capture cross sections, etc…  Further details about the DLTS technique will be 

given in Chapter 2. 

  

The first part of this work consists of the proposal of two techniques using inductors to 

improve the results that are obtained by DLTS.  In publication I, the use of inductors in series 

with a DLTS sample is studied theoretically and experimentally for the first time, in order to 

improve the acquisition of data by DLTS.  A resonance condition is found.  It is 

experimentally tested and it is shown that it separates overlapping signals, making it easier to 

determine the position of the deep level peaks.  In publication II, the use of inductors to 

calculate the real series resistance and capacitance of a Schottky contact is demonstrated.  It is 

generally assumed that the series resistance of a Schottky contact is negligible, and thus, the 

Schottky contact only shows a capacitive nature.  It is found that in practice this is not correct: 

the series resistance of a Schottky contact is not zero, particularly at low temperatures.  The 

use of inductors, via impedance equations, yields an easy technique to calculate the real series 

resistance and capacitance of a Schottky contact as function of temperature, and therefore, a 

way to correct the spectra and obtain the real deep level parameters. 

 

Several deep levels in n-type GaInAs, and their thermal annealing behavior are reviewed in 

publication III.  The presence of three deep levels is reported, as well as their thermal 

annealing behavior.  The concentration of all the three deep levels is reduced by thermal 

annealing.   
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In publication IV, lattice-matched bulk samples and several strained single and multiple QW 

structures of GaInNAs grown by conventional molecular beam epitaxy (MBE) are reported.  

The structures were studied by room temperature photoluminescence (PL), x-ray diffraction 

(XRD) and atomic force microscopy (AFM).  It was found that the PL wavelength might blue 

shift up to 55 nm and the PL intensity might increase by up to 45 times, depending on the 

structure and thermal annealing treatment.  Several deep levels in n-type GaInNAs, and their 

thermal annealing behavior, are studied in publication V.  Up to five different deep levels are 

presented and their origin is discussed. 

 

In publication VI, the growth of InN by metalorganic vapour-phase epitaxy (MOVPE) reactor 

on sapphire substrates is reported.  The samples were studied by XRD, AFM, PL and Hall 

measurements.  It was found that InN films consist of hexagonal islands and have a rough 

surface.  Also, growth temperature has a strong effect on the island size, optical quality and 

electrical properties of the InN layer.  This work connects to publication VII, in which several 

metal contacts (Au, Ag, Pt, Pd, Cu, Ni, Ge, Ti, Cr, Al) are tested (some for the first time) for 

InN.  Pt and Ge show some Schottky behavior.  All the other metal contacts show ohmic 

nature.  It was also found that, if the Al contacts are annealed, a rectifying behavior appears.  

This is explained by an interfacial reaction between InN and Al, which forms AlInN, a 

semiconductor with a higher band gap than InN, between the InN and the Al contact. 

 

The structure of this thesis is as follows.  In Chapter 2 a brief overview of the DLTS 

technique is given.  In Chapter 3 the author’s contribution to the DLTS technique using 

inductors is presented.  In Chapter 4 the electrical properties of GaInAs are briefly 

summarized, as well as the new results coming from publication III.  The same is done for 

GaInNAs in Chapter 5, including results from publications IV and V.  In Chapter 6 a brief 

description of the electrical properties of InN is presented, and some of the results of 

publications VI and VII are overviewed.  Finally in Chapter 7 a summary of all the results is 

given. 
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Chapter 2 

Deep level transient spectroscopy 

characterization of semiconductors  

 
In order to understand the deep level transient spectroscopy (DLTS) technique better, first an 

introduction to the basic ideas of semiconductor crystals, allowed and forbidden energy states, 

shallow levels and deep levels is presented in Section 2.1.  In the same Section, a brief 

historical summary is given.  Next, the generation-recombination theory of carriers will be 

described in Section 2.2.  In Section 2.3, the formation of a Schottky contact is briefly 

reviewed, including the current-voltage and capacitance-voltage equations.  The behavior of a 

deep level in the depletion region of a Schottky contact, as a function of the bias, will be 

explained in Section 2.4.  The same ideas apply for the case of p-n junctions.  In Section 2.5 

these two theories will be merged together with the concepts introduced by D. V. Lang to 

explain the principle of the DLTS method. 

 

2.1 Introduction and historical background 
 
Semiconductors can be modeled by assuming an infinite perfect crystal.  Starting from a 

single atom, which has its well-defined energy levels, more and more atoms are added into a 

periodic array, and the eigenenergies are solved from the Schrödinger equation.  This might 

be done with one kind of atom or several ones.  As more and more atoms are taken into 

account, the well-defined atomic energies mix, and start to form energy bands.  When finally 

an infinite periodic array is considered, three areas of energy appear: on the low part of the 

energy scale, the valence band, where the electrons localized to near-atomic states are; on the 

top part of the energy scale, the conduction band, for electrons with enough energy to move 

through the crystal; and in-between these two bands, the forbidden gap, where no electron 

states are allowed.  The difference in energy between the bottom of the conduction band and 

the top of the valence band is known as the band gap.  Tentatively, semiconductors are 

considered to have a band gap between 0 and 3 eV. 

 

Also other materials, such as metals or insulators, can form crystals.  What separates metals 

from semiconductors is the overlapping of the valence and conduction band.  This causes a 

large electron population in the conduction band: hence, their good electrical and thermal 

conductivity.  Insulators, on the other hand, have a larger band gap than semiconductors.  Due 

to this, the electron population in the conduction band is very small, which explains their poor 
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electrical and thermal conductivity.  It is important to note there are exceptions to these 

definitions11: there are such materials like semiconducting diamond (with an energy gap of 6 

eV). GaN and AlN, which have band gaps of 3.5 eV and 6 eV, are considered 

semiconductors, as well. 

 

This picture is very useful to get a first understanding of semiconductors: it helps to explain 

many of their electrical, structural and optical properties, such as carrier concentration, 

mobility, x-ray diffraction (XRD) patterns, absorption and emission of photons, and so on. 

 

Unfortunately, this theory has two major assumptions, which are not true in the real world: 

there are no perfect crystals and there are no infinite crystals.  The crystal quality may be 

affected, e.g., by structural defects: point defects, line defects, dislocations, complexes, 

interstitial atoms, vacancies, substitutional atoms, antisites, etc… The crystalline structure 

also inevitably ends at the crystal surface or at the interface to another material. 

 

Even though one tries to fabricate a semiconductor material with only the desired constituent 

atoms, other atoms are always present too: they are called impurities. The impurity atoms 

might get into the crystal during growth or by diffusion due to structures of different kinds of 

materials. Metal deposition, chemical treatments, annealing or ion bombardment are also 

sources of these impurities.  In some cases, they are incorporated deliberately.  This process is 

known as doping.  The controlled incorporation of impurities is the key for controlling carrier 

concentration.  The impurities will then act as either donors or acceptors.  Due to the presence 

of all these defects and impurities, some localized energy levels appear inside the band gap. 

 

When semiconductor technology was at its first stages after World War II, only simple 

semiconductors were studied and used: Si and Ge.  Then it was realized that doping 

drastically modified the electrical properties of the host semiconductor.  This helped to tailor 

the material for the desired purpose.  The overall behavior was easily understood using the 

hydrogenic model: this model explains the energy levels as hydrogen-like levels in the band 

gap, and as they are very close to the conduction and/or the valence band (just a difference in 

energy of 5-10 meV), they are called shallow levels.  But as the industry continued its 

development, compound semiconductors appeared (GaAs, InP, etc…).  As the analysis 

techniques developed, as well, it was realized that other energy levels, in both simple and 

compound semiconductors, are present.  They are neither close to the conduction nor the 

valence band, i.e., closer to the middle of the band gap, thus, they are called deep levels (Fig 

1). 
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Fig. 1.  Simplified image describing the position of shallow and deep levels in the band gap of 

a semiconductor. Note the more extended nature of shallow levels, in contrast with the more 

localized nature of deep levels. EC and EV are the conduction band and valence band energy, 

respectively.  EG= EC - EV is the band gap energy. 

 

Due to the hydrogenic behavior of the shallow levels, they are less localized compared to 

deep levels, and thus less sensitive to possible distortions in the immediate surrounding 

lattice, so they can be described in terms of fewer macroscopic parameters.  This nature 

makes shallow levels usually radiative, therefore, luminescence provides a sensitive, fast and 

spectroscopic technique to study them12.   

 

On the contrary, deep levels in general are very localized states, and sometimes non-radiative, 

which causes problems for optical applications. This explains why they can only be described 

if both the nature of the defect and the host lattice are taken fully into account. During the 

fifties, sixties and the first half of the seventies, several techniques were proposed to get 

information about these elusive deep levels: thermally stimulated current (TSC)13, admittance 

spectroscopy14, analysis of photoconductivity rise or decay curves15, optically stimulated 

conductivity16, the dependence of space-charge-limited currents on applied voltage analysis17. 

The ingenuous idea of using the change of capacitance under bias conditions due to the 

refilling of deep levels was already proposed in the sixties18.  At the beginning the refilling 
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was done via optical stimulation.  Later, the change in capacitance was monitored versus an 

increasing temperature, which yielded the thermally stimulated capacitance (TSCAP) 

technique19. 

 

D. V. Lang realized that all these techniques lacked the sensitivity, speed, range of observable 

trap depths and the spectroscopic nature to make them practical for doing spectroscopy on 

non-radiative centers in a large number of samples.  Therefore, in 1974 he proposed the deep 

level transient spectroscopy (DLTS) technique20. 

 

DLTS is based on the analysis of the change of capacitance due to a change in bias condition 

at different temperatures.  It can be applied to Schottky contacts and p-n junctions.  DLTS is 

not a spectroscopic technique in the sense that some parameter is monitored as a function of 

the frequency.  Thus, there has been some discussion that the last letter “S” should be better 

considered to come from “scan”, as the “scanning” variable is temperature.  Nevertheless, the 

“spectroscopy” word has remained and it is known like that nowadays.  It has advantages 

over TSC due to its better immunity to noise and surface channel leakage currents.  It can 

distinguish between majority and minority carrier traps, unlike TSC, and has a strong 

advantage over admittance spectroscopy, which is limited to majority-carrier traps.  

Comparing with TSCAP, DLTS has much greater range of observable trap depths and 

improved sensitivity. 

 

2.2 Generation-recombination theory of carriers 

 

The generation-recombination theory explains the processes when carriers are captured or 

emitted between energy levels in the band gap and the conduction and valence bands21.  It is 

one of the basic theories behind understanding DLTS. 

  

For simplicity, it is assumed that there is one set of deep levels (also known as traps) with one 

single energy ET in the band gap, and capable of capturing at most one electron each one, as 

shown in Fig. 2. 

 



 

 8  

 

Fig. 2.  Four possible recombination and generation processes a) during the process and b) 

after the process.  Full circles represent electrons and open circles represent holes. The 

arrows represent the transition of an electron between different energy levels.  After Ref. 21. 

 

The processes that can happen between these deep levels and the conduction and valence 

band are: I) capture of an electron from the conduction band to the trap; II) electron emission 

from the trap to the conduction band; III) capture of a hole from the valence band to the trap 

(i.e., emission of an electron from the trap to the valence band) and IV) hole emission from 

the trap to the valence band (i.e., capture of an electron from the valence band to the trap) 21. 

 

A process I followed by a process III is known as recombination.  A generation process is a 

process II followed by a process IV.  In both, recombination and generation processes, the 

conduction band, the valence band and the trap participate in the change of energy of the 

electron.  Whether a deep level will act as a generation or a recombination center, depends on 

the location of the Fermi energy in the band gap, the temperature and the capture cross 

section.  For example, if there is an excess of carriers in the semiconductor, they will act as 

recombination centers, but if the density of carriers is below its equilibrium value, they will 

behave as generation centers. 

 

It is important to note the following: in this simplified case, if there is an electron in the trap, 

then the trap posses a negative charge.  Otherwise, if there is no electron in the trap (i.e. it 

posses a hole), it is in a neutral state.  Of course, other possibilities might occur: neutral and 

positive states, or even states that change by two electron charge units.  In order to keep the 

following explanation simple, we maintain the assumption that the trap has a negative charge 

if it has an electron and, otherwise, is neutral. 

 

It is assumed that there is a density of electrons n and a density of holes p in the 

semiconductor.  NT is the total density of deep levels, either with a captured electron 
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(occupied) or none (empty), nT is the density of deep levels that are occupied and pT is the 

density of deep levels that are empty.  Clearly 

 

nT + pT = NT.          (1) 

 

No other emission or capture processes than the ones described before are assumed, i.e., any 

radiative and/or Auger processes are neglected.  The time rate of change of n is given by the 

electrons that are emitted into the conduction band, minus the electrons that are captured from 

the conduction band by the deep level.  The first term depends on the emission rate from the 

deep levels multiplied by the available electrons on the deep levels: ennT.  The second term 

not only depends on the available electrons in the conduction band multiplied by the capture 

rate, but also on the available empty deep levels that can capture them (pT).  Thus, the second 

term is described by cnnpT, and the overall change of n by unit of time t is given by 

 

dn/dt = ennT - cnnpT.         (2) 

 

A similar expression is found for the time rate of change of p 

 

dp/dt = eppT – cppnT.         (3) 

 

The capture rates cn and cp are expressed by 

 

ci = σi <vth>i,          (4) 

 

where i represents either n or p for electrons or holes, respectively, σi is the capture cross 

section and <vth>i  is the average thermal velocity of the free carriers. 

 

These two equations explain how the population nT in the deep level changes with t 

 

dnT/dt = dp/dt- dn/dt = eppT – cppnT – ennT + cnnpT.     (5)  

 

Rearranging terms and using Eq. 1 

 

dnT/dt= (cnn+ep)(NT - nT) – (cpp+en)nT.       (6) 
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Eq. 6 is not easy to solve, as n and p depend on time.  In some cases, also cn, ep, cp and en 

might depend on t, as their values might vary depending on the charge state of the deep 

level22.  For example, the order of the magnitude of the capture cross section, depending on 

their charge state, is shown in Table I22. 

 

Table I.  Different orders of magnitude for capture cross sections of deep levels in different 

electrical states.  After Ref. 22. 

 

Charge state Order of magnitude of the capture 

cross section σ (cm2) 

Attractive 10-14 

Neutral 10-16 - 10-17 

Repulsive 10-19 

 

 

Nevertheless, Eq. 6 can be solved readily if three assumptions are valid: I) all the emission 

and capture rates are constant, II) n and p are small and/or III) n and p are constant.  It will be 

seen in the next Subsection that these conditions happen in the depletion region of a Schottky 

contact.  Considering these assumptions, the solution to Eq. 6 is 

 

nT(t) = nT(0)e
-t/τ + (cnn+ep)/( cnn+ep+cpp+en) NT(1- e

-t/τ),     (7) 

 

where τ =( cnn+ep+cpp+en)
-1 and nT(0) is the occupation of the deep levels at t=0. 

 

After a time long enough (t→∞) the semiconductor is in steady state and thermal equilibrium 

and the population of carriers is in balance.  Then the value for the steady-state concentration 

in the deep level is 

 

nT = (cnn+ep)/( cnn+ep +cpp+en) NT.       (8) 

 

Eqs. 7 and 8 will be very useful in the next Section to explain how deep levels behave in the 

depletion region of a Schottky contact, either in forward or reverse bias. 
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2.3 Schottky contacts and their characterization by 

current-voltage (I-V) and capacitance-voltage (C-V) 

techniques 

 

In this section, the Schottky contact formation will be briefly reviewed.  The properties of 

Schottky contacts, including the current-voltage (I-V) and capacitance-voltage (C-V) 

equations, are also discussed. 

 

Fig. 3 shows the formation of a Schottky contact between a metal and a semiconductor 

having a deep level.  A deep level with an energy level ET below, but close to the Fermi 

energy EF, is shown.  It is included because it is needed during the explanation of the DLTS 

technique in the following sections.  The full circles represent the electrons.  In Fig. 3 a) the 

semiconductor and the metal are shown when they are separated and far from each other, 

depicting their different EF, and in Fig. 3 b) it is shown what would happen if the materials 

were brought into contact suddenly.  EF is still different in the metal and the semiconductor, 

i.e., there is no thermodynamic equilibrium.  In order to achieve it, electrons move into the 

metal (arrows), where they find lower energy states, which are empty given the large density 

of states of metals. 

 

 

 

Fig. 3.  Formation of a Schottky contact. a) Situation if there is no contact between the metal 

and the n-type semiconductor. b) Hypothetical situation if the materials would be brought 

suddenly into contact.  No surface states that might pin the EF are assumed.  For clarity, any 

possible hole concentration is neglected. 

 

The electrons deplete the region close to the metal contact, causing band bending in the 

semiconductor. When thermodynamic equilibrium is achieved, EF is the same in the 
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semiconductor and the metal and the depletion region is formed, as shown in Fig. 4, with a 

certain thickness d0, with a layer of positive ions Nion (open circles with a plus sign inside). It 

is important to note the following: in Fig. 3 a) ET < EF and the trap state tends to be full of 

electrons, but this situation changes in the depletion region when the Schottky contact has 

been made (Fig. 4).  Due to band bending, ET > EF in this region, and the trap tends to be 

empty of electrons.  This relative change between ET and EF will have further consequences 

when defining a majority and a minority trap.  This will be explained in more detail in 

Section 2.5. 

 

It is assumed that there are no free carriers in the depletion region (this is known as the 

depletion approximation).  Also a layer of electrons is formed on the metal side.  The position 

of the layer of positive ions and of electrons should not be regarded as a function of energy, 

they are drawn just for descriptive purposes.  The symbols of the electrons and ions will not 

be shown in the following images, nor the labels “metal”, “n-type semiconductor” and Vbi. 

 

 

Fig. 4.  Schottky contact in thermal equilibrium.  There is a layer of electrons in the metal 

side, and a layer of positive ions in the n-type material.  The depletion region in the n-type 

material has a thickness d0. 

 

According to the thermionic emission-diffusion theory23, the current through a Schottky diode 

is expressed by equation 

 

I = IS (exp(qV/nkT) – 1),         (9) 

 

where IS is the diffusion current, q the charge of the electron, V the voltage across the 

Schottky diode according to the polarization shown in Fig. 4, k the Boltzmann constant, T the 

absolute temperature and n the ideality factor.  IS is a temperature dependent variable, and 

depends on Vbi according to 
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IS = A
**T2 exp (-q Vbi/kT),        (10) 

 

where A** is the Richardson constant, a parameter depending on the effective mass of the 

carriers. 

 

Usually, one plots and linearly fits the natural logarithm of I vs.V of Eq. 9.  The constant term 

yields IS, and the slope n.  The parameter n is important, as it usually has a value between 1 

and 2: the closer the value is to one the more the transport process is caused by the thermionic 

emission, and values closer to two mean diffusion is the governing transport mechanism.  

Values out of this range are usually attributed to low crystal quality, an interfacial layer or 

surface states between the semiconductor and the metal. Particularly at low temperatures, this 

can also be attributed to the so-called T0 effect, which empirically states that n depends on T 

as 

 

n = n0 + T0/T.          (11) 

 

The capacitance for a Schottky contact on homogenously doped semiconductor can be 

expressed by the same expression as for any planar capacitor23 

 

C = εA/d,          (12) 

 

where ε is the dielectric permittivity of the semiconductor, A the area of the Schottky contact 

and d the depletion region thickness.  d is related to the built-in voltage Vbi, the voltage V and 

the total charge in the depletion region ρ (in the case of Fig. 4, ρ = qNion)  by 

 

d = (2ε(Vbi – V)/ρ)
 ½.         (13) 

 

Combining Eqs. 12 and 13, one obtains 

 

C = A (qε/2)1/2(ρ/(Vbi - V ))
 ½.        (14) 

 

A plot of 1/C2 vs V yields a straight line.  A linear fit provides ρ and Vbi from the constant 

term and the slope, respectively. 
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2.4 Deep level in the depletion region of a Schottky 

contact 

 

Deep levels are everywhere in the semiconductor.  DLTS technique studies only those levels 

that are in a variable depletion region.  Thus, in this Section, the deep level behavior in the 

variable depletion region of a Schottky contact will be described. 

 

The analysis is done considering a Schottky contact.  This is because the research was done 

using only Schottky contacts.  Another reason is that in the literature the explanations are 

based on p-n junctions20,24,25.  This discussion is divided into two parts: in Subsection 2.4.1 

one deep level with an activation energy ET smaller, but close to the Fermi level EF is 

considered, and the analysis is performed for the reverse-biased diode as well as for zero bias.  

In the depletion region of a Schottky contact is formed, ET gets over EF, due to band bending.  

In Subsection 2.4.2, the deep level has an energy much smaller than EF, and the analysis is 

done for zero-bias and forward bias.  For simplicity, a n-type non-degenerate semiconductor 

(NC » n » p) is assumed (NC is the effective density of states in the conduction band), and thus, 

any possible hole distribution is neglected for the first part.  In the second part, this 

assumption will be softened. The n-type doping is assumed to be constant and homogenous.  

It is also assumed that there are no surface states in the semiconductor that might pin the 

Fermi level. 

 

2.4.1 Majority carrier trap 

 

For non-degenerate n-type semiconductors in a steady state, the consequence of the 

assumption NC » n » p on Eq. 8 is 

 

nT = cnn/( cnn+en) NT,         (15) 

 

if the hole population is neglected.  On the other hand, electrons are fermions, and they 

follow the Fermi-Dirac statistics in thermal equilibrium 

 

nT/ NT = (1 + (g1) exp ((ET - EF)/kT))
-1.       (16) 

 

where g1 is the degeneracy factor.  Combining Eqs. 15 and 16, one obtains 
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en/(ncn) =(g1) exp ((ET - EF)/kT).        (17) 

 

For simplicity, g1=1 is assumed in the following.  From Eq. 17 one realizes that if ET > EF 

then en > ncn and the deep level tends to be empty of electrons.  Similarly, if ET < EF then en 

< ncn and the deep level tends to be full of electrons. D. V. Lang originally defined an 

electron trap as one empty of electrons, i.e., capable of capturing electrons20.  Because the 

electrons are the majority carriers in our analysis, this trap can be said to be a majority trap.  

Likewise, a hole trap is one full of electrons, i.e., capable of capturing holes.  In the case of n-

type semiconductor, it is also known as a minority trap.  Due to this definition, the electron 

traps tend to be in the upper part of the band gap, and the hole traps in the bottom part.  A 

more precise way to state this is, as seen from Eq. 17, that the electron traps tend to have a 

larger energy than the Fermi level, and reciprocally, the hole traps have smaller energy than 

the Fermi level.  This is the reason why the following analysis is separated in two depending 

on the trap energy: whether it is larger or smaller than the Fermi level.  Of course, the capture 

cross sections σn and σp also play a role in the definition of the electron and hole traps. 

 

 

 

Fig. 5.  Evolution of carrier distribution in a Schottky contact when it is reverse-biased.  The 

process is described in the text. 
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At zero bias V0=0 the Schottky contact has a capacitance of C0 = εA/d0.  Assuming that at 

some time t0 the contact is reverse-biased to V1<V0=0, the free carriers are swept away from 

the contact region by the external potential, and their response time is in the scale of the 

dielectric relaxation time (ε/σ), which is a quantity in the order of picoseconds.  The depletion 

region widens to a new thickness d1 (open arrow in Fig. 5 a)) which can be calculated from 

Eq. 13.  During this time t0 < t < t1, the total net charge increases in the depletion region, and 

the capacitance changes to a new value of C1 = εA/d1< C0. After biasing the situation is as 

shown in Fig. 5 b). This is also process I shown in Fig. 5 d).  During this period of time very 

few electrons are emitted from the deep level to the conduction band, as the respective time 

constants are in the order of micro or milliseconds.  The emission times are the inverse of the 

emission rates, and the values that have been found experimentally are in these orders of 

magnitude. During this emission period t1 < t < t2, the electrons are thermally excited to the 

conduction band and then swept away.  The depletion region shrinks to the value d2, and the 

junction arrives into the state as shown in Fig. 5 c).  According to Eq. 12, the capacitance 

increases to a new value C2 = εA/d2.  This process II is also shown in Fig. 5 d).  The shrinking 

of the depletion region width to d2 can be understood in two ways.  The first one is done by 

analyzing Eq. 13.  The total net charge ρ in the new depletion region d1 increases as the 

electrons are emitted to the conduction band and then swept away.  According to Eq. 13, d 

diminishes and, following Eq. 14, C increases.   

 

A second way of visualizing this in a more clear way is using Eq. 7.  During the period of 

time t1 < t < t2, the only process happening in the depletion region is emission of electrons to 

the conduction band, because the electrons are immediately swept away once they are in the 

conduction band and thus, they cannot be re-captured.  And as the hole contribution has been 

neglected, Eq. 7 becomes 

 

nT(t) = nT(0) exp(-t/τe)          (18) 

 

In this case τe = en
-1. Using Eqs. 13, 14 and 18, and the fact that in the depletion region 

ρ = Nion – nT , one gets 

 

C = C2 (1 - nT(t)/ nT(0))
 ½.        (19) 

 

The final result, for t1 < t < t2, is 

 

C = C2 + (C1 – C2 ) exp(-(∆t)/τe)        (20) 
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where ∆t = t – t1.  This explains the exponential dependence shown in Fig. 5 d).  It is this 

exponential transient which is one of the basic ideas for the DLTS measurements, as will be 

shown in Section 2.4. 

 

So far, it has been explained what happens in the depletion region with a deep level when a 

Schottky contact is reverse-biased.  Now, it will be analysed what happens when the voltage 

is increased to a value V2 ≤ 0, which is still negative, but smaller than V1 in absolute value. For 

simplicity, we assume V2 = V0 = 0, but the same analysis holds for whatever V2 with V1 < V2 

< V0.  When voltage is brought back to zero, at some time t = t3, the depletion region recovers 

its original value d0, and the electrons move fast (Fig. 6 b)) into the former depletion region 

between d0 and d2.  Again, during a period of time t3 < t < t4, in the order of picoseconds (Fig. 

6 c)), they get into the conduction band. This causes an increase in capacitance, to a value 

bigger than C0 (process III in Fig. 6 f)).  This can be seen from Eq. 14, as the total net charge 

in the depletion region is bigger than in Fig. 4: the deep levels have not captured electrons, 

yet.  The deep levels capture electrons in a period of time t4 < t < t5 in the order of micro or 

milliseconds (Fig. 6 d)).  This reduces the total net charge in the depletion region to the 

original value shown in Fig. 4, causing the capacitance to decrease back to C0 (process IV in 

Fig. 6 f)).  And finally, at time t5 (Fig. 6 e)) we arrive to the original situation shown in Fig. 4. 
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Fig. 6.  Evolution of carrier distribution in a zero bias Schottky contact after being reverse-

biased. Fig. 6 a) is the former Fig. 5 d).  The process is described in the text. 

 

The evolution during process IV can be understood using Eq. 7.  In this case, the deep levels 

are empty (nT(t4) = 0), and the process consists only of the capture of electrons from the 

conduction band.  Eq. 7 becomes 

 

 nT(t) =  cnn/( cnn)NT(1- exp(-t/τc)) = NT(1- exp(-t/τc)),     (21) 
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where τc  =( cnn)
-1.  Following a similar process as formerly described for process II, one can 

write the evolution of the capacitance as (for t4 < t < t5): 

 

C = C0 +   (C4 – C0 )( exp(-t/τc)),       (22) 

 

which explains the shape of the capacitance curve in process IV in Fig. 6 f).  So far, we have 

described the case of an electron trap acting as a majority carrier trap.  Next, a minority 

carrier trap is considered. 

 

2.4.2 Minority carrier trap 

 

It is usually said that Schottky contacts are useful only to study majority carrier properties, as 

they are considered to be only majority carrier devices, i.e., the presence and effect of the 

minority carriers is neglected.  This is not totally correct, as several studies have shown26. 

 

In those studies it has been found that minority carriers can also be trapped by minority-

carrier traps in Schottky contacts during forward bias.  This is due to the minority carrier 

quasi-Fermi level adjustment, in such a way, that the minority carrier traps are emptied.  In 

those cases, it is necessary that the semiconductor has a very low doping, in the order of 1013 - 

1014 cm-3, and the forward bias is not large (~1-2 V).  A similar analysis can be done as was 

done for the majority carrier case.  Because the experimental results did not contain minority 

carrier traps the analysis of the minority carrier trap case will be cursory.  The important fact 

is that the minority carrier deep levels show a capacitance transient, which is inverse 

compared to the majority carrier case, as shown in Fig. 7.   

 

Briefly, process Ib corresponds to an increase in the capacitance due to forward biasing the 

Schottky contact.  Both majority and minority carriers get into the depletion region.  Both 

carriers flow and some minority carriers are captured by the trap level.  Afterwards, when the 

bias of the Schottky contact is brought back to zero, a sudden decrease in capacitance occurs, 

because the majority carriers are swept away while the trapped minority carriers stay in the 

region. This is depicted as process IIb.  Both processes happen in the order of picoseconds.  

Finally, minority carrier traps emit their carriers and cause an exponential decay in the 

capacitance, which is process IIIb. 
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Fig. 7. Evolution of the capacitance transient for a minority carrier trap.  At time t = t0, the 

Schottky diode is forward biased, increasing the capacitance. A constant value is obtained at 

t = t1.  The Schottky diode is zero biased at t = t2.  First, the capacitance rapidly decreases, 

and after some time t3, a capacitance transient is seen.  This is due to the minority carriers 

emitted from their trap charges. 

 

In a similar way as it was done for the electron trap, it is possible to find that the capacitance 

evolves with t during process IIIb (for t3 < t) as 

 

C = C0 + (C2 – C0 )(e
-(∆’t)/τ ),        (23) 

 

where ∆’t = t – t3.  For this case τ = ep
-1. 

 

Measuring the evolution of the capacitance as a function of t yields the emission rates of the 

deep levels (Eqs. 22 and 23). 

 

2.5 Principles of DLTS 

 

D. V. Lang realized that the change in capacitance, shown in Figs. 6 and 7 as processes II and 

IIIb, respectively, could provide the sign of the carrier that was emitted.  For process II the 

change in capacitance is a positive one, while in process IIIb it is a negative one.  Next, it is 

shown that the emission process is a function of temperature.  A non-degenerate n-type 

semiconductor, p « n « NC, where NC is the equivalent density of states in the conduction 

band, is considered.  It is also assumed that EF is far enough from the conduction band, so that 

the electrons follow a Maxwell-Boltzmann distribution 

 

n = NC (g1)exp (-(EC -EF)/kT).        (24) 
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The principle of detailed balance states that in thermodynamic equilibrium two processes, one 

of which is the inverse one of the other, should have the same probability to happen.  Thus, in 

a semiconductor in thermodynamic equilibrium, en =n cn and ep =p cp.  It is assumed that this 

is true also in non-equilibrium, for example, when the semiconductor is in forward or reverse 

bias.  This is not necessarily true, but it is usually a valid approximation, and it is one of the 

foundations of the DLTS analysis.  In this case, combining Eqs. 24 and 17 yields 

 

en = cn NC (g1)exp( (ET –EC)/kT).        (25) 

 

It is known23 that NC = 2(2πm
*kT/h2)3/2 and <vth>n=(3kT/mn

*)1/2, where mn
* is the effective 

mass of electrons, h is the Planck constant and k is the Boltzmann constant.  Using Eq. 4, Eq. 

25 can be rewritten as 

 

en(T) = γ T
2 σ exp( (ET –EC)/kT),        (26) 

 

where γ = 2∗31/2(2π)3/2k2mn
*h-3g1

-1 is a constant.  In general, Eq. 26 is the most used 

expression for en, but some other corrections exist, as the case when σ is temperature 

dependent.  Those cases will not be addressed here and can be found in specialized 

literature25.  Similar results can be obtained in the case of holes. 

 

Before DLTS was proposed, the usual process to study deep levels was to analyse the 

capacitance transient, due to some voltage pulse, to get the emission rate, and afterwards, the 

deep level energy.  This was done at some fixed temperature and was very time consuming, 

as a very detailed measurement of the capacitance transient was needed. 

 

D. V. Lang reasoned in the following way: monitoring the capacitance change yields the 

emission rates.  The emission rates are functions of temperature (Eq. 26).  Then, instead of 

monitoring carefully some capacitance transient at a fixed temperature, it is better to monitor 

the change of the capacitance at two fixed times as a function of temperature.  The biggest 

change in capacitance would happen when the monitoring time is in the same order as the 

time rate of the capacitance transient.  This is shown in Fig. 8.  In Fig. 8 a) several transients 

of a minority carrier trap at different temperatures are shown.  The capacitance C0 and C1 are 

measured at times t0 and t1 (the difference t1 - t0 is what is known as rate window in DLTS 

“language”).  In Fig. 8 b), the plot of ∆C= C0 – C1 as a function of temperature is shown.  It 
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forms an upward peak, which has a maximum value changing as a function of t0 and t1, as will 

be shown below. 

 

 

Fig. 8 a) Capacitance transients for a minority carrier trap at several temperatures.  

Capacitances C0 and C1 are measured at times t0 and t1, respectively, for each temperature.  

∆C(0) is explained in the text.  b) Change of the measured capacitances ∆C = C0 – C1 plotted 

as a function of temperature. 

 

D. V. Lang proposed the following function 

 

S(T) = [C(t0)- C(t1)]/∆C(0) = [C0 – C1]/∆C(0),      (27) 

 

where ∆C(0) is the change in capacitance between the initial state (the forward bias has been 

removed but the carriers have not yet been captured by the traps) and the final state (after a 

time long enough has passed, and the capacitance is back to constant).  It is equivalent to the 

change C0 – C2 in Fig. 7.  S(T) turns out to be the signal in Fig. 8 b), but normalized with 

respect to ∆C(0).  Writing Eq. 27 in terms of the exponentials yields 

 

S(T) =[exp(-t0/τ)] -[exp(-t1/τ)],        (28) 

 

where τ  is the inverse of the emission rate τ = e-1.  In order to determine the value of τmax for 

which S(T) has the largest absolute value, the derivative of Eq. 28 is calculated and set to 

zero.  One obtains 

 

τmax = (t0 –t1) [ln (t0 /t1)]
-1.        (29) 

 

Thus, at some values t0 and t1 the curve shown in Fig. 8 b) (which is a DLTS scan) will 

present a maximum or a minimum at some temperature Tmax.  As τmax is related with the 
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emission, one obtains a relation of the emission rate of the trap with temperature.  Making 

several measurements varying t0 and t1, one obtains a set of data between the emission rate 

and temperature.  This set of data can be used to obtain the deep level energy ET, capture 

cross section σ and the density of deep levels NT in the following way.  One can write Eq. 26 

in terms of logarithms as 

 

ln(en(T)/T
2) = ln(γσ) + (ET –EC)/kT.       (30) 

 

Hence, using the collected data set, one can plot the points calculated from the left-hand side 

of Eq. 30 as a function of 1/T (known as the Arrhenius plot).  Linear fitting will yield the 

capture cross section σ and the deep level energy ET.  The trap concentration can be obtained 

via Eq. 15.  This same analysis can be done for a majority carrier trap.  In this case, the curve 

in Fig. 8 b) will have a negative sign.   

 

Sometimes unrealistic capture cross sections are found, for example, they span over a wide 

range of orders, or they are geometrically senseless, i.e., much bigger or smaller than a 

geometrical factor would suggest.  In this case it is important to use the compensation law, 

also known as the Meyer-Neldel rule27.  This law appears in several branches of physics, such 

as solid-state diffusion in crystals28, thermally stimulated processes in polymers29, dielectric 

relaxation and conduction in polymers30 and electronic conduction in amorphous 

semiconductors31. 

 

In general terms, this rule states that if some physical quantity Γ  obeys the equation 

 

Γ = Γo exp (-E/kT)        (31) 

 

then Γo and E follow the equation 

 

ln Γo = a + bE         (32) 

 

where a and b are constants, E is known as an “activation energy” and k is the Boltzmann 

constant. 

 

The Meyer-Neldel rule also applies for deep levels.  It states that it is not the activation 

energy of the deep levels which should be considered, but the Gibbs free energy ∆G 

= −∆Η+T∆S .  In this case, Eq. (30) should be rewritten as: 
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ln(en(T)/T
2) = ln(γσ) − (∆Η−T∆S)/kT.      (33) 

 

where ∆Η is the enthalpy change and ∆S is the entropy change.  A Meyer-Neldel plot is done, 

which yields the correct deep level parameters.  Further details can be found in the 

literature32. 

 

Sometimes, the leakage current distorts the results.  The common practice is to neglect the 

leakage current if it is smaller than 10 µA.  However, it has been analyzed that even lower 

leakage current can affect the DLTS measurement33.  In this case, free carriers are introduced 

into the depletion region during reverse bias.  They are captured by the deep levels, giving 

rise to errors in measured capacitance.  The best way to proceed in this case is to measure the 

leakage current and the DLTS spectrum at the same time, and then, via simulations, obtain 

the corrected DLTS parameters33. 

 

The usual setup for a DLTS measurement consists of a variable temperature cryostat, one or 

two pulse generators (in the order of picoseconds) capable of making rapid changes in the 

diode bias and a sensitive capacitance measurement apparatus with a good transient response.  

When it was first proposed, a dual-gated signal integrator was used to integrate the signals, 

providing a more accurate measurement of the difference in capacitance.  As electronics has 

developed and more accurate capacitance measurement apparatus have appeared, the use of 

the dual-gate integrator has become obsolete.   

 

Fig. 9 shows the usual procedure. Fig. 9 a) corresponds to majority carrier traps and Fig. 9 b) 

to minority carrier traps.  The sample is reverse biased at some voltage VR.  The voltage is 

rapidly increased and decreased in periodic pulses.  The length of the pulses might be micro 

or miliseconds.  They are the former processes I and III of Fig. 5 d) and Fig. 6 f), and 

processes Ib and IIb of Fig. 7.  During the pulse the capacitance increases.  After the pulse the 

capacitance rapidly decreases and then the capacitance transients due to the refilling of the 

deep levels are seen (they are the former processes II of Fig. 5 d) and Fig. 6 f) and process 

IIIb of Fig. 7).  The analysis shown above can be performed on the transients to obtain the 

deep level parameters. 

 



 

 25  

 

 

Fig. 9. Periodic voltage pulses and the respective capacitance changes. The curves 

correspond to a) majority carriers and b) minority carriers. 

 

Several variants of the DLTS technique have been suggested during the last 30 years.  For 

example: double correlation DLTS (DDLTS) yields deep level profiles and excludes the field 

dependence of the capture cross section and contact effects34.  It is based on two pulses 

instead of one.  In this way, the trap concentration profile can be obtained by varying the rate 

windows, the pulse amplitudes and the reverse bias. 

 

Another variation is constant capacitance DLTS (CCDLTS)35.  In this technique, the applied 

voltage is varied during the temperature scan to keep the capacitance constant, and thus, also 

the depletion width constant.  It is this time-varying voltage that provides the trap 

information, permitting more accurate measurements of defect profiles at high trap densities; 

it has shown to be very good for trap concentration profiling, especially when combined with 

DDLTS. 

 

A third variation of DLTS is optical DLTS (ODLTS)36.  In this technique, light is used to 

excite the carriers, instead of the electrical filling pulses.  In one version of ODLTS, variable-

energy light replaces the temperature scan.  In the analysis of ODLTS data, the emission rate 

en must be replaced by en + en
0, where en

0 = σ n
0 φ is the optical electron emission rate, φ is the 

photon flux density and σ n
0 is the optical electron capture cross section.  A major advantage 

of ODLTS is that minority carriers can be easily generated via optical stimulation.  ODLTS 

has been shown to be useful for investigation of deep levels in semiconductors with wide 

band gaps. 

 

Deep level transient Fourier spectroscopy (DLTFS) and Laplace DLTS (LDLTS)37 use 

Fourier and Laplace transform, respectively, to manipulate data.  The determination of 
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Fourier and Laplace coefficients is equivalent to making several DLTS scans with different 

rate windows, i.e., one saves time: instead of making several scans, one needs to make a 

single one and then obtain the Fourier and Laplace coefficients. This improves the results, 

because peak amplitude is not dependent on temperature anymore.  It also gives better noise 

suppression. 

 

Isothermal Transient Spectroscopy (ITS)38 uses the same principles, but with a different 

approach.  In DLTS the scanning is done over the temperature at some fixed rate window. In 

ITS, the temperature is fixed at some value, and it is the rate window which is scanned.  This 

technique is helpful in the case when the capture cross section is very temperature dependent.  

Usually it is necessary to do a DLTS scan, first in order to know the temperature position of 

the peaks. 

 

Positron DLTS (PDLTS) uses positrons as probes39.  It is very useful to know if the defects 

have vacancies attached to their microstructure, and to get information about the internal 

electric field in the semiconductor. 

 

All these techniques are improvements on the acquisition of deep level parameters, such as 

activation energy, density, capture cross section, profiles, etc…  But still, sometimes it is 

difficult to separate deep level signals having very similar activation energies. 
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Chapter 3 

Use of inductors in DLTS 

 

In this work, the use of inductors to improve the data acquisition by DLTS has been 

researched.  The general electrical model for a Schottky contact is shown in Fig. 10. 

 

Fig. 10.  Equivalent circuit of a total (two-contact) Schottky diode.  CCS is the parasitic 

capacitance of the package. 

 

For unpackaged DLTS samples CCS is zero.  In general, both the bulk material and the ohmic 

contact contribute negligibly to the resistance and capacitance of the sample, i.e., they can be 

discarded.  Thus, the model comprises a parallel resistance and capacitance, as shown in Fig. 

11 b). 
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Fig. 11.  a) Series equivalent circuit of the Schottky diode, b) parallel equivalent circuit of the 

Schottky diode, as seen by the capacitance meter, c) series equivalent circuit of the Schottky 

diode with an inductor in series, and d) series equivalent circuit of the Schottky diode with a 

capacitance which accounts for both the Schottky capacitance and the inductance. 

 

The series model of Fig. 11 a) is preferred, because this makes it possible to regard the 

capacitance and resistance measured in DLTS directly as those of the Schottky contact40.  It 

has been shown that the series capacitance CS and the series resistance RS (Fig. 11 a)) are 

related to the parallel capacitance CP and parallel resistance RP through41  

 

CP = CS /(1+Q
2)  and        (34) 

RP = RS (1+1/Q
2),         (35) 

 

where Q = RS CS w is the quality factor of the series circuit (Fig. 11 a)) and w is the frequency 

of the drive signal delivered by the capacitance meter. 

 

The capacitance meter measures the capacitance of the parallel circuit (Fig. 11 b)).  Usually, it 

is supposed that the Schottky contact only shows a capacitive nature11, i.e., RS = 0.  Under this 

assumption Q = 0 and then CP = CS.  Broniatowski et. al have suggested that the effect of a 

properly chosen inductance in series with the Schottky contact might increase the signal-to-

noise ratio41.  In publication I, the effect of an inductance in series with a Schottky contact 

was researched experimentally.  It was found that signal-to-noise ratio does not increase, 
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actually it becomes smaller.  But the benefit is that the separation of the signals that are too 

close to each other becomes possible. 

 

Also another application for inductors was found (publication II).  If an inductance LX is 

attached in series with a Schottky contact (Fig. 11 c)), the resulting series circuit is equivalent 

to the original series model of a Schottky contact (Fig. 11 a)), if one assumes a new series 

capacitance C’S (Fig. 11 d)) given by 

 

C’S = CS /(1-w
2 LX CS).         (36) 

 

Introducing C’S of Eq. 36 into Eq. 34, one gets a measured parallel capacitance C’P (LX ≠0) 

 

C’P = CS (1-w
2 LX CS)/((1-w

2 LX CS)
2 + (RS CS w)

2).     (37) 

 

Using Eq. 37 it is possible to obtain the correct series capacitance and series resistance of the 

Schottky diode.  Namely, performing two separate measurements, one DLTS scan without an 

inductor to obtain CP, and another one with a series inductor LX attached in the circuit to yield 

C’P.  Solving Eq. 37 for CS and RS as a function of CP and C’P yields 

 

CS = (CP - C’P +2 w
2 LX CP C’P)/((w

2 LX CP)× (1+w
2 LX C’P)) and    (38) 

 

RS=((CS- CP)/CP)
1/2/( w CS ).        (39) 

 

This idea was tested using a gold Schottky contact deposited on a 2 µm thick n-type 

Al0.4Ga0.6As : Si layer grown by Molecular Beam Epitaxy (MBE).  An annealed ohmic 

contact (5 nm Ni / 5 nm Au / 30 nm Ge / 100 nm Au) was deposited on the back of the n+ 

substrate.  Four inductors with LX = 3.413, 4.543, 6.665 and 8.51 mH in series with the 

sample were tested to get a set of CS’s and RS’s.  They are shown in Fig. 12, as a function of 

temperature. 
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Fig. 12. Series resistance and series capacitance measured for n-type Al0.4Ga0.6As : Si 

epitaxial layer on a n-type GaAs (100) substrate, with a pulse width of 100 ms and a period 

width of 1 s, obtained by applying Eqs.35 and 36.  The graphics correspond to the following 

inductances: 3.413 mH (■),4.543 mH (□),6.665 mH (◊) and  8.51 mH (×). 

 

Several conclusions can be obtained from these curves.  First of all, RS behaves as expected in 

a semiconductor, i.e., it increases as the temperature decreases.  It is independent of the 

applied inductance, LX (slight variations in RS at high temperature are attributable to an 

inductance effect from the ohmic contact42) as predicted by Eq. 39.  But mainly, RS is far from 

being zero, particularly at low temperatures.  This has a deep impact on data obtained from 

the DLTS scan, as the quality factor becomes non-negligible (Q > 1) as the temperature 

decreases (Fig. 13). 
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Fig. 13. Quality factor Q obtained for Al0.4Ga0.6As : Si with a pulse width of 100 ms and a 

period width of 1s.  It appears that Q ≠ 0 over a large temperature range, in sharp contrast to 

what is often assumed.  The graphics correspond to the use of the following inductances: 

3.413 mH (■),4.543 mH (□), 6.665 mH (◊) and  8.51 mH (×). 

 

The parameter Q shows some interesting features: it is independent of the inductance, as 

expected; it increases as the temperature decreases, being bigger than 1 below 160 K, and 

almost 5 at 100 K.  If CS were considered to be the same as the measured CP read from the 

capacitance meter and were not corrected for Q ≠ 0, an error of an order of 25 in CP would 

occur at 100 K.  This error becomes less important at higher temperatures, but it might alter 

the DLTS parameters of the semiconductor, as at least GaInNAs43, GaNAs44, InP45 and 

AlGaAs46 exhibit deep levels in the range of 85 to 200 K.  The density of deep levels is 

strongly affected by this error because it is inversely proportional to CP during reverse bias.  

The activation energy of a deep level depends upon the position of the peak in temperature 

scale, which is distorted by the presence of high resistance. 

 
In summary, the use of inductors in series with a Schottky contact can bring several benefits 

during a DLTS measurement: close peaks may be separated, yielding a more accurate 

activation energy of the deep levels; the real series resistance and series capacitance of the 

Schottky contact as a function of temperature can be calculated, and the measured DLTS 

curve can be corrected via Eqs. 34 and 35, so the correct activation energies, densities and 

capture cross section can be calculated. 
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Chapter 4 

Electrical characterization of GaInAs 

 

The first proposal of GaInAs dates back to the end of the fifties47.  In the sixties, it was found 

to have superior properties to the Si-Ge alloy for temperatures below 600 oC for 

thermoelectric power generation48.  This encouraged the study of its thermal and electrical 

properties49.  In those times, microwave amplification by stimulation emission of radiation 

(MASER) was studied, and GaInAs was proposed as a suitable material to achieve 

wavelengths between 0.84 µm and 3.1 µm50: the wavelengths of GaAs and InAs, respectively.   

 

Many interesting properties have been found in GaInAs with low In composition51-66: doping 

GaAs with isovalent In reduces the amount of dislocations and improves the epitaxial 

quality51-57.  Indium incorporation also increases the concentration of carriers52 and causes 

higher mobility62, improves the fabrication of high-quality GaAs Schottky diodes using a 

strained layer58, enhances the carrier lifetime and diffusion length in GaAs59 and helps to 

fabricate a low-loss optical waveguide using GaInAs superlattices61.  The first DLTS study of 

GaInAs with different In percentages (4.6 %, 7.7 %, 9.9%, 14 %, 21 % and 24 %) was done 

in the seventies on vapour phase epitaxy (VPE) grown material67.  It was necessary to wait 

until the end of the eighties to find more DLTS studies with low In composition: one on p-

type GaAs In doped grown by liquid encapsulated Czochralski (LEC)64 and several ones on 

molecular beam epitaxy (MBE) grown material65,66,68-73.  Very few studies can be found on 

bulk GaInAs grown by metal-organic vapour phase epitaxy (MOVPE) with low In 

composition: one with 6 % In doped with S on n+ GaAs substrate74, and another one with 14 

% In on n-type GaAs substrate75.  It is possible to find also some DLTS studies on quantum 

wells (QW)76-77  and quantum dots (QD)78 made of MOVPE-grown GaInAs. 

 

GaInAs is also attractive with higher In compositions, as GaxIn1-xAs (x = 0.47) lattice 

matched to InP shows infrared sensitivity (~900 – 1600 nm), which makes it a useful material 

for optical communication, photodiodes, solar cells and laser diodes79-84. 

 

Our goal in this study was to better understand deep levels in GaInAs.  As it has been 

described, GaInAs is a very useful material for making lasers and for other optical and 

electronic applications.  But the laser properties can be affected by the presence of deep 

levels.  In order to have a better understanding of how the incorporation of In into GaAs 
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generates deep levels, GaInAs with a low In composition has been studied.  This was done 

with the purpose to easily compare the results with the available literature for the deep levels 

in GaAs.  Also the effect of annealing treatment has been studied, in order to obtain 

information about how the deep level concentrations could be manipulated.  GaInAs with a 

low In composition (1.4 %) was grown by MBE for publication III.  This composition was 

confirmed by XRD.  The samples were studied by I-V, C-V, DLTFS and ITS techniques37,38.  

The samples were studied after growth and also after annealing at several temperatures 

(625oC, 650 oC, 675 oC, 700 oC and 750 oC) for 5 min.  The processing was done following 

typical photolithographic techniques, which might affect the surface and bulk of the material, 

as SiO2 was deposited and removed in some places.  Also some Si and O might have diffused 

into the samples, as the annealing was done while the samples were capped with SiO2, in 

order to avoid any out-diffusion. 

 

For the I-V and C-V studies, the Schottky contacts were biased from –1.5 V to 0 V. The 

breakdown voltage was around –1.7 V. The ideality factor decreases from a value of 1.9 for 

the as-grown sample to 1.5 for the sample annealed at 750 oC.  In all cases it is below 2, 

which is usually considered satisfactory for a reliable Schottky contact.  As the annealing 

temperature increases, the leakage current also increases, from 2.3×10-7 A to 1.9×10-6 A 

showing degradation in the Schottky contact.  The saturation current is in all cases well below 

10 µA and the deep levels are not perturbed by a large leakage current during the reverse bias.  

Therefore, the depletion regions are really depleted from electrons during the reverse bias.  

All the I-V curves show a correlation value well above 0.99.  The C-V study gives a carrier 

concentration of 6.8×1017 cm-3. 

 

For the DLTFS and ITS study, the samples were reverse biased at –0.7 V.  The pulse bias was 

0 V.  The DLTFS curves and the respective Arrhenius plots are shown in Fig. 14 a) and b), 

respectively. 
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a)      b) 
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Fig. 14.  a) DLTFS curves and leakage currents of Si - doped Ga0.986In0.014As measured with a 

pulse width of 100 ms, a period width of 100 ms, a reverse voltage of –0.7 V, and a pulse 

voltage of 0 V. b) Arrhenius plot for the DLTFS measurements.  NC is the effective density of 

states, vth is the mean thermal velocity and σDL is the capture cross section.  The data points 

correspond to the following thermal annealing temperatures: as-grown (■), 625 oC (−), 650 

oC (○), 675 oC (+), 700 oC (×), 750 oC ( ).  The annealing time was 5 min.  The thick lines 

are used to separate the respective group of data for each deep level. 

 

It can be seen from Fig. 14 a) that the DLTFS curve of the as-grown sample shows one major 

peak having remarkable broadness, and that around 265 K there is a slight shoulder.  This 

could be due to a convolution from two trap levels.  Support for this hypothesis comes from 

the sample annealed at 625 oC.  The main peak has separated into two smaller peaks, labelled 

A and B, between 250 K and 350 K.  It is not clear if the presence of peak B experiences any 

decrease from the as-grown sample to the one annealed at 625 oC, as it could be possible that 

only peak A decreases.  Annealing at 650 oC, 675 oC and 700 oC shows that peak A decreases 

with increased annealing temperature, while peak B practically remains the same. Both peaks 

experience a decrease for annealing at 750 oC.  The Arrhenius plots for the DLTFS can be 

seen in Fig. 14 b).  The Arrhenius plot of the ITS measurements can be seen in Fig. 15. 
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Fig. 15. Arrhenius plot for the ITS measurements of the traps A, B and C. NC is the effective 

density of states, vth is the mean thermal velocity and σDL is the capture cross section.  The 

data points correspond to the following thermal annealing temperatures: as-grown (■), 625 

oC (−), 650 oC (○), 675 oC (+), 700 oC (×), 750 oC ( ).  The annealing time was 5 min.  The 

thick lines are used to separate the respective group of data for each deep level. 

 

The DLTFS and ITS studies yield the activation energies of 0.58 eV, 0.55 eV and 0.27 eV for 

peaks A, B and C, respectively, in the as-grown sample. The evolution of the activation 

energy and density of the three traps as a function of annealing temperature can be seen in 

Fig. 16.  The activation energy of 0.4 eV determined for the deep level A in the as-grown 

sample is incorrect because of overlapping of the peaks A and B.  The correct value of 0.58 

eV was obtained by simulation of the peaks, and it is in agreement with the values obtained 

from the annealed samples.  Interestingly, the activation energy of the deep level C 

diminishes to a value around 0.15 eV after annealing at 650 oC, and it remains around this 

value for higher annealing temperatures. 

 

This behavior and comparison with the literature strongly suggest that peak A is related to M5 

deep centre caused by αααα misfit dislocations.  Peak B strongly resembles deep level EL4, 

which is related to As-rich material and caused by point defects or point defect/impurity 

complexes.  Because peak B has a very similar activation energy and behavior to peak A, it 

could also be related with dislocations.  Further study is necessary to clarify this point.  Peak 

C is attributed to deep centres EL10 and M1, and due to the invariance of the density with 

annealing it is presumed to be related with a point defect and/or impurity. 
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Fig. 16. Activation energy EA for the deep levels A (■), B (●) and C(▲) and ρDL for the deep 

levels A (□), B (○) and C(∆) obtained from the ITS Arrhenius plots.  The as-grown sample is 

shown at 300 oC, which is the temperature for SiO2 deposition. 

 

The results obtained show that there are three main deep levels in GaInAs with a low In 

composition.  The density of the deep level labeled A can be reduced with annealing 

treatment at 650 oC. The concentration of deep level B can be reduced at the annealing 

temperature of 750 oC. Deep level C seems to be unaffected by the annealing treatment.   

 

In the future, the effect of deep levels A, B and C on laser performance should be studied.  It 

is not easy to make DLTS on laser structures.  Thin layers, inhomogeneous doping 

concentration profiles and different band structures are obstacles to achieve a suitable DLTS 

measurement, and hence, to make a reliable analysis of the results.  Nevertheless, a 

comparison between the laser performance and the deep level structure could be made by 

fabricating a GaInAs layer with a similar In composition of 1.4% in the laser structure.  Same 

growth conditions should be used in order to compare with these DLTS results.  The laser 

structure should be annealed at similar temperatures as in this study and its performance 

tested, in order to indirectly infer any deep level effect and correlate it with the results of this 

article. 
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Chapter 5 

Electrical characterization of GaInNAs 

 

In 1996 Masahiko Kondow et al. had the idea that introducing N into GaInAs will enhance 

the desired lasing characteristics of GaInAs/GaAs structures86.  Their expectations were based 

on the fact that adding N to GaAs decreases the lattice constant and the band gap, causing 

tensile strain87.  This is a very unlikely effect, as usually the band gap is increased when the 

lattice constant is decreased.  By using a quaternary compound, GaInNAs, the layer can be 

lattice-matched to GaAs substrate and have an even smaller band gap than GaInAs with 

similar In composition.  In this way the formation of dislocations and, thus, the density of 

deep levels can be reduced. 

 

In their first proposal they experimentally proved the feasibility of GaInNAs for long-

wavelength-range laser diodes86.  Later on, the application of the material for lasing has been 

corroborated88-90, and it has been found useful for other applications as well, e.g., 

heterojunction bipolar transistors91 and high-efficiency solar cells92-94. 

 

Our objective with this research was to better understand deep levels in GaInNAs.  Usually 

QW structures of GaInNAs with quite high concentrations of In and N are needed to reach the 

telecommunication wavelengths.  Therefore, these concentrations have also been used in the 

material studies.  These studies do not provide insight on how a low concentration of In and N 

alter the deep levels in GaAs.  In order to have a better understanding of how the 

incorporation of low amounts of In and N into GaAs generates deep levels, bulk GaInNAs 

with small In and N compositions has been studied.  This was done with the purpose to easily 

compare the results with the available literature for deep levels in GaAs95.  The effect of 

annealing treatment has also been studied, in order to obtain information about how the deep 

level properties can be manipulated.  The deep level characteristics were also studied using 

different doping levels. 

 

In publication V samples with low In and N compositions were studied. Although this 

approach is very similar to the one made by Polyakov96 et al., the results are very different.  

They studied a sample with 1% In and 0.35% N and similar doping (7 × 1016 cm-3) to one of 

the samples of this thesis, and they found two deep levels.  In publication V five deep levels 

were found. Also the behavior of these new levels following annealing at a range of 

temperatures is reported. 
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In publication V Si-doped n-type Ga0.987In0.013N0.0043As0.9957 lattice matched to GaAs grown by 

gas source molecular beam epitaxy (GSMBE) was studied.  Two levels of doping were used: 

medium (2 × 1016 cm-3) and heavy (1 × 1018 cm-3).  The samples were grown on a n-type 

GaAs (100) substrate.  GaInAs single quantum wells (SQW) with a thickness of 7 nm were 

grown to calibrate the In composition, by comparing dynamical theory simulations with the 

experimental double crystal x-ray diffraction (XRD) rocking curves.  The N composition was 

calibrated by lattice matching GaInNAs with the substrate.  This was verified by XRD. Other 

details of the growth may be found in Ref. 97.  Deep level transient Fourier spectroscopy 

(DLTFS) was used to study the electrical properties37.   

 

The thermal treatment consisted of 5 min annealing at 650 oC, 700 oC, 750 oC or 800 oC in a 

thermal annealing furnace under flowing nitrogen.  In order to avoid out-diffusion the 

samples were capped with 200 nm SiO2 deposited by plasma enhanced chemical vapor 

deposition at 300 °C before the thermal treatment.  Figs. 17 a) and b) show DLTFS curves 

and the Arrhenius plots respectively for the medium-doped sample are shown. 

 

a)       b) 

 

 

Fig. 17.  a) DLTFS curves and leakage currents of the medium Si - doped 

Ga0.987In0.013N0.0043As0.9957 sample measured with a pulse width of 100 ms, a period width of 

100 ms, a reverse voltage of –0.7 V, and a pulse voltage of 0 V. b) Arrhenius plot for the 

DLTFS measurements shown in a).  NC is the effective density of states, vth is the mean 

thermal velocity and σDL is the capture cross section.  The data points correspond to 

following thermal annealing temperatures: none (�), 650 oC (�), 700 oC (�), 750 oC (�) 

and 800 oC (�).  The annealing time was 5 min.  The thick lines are used to separate the 

respective group of data for each deep level. 
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For the as grown sample, only one peak is seen (peak A) around 375 K.  It shows a small 

shoulder around 300 K.  The height of the peak A experiences a slight increase for annealing 

at 650 oC, and diminishes for higher annealing temperatures.  The shoulder becomes more 

prominent after annealing at 650 oC, and it becomes a noticeable peak (peak B) after 

annealing at 700 oC.  The peak height decreases but only a little with annealing temperature.  

Also a new peak appears around 250 K after annealing at 700 oC (peak C).  The height of 

peak C diminishes only slightly at higher annealing temperatures.  Peak D appears after 

annealing at 750 oC, and the height of this peak remains constant also after annealing at 800 

oC.  Finally, peak E appears when annealed at 800 oC.  The Arrhenius plots in Fig. 17 b) show 

good linearity for the as-grown sample.  The data become more and more scattered as the 

annealing temperature increases. 

 

a)      b) 

 

Fig. 18.  a) DLTFS curves and leakage currents of the medium Si - doped 

Ga0.987In0.013N0.0043As0.9957 sample measured with a pulse width of 100 ms, a period width of 

100 ms, a reverse voltage of –0.7 V, and a pulse voltage of 0 V. b) Arrhenius plot for the 

DLTFS measurements shown in a).  NC is the effective density of states, vth is the mean 

thermal velocity and σDL is the capture cross section.  The data points correspond to 

following thermal annealing temperatures: none (�), 650 oC (�), 700 oC (�), 750 oC (�) 

and 800 oC (�).  The annealing time was 5 min. 

 

In Fig. 18 a) and b) DLTFS curves and the Arrhenius plots for the heavy doped sample are 

shown, respectively.  Only peak D appears in the DLTS scan.  The height of this peak 

decreases slightly when annealed at 650 oC, but diminishes to half of its original value when 

annealed at 700 oC.  After annealing at 750 oC and 800 oC the height is diminished even more.  

The data in the Arrhenius plot (Fig. 18 b)) become more scattered as the annealing 

temperature increases. 
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In total there are at least 5 electron traps, some of which can be compared to well known deep 

levels in GaAs.  For the medium-doped as-grown sample, the strongest signal comes from the 

deep level corresponding to peak A.  This trap level might be related to the native arsenic 

antisite (AsGa) labeled EL2 in GaAs98.   Peak B is almost not affected by thermal annealing. 

Comparison with the study of Ga0.986In0.014As (publication III) shows that it is not related with 

N and it is very likely related with the off-centre substitutional oxygen in As sites.  Peak C 

appears only after annealing at 750 oC and is affected very little by higher annealing 

temperatures.  Comparison with the study of Ga0.986In0.014As (publication III) suggests that N 

is involved, maybe because of clustering of GaNAs and GaInAs.  Peak D appears after 

annealing at 750 oC and is almost not affected by higher annealing temperatures.  It is the only 

one that appears in the heavy-doped sample, where it is very sensitive to annealing.  It has 

been reported to be intrinsic to GaAs, which suggests that N is not involved in it.  It could be 

caused by As interstitials and antisites.  The presence of N might lower the probability of the 

formation of these As-related defects.  This peak is the only one, which appears for the heavy-

doped sample.  Finally, peak E is seen only after annealing at 800 oC. This level is scarcely 

reported in the literature. It cannot be reliably evaluated and we assume it is due to high 

disorder introduced to the material due to the high annealing temperature. 

 

The characteristics of the deep levels for GaInAs and GaInNAs, and their behavior after 

annealing, should be valuable for researchers interested in using these materials for any 

optoelectronic application.  Annealing at suitable conditions should be a useful tool to tailor 

the presence of these deep levels.  These studies could be continued further, by studying how 

higher concentrations of In and N change the deep level characteristics.  The effects of these 

deep levels on the device performance should be also tested, e.g., similarly as was suggested 

in Chapter 4.  Different doping levels and annealing conditions could be explored, and 

depending on the changes in photoluminescence, DLTS and possible relations could be 

found. 
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Chapter 6 

Electrical characterization of InN 

 

InN has not been as deeply studied as the other III-N semiconductors, due to difficulties in 

preparing high quality material.  Despite the first mention of InN was very long time ago99, 

very little research was done until the eighties.  Studies of InN are closely linked with the 

studies of GaN.  It must be remembered that GaN attracted a lot of attention when the first 

high-brightness commercial blue light emitting diodes (LED) based on nitride semiconductors 

appeared on the market.  This was a little over a decade ago, and now GaN is the second most 

important semiconducting material after silicon, with US $1.33 billion in sales in 2002 and 

projected sales of US $4.55 billion for 2007100.  Alloying GaN with In, thus forming GaInN, 

made it possible to extend the wavelength range of the GaN LED from ultraviolet to green. 

 

Previously, it was assumed that the band gap of InN was a direct gap101 with a value of about 

1.9 eV.  Recently, however, band gap energies smaller than 1.9 eV have been reported102,103, 

namely, in the range of 0.7 – 1.0 eV.  Corresponding wavelengths are compatible with the 

wavelengths used in optical communication.  If InN of high crystalline quality could be 

grown, it could have a major impact on the optical communication industry in a large number 

of applications104.    It could be said, that nowadays InN is in the same development phase as 

GaN was approximately fifteen years ago105: many new and exciting properties are found, 

maybe triggering future applications.  Nevertheless, there is still a long way before the 

material quality can be classified as suitable for devices. 

 

As a contribution to the understanding of InN, in publication VI InN was grown by vertical 

flow MOVPE.  In publication VII, several metal contacts were tested, and rectifying behavior 

was observed in Ge, Pt and annealed Al contacts. 
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6.1 InN growth by MOVPE 

 
InN is a promising semiconductor for optoelectronic applications in the future.  Hence, in this 

study we engaged on the optimisation of basic growth parameters of InN by MOVPE.  

Several growth temperatures and growth rates were used, in order to see their effect on the 

material quality.  

 

InN was grown on nitridated c-plane sapphire substrates by vertical close-coupled 

showerheard (CCS) MOVPE reactor.  Trimethylindium (TMIn) and ammonia (NH3) were 

used as In and N precursors, respectively.  To clean the surface from impurities, the substrates 

were annealed at 1050 oC for 10 min under hydrogen flow.  After that, they were nitridated in 

NH3 at 1050 oC for 30 min.  Subsequently, the temperature was decreased to the growth 

temperature between 550 oC and 650 oC and the carrier gas was switched from H2 to N2.   

 

Fig. 19.  Growth rate of InN as a function of TMIn molar flow supply at different growth 

temperatures.  The V/III ratio was between 7370 and 29500. 

 
The growth rate of InN as a function of TMIn molar flow is shown in Fig. 19. There is a 

linear dependence of the growth rate on the TMIn flow in the studied temperature range.  

Only at 500 oC, the growth rate was decreased compared to the other samples grown with the 

same V/III ratio.  This indicates that the growth rate is not limited by NH3 decomposition rate 

but by the amount of reactive In. 
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Fig. 20.  AFM scans of InN film surface grown at 550, 600 and 650 oC. 

 

In Fig. 20, the AFM scans of the InN film grown at 550 oC, 600 oC and 650 oC with the V/III 

ratio of 29500 are shown.  The presence of 3D hexagonal shape islands on the surface can be 

seen.  The island size increases with increasing growth temperature.  The hexagonal shape is 

clear for the growth temperature of 650 oC, but less clear for smaller temperatures. 

 

Hall measurements were done on the samples to determine the Hall mobility and carrier 

concentration.   The dependence of these parameters as a function of growth temperature can 

be seen in Fig. 21 a).  The Hall mobility increases from 100 cm2/Vs to nearly 200 cm2/Vs 

when the temperature increases from 550 oC to 650 oC.  On the other hand, carrier 

concentration drops from 6×1020 to 1×1020 cm-3.  It seems that the carrier concentration and 

the Hall mobility are not affected by the V/III ratio.  This suggest that the temperature 

dependence of the carrier concentration and Hall mobility is not a result from the more 

efficient cracking of NH3, but from the better material quality due to higher growth 

temperature.   

 

 

Fig. 21. a) Hall mobility and carrier concentration of the InN samples as a function of growth 

temperature with various V/III ratios. b) PL spectra of InN samples grown at different 

temperatures. 
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Strong support for better material quality at higher growth temperature comes also from 

photoluminescence (PL) measurements, as shown in Fig. 21 b).  The peak intensity increases 

by more than tenfold and the full with at half maximum (FWHM) of the peak decreases from 

a 133 meV to 37 meV when the growth temperature increases from 550 oC to 650 oC.  The PL 

spectra were not affected by different V/III ratios.  It is interesting to note that the samples did 

not show any luminescence at 1.9 eV, which was previously thought to be the band gap 

energy of InN. 

 

This study showed that InN is a difficult material to fabricate.  The growth of the material at 

650 oC yields the best photoluminescence spectra, the best Hall mobility values, and the 

lowest n-type carrier concentration.  Still, the carrier concentration is very high. Similar 

quality as observed in other studies was achieved.  However, p-type InN could not be realized 

by direct epitaxial growth. 
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6.2 Metal contacts on InN 

 

Due to the expected applications of InN to optoelectronic devices, it is necessary to study the 

electrical properties of InN, which are not well known.  As p-type InN is currently 

unachievable, the study of p-n junctions is not possible.  Therefore, only a Schottky contact is 

suitable for studies such as DLTS, C-V and I-V measurements.   Thus far, regardless of a few 

studies using Hg, Ti, Al or Ni that have been carried out102,106, reliable Schottky contact had 

not been realised. Large lattice mismatch with the substrates, high carrier concentration, and 

rough surface morphology have turned out to be difficult obstacles in the quest for a Schottky 

contact.   

 

The objective of this research was to gain understanding about metal contacts on InN.  This 

was done with the following aims: a) test as many possible different metals on InN, b) study 

which form ohmic and which Schottky contacts, and c) in the case of Schottky ones, make I-V 

studies.  During the study, it was found that Al, one of the metals tested in this study, reacts in 

some conditions with N to form a wide bandgap semiconductor.  Hence, the idea of annealing 

Al contacts on InN was suggested, put in practice and reported. 

 

In publication VII tests of several metal contacts (Au, Ag, Pt, Pd, Cu, Ni, Ge, Ti, Cr, Al) on 

InN were reported.  Among these, only the annealed Al layer forms a reliable rectifying 

contact.  Pt and Ge showed also some Schottky contact behavior (Fig. 22), but they were very 

unstable.   The procedure to analyse the curves was the following.  Eq. 9 can be approximated 

by 

 

I ~ IS  exp(qV/nkT),         (40) 

 

if  

 

V > nkT/q.          (41) 

 

At room temperature, kT/q = 0.026 eV.  As n was unknown, it was necessary to estimate 

where the absolute current showed a linear behavior in the logarithm graph (Fig. 22).  This 

happened around 0.06 eV.  The value of IS was estimated to be 0.001 A and 2 × 10-7 A for Ge 

and Pt, respectively.  The linear fitting of ln(I/IS) yielded n = 1.67 and n = 0.85 for Ge and Pt 

respectively.  This is in agreement with Eq. 41.  These values should be considered with some 

care, because n<1 should not be expected.  It must be remembered that the Schottky model 
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relies on the assumption of perfect crystals with perfect surfaces.  It is clear that this is not the 

case here.  In the future, the tunneling model could be tested, as the curves were very 

symmetric and the carrier concentration is high. 

 

Fig. 22. Ge and Pt contact showing Schottky behavior plotted on a logarithmic scale. The 

linear fittings of ln (I) vs. V in the forward bias region for Ge and Pt are also shown. 

 

In the case of the Al contact, it is possible that AlN or AlInN is formed between the 

semiconductor and the metal, due to N reacting with In and Al.  It has been reported that Al 

reacts with GaN to form AlGaN and the reaction between Al and InN is also likely here107.  It 

is known that AlN and GaN have stronger bonds than InN.  Therefore, it is also likely that Al 

will react with N.  If the reaction of Al and N is unavoidable, then it should be used in a 

profitable way to form an insulating material108.  In the case of AlxIn1-xN, with x=1, the 

material has a wide band gap of 6.3 eV, which decreases with In content108.  Combined with 

the small band gap of InN, a barrier can be formed with a rectifying behavior. 

 

In order to see if the quality of the contacts is affected by the annealing temperature, four 

contacts on each InN sample, labeled pixel 1 to 4, were tested.  Each set of four pixels was 

processed and annealed similarly with the only exception being the annealing temperature and 

time.  Annealing was done at 300 oC, 410 oC, 500 oC and 550 oC for 1 min and at 600 oC for 

24 s.  Annealing up to 500 oC does not result in rectifying behavior (Fig. 23 a)).  The 

calculated average resistances for each annealing temperature are shown in Fig. 23 b).  It is 

possible to observe that the resistances are smaller for the sample annealed at 300 oC than for 

the un-annealed sample.  The resistance decreases more after annealing at 410 oC.  This can 

be seen clearly in the average resistance.  It is known that annealing improves ohmic contacts 

due to a metal-semiconductor intermixing.  The resistance increases after annealing at 500 oC, 

compared with the sample annealed at 410 oC, which might suggest the formation of an 

AlInN barrier. 
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Fig. 23. a) I-V curves for 200-nm-thick annealed and un-annealed Al contacts on InN.  

Annealing time was 1 min.  Four contacts were measured for each annealing temperature and 

they are represented as different shading (filled, empty, horizontally partially filled and 

vertically partially filled).  b) Calculated resistances from the slope of the I-V curves shown in 

a) as a function of annealing temperature.  The un-annealed samples are shown at 0 oC.  The 

average of the resistance for each annealing temperature is also shown.  

 

Only in the sample that was annealed at 550 oC for 1 min was rectifying behavior observed, as 

can be seen in Fig. 24. The order of the measurements was from low voltage ranges to high 

voltage ranges.  For each voltage range, several measurements were done and all were 

identical.  Interestingly, the contact at the beginning showed ohmic behavior, which became 

rectifying after the first measurement between –0.7 and 0.7 V was done.  As the voltage range 

was increased, the rectifying behavior became larger.  Fig. 24 suggests that the voltage 

provides energy, which affects the material structurally and/or energetically so that more 

rectifying nature is seen.  These measurements were repeated several days later, and the 

rectifying behavior did not change, even for small voltages.  Interestingly, Al contacts on 

GaN annealed at similar temperatures (575 oC for 10 min) have also changed their nature from 

ohmic to rectifying109. 
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Fig. 24.  I-V curves on a logarithmic scale for 200-nm-thick annealed Al contacts on InN.  

The annealing was performed at 550 oC for 1 min. 

 
In conclusion, several metal contacts (Au, Ag, Pt, Pd, Cu, Ni, Ge, Ti, Cr, Al) were tested on 

MOVPE-grown InN.  All the metals formed ohmic contact, except Pt, Ge and Al.  Pt and Ge 

showed rectifying characteristics for voltages below –1 V.   Higher voltages made them 

ohmic.  Al contacts were ohmic for annealing temperatures of 500 oC or smaller.  After 

annealing at 550 oC or higher temperature they showed a rectifying behavior.  It is necessary 

to bias the voltage to –0.7 V or larger in order to change the contact behavior from ohmic to 

rectifying. 

 

The stable rectifying nature of annealed Al contacts should provide a tool in the future to 

study this material electrically by DLTS, I-V, C-V and Hall measurements.  A continuation of 

this study could be to study the metal contacts by SIMS, Auger spectroscopy or transmission 

electron microscopy (TEM).  This could obtain information of the suspected AlInN interface 

formed in annealed Al contacts on InN.
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Chapter 7 

Summary 

 

Novel nitrogen-containing III-V semiconductors have attracted a lot of attention in the last 

years.  In addition to the obvious visible and UV light applications, another reason is their 

suitability for optoelectronic applications, such as telecommunication lasers and solar cells, in 

the 1.3 and 1.55 µm wavelength range.  They have also shown promising results for 

electronic applications, such as transistors.  Due to their novelty, many properties and 

especially the electrical properties are not well known. 

 

In this thesis, an improved variant of DLTS is presented.  Inductors are used to improve the 

acquisition of deep level parameters.  It has been found that the use of the right inductors can 

separate DLTS signals, providing a tool to make more accurate measurements.  The use of 

inductors also helps to determine the real series resistance and capacitance of a Schottky 

contact.  Usually the series resistance is neglected, which causes errors for the deep level 

parameters.  The DLTS signals can be corrected once the real resistance of the Schottky 

sample is known. 

 

The DLTS technique has been used to study GaInAs.  A low In composition has been used to 

facilitate comparison with the GaAs results.  Several deep levels have been found.  The 

samples were also annealed at several temperatures, in order to see how the deep level 

concentrations were affected.  It was found that GaInAs has three main deep levels.  One of 

them is not affected by thermal annealing up to 700 oC.  The concentration of one level is 

reduced with increasing annealing temperature.  The concentration of both of these levels 

decreases when annealed at 750 oC.  The third deep level has a small concentration, which is 

not affected by annealing.  Further study to understand the structural origin of the deep levels 

and their effect on device performance is needed. 

 

GaInNAs is expected to have a deep impact in optoelectronics applications, as it can be 

grown lattice matched to GaAs, if the correct ratio of In and N compositions is used.  In this 

thesis GaInNAs has been studied by DLTS.  Low In and N compositions have been used to 

facilitate comparison with the GaAs results.  Two samples were studied, one with medium 

doping and the other one with high doping.  For the medium doped sample, one main deep 

level appears for the as-grown sample.  The concentration of this level decreases as the 

annealing temperature increases.  Four deep levels appear as the annealing temperature is 



 

 50  

increased.  The concentrations of all these levels increase with increasing temperature.  

Regarding the highly doped sample, only one deep level appears, and its concentration 

decreases with increasing temperature.  The DLTS parameters of these levels are compared 

with the known deep levels of GaAs.  As in the case of GaInAs, deep levels can have a major 

impact on the optical efficiency of GaInNAs. 

 

In the future, optical and structural studies of GaInAs and GaInNAs should provide insight on 

the nature of these deep levels, like their origin, local composition and structure.  PL studies 

can yield information about the radiative nature of the levels.  In that case, time-resolved PL 

(TRPL) might provide information on the emission rates.  This can be compared with results 

obtained by ODLTS measurements. 

 

InN samples were grown at different temperatures and with different V/III ratios.  It was 

found that the V/III ratio does not have a major impact on the material properties, but the 

growth temperature has.   The best material was obtained at the growth temperature of 650oC: 

it showed lower carrier concentrations and higher Hall mobilities than samples grown at other 

temperatures.  Also, the PL peak was the sharpest and most intense.  With this InN sample, 

several metal contacts were tested.  Due to the novelty of InN, systematic studies of the metal 

contacts on InN cannot be found in the literature.  It was found that Pt and Ge make Schottky 

contacts, which are not very reliable.  Al contacts were annealed, and when the annealing 

temperature was 550 oC, they showed rectifying behavior.  Schottky contacts on InN, in 

general, might provide deeper insight on the electrical properties of InN.  I-V, C-V and DLTS 

measurements could provide information on, e.g., the carrier concentration profile, barrier 

height, Richardson constant and deep levels. 
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