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ABSTRACT: Boolean equation systems are ordered sequences of Boolean
equations decorated with least and greatest fixpoint operators. Boolean equa-
tion systems provide a useful framework for formal verification because var-
ious specification and verification problems, for instance, µ-calculus model
checking can be represented as the problem of solving Boolean equation
systems. The general problem of solving a Boolean equation system is a com-
putationally hard task, and no polynomial time solution technique for the
problem has been discovered so far. In this thesis, techniques for finding so-
lutions to Boolean equation systems are studied and new methods for solving
such systems are devised.

The thesis presents a general framework that allows for dividing Boolean
equation systems into individual blocks and solving these blocks in isolation
with special techniques. Three special techniques are presented, namely:
(i) new specialized algorithms for disjunctive and conjunctive form Boolean
equation systems, (ii) a new encoding of a general form Boolean equation
system into answer set programming, and (iii) new encodings of a general
form Boolean equation systems into satisfiability problems. The approaches
(ii) and (iii) are motivated by the recent success of answer set programming
solvers and satisfiability solvers in formal verification.

First, the thesis presents especially fast solution algorithms for disjunctive
and conjunctive classes of Boolean equation systems. These special algo-
rithms are useful because many practically relevant model checking prob-
lems can be represented as Boolean equation systems that are disjunctive or
conjunctive. The new algorithms have been implemented and the perfor-
mance of the algorithms has been compared experimentally on communica-
tion protocol verification examples.

Second, the thesis gives a translation of the problem of solving a general
form Boolean equation system into the problem of finding a stable model of
a logic program. The translation allows to use implementations of answer set
programming solvers to solve Boolean equation systems. Experimental tests
have been performed using the presented approach and these experiments
indicate the usefulness of answer set programming in this problem domain.

Third, the thesis presents reductions from the problem of solving general
form Boolean equation systems to the satisfiability problems of difference
logic and propositional logic. The reductions allow to use implementations
of satisfiability solvers to solve Boolean equation systems. The presented re-
ductions have been implemented and it is shown via experiments that the
new approach leads to practically efficient methods to solve general Boolean
equation systems.

KEYWORDS: answer set programming, Boolean equation systems, computer-
aided verification, satisfiability problems





TIIVISTELMÄ: Boolen yhtälöryhmät ovat kiintopisteoperaattoreilla varustet-
tuja Boolen yhtälöitä. Boolen yhtälöryhmät luovat hyödyllisen viitekehyksen
tietokoneavusteiselle verifioinnille, sillä monet määrittely- ja verifiointiongel-
mat voidaan kuvata tällaisten kiintopisteyhtälöiden avulla. Työssä kehitetään
uusia menetelmiä Boolen yhtälöryhmien ratkaisemiseen.

Työssä esitetään yleinen viitekehys Boolen yhtälöryhmien ratkaisemiseen,
joka yksinkertaistaa ratkaisun laskemista jakamalla yhtälöryhmät yksinkertai-
sempiin aliongelmiin. Työssä esitetään kolme uutta mentelmää Boolen yh-
tälöryhmien ratkaisemiseen.

Konjunktiivisten ja disjunktiivisten Boolen yhtälöryhmien ratkaisemiseen
kehitetään uusia algoritmeja, sekä esitetään näiden toteutukset ja suoritusky-
kyjä koskevia koetuloksia.

Työssä kehitetään käännös Boolen yhtälöryhmän ratkaisemisesta logiikka-
ohjelman stabiilin mallin löytämiseen sekä menetelmän toimivuutta koske-
via koetuloksia. Käännös mahdollistaa logiikkaohjelmointiympäristöjen to-
teutusten käytön Boolen yhtälöryhmien ratkaisemiseen. Koetulokset osoitta-
vat rajoitepohjaisen logiikkaohjelmointiympäristön tehokkuuden Boolen yh-
tälöryhmien ratkaisemisessa.

Työssä kehitetään myös käännökset Boolen yhtälöryhmän ratkaisemises-
ta differenssilogiikan sekä lauselogiikan toteutuvuusongelmiin. Käännök-
set mahdollistavat toteutuvuustarkastimien käytön Boolen yhtälöryhmien rat-
kaisemiseen. Koetulokset osoittavat esitettyjen menetelmien tehokkuuden
Boolen yhtälöryhmien ratkaisemisessa.

AVAINSANAT: Logiikkaohjelmointi, Boolen yhtälöryhmät, tietokoneavustei-
nen verifiointi, logiikan toteutuvuusongelmat
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1 INTRODUCTION

In this thesis, we study Boolean Equation Systems (BESs) [1, 70, 75, 101]
These are ordered sequences of Boolean equations decorated with fixpoint
signs. More precisely, a Boolean equation system consists of equations with
Boolean variables as left-hand sides and positive propositional formulas as
right-hand sides. In particular, we restrict the attention to solution techniques
for Boolean equation systems. The research topic belongs to the area of for-
mal verification but more specifically it addresses effective ways of solving
systems of fixpoint equations. Our work is mainly inspired by the usefulness
of Boolean equation systems in formal verification of computerized systems.

Computerized systems are present almost everywhere in a modern society.
During a lifetime an average person migh use thousands of computerized de-
vices. Typical examples of these devices include consumer electronics such
as digital cameras, mobile phones, televisions, stereo equipment, and micro-
wave ovens. In addition, hardware and software systems control airplanes,
cars, elevators, medical devices, missiles, ships, spacecrafts, trains, chemical
and nuclear power plants, and so on.

Computerized systems are built by human beings and, unfortunately, hu-
mans make mistakes. Both design errors and faulty implementation may lead
hardware and software systems to behave in unexpected ways which in turn
may lead to financial losses and even hazardous situations.

The main aim of formal verification is to verify that a computerized system
satisfies a formal specification which describes the correct behaviour of the
system. Motivated mainly by a need to ensure the correctness of hardware
and software systems, an important discipline of formal verification emerged
in the early 1980’s, called model checking. Over the past decades, model
checking has become a very active research area as well as a widely used
verification technique in computer hardware and software industry.

In brief, model checking [17] is an automated method to check that a re-
quirement holds for a model of a hardware or software system. A hardware or
software system is typically modelled in a particular specification language.
The correctness requirements are then specified as formulas in some tempo-
ral logic. As an intermediate step, a state space may be generated from the
system specification. Essentially, the state space is a model which is simply
a graph representing all the possible behaviours of the system under con-
sideration. Then, a model checking algorithm decides whether or not the
temporal logic formula holds for the model, i.e. the model checking algo-
rithm either verifies or refutes the correcness property. In addition, witnesses
or counter-examples can be provided, too.

Model checking has been applied successfully in different phases of the
development of various systems. In practice, model checking has proved to
be a particularly effective method to detect errors in early design phases of
finite-state, concurrent systems such as microprocessors and many commu-
nication protocols. For instance, model checking has become an essential
part of the system development cycle in the design of VLSI circuits (see,
e.g., [14]). Model checking has also been applied, e.g., to assist the design
and implementation of telecommunication systems software (see [50] for a
survey).
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One of the main obstacles to using model checking is its complexity. The
complexity of model checking arises mainly from two sources:

I State space explosion phenomenon: the state space generated
from the system specification is usually much (exponentially)
larger than the system specification.

II Expressive logics have computationally complex model check-
ing algorithms.

Therefore, much of the model checking research is centered around tech-
niques which try to alleviate both of these shortcomings. In brief, ways to
alleviate the state space explosion problem (I) include:

1. On-the-fly model checking [25] integrates the state space generation
and model checking phases in order to detect counter-examples early.

2. Symbolic model checking [14, 9] represents the state space compactly
by clever data structures.

3. Partial order reduction [40, 99] techniques ignore certain executions
of the system because they are covered by other behaviours.

4. Symmetry reductions [18, 32] try to avoid building the entire state
spaces based on the fact that many systems are highly symmetric.

5. Abstraction [19] methods remove details of the system behaviours and
work with approximations of the state space.

In this thesis, rather than trying to alleviate the state space explosion problem
we concentrate on (II). Consequently, we aim to devise techniques to bet-
ter cope with expressive logics which have computationally complex model
checking algorithms.

The µ-calculus [60] is an expressive logic for system verification, and
many important features of system models can be expressed with the µ-
calculus. In fact, most logics used in model checking can be encoded into
the µ-calculus. For these reasons, the µ-calculus is a logic widely studied in
the recent systems verification literature. It is well-known that the µ-calculus
model checking problem is in the complexity class NP ∩ co-NP [34, 35]
(and even in UP ∩ co-UP [53]). Yet, the computational complexity of the
µ-calculus model checking problem is unresolved, and no polynomial time
algorithm has been discovered so far.

Our goal in this thesis is to devise practically effective methods for µ-
calculus model checking. Boolean equation systems provide a suitable frame-
work for our task because µ-calculus model checking problem can be easily
translated to Boolean equation systems (see, e.g., [4, 70, 75] or Section 2.4
for such translations). Representing µ-calculus formulas and system models
as Boolean equation systems has proven to be a useful approach for imple-
menting model checking and for obtaining improvements to this verification
method.

In the following subsections, we will briefly discuss related work, state the
main contributions of this thesis, and, finally, we will outline the general
organization of the thesis.

2 1 INTRODUCTION



1.1 Related Work

There is a large existing body of knowledge on the µ-calculus model check-
ing problem albeit the computational complexity of the problem is yet un-
resolved. In particular, various effective model checking algorithms exist for
syntactic fragments of the µ-calculus. To mention a few of them, Arnold and
Crubille [3] present an algorithm for checking alternation depth 1 formu-
las of µ-calculus which is linear in the size of the model and quadratic in
the size of the formula. Cleaveland and Steffen [23] improve this result by
making the algorithm linear also in the size of the formula. Andersen [1],
and similarly Vergauwen and Lewi [101], show how model checking alter-
nation depth 1 formulas amounts to the evaluation of Boolean graphs, re-
sulting also in linear time techniques for model checking alternation depth
1 formulas. Even more expressive subsets of the µ-calculus have been in-
vestigated by Bhat and Cleaveland [8] as well as Emerson et al. [34, 35].
They present polynomial time model checking algorithms for fragments L1
and L2 which may contain alternating fixpoint formulas. Notable algorithms
for solving the general µ-calculus model checking problem include, for in-
stance, [31, 69, 88, 67].

The notion of a Boolean equation system goes back at least to the work
of Larsen [64], where he presents an early form of a Boolean equation sys-
tem. Larsen gives a sound and complete proof system for Boolean equation
systems consisting of minimal fixpoint equations. Larsen shows also how cor-
rectness questions of finite-state parallel systems can be solved in this frame-
work. In the same way, Boolean equation systems are studied in detail, for
example, by Vergauven and Lewi [101], and by Andersen and Vergauven [2].

In [70], Mader provides an extensive study of the properties of Boolean
equation systems. She shows how the model checking problem of µ-calculus
can be solved in terms of Boolean equation systems. In addition, Mader pro-
vides a proof system for solving general Boolean equation systems by means
of algebraic manipulations. This leads to an iterative algorithm to solve gen-
eral form Boolean equation systems called Gauß elimination. Mader shows
that the algebraic approach is also applicable to solving infinite systems of
equations, an extension of Boolean equation systems to infinite sequences of
Boolean equations possibly involving infinite Boolean formulas. This leads
to a model checking technique for infinite state spaces.

In [75], Mateescu describes solution algorithms for alternation-free Boo-
lean equation system. The approach from [75] can be used for both bisim-
ulation checking and for model checking of alternation-free µ-calculus on
finite-state systems. Furthermore, in [74], Mateescu provides algorithms that
can be used to compute counterexamples as well as diagnostic information
explaining the solution computed to a given variable of a Boolean equation
system.

In [61], Kumar and others apply answer set programming to solve Boolean
equation systems. They propose to solve general form Boolean equation sys-
tems by translating them to propositional normal logic programs, and com-
puting stable models which satisfy certain criteria of preference.

There is also a recent direction of research centered around an extension
of Boolean equation systems with data. Such systems are often called pa-
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rameterized Boolean equation systems and they are also known as first-order
Boolean equation systems. In [43], Groote and Willemse show how a µ-
calculus formula and a process algebraic specification, both involving data
parameters, can be transformed into a parameterized Boolean equation sys-
tem. In [45, 44], various solution methods for parameterized Boolean equa-
tion systems are studied. An advantage of this kind of approach is that it
allows for dealing with the verification of infinite state systems.

Rather than providing a comprehensive list of work in the field with a
special reference to Boolean equation systems, the above list of results shows
that Boolean equation systems have been studied in some depth in the re-
cent systems verification literature. Yet, the computational complexity of the
problem of solving a general Boolean equation system is still unresolved, and
there is a need to develop further solution methods that are efficient in prac-
tice.

It is worthwhile to mention that the µ-calculus model checking has been
studied in other frameworks than Boolean equation systems as well. For in-
stance, it is well-known that the model checking problem for the µ-calculus
is equivalent to the non-emptiness problem of parity tree automata [34, 35].
In [6], another automata-theoretic approach to µ-calculus model checking
is presented in terms of alternating parity automata. Also, the µ-calculus
model checking problem has been treated in a game-theoretical setting. For
instance, [92] presents a technique to solve the problem in terms of so-called
model checking games. In particular, the problems of µ-calculus model
checking and determining a winner of a parity game are equivalent [33].
Many authors have thus developed µ-calculus model checking techniques
through parity games, see e.g. [54, 7, 81]. Finally, [21] and [93] present
tableau-based model checking procedures for µ-calculus. Most of these al-
ternative frameworks fall out of the scope of this thesis but it is important to
keep in mind that one could usually switch to other equivalent formalisms as
well.

1.2 Contribution of the Thesis

This thesis concentrates on the following topics. The work presents a gen-
eral framework that allows for dividing Boolean equation systems into indi-
vidual blocks and solving the blocks in isolation with special methods. The
framework is based on two fundamental design decisions. The framework
uses graph-theoretic techniques to efficiently build a block partitioning of a
Boolean equation system. Then, the framework solves the resulting blocks
using a customized solution method for each partition of the underlying
Boolean equation system. This approach enables considerable optimization
of the solution methods. Previously, a quite similar approach for equational
systems has been proposed already in [22].

The thesis presents new solution methods for important subclasses of Boo-
lean equation systems. In particular, we study solution methods for Boolean
equation systems which are either in conjunctive or disjunctive form. This
is motivated by the fact that many practically relevant µ-calculus formulas
can be encoded as Boolean equation systems that consist of conjunctive and
disjunctive blocks. For instance, the model checking problems for Hennessy
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Milner Logic (HML) [49], Computation Tree Logic (CTL) [17], and many
equivalence/preorder problems result in alternation-free Boolean equation
systems in conjunctive/disjunctive forms. Moreover, encoding the L1 and
L2 fragments [8, 34, 35] of µ-calculus (and similar subsets) or many fair-
ness constraints as Boolean equation systems result in alternating Boolean
equation systems with only disjunctive and conjunctive form blocks. For in-
stance, Emerson et.al [34, 35] show that the fragment L2 is as expressive
as the logic ECTL* given in [100], where ECTL* is the extended version of
CTL* logic in which ω-regular experssions are used as path formulas. Hence,
the problem of solving the conjunctive and disjunctive subclasses of Boolean
equation systems is so important that developing special purpose solution
techniques for these classes is worthwhile.

Previously, Mateescu [75] presented a solution algorithm for conjunctive
and disjunctive Boolean equation systems. However, Mateescu’s approach
is restricted to alternation-free Boolean equation systems only. We are only
aware of one sketch of an algorithm that is directed to alternating conjunctive
and disjunctive form Boolean equation systems, namely Proposition 6.5 and
6.6 of [70]. In [70], O(n2) time and O(n2) space algorithms are provided
where n is the size of the Boolean equation system.

We give two alternative algorithms for solving conjunctive and disjunctive
Boolean equation systems. The first of these algorithms presented in this the-
sis takes time O(n2) where n is the size of the equation system. For all alter-
nation depths d > 1 (d ≤ n always holds on Boolean equation systems), the
second algorithm finds the solution using time O(n log d) in the worst case
(for d = 1 the second algorithm takes time O(n) in the worst case). Both
algorithms have the space complexity O(n). Thus, the new algorithms are
theoretical improvements over the previous works in the setting of Boolean
equation systems. Our first algorithm is based on Tarjan’s depth-first search
[95]. The other is essentially a variant of Tarjan’s hierarchical clustering al-
gorithm [96], and it is also a variant of a closely related algorithm by King,
Kupferman and Vardi [59] in the realm of parity word automata. We have
implemented the new algorithms and have done various computational ex-
periments to show that the theoretical improvement also leads to practically
efficient solution techniques. The algorithms are compared by experiments
on communication protocol verification examples.

In addition, the thesis presents new solution techniques for solving gen-
eral form Boolean equation systems for which no polynomial time solution
algorithms are known to date.

Since the problem of solving a general Boolean equation system is in the
complexity class NP ∩ co-NP [70], it should be possible to employ answer
set programming solvers as effective proof engines to solve general Boolean
equation systems. Initially, this kind of approach has been suggested in [61],
and it is largely motivated by the success of answer set programming systems
in solving various computationally hard problems. Inspired by the initial
idea proposed in [61] we introduce a new mapping from Boolean equation
systems to normal logic programs. Namely, we reduce the problem of solv-
ing general Boolean equation systems to computing stable models of normal
logic programs. Our translation is such that it ensures the polynomial time
complexity of solving both conjunctive and disjunctive alternating Boolean
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equation systems. A drawback of the approach from [61] is that typical an-
swer set programming systems do not support the computation of answer
sets satisfying the kind of preference criteria defined in [61]. In contrast,
our translation only uses the kinds of rules that are already implemented in
many answer set programming systems, thus allowing us to solve general form
Boolean equation systems by answer set programming systems.

In order to obtain practically efficient solution methods for general Boo-
lean equation systems, the thesis presents new reductions from the problem
of solving general form Boolean equation systems to the satisfiability prob-
lems of difference logic and propositional logic (SAT). This part of the thesis
is essentially based on a submitted manuscript [47] which extends the results
in [63]. The reduction is first given into difference logic, i.e. SAT combined
with the theory of integer differences, an instance of the SAT modulo the-
ories (SMT) framework. In the second stage the integer variables and con-
straints of the difference logic encoding are replaced with a set of Boolean
variables and constraints on them, giving rise to a pure SAT encoding of the
problem. These kinds of reductions are motivated by the recent success of
satisfiability solvers in formal verification, symbolic model checking in par-
ticular. The research hyphothesis is that we can employ the recent results
of satisfiability solving techniques to significantly improve the methods to
solve general form Boolean equation systems, thus leading to practically ef-
ficient model checking techniques for full µ-calculus. We are not aware of
any previous attempts to do µ-calculus model checking through a reduction
to difference logic satisfiability.

Finally, we have implemented the presented techniques and tested their
performance on benchmark problems. Consequently, in this thesis we inves-
tigate experimentally the performance of the new techniques. In the exper-
imental part of the work, we report the results and analysis of the extensive
experiments that we have performed in order to evaluate and compare the
techniques.

Parts of the contributions in the thesis have been published in the follow-
ing publications:

[41] J.F. Groote and M. Keinänen. Solving Disjunctive/Conjunctive Boo-
lean Equation Systems with Alternating Fixed Points. In Proceedings
of the 10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Sci-
ence 2988, pages 436 – 450, Springer Verlag, 2004.

[56] M. Keinänen. Obtaining Memory Efficient Solutions to Boolean Equa-
tion Systems. Electronic Notes in Theoretical Computer Science, 133:
175–191. Elsevier, 2005.

[57] M. Keinänen and I. Niemelä. Solving Alternating Boolean Equation
Systems in Answer Set Programming. Applications of Declarative Pro-
gramming and Knowledge Management, Lecture Notes in Artificial
Intelligence 3392, pages 134–148, Springer Verlag, 2005.

[42] J.F. Groote and M. Keinänen. A Sub-quadratic Algorithm for Conjunc-
tive and Disjunctive Boolean Equation Systems. In Proceedings of
2nd International Colloquium on Theoretical Aspects of Computing,
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Lecture Notes in Computer Science 3722, pages 545–558, Springer
Verlag, 2005.

[47] K. Heljanko, M. Keinänen, M. Lange and I. Niemelä. Solving Parity
Games by a Reduction to SAT. Submitted manuscript.

1.3 Organization of the Thesis

The organization of this thesis is as follows.
Section 2 provides the needed background to read the thesis. Section 3

presents an overview of our general framework to solve a Boolean equa-
tion system. Section 4 discusses solution methods for alternation-free parts
of Boolean equation systems. Section 5 describes algorithms for conjunc-
tive and disjunctive cases of Boolean equation systems. Section 6 details a
method to solve general form, alternating parts of Boolean equation systems
with the answer set programming approach. Section 7 presents a technique
to solve general form, alternating parts of Boolean equation systems by re-
ductions to satisfiability problems. Section 8 describes and discusses experi-
mental research results. Finally, section 9 presents conclusions, and suggests
directions for future work.
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2 BACKGROUND

This section presents some basic concepts that will be required in the fol-
lowing sections. The current section presents essentially an introduction to
µ-calculus model checking with Boolean equation systems and reviews the
answer set programming framework and defines the satisfiability problems.

2.1 Labelled Transition Systems as Formal Models

In the introduction, we outlined that in order to analyze the behaviour of a
hardware or software system with formal methods we first need to construct
a model of the system that is to be verified. As mentioned before, systems are
typically modeled in some suitable modeling formalism, and a state space
of the system may be obtained from the system specification. In this thesis,
we do not consider in detail how the state spaces will actually be obtained
from the system descriptions but instead our starting point is a simple model
that captures the computations of systems, namely labelled transition systems
(LTSs).

The formal models of systems that we will consider in this thesis are the
following.

Definition 1 (Labelled transition systems) Let L be a set of action labels. A

labelled transition system T is a tuple (S, { a→ | a ∈ L}) where

• S is a (finite) set of states, and

• for every a ∈ L, the relation
a→⊆ S × S is a transition relation.

We will write (s, t) ∈ a→ as s
a→ t.

The intuitive idea here is that the behaviour of a system is modeled by
a state transition graph consisting of nodes and labelled edges. The nodes
represent possible states of the system. The edges, in turn, represent the state
transitions of the system (for example events, input/output actions, internal
steps, variable assignments etc.). Usually, model checking techniques assume
this kind of a model of the system, and it can typically be obtained as an end-
product of state space generation or compilation.

The formal model built from the system describes all possible behaviors
and execution sequences of the system to be verified. Consequently, for each
execution sequence of the system there is a corresponding path of a model
which is simply a connected sequence of consecutive transitions of the la-
belled transition system T . Given a formal model of the system to be verified,
we wish to express various properties of system models in order to be able to
reason about the correctness. Let us now define a specification language
which allows us to express formally the properties of systems.

2.2 The µ-Calculus as a Specification Language

In this subsection, we will briefly give the basic definitions concerning the
µ-calculus [60] and demonstrate how to use it as a language for expressing
system properties. The µ-calculus is based on fixpoint computations [97],
and a more detailed survey on this logic can be found in [13].
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Syntax of the µ-Calculus
The µ-calculus [60] is an expressive logic for system verification, and most
model checking logics can be encoded in the µ-calculus. Many important
features of system models, such as liveness and fairness properties, can also
be expressed with the logic. For these reasons, µ-calculus is a logic widely
studied in the recent systems verification literature(see, e.g., [13] for a com-
prehensive survey of the µ-calculus).

We define the syntax of µ-calculus in positive normal form. Let Z be a
set of recursion variables (indicated by X, Y, Z . . . ). Let L be a set of action
labels (indicated by a, b, c, . . . ). Then, the set of µ-calculus formulas with
respect to Z and L is defined by the grammar

Φ ::= ⊥ | > | X | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ | µX.Φ | νX.Φ

where X and a range over Z and L, respectively. As usual, for the above
syntax we assume that the modal operators ([a] and 〈a〉) have higher prece-
dence than the Boolean connectives (∧ and ∨). Moreover, we assume that
the least fixpoint operator µ and the greatest fixpoint operator ν have the
lowest precedence.

In addition, we will make use of some extensions to the above syntax which
are very standard in the literature. For instance, the notation [−]Φ is a short-
hand for

∧

a∈L[a]Φ, and the notation [−b]Φ is a shorthand for
∧

a∈L\{b}[a]Φ.

An important syntactic notion of the µ-calculus formulas is the alternation
depth. The alternation depth of a formula can be defined as the number of
alternations between least and greatest fixpoint operators occurring in the
formula. For example, [80, 31] give definitions of the alternation depth.

Semantics of the µ-Calculus
Given a set L of action labels, formulas of the µ-calculus are interpreted

relative to a labelled transition system T = (S, { a→ | a ∈ L}).
A valuation function V assigns to every variable X ∈ Z a set of states

V(X) ⊆ S meaning that variableX holds for all states in V(X). Let V[X/S ′]
be the valuation which maps X to S ′ and otherwise agrees with valuation V .

Then, the semantics of a µ-calculus formula Φ, relative to a transition sys-
tem T and a valuation V , is a set of states ‖Φ‖TV which is defined inductively
as follows:

‖⊥‖TV = ∅
‖>‖TV = S

‖X‖TV = V(X)

‖Φ1 ∧ Φ2‖TV = ‖Φ1‖TV ∩ ‖Φ2‖TV
‖Φ1 ∨ Φ2‖TV = ‖Φ1‖TV ∪ ‖Φ2‖TV

‖[a]Φ‖TV = {s | ∀t.s a→ t⇒ t ∈ ‖Φ‖TV }
‖〈a〉Φ‖TV = {s | ∃t.s a→ t ∧ t ∈ ‖Φ‖TV }

‖µX.Φ‖TV =
⋂

{S ′ ⊆ S | ‖Φ‖TV [X/S′] ⊆ S ′}
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‖νX.Φ‖TV =
⋃

{S ′ ⊆ S | S ′ ⊆ ‖Φ‖TV [X/S′]}

Notice that the semantics of the least and the greatest fixpoint operators is
a special case of Knaster–Tarski characterization of the least and the greatest
fixpoints of a monotone operator in a complete lattice.

Given a µ-calculus formula Φ and a state s of a labelled transition system
T , state s satisfies Φ iff s ∈ ‖Φ‖TV ; as usual, this is written as T , s |= Φ.

The model checking problem for µ-calculus can be stated as follows.

Definition 2 (µ-calculus model checking) Given a µ-calculus formula Φ,
and a state s of a labelled transition system T , the µ-calculus model checking
problem is to determine whether T , s |= Φ holds.

It is well-known that the µ-calculus model checking problem is in the com-
plexity class NP ∩ co-NP. Emerson, Jutla, and Sistla [34, 35] show that the
µ-calculus model cheking problem is in NP (and also by symmetry in co-
NP). Jurdziński [53] shows that the problem of deciding a winner in parity
games is in the complexity class UP∩co-UP, and as a consequence of this fact
it can be shown that the µ-calculus model checking problem is in UP∩co-UP
too (there is a polynomial time reduction from µ-calculus model checking to
parity games, and vice versa).

The seminal result of Emerson and Lei [31] states that there is a model
checking algorithm which checks a µ-calculus formula of size n and alter-
nation depth d (here d ≤ n) on a labelled transition system of size m in
time O(m · nd). This result has been improved to O(m · ndd/2e+1) by Long
et.al [69]. Yet, the complexity of the µ-calculus model checking problem for
the unrestricted logic is an open problem; no polynomial time algorithm has
been discovered so far.

As mentioned before, various model checking algorithms exist for expres-
sive subsets of the µ-calculus. Arnold and Crubille [3] present an algorithm
for checking alternation depth 1 formulas of µ-calculus which is linear in
the size of the model and quadratic in the size of the formula. Cleaveland
and Steffen [23] improve this result by making the algorithm linear also in
the size of the formula. Andersen [1], and similarly Vergauwen and Lewi
[101], show how model checking alternation depth 1 formulas amounts to
the evaluation of Boolean graphs, resulting also in linear time techniques for
model checking alternation depth 1 formulas. Even more expressive sub-
sets of µ-calculus have been investigated by Bhat and Cleaveland [8] as well
as Emerson et al. [34, 35]. They present polynomial time model checking
algorithms for fragments L1 and L2 of the µ-calculus.

The fragment L1 of the µ-calculus is the formulas formed by the following
rules:

1. constants (⊥, >) and variables (X ∈ Z) are L1 formulas

2. if Φ1 and Φ2 are L1 formulas then Φ1 ∨ Φ2 is a L1 formula

3. if Φ1 is a L1 formula and a ∈ L then 〈a〉Φ is a L1 formula
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Property Formula

No deadlock can occur νZ.(〈−〉> ∧ [−]Z)
(i.e. in all states some action is enabled).
An error action does not occur νZ.([error]⊥ ∧ [−]Z)
along any execution path.
A send action can always eventually be followed νX.([−]X ∧ [send](µY.(〈−〉Y ∨
by a receive action. 〈receive〉>)))

There are no executions where a request νX.µY.νZ.([request]X∧
action is enabled infinitely often but ([request]⊥ ∨ [−request]Y )∧
occurs only finitely often. [−request]Z)

Figure 1: Examples of properties expressed in the µ-calculus.

4. if Φ1 is a L1 formula and X ∈ Z then µX.Φ1 is a L1 formula

5. if Φ1 is a L1 formula and X ∈ Z then νX.Φ1 is a L1 formula

We say that a variable X ∈ Z is a free variable in a formula Φ if there is
an occurrence of X in Φ which is not in the scope of some µX or νX . A
formula without any free variables is called a closed formula. The fragment
L2 includes L1 and, in addition, allows formulas of the forms Φ1 ∧ Φ2 and
[a]Φ1 provided that Φ1 is a closed formula. In [34, 35], the fragment L2 is
shown to be exactly as expressive as the logic ECTL* [100].

The µ-calculus allows to express very concisely a wide range of useful
properties of systems. Figure 1 shows some typical examples of such proper-
ties encoded as the µ-calculus formulas (for a detailed survey of the use of
fixpoint operators, see [13]). More examples of formulas expressing system
properties will be given in Section 8.

2.3 Boolean Equation Systems

We will give in this subsection a short presentation of Boolean equation sys-
tems. Essentially, a Boolean equation system is a sequence of fixpoint equa-
tions over Boolean variables, with associated signs, µ and ν, specifying the
polarity of the fixed points. The equations are of the form σx = α, where α is
a positive Boolean expression. The sign, σ, is µ if the equation is a least fixed
point equation and ν if it is a greatest fixed point equation. In the following
subsections, we will first define positive Boolean expressions, and then define
the syntax and semantics of Boolean equation systems.

Syntax of Boolean Equation Systems
Let X = {x1, x2, ..., xn} be a set of Boolean variables. The set of positive
Boolean expressions over X is denoted by B(X ), and is given by the gram-
mar

α ::= 0 | 1 | xi | (α1 ∧ α2) | (α1 ∨ α2)

where 0 stands for false, 1 stands for true , and xi ∈ X . In the positive
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Boolean expressions, we often omit the parentheses when they are not needed
to indicate the precedence.

A Boolean equation system (BES), denoted by E , with variables from X is
a sequence of Boolean equations defined in the following way.

Definition 3 (The equations of a Boolean equation system) A Boolean e-
quation is of the form (σixi = αi), where σi ∈ {µ, ν}, xi ∈ X , and
αi ∈ B(X ).
A Boolean equation system consists of a sequence of Boolean equations

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

where the left-hand sides of the equations are all different.

The priority ordering on variables and equations of a Boolean equation
system is important for it ensures the existence of a unique solution. This
ordering is reflected in an alternation hierarchy H of Boolean equation sys-
tems. Intuitively, alternation hierarchy is introduced in order to reflect the
nestings of consequtive equations having the same fixpoint sign.

Definition 4 (Alternation hierarchy of a Boolean equation system) Let

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

be a Boolean equation system. Alternation hierarchy H of E is a mapping
H : {x1, x2, . . . , xn} → N given by:

H(x1) =

{

0 if σ1 = ν,
1 otherwise;

and for all (1 < i ≤ n)

H(xi) =

{

H(xi−1) if σi−1 = σi,
H(xi−1) + 1 otherwise.

Notice that the alternation hierarchy is obtained by dividing the variables of
the Boolean equation system into layers within which only fixpoint signs of
the same kind occur. A related definition of hierarchical systems of equations
is given in [88].

The notion of alternation hierarchy will play an essential role later in our
encodings. We next consider a simple example demonstrating the notion of
alternation hierarchy.

Example 5 Let X be the set {x1, x2, x3} and assume we are given a se-
quence of Boolean equations

E1 ≡ (νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3).

The alternation hierarchy H of E1 is given by H(x1) = 0, H(x2) = 1 and
H(x3) = 2.

Before turning to the semantics of Boolean equation systems, let us first de-
fine some useful syntactic notions. In order to formally estimate the compu-
tational costs we need to define the size and the alternation depth of Boolean
equation systems.
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Definition 6 (The size of a Boolean equation system) The size of a Boole-
an equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

is
n

∑

i=1

1 + |αi|

where |αi| is the number of variable occurrences in αi.

We have taken a definition of alternation depth based on the sequential
occurrences of µ’s and ν’s in a Boolean equation system. More formally, the
notion of alternation depth can be defined as follows.

Definition 7 (The alternation depth of a Boolean equation system) Let

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

be a Boolean equation system. The alternation depth of E , denoted by ad(E),
is defined in the following way. If σ1 = σ2 = . . . = σn, then E is alternation-
free and ad(E) = 1. The system E is alternating, if it is not alternation-free.
If E is alternating, then ad(E) = (1 + k) where k is the number of variables
xj (1 ≤ j < n) such that σj 6= σj+1.

An alternative definition of alternation depth which abstracts from the syn-
tactical appearance can be found in Definition 3.34 of [70]. The idea there is
that to determine the alternation depth only chains of equations in a Boolean
equation system must be followed that depend on each other.

Notice that for each equation system E with variables fromX we have that
ad(E) ≤ |X |.

It is seen in Section2.5 that the notion of the alternation depth of a Boolean
equation system is closely related to the notion of a priority in parity games.

As pointed out in [70] (see Proposition 3.31), for each system E there is
another system E ′ in a standard form such that E ′ preserves the solution of E
and has size linear in the size of E .

Definition 8 (Standard form Boolean equation systems) A Boolean equa-
tion system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

is in standard form if, for 1 ≤ i ≤ n, the right-hand side expression αi has
the form y ◦ z or y where ◦ ∈ {∧,∨} and y, z ∈ {x1, x2, . . . , xn} ∪ {1, 0}.

The transformation from unrestricted Boolean equation systems to stan-
dard form systems is based on the fact that, for each Boolean subformula
occurring in the right-hand side formula of a Boolean equation we can intro-
duce new variables and equations such that the solution is preserved (for a
more detailed description of this process, see [70]). For example, (σx = y◦α)
with ◦ ∈ {∧,∨} and σ ∈ {µ, ν} we can always introduce a new variable z
and replace the equation by two consecutive equations (σx = y◦z)(σz = α).

In the sequel, we will restrict to standard form Boolean equation systems.
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Local Semantics of Boolean Equation Systems
The semantical interpretation of Boolean equation systems is such that each
system has a uniquely determined solution. Informally, the solution is a
valuation assigning a constant value in {0, 1} to variables occurring in the
system. More precisely, the solution is a truth assignment to the variables
{x1, x2, ..., xn} satisfying the fixed point equations as defined below in Defi-
nition 9 (see also, e.g., [1, 70]).

In particular, we are interested in the value of the left-most variable x1,
and we call this value the solution of a Boolean equation system. Such a
local solution can be characterized in the following way.

Let α be a closed positive Boolean expression (i.e. without occurrences
of variables in X ). Then α has a uniquely determined value in the set {0, 1}
which we denote by ‖α‖. This value of closed positive Boolean expressions
is trivially defined by using the usual semantics for Boolean formulas.

We define a substitution for positive Boolean expressions. Given Boolean
expressions α, β ∈ B(X ), let α[x := β] denote the expression α where all
occurrences of variable x are substituted by β simultaneously.

Similarly, we extend the definition of substitutions to Boolean equation
systems in the following way. Let E be a Boolean equation system over X ,
and let x ∈ X and α ∈ B(X ). A substitution E [x := α] means the operation
where [x := α] is applied simultaneously to all right-hand sides of equations
in E . We suppose that substitution α[x := α] has priority over E [x := α].

The definition of the local solution is as follows.

Definition 9 (The local solution to a Boolean equation system) The solu-
tion to a Boolean equation system E , denoted by [[E ]], is a Boolean value
inductively defined by

[[E ]] =

{

‖α[x := bσ]‖ if E is of the form (σx = α)
[[E ′[x := α[x := bσ]]]] if E is of the form E ′(σx = α)

where bσ is 0 when σ = µ, and bσ is 1 when σ = ν.

The following example illustrates the above definition of the solution.

Example 10 LetX be the set {x1, x2, x3} and assume we are given a Boolean
equation system

E1 ≡ (νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3).

The local solution, [[E1]], of variable x1 in E1 is given by
[[(νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3)]] =
[[(νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)[x3 := 1]]] =
[[(νx1 = x2 ∧ x1)(µx2 = x1 ∨ 1)]] =
[[(νx1 = x2 ∧ x1)[x2 := (x1 ∨ 1)]]] =
[[(νx1 = (x1 ∨ 1) ∧ x1)]] =
‖((1 ∨ 1) ∧ 1)‖ = 1

The above definition of the semantics is local in the sense that it char-
acterizes a value only for the least variable x1. In contrast, the definition of
a solution to a Boolean equation system defined in the next section gives a
global solution, i.e. values for all variables.

14 2 BACKGROUND



Global Semantics of Boolean Equation Systems
As opposed to Definition 9, the global semantics of Boolean equation sys-
tems provides a uniquely determined solution to each variable of a Boolean
equation system. According to the global semantics a solution is a valuation
θ assigning a constant value in {0, 1} to all variables occurring in a Boolean
equation system. We define here the global semantics as an alternative se-
mantics of Boolean equation systems.

Let θ stand for a valuation which is a function θ : X → {0, 1}. Let θ[x:=a]
denote the valuation that coincides with θ for all variables except x which has
the value a.

Let ‖α‖(θ) denote the Boolean value of the positive Boolean formula α
obtained by replacing each free variable x in α by θ(x) and evaluating the
resulting closed formula. Here, we use a different notation than in the se-
mantics of µ-calculus formulas to explicitly distinguish the two semantics.

The global definition of a solution to a Boolean equation system is given
as follows (see also, e.g., Definition 3.3 in [70]). We use similar semantic no-
tation [[E ]] for both local and global semantics because the local semantics in
Definition 9 coincides with the following global semantics in Definition 11.

Definition 11 (The global solution to a Boolean equation system) The glo-
bal solution to a Boolean equation system E relative to valuation θ, denoted
by [[ε]]θ, is inductively defined as

[[ε]]θ = θ

[[(σixi = αi)E ]]θ =

{

[[E ]]θ[xi:=MIN (xi, αi, E , θ)] if σi = µ
[[E ]]θ[xi:=MAX (xi, αi, E , θ)] if σi = ν

where

MIN (xi, αi, E , θ) = min{a ∈ {0, 1} | ‖αi‖([[E ]]θ[xi:=a]) = a}
MAX (xi, αi, E , θ) = max{a ∈ {0, 1} | ‖αi‖([[E ]]θ[xi:=a]) = a}

and ε denotes an empty Boolean equation system.

The above definition of a global solution to a Boolean equation system has
quite a complex nature, as exemplified with a simple system below.

Example 12 Let X be the set {x1, x2} and assume we are given a Boolean
equation system E2 ≡ (µx1 = x2)(νx2 = x1). According to Definition 11,
the solution to this system can be calculated as follows. Consider an arbitrary
valuation θ0 that maps X to {0, 1}. First, we calculate
θ1 = θ0[x1:=MIN (x1, x2, (νx2 = x1), θ0)].
Thus, we calculate
MIN (x1, x2, (νx2 = x1), θ0) =
min{a ∈ {0, 1} | ‖x2‖([[(νx2 = x1)]]θ0[x1:=a]) = a}
and within this
[[(νx2 = x1)]]θ0[x1:= a].
Now, we have
min{a ∈ {0, 1} |a = a} = min{0, 1} = 0.
Thus, θ1 = θ0[x1:=0]. Hence, the solution to E2 is:
[[(µx1 = x2)(νx2 = x1)]]θ0 =
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[[(νx2 = x1)]]θ0[x1:=MIN (x1, x2, (νx2 = x1), θ0)] =
[[(νx2 = x1)]]θ0[x1:=0] =
[[(νx2 = x1)]]θ1 =
[[ε]]θ1[x2:=MAX (x2, x1, ε, θ1)] =
θ1[x2:=MAX (x2, x1, ε, θ1)].
Here, we have MAX (x2, x1, ε, θ1) =
max{a ∈ {0, 1} | ‖x1‖([[ε]]θ1[x2:=a]) = a} =
max{a ∈ {0, 1} | ‖0‖ = a} =
max{a ∈ {0, 1} | 0 = a} =
max{0} = 0.
Therefore, the global solution is is given by θ2 = θ1[x2:=0]. In other words,
the solution to both variables x1 and x2 is 0.

When applied to non-trivial Boolean equation systems, i.e. to systems in-
volving more than two simple equations, the above global definition of the
semantics is quite tedious to apply by hand. Therefore, in this thesis we have
mainly used the local semantics given in Definition 9.

It will be seen in Section 3 that the local semantics in Definition 9 can be
used to find the global solutions as well. We have the following proposition.

Proposition 13 Given a Boolean equation system E , let [[E ]] be the local so-
lution to E and let θ be the global solution to E . Then, the following are
equivalent:

1. [[E ]] = 1;

2. θ(x1) = 1.

There are also alternative characterizations of the solution to a Boolean
equation system which provide more insight, for instance, Proposition 3.6 in
[70] and Definition 1.4.10 in [4].

Graph Representation of Boolean Equation Systems
Given a Boolean equation system we can define a variable dependency graph
similar to a Boolean graph in [1] which provides a representation of the de-
pendencies between the variables.

Definition 14 (Dependency graph) Let E be a standard form Boolean equa-
tion system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn).

The dependency graph of E is a directed graph GE = (V,E, `) where

• V = {i | 1 ≤ i ≤ n} ∪ {⊥,>} is the set of nodes;

• E ⊆ V × V is the set of edges such that for all equations (σixi = αi)

– (i, j) ∈ E, if a variable xj ∈ αi;

– (i,⊥) ∈ E, if 0 occurs in αi;

– (i,>) ∈ E, if 1 occurs in αi;

– (⊥,⊥), (>,>) ∈ E;
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• ` : V → {µ, ν} is the node labelling defined by `(i) = σi for 1 ≤ i ≤
n, `(⊥) = µ, and `(>) = ν.

Observe that in the definition above the sink nodes with self-loops,⊥ and >,
represent the constants 0 and 1. The nodes are numbers which gives them a
linear order. This ordering on nodes will be used later on in the thesis to give
a characterisation of the solution. The linear ordering on nodes is extended to
⊥ and > by putting them highest up in the ordering. The ordering between
⊥ and > is assumed to be ⊥ < > (although it is irrelevant). We often
omit the labelling function ` from the dependency graphs when it is not of
particular importance.

We now define some graph-theoretic notions concerning dependency gr-
aphs of Boolean equation systems which will be used throughout this thesis.
To be precise, these notions will be singled out as separate definitions because
there exist several variants of definitions for the notions in the literature.

Definition 15 (Paths of dependency graphs) A path of length k from a node
i to a node j in a dependency graph GE = (V,E, `) is a sequence
(v0, v1, v2, ..., vk) of nodes such that i = v0, j = vk, and (vi−1, vi) ∈ E for
i = 1, 2, ..., k. The path contains the nodes v0, v1, v2, ..., vk.

Definition 16 (Reachability) A node j is reachable from node i in a depen-
dency graph GE , if there is a path in GE from i to j.

Definition 17 (Cycles) A path (v0, v1, v2, ..., vk) appearing in a dependency
graph GE is a cycle if v0 = vk and it is of length k ≥ 2.

Based on these standard concepts, we may introduce some additional terms.
We say that a variable xi depends on variable xj in a Boolean equation

system E , if the dependency graph GE of E contains a path from node i to
node j.

It is said that two variables xi, xj ∈ X are mutually dependent, if xi de-
pends on xj and vice versa. In general, it is said that a Boolean equation
system is alternation-free, if for all pairs of variables xi, xj ∈ X it holds that
xi and xj being mutually dependent implies that σi = σj holds. Otherwise,
the Boolean equation system is said to be alternating.

An important notion, which will be used in our mapping from Boolean
equation systems to normal logic programs, is self-dependency. We say that
a variable xi is self-dependent, if xi depends on itself in such a way that no
variable xj with j < i occurs in this chain of dependencies. More precisely,
the notion of self-dependency can be defined in the following way.

Definition 18 Given a Boolean equation system E , let GE = (V,E, `) be its
dependency graph and k ∈ V . We define the graph G�k = (V,E�k, `) by
taking

• E�k = {〈i, j〉 ∈ E | i ≥ k and j ≥ k}.

The variable xk is said to be self-dependent in the system E , if node k is
reachable from itself in the graph G�k.
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? ?
1 2 3(νx1 = x2 ∧ x1)

(µx2 = x1 ∨ x3)
(νx3 = x3)

Figure 2: The dependency graph of Boolean equation system E1 in Exam-
ple 10.

As with dependency graphs, we often omit the labelling function ` from a
restricted graph G�k when it is not of particular importance. Let us consider
a simple example below.

Example 19 Consider the Boolean equation system E1 of Example 10. The
dependency graph of E1 is depicted in Figure 2. The system E1 is in standard
form and is alternating, because it contains alternating fixed points with mu-
tually dependent variables having different signs, like x1 and x2 with σ1 6= σ2.
Notice that two variables are mutually dependent when they appear on a
same cycle in the dependency graph. The variables x1 and x3 of E1 are self-
dependent, but x2 is not as G�2 = ({1, 2, 3}, {(2, 3), (3, 3)}) contains no
loop from node 2 to itself.

Finally, we define maximal strongly connected components of a depen-
dency graph. This definition will be needed in partitioning a Boolean equa-
tion system into blocks as explained in Section 3.

Definition 20 (Strongly connected components) A strongly connected com-
ponent (SCC) in a graph G = (V,E, `) is a set of nodes W ⊆ V such that,
for all nodes k,m ∈ W , m is reachable from k in E. A strongly connected
component W is called maximal, if there does not exist a larger set W ′ ⊆ V
of nodes such that W ⊂ W ′ and W ′ is a strongly connected component. A
maximal strongly connected component is called trivial, if it consists of one
vertex v ∈ V , and there is no edge (v, v) ∈ E. A maximal strongly connected
component is non-trivial, if it is not trivial.

Most of the above graph-theoretic notions and definitions are very stan-
dard in the literature.

2.4 µ-Calculus Model Checking with Boolean Equation Systems

As mentioned before, instead of treating µ-calculus expressions together with
their semantics we prefer to work with the more flexible formalism of Boolean
equation systems. Boolean equation systems provide a useful framework for
studying verification problems of finite-state concurrent systems because µ-
calculus expressions can easily be translated into this simple formalism. A
pleasant feature of Boolean equation systems is that they give a simple repre-
sentation of the µ-calculus model checking problem.
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Φ (Φ)s Φ (Φ)s

⊥ 0 > 1
Φ1 ∨ Φ2 (Φ1)s ∨ (Φ2)s Φ1 ∧ Φ2 (Φ1)s ∧ (Φ2)s

〈a〉Φ ∨

s
a→t

(Φ)t [a]Φ
∧

s
a→t

(Φ)t

X xs σX.Φ1 σxs = (Φ1)s

Figure 3: The translation from a µ-calculus formula to a Boolean equation
system.

In this subsection, we demonstrate the standard translation from a µ-
calculus formula and a labelled transition system to a Boolean equation sys-
tem as defined in [75]. Similar translations serving the same purpose are
presented, for example, in [1, 4, 70].

The transformation maps a µ-calculus formula Φ and a transition system
T to a Boolean equation system by treating (state, variable) pairs as Boolean
variables. Informal idea of the translation is to strip away the linearization of
the µ-calculus formula Φ imposed by text, and then map the µ-calculus ex-
pression Φ to Boolean expressions at respective states of the transition system
T . More precisely, the translation proceeds as follows.

First, additional fresh variables may be introduced at appropriate places of
Φ to ensure that in every subformula σX.Φ′ of Φ with σ ∈ {µ, ν}, Φ′ con-
tains a single Boolean or modal operator. This may be done in order to obtain
only disjunctive or conjunctive formulas in the right-hand side Boolean ex-
pressions of the resulting Boolean equation system but is not necessary for
the translation.

Then, a sequence of equations is created for each closed fixed point sub-
formula σX.Φ′ of Φ. Each closed fixed point subformula σX.Φ′ is translated
into a sequence (σXs(Φ

′)s)s∈S of equations where variables Xs express that
state s satisfies variable X and the right-hand side Boolean formulas are ob-
tained using the translation in Figure 3.

By using this technique, the size of the Boolean equation system result-
ing from the transformation is at most O(m× n) where m is the length of a
formula and n is the size of a transition system. Also, there exists a polyno-
mial mapping from a Boolean equation system to a µ-calculus formula and a
labelled transition system (see Theorem 5.2 in [70]).

The following example illustrates the standard translation from µ-calculus
to Boolean equation systems.

Example 21 Consider the following µ-calculus formula

νZ.([−]Z ∧ 〈−〉>)

which expresses the freedom of deadlocks property. Consider the following
labelled transition system

T = ({1, 2, 3, 4}, {1 a→ 2, 1
a→ 4, 2

a→ 3, 3
a→ 2})

depicted in Figure 4. We demonstrate how to construct the corresponding
Boolean equation system shown in Figure 4.
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Clearly, the given formula corresponds to the closed fixed point formula

νZ.([a]Z ∧ 〈a〉>)

without the shorthands [−] and 〈−〉. This is first translated into a sequence
of equations, for all s ∈ S,

(ν zs = ([a]z ∧ 〈a〉>)s)

with one equation for each state s ∈ S.
Next, using the translation shown in Figure 3 to obtain the right-hand side

Boolean formulas, we get the sequence of equations, for all s ∈ S:

(ν zs = ([a]z)s ∧ (〈a〉>)s)

This sequence is translated to the Boolean equations, for all s ∈ S,

(ν zs = (
∧

s
a→s′

zs′) ∧ (
∨

s
a→s′

(>)s′))

where each variable zs expresses that state s satisfies variable Z of the µ-
calculus formula.

Given the labelled transition system T in Figure 4, the above equations
translate to the following sequence of Boolean equations:

(νz1 = (z2 ∧ z4) ∧ (1 ∨ 1))
(νz2 = z3 ∧ 1)
(νz3 = z2 ∧ 1)
(νz4 = 1 ∧ 0)

Notice in this step that an empty disjunction is written as 0 and an empty
conjunction is written as 1, in particular in the last equation.

By renaming the variables we get the Boolean equation system over X =
{x1, x2, x3, x4}

(νx1 = (x2 ∧ x4) ∧ (1 ∨ 1))
(νx2 = x3 ∧ 1)
(νx3 = x2 ∧ 1)
(νx4 = 1 ∧ 0)

which corresponds to the given model checking problem.
It can be seen that the global solution to the Boolean equation system

resulting from the above translation is θ[x1 := 0, x2 := 1, x3 := 1, x4 := 0].
As expected, the formula

νZ.([−]Z ∧ 〈−〉>)

holds only in states 2 and 3 as the solution to corresponding variables x2 and
x3 is 1.

Additional examples of the mapping will be given in Section 8.
In addition to representing µ-calculus model checking, Boolean equation

systems give a useful formalism to encode other problems encountered in a
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(a)
1 2 3
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a

a

(c)
(νx1 = (x2 ∧ x4) ∧ (1 ∨ 1))
(νx2 = x3 ∧ 1)
(νx3 = x2 ∧ 1)
(νx4 = 1 ∧ 0)

(b)
νZ.([−]Z ∧ 〈−〉>)

Figure 4: Example labelled transition system (a), µ-calculus formula for
deadlock freedom (b) and corresponding Boolean equation system (c).

wide range of problem domains. For instance, such problem domains in-
clude automatic program analysis (e.g. abstract interpretation of functional
and logic programming languages [37]), and formal verification of concur-
rent programs (e.g. equivalence checking [2, 23, 64, 75] and partial order
reduction [82]). In addition, Boolean equation systems could also be applied
as a useful formalism in synthesis [17]. For instance, both related formalisms
of the µ-calculus and the parity games are already being used in the realm
of synthesis (for example, see [62, 5]). In general, Boolean equation sys-
tem solvers can be used as general purpose tools targeted to handle all these
kinds of problems, but in this thesis we will mainly concentrate on µ-calculus
model checking.

2.5 Boolean Equation Systems and Parity Games

Recall from Section 1.1 that the µ-calculus model checking has been studied
in other frameworks than Boolean equation systems too. Importantly, the
model checking problem for the µ-calculus is equivalent to the problem of
determining a winner in a parity game [33]. We refer the reader to Chapter 4
in [4] for a detailed presentation of parity games.

In this subsection, we review parity games and demonstrate the connec-
tion between Boolean equation systems and parity games. We use this con-
nection to prove some useful results for the purposes ot this thesis. Namely,
in Section 6 and Section 7 we re-use results, which are originally shown for
parity games, to develop new solution techniques for Boolean equation sys-
tems.

A parity game is a tupleG = (V,E, v0,Ω) where (V,E) is a finite, directed
graph and V is partitioned into two sets V∃ and V∀, v0 ∈ V is the starting
node, and Ω : V → N is a priority function. Furthermore, the game G is
assumed to be total, i.e. for every v ∈ V there is a w ∈ V with (v, w) ∈ E.
Without loss of generality, we assume that the starting node v0 is always one
of the nodes with the smallest priority, i.e. for every v ∈ V such that v0 6= v,
Ω(v) ≥ Ω(v0).

A play of G is an infinite path π = v0v1v2 . . . through G starting in v0. It
is constructed in the following way. Given a node v ∈ Vx with x ∈ {∃, ∀},
player x chooses a w ∈ V with (v, w) ∈ E and the construction of the play
continues with w.

Given a play π = v0v1 . . . let inf π = {v ∈ V | there are infinitely many
i ∈ N s.t. v = vi}. Player ∃ wins the play π = v0v1 . . . if min{Ω(v) | v ∈
inf π} is even. If it is odd then player ∀ wins the play π.
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A strategy for player x is a function σx : Vx → V that tells player x which
choice to make depending on the current construction of a play.

A strategy σx for player x is called a winning strategy, if x wins every play
by using σx, no matter how the other player plays.

Given a parity game G and a strategy σ∃ for player ∃ we write G|σ for the
parity game that is induced by σ∃ on G. Formally, G|σ = (V,E ∩ (V∀ × V ∪
{(v, σ∃(v)) | v ∈ V∃}), v0,Ω). Note that G|σ is indeed a subgame of G, i.e.
every play π in G|σ with winner x is also a play in G that is won by player x.

The problem of solving a parity game G = (V,E, v0,Ω) is to determine
whether or not player ∃ has a winning strategy for G.

Solving a parity game is closely related to the problem of solving other
infinite games, for instance mean pay-off games [53, 103]. Solving a parity
game is equivalent to the model checking problem for the modal µ-calculus
[33].

From the results in [34, 35, 33], it follows already that solving a parity
game is also one of the problems in the complexity class NP ∩ co-NP. Fur-
thermore, the problem of solving a parity game is known to be in the class
UP∩ co-UP [53]. Several algorithms for solving parity games have been sug-
gested but, at the time of writing this thesis, none of them provably runs in
deterministic polynomial time.

The algorithms for solving a parity game include, for instance, a strategy
improvement algorithm suggested by Jurdziński and Vöge [102]. An imple-
mentation of the strategy improvement algorithm is presented in [87]. A
randomised and subexponential algorithm for solving parity games is due to
Björklund, Sandberg, and Vorobyov [15]. An algorithm with a good asymp-
totic time complexity is Jurdziński’s small progress measures procedure [54].
It is exponential in the number of odd priorities occurring in the game, i.e.
approximately in the half of the maximal priority. An implementation of the
small progress measure algorithm is presented in [36]. Recently, Jurdziński,
Paterson and Zwick have suggested the first deterministic and subexponen-
tial (nO(

√
n) with n the number of nodes in the game) algorithm for solving

parity games [55].
For the purposes of this thesis, we now demonstrate the connections be-

tween parity games and Boolean equation systems. In this way, we can use
the results for parity games in the setting of Boolean equation systems. In par-
ticular, in Section 7 we give an encoding of Boolean equation systems into
propositional satisfiability which is based on results behind the Jurdziński’s
small progress measure algorithm [54].

The problem of finding a solution to a Boolean equation system can be
shown to be equivalent to the problem of determining a winner in a parity
game. Now, we give summarised arguments for this result.

For an original proof of the following result see, e.g., Theorem 8.9 of [70].

Theorem 22 LetG = (V,E, v0,Ω) be a parity game. Then, a Boolean equa-
tion system E can be constructed from G such that Player ∃ has a winning
strategy in G if and only if [[E ]] = 1.

Proof:
Given a parity gameG = (V,E, v0,Ω) we construct a corresponding Boolean
equation system E . The set of variables X of the Boolean equation system
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is V . The equations of the Boolean equation system are obtained in the
following way:

• for all v ∈ V∃ s.t. Ω(v) is even, there is an equation (νv =
∨

(v,w)∈E w),

• for all v ∈ V∀ s.t. Ω(v) is even, there is an equation (νv =
∧

(v,w)∈E w),

• for all v ∈ V∃ s.t. Ω(v) is odd, there is an equation (µv =
∨

(v,w)∈E w),

and

• for all v ∈ V∀ s.t. Ω(v) is odd, there is an equation (µv =
∧

(v,w)∈E w).

Finally, we need to order the equations. The first equation should be the
one corresponding to the starting node of the parity game. For every other
s, t ∈ V : if Ω(s) < Ω(t), then the equation with variable s as its left-hand
side variable must be before the equation with t as the left-hand side variable.
Notice that the alternation hierarchy obtained is such that, for all v ∈ V ,
H(v) = Ω(v).

It remains to show that Player ∃ has a winning strategy in G if and only if
[[E ]] = 1.

First, we consider the proof from right to left. Suppose [[E ]] = 1. By
Proposition 3.36 in [70], there is a conjunctive subsystem E ′ of E (see Def. 48)
with the solution [[E ′]] = 1. Alternatively, this also follows from Lemma 49 in
this thesis which gives a strenghtened result of Proposition 3.36 in [70]. Let
G′ = (V ′, E ′, `′) be the dependency graph of E ′. We construct a strategy σ∃
for Player ∃ as follows. Take a function σ∃ : V∃ → V such that

• if i ∈ V∃ and (i, j) ∈ E ′, then σ∃(i) = j.

It can be shown that σ∃ is a winning strategy for Player ∃ by noticing that
the graph G′ does not contain any infinite path starting from node 1 where
the smallest node occurring infinitely often has the label µ. For instance,
this follows from Lemma 41 in Section 5.1 which gives a graph theoretic
characterisation of a solution to a conjunctive Boolean equation system. The
subgraph G|σ induced by σ∃ on G is isomorfic to the graph (V ′, E ′). Thus,
as the order of the equations in the construction of E follows the priority
ordering given by Ω, it follows that σ∃ is a winning strategy for Player ∃.

The other direction (from left to right) follows by a similar argument
where, for example, the dual Lemmas 50 and 40 can be used. ut

There is also a mapping from Boolean equation systems to parity games.
For a classical proof of the following result, see Theorem 8.7 of [70].

Theorem 23 Let E be a Boolean equation system. A parity game G =
(V,E, v0,Ω) can be constructed from E such that player ∃ has a winning
strategy in G if and only if [[E ]] = 1.

Proof:
Given a standard form Boolean equation system

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)
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with the alternation hierarchy H, we construct a corresponding parity game
G = (V,E, v0,Ω) such that [[E ]] = 1 if and only if player ∃ has a winning
strategy in G.

Here, we assume that the constant symbols 1 and 0 do not occur in the
right-hand side formulas of E . Notice that the constants 1 and 0 can be easily
removed from the equations of E by using the simplification rules given in
Section 3.3 such that there remains only equations of the forms (σixi = xj),
(σixi = xj ∨ xk), (σixi = xj ∧ xk), (νxi = 0), and (µxi = 1). Notice
that all equations of the forms (σixi = 1) and (σixi = 0) can be easily
represented without any constants, e.g. by the equations (νxi = xi) and
(µxi = xi). Therefore, we may restrict here to consider Boolean equation
systems without any constants.

Let V = {v1, v2, . . . , vn}. Here, for each variable xi there is a correspond-
ing node vi in the game. The set of nodes V is partitioned into two sets V∃
and V∀ as follows. For all 1 ≤ i ≤ n, if equation αi is conjunctive then
vi ∈ V∀. For all 1 ≤ i ≤ n, if equation αi is disjunctive then vi ∈ V∃. The
starting node (i.e. v0) of the game is v1. The set of edges E ⊆ V × V is
constructed as follows:

• for all 1 ≤ i ≤ n, if a variable xj appears in αi then (vi, vj) ∈ E.

Finally, the priority function Ω is defined as follows. For all 1 ≤ i ≤ n, let
Ω(vi) = H(xi).

As the above construction is the reverse mapping of the one given in the
proof of Theorem 22, it follows that Player ∃ has a winning strategy in G if
and only if [[E ]] = 1. ut

Notice that, through the above equivalence between parity games and
Boolean equation systems, every algorithm for solving parity games can also
be seen as an algorithm for solving Boolean equation systems, and vice versa.

Next, we turn to issues concerning logic programs and answer set pro-
gramming.

2.6 Normal Logic Programs

In this thesis, we will use normal logic programs with the stable model se-
mantics [39] for encoding and solving Boolean equation systems. Therefore,
in this subsection we provide a brief introduction to normal logic programs
and stable model semantics.

The definitions in this subsection appeared also in [57], and they are very
standard. A complete description of these topics and notions can be found,
for instance, in [27].

Normal logic programs consist of rules of the form

a← b1, . . . , bm, not c1, . . . , not cn. (1)

where each a, b1, . . . , bm, c1, . . . , cn is a ground atom. In the normal rule
above, a is called the head of the rule and b1, . . . , bm, not c1, . . . , not cn its
body.

Given a logic program, its models are sets of ground atoms. A set of atoms
∆ is said to satisfy an atom a if a ∈ ∆ and a negative literal not a if a 6∈ ∆. A
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rule r of the form (1) is satisfied by ∆ if the head a is satisfied whenever every
body literal b1, . . . , bm, not c1, . . . , not cn is satisfied by ∆ and a program Π is
satisfied by ∆ if each rule in Π is satisfied by ∆.

An essential concept here is a stable model. Stable models of a program
are sets of ground atoms which satisfy all the rules of the program and are
justified by the rules. This is captured using the concept of a reduct. As
usually, for a program Π and a set of atoms ∆, the reduct Π∆ can be defined
by

Π∆ = {a← b1, . . . , bm. | a← b1, . . . , bm, not c1, . . . , not cn. ∈ Π,
{c1, . . . , cn} ∩∆ = ∅}

That is, a reduct Π∆ does not contain any negative literals and, therefore, has
a unique subset minimal set of atoms satisfying it. This leads to the following
definition of stable models.

Definition 24 (Stable models of a logic program) A set of atoms ∆ is called
a stable model of a program Π iff ∆ is the unique minimal set of atoms satis-
fying Π∆.

Notice in the above definition that, intuitively, calculating a unique minimal
model satisfying a reduct amounts to computing a least fixpoint of a set of
rules.

The problem of determining the existence of a stable model of a normal
logic program is NP-complete [72].

In the following, we consider a series of examples to illustrate the intuitive
idea behind the stable model semantics of logic programs.

Example 25 Let {a, b} be the set of ground atoms. Consider the program:

a← not b.
b← not a.

This program has two stable models, namely {a} and {b}. Here, we may
either assume not b in order to deduce the stable model {a} or we may as-
sume not a to deduce the stable model {b}. However, note that assuming
both negative premises would lead to a contradiction; thus, we cannot de-
duce the stable model {} for this program by assuming both not a and not b.
Note that this is a way to encode a choice between atoms a and b.

Example 26 Let {a, b, c, d} be the set of ground atoms. Consider the pro-
gram:

a← a.
b← c, d.
c← d.
d.

The above program has only one stable model which is the set {b, c, d}. The
atom c can be deduced from the fact d, and the atom b is included in the
stable model because both c and d are included. Notice that the atom a is
not included in the stable model because we cannot use positive assumption
a to deduce what is to be included in a model.
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In the course of this thesis, we will use two extensions which serve as short-
hands for normal rules. We will use so-called integrity constraints. Integrity
constraints are simply rules

← b1, . . . , bm, not c1, . . . , not cn. (2)

with an empty head. Such a constraint can be seen as a compact shorthand
for a rule

f ← b1, . . . , bm, not c1, . . . , not cn, not f.

where f is a new atom.
Notice that a stable model ∆ satisfies an integrity constraint (2) only if at

least one of its body literals is not satisfied by ∆.
Finally, for expressing the choice of selecting exactly one atom from two

possibilities we will make use of choose-1-of-2 rules on the left which corre-
spond to the normal rules on the right:

1 {a1, a2} 1. a1 ← not a2. a2 ← not a1. ← a1, a2.

Choose-1-of-2 rules are a simple subclass of cardinality constraint rules pre-
sented in [90].

In what follows, we will present an answer set programming based ap-
proach for solving alternating Boolean equation systems. In this approach a
problem is solved by devising a mapping from a problem instance to a logic
program so that models of the program provide the answers to the problem
instance [66, 73, 78].

In Section 6, we will define such a mapping from alternating Boolean
equation systems to logic programs. This provides a basis for a new solution
technique for alternating Boolean equation systems.

2.7 Difference Logic

In this thesis, we will present encodings of Boolean equation systems into
difference logic [71, 79], i.e. propositional logic combined with the theory of
integer differences. Therefore, this subsection provides a brief introduction
to difference logic and its satisfiability problem.

Let P = {P1, P2, . . . , Pn} be a set of Boolean variables and
V = {v1, v2, . . . , vm} a set of integer variables. The set of atomic formulas
of difference logic consists of propositions in P and integer constraints of the
forms (vi ≥ vj) and (vi > vj) with vi, vj ∈ V . The set F of all difference
logic formulas is the smallest set containing the atomic formulas which is
closed under negation and conjunction:

• if φ ∈ F , then ¬φ ∈ F , and

• if φ ∈ F and ψ ∈ F , then (φ ∧ ψ) ∈ F .

The Boolean connectives ∨,→,↔ are defined in the usual way in terms of
¬ and ∧. Our logic is actually a proper subset of the standard definition of
difference logic over integers which allows integer constraints of the form
(vi + k ≥ vj), where k is an arbitrary integer constant, see e.g., [79].
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A (P,V) valuation consists of two functions β : P → {⊥,>} and β :
V → Z, where Z is the set of integers. Notice the name β is overloaded here.
The valuation is extended to all formulas in F by defining β(vi ≥ vj) = >
iff β(vi) ≥ β(vj), β(vi > vj) = > iff β(vi) > β(vj), and applying the usual
rules for the Boolean connectives. A formula φ ∈ F is satisfied by a valuation
iff β(φ) = >, and it is satisfiable if there exists a satisfying valuation. Given
a formula φ ∈ F , the satisfiability problem is to decide whether or not φ is
satisfiable.

Theorem 27 [71] The satisfiability problem for difference logic is NP-com-
plete.

Proof:
NP-hardness follows directly from the fact that our logic subsumes proposi-
tional logic and membership in NP from the fact that the full difference logic
is in NP, see e.g., [71]. ut

The satisfiability problem for propositional logic (SAT) is simply the prob-
lem of deciding whether or not a difference logic formula without any integer
variables is satisfiable, i.e. SAT is a special case of the difference logic satisfia-
bility problem. SAT is considered an important problem in many disciplines
and it was the first problem shown to be NP-complete [24].

There is a special case of SAT that can be solved in linear time in the
size of a formula, called HornSAT [29]. We briefly define the HornSAT
problem here because there is a close connection between HornSAT and the
problem of solving alternation-free Boolean equation systems to be discussed
in Section 4. A positive literal is a Boolean variable Pi ∈ P and a negative
literal is the negation ¬Pi of a Boolean variable Pi ∈ P . A Horn clause is a
disjunction of literals, with at most one positive literal. A Horn formula is a
conjunction of Horn clauses. HornSAT is the problem of deciding whether
or not there is a valuation under which a Horn formula evaluates to >. For
instance, Dowling and Gallier [29] give a linear-time algorithm for solving
HornSAT.
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3 A GENERAL PROCEDURE TO SOLVE BOOLEAN EQUATION SYSTEMS

In this section, we introduce an overall approach to solve a Boolean equation
system. We list some important properties of Boolean equation systems which
allow for dividing them into blocks. After a brief discussion on partitioning,
we give an overview of the most important types of blocks that may result
in block partitioning. Then, we present an algorithm required to solve a
general Boolean equation system using the approach. This section serves
mainly as preliminaries to subsequent sections. Its purpose is to give a general
idea of how a Boolean equation system can be solved by first partitioning it
into blocks and then solving the individual blocks with specific, customized
procedures.

3.1 Partitioning Boolean Equation Systems

The variables of a standard form Boolean equation system can be partitioned
in blocks such that any two distinct variables belong to the same block iff they
are mutually dependent. Consequently, each block consists of such variables
whose nodes reside on the same maximal strongly connected component of
the corresponding dependency graph.

The dependency relation among variables extends to blocks such that
blockBi depends on another blockBj if some variable occurring in blockBi

depends on another variable in blockBj . Below we have a simple example of
such a partitioning on a Boolean equation system from a previous example.

Example 28 Consider again the Boolean equation system E1 of Example 10.
This system can be divided into two blocks, B1 = {x1, x2} and B2 = {x3}
such that the block B1 depends on the block B2. Consequently, the block
B1 is highest up in the block ordering, and block B2 is the lowest block.

Finding the blocks of a Boolean equation system can be done in linear
time using the dependency graph with any algorithm suitable to detect max-
imal strongly connected components in directed graphs, for instance, those
from [89, 95].

To summarize, a given Boolean equation system can trivially be parti-
tioned into individual blocks via the following steps:

• construct a dependency graph of the Boolean equation system at hand;

• compute all maximal strongly connected components of the depen-
dency graph;

• the set of blocks of the Boolean equation system is simply the set of
maximal strongly connected components from the previous step.

Notice that the block ordering can be determined in linear time as well,
namely by simply applying standard depth-first search algorithm to find the
topological ordering among the blocks. Thus, the algorithm by Tarjan [95]
gives the topological ordering for the blocks as a side result when calculating
the blocks of a Boolean equation systems.
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In general, this kind of partitioning is done as a preprocessing phase in
our solution technique. The advantage of our approach is that we can use
customized, optimized procedures to solve the individual blocks. In the fol-
lowing sections, we will present various routines and techniques to solve in-
dividual blocks in isolation.

Let us have a look at what kinds of blocks may result in the partitioning.

3.2 Types of Blocks of a Boolean Equation System

Recall the definition of a trivial maximal strongly connected component
given in Definition 20. A trivial block of a Boolean equation system is such a
block whose maximal strongly connected component (in the corresponding
dependency graph) is trivial. Solutions to variables appearing in trivial blocks
are solely determined on the basis of other blocks. Therefore, in what follows
we will only be dealing with non-trivial blocks.

There are mainly two classes of non-trivial blocks of a Boolean equation
system, namely alternation-free and alternating blocks. Alternating blocks
can further be divided into disjunctive, conjunctive, and general blocks. Let
us have a closer look at each of them in turn.

Alternation-Free Blocks

All variables of an alternation-free block have the same sign, either µ or ν.
In the former case the block is said to be minimal and in the latter case
maximal.

Alternation-free blocks are especially important because encoding the mo-
del checking problem of alternation-free µ-calculus as Boolean equation sys-
tems leads to systems with alternation-free blocks only. Therefore, for in-
stance, the model checking problems for Hennessy-Milner logic (HML)
[49], Computation Tree Logic (CTL) [17], and many equivalence/preorder
checking problems result in alternation-free Boolean equation systems with
alternation-free blocks only (see for instance [75]).

In Section 4, we will review solution methods for alternation-free blocks.
It will be seen that such blocks can be solved in linear time in the size of the
block.

Conjunctive and Disjunctive Blocks with Alternation

Important subclasses of alternating blocks are both conjunctive and disjunc-
tive blocks with alternation. A conjunctive block with alternation consists of
such a portion of a Boolean equation system, whose defining equations have
different fixpoint signs, but all right-hand side expressions are conjunctive.
Similarly, a disjunctive block with alternation consists of such a portion of
a Boolean equation system, whose defining equations have different fixpoint
signs, but all right-hand side expressions are disjunctive.

Many practically relevant µ-calculus formulas (actually virtually all of them)
can be encoded as Boolean equation systems that have only conjunctive or
disjunctive blocks with alternation. For instance, encoding the model check-
ing problems for the fragments L1 and L2 of the µ-calculus [8, 34, 35] (and
similar subsets) as Boolean equation systems result in alternating systems
which are either in conjunctive or disjunctive form. Hence, the problem
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of solving conjunctive and disjunctive blocks of Boolean equation systems is
so important that developing special purpose solution techniques for these
classes is worthwhile.

In Section 5, we will study solution methods for conjunctive and disjunc-
tive blocks with alternation. It will be seen that such blocks can be solved in
quadratic, and even sub-quadratic, time in the size of the block.

General Alternating Blocks
In a general alternating block of a Boolean equation system, there are vari-
ables with both fixpoint signs µ and ν. Moreover, the right-hand side ex-
pressions are arbitrary in the sense that both conjunctions and disjunctions
may appear as right-hand side formulas. This is the most general form of a
Boolean equation system.

From a practical point of view, alternating blocks are rare as they do not
occur very frequently in Boolean equation systems arising in the context of
verification. Many alternating, general form Boolean equation systems that
can be found from the literature are theoretical constructions (see, e.g., [12]
for such examples).

But, from a theoretical point of view, solving an alternating, general form
Boolean equation system is an interesting challenge. The problem is known
to be in the complexity class NP∩ co-NP [70] (and can be shown to be even
in UP ∩ co-UP). Furthermore, it is widely believed that a polynomial time
algorithm for the problem may exist but the best known algorithms to date
are exponential in the alternation depth of the Boolean equation system.

In Sections 6 and 7, we will propose new approaches to solve alternating
blocks of a Boolean equation system which are based on answer set program-
ming and satisfiability solving.

3.3 General Solution Algorithm for Boolean Equation Systems

In Mader [70], there are two useful lemmas which allow to solve all blocks
of standard form Boolean equation systems one at a time. As our solution
method and proofs are based on these, we restate them here.

Lemma 29 (Lemma 6.2 of [70]) Let E be a Boolean equation system

(σ1x1 = α1) . . . (σixi = αi) . . . (σnxn = αn)

with equation (σixi = αi), for 1 ≤ i ≤ n. Let α′
i be exactly the same Boolean

expression as αi, except that all occurrences of xi in αi are substituted with 1
if σi = ν, and with 0 if σi = µ. Then, E has the same solution as the Boolean
equation system

(σ1x1 = α1) . . . (σixi = α′
i) . . . (σnxn = αn).

Lemma 30 (Lemma 6.3 of [70]) Let E be a Boolean equation system

(σ1x1 = α1) . . . (σixi = αi) . . . (σjxj = αj) . . . (σnxn = αn)

with two distinct equations (σixi = αi) and (σjxj = αj), for 1 ≤ i <
j ≤ n. Let α′

i be exactly the same Boolean expression as αi except that all
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occurrences of xj are substituted with expression αj. Then, E has the same
solution as the Boolean equation system

(σ1x1 = α1) . . . (σixi = α′
i) . . . (σjxj = αj) . . . (σnxn = αn).

The basic idea of our approach is that we can start to find solutions to the
variables in the last block, setting them to 1 or 0. Using Lemma 30 we can
substitute the solutions for variables in blocks higher up the ordering.

The following simplification rules

• (φ ∧ 1) 7→ φ

• (φ ∧ 0) 7→ 0

• (φ ∨ 1) 7→ 1

• (φ ∨ 0) 7→ φ

can be used to simplify the equations and the resulting equation system has
the same solution. The rules allow to remove each occurrence of 1 and 0 in
the right-hand side of equations, except if the right-hand side becomes equal
to 1 or 0, in which case yet another equation has been solved. By recursively
applying these steps all non-trivial occurrences of 1 and 0 can be removed
from the equations and the resulting Boolean equation system is in standard
form.

Note that each substitution and simplification step reduces the number of
occurrences of variables or the size of a right-hand side, and therefore, only
a linear number (in the size of the equation system) of such reductions are
applicable.

After solving all variables in a block, and simplifying subsequent blocks
a suitable solution routine can be applied to the blocks higher up in the
ordering iteratively solving them all. In this way, we can solve all blocks one
at a time.

This approach leads to the following strategy to solve a general Boolean
equation system E which is also discussed in [57, 41]. Previously, a quite
similar algorithm for equational systems has been given in [22].

Algorithm 1 The general solution algorithm for Boolean equation systems

1. Build the dependency graph GE of E .

2. Divide the system E into blocks by calculating the maximal strongly
connected components of GE .

3. Topologically sortGE into blocksB1, B2, . . . , Bm; here blocks are num-
bered so that if a block Bi depends on a block Bj then i < j.

4. Beginning with Bm, process each block Bi in turn by performing the
following steps:

(a) Generate a subsystem E ′ of E containing all equations of E whose
left-hand sides are from Bi. These equations are modified by re-
placing each occurrence of all variables xj outside the block Bi

by a constant 0 or 1 (according to the already known solution to
xj), and then propagating the constants using the rules to simplify
the equations of E ′.
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(b) Solve the variables of the resulting subsystem E ′ with a suitable
subroutine:

i. if E ′ is alternation-free, use algorithms from Section 4;

ii. if E ′ is disjunctive or conjunctive, use algorithms from Sec-
tion 5;

iii. if E ′ is general, use algorithms from Sections 6 and 7.

The correctness of this procedure follows directly from the above lemmas,
and from the correctness of the subroutines for various block types.

Theorem 31 Given a general form Boolean equation system E , the general
solution procedure correctly computes the solution to E .

Proof:
The algorithm computes the solution block-wise. According to Lemma 30 it
is safe to substitute already known values to blocks higher up in the ordering,
and it is safe to simplify the right-hand side formulas with the simplification
rules among a single block. Consequently, the general procedure is correct,
assuming that all subroutines to solve the generated subsystems are correct.

ut

Notice that all steps 1− 3 and step 4 (a) can be performed in linear time
in the size of the underlying Boolean equation system. Thus, the complexity
of the general procedure depends naturally on the costs of the subroutines in
step 4 (b).

Here, we give a simple example to demonstrate how the above algorithm
works on a Boolean equation system from previous examples.

Example 32 Consider again the Boolean equation system E1 from Exam-
ple 10. In step 1, the algorithm builds the dependency graph of the system
which is depicted in Figure 2. In step 2, the algorithm divides the system in
blocks, as explained in Example 28, resulting in two blocks B1 = {x1, x2}
and B2 = {x3} being identified. In step 3, the algorithm topologically sorts
these blocks which simply results in the block ordering B1, B2. Accordingly,
in step 4 the algorithm first solves the block B2, and then solves the block
B1 in the following way. The block B2 is alternation-free, and will be solved
by using appropriate techniques, in step 4. (b) i. The solution to the only
variable x3 in block B2 is seen to be 1. Thus, in step 4 (a), to solve block B1

we generate the subsystem

(νx1 = x2 ∧ x1)(µx2 = x1 ∨ 1)

and simplify these equations according to the simplification rules. The propa-
gation of the constant 1 in the second equation leads to a more simple system
of equations

(νx1 = x1)(µx2 = 1).

As this subsystem can be seen to be conjunctive (or disjunctive), the block
B1 can be solved by using appropriate techniques in step 4. (b) ii.
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Notice that the above general solution algorithm could be optimized in
various ways. For instance in step 4. (b) iii, one could build again the depen-
dency graph after simplification of the equations. This may allow to solve
(at least parts of) the general block using more efficient subroutines in steps
4. (b) i and 4. (b) ii. Furthermore, one could try to delay the execution of the
most expensive step 4. (b) iii as much as possible, solving the special blocks
first. The local solution may be found with this kind of strategy quite early,
possibly even before executing step 4. (b) iii at all.

In the following sections, we will present the subroutines and techniques
to solve individual blocks in isolation.
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4 SOLVING MINIMAL AND MAXIMAL BLOCKS

In this section, we will discuss methods to solve alternation-free blocks of
Boolean equation systems. There are two types of blocks that can be alter-
nation-free, namely minimal and maximal. All equations of a minimal block
have the fixpoint sign µ, and, dually, all equations of a maximal block have
the sign ν. We will begin by exploring well-known linear-time techniques
to solve alternation-free Boolean equation systems. Then, we will discuss a
logic programming approach to solve alternation-free blocks. In the litera-
ture, there are are several efficient methods to solve alternation-free Boolean
equation systems. Therefore, we will be brief in this section.

4.1 Algorithms for Alternation-Free Systems

The problem of solving an alternation-free Boolean equation system is a rel-
atively easy task. Indeed, many solution algorithms can be found from the
literature which are directed to this class and require only linear time and
space in the size of an alternation-free system.

For instance, Andersen [1] presents an efficient linear-time algorithm for
finding a global solution to Boolean graphs which correspond to minimal
and maximal blocks of a Boolean equation system (see Fig. 1 on p.12 in [1]).
In particular, this algorithm is useful to find the global solutions as defined
in Definition 11.

In addition, very simple linear-time algorithms to solve a Boolean equa-
tion system, whose all equations have the same fixpoint sign, can be found
from [68] (see, e.g., Fig. 2 on p. 5). Recall the definition of HornSAT in Sec-
tion 2.7. In [68], there are also linear-time reductions between alternation-
free Boolean equation systems and HornSAT, the problem of Horn formula
satisfiability. The techniques described in [68] are local in the sense that they
only give the local solutions as defined in Definition 9.

More recently, additional linear-time algorithms for alternation-free Boole-
an equation systems have been presented in [75]. Very similar algorithms can
be found from [76], too. The algorithms from [75, 76] can only be used to
find the local solution as defined in Definition 9.

The above algorithms could be applied to solve minimal and maximal
blocks in our setting. As they are well-known algorithms, we do not consider
them in detail here. Instead, in the following section, we show how minimal
and maximal blocks of a Boolean equation system can be solved with an
alternative approach based on logic programming techniques.

4.2 Minimal and Maximal Blocks as Logic Programs

A useful way to solve minimal and maximal blocks of a Boolean equation
system is through a logic programming approach. Such an approach to solve
Boolean equation systems was first proposed in [61]. In brief, it is suggested
in [61] that Boolean equation systems can be solved by translating them to
propositional normal logic programs, and computing stable models which
satisfy certain criteria of preference.

In particular, it is suggested in [61] that alternation-free Boolean equa-
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tion systems can be mapped to stratified logic programs, which can be di-
rectly solved in linear time, preserving the linear-time complexity of solv-
ing alternation-free Boolean equation systems. Unfortunately, [61] does not
provide a complete translation but only sketches an informal idea via a few
examples. However, the same kind of idea based on logic programming ap-
proach can efficiently be applied to solve minimal and maximal blocks in our
setting as well.

Minimal and maximal blocks of Boolean equation systems can be easily
seen as equivalent to propositional logic programs where every clause body is
a negation-free Boolean formula. Such programs have unique stable models
which can be calculated in linear-time (in the size of programs), for instance
by employing the algorithm for HornSAT from [29].

Consider a standard form, minimal block of a Boolean equation system.
This block itself can be seen as a standard form Boolean equation system,
call it E . We construct a logic program Π(E) which captures the global so-
lution to E . Suppose that all non-trivial occurrences of constants 1 and 0 are
removed from the equations of E by using the simplification rules given in
Section 3.3, i.e. there are only equations of the forms (µxi = 1), (µxi = 0),
(µxi = xj), (µxi = xj ∨ xk) and (µxi = xj ∧ xk).

The idea is that Π(E) is a propositional normal logic program which has
size linear in the size of E and where every clause body is negation-free.
Suppose E has variables {x1, x2, . . . , xn}. The logic program Π(E) we derive
is over ground atoms {p1, p2, . . . , pn}.

For each equation (σixi = αi) of E , the program Π(E) contains the rules:

pi ← pj . if αi = xj (3)

pi ← pj , pk. if αi = xj ∧ xk (4)

pi ← pj . pi ← pk. if αi = xj ∨ xk (5)

pi. if αi = 1 (6)

Notice that there is no rule for equations where the right-hand side for-
mulas are of the form αi = 0 because they do not need to be translated at
all.

The intuitive idea of the above translation is that for a variable xi of E , the
solution to xi is 1 if and only if the unique stable model of Π(E) contains the
corresponding atom pi. The correctness of the translation is easy to establish.

Theorem 33 Let E be a standard form Boolean equation system where all
fixpoint signs are minimal, and let xi be any variable of E . Then, the solution
to xi is 1 iff Π(E) has a stable model which contains the ground atom pi.

Proof:
Immediate from Definition 11, Definition 24, and by the construction of
Π(E). ut

By Theorem 33, a minimal block of a Boolean equation system can now
be solved by first converting the equation system into a corresponding logic
program, then calculating the unique stable model of the program, and fi-
nally checking the resulting stable model for the containment of atoms.

Next, we demonstrate the above translation from minimal Boolean equa-
tion systems to propositional normal logic programs.
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Example 34 Consider the Boolean equation system E below:

(µx1 = x3)(µx2 = 1)(µx3 = x4∨x5)(µx4 = x2∧x1)(µx5 = x1)(µx6 = x2).

The corresponding program Π(E) over ground atoms {p1, p2, . . . , p6} con-
sists of the rules:

p1 ← p3.
p2.
p3 ← p4. p3 ← p5.
p4 ← p2, p1.
p5 ← p1.
p6 ← p2.

The stable model of program Π(E) is {p2, p6}. As expected, by Theo-
rem 33, the only variables of E with solution 1 are x2 and x6. For vari-
ables x1, x3, x4, and x5, the solution is 0 because the corresponding atoms
p1, p3, p4, p5 are not contained in the stable model of the program Π(E).

By duality, a method for obtaining the global solutions for maximal blocks
via stable model computation proceeds in the very same way. For instance,
the dual case (i.e. the case for maximal blocks) can be solved by complement-
ing a given system and using the same translation as for minimal blocks. In
the following, we will demonstrate how to solve maximal blocks using this
approach.

The complementation for Boolean equation systems can be defined as
in Definition 35. This definition is an instance of the well-known duality
principle for Boolean logic. Therefore, dual could be used as a term here
instead of complement.

Definition 35 (The complementation of a Boolean equation system) The
complement of a Boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

is another Boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

where σi is defined by

σi =

{

ν if σi = µ
µ if σi = ν

and αi is defined inductively as follows:

0 = 1
1 = 0
xi = xi

αj ∧ αk = αj ∨ αk

αj ∨ αk = αj ∧ αk

Here, xi ∈ X and αj , αk ∈ B(X ).
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The complementation of a Boolean equation system preserves the solution
in the following sense.

Lemma 36 (Lemma 3.35 of [70]) Let E be a Boolean equation system and
let E be the complement of E . Then, for each variable xi of E , the solution
to xi in E is 1 iff the solution to xi in E is 0.

The complementation is very useful concept in most of the proofs concern-
ing Boolean equation systems because, as a simple consequence of Lemma 36,
many properties of Boolean equation systems have dual properties as well.
Therefore, it is usually sufficient to give only one half of a proof of a property,
and the other half immediately follows by a symmetric, dual argument.

For instance, the above fact explains why a maximal block of a Boolean
equation system can be solved by complementing the block, and then using
exactly the same solution method as for minimal blocks. To see this, consider
the following example as an application of Lemma 36.

Example 37 Consider the Boolean equation system E below, with only max-
imal equations:

(νx1 = x2 ∧ x3)(νx2 = x3 ∨ x4)(νx3 = x2 ∨ x4)(νx4 = 0).

In order to solve system E , we first take its complement E given below:

(µx1 = x2 ∨ x3)(µx2 = x3 ∧ x4)(µx3 = x2 ∧ x4)(µx4 = 1).

Then, we compute the unique stable model of the logic program Π(E) over
ground atoms {p1, p2, . . . , p4} which consists of the rules:

p1 ← p2. p1 ← p3.
p2 ← p3, p4.
p3 ← p2, p4.
p4.

The only stable model of program Π(E) is {p4}. By Theorem 33, the only
variable of E with solution 1 is x4. The solution is 0 to variables x1, x2, x3 of
E because the corresponding atoms p1, p2, p3 are not contained in the stable
model of Π(E). By Lemma 36, the solution is 1 to variables x1, x2, x3 of E ,
and the solution is 0 to variable x4 of E .
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5 SOLVING CONJUNCTIVE AND DISJUNCTIVE BLOCKS WITH ALTERNA-
TION

In this section, we examine conjunctive and disjunctive fragments of Boolean
equation systems. Many practically relevant properties of systems can be ex-
pressed by means of fixpoint formulas that lead to Boolean equations in either
conjunctive or disjunctive forms (for instance, see Section 8.1). It is there-
fore interesting to develop specific solution techniques for disjunctive and
conjunctive blocks with alternation. We define two different algorithms spe-
cially designed to solve these kinds of blocks. The main results by the thesis
author presented in this section are from [41, 42].

We first introduce basic properties concerning conjunctive and disjunc-
tive Boolean equation systems. Then, we present two distinct algorithms for
solving conjunctive and disjunctive blocks based on the properties. We also
deal with the correctness and complexity of the algorithms.

5.1 Properties of Conjunctive and Disjunctive Blocks

A Boolean equation system is called disjunctive if no conjunction symbol ap-
pears in its right-hand side expressions. In the same way, a Boolean equation
system is called conjunctive if no disjunction symbol appears in its right-
hand side expressions. Consequently, we define conjunctive and disjunctive
Boolean equation systems in the following way.

Definition 38 Let (σixi = αi) be an equation of a standard form Boolean
equation system. We call this equation disjunctive if no conjunction symbol
∧ appears in αi. Let E be a standard form Boolean equation system. We call
E disjunctive iff each equation in E is disjunctive.

The dual case below is similar.

Definition 39 Let (σixi = αi) be an equation of a standard form Boolean
equation system. We call this equation conjunctive if no disjunction symbol
∨ appears in αi. Let E be a standard form Boolean equation system. We call
E conjunctive iff each equation in E is conjunctive.

Clearly, the above definitions can be applied to blocks of a Boolean equa-
tion system too, and we will accordingly speak of disjunctive and conjunctive
blocks.

We have the following useful lemma. In this lemma, recall that the the
definition of the dependency graph is such that the sink nodes with self-
loops, ⊥ and >, represent the constants 0 and 1, and that these sink nodes
are assumed to be highest up in the ordering on the nodes.

Lemma 40 Let E be a standard form, disjunctive Boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

and let G = (V,E, `) be the dependency graph of E . Let [[E ]] be the local
solution to E . Then the following are equivalent:

1. [[E ]] = 1
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2. ∃j ∈ V with `(j) = ν such that:

(a) j is reachable from node 1 in G, and

(b) G contains a cycle of which the lowest index of a node on this
cycle is j.

Proof:
First we show that (2) implies (1).

If j lies on a cycle with all nodes larger than j, then there is a path

(j, k1, k2, . . . , kn, j)

in graph G such that, for 1 ≤ i ≤ n, j < ki holds. So there is a sub-equation
system of E that looks as follows:

(νxj = αj)
...

(σk1xk1 = αk1)
(σk2xk2 = αk2)

...
(σkn

xkn
= αkn

)

Using Lemma 30 we can rewrite the Boolean equation system E to an equiv-
alent one by replacing the equation νxj = αj by νxj = βj where βj is exactly
the same Boolean expression as αj except that, for 1 ≤ i ≤ n, all occurrences
of xki

are substituted with expression αki
. Now note that the right hand side

βj of equation νxj = βj contains only disjunctions and the variable xj at
least once. Hence, by Lemma 29 the equation reduces to νxj = 1. As node
j is reachable from node 1 in dependency graph G, the equation σ1x1 = α1

can similarly be replaced by σ1x1 = 1. Hence, for the solution [[E ]] of E , it
holds that [[E ]] = 1.

Now we prove that (1) implies (2) by contraposition. So, assume that there
is no node j with `(j) = ν that is reachable from node 1 such that j is on a
cycle with only higher numbered nodes.

The proof proceeds by induction on n−k and we show that E is equivalent
to the Boolean equation system where equations

(σk+1xk+1 = αk+1) . . . (σnxn = αn)

whose nodes k + 1, . . . , n are reachable from 1 have been replaced by

(σk+1xk+1 = βk+1) . . . (σnxn = βn)

where all βl are disjunctions of 0 and variables that stem from x1, . . . , xk. If
the inductive proof is finished, the lemma is also proven: consider the case
where n− k = n. This says that E is equivalent to a Boolean equation system
where all right hand sides of equations, on which x1 depends, are equal to
constant 0. So, for the solution [[E ]] of E it holds that [[E ]] = 0.

For n − k = 0 the induction hypothesis obviously holds. In particular
constant 1 cannot occur in the right hand side of any equation on which x1

depends. So, consider some n− k for which the induction hypothesis holds.
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We show that it also holds for n − k + 1. So, we must show that, if equation
σkxk = αk is such that x1 depends on xk, then it can be replaced by an
equation σkxk = βk where in βk only variables chosen from x1, . . . , xk−1

and constant 0 can occur.
As k is reachable from 1, all variables xl occurring in αk are such that

x1 depends on xl. By the induction hypothesis the equations σlxl = αl for
l > k have been replaced by σlxl = βl where in βl only 0 and variables from
x1, . . . , xk occur. Using Lemma 30 such variables xl can be replaced by βl

and hence, αk is replaced by γk in which 0 and variables from x1, . . . , xk can
occur.

What remains to be done is to remove xk from γk assuming xk occurs in
γk. This can be done as follows. Suppose σk = ν. Then, as xk occurs in
γk, there must be a path in the dependency graph G to a node l′ with l′ ≥ k
such that xk appears in αl′ . But this means that the dependency graph has a
cycle on which k is the lowest value. This contradicts the assumption. So, it
cannot be that σk = ν, and thus σk = µ. Now using Lemma 29 the variable
xk in αk can be replaced by 0. ut

Also, a dual property holds for conjunctive Boolean equation systems.

Lemma 41 Let E be a standard form, conjunctive Boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

and let G = (V,E, `) be the dependency graph of E . Let [[E ]] be the local
solution to E . Then the following are equivalent:

1. [[E ]] = 0

2. ∃j ∈ V with `(j) = µ such that:

(a) j is reachable from node 1 in G, and

(b) G contains a cycle of which the lowest index of a node on this
cycle is j.

Proof:
In the same way as for Lemma 40. ut

One can see that, as a consequence of Lemma 40 and Lemma 41, all
variables in disjunctive or conjunctive blocks of a Boolean equation system
have the same solutions. We may thus solve all variables of a conjunctive
or a disjunctive block by simply computing the solution to the the smallest
variable appearing in the block.

Furthermore, since a block of a Boolean equation system consists of a
single maximal strongly connected component of the corresponding depen-
dency graph, we may assume that all nodes in the dependency graph of the
block are reachable from the smallest node. Therefore, in order to solve a
conjunctive or a disjunctive block of a Boolean equation system, the condi-
tion that needs to be checked is whether there is a cycle in the dependency
graph of the block where the lowest numbered node has label µ (or ν respec-
tively). In the following subsections we define algorithms that perform this
task.
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Obviously, based on the above observations one can define specialized
algorithms that are likely to perform better in practice than the more general
algorithms for general form Boolean equation systems.

It is worthwhile to observe that the problem of solving a conjunctive/dis-
junctive Boolean equation system is equivalent to the problem of solving a
one player parity game. Moreover, notice that parity word automata [59] can
be shown to be equivalent to both of these formalism.

5.2 Depth-First Search Based Algorithm

There is a very simple algorithm based on depth-first search [96] on directed
graphs which can be used to solve conjunctive and disjunctive blocks of a
Boolean equation system. The algorithm is discussed in [41] and we present
it here in a slightly simplified form. In particular, we give an algorithm to
solve a disjunctive block, the conjunctive case is dual and goes along exactly
the same lines. Notice that, with an algorithm for the disjunctive case, the
conjunctive case can be solved through complementation (see Definition 35
and Lemma 36).

Given a dependency graphG = (V,E, `) and a node i ∈ V with `(i) = ν,
we define a predicate

NuLoop(G, i)

to be true iff the subgraph G�i of G contains a cycle (i, v0, v1..., i) such that
min{i, v0, v1..., i} = i. Recall from Definition 18 that G�i is G restricted to
nodes j ≥ i.

Obviously, given a dependency graph G = (V,E, `) of a disjunctive block
and a node i ∈ V with `(i) = ν, deciding whether NuLoop(G, i) holds
reduces to the task of computing the reachability of node i from itself in
the subgraph G�i of G. Note that this can be done by a standard depth-
first search algorithm in time and space O(|V | + |E|). Assuming such a
subroutine to decide NuLoop(G, i), we can resolve a disjunctive block of a
Boolean equation systems as follows.

We define the algorithm SolveDisjunctive(G) where G = (V,E, `) is a
dependency graph of a disjunctive block of a Boolean equation system. The
algorithm SolveDisjunctive calculates whether there is a node k in G such
that `(k) = ν and k is the smallest node on some cycle of G. The algorithm
consists of the following steps:

Algorithm 2 The algorithm to solve disjunctive form Boolean equations sys-
tems

1. For all nodes i ∈ V such that `(i) = ν:

• If NuLoop(G, i) holds, then report “solution to the smallest vari-
able is 1” and STOP.

2. Report “solution to the smallest variable is 0”.

It is not difficult to see that the algorithm is correct.

Theorem 42 (Correctness) The algorithm SolveDisjunctive works correctly
on any disjunctive block of a Boolean equation system.
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Proof:
If the algorithm reports that “solution to smallest variable is 1” then

NuLoop(G, i)

holds for some i ∈ V , and G contains at least one cycle of which the lowest
index of a node on this cycle is i, where `(i) = ν. By Lemma 40, the so-
lution to smallest variable is 1. If the algorithm reports “solution to smallest
variable is 0”, then there does not exist a node i ∈ V with `(i) = ν such
that NuLoop(G, i) holds. By Lemma 40, the solution to smallest variable is
0. ut

This approach is well suited for many Boolean equation systems. Since
the algorithm performs standard depth-first search as a subroutine, which can
detect cycles even before the whole graph has been traversed, the algorithm
may find the solution by searching only a small portion of the dependency
graph. In many cases, this leads to an early detection of the solution.

A disadvantage of the above approach is that, in the worst case, it requires
quadratic time in the size of an input dependency graph. For instance, using
an adjacency-list representation of dependency graphs, the time complexity
of this algorithm is not worse than quadratic.

Theorem 43 LetG = (V,E, `) be a dependency graph of a disjunctive block
with |V | = n and |E| = m. The algorithm SolveDisjunctive requires time
O(n · (n +m)) to solve G.

Proof:
The algorithm calls function NuLoop at most n times and each call takes
time O(n+m). ut

Note that the space complexity of SolveDisjunctive(G) is linear in the size
of the input dependency graph, i.e. O(|G|).

Next, we give an example which demonstrates that the above algorithm
may take quadratic time. (Here, we use the notation Ω(f(n)) for asymptotic
lower bound; verbally read as “of the order at least f(n)”.)

Theorem 44 For all n ∈ N such that n ≥ 4, there is a disjunctive Boolean
equation system with dependency graph of size O(n), on which the solution
algorithm SolveDisjunctive takes time Ω(n2).

Proof:
We define a family of Boolean equation systems En, for all even n ∈ N s.t.
n ≥ 4. For some even n ∈ N s.t. n ≥ 4, consider the Boolean equation
system:

(µx1 = x2)

(νx2 = x1 ∨ x3)

(µx3 = x1 ∨ x4)

...

(µxn−1 = x1 ∨ xn−1)
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Figure 5: A worst-case example for the algorithm based on depth-first search.

(νxn = x1)

The above equation system is disjunctive, and the solution to variable x1 is
0. Consider the dependency graph G of this system depicted in Figure 5.
Clearly, in order to solve the block with the SolveDisjunctive algorithm, we
need always at least

|G�2|+ |G�4|+ · · ·+ |G�n|
steps, i.e. Ω(n2) time is needed to solve the Boolean equation system. ut

Most algorithms for solving conjunctive and disjunctive Boolean equation
systems, including those from [41, 70], take at least quadratic time in the
size of a Boolean equation system in the worst case. But, for large Boolean
equations, which are typically encountered in model checking of realistic
systems, these algorithms might lead to unpleasant running times.

Therefore, the next subsection presents an especially fast algorithm for
finding a solution to a Boolean equation system in either conjunctive or dis-
junctive form.

5.3 An Algorithm Based on Hierarchical Clustering

The contribution of this subsection is to present an especially fast algorithm
for finding a solution to a Boolean equation system in either conjunctive or
disjunctive form. Given such a system with size e and the alternation depth
d > 1, the algorithm finds the solution using timeO(e log d) in the worst case
(for d = 1, the algorithm takes time O(e) in the worst case). This improves
the quadratic upper bound and should make the verification of a large class
of fixpoint expressions more tractable.

Essentially, the algorithm is a new variant of King, Kupferman and Vardi
[59] who give a similar algorithm in the realm of parity word automata. As
both algorithms are based on ideas in [96] we therefore attribute explicitly
the original idea to Tarjan by talking about hierarchical clustering.

Tarjan [96] presents a hierarchical clustering algorithm for constructing
a strong component decomposition tree for a directed weighted graph. Tar-
jan’s clustering algorithm is an off-line, partially dynamic algorithm which
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is heavily based on three well-known techniques: binary search, divide-and-
conquer, and graph theoretic technique for finding strongly connected com-
ponents [95].

It turns out that the ideas behind the hierarchical clustering algorithm are
also suited to solve conjunctive and disjunctive Boolean equation systems. In
the following subsection, we provide such an algorithm to solve disjunctive
Boolean equation systems. The conjunctive case is dual and can be solved
via complementation too (recall Definition 35 and Lemma 36).

Essentially, our algorithm and the one in [59] are both distinguished from
the original hierarchical clustering algorithm [96] in the following way. The
algorithm in [96] takes a weighted directed graph as its input and performs
computations with this weighted graph; in contrast, both [59] and our vari-
ant make computations with directed labelled graphs. In addition, Tarjan’s
original algorithm in [96] always requires the asymptotically worst case time
but this is not the case for [59] and our variant.

Our algorithm is distinguished from the existing algorithm [59] as follows:

• The algorithm in [59] may continue its computation even when the
solution is already known. Our algorithm instead terminates as soon
as the solution has been found, and thus avoids unnecessary computa-
tions. This is due to a minor fault in the procedure solve in Section 3
of [59]. More precisely, for the correctness of the procedure solve in
[59] it is crucial that STOP (lines 1 and 5 in [59]) is interpreted as stop
the current recursive call, i.e. do not stop the whole execution of the
algorithm but this particular call to solve. But, this means that, if the
solution is found in line 5 of [59] and YES is reported, then the re-
cursion stack may still contain several calls that will be executed, and
the algorithm [59] incorrectly continues its computation although the
solution has been already found.

• Neither implementation-level description nor implementation of the
algorithm is provided in [59]. In contrast, we have implemented our al-
gorithm and we provide extensive experimental results which demon-
strate the actual performance of the algorithm (see Section 8.1).

• In the algorithm [59], the order of the recursive calls is fixed but we
noticed that the recursion order is not relevant for the correctness of
the algorithms. Therefore, we have studied various recursion orders
in order to obtain optimized versions of the algorithm (again, see Sec-
tion 8.1).

Basic Definitions
Before presenting the algorithm, we define a few useful notions that will be
needed.

Definition 45 Let

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

be a Boolean equation system. An index j is a ν-starting point of E if σj = ν,
and either j = 1 or σj−1 = µ. If j is a ν-starting point then the ν-segment
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of j are those indices j, j + 1, . . . , j + k such that σj+i = ν (0 ≤ i ≤ k) and
either j + k = n or σj+k+1 = µ.

In other words, all ν-variables that have the sameH label in the alternation
hierarchy of a Boolean equation system belong to the same ν-segment. Note
that the alternation depth of a Boolean equation system is twice the number
of ν-starting points of a Boolean equation system minus 0, 1 or 2, depending
on whether or not there are initial and trailing µ’s.

Recall Definition 18 where we define dependency graphs restricted to
only certain subgraphs. In the same way, given a dependency graph G =
(V,E, `) and k ∈ V , let the restricted graph G�k = (V,E�k, `) where

• E�k = {〈i, j〉 ∈ E | i ≥ k and j ≥ k}.

In general, we may assume that all nodes in a dependency graph G =
(V,E, `) of a disjunctive Boolean equation system are reachable from node
1 because the nodes that are not reachable from node 1 do not affect the
solution.

Furthermore, we may assume that the dependency graph of a disjunctive
Boolean equation system does not contain any self-loops (i.e. an edge from a
node to itself) because such edges can trivially be removed from dependency
graphs preserving the solution. To see this notice that, for all edges (i, i) ∈ E
s.t. σi = µ, we can simply remove the edge (i, i) from E and the solution is
preserved. On the other hand, if an edge (i, i) ∈ E with σi = ν exists, then
it holds that [[E ]] = 1 and E is already solved.

Thus, by Lemma 40, the essential condition that needs to be checked is
whether there is a cycle in the dependency graph of which the lowest num-
bered node has label ν. The following algorithm performs this task in sub-
quadratic time.

The MinNuLoop Algorithm

To apply the algorithm on a Boolean equation system E with n equations,
MinNuLoop(k, n,G) must be executed where G is the dependency graph of
E and k is the first ν-starting point of E . If such a starting point does not exist,
then it holds that [[E ]] = 0 and E is already solved.

Algorithm. We define the algorithm MinNuLoop(k1, k2, G) where k1 and
k2 are indices such that k1 ≤ k2, G = (V,E, `) is a dependency graph,
`(k1) = ν and |E| ≥ |V |. The algorithm MinNuLoop calculates whether
there is an index k with k1 ≤ k ≤ k2, `(k) = ν and k is the smallest node on
some cycle of G. The algorithm consists of the following steps:

1 Let s be the number of ν-starting points on k1, . . . , k2. Let k3 be the index
of the d1

2
se-th ν-starting point on k1, . . . , k2. Calculate the maximal

strongly connected components of G�k3. Check whether any node on
the ν-segment of k3 resides in a non-trivial strongly connected compo-
nent. If so, report “Found” and stop the execution of the algorithm. In
the following steps, let C(k) represent the strongly connected compo-
nent of G�k3 containing node k ∈ V , and let minC(k) be the smallest
member of the set C(k).
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2 Here and in 5 below we check nodes in the range k1, . . . , k3−2. Calculate
the graph G′ = (V ′, E ′, `′) by

V ′ = {minC(i) | i ∈ V and ∃j.〈i, j〉 ∈ E and C(i) 6= C(j)},
E ′ = {〈minC(i),minC(j)〉 ∈ V ′ × V ′ | 〈i, j〉 ∈ E, C(i) 6= C(j)},
`′(minC(i)) =

{

`(i) if C(i) is trivial,
µ otherwise.

3 Let k4 be the smallest index of a ν-starting point larger than k3. We check
nodes in the range k4, . . . , k2 (see also item 6). Calculate the graph
G′′ = (V ′′, E ′′, `) by

V ′′ = {i ∈ V | C(i) is not trivial} and
E ′′ = {〈i, j〉 ∈ V ′′ × V ′′ | 〈i, j〉 ∈ E and C(i) = C(j)}.

4 Forget G.

5 If k1 ≤ k3 − 2, execute MinNuLoop(k1, k3 − 2, G′).

6 If k4 ≤ k2, execute MinNuLoop(k4, k2, G
′′).

Notice that the algorithm MinNuLoop splits up the input dependency
graph G into two graphs G′ and G′′, and then recurs on these new graphs.
More precisely, in steps 2 and 5, the graph G′ is a condensed version of the
graph G, in which nodes belonging to the same strongly connected compo-
nent of G�k3 (calculated in step 1) are compressed into a single node. In
steps 3 and 6, the graph G′′ is a subgraph of G, in which edges connecting
different strongly connected components of G�k3 (calculated in step 1) are
removed. Intuitively, the correctness of the algorithm can be explained in
the following way.

On the one hand, when investigating whether some of the nodes in the
range k1, . . . , k3 − 2 is the smallest ν-labelled node on a cycle, the inter-
nal structures of non-trivial strongly connected components of G�k3 are ir-
relevant, and can therefore be safely collapsed in the construction of G′ =
(V ′, E ′, `′) in step 2. In other words, it suffices that for each strongly con-
nected component calculated in step 1 we include a single representative
node in G′. In addition, it suffices to consider as edges of G′ exactly the
representatives for those edges of E that bridge the strongly connected com-
ponents of G�k3. Furthermore, nodes in V ′ without outgoing edges cannot
contribute to any cycles, and can therefore be removed. Note that as all
nodes without outgoing edges are removed from G′, the precondition that
|E ′| ≥ |V ′| to invoke MinNuLoop is met.

On the other hand, when investigating whether some node in the range
k4, . . . , k2 is the smallest ν-labelled node on a cycle, we do not need to con-
sider edges that connect nodes belonging to different strongly connected
components of G�k3. Indeed, such edges cannot participate in any cycle
whose smallest index is in the range k4, . . . , k2.

We now turn to give the correctness proof and the complexity analysis of
the algorithm; a detailed example demonstrating how the algorithm works
will be given later on.
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Correctness and Complexity of MinNuLoop
Since the algorithm MinNuLoop is closely related to Tarjan’s clustering al-
gorithm, its correctness and complexity can be seen along the lines set out
in [96, 59]. However, as mentioned in the beginning of Subsection 5.3, our
presentation significantly differs from [96] and [59]. Therefore, we give here
the correctness and complexity arguments in detail.

Theorem 46 The MinNuLoop(k1, k2, G) stops reporting “Found” iff a cycle
with a minimal ν-labelled node in the range k1, . . . , k2 exists in G.

Proof:
As the MinNuLoop(k1, k2, G) is a divide and conquer algorithm, we prove
it correct by first showing that the cases where there are 0 ν-segments are
correctly solved. Then, we notice that the MinNuLoop(k1, k2, G) divides a
problem with A ν-segments into three parts of (i) 1 ν-segment, (ii) b1

2
(A −

1)c ν-segments, and (iii) d1
2
(A − 1)e ν-segments. By repeatedly doing this

recursively, any initial number of ν-segments will eventually be split into
only cases concerning 0 ν-segments. Therefore, if all the cases (i)-(iii) are
correctly handled, then the correctness of the whole algorithm follows.

First, assume the number of ν-segments in the range k1, . . . , k2 is 0. In this
case, clearly no cycle with a minimal ν-labelled node in the range k1, . . . , k2

exists in G. In step 1, the algorithm calculates that the number of ν-starting
points in the range k1, . . . , k2 is 0, and the graphG�k3 will not be constructed
at all. In steps 2-6, the algorithm does not execute any additional recursive
calls. Thus, nothing is correctly reported in steps 1-6.

Let us next consider all the above three cases (i)-(iii) in turn.
The case (i) is treated in step 1 of the MinNuLoop(k1, k2, G) where it is

checked whether any node in the ν-segment of k3 is the smallest ν-labelled
node on a cycle. Clearly, in step 1 the algorithm reports correctly “Found”
and stops if and only if some node on the ν-segment of k3 resides in a non-
trivial maximal strongly connected component of G�k3.

The case (ii) is treated in steps 2 and 5 where it is investigated whether
some of the nodes in the range k1, . . . , k3 − 2 (node k3 − 1 is µ-labelled)
is the smallest ν-labelled node on a cycle. Here, the internal structures of
non-trivial strongly connected components of G�k3 are irrelevant, and can
therefore be safely collapsed. Thus, it suffices that all strongly connected
components calculated in step 1 occur as compressed nodes of G′. In ad-
dition, we can take as edges of G′ exactly those edges of E that bridge the
strongly connected components of G�k3. Furthermore, nodes in V ′ without
outgoing edges cannot contribute to cycles and can therefore be removed.
Thus, it is seen that G contains a cycle with a minimal ν-labelled node ap-
pearing in the range k1, . . . , k3 − 2 if and only if G′ contains a cycle with a
minimal ν-labelled node appearing in the range k1, . . . , k3 − 2. Therefore,
the case (ii) is correctly handled.

Finally, the case (iii) is treated in steps 3 and 6 where it is investigated
whether some node in the range k4, . . . , k2 is the smallest ν-labelled node on
a cycle. Clearly, here we do not need to consider edges that connect nodes
belonging to different strongly connected components of G�k3 because such
edges cannot participate in any cycle whose smallest index is in the range
k4, . . . , k2. Thus, it is seen that G contains a cycle with a minimal ν-labelled
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node appearing in the range k4, . . . , k2 iff G′′ calculated in step 3 contains
exactly the same cycle. Therefore, the case (iii) is correctly handled. ut

We now estimate the worst-case time complexity of the MinNuLoop al-
gorithm.

Theorem 47 The time complexity of the algorithm MinNuLoop(k1, k2, G)
is O(|E| logA) where G = (V,E, `) and A is the number of ν-starting points
on k1, . . . , k2 (2 · A is approximately the alternation depth of the Boolean
equation system that corresponds to G).

Proof:
Let us analyse the asymptotic running time of each step in turn.

Notice that the precondition to invoke MinNuLoop is |V | ≤ |E|. Then,
in step 1 of MinNuLoop it takes O(|E|) to determine k3. Furthermore, cal-
culating G�k3, the strongly connected components, and checking whether
any node on the ν-segment of k3 resides on a non-trivial strongly connected
component requires timeO(|E|). In step 2, the graphG′ is constructed. This
can clearly be done in time O(|E|). In step 3, it takes O(|E|) time to deter-
mine k4 and to construct the graph G′′. In step 4, the removal of G takes
time O(|E|). Step 5 requires time O(1), plus possibly the time for the recur-
sive call MinNuLoop(k1, k3 − 2, G′) to solve the subproblem defined by the
range k1, . . . , k3−2 and the graphG′ constructed in step 2. Step 6 takes time
O(1), plus possibly the time for the recursive call MinNuLoop(k4, k2, G

′′) to
solve the subproblem defined by the range k4, . . . , k2 and the intermediate
graph G′′ constructed in step 3.

Thus, summarizing the above analysis, computing the steps 1-6 requires
time O(|E|) plus the time to solve at most two recursive calls to solve the
subproblems.

To estimate the total cost of the MinNuLoop algorithm, a crucial obser-
vation is that for each edge (i, j) ∈ E at most one edge shows up in either
E ′ or E ′′, depending on whether or not C(i) = C(j) holds. This means
that |E ′| + |E ′′| ≤ |E|. Furthermore, if the number of ν-starting points in
k1, . . . , k2 is A, then there are b1

2
(A− 1)c ν-starting points on k1, . . . , k3 − 1

and d1
2
(A− 1)e ν-starting points on k4, . . . , k2.

Let us define a notion of recursion depth for the MinNuLoop algorithm
in the following way. For the initial call of the MinNuLoop with the original
problem, the recursion depth is 0. For each call of the MinNuLoop, the
recursion depth for the next recursive calls of MinNuLoop done in steps 5-
6 to solve the subproblems is the recursion depth of the current call plus 1.
Thus, if the number of ν-starting points on k1, . . . , k2 in the original problem
is A, then clearly the maximal recursion depth is O(logA). Obviously, for
all i ∈ N, the time required to calculate the steps 1-6 of all the recursive
calls with the recursion depth i is O(|E|) (each edge of the original graph
is represented in at most one subproblem at the same recursion level). As
the maximum recursion depth is O(logA) and it takes time O(|E|) to solve
all the subproblems at the same recursion level, the total complexity of the
MinNuLoop is

O(logA) ·O(|E|) = O(|E| logA).

ut
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Figure 6: The dependency graph of the example Boolean equation system.

The time complexity for solving a Boolean equation system also contains
the generation of the dependency graph, and it is easily seen to be O(e) with
e the size of the Boolean equation system.

The space complexity of MinNuLoop(k1, k2, G) isO(|E|). In order to see
this suffices to note that the graphs constructed in step 2 and 3 are together
smaller (or of equal size) than the graph G, which is thrown away in step 4.
Therefore, the memory footage is only reduced while executing the MinNu-
Loop algorithm. As generating the dependency graph also takes linear space,
solving a disjunctive Boolean equation system also takes linear space.

A Detailed Example
We now demonstrate how the MinNuLoop algorithm works by giving a de-
tailed example execution. Consider a Boolean equation system

(µx1 = x2 ∨ x3)

(νx2 = x1 ∨ x4)

(µx3 = x4 ∨ x5)

(νx4 = x3)

(µx5 = x6)

(νx6 = x5 ∨ x2)

which is disjunctive and consists of a single alternating block. The depen-
dency graph G of this Boolean equation system is depicted in Figure 6.

In order to solve this block we must call MinNuLoop(2, 6, G), because 2
is the smallest ν-starting point on 1, . . . , 6.

First, in step 1 it is determined that there are three ν-starting points on
2, . . . , 6, namely 2, 4 and 6. Thus, s = 3 and the d1

2
× 3e-th ν-starting point

on 2, . . . , 6 is 4. Therefore, we calculate the strongly connected components
of the restricted graph G�4 shown in Figure 7. One can see that the trivial
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Figure 7: The restricted graph G�4 calculated in step 1.

strongly connected components of the graph G�4 are {1}, {2}, {3} and {4}.
In addition to this, there is one non-trivial strongly connected component in
the graph G�4, namely {5, 6}.

Secondly, in step 1 the algorithm detects that no node on the ν-segment
of 4 resides in a non-trivial strongly connected component of the graph G�4.
Therefore, the algorithm proceeds to step 2.

In step 2, the algorithm builds a new graph G′ from G. Now, the nodes of
G′ are the smallest nodes of each strongly connected component of G�4, and
the edges of G′ represent those edges of G that bridge the strongly connected
components of G�4. The resulting graph G′ is depicted in Figure 8.

In step 3, the algorithm detects that the smallest index of a ν-starting point
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Figure 8: The graph G′ constructed in step 2.
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Figure 9: The graph G′′ constructed in step 3.

larger than 4 is 6. Furtermore, in step 3 the algorithm builds another graph
G′′ from G. Recall that, intuitively, the nodes of G′′ are such nodes of G
which reside on the non-trivial strongly connected components of the re-
stricted graph G�4. The edges of G′′ are such edges of G whose nodes belong
to the same strongly connected component of the graph G�4. Consequently,
the resulting graph G′′ can be depicted as shown in Figure 9.

Then, in step 4 we simply forget the original graph G which appeared as
a parameter in the first call of the function MinNuLoop.

In step 5, we check that the condition k1 ≤ k3 − 2 holds, as 2 ≤ 2, and
the algorithm recurs by calling MinNuLoop(2, 2, G′).

R
-

6

?

6
1 3

2 4 5

µ µ

ν
ν µ

Figure 10: The restricted graph G′�2 calculated in step 1 deeper in the re-
cursion depth.
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In step 6, we check that the nodes in the range 6, . . . , 6 by calling recur-
sively MinNuLoop(6, 6, G′′), because the condition k4 ≤ k2 holds as 6 ≤ 6.

The recursive call of the function MinNuLoop done in step 5 above, i.e.
MinNuLoop(2, 2, G′), can be explained as follows. Again, in step 1 the al-
gorithm determines the number of ν-starting points. There is only one ν-
starting point on 2, . . . , 2, namely 2 itself. So, since the d1

2
× 1e-th ν-starting

point on 2, . . . , 2 is 2, the algorithm calculates the strongly connected com-
ponents of the restricted graph G′�2. This restricted graph G′�2 is depicted
in Figure 10.

One can see that the only trivial strongly connected component of the
above graph G′�2 is {1}. In addition, there is one non-trivial strongly con-
nected component in the graph G′�2, namely {2, 3, 4, 5}.

Finally, in step 1 the algorithm detects that there is a node on the ν-
segment of 2 that resides in a non-trivial strongly connected component of
the graph G′�2, namely node 2 in component {2, 3, 4, 5}. For this reason,
the algorithm reports “Found” and stops the execution.

The result is exactly what one might expect; the solution to the smallest
variable x1 of the given Boolean equation system is 1.

5.4 Discussion

In this section, we have seen two distinct ways to solve conjunctive and dis-
junctive Boolean equation systems. Both of these two algorithms take into
account the specific structures of conjunctive and disjunctive Boolean equa-
tion systems to solve them efficiently. It is expected that these kinds of spe-
cific algorithms give better performance than general algorithms which are
designed to solve general form Boolean equation systems lacking the same
specific structure.

However, it is worthwhile to notice that the results presented in [2] com-
bined with [4] allow for solving conjunctive/disjunctive Boolean equation
systems in quadratic time as well. For example, one may first transform a
conjunctive/disjunctive system of size e to a system of size e2 but having al-
ternation depth two only (notice that this is possible via a result in [4] for
mapping a parity word automaton to a quadratic size Büchi automaton). Fi-
nally, apply the linear time algorithm of [2] for the alternation depth two
Boolean equation systems.

It was seen that the algorithm based on hierarchical clustering has better
asymptotic running time than the depth-first search based algorithm. But,
an important remaining question is which of these two presented algorithms
performs better in practice. Theoretical worst-case analysis of algorithms does
not necessarily give enough information when comparing the performance
of algorithms in real-world applications. This is due to the fact that worst-
case analysis might give too pessimistic bounds for the running times of an
algorithm.

Therefore, the analytical results in the previous subsections do not give
us enough information about how the depth-first search and hierarchical
clustering algorithms perform in practice, on practical verification problems.
Thus, some further work needs to be done in order to judge the overall win-
ner.
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Experimental research may give much valuable information on the ac-
tual performance of algorithms. Therefore, we have implemented both al-
gorithms for evaluation and comparison. The results of our experimental
researh will be presented later in Section 8.
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6 SOLVING GENERAL BLOCKS BY A REDUCTION TO LOGIC PROGRAMS

In this section, we discuss an answer set programming (ASP) based approach
for solving general blocks of Boolean equation systems. In ASP a problem is
solved by devising a mapping from a problem instance to a logic program
such that models of the program provide the answers to the problem in-
stance [66, 73, 78]. The main results presented in this section are originally
published in [57].

We first state some facts about general form Boolean equation systems
which turn out to be useful in the computation of their solutions. We then
develop a mapping from alternating blocks to logic programs providing a
basis for effectively solving such hard blocks. Finally, we show the correctness
of our translation.

6.1 Solving General Form Blocks in Answer Set Programming

It is seen in Section 4 that, if all variables in a single block have the same sign
(i.e. the block is alternation free), the variables in this block can be trivially
solved in linear time. Furthermore, in Section 5 it is seen how the vari-
ables appearing in conjunctive and disjunctive blocks with alternation can
be solved using only sub-quadratic time. The remaining task is to solve al-
ternating blocks containing both mutually dependent variables with different
signs and arbitrary connectives in right-hand side formulas.

As mentioned before, the complexity of solving such general blocks is an
important open problem; no polynomial time algorithm has been discovered
so far. On the other hand, as mentioned before, the problem is in the com-
plexity class NP ∩ co-NP [70] and can be shown to be even in UP ∩ co-UP.

Here, we present a technique to solve an alternating Boolean equation
system which is based on answer set programming. We reduce the problem of
solving alternating Boolean equation systems to computing stable models of
normal logic programs. This is achieved by devising a mapping from Boolean
equation systems to normal logic programs so the solution to a given variable
in an equation system can be determined by the existence of a stable model
of the corresponding logic program.

This kind of approach is motivated by the success that various logic pro-
gramming systems have had in solving large verification problems. For in-
stance, [26, 85, 86] demonstrate that logic programming can be applied to
the construction of model checkers for the alternation free µ-calculus. More
recently, [48] show that answer set programming can succesfully be applied
to construct a practically efficient symbolic model checker for linear tempo-
ral logic (LTL).

Recall from Section 2.6 that the problem of determining the existence of
a stable model of a normal logic program is NP-complete [72]. However,
there are answer set programming systems that are quite efficient in practice
for many large instances of the problem, for example

�� �����
system [90].

Such solvers have been used in various computer aided verification tasks, for
example in the symbolic model checking for LTL [48].

Therefore, the hypothesis is that we can employ the answer set program-
ming techniques to improve the methods to solve general form Boolean equa-
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tion systems, thus leading to practically efficient model checking techniques
for the µ-calculus.

Before giving the translation we discuss some useful properties of general
form Boolean equation systems on which our translation is based.

6.2 Properties of General Boolean Equation System

The following observation is the basis for our answer set programming based
technique to solve general form Boolean equation systems.

We define a subsystem of a Boolean equation system as follows.

Definition 48 Let E be a standard form Boolean equation system. The
Boolean equation system E ′ is a conjunctive subsystem of E , if E ′ is obtained
from E by removing exactly one disjunct in every disjunctive equation of E ;
otherwise the system E is unchanged.

For standard form Boolean equation systems with both disjunctive and
conjunctive equations we have the following lemma.

Lemma 49 Let E be a standard form Boolean equation system. Then the
following are equivalent:

1. [[E ]] = 1

2. There is a conjunctive subsystem E ′ of E with the solution [[E ′]] = 1.

Proof:
Here, we may suppose that all non-trivial occurrences of constants 1 and 0
are first removed from the equations of E by using the simplification rules
given in Section 3.3, i.e. there are only equations of the forms (σixi = 1),
(σixi = 0), (σixi = xj), (σixi = xj ∨ xk) and (σixi = xj ∧ xk).

The fact that (1) implies (2) is already shown in Proposition 3.36 of [70]
but we give here an alternative proof. Suppose [[E ]] = 1 holds. Construct
a parity game G = (V,E, v0,Ω) corresponding to E by using the translation
from Boolean equation systems to parity games given in Section 2.5. As [[E ]] =
1 holds, by Theorem 23, ∃ has a winning strategy σ∃ in G. Let G|σ be the
parity game that is induced by the winning strategy σ∃ on G.

Now, let E ′ be the conjunctive subsystem contructed as follows: for each
disjunctive equation (σixi = xj ∨ xk) of E , keep the variable corresponding
to the node σ∃(vi) and remove the other variable from the right-hand side
expression. Notice that, as every play π in G|σ has winner ∃, min{Ω(v) | v ∈
inf π} must be even for all plays π of G|σ. Then, it is easy to verify that the
dependency graph of E ′ (having the structure similar to graph G|σ) cannot
satisfy the conditions 2 (a)-(b) of Lemma 41. By Lemma 41, the solution to
E ′ is [[E ′]] = 1.

To see that (2) implies (1), suppose there is a conjunctive subsystem E ′ of
E such that [[E ′]] = 1. We show that [[E ]] = 1 holds.

Construct a parity game G = (V,E, v0,Ω) corresponding to E by using
the translation from Boolean equation systems to parity games given in Sec-
tion 2.5. We can construct from E ′ a winning strategy for player ∃ in the
parity game G = (V,E, v0,Ω) in the following way.
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For all nodes vi ∈ V∃ of game G where it is player ∃’s turn to move, define
a strategy σ∃ for ∃ to be σ∃(vi) = vj iff σixi = xj is an equation of E ′. That
is, the strategy σ∃ for player ∃ is to choose in every node belonging to player
∃ the successor node which corresponds to the variable appearing also in the
right-hand side expression of the i-th equation in the conjunctive Boolean
equation system E ′.

It is then easy to see that for the game G player ∃ wins every play by
playing according to strategy σ∃. To see this recall that, by the assumption,
[[E ′]] = 1 holds. Then, by Lemma 41, the system E ′ does not contain any
µ labelled variables that depend on x1 and are self-dependent. The crucial
observation here is that the dependency graph of E ′ contains all and only
those paths which correspond to the plays of the game G where the strategy
σ∃ is followed. Consequently, there cannot be any play of the game G that is
won by player ∀, and where player ∃ plays according to σ∃.

As ∃ has a winning strategy in G, by Theorem 23, it follows that the solu-
tion to E is [[E ]] = 1. ut

In the same way for the dual case, from each Boolean equation system
E containing both disjunctive and conjunctive equations we may construct
a subsystem E ′ which is in a disjunctive form. To obtain a disjunctive form
subsystem E ′ of E , we remove in every conjunctive equation of E exactly one
conjunct; otherwise the system E is unchanged.

Then, we have the following lemma.

Lemma 50 Let E be a standard form Boolean equation system. Then the
following are equivalent:

1. [[E ]] = 0

2. There is a disjunctive subsystem E ′ of E with the solution
[[E ′]] = 0.

Proof:
Immediate from Lemma 49, together with Lemma 36. ut

Let us illustrate the above lemmas with a simple example.

Example 51 Recall the Boolean equation system

E1 ≡ (νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3).

of Example 10. There is only one conjunctive equation νx1 = x2 ∧ x1,
yielding two possible disjunctive subsystems which can be constructed from
E1:

• if we throw away the conjunct x2, then we obtain:

E ′1 ≡ (νx1 = x1)(µx2 = x1 ∨ x3)(νx3 = x3)

• if we throw away the conjunct x1, then we obtain:

E ′′1 ≡ (νx1 = x2)(µx2 = x1 ∨ x3)(νx3 = x3).
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Using, for example, Lemma 40, we can see that these disjunctive subsystems
have the solutions [[E ′1]] = [[E ′′1 ]] = 1. By Lemma 50, a solution to E1 is
[[E1]] = 1 as expected.

In the next section we will see the application of the above lemmas to give
a compact encoding of the problem of solving alternating, general blocks of
Boolean equation systems as the problem of finding stable models of normal
logic programs.

6.3 From General Blocks to Logic Programs

Consider a standard form, alternating block of a Boolean equation system.
This block itself can be seen as a standard form Boolean equation system,
call it E . We construct a logic program which captures the local solution
[[E ]] of E . In general, there are two ways of constructing the logic program
depending on whether Lemma 49 or Lemma 50 is used.

Let us first consider the case where Lemma 50 is used. In particular,
this translation is optimal when the number of conjunctive equations of E
is less than (or equal to) the number of disjunctive equations, or that no
conjunction symbols occur in the right-hand sides of E . We construct the
following logic program Π∨(E) to capture the solution of E .

The idea is that Π∨(E) is a ground program which is polynomial in the size
of E . We give a compact description of Π∨(E) as a program with variables.
This program consists of the rules

depends(1). (7)

depends(Y )← dep(X, Y ), depends(X). (8)

reached(X, Y )← nu(X), dep(X, Y ), Y ≥ X. (9)

reached(X, Y )← reached(X,Z), dep(Z, Y ), Y ≥ X. (10)

← depends(Y ), reached(Y, Y ), nu(Y ). (11)

extended for each equation (σixi = αi) of E by

dep(i, j). if αi = xj (12)

dep(i, j). dep(i, k). if αi = (xj ∨ xk) (13)

1 {dep(i, j), dep(i, k)} 1. if αi = (xj ∧ xk) (14)

and by nu(i). for each variable xi such that σi = ν.
The informal idea of the translation is that for the solution [[E ]] of E ,

[[E ]] = 0 iff Π∨(E) has a stable model. This is captured in the following
way. The system E is turned effectively into a disjunctive system by mak-
ing a choice between dep(i, j) and dep(i, k) for each conjunctive equation
(σixi = xj ∧ xk). Hence, each stable model corresponds to a disjunctive
system constructed from E and vice versa.

The translation can be exemplified as follows.

Example 52 Recall the Boolean equation system E1 of Example 51. The
program Π∨(E1) consists of the rules 7-11 extended with rules:
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1 {dep(1, 2), dep(1, 1)} 1.
dep(2, 1). dep(2, 3).
dep(3, 3).
nu(1). nu(3).

The dual case, i.e. where Lemma 49 is used, goes along exactly the same
lines. In particular, the dual translation is optimal in the case where the
number of disjunctive equations of E is less than the number of conjunctive
equations, or where no disjunction symbols occur in the right-hand sides of
E . We construct the dual logic program Π∧(E) to capture the solution of E .
This program consists of the rules

depends(1). (15)

depends(Y )← dep(X, Y ), depends(X). (16)

reached(X, Y )← mu(X), dep(X, Y ), Y ≥ X. (17)

reached(X, Y )← reached(X,Z), dep(Z, Y ), Y ≥ X. (18)

← depends(Y ), reached(Y, Y ), mu(Y ). (19)

extended for each equation (σixi = αi) of E by

dep(i, j). if αi = xj (20)

dep(i, j). dep(i, k). if αi = (xj ∧ xk) (21)

1 {dep(i, j), dep(i, k)} 1. if αi = (xj ∨ xk) (22)

and by mu(i). for each variable xi such that σi = µ.
The informal idea of the dual translation is that for the solution [[E ]] of

E , [[E ]] = 1 iff Π∧(E) has a stable model. This is captured in the following
way. The system E is turned effectively into a conjunctive system by making a
choice between dep(i, j) and dep(i, k) for each disjunctive equation (σixi =
xj ∨ xk). Hence, each stable model corresponds to a conjunctive system
constructed from E and vice versa.

6.4 Correctness of the Translation

In this section, we prove formally the correctness of the translation. In par-
ticular, the main result below can be established by Lemmas 40 and 50

Theorem 53 Let E be a standard form, alternating Boolean equation system.
Then [[E ]] = 0 iff Π∨(E) has a stable model.

Proof:
Consider a system E and its translation Π∨(E). The rules (12–14) effectively
capture the dependency graphs of the disjunctive systems that can be con-
structed from E . More precisely, there is a one to one correspondence be-
tween the stable models of the rules (12–14) and disjunctive systems that can
be constructed from E such that for each stable model ∆, there is exactly
one disjunctive system E ′ with the dependency graph GE ′ = (V,E) where
V = {i | dep(i, j) ∈ ∆ or dep(j, i) ∈ ∆} and E = {(i, j) | dep(i, j) ∈ ∆}.

58 6 SOLVING GENERAL BLOCKS BY A REDUCTION TO LOGIC PROGRAMS



Now, one can establish that each stable model ∆ of Π(E) is an extension
of a stable model ∆′ of the rules (12–14), i.e., of the form ∆ = ∆′ ∪∆′′ such
that in the corresponding dependency graph there is no variable xj such that
σj = ν and x1 depends on xj and xj is self-dependent. By Lemma 50,
[[E ]] = 0 iff there is a disjunctive system E ′ that can be constructed from E for
which [[E ′]] = 0. By Lemma 40, for a disjunctive system E ′, [[E ′]] = 1 holds if
and only if there is a variable xj such σj = ν and x1 depends on xj and xj

is self-dependent. Hence, Π(E) has a stable model iff there is a disjunctive
system E ′ that can be constructed from E whose dependency graph has no
variable xj such that σj = ν and x1 depends on xj and xj is self-dependent
iff there is a disjunctive system E ′ with [[E ′]] 6= 1, i.e., [[E ′]] = 0 iff [[E ]] = 0. ut

Similar theorem holds also for the dual program, which allows us to solve
all alternating blocks of standard form Boolean equation systems.

Theorem 54 Let E be a standard form, alternating Boolean equation system.
Then [[E ]] = 1 iff Π∧(E) has a stable model.

Proof:
In the similar way as for the dual program in Theorem 53. ut

Perhaps, further explanation of our translations is in order here. Although
Π∨(E) and Π∧(E) are given using variables for the theorems above, a finite
ground instantiation of the programs are sufficient.

To exemplify the finite ground instantiation for the case Π∨(E) we intro-
duce a relation depDom such that depDom(i, j) holds iff there is an equa-
tion (σixi = αi) of E with xj occurring in αi. Now, the sufficient ground
instantiation is obtained by substituting variablesX, Y in the rules (8–9) with
all pairs i, j such that depDom(i, j) holds, substituting variables X, Y, Z in
rule (10) with all triples l, i, j such that nu(l) and depDom(i, j) hold and
variable Y in rule (11) with every i such that nu(i) holds. This means also
that such conditions can be added as domain predicates to the rules without
losing the correctness of the translation. For example, rule (10) could be
replaced by

reached(X, Y )← nu(X), depDom(Z, Y ), reached(X,Z),

dep(Z, Y ), Y ≥ X.

Notice that such conditions make the rules domain-restricted (i.e. each vari-
able in a rule occurs also in a positive domain predicate in the rule body) as
required, e.g., by the

�� �����
system.

When incorporating the above solution technique into a general proce-
dure defined in Section 3, a drawback of the above encodings might be that
they can only find a local solution to a general block of a Boolean equation
system as defined in Definition 9. This means that, in order to solve all vari-
ables of a general form block of a Boolean equation system one needs to solve
each variable separately with (possibly) distinct encodings. This calls for an
extension of the answer set programming encoding for finding global solu-
tions as defined in Definition 11. However, the global encoding is left for
future work.
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6.5 Implementation Issues

In Section 8, we will describe some experimental results on solving alternat-
ing Boolean equation systems with the approach presented in Section 6. We
will demonstrate the technique on series of examples which are solved us-
ing the

�� �����
system (���� ������ �� �� ���� �	 
���	�������� ������)

as the ASP solver.
An advantage of using

�� �����
is that it provides an implementation for

cardinality constraint rules used in our translation, and includes primitives
supporting directly such constraints without translating them first to corre-
sponding normal rules. We have used

�� �����
version 2.26 to find the solu-

tions and
������ 1.0.13 for parsing and grounding the input.

The encodings that we have used for the experiments are the translations
represented in Section 6.3 with a couple of optimizations. Here, we present
these optimizations for the case Π∨(E); the dual case Π∧(E) is omitted but it
can be treated in the similar way.

First, when encoding of dependencies as given in rules (12–14) we differ-
entiate those dependencies where there is a choice from those where there is
none, i.e., for each equation (σixi = αi) of E we add

ddep(i, j). if αi = xj

ddep(i, j).ddep(i, k). if αi = (xj ∨ xk)
1{cdep(i, j), cdep(i, k)}1. depDom(i, j). depDom(i, k). if αi = (xj ∧ xk)

instead of rules (12–14). Secondly, in order to make use of this distinction
and to allow for intelligent grounding, rules (8–10) are rewritten using the
above predicates as domain predicates in the following way.

depends(Y )← ddep(X, Y ), depends(X).

depends(Y )← depDom(X, Y ), cdep(X, Y ), depends(X).

reached(X, Y )← nu(X), ddep(X, Y ), Y ≥ X.

reached(X, Y )← nu(X), depDom(X, Y ), cdep(X, Y ), Y ≥ X.

reached(X, Y )← nu(X), reached(X,Z), ddep(Z, Y ), Y ≥ X.

reached(X, Y )← nu(X), depDom(Z, Y ), reached(X,Z),

cdep(Z, Y ), Y ≥ X.

Notice that the size of the resulting translations areO(e·v) = O(v2) where
e is the size of the Boolean equation system and v is the number of left-hand
side variables.

It is worthwhile to observe that these kinds of logic programming encod-
ings could also be used to derive encodings into propositional satisfiability
because there exist translations from normal logic programs to propositional
satisfiability, for example [51]. If one uses the above translations from gen-
eral form Boolean equation systems to normal logic programs as a basis for
such mappings to propositional satisfiability, it will not straightforwardly lead
to compact encodings into propositional logic. The translation of [51] is sub-
quadratic; it is roughly of size O(n logn) where n is the size of the logic
program. Therefore, in the next section we will study how to give direct
encodings into propositional formulas.
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For instance, it turns out that direct encodings of Boolean equation sys-
tems into propositional satisfiability are more compact than the propositional
encoding obtained by first translating a Boolean equation system into logic
program and using the translation in [51].

Next, before turning to experimental issues, we present another approach
to solve alternating blocks of Boolean equation systems through reductions
to difference logic and propositional logic.
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7 SOLVING GENERAL BLOCKS BY A REDUCTION TO SATISFIABILITY

As previous section, this section addresses the question of how to obtain prac-
tically effective methods to solve hard, general form Boolean equation sys-
tems for which no polynomial time solution algorithms are known to exist.
In this section, the main idea of our approach is to define encodings from
general blocks of a Boolean equation system into satisfiability problems. The
encodings are given in such a way that solutions to Boolean equation systems
can be obtained by solving the corresponding satisfiability problems. Thus,
the results of this section give solving methods for general form Boolean equa-
tion systems using various satisfiability solvers.

The original idea of µ-annotations described in subsection 7.2 is from
[54]. There Jurdziński presents a progress measure algorithm for solving par-
ity games which is based on the µ-annotations. The proposional encoding
given in subsection 7.5 is initially from [63], whereas the other results in this
section are essentially from [47].

We first motivate this kind of approach, and introduce some important
notions together with their properties. Then, we develop mappings from
general blocks of a Boolean equation system to satisfiability problems. We
also show the correctness of our translations and estimate the sizes of the
resulting formulas.

7.1 Solving General Form Blocks with Satisfiability Solvers

The propositional satisfiability problem (SAT) is NP-complete [24]. Recall
from Theorem 27 in subsection 2.7 that the satisfiability problem for dif-
ference logic is NP-complete too. Hence, unlike solving Boolean equation
systems, both of these satisfiability problems are widely not believed to admit
polynomial time solution algorithms.

Yet, in reality there are modern SAT solvers that are efficient in practice
for many large instances of the problem, for example ZCHAFF [77]. Such
solvers are used successfully in computer aided verification tasks, for example
in bounded model checking [16]. Also, quite efficient solvers have recently
been developed for testing the satisfiability of difference logic, for instance
DPLL(T) [79]. In recent years, many difference logic solvers have effectively
been used to solve a wide range of computationally hard problems in the
realm of formal verification.

Motivated by the success of these kinds of satisfiability solvers, we present
an approach to solve Boolean equation systems by a reduction to satisfiability
problems. Here, the research hypothesis is that one can employ the recent re-
sults of satisfiability solving techniques to significantly improve the methods
to solve general form Boolean equation systems, thus leading to practically
efficient model checking techniques for the µ-calculus. The techniques in
question include, e.g., learning combined with restarts which are often im-
plemented in modern SAT solvers.

The reduction is done in two stages, first into difference logic [79]. This
gives rise to a solving method for general Boolean equation systems through
efficient difference logic solvers such as DPLL(T) [79]. In the second stage
the integer variables and constraints of the difference logic encoding are
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replaced with a set of Boolean variables and constraints on them, giving
rise to a pure SAT encoding of the problem. This enables a much wider
range of solvers to be used than the difference logic framework, for example
ZCHAFF [77].

One might argue that, theoretically, the proposed approach is not interest-
ing because it is obvious that such reductions must exist. Furthermore, NP-
complete satisfiability problems are believed to be harder than solving gen-
eral Boolean equation systems which, as mentioned before, are contained
in NP ∩ co-NP and even in UP ∩ co-UP. Again, it is expected that clever
heuristics and advanced search space pruning techniques implemented in
current satisfiability solvers can make up for this, and the reductions may re-
sult in solution techniques for general form Boolean equation systems which
are efficient in practice.

However, developing a computationally attractive reduction to satisfiabil-
ity problems is often a non-trivial and challenging task. As mentioned before,
all known satisfiability checkers use algorithms whose worst case running
times are exponential in the number of variables in the formulas. Moreover,
if the encoding is of substantial size, this can confuse the search heuristics
and introduce significant computational overhead in search space pruning.
Hence, a computationally interesting reduction should introduce as few vari-
ables as possible, and be of low polynomial size. This means that the problem
to be solved by a reduction to SAT often needs to be studied carefully in or-
der to understand the essential properties of the solutions. This is what we
aim to do in the following subsections.

Our reduction is based on a comment by Emerson where he shows inclu-
sion of the model checking problem for the µ-calculus in the complexity class
NP. Essentially, Emerson writes in [30] that the inclusion of the µ-calculus
model checking problem in the class NP can be seen as follows:

Guess a rank for each µ-subformula at each state in a transition
system. Show that the lexicographic order on the tuples through
the transition system is well-founded.

Following the idea of Emerson about ranks, with the aim of a charac-
terisation of solutions to Boolean equation systems, we define the notion of
µ-annotation for dependency graphs of Boolean equation systems. The no-
tion of µ-annotation is closely related to Jurdziński’s progress measures for
parity games [54].

Intuitively, progress measures are data structures consisting of local con-
straints which together ensure the global property that for all cycles of a parity
game conforming to a certain strategy the parity of the least occurring priority
in the cycle is even. Jurdziński presents a progress measure algorithm [54]
for parity games that sets these data structures to an initial value and updates
them iteratively.

In contrast to this algorithmic approach, our reductions leave it entirely
to the satisfiability solvers to find the final values of the µ-annotations. Since
our approach is not in any way an iterative procedure, we call the data struc-
tures µ-annotations in order to stress their static nature. But, we attribute the
theory of µ-annotations to Jurdziński explicitly. Nevertheless, we provide cor-
rectness proofs that differ slightly from Jurdziński’s work [54] in the related
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setting of parity games.

7.2 Characterising Solutions with µ-Annotations

The key notion in our reduction is a µ-annotation which is used to give a
characterization of solutions to Boolean equation systems. Intuitively, it is
a labeling of vertices of a dependency graph with tuples of natural numbers
satisfying certain properties. Let us define formally such labelings for variable
dependency graphs.

Given a general, standard form Boolean equation system E with equations

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

and dependency graphG = (V,E, `), we define Odd(G) = {p | p is odd and
H(v) = p for some v ∈ V }, Odd<p(G) = Odd(G) ∩ {i ∈ N | 1 ≤ i < p},
and mop(G) = max Odd(G).

Definition 55 (µ-Annotation) A µ-annotation for G is a function η : V →
N

|Odd(G)| that assigns to each v ∈ V a tuple a = (a1, a3, . . . , amop(G)) ∈
N

|Odd(G)|.

Intuitively, a µ-annotation for a dependency graph G is simply a function
η : V → N

|Odd(G)| that assigns to each v ∈ V an integer tuple with as many
components as there are odd labels in the alternation hierarchy H.

Given two tuples a = (a1, . . . , amop(G)) and b = (b1, . . . , bmop(G)) of a
µ-annotation for G and a p ≤ mop(G) (not necessarily odd), we define an
ordering on tuples in the following way

a�p b iff

{

ai ≤ bi for all i ∈ Odd<p(G) if p is even,
ap < bp and ai ≤ bi for all i ∈ Odd<p(G) otherwise.

To demonstrate the ordering on tuples we provide here a simple example.

Example 56 Suppose we have Odd(G) = {1, 3, 5}. Then, clearly mop(G) =
5. Consider two tuples a = (a1, a3, a5) ∈ N

|Odd(G)| and b = (b1, b3, b5) ∈
N

|Odd(G)|. Let a = (2, 4, 3) and b = (2, 5, 3). Now, we have a �2 b because
a1 ≤ b1 holds. On the other hand, a�1 b does not hold because it is not the
case that a1 < b1. Finally, we have that a �3 b because both a3 < b3 and
a1 ≤ b1 hold.

In the following, we will write a(p) for every p ∈ Odd(G) to denote the
p-component of a. We will also write succ(v) for the set {w | (v, w) ∈ E}.

Next, we define successful µ-annotations for conjunctive Boolean equa-
tion systems. Such µ-annotations can then be used to give another charac-
terization of solutions to Boolean equation systems.

Definition 57 (Successful µ-annotation) Given a conjunctive Boolean equa-
tion system

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

with dependency graph G = (V,E, `) and alternation hierarchy H, its µ-
annotation is called successful iff for all (v, w) ∈ E we have that η(w)�H(w)

η(v).
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The following property about µ-annotations holds for conjunctive form
Boolean equation systems.

Theorem 58 Let G = (V,E, `) be a dependency graph of a conjunctive
Boolean equation system and let v ∈ V . There is a successful µ-annotation
for G iff G does not contain a path from v to a cycle of G where the smallest
H label appearing in this cycle is odd.

Proof:
(⇒) Let η be a successful µ-annotation for G. Assume that G contains a
cycle (vl, vl+1, . . . , vk) such that there is a path from node v to some node
appearing in this cycle. Let vl be the node of cycle (vl, vl+1, . . . , vk) having
the smallest label in the alternation hierarchy and let p = H(vl) be odd.
Then, we have η(vl)

(p) > η(vl+1)
(p) ≥ . . . ≥ η(vk)

(p) ≥ η(vl)
(p) which is a

contradiction. Hence, there cannot exist a path from v to a cycle of G where
the smallest H label appearing in the cycle is odd.

(⇐) We define the µ-annotation from graph G. For every p ∈ Odd(G)
let Ep = {(v, w) ∈ E | H(w) ≥ p} be the set of edges in G that lead
to nodes with priorities not less than p. Furthermore, for every v ∈ V let
W p

v = {w | (v, w) ∈ E+
p } ∩ {v ∈ V | p = H(v)} be the set of nodes that

have priority p and are reachable from v via this relation, where E+
p is the

transitive closure of Ep.
For every v ∈ V and every p ∈ Odd(G), we define a µ-annotation η for G

as η(v)(p) = |W p
v | and show that this annotation is successful.

Suppose η is not successful. Then, there is a v ∈ V and a w ∈ succ(v)
s.t. η(w) �H(w) η(v) does not hold. Since w ∈ succ(v), i.e. w is reachable
from v, we have W p

w ⊆ W p
v and, hence, η(w)(p) ≤ η(v)(p) for all p ≤ H(w).

Since η(w) �H(w) η(v) does not hold by the assumption, it must be the case
that H(w) is odd and η(w)(H(w)) 6< η(v)(H(w)). Then, it must be the case

that η(w)(H(w)) = η(v)(H(w)), and we have W
H(w)
w = W

H(w)
v . This means

that (w, v) ∈ E+
H(w), i.e. v is reachable from w whilst not seeing a node with

alternation hierarchy label smaller than H(w). But, then there is a cyclic
path on which the least H label seen infinitely often is H(w) which is odd.
We conclude that η must be a successful µ-annotation. ut

Importantly, Theorem 58 gives another characterization for the solution of
conjunctive Boolean equation systems.

A direct consequence of the proof of Theorem 58 is the fact that the do-
main of annotation values can be bounded by a relatively small number. The
same observation has also been made regarding the progress measures [54].
Consequently, the following property holds for the domain of µ-annotation
values.

Corollary 59 Let G = (V,E, `) be a dependency graph and H an alter-
nation hierarchy of a conjunctive Boolean equation system E . Let np =
|{v ∈ V | H(v) = p}| for all p ∈ Odd(G). There is a successful µ-
annotation for G iff there is a successful µ-annotation η for G s.t. for all
v ∈ V : η(v) ∈ {0, . . . , n1} × . . .× {0, . . . , nmop(G)}.

This property plays an essential role in our propositional SAT encoding.
We now turn to define the encodings based on µ-annotations.
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7.3 Encoding Solutions in Difference Logic

Given a standard form Boolean equation system

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

with dependency graph G = (V,E, `) and alternation hierarchyH, we build
a difference logic formula ΦG that is satisfiable iff the solution to E is [[E ]] = 1.

The formula ΦG contains Boolean variables Sv for every v ∈ V and Tv,w

for every (v, w) ∈ E. They are used to guess a subgraph of G inducing a con-
junctive Boolean equation system E ′ constructed from E where the solution
to E ′ is [[E ′]] = 1.

In addition, ΦG contains integer variables xv
p for every v ∈ V and every

p ∈ Odd(G) in order to model a µ-annotation.
First, we partition V into two sets V∨ = {i ∈ V | (σixi = αi) is disjunctive}

and V∧ = {i ∈ V | (σixi = αi) is conjunctive}. The formula ΦG is defined
to be

(S1 ∧ Φ∨ ∧ Φ∧ ∧ ΦV ∧ ΦA).

Here, the subformulas are defined as follows:

Φ∨ =
∧

v∈V∨

(Sv →
∨

(v,w)∈E

Tv,w),

Φ∧ =
∧

v∈V∧

(Sv →
∧

(v,w)∈E

Tv,w),

ΦV =
∧

v∈V,v 6=1

((
∨

(w,v)∈E

Tw,v)→ Sv), and

ΦA =
∧

(v,w)∈E

(Tv,w → Ψv,w),

where Ψv,w is given by

Ψv,w =











∧

p∈Odd<H(w)(G)

(xv
p ≥ xw

p ) if H(w) even,

(xv
H(w) > xw

H(w)) ∧
∧

p∈Odd<H(w)(G)

(xv
p ≥ xw

p ) otherwise.

Intuitively, the above translation from the Boolean equation system E to
the formula ΦG is such that the satisfying assignments to ΦG capture the
conjunctive Boolean equation systems which can be constructed from E and
have successful µ-annotations. Here, the Boolean variables of the formula
ΦG which are assigned a value > model the conjunctive Boolean equation
system. In case there is no satisfying assignment to the formula ΦG, then
there is no way of constructing a conjunctive Boolean equation system from
E with successful µ-annotation.

The following example demonstrates the translation of a Boolean equation
system into a difference logic formula.

Example 60 As an example of a difference logic formula capturing the solu-
tion to a general Boolean equation system, we give the translation ΦG of the
following equations over X = {x1, x2, x3, x4}:

(µx1 = x2 ∧ x3)(νx2 = x3 ∨ x4)(µx3 = x2 ∧ x4)(µx4 = x2 ∨ x3).
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First, we see that the alternation hierarchy is given by H(1) = 1, H(2) = 2,
H(3) = 3 and H(4) = 4. The dependency graph of this Boolean equation
system is G = (V,E) where

V ={1, 2, 3, 4}, and

E ={(1, 2), (1, 3),

(2, 3), (2, 4),

(3, 2), (3, 4),

(4, 2), (4, 3)}.

The set V = {1, 2, 3, 4} is partitioned into V∨ = {2, 4} and V∧ = {1, 3}. So,
the formula ΦG is simply

(S1 ∧ Φ∨ ∧ Φ∧ ∧ ΦV ∧ ΦA),

where the subformulas are given as follows

Φ∨ =(S2 → (T2,3 ∨ T2,4))∧
(S4 → (T4,2 ∨ T4,3)),

Φ∧ =(S1 → (T1,2 ∧ T1,3))∧
(S3 → (T3,2 ∧ T3,4)),

ΦV =((T4,2 ∨ T3,2)→ S2)∧
((T1,3 ∨ T2,3 ∨ T4,3)→ S3)∧
(T2,4 ∨ T3,4)→ S4), and

ΦA =(T1,2 → (x1
1 ≥ x2

1))∧
(T1,3 → ((x1

1 ≥ x3
1) ∧ (x1

3 > x3
3)))∧

(T2,3 → ((x2
1 ≥ x3

1) ∧ (x2
3 > x3

3)))∧
(T2,4 → ((x2

1 ≥ x4
1) ∧ (x2

3 ≥ x4
3)))∧

(T3,2 → (x3
1 ≥ x2

1)∧
(T3,4 → ((x3

1 ≥ x4
1)) ∧ (x3

3 ≥ x4
3))∧

(T4,2 → (x4
1 ≥ x2

1))∧
(T4,3 → ((x4

1 ≥ x3
1) ∧ (x4

3 > x3
3))).

Clearly, the solution to the above Boolean equation system is 1, and as ex-
pected the formula ΦG is satisfiable.

7.4 Correctness of the Encoding

Next, we prove the correctness of the difference logic encoding for Boolean
equation systems. The correctness of the translation in the previous subsec-
tion can be stated as the following theorem.

Theorem 61 The solution to E with dependency graph GE and alternation
hierarchy H is [[E ]] = 1 iff the difference logic formula ΦG is satisfiable.

Proof:
(⇒) Suppose the solution to E is [[E ]] = 1. By Lemma 49, there is a con-
junctive Boolean equation system E ′ with the solution [[E ′]] = 1. Let GE ′ =
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(V ′, E ′, `′) be the dependency graph of E ′. This gives rise to an assignment
β of the propositional variables Sv and Tv,w for any (v, w) ∈ E: β(Sv) = >,
resp. β(Tv,w) = >, if there is a path in GE ′ which visits the node v ∈ V ′,
resp. traverses the edge (v, w) ∈ E ′. It is not hard to see that the conjuncts
S1, Φ∨, Φ∧, and ΦV are satisfied by this assignment β.

According to Theorem 58 there is a successful µ-annotation η for GE ′ .
This gives rise to an assignment β to the non-propositional variables xv

p for
all the nodes of the dependency graph GE ′ = (V ′, E ′, `′) defined by β(xv

p) =

η(v)(p). Since η is successful, we have η(w) �H(w) η(v) for all (v, w) ∈ E ′,
and hence, the conjunct ΦA is also satisfied. Altogether, there is a satisfying
assignment for ΦG.

(⇐) Suppose β is a satisfying variable assignment for ΦG. It is easy to de-
rive from this a dependency graph GE ′ = (V,E ′, `) of a conjunctive Boolean
equation system E ′ as follows: for every node v ∈ V∨ such that β(Sv) = >
add an arbitrary edge (v, w) to E ′ such that β(Tv,w) = >, and for every node
v ∈ V∧ such that β(Sv) = > add all edges (v, w) ∈ E to E ′. The conjuncts
S1, Φ∨, Φ∧ and ΦV ensure that suitable edges needed by the construction
above exist and that GE ′ induced in this way is indeed a dependency graph
of a conjunctive Boolean equation system E ′ that can be constructed from E .

Furthermore, we can extract a µ-annotation η forGE ′ defined by η(v)(p) =
β(xp

v) for any v ∈ V and any p ∈ Odd(G). If some β(xp
v) turns out to be

negative, then it is easy to see from our translation that the integer values of
a satisfiable model can be made to positive integers by first offsetting every

β(xp′

v′) by a large enough positive integer offset to make all integer variables of
an assignment positive, and the formula still remains satisfiable with this as-
signment consisting of positive values only. It is easy to see that the conjunct
ΦA ensures η is successful µ-annotation for GE ′ .

We note that, given any Boolean equation system, interchanging subse-
quent equations with the same fixpoint sign does not influence the solution.
Thus, Lemma 41 holds also for the alternation hierarchy labels of depen-
dency graphs in the following sense: we have [[E ′]] = 0 iff GE ′ contains a
cycle which is reachable from node 1 and the smallest H label appearing in
this cycle is odd.

But, according to Theorem 58 there cannot exist a path from node 1 ∈
V to a cycle of GE ′ where the smallest H label appearing in this cycle is
odd. Therefore, the solution to the conjunctive Boolean equation system E ′
corresponding to GE ′ has the solution [[E ′]] = 1. Finally, by Lemma 49 the
solution to E is indeed [[E ]] = 1. ut

By Theorem 61, a general Boolean equation system can now be solved by
first converting the equations into a corresponding difference logic formula,
and then testing the satisfiability of the formula.

We now estimate the size of the translation. The size of the encoding is
characterized as follows.

Proposition 62 Given a dependency graphG = (V,E, `) of a Boolean equa-
tion system E , the size of the difference logic formula ΦG is O(|E| · pmax )
where pmax = max{H(v) | v ∈ V }.
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Recall that, according to our wishlist in the previous subsections, a compu-
tationally attractive encoding should introduce only a small number of vari-
ables and be of low polynomial size. By Proposition 62, one may conclude
that this goal has been achieved.

Many satisfiability solvers for difference logic, such as DPLL(T) [79], as-
sume that an input formula is in conjunctive normal form (CNF). Fortu-
nately, the above size bound can be seen to hold even when ΦG is required
to be in CNF. In fact, by careful analysis of the difference logic formula ΦG

our implementation of the translation is able to convert ΦG directly to CNF
without a blowup, and even without introducing any additional Boolean vari-
ables.

7.5 An Encoding into Propositional Logic

We present an encoding of the formula ΦG for a dependency graph G into
propositional logic, i.e. the subset of difference logic with Boolean variables
only. Clearly, all that remains to be done is to translate the integer variables
and constraints on them of the form (xv

p ≥ xw
p ) and (xv

H(w) > xw
H(w)). In

[63], a similar propositional SAT encoding is given for parity games.

Let G = (V,E, `) be the underlying dependency graph and H the al-
ternation hierarchy. By Corollary 59, the domain of the difference logic
variables xv

p for a fixed p and any v can be bounded by |Vp| + 1 where
Vp = {v ∈ V | H(v) = p}. Let mp = dlog2(|Vp| + 1)e be the number
of bits needed for a binary encoding of a value in the range {0, . . . , |Vp|}.
Hence, a set of propositional variables xv

p,i for i ∈ {0, . . . , mp − 1} will be
used to encode the value of each integer variable xv

p.

For each v, w ∈ V , each p ∈ Odd(G) and each m ≥ 1 we present recur-
sively defined propositional formulas GreaterOrEquals and StrictlyGreater

parametrised by v, w, p,m and stating 0 ≤ xw
p ≤ xv

p < 2m, and respectively
0 ≤ xw

p < xv
p < 2m.

GreaterOrEquals(v, w, p, 0) = xw
p,0 → xv

p,0

GreaterOrEquals(v, w, p,m) = (xw
p,m → xv

p,m) ∧
(

(xw
p,m ∨ ¬xv

p,m)→
GreaterOrEquals(v, w, p,m− 1)

)

StrictlyGreater (v, w, p, 0) = xv
p,0 ∧ ¬xw

p,0

StrictlyGreater (v, w, p,m) = (xw
p,m → xv

p,m) ∧
(

(xw
p,m ∨ ¬xv

p,m)→
StrictlyGreater (v, w, p,m− 1)

)

Intuitively, both formulas assert that the mth bit of xv
p is greater or equals to

the mth bit of xw
p , and if they are equal then the same has to hold recursively

for the next lower bit. However, formula StrictlyGreater has to ensure in the
base case that at least the values of the lowest bits differ unless some higher
bits have differed already.

The encodings of the integer constraints occurring in ΦG can simply be
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replaced by

(xv
p ≥ xw

p ) with GreaterOrEquals(v, w, p,mp), and

(xv
H(w) > xw

H(w)) with StrictlyGreater (v, w,H(w), mH(w)).

In this way, we can keep ΦG as the name of the formula obtained by replac-
ing all integer variables and all integer constraints on them by their Boolean
counterparts as described above.

It is easy to see that the above propositional SAT encoding is correct, and
we have the following property.

Theorem 63 The solution to E with dependency graph GE is [[E ]] = 1 iff
the propositional logic formula ΦG (i.e. ΦG with only Boolean variables) is
satisfiable.

Proof:
Immediate from the replacement of integer variables and constraints on them
by Boolean counterparts, together with Theorem 61 and Corollary 59. ut

When compared to the difference logic encoding, the above SAT encod-
ing is more costly in many cases. This is due to the fact that (usually) the
SAT encoding introduces more variables than the difference logic encoding,
but the former is still of relatively low polynomial size. More precisely, the
size of the SAT encoding can be characterized as follows.

Proposition 64 Given a Boolean equation system E with dependency graph
GE = (V,E, `) and alternation hierarchy H the size of the propositional
logic formula ΦG (i.e. ΦG with only Boolean variables) is O(|E| · dpmax

2
e ·

dlog(mmax + 1)e) where pmax = max{H(v) | v ∈ V } and mmax =
max{|V1|, |V3|, . . . , |Vmop(G)|}.

Typically, propositional satisfiability solvers assume that an input propo-
sitional formula is in conjunctive normal form. This assumption does not
raise a problem because the worst case bound in Proposition 64 can be ob-
tained also for a CNF propositional formula. For instance, as suggested in the
well-known Tseitin transformation [98] for propositional logic, the equivalent
CNF formula can be obtained by introducing additional Boolean variables
in the CNF conversion process.

Instead of using the Tseitin transformation, our implementation of the
propositional encoding converts directly a given Boolean equation system
instance to a slightly optimized CNF propositional formula in the following
way. First, starting with the difference logic formula the subformulas Φ∃, Φ∀
and ΦV can be trivially transformed to CNF without introducing any new
variables. Then, the equivalence

(φ→ (ψ1 ∧ ψ2 ∧ . . . ∧ ψk)) ≡
((φ→ ψ1) ∧ (φ→ ψ2) ∧ . . . ∧ (φ→ ψk))

is used to turn the formula ΦA into a conjunction of constraints of the forms

(Tv,w → (x > y)) and (Tv,w → (x ≥ y))
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where x and y are integer variables.
To encode the conjuncts of the form

(Tv,w → (x > y))

where the integer variables x and y are to be encoded in the Boolean domain
in n+1 bits, our implementation introduces new Boolean variables xi and yi

for each 0 ≤ i ≤ n (here xn and yn are the most significant bits). In addition,
the implementation introduces new variables gt(x, y)i for each 0 ≤ i ≤
n. Our implementation encodes the given conjuncts as the following CNF
clauses:

(¬gt(x, y)0 ∨ ¬y0) ∧ (¬gt(x, y)0 ∨ x0) ∧
∧

0<m≤n

((¬gt(x, y)m ∨ ¬ym ∨ xm) ∧

(¬gt(x, y)m ∨ ¬ym ∨ gt(x, y)m−1) ∧
(¬gt(x, y)m ∨ ym ∨ xm ∨ gt(x, y)m−1)) ∧
(¬Tv,w ∨ gt(x, y)n)

In the same way, to encode conjuncts of the form

(Tv,w → (x ≥ y))

the implementation introduces variables xi and yi for each 0 ≤ i ≤ n.
In addition, the implementation introduces new variables ge(x, y)i for each
0 ≤ i ≤ n. Then, the implementation encodes the given conjunct as the
following CNF clauses:

(¬ge(x, y)0 ∨ ¬y0 ∨ x0) ∧
∧

0<m≤n

((¬ge(x, y)m ∨ ¬ym ∨ xm) ∧

(¬ge(x, y)m ∨ ¬ym ∨ ge(x, y)m−1) ∧
(¬ge(x, y)m ∨ ym ∨ xm ∨ ge(x, y)m−1)) ∧
(¬Tv,w ∨ ge(x, y)n)

Notice that the resulting formulas have only one new variable for each bit
in the numbers and only three clauses for each bit when n > 0, leading to
quite compact encodings.

7.6 Discussion

In the previous subsections, we have seen how to reduce the problem of solv-
ing general form Boolean equation systems to difference logic satisfiability
and propositional SAT. As mentioned before, these reductions are partic-
ularly useful because of the availability of several satisfiability checkers to
solve the generated difference logic and propositional satisfiability problem
instances efficiently in practice. The rate of the improvement in the per-
formance of the state-of-the-art satisfiability checkers has been very high in
recent years. It is expected that this makes the reductions even more useful
in the future.
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We have implemented the translations from general form Boolean equa-
tion systems to difference logic and SAT presented in the previous subsec-
tions. In Section 8.2, we report experimental results on several classes of
benchmark problems.

Notice that the encodings given in the previous subsections can only find
a local solution to a general Boolean equation system as defined in Defini-
tion 9. Therefore, in order to find a global solution to general blocks of a
Boolean equation system with these encodings one may need to solve each
variable separately. Clearly, this might be a drawback when incorporating the
techniques into a general solution procedure defined in Section 3.

For further work, of special interest are thus the extensions of the encod-
ings to find global solutions defined in Definition 11. In fact, it is not difficult
to extend the reductions to a global Boolean equation system solver – an en-
coding that computes for each node of the dependency graph the solution to
the variable in question.

The straightforward extension to find global solutions roughly doubles the
number of variables and clauses in the formulas. For instance, every node
of the dependency graph can be equipped with two data structures: a µ-
annotation and a dually defined ν-annotation. The formula then asserts that,
either the µ- or the ν-annotation needs to be locally successful.

The duality of the problem can also be exploited to optimize the transla-
tion, in the same way as in the logic programming encoding. Namely, one
can choose between guessing either a conjunctive or a disjunctive Boolean
equation system, always giving the encoding for the case where the search
space is minimized.

The presented reductions from Boolean equation systems to satisfiability
problems are important because they enable integration of these kinds of
fixpoint equation checkers to other SAT based verification technologies. For
example, the results in the previous subsections are directly applicable to
the symbolic model checking of µ-calculus [52], and to the symbolic model
checking of related formalisms like alternating automata [46].
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8 EXPERIMENTS ON SOLVING BOOLEAN EQUATION SYSTEMS

In this section, we evaluate experimentally the solution techniques proposed
in the previous sections. First, we study the performance of solvers for con-
junctive and disjunctive Boolean equation systems for µ-calculus model check-
ing problems. The solvers are implementations of the solution algorithms
described in Section 5. In the remaining case studies we use SMODELS [90]
answer set programming system, difference logic solver DPLL(T) [79] and
SAT solver ZCHAFF [77] to solve general form Boolean equation systems.
We have compared the various encodings presented in Section 6 and Sec-
tion 7 on difficult instances of general Boolean equation systems.

The problem instances and generators used in the thesis are available via
the internet, see ���� ������ �� �� ���� �	 
���	��������� ��� ��� ������������� ������ � ���� ���.

8.1 Tests for Conjunctive and Disjunctive Blocks

Next, we give experimental results using implementations of the solution
algorithms for alternating, conjunctive and disjunctive form Boolean equa-
tion systems presented and discussed in Section 5. We have implemented
the algorithms in the C programming language [58]. We have evaluated the
performance of the algorithms using verification problem benchmarks.

Model Checking Regular Models

As our first benchmarks we use two sets of µ-calculus model checking prob-
lems from [67] and [91], converted to Boolean equation systems. The verifi-
cation problems consist of model checking µ-calculus formulas of alternation
depth 2, on a sequence of regular labelled transition systemsMk of increasing
size (see Figure 11).

Suppose we want to check, at initial state s of process Mk, the property
that transitions labelled b occur infinitely often along every infinite path of
the process. This is expressed with the µ-calculus formula:

φ1 ≡ νX.µY.([b]X ∧ [−b]Y ) (23)

The property is false at state s and thus the corresponding Boolean equation
systems have solution 0.

In second series of examples, we check the property that there is an execu-
tion in Mk starting from state s, where action a occurs infinitely often. This
is expressed with the µ-calculus formula

φ2 ≡ νX.µY.(〈a〉X ∨ 〈−a〉Y ) (24)

which is true at initial state s of the process Mk.
The problems of determining whether the system Mk satisfies the speci-

fications φ1 and φ2 can be directly encoded as problems of solving the cor-
responding alternating Boolean equation systems, which are in conjunctive
and disjunctive forms.

As an illustration we explain here the transformation of the first formula φ1

using the standard translation [1, 4, 70] from µ-calculus to Boolean equation
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Figure 11: Process Mk from [67, 91] for model checking the properties φ1

and φ2.

systems (see Figure 3). If we consider a labelled transition system Mk =
(S,A,−→) in Figure 11 then the Boolean equation system looks like:

ν xs = ys

µ ys =
∧

s′∈∇(a,s)

xs′ ∧
∧

s′∈∇(¬a,s)

ys′







for all s ∈ S.

Here, ∇(a, s) := {s′|s a−→ s′} and ∇(¬a, s) := {s′|s b−→ s′ and b 6= a}.
We report the times for the solvers to find the local solutions correspond-

ing to the local model checking problems of the formulas at state s. The
times in this section are the times for the solvers to find the local solutions
measured as system time, on a 1.0Ghz AMD Athlon running Linux (i.e. the
times for the solvers to read the Boolean equation systems from disk and build
the internal data structures are excluded).

The experimental results are given in Table 1. The columns are explained
below:

• Problem:

– the process Mk, with k + 3 states

– φ1 the formula (23) to be checked

– φ2 the formula (24) to be checked

• n: the number of equations in the Boolean equation system corre-
sponding to the model checking problem

• Hierarchical clustering: the time in seconds to find the local solution
with the algorithm based on hierarchical clustering

• Depth-first search: the time in seconds to find the local solution with
the algorithm based on depth-first search

As shown in the performance measures, there is no clear winner. Indeed,
there is no significant difference between the performance of the algorithms
on these specific benchmarks. But, one must be careful in drawing general
results from these experiments, because of the following reasons.

First of all, the benchmarks from [67, 91] have a quite simple structure.
For instance, [84] has gathered a large collection of state spaces derived from
realistic system models and has performed an extensive empirical study of
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Problem n Hierarchical clustering Depth-first search

M100000 φ1 200 006 0.0 0.0
φ2 200 006 0.1 0.6

M200000 φ1 400 006 0.0 0.1
φ2 400 006 0.3 0.7

M300000 φ1 600 006 0.3 0.2
φ2 600 006 0.4 0.8

M400000 φ1 800 006 0.4 0.3
φ2 800 006 0.5 0.9

M500000 φ1 1 000 006 0.5 0.3
φ2 1 000 006 0.6 0.9

Table 1: Comparison of the algorithms for checking properties φ1 and φ2 for
benchmarks from [67, 91].

their structural properties. From the results in [84] we know that state spaces
of realistic systems have several typical properties which differ significantly
from regular graphs like the transition system depicted in Figure 11 from
[67, 91].

Second, all the examples examined above are quite easy to solve in frag-
ments of a second with both the hierarchical clustering and the depth-first
search based algorithms. The small differences in performance might be
meaningless because they can be influenced by various factors which, in fact,
may have nothing to do with the algorithms.

For these reasons, a more involved practical evaluation is desirable here.
Next, we provide experimental results on Boolean equation system bench-
marks from more realistic applications in the domain of protocol verification.
A comparison on such harder problems reveals that the hierarchical cluster-
ing based algorithm is faster than the depth first-search based algorithm, as
suggested by the worst-case analysis in Section 5.

Model Checking Sliding Window Protocols

We have done experiments with models of sliding window protocols de-
scribed in [94]. To investigate and compare the performance of the algo-
rithms, we have studied three variants of the protocol with different behaviours:

• Variation 1 : This is an unidirectional version of the protocol where
a sender receives data through a channel and passes it to a receiver.
There are 2 data elements, window size is 2, and buffer size is 4 at both
receiving and sending side.

• Variation 2 : This is a bidirectional, one bit sliding window protocol
where, in addition to the feature of variation 1, also the receiver receives
data via a channel and passes it to the sender. There is 1 data element,
window size is 1 and buffer size is 2 at both receiving and sending side.

• Variation 3 : As variation 2, this is a bidirectional version with buffer
size 2, window size 1, and 1 data element. However, piggy backing is
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used to guarantee a better bandwidth, i.e. acknowledgements, which
are sent between the sender and the receiver, are appended to data
elements.

Each of the protocol variations was modelled with the µCRL tool set [10]
and its state space, combined with liveness and fairness related formulas, was
converted to Boolean equation systems for input by our implementations of
the solution algorithms. Again, in the conversion we used the translation
from µ-calculus to Boolean equation systems as described in Section 2.4.

The results of our experiments are shown in Table 2. The first column
contains the names of the checked formulas which are given explicitly be-
low the table. The column marked “Equation system” gives the number
of left hand side variables and the size of the corresponding Boolean equa-
tion system. The columns marked “Hierarchical clustering” and “Depth-first
search” give the execution times in seconds for the algorithms to solve the
Boolean equation systems measured as cpu time. The reported times are the
average of three runs on a 1.0Ghz AMD Athlon running Linux with suffi-
cient main memory.

The checked µ-calculus formulas can be explained as follows. Formula A
states unconditional fairness for the reception of data by requiring that recep-
tion of data happens infinitely often along every infinite execution. Formula
B is related to counting silent actions and states the property that the proto-
col does only finitely many τ -actions, no matter what else it does. Formula
C is a liveness property which states that whenever a message is sent then
eventually it is received. Formula D expresses a strong fairness property that
delivery of data via send action is fairly treated. The last formula is a more
involved property which expresses liveness under fairness. More precisely,
property E says that, for any execution, if the sender is enabled infinitely of-
ten and the receiver is enabled infinitely often, then whenever a message is
sent eventually it is received.

In almost all cases the time consumption by the hierarchical clustering
based algorithm was considerably less than by the algorithm based on depth-
first search. In only three cases, namely variations 1-3 C, the time consumed
by the hierarchical clustering algorithm was slightly more than that by the
latter algorithm. For instance, in variation 3 the hierarchical clustering al-
gorithm spent less than 3 seconds to solve all formulas A-E while the corre-
sponding total running time for the depth-first search based algorithm was
around 8 minutes. Based on these computational results we may draw the
conclusion that the algorithm based on hierarchical clustering substantially
outperforms the one based on the depth-first search.

We were not able to conduct a comparative study with other approaches
because our formulas have non-zero alternation depths. All other publicly
available tools are for alternation-free Boolean equation systems (e.g. [75]).

Heuristic Issues

As indicated by the performance measures in the previous section, there exist
some examples where the hierarchical clustering based algorithm fares worse
than the one based on depth-first search. This suggests to use heuristics to
guide the former algorithm to find solutions more quickly.
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Table 2: Comparison of the algorithms for checking property φ for different
versions of the sliding window protocol.

Variation 1: 44540 states, 183344 transitions
φ Equation system Hierarchical clustering Depth-first search
A 54265 193069 0.10 29.69
B 87464 226268 0.32 244.90
C 76348 325660 0.70 0.01
D 69476 269152 1.66 86.29
E 115716 507376 0.51 1.44

Variation 2: 17040 states, 79472 transitions
φ Equation system Hierarchical clustering Depth-first search
A 19185 81617 0.08 69.35
B 33904 96336 0.10 44.88
C 30376 146344 0.21 0.00
D 36832 137892 0.79 46.48
E 48600 232648 1.39 4.37

Variation 3: 23728 states, 112960 transitions
φ Equation system Hierarchical clustering Depth-first search
A 26337 115569 0.06 14.51
B 47152 136384 0.07 62.81
C 42808 208816 0.11 0.00
D 50560 194356 0.28 407.03
E 70072 338364 2.38 4.37

r(x) ≡ receive data x
s(x) ≡ send data x

A ≡ νX.µY.([r(1)]X ∧ [¬r(1)]Y )
B ≡ µX.νY.([τ ]X ∧ [¬τ ]Y )
C ≡ νZ.([s(1)](µY.〈−〉> ∧ [¬r(1)]Y ) ∧ [−]Z)
D ≡ νX.µY.νZ.([s(1)]X ∧ (〈s(1)〉> ⇒ [¬s(1)]Y ) ∧ [¬s(1)]Z)
E ≡ νX.([s(1)]ψ ∧ [−]X) where ψ is given below
ψ ≡ µY.νZ.(([s(1)]⊥∨ [¬r(1)](νV.([r(1)]⊥ ∨ Y ) ∧ [¬r(1)]V )) ∧ [¬r(1)]Z)
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Table 3: Effect of heuristics on the MinNuLoop algorithm.

Equation system Heuristic
Variation φ None H1 H2 H3

1 A 0.10 0.10 0.11 0.09
1 B 0.32 0.17 0.16 0.32
1 C 0.70 0.22 0.23 0.78
1 D 1.66 0.18 0.19 1.69
1 E 0.51 0.36 0.36 0.52
2 A 0.08 0.05 0.05 0.08
2 B 0.20 0.07 0.07 0.09
2 C 0.21 0.09 0.10 0.21
2 D 0.79 0.10 0.10 0.79
2 E 1.39 0.17 0.16 1.39
3 A 0.06 0.06 0.06 0.06
3 B 0.07 0.07 0.07 0.07
3 C 0.11 0.11 0.10 0.10
3 D 0.28 0.13 0.13 0.29
3 E 2.38 0.20 0.20 2.35

Total cpu time 8.86 2.08 2.09 8.83

Recall the description of the MinNuLoop algorithm given in Section 5.3.
In steps 5 and 6 of MinNuLoop, two distinct recursive calls are done. It
turns out that the order of these recursive calls does not affect the correctness
of the algorithm. Steps 5 and 6 might as well be executed in any possible
order as long as they are both executed after step 4. But, the differences
in the execution order certainly may be reflected in the performance of the
algorithm. To investigate the impact of changing the execution order of the
recursive calls, various heuristics were used.

The results are shown in Table 3. Only the performance for the MinNuLoop
algorithm is described in the table. The meaning of the first two columns is
the same as in Table 2. The remaining columns contain the measures for the
heuristics; the number indicates the cpu time in seconds to find the solution.
Here, the column “None” agrees with the column “Hierarchical clustering”
in Table 2. Finally, the last row describes the total cpu time in seconds to
solve all the problems.

The heuristics that we have investigated include:

H1 Reversed execution order of the recursive calls in steps 5 and 6; i.e. exe-
cute step 6 first, and then execute step 5.

H2 Selects those recursive calls that lead to smaller graphs first; i.e. if the
graph G′ constructed in step 2 has less edges than the graph G′′ con-
structed in step 3, execute step 5 first, and then execute step 6. Other-
wise, execute step 6 first, and then execute step 5.

H3 Selects those recursive calls that lead to larger graphs first; i.e. if the
graph G′ constructed in step 2 has more edges than the graph G′′ con-
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Figure 12: The Jurdziński graphs Jd,w.

structed in step 3, execute step 5 first, and then execute step 6. Other-
wise, execute step 6 first, and then execute step 5.

As the table shows, heuristics H1 and H2 performed up to a factor 10
better than using no heuristic at all. The performance of heuristic H3, which
selects those recursive calls that lead to larger graphs first, was the worst.

One must notice that the differences in the performance are very small
and, therefore, they may be influenced by other factors too. Of course, some
heuristics might work well on some Boolean equation systems, and poorly
for others. But, the results indicate that changing the execution order of the
recursive calls has a clear impact on the solution times.

8.2 Tests for General Form Blocks

In the following subsections, we give experimental results using the encod-
ings presented in Section 6 and Section 7. We have implemented all these
encodings in the C programming language [58]. In order to evaluate and
compare the techniques we have conducted experimental research on solv-
ing general Boolean equation systems using SMODELS [90], DPLL(T) [79]
and ZCHAFF [77] tools.

Jurdziński Graphs

As the first set of benchmarks in general class we use the family of general
form Boolean equation systems derived from Jurdziński graphs Jd,w param-
eterized by the depth d ∈ N and the width w ∈ N. Jurdziński graphs are
an example of parity games on which the small progress measure algorithm
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w parity game J1,w parity game J5,w

DPLL(T) ZCHAFF SMODELS DPLL(T) ZCHAFF SMODELS

10 0.1 0.0 0.0 0.1 0.0 0.0
20 0.1 0.0 0.1 0.2 0.1 0.2
30 0.1 0.0 0.2 0.3 0.2 0.5
40 0.1 0.0 0.5 0.5 0.3 1.1
50 0.1 0.0 1.0 0.9 0.4 1.9
60 0.1 0.0 3.1 1.3 0.4 3.5
70 0.2 0.1 5.1 1.8 0.6 5.9
80 0.2 0.1 15.7 2.6 0.6 9.9
90 0.2 0.1 16.0 3.6 0.8 15.9

100 0.2 0.1 44.6 6.0 0.8 24.5
110 0.2 0.1 66.2 7.6 0.9 35.9
120 0.2 0.1 68.8 9.2 1.0 51.4
130 0.3 0.1 133.9 11.2 1.3 71.2
140 0.4 0.2 185.6 13.6 1.4 93.4
150 0.4 0.2 199.5 15.8 1.5 125.5
160 0.4 0.2 325.9 18.8 1.5 164.0

Figure 13: The running times on the Jurdziński graphs J1,w and J5,w.

exhibits exponential running time [54].
The parity game Jd,w can be represented as a rectangle of 2d + 1 rows

and 2w columns as depicted in Figure 12. Nodes in V∃ are represented
in a diamond shape, nodes in V∀ as boxes, and the numbers inside are the
corresponding priorities. The maximal priority occurring in Jd,w is 2d + 2.
For each Jurdziński graph Jd,w, the corresponding Boolean equation system
is easily obtained through the translation given in Section 2.5.

The Corollary below follows directly from Theorem 12 in [54].

Corollary 65 Given a Jurdziński graph Jd,w, the running time of the progress
measure algorithm on Jd,w is exponential in d.

Although Jurdziński graphs are difficult to solve with the small progress
measure algorithm it is easy to see that the player ∃ has a winning strategy
from every node in the first 2d rows whereas the player ∀ has a winning strat-
egy from every node in row 2d + 1. For instance, these strategies are simply
moving to the right end of each row.

In the following we will always choose as the starting node the leftmost
node in the second row. Hence, the resulting formulas under the reductions
are always satisfiable, and there is always at least one stable model for the
corresponding logic program. The reason for this choice is that we observed
the instances obtained by setting the starting node to be the leftmost node
on the last row (i.e. the unsatisfiable formulas and instances without a stable
model) were easier for all the solvers.

We describe now the experimental results on solving Boolean equation
systems based on Jurdziński graphs through the reductions given in Section 7.
The problem instances are translated into difference logic and SAT by our
implementations of the translations which also perform CNF conversion in
both cases. In addition, we compare these to the answer set programming
approach presented in Section 6.

More precisely, we compare the three methods on four series of graphs.
In each test series we measure the times used for the solvers DPLL(T) and
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d parity game Jd,5 parity game Jd,10

DPLL(T) ZCHAFF SMODELS DPLL(T) ZCHAFF SMODELS

5 0.1 0.0 0.0 0.1 0.0 0.0
10 0.2 0.1 0.0 0.3 0.1 0.1
15 0.3 0.1 0.1 0.8 0.3 0.3
20 0.5 0.2 0.1 2.4 0.6 0.5
25 1.1 0.3 0.2 6.0 0.8 0.7
30 2.4 0.4 0.3 12.3 1.2 1.0
35 5.1 0.6 0.3 22.0 1.6 1.3
40 8.9 0.8 0.4 39.8 2.1 1.7
45 14.3 1.0 0.5 61.1 2.6 2.1
50 21.9 1.2 0.7 93.3 3.2 2.6
55 29.1 1.5 0.8 122.7 3.9 3.2
60 40.3 1.7 0.9 183.3 4.7 3.8
65 59.0 2.0 1.1 51.0 5.4 4.4
70 75.0 2.4 1.2 336.3 6.2 5.1
75 105.8 2.7 1.4 427.7 7.2 5.9
80 134.8 3.1 1.6 505.4 3.8 6.8

Figure 14: The running times on the Jurdziński graphs Jd,5 and Jd,10.

ZCHAFF to check the satisfiability of the corresponding formulas, and the
time used for SMODELS to determine whether or not there is a stable model.

The first series considers the Boolean equation systems based on graphs
Jd,w with fixed depth d = 1 and varying width w. The second series again
variesw, but this time with a fixed depth of d = 5. The results on benchmarks
in classes J1,w and J5,w are shown in Figure 13. Notice that in these two series
of examples with fixed d several algorithms which are polynomial in w exist
in the literature.

The third test series considers the Boolean equation systems based on
graphs Jd,w with fixed width w = 5 and varying depth d. The fourth series
again varies d, but this time with a greater fixed width of w = 10. Figure 14
shows the total run times for solving the benchmarks in classes Jd,5 and Jd,10.
Notice that the small progress measure algorithm [54] shows an exponential
time performance on these kinds of examples with increasing depths.

From Figure 13 we can observe that when d is small, both the difference
logic and SAT encodings are ahead of the logic programming approach. By
investigating the logs of the solvers we are able to analyze the situation fur-
ther. The explanation for the significantly larger running times in the SMOD-
ELS column seems to come from a larger encoding of the problem. Namely,
the size of the translation used is O(|E| · |V |) irregardless of the number of
priorities in Jd,w, and thus starts to grow quadratically inw, while e.g. the size
of the difference logic encoding only grows only linearly in w (as the number
of priorities in Jd,w is fixed). In addition, the search speed of SMODELS is sig-
nificantly slower than that of highly optimized SAT solvers as ZCHAFF. This
is likely due to the fact the SMODELS uses a relatively expensive decision
heuristic to avoid wrong decisions rather than counting on fast search speed,
learning, and restarts as the modern SAT solver ZCHAFF does. In addition,
from Figure 13 we can observe that when d is increased from 1 to 5 the run-
ning times of the DPLL(T) start to grow, and thus the ZCHAFF outperforms
the DPLL(T).

From Figure 14 we can observe a completely different situation. The
number of nodes at each row of Jd,w is bounded by a small number. There-
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n #sat/#unsat DPLL(T) ZCHAFF SMODELS

min/median/max min/median/max min/median/max

100 16 / 15 0.1 / 0.2 / 0.2 0.0 / 0.1 / 0.1 0.0 / 0.0 / 7.2
200 21 / 10 0.2 / 0.8 / 1.1 0.1 / 0.2 / 0.5 0.1 / 0.6 / >1000
300 19 / 12 0.4 / 4.9 / 8.1 0.3 / 0.6 / 4.7 0.1 / 4.5 / >1000
400 15 / 16 0.7 / 11.3 / 23.5 0.6 / 1.1 / 69.1 0.1 / 13.7 / >1000
500 18 / 13 1.1 / 32.2 / 64.6 1.1 / 1.7 / 22.1 0.2 / 37.1 / >1000
600 14 / 17 1.7 / 68.6 / 370.2 1.4 / 3.6 / >1000 0.4 / 147.1 / >1000
700 15 / 16 2.6 / 133.1 / 212.8 2.2 / 3.8 / >1000 0.5 / 230.6 / >1000
800 15 / 16 3.7 / 169.1 / 356.5 2.5 / 7.8 / >1000 0.6 / 378.4 / >1000

Figure 15: The running times on random Boolean equation systems with
maximal alternation hierachy level m = n.

fore, only a small fixed number of variables is needed to encode the numbers
of a µ-annotation. Thus, in the case with fixed w the sizes of all three en-
codings grow quadratically in d. Therefore, the encoding size drawback that
existed in the first two series for SMODELS does not appear anymore when d
is increased.

In the two series of examples with fixed w the difference logic encoding is
a constant factor smaller than the propositional logic encoding, but ZCHAFF

significantly outperforms DPLL(T) in running time. An explanation for
this might be that the highly optimized algorithms and data structures inside
ZCHAFF enable it to perform search at admirable speed. Furthermore, it
seems that the good performance of SMODELS in the examples with fixed
w can be largely explained by the significantly smaller search space covered
when compared to the DPLL(T).

Notice that, by Corollary 65, the running time of the small progress mea-
sure algorithm [54] on the two series of graphs with fixed w is exponential in
d. Therefore, the running times for all three solvers on these examples are
quite competitive compared to the algorithmic approach [54].

By investigating the solver logs we find out that the SMODELS solver did
not backtrack on any of these four series of examples. It is not yet known
whether it is a lucky co-incidence or the heuristics of SMODELS always man-
age to do so on this family of problem instances. If the latter case could
be proved for all values of d and w, then the SMODELS based approach re-
sulted in a guaranteed polynomial time algorithm for examples based on Ju-
rdziński graphs. Also, the DPLL(T) and ZCHAFF solvers make surprisingly
few wrong branching decisions while searching for a satisfying assignment in
these four series of examples.

Finally, to evaluate the performance of a slightly older SAT solver, we
have tried SATZ [65] but we have found it to hit the one hour timeout limit
even on the smallest Jurdziński graph instances. Therefore, if one wishes to
adopt the solution technique based on the propositional encoding, then it
seems that a modern SAT solver (as ZCHAFF) is actually needed to solve the
problem instances in reasonable times.
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n #sat/#unsat DPLL(T) ZCHAFF SMODELS

min/median/max min/median/max min/median/max

100 20 / 11 0.1 / 0.1 / 0.1 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.7
200 23 / 8 0.1 / 0.1 / 0.1 0.0 / 0.1 / 0.1 0.0 / 0.8 / 265.4
300 23 / 8 0.1 / 0.1 / 0.2 0.1 / 0.1 / 0.3 0.1 / 4.8 / >1000
400 21 / 10 0.1 / 0.2 / 0.2 0.1 / 0.2 / 14.4 0.1 / 13.7 / >1000
500 21 / 10 0.1 / 0.2 / 0.3 0.1 / 0.3 / 1.1 0.3 / 40.9 / >1000
600 21 / 10 0.2 / 0.3 / 0.4 0.2 / 0.4 / 1.7 0.3 / 121.3 / >1000
700 17 / 14 0.2 / 0.4 / 0.7 0.3 / 0.6 / >1000 0.4 / 209.9 / >1000
800 20 / 11 0.2 / 0.5 / 0.7 0.3 / 1.3 / 12.8 0.6 / 362.5 / >1000

Figure 16: The running times on random Boolean equation systems with
maximal alternation hierarchy level m = d√ne.

Tests for Randomly Generated Boolean Equation Systems

Another set of benchmarks we have used is a set of randomly generated
Boolean equation systems. These are generated by the following simple al-
gorithm. For a parameter value n, start generating a dependency graph with
nodes V = {0, 1, . . . , n − 1} and generate exactly two outgoing edges for
each node. Then, discard all nodes that are not reachable from the smallest
node 0. We have found out experimentally that roughly 80% of all nodes
are reachable from node 0 on the average. For all the remaining reachable
nodes, we pick a connective (of the right-hand side positive Boolean formula)
for each node with equal probabilities. Another parameter value is the max-
imal alternation hierachy level m. We pick the fixpoint sign of each node
uniformly at random so that the maximal alternation hierarchy level of the
resulting Boolean equation system is m.

Figure 15 shows the running time results for increasing values of n and
fixingm = n. Figure 16 shows running times with the parameterm = d√ne.
In both cases, we report minimum, median, and maximum running times on
31 problem instances for each value of n, using a 1000 second timeout limit.
In addition, we report the number of satisfiable/unsatisfiable instances for
each parameter value.

As can be observed from both Figure 15 and Figure 16, these results are
not too conclusive. The main reason for this is that the distances between
the minimum and maximum running times are quite large for all solvers. In
particular, when m = n, the running times for all the solvers seem to vary by
several orders of magnitudes on the same sized problem instances.

Unlike in the case of the Jurdziński graph benchmarks, we have not ob-
served here any differences in the difficulty of satisfiable vs. unsatisfiable ran-
dom problem instances.

The main observation on these random benchamarks is that the SMOD-
ELS times out on several of the problem instances while ZCHAFF times out
only on four instances. The DPLL(T) times out on none of the random
instances, and performs well on the benchmarks with m = d√ne.

By investigating the solver logs we can observe that, unlike in examples
based on Jurdziński graphs, in these sets of random benchmarks SMODELS

does backtrack. Therefore, in general it is unlikely that SMODELS would
solve arbitrary Boolean equation systems in polynomial time. Perhaps, the
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frequent SMODELS timeouts make the logic programming approach less ro-
bust than the solution techniques based on satisfiability encodings, at least on
these random examples.
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9 CONCLUSION

This thesis has presented new methods to solve Boolean equation systems.
The work has presented a framework which allows for considerably optimiz-
ing the solution techniques by taking advantage of specific properties and
features of Boolean equation systems. We have developed techniques to
solve various classes of Boolean equation systems, and have demonstrated
how these different methods can be combined into a single framework.

We have demonstrated that the verification of many formulas in the µ-
calculus with alternating fixed points amounts to solving Boolean equation
systems which consist of conjunctive and disjunctive blocks. Subsequently,
we have provided new algorithms to solve these kinds of blocks. The hi-
erarchical clustering algorithm in Section 5.3 has better estimation of its
worst-case time complexity than the depth-first search based algorithm in
Section 5.2. Practical evaluation on protocol verification benchmarks shows
that this also leads to practical improvements: the former algorithm is often
able to find solutions more quickly than the latter, and additional reduction
in time consumption can be gained by using suitable recursion orders to
guide the search of the hierachical clustering algorithm. We believe that this
makes the verification of a large class of µ-calculus formulas with alternating
fixed points tractable, even for large, practical systems.

The sub-quadratic algorithm that we obtain in Section 5.3 for conjunctive
and disjunctive form Boolean equation systems is quite efficient in practice,
but it still contains an unpleasant logarithmic factor. Despite several efforts,
we have been unable to eliminate this factor. It is an interesting further
question whether there exists a linear-time algorithm for solving conjunctive
and disjunctive Boolean equation systems.

We have presented an answer set programming based technique for com-
puting the solutions to general Boolean equation systems. We have devised a
mapping from general Boolean equation systems to normal logic programs.
The translation is such that the solution of a given variable of an equation
system can be determined by the existence of a stable model of the corre-
sponding logic program.

The experimental results indicate that the stable model computation with
the SMODELS system is quite a competitive technique to solve general Boole-
an equation systems based on Jurdziński graphs with a large alternation depth.
Unfortunately, the further experiments on random graphs show that the an-
swer set programming approach is not as competitive as the results on Jurdz-
iński graphs suggest.

In any case, the answer set programming approach provides the basis for
verifying µ-calculus formulas with alternating fixed points using answer set
programming techniques, and the approach proves itself as a baseline for
further investigation.

We have shown how to reduce the problem of solving general Boolean
equation systems into difference logic satisfiability and into propositional
SAT. The experimental results indicate that both of these encodings are quite
competitive in cases where the underlying Boolean equation system has large
alternation depths. In particular, the reduction of solving general Boolean
equation systems into propositional SAT is mainly interesting because of the
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availability of practically efficient SAT checkers to solve the generated in-
stances.

The alternation of fixpoint operators gives more expressive power in the
µ-calculus, but all known model checking algorithms are exponential in the
alternation depth. Consequently, our satisfiability based approaches are ex-
pected to be useful in the verification tasks where there is a need of formulas
with great expressive power.

As further work it would be interesting to study how the satisfiability based
approaches would work as subroutines in a framework of parameterized Boole-
an equation systems presented in [43, 45].

If one needs to model check models which are too big to store in a com-
puter’s memory, then it may not be useful to apply the methods presented
in this thesis as they are. Indeed, instead of using explicit representations
of models in such a situation it may be wise to resort to symbolic methods
mentioned in Section 1. As future work it would be interesting to study
an extension of the techniques presented in Section 7 to a symbolic setting
where the models are not represented explicitly but in a symbolic way as is
done in symbolic model checking [9]. This kind of an extension might al-
low to handle even larger state spaces than is possible with the techniques in
Section 7.

86 9 CONCLUSION



References

[1] H.R. Andersen. Model checking and Boolean graphs. Theoretical
Computer Science, 126:3–30, 1994.

[2] H.R. Andersen, B. Vergauwen. Efficient Checking of Behavioural Re-
lations and Modal Assertions using Fixed-Point Inversion. In Proceed-
ings of Conference on Computer Aided Verification, Lecture Notes on
Computer Science 939, pages 142–154, Springer-Verlag, 1995.

[3] A. Arnold and P. Crubille. A linear algorithm to solve fixed-point equa-
tions on transition systems Information Processing Letters, 29: 57–66,
1988.

[4] A. Arnold and D. Niwinski. Rudiments of µ-calculus. Studies in logic
and the foundations of mathematics, Volume 146, Elsevier, 2001.

[5] A. Arnold, A. Vincent and I. Walukiewicz. Games for synthesis of
controllers with partial observation. Theoretical Computer Science,
303(1): 7–34, 2003.

[6] O. Bernholtz, M. Vardi and P. Wolper. An Automata-Theoretic Ap-
proach to Branching-Time Model Checking. In Proceedings of the
6th International Conference on Computer Aided Verification, Lec-
ture Notes on Computer Science 818, pages 142–155, Springer-Verlag,
1994.

[7] D. Berwanger and E. Grädel. Fixed-point logics and solitaire games.
Theory of Computing Systems, 37: 675–694, 2004.

[8] G. Bhat and R. Cleaveland. Efficient local model-checking for frag-
ments of the modal µ-calculus. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science 1055, pages 107–126,
Springer-Verlag, 1996.

[9] A. Biere, A. Cimatti, E. Clarke and Y. Zhu. Symbolic Model Check-
ing without BDDs. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science 1579, pages 193–207, Springer-
Verlag, 1999.

[10] S. Blom, W. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser and
J. van de Pol. µCRL: a toolset for analysing algebraic specifications.
In Proceedings of Conference on Computer Aided Verification, Lec-
ture Notes in Computer Science 2102, pages 250–254, Springer-Verlag,
2001.

[11] S. Blom and J. van de Pol. State space reduction by proving conflu-
ence. In Proceedings of Conference on Computer Aided Verification,
Lecture Notes on Computer Science 2404, pages 596–609, Springer
Verlag, 2002.

REFERENCES 87



[12] J. Bradfield. The modal µ-calculus alternation hierarchy is strict. The-
oretical Computer Science, 195:133–153, 1998.

[13] J. Bradfield and C. Stirling. Modal Logics and mu-Calculi: An in-
troduction. Chapter 4 of Handbook of Process Algebra. J.A. Bergstra,
A. Ponse and S.A. Smolka, editors. Elsevier, 2001.

[14] J. Burch, E.M. Clarke, K. McMillan, D. Dill, L. Hwang. Symbolic
Model Checking: 1020 states and beyond. In Proceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science, pages 428–
39, 1990.

[15] H. Björklund, S. Sandberg and S. Vorobyov. A Discrete Subexponential
Algorithm for Parity Games. In Proceedings of the 20th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS’2003),
Lecture Notes in Computer Science 2607, pages 663–674, Springer-
Verlag, 2003.

[16] E. Clarke, A. Biere, R. Raimi and Y. Zhu. Bounded Model Checking
Using Satisfiability Solving Formal Methods in System Design, 19 (1):
7–34, 2001.

[17] E. Clarke and E. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proceedings of Work-
shop on Logics of Programs, Lecture Notes in Computer Science 131,
pages 52–71, Springer-Verlag, 1981.

[18] E. Clarke, R. Enders, T. Filkorn and S. Jha. Exploiting symmetry in
temporal logic model checking. Formal Methods in System Design,
9(1/2): 77 – 104, 1996.

[19] E. Clarke, O. Grumberg and D. Long. Model Checking and Abstrac-
tion. ACM Transactions on Programming Languages and Systems,
16(5): 1512–1542, ACM Press, 1994.

[20] E. Clarke, O. Grumberg and D. Peled. Model Checking. The MIT
Press, 2000.

[21] R. Cleaveland. Tableau-based model checking in the propositional µ-
calculus. Acta Informatica, 27(8):725–748, 1990.

[22] R. Cleaveland, M. Klein and B. Steffen. Faster model checking for the
modal mu-calculus. In Proceedings of the 4th International Workshop
on Computer Aided Verification, Lecture Notes in Computer Science
663, pages 410–422, Springer-Verlag, 1992.

[23] R. Cleaveland and B. Steffen. Computing Behavioural relations log-
ically. In Proceedings of the 18th International Colloquium on Au-
tomata, Languages and Programming, Lecture Notes in Computer Sci-
ence 510, pages 127–138, Springer-Verlag, 1991.

[24] S. A. Cook. The Complexity of Theorem-Proving Procedures. In Con-
ference Rec. 3rd Annual ACM Symposium on Theory of Computing
STOC’71, pages 151–158, ACM, 1971.

88 REFERENCES



[25] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
Efficient Algorithms for the Verification of Temporal Properties. Formal
Methods in System Design, 1(2/3): 275–288, 1992.

[26] G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings
of the Int. In Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science 1579, pages 223–239, Springer-Verlag, 1999.

[27] J. Dix, U. Furbach, and I. Niemelä. Nonmonotonic reasoning: Towards
efficient calculi and implementations. In Handbook of Automated Rea-
soning, chapter 19, pages 1241–1354. Elsevier, 2001.

[28] D. Dolew, M. Klawe, and M. Rodeh. An O(n log n) unidirectional dis-
tributed algorithm for extrema finding in a circle. Journal of Algorithms,
3(3): 245–260, 1982.

[29] W.F. Dowling and J.H. Gallier. Linear-Time Algorithm for Testing the
Satisfiability of Propositional Horn Formulae. J. Logic Programming,
3:267–284, 1984.

[30] E. A. Emerson. Model checking and the µ-calculus. Chapter 6 of De-
scriptive Complexity and Finite Models, DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science, volume 31. N. Im-
merman and P. G. Kolaitis, editors, AMS, 1997.

[31] E. A. Emerson and C. Lei. Efficient model checking in the fragments
of the propositional µ-calculus. In Symposion on Logic in Computer
Science, pages 267–278, IEEE Computer Society Press, 1986.

[32] E. A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal
Methods in System Design, 9(1/2): 105–131, 1996.

[33] E.A. Emerson, C. Jutla. Tree automata, Mu-Calculus and determinacy.
In Proceedings of the 32nd annual symposium on Foundations of com-
puter science, pages 368–377, IEEE Computer Society Press, 1991.

[34] E.A. Emerson, C. Jutla and A.P. Sistla. On model checking for frag-
ments of the µ-calculus. In Proceedings of the Fifth International Con-
ference on Computer Aided Verification, Lecture Notes in Computer
Science 697, pages 385–396, Springer-Verlag, 1993.

[35] E.A. Emerson, C. Jutla, and A.P. Sistla. On model checking for the
µ-calculus and its fragments. Theoretical Computer Science, 258:491–
522, 2001.

[36] K. Etessami, T. Wilke, and R. Schuller. Fair Simulation Relations,
Parity Games, and State Space Reduction for Büchi Automata. SIAM
J. Comput., 34(5):1159–1175, 2005.

[37] C. Fecht and H. Seidl. An Even Faster Solver for General Systems
of Equations. In Proceedings of the Static Analysis Symposium, Lec-
ture Notes in Computer Science 1145, pages 189–204, Springer Verlag,
1996.

REFERENCES 89



[38] L. Fredlund, J.F. Groote and H. Korver. Formal Verification of a Leader
Election Protocol in Process Algebra. Theoretical Computer Science,
177: 459–486, 1997.

[39] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In Proceedings of the 5th International Conference on
Logic Programming, pages 1070–1080, Seattle, USA, August 1988. The
MIT Press.

[40] P. Godefroid. Using partial orders to improve automatic verification
methods. In Proceedings of the 2nd International Conference on
Computer-Aided Verification (CAV ’1990), Lecture Notes in Com-
puter Science 531, pages 176–185, Springer-Verlag, 1991.

[41] J.F. Groote and M. Keinänen. Solving Disjunctive/Conjunctive
Boolean Equation Systems with Alternating Fixed Points. In Proceed-
ings of the 10th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer
Science 2988, pages 436 – 450, Springer Verlag, 2004.

[42] J.F. Groote and M. Keinänen. A Sub-quadratic Algorithm for Conjunc-
tive and Disjunctive Boolean Equation Systems. In Proceedings of 2nd
International Colloquium on Theoretical Aspects of Computing (IC-
TAC’2005), Lecture Notes in Computer Science 3722, pages 545–558,
Springer-Verlag, 2005.

[43] J.F. Groote and T. Willemse. A Checker for Modal Formulas for Pro-
cesses with Data. In Proceedings of Formal Methods for Components
and Objects, Second International Symposium (FMCO’2003), Lec-
ture Notes in Computer Science 3188, pages 223–239, Springer-Verlag,
2004.

[44] J.F. Groote and T. Willemse. Parameterised Boolean Equation Systems.
Theoretical Computer Science, 343:332–369, 2005.

[45] J.F. Groote and T. Willemse. Parameterised Boolean Equation Systems.
In Proceedings of the 15th International Conference on Concurrency
Theory (CONCUR’2004), Lecture Notes in Computer Science 3170,
pages 308–324, Springer-Verlag, 2004.

[46] K. Heljanko, T. Junttila, M. Keinänen, M. Lange and T. Latvala.
Bounded Model Checking for Weak Alternating Büchi Automata.
In Proceedings of the 18th International Conference on Computer
Aided Verification (CAV’2006), Lecture Notes in Computer Science,
Springer-Verlag, to appear.

[47] K. Heljanko, M. Keinänen, M. Lange and I. Niemelä. Solving parity
games by a reduction to SAT. Submitted manuscript.

[48] K. Heljanko and I. Niemelä. Bounded LTL model checking with
stable models. Theory and Practice of Logic Programming, 3: 519–
550, Cambridge University Press, 2003.

90 REFERENCES



[49] M. Hennessy and R. Milner. Algebraic laws for non-determinism and
concurrency. Journal of the ACM, 32(1): 137–161, 1985.

[50] G. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1990.

[51] T. Janhunen. Representing Normal Programs with Clauses. In Pro-
ceedings of the 16th European Conference on Artificial Intelligence
(ECAI’2004), pages 358–362, Valencia, Spain, august 2004.

[52] M. Jehle, J. Johannsen, M. Lange, N. Rachinsky. Bounded Model
Checking for All Regular Properties. In Proceedings of the 3rd Interna-
tional Workshop on Bounded Model Checking (BMC’2005), volume
144 (1) of Electronic Notes in Theoretical Computer Science, pages
3–18, Elsevier Science, 2005.
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