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Abstract 
One of the key problems of microwave remote sensing is the development of 

theoretical microwave models for terrain such as soil, vegetation, snow, forest, 

etc., due to the complexity of modeling of microwave interaction with the terrain. 

In this thesis this problem is approached from the new point of view of both 

empirical models and rigorous theoretical models. New information concerning 

radar remote sensing of snow-covered terrain and permittivity of snow has been 

produced. A C-band semi-empirical backscattering model is presented for the 

forest-snow-ground system.  

 

The effective permittivity of random media such as snow, vegetation canopy, soil, 

etc., describes microwave propagation and attenuation in the media and is a very 

important parameter in modeling of microwave interaction with the terrain. Good 

permittivity models are needed in microwave emission and scattering models of 

terrain. In this thesis, the strong fluctuation theory is applied to calculate the 

effective permittivity of wet snow. Numerical results for the effective permittivity 

of wet snow are illustrated. The results are compared with the semi-empirical and 

the theoretical models. A comparison with experimental data at 6, 18 and 37 GHz 

is also presented. The results indicate that the model presented in this work gives 

reasonably good accuracy for calculating the effective permittivity of wet snow.  

Microwave emission and scattering theoretical models of wet snow are developed 

based on the radiative transfer and strong fluctuation theory. It is shown that the 

models agree with the experimental data. 

 

 

Keywords: Remote sensing, radar, radiometer, correlation functions, effective 

permittivity, snow, dry snow, wet snow, radiative transfer theory, strong 

fluctuation theory, microwave emission modeling, microwave scattering 

modeling, backscattering. 
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model development and the second author concentrated on calculating the 

effective permittivity of wet snow.  
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List of Symbols and Abbreviations 

 
A Area 

B Brightness 

bbB  Brightness of a blackbody 

C Speed of light in vacuum, 2.9979 x 108 m / s 

D Diameter of the scatterer 

E Emissivity 

F Frequency 

vf  Fraction volume 

Bk  Boltzmann’s constant, 1.36 x 10-23 joule / K 

K Wave number, μεω=k  

0k  Wave number in free space, λπεμω /2000 ==k  

L Correlation length 

pl  Correlation length in horizontal direction 

zl  Correlation length in vertical direction 

vm  Liquid water content 

P Power 

R Radius of scatterer 

T Temperature 

BT  Brightness temperature 

ε  Permittivity or dielectric constant 

0ε  Permittivity of free space, 8.854 x 10-12 F / m 

effε  Effective permittivity 

λ  Wavelength 

ω  Angular frequency, fπ2  

h  Planck’s constant 

σ  Scattering cross section 

 7



 

ACF Autocorrelation function 

CRT Conventional radiative transfer 

DMRT Dense medium radiative transfer 

EMAC European multisensor airborne campaign 

TKK Helsinki University of Technology, Finland 

IEM Integral equation Model 

KA Kirchhoff approximation 

MEMLS Microwave emission model of layered snowpacks 

NDVI Normalized difference vegetation index 

QCA Quasi-crystalline approximation 

RMSE Root mean square equation 

SAR Synthetic aperture radar 

SPM Small perturbation method 

SSA Small slope approximation 

SWE Snow water equivalent 
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I Introduction 
 

In the field of microwave remote sensing the physical phenomena governing the 

backscattering from the terrain such as snow, forest, soil and etc., is a very 

complicated problem due to the complex behavior of microwave interaction with 

the terrain. Microwave sensors such as radiometers and radars are often used for 

snow and forest studies in microwave remote sensing because of their usability 

under varying weather conditions. Factors like clouds, rain and lack of light do 

not affect the measurements. Radiometers are passive sensors that measure the 

thermal emission radiated by the target. Radars are active sensors that transmit a 

signal to the target and measure the signal scattered back from the target.  Active 

microwave sensors have proven to be a valuable tool in microwave remote 

sensing of snow cover (Stiles and Ulaby 1980, Ulaby and Stiles 1980, Mätzler 

1983, Kendra et al. 1998, Shi and Dozier 2000, Koskinen 2001). Passive 

microwave sensors have been studied for snow monitoring (Hallikainen and 

Jolma 1992, Mätzler 1994, Wiesman et al. 1998, Pulliainen et al. 1999, Macelloni 

et al. 2005, Markus et al. 2006). In forest applications, active microwave sensors 

are mainly used because they have better ground resolution than passive 

microwave sensors and the intensities of microwave thermal emission from 

ground are close to those from the forest in most of the cases. Many studies have 

been conducted concerning the utilization of radar remote sensing for forest 

applications (Durden et al. 1989, Dobson et al 1992, Le Toan 1992, Pulliainen 

1994, Pulliainen et al 1994, Liang et al. 2005, Askne and Santoro 2005, Du et al. 

2006, Izzawati et al. 2006). 

 

In theoretical microwave modeling of the terrain, calculation of the effective 

permittivity of a random medium is essential. Investigation of the effective 

permittivity of snow has a long history. Experimental studies of the effective 

permittivity of snow started in 1952 (Cumming 1952) and were followed by many 

others (Glen and Paren 1975, Colbeck 1980, Ambach and Denoth 1980, Tiuri et 

al. 1984, Mätzler et al. 1984). A summary of semi-empirical dielectric models of 
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snow is found in (Hallikainen et al. 1986). The strong permittivity fluctuation 

theory for snow cover was introduced in 1986 (Stogryn 1986) and its application 

to calculate the effective permittivity has been reported by many authors (Tsang et 

al. 1982, Yueh and Kong 1990, Lim et al. 1994, Nghiem et al. 1993, and Nghiem 

et al. 1995). 

 

Microwave scattering and emission models of snow have been studied by many 

authors. Fung (1994) presented a scattering model for a snow layer. Snow layer is 

modeled as a volume of Mie scatterers (ice particles). The boundaries of the snow 

layer are modeled using the Integral Equation Model (IEM) (Fung 1994). The 

effects of volume and surface scattering are integrated by applying the matrix 

doubling method (Ulaby et al. 1986, Fung 1994). A polarimetric model that 

includes both surface and volume scattering as well as the interaction terms 

between surface and volume has been developed (Shi and Dozier 1993, Shi and 

Dozier 1995). Radiative transfer model for dense media is used for the volume 

scattering component. The surface scattering model, IEM, is used to evaluate the 

surface scattering components and introduced to the radiative transfer equations as 

the boundary conditions in order to evaluate the importance of the interactions 

between the surface and volume scattering signals.  

 

The strong fluctuation theory has been applied to calculate scattering from snow 

(Tsang et al. 1982, Jin and Kong 1984). Tsang et al. (2003) applied 

quasicrystalline approximation (QCA) dense medium theory to calculate the 

absorption, scattering and emission of snow at multiple frequencies. A microwave 

emission model from random medium with non-spherical scatterers was improved 

by using the radiative transfer equations and the strong fluctuation theory. The 

model was then applied to describe microwave emission from wet snow (Huining 

2001). 
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The objectives of the thesis are 

 

(1) to understand better the relationship between radar signatures and snow, 

(2) to develop a semi-empirical model of a snow-forest-ground system, 

(3) to study the effective permittivity of wet snow using strong fluctuation 

theory with non-symmetrical inclusions, 

(4) to apply microwave emission and scattering models to retrieve snow 

parameters such as snow water equivalent and snow wetness. 

 

Chapter 2 introduces the use of active and passive sensors in microwave remote 

sensing and microwave emission and backscattering models for interpreting 

microwave interactions from snow-covered terrain. 

 

In Chapter 3 physical and microwave characteristics of snow, forest and soil are 

given. 

 

Chapter 4 discusses the results of the research conducted in the thesis. 

 

Chapter 5 and 6 present the conclusions from the thesis and summaries of the 

appended papers. 
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II Microwave Remote Sensing of Snow and Forest 
2.1 Radar and Radiometer Remote Sensing 

In radar remote sensing, an antenna is used to transmit electromagnetic waves, 

and to receive the response from the target. Because of its own illumination radar 

is an active sensor. Radar consists of a transmitter, a receiver, an antenna, and an 

electronics system. Radar operates in a frequency range of about 300 MHz to 30 

GHz. That is why radar signals are not affected by atmospheric conditions such as 

clouds or rain. The orientation of received or transmitted electric field is called 

polarization. There can be four different combinations of both transmit and 

receive polarizations given below:  

     (1) HH - for horizontal transmit and horizontal receive,  

     (2) VV - for vertical transmit and vertical receive,  

     (3) HV - for horizontal transmit and vertical receive, and  

     (4) VH - for vertical transmit and horizontal receive. 

 

The relation between the transmitted and received electromagnetic signal is 

 

                                           
( ) 43

22

4 R
G

P
P

t

r

π
λσ=                                                    (2.1.1) 

 

where transmitted and received power are denoted by  and  respectively, and 

 is antenna gain. R is the distance to the scattering target. 

tP rP

G σ  is scattering cross 

section, which is related to a physical surface that affects the scattering. A 

normalized scattering cross section per unit surface , where  

represents the geometric surface of the scattering. Normalized radar cross section 

is often expressed in decibels (dB). Typical values of  for natural surfaces 

range from +5 dB (very bright) to –40 dB (very dark). The intensity of 

backscattered signal is dependent on how the radar signal interacts with the 

surface. This interaction is affected by both radar parameters (frequency, 

polarization, viewing geometry, etc.) and the characteristics of the surface such as 

gA/0 σσ = gA

0σ
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land type (forest, snow, bare soil) and topography. Main important characteristics 

of the interaction between radar and target can be listed as follows:  

• Surface roughness of the target  

• Radar viewing and surface geometry relationship (local slope)  

• Moisture content and electrical properties of the target (effective 

permittivity). 

 

Passive Remote Sensing is the measurement of the electromagnetic radiation from 

the interaction between the atoms and the molecules in the material. In 

thermodynamic equilibrium, a material absorbs and radiates energy at the same 

rate. A blackbody is defined as an ideal material that absorbs all of the incident 

radiation and reflects none. For the radiometer, the radiated source is the target 

itself. The power emitted by a target in thermodynamic equilibrium is a function 

of its physical temperature. 

 

The brightness B is defined representing the radiated power per unit solid angle 

per unit area as (Ulaby et al. 1981):  

 

  B(f) =   P(f)
     A

2∂
∂ ∂Ω

                                                                       (2.1.2) 

where f is frequency and the P is the power that radiates from the area ∂  A  to the 

solid angle∂  Ω . 

 

According to Planck’s radiation law (Ulaby et al. 1981), a blackbody radiates 

uniformly in all directions with a spectral brightness, B: 

 

 B = 2 f
c e

3

2 hf / k TB

h 1
1−

                                                                  (2.1.3) 

 where  is Planck’s constant; f is frequency; c is speed of light; 

=Boltzmann’s constant =1 ; T is temperature. The low 

frequency region of Planck’s radiation law is called Rayleigh-Jeans 

h

k B 38 10 23. × −  joule K-1
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approximation valid for ; its brightness is given by (Ulaby et al. 

1981):   

hf / k T << 1B

 

 B =
2k T

 
B
2λ

                                                                                  (2.1.4) 

where λ  is the wavelength. The brightness of a blackbody for a narrow 

bandwidth Δ f at a temperature T is then (Ulaby et al. 1981): 

 

 B = B  f =
2k T

 
 fbb

B
2⋅ Δ

λ
⋅ Δ                                                          (2.1.5) 

 

The brightness of the material relative to that of a blackbody at the same 

temperature is defined by emissivity (Ulaby et al. 1981): 

 

 
bbB

)   , B(=)   , e( φθφθ                                                                  (2.1.6)                         

where B(   ,    )θ φ is the brightness of the real material. 

 

The measured brightness is usually expressed as a brightness temperature. The 

brightness temperature T  of an object is the product of its emissivity and 

physical temperature (Ulaby et al. 1981): 

B

 

 T = e(   ,    ) TB θ φ                                                                        (2.1.7) 

 

The brightness of an object in terms its brightness temperature can be rewritten in 

a form similar to that of a blackbody (Ulaby et al. 1981): 

 

 B(   ,    ) =
2k T

 
 fB B

2θ φ
λ

⋅ Δ                                                            (2.1.8) 
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2.2 Microwave Backscattering Models for Snow-Covered Terrain 

 

Understanding of the relationship between radar signature and snow is very 

important for retrieving desired snowpack parameters such as snow density, snow 

water equivalent and snow wetness which are important in natural sciences, 

particularly in hydrology and climatology. The backscattered signal measured by 

the radar is the sum of the contributions from physical interactions in snow and 

between snow and its surroundings such as air, vegetation canopy, and ground. In 

order to understand the relationship between backscattering signature and the 

snow parameters, one should take into account all effects such as instrumental 

parameters (polarization, frequency, incidence angle) and snow parameters 

(temperature, size and shape of inclusions, water content of snow, snow thickness, 

and snow-ground, snow-vegetation, and air-snow interfaces (or surface 

roughness)). In general, the backscattering signal of snow is the sum of signal 

contributions from (a) snow-air interface, (b) volume scattering of snow and (c) 

snow-ground interface (Ulaby et al. 1986, Fung 1994).  

 

Surface scattering models based on both the Small Perturbation Method (SPM) 

and the Kirchhoff Approximation (KA) has been widely used in the past in the 

theoretical modeling of microwave remote sensing (Ulaby et al. 1982, Tsang et al. 

1985, Fung 1994, Tsang and Kong 2001). Other recent surface scattering models 

such as the Integral Equation Model (IEM) (Fung et al. 1992, Fung 1994) and the 

Small Slope Approximation (SSA) have shown great promise in the prediction of 

surface scattering (Voronovich 1994, Irisov 1997). 

 

SPM is valid for slightly rough surfaces, while KA is applicable for a rough 

surface with a large surface curvature. The results for emissivity are the same for 

SSA and SPM. IEM is in agreement with SPM for slightly rough surface and with 

KA in the range of KA holding. The Integral Equation Model (IEM) with a 

transitional function (Wu et al. 2001) can provide very well backscattering 

coefficients for a wide range of surface roughness parameters. The idea behind 

introduction of a transition function in the calculation of Fresnel reflection 
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coefficients is to take spatial dependence into account and thus removed the 

restrictions on the limits of surface roughness permittivity. SPM and SSA can lead 

to erroneous results for emissivities of rough surfaces with moderate root mean-

square (rms) slopes. 

Development of a surface scattering model called Advanced IEM (AIEM) by 

extending the existing integral-equation-based surface scattering model (IEM) has 

led to a more accurate calculation of a single scattering for a surface with a large 

rms slope (Chen et al. 2003). 

In modeling of volume scattering from snow the scatterers are assumed to be 

randomly oriented and they are replaced by spheres. The simplification of the 

problem is done by using the effective size of scatterers instead of their size 

distribution. These modeling approximations have shown satisfactory predictions 

(Fung and Eom 1985, Tjuatja et al. 1992, 1993). Other modeling approaches 

using a strong fluctuation theory and a size distribution in the radiative transfer 

theory for snow have been considered (Stogryn 1985, Stogryn 1986, Nghiem 

1993, Wen et al. 1990). 

 

Fung (1994) presented a scattering model for a snow layer. Snow layer is modeled 

as a volume of Mie scatterers (ice particles). The Mie solution of the field 

scattered from a sphere utilized to derive the volume scattering phase matrix for a 

closely packed medium. The boundaries of the snow layer are modeled using the 

surface scattering model, IEM (Fung 1994). The effects of volume and surface 

scattering are integrated by applying the matrix doubling method (Ulaby et al. 

1986, Fung 1994). The study covers effects of snow parameters such as snow 

layer thickness, volume fraction of scatterers, snow wetness and rms height of 

snow top boundary. The overall effect of an increase in snow layer thickness 

results in more volume scattering. The backscattering coefficient is seen to 

increase over the range of volume fraction of scatterers from 20 % to 40 %. Due 

to the small spacing between the ice particles and fractional volume of snow is 

usually between 10 % and 20 % when fresh and may reach 40 % or more after 

aging. The presence of liquid water in a snow medium increases the absorption of 

the medium and causes the albedo to decrease. The scattering is weaker when the 
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snow is wet. The influence of air-snow interface is generally quite small due to 

the small dielectric discontinuity at air-snow interface except possibly at small 

angles of incidence. The effect of the boundary between snow and ground is 

generally larger than the air-snow boundary unless the snow layer is so lossy that 

this boundary is not seen by the incident wave. In the case of wet snow, the 

influence of air-snow interface can be significant. 

 

A polarimetric model that includes surface and volume scattering as well as the 

interaction terms between surface and volume has been developed (Shi and 

Dozier 1993, Shi and Dozier 1995). Radiative transfer model for dense media is 

used for the volume scattering component. The surface scattering model, IEM, is 

used to evaluate the surface scattering components and introduced to the radiative 

transfer equations as the boundary conditions in order to evaluate the importance 

of the interactions between the surface and volume scattering signals. The results 

indicate that the surface and volume interaction terms are the important scattering 

sources for cross polarized signals (Shi and Dozier 1993, Shi and Dozier 1995). 

The surface-volume interaction terms under the independent assumption results in 

an over-estimation for HH polarization. For VV polarization, however, it always 

over-estimates at small incidence angles and under-estimates at large incidence 

angles. 

 

The strong fluctuation theory has been applied to calculate scattering from snow 

(Tsang et al. 1982, Jin and Kong 1984). Tsang et al. (2003) applied 

quasicrystalline approximation (QCA) dense medium theory to calculate the 

absorption, scattering and emission of snow at multiple frequencies.  

 

2.3 Microwave Emission Models for Snow-Covered Terrain 

 

Microwave emission models of snow are based on the solution of the radiative 

transfer equation. Radiative transfer equation has been extensively applied to 

studies of multiple scattering and transmission of specific intensity in random 

media. In the radiative transfer theory, random media may be treated as random 
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discrete scatterer media or continuous random media. According to this division, 

the emission models can be separated into two different approaches: 

The discrete nature of the scattering particles is simulated by discrete scatterers 

embedded in a homogeneous layered medium. The discrete scatterers may be 

treated as spherical Rayleigh or Mie particles, non-spherical particles (spheroid, 

disk, cylinder, etc.), or others (Kong et al. 1979, Tsang and Kong, 1985). In the 

model, the radiative transfer theory is used to evaluate the scattering of waves by 

discrete scatterers. The phase matrix is constructed by assuming that the particles 

scatter independently.  This approach is known as the conventional radiative 

transfer (CRT) theory. When there is more than one scatterer within the distance 

of a wavelength, the assumption of independent scattering in the CRT theory is 

not valid. The dense medium radiative transfer (DMRT) equations have been 

derived from the wave theory for electromagnetic wave propagation and 

scattering in dense media. The DMRT emission and scattering model is based on 

two methods. The first method is the analytic quasicrystalline approximation 

(QCA) (Tsang and Kong, 2001). The second method is Monte Carlo simulations 

of the exact solution of Maxwell equations (Tsang et al. 2001). 

 

The dense medium radiative transfer (DMRT) equations have found their 

applications in snow modelling (Tsang 1987, Tsang et al. 1992). In DMRT, the 

extinction rate, albedo, and phase matrix are related to the physical parameters of 

the medium, such as the size, sizes distributions, fractional volume, shape, 

orientation, and the dielectric properties of the particles. Discrete scattering 

models are complex. They need more input parameters than the continuous 

random medium approach. The practical use of the models is limited by the high 

computing time.  

 

Continuous random media are characterized by the variance and correlation 

function of random fluctuation for the effective permittivity. The effective 

permittivity is used to characterize randomness and scattering effects in a random 

medium. 
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The phase matrix and scattering coefficient of scalar and vector radiative transfer 

equations can be derived by using either the weak fluctuation theory (Tsang and 

Kong 1975, 1976, 1980a, 1985) or the strong fluctuation theory (Tsang and Kong 

1981a, 1981b, 1982, Stogryn 1986, Jin et al. 1984, Jin 1989, Yueh et al. 1990, 

Nghiem et al. 1993, 1995, 1996).  

 

The strong fluctuation theory can be applied to calculate scattering (Tsang and 

Kong 1981a, 1981b, 1982, Jin et al. 1984, Yueh et al. 1990, Nghiem et al. 1993, 

1995) or emission (Stogryn 1986, Jin 1989, Wigneron et al. 1993, Calvet et al. 

1994) from the random media. 

 

A microwave emission model for random medium with non-spherical scatterers 

was improved by using the radiative transfer equations and the strong fluctuation 

theory. The model was then applied to describe microwave emission from wet 

snow (Huining 2001). 

 

The composite discrete-continuous approach is based on the combination of both 

discrete approach to simulate single scattering albedo and the continuous 

approach to simulate the scattering coefficients and the phase matrix (Wigneron et 

al. 1995).  

 

The TKK snow emission model (Pulliainen et al. 1999) is a semi-empirical 

approach. The basic assumption in the TKK snow emission model is that the 

scattering is mostly concentrated in the forward direction. Another example of 

semi-empirical approach is microwave emission model of layered snowpacks 

(MEMLS) (Wiesmann et al. 1999). It is based on the radiative transfer equations, 

in which the scattering coefficient was determined empirically from measured 

snow samples, whereas the absorption coefficient, the effective permittivity, 

refraction and reflection at layer interfaces were based on physical models. 
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III Physical and Microwave Characteristics of Snow,         
     Forest and Soil 
  

 3.1 Physical Properties of Snow, Forest and Soil 

Snow is a fine-grained media close to its melting temperature. Physical properties 

of snow consist of snow depth, snow density, liquid water content, stratigraphy, 

surface features, grain size and grain shape. These physical properties are directly 

consequences of some important processes, which occur during the 

metamorphism of a snow. The surface of snow is generally smooth with respect to 

microwaves. It becomes rougher a as result of changing meteorological conditions 

such as wind action and melt erosion. Snow shows a stratified profile such as 

layers of different types of grains, density, and wetness. The grains are generated 

by precipitation (snowflakes, snow crystals) possibly under the influence of wind 

or deposition. The grains embedded in snow change in size and shape by different 

kinds of metamorphism (Rott et al. 1988). Equi-temperature metamorphism is 

distinguished by the transport of water vapor from regions of high surface energy 

to regions of lower surface energy in a snow with constant temperature below 

freezing. Uniform, well-rounded larger grains in size are produced. Equi-

temperature metamorphism is connected with a large timescale such as months. 

During temperature-gradient metamorphism water vapor under a strong 

temperature gradient is transported from the warmer (lower) to the colder (upper) 

layers by sublimation and deposition. The result is well-oriented grains whose 

form reflects the temperature and vapor pressure gradients. In melt-freeze 

metamorphism when the snow at freezing point begins to melt the melt water is 

trapped between the grains. Refreezing results in a denser snow. Repeated melt-

freeze cycles lead to very large grains. Snow can be divided into three categories: 

dry snow, wet snow and refrozen snow. Dry snow is a mixture of air and ice 

particles. Wet snow is a mixture of air, ice and water. Refrozen snow is a mixture 

of air and large snow grains, which were formed by melt-freeze metamorphism.  
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Typical physical properties of snow are as follows: 

 

- Snow density                                =  0.1-0.4 g / cm3 

- Liquid water content                     =  0-10% (dry snow to wet snow) 

- Ice grain radius for dry snow        = 0.1-0.5 mm 

- Water inclusions radius                 = 0.1-2 mm 

 

Examples of grain size, shapes and layer structure of snow can be found in 

Vallese and Kong (1981), Roth et al. (1988), Kurvonen (1994), and Weise (1996). 

Examples of the shape of liquid water inclusions can be found in Sihvola (1999). 

 

Microwave backscatter from forest is very sensitive to the orientation and size 

distribution of leaves, branches, trunks and moisture content of forest canopies. 

These physical parameters represent discrete scattering and absorbing elements in 

forest canopy.  Dielectric constant of vegetated surfaces include temperature of 

the scattering medium, relative moisture content of vegetation, soil, and snow 

cover, and the presence of water on vegetation determine the magnitude and phase 

of the electromagnetic wave scattered from forest and received by microwave 

sensors. The importance of forest canopy elements regarding microwave 

scattering and absorption elements depends on frequencies. At P- and L-bands, 

microwave scattering and absorption are due to tree trunks and larger branches 

within forests, as well as the ground surface. At these wavelengths, the smaller 

stems and the foliage act mainly as attenuators. At C- and X-bands, microwave 

scattering and absorption are due to smaller branches and leaves and needles in 

the forest canopy. Polarization combination of the received signal is very much 

related to polarization of the transmitted signal and horizontal / vertical 

orientation of scattering elements in forest canopy. 

 

Boreal forests in Finland differ from those in central Europe in three important 

aspects: 1) the stem volume (density of forest) is lower, 2) dominant species are 

conifers (Scots pine and Norwegian spruce), and 3) the most usual soil type is 

moraine (Pulliainen et al. 1994). The average stem volume per hectare in forested 
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land is about 100 m3/ha in southern Finland and only about 50 m3/ha in northern 

Finland, whereas the average stem volume may exceed 200 m3/ha in central 

European forest regions. Both the low average stem volume and the predominant 

moraine soil type increase the applicability of C-band radar for forest applications 

in Finland (Pulliainen et al. 1996). 

 

A soil medium is a mixture of soil particles, air voids and liquid water. Soil 

moisture is one of the most important physical parameters in microwave remote 

sensing of soil. In most natural settings, the effect of roughness may be equal to or 

greater than the effect of soil moisture on radar backscatter. A soil under dry snow 

cover is typically frozen. A frozen soil medium is a mixture of soil particles, free 

water, bound water, and ice particles. Bound water refers to the water molecules, 

which may be strongly bound to soil particles not allowing the usual rotational 

states of H2O molecules in liquid water (Hallikainen et al. 1985, Dobson et al. 

1985). 

 

The most usual soil type in Finland is moraine. In moraine soil, the moisture level 

of the top layer is considerably lower than in clay soil. 

 

 3.2 Microwave Properties of Forest and Soil 

 

Microwave backscatter models treat a forest stand either as a set of continuous 

horizontal layers (Richards et al. 1987, Durden et al., 1989, Ulaby et al., 1990, 

Chauhan et al. 1991) or as a discontinuous layer with individual trees acting as 

distinct scattering centers (Sun et al., 1991, McDonald and Ulaby, 1993). Both 

models calculate the same major scattering terms: (1) volume scattering from the 

tree canopy (the branches and leaves/needles); (2) direct ground scattering; (3) 

ground-to-trunk scattering; (4) ground-to-crown scattering; and (5) ground-to-

crown-to-ground scattering. Most models assume that the tree trunks and branches 

can be modeled as lossy dielectric cylinders, and the leaves or needles as 

dielectric discs or cylinders, respectively.  
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The permittivity of vegetation is given as a function of the volumetric moisture 

content  with the following equation (Fung 1994): vM

 

                   ( ) ( )[ ] ( ){ }fjfjvfM fnv /1818/1/759.4 σεε −+++=        

                                 ( )[ ]{ }5.018.0/1/559.2 jfvfb +++                                      (3.2.1)     

where  is frequency, f σ  is the conductivity nε  is the nondispersive residual 

component of the dielectric constant,   is the free-water volume fraction,     

is the volume fraction for bound water and given following equations: 

fvf bvf

                                                                              (3.2.2) 25.62.37.1 vvn MM ++=ε

 

                                      )166.082.0( += vvf MMvf                                       (3.2.3) 

 

                                                                        (3.2.4) )5.591/()4.31( 22
vvb MMvf +=

                                                                                 

Pulliainen et al. (1994) has studied the backscattering properties of boreal forest 

using empirical airborne and spaceborne radar data from Finland. The obtained 

results show that the radar response to the forest stem volume (biomass) is 

relatively low at both C- and X-bands. The change was on order of 2-2.5 dB as the 

stem volume changed from 0 to 370 m3/ha. 

 

Macelloni et al. (2001) has studied multifrequency (from L- to Ka-band) 

microwave emission from forest stand in Italy. The use of the highest frequencies 

(Ka and X) has been successful in distinguishing different forest types, whereas 

L-band has been found to be the best frequency for estimating woody volume and 

basal area. 

 

Microwave properties of a soil surface are dominated by its geometry and its 

permittivity or dielectric constant. The permittivity itself depends strongly on the 

soil moisture content because of the very high permittivity of liquid water. The 

permittivity properties of soil have been studied by many authors (Hallikainen et 
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al. 1985, Dobson et al. 1985, Peplinski et al. 1995, Mätzler 1992, Tikhonov 1994). 

Both active and passive microwave remote sensing can accurately measure 

surface soil moisture contents in the top few cm of the soil. At L-band (1 to 2 

GHz), the dielectric constant can vary from about 3 for dry soil to about 20 for 

wet soil, which can result in a decrease in emissivity for passive systems from 

about 0.95 to 0.6 or lower and an increase in the radar backscatter approaching 10 

dB (Ustin 2004). Surface emissivities typically are also sensitive to surface 

roughness. For active microwave remote sensing of soils, the measured radar 

backscatter is related directly to soil moisture but is also sensitive to surface 

roughness. The sensitivity of active microwave sensors to soil moisture was 

demonstrated with ground-based, airborne, and even some spaceborne 

experiments (Ulaby and Batlivala 1976, Ulaby et al. 1978, Chang et al. 1980, 

Jackson et al. 1981, Wang et al. 1986, Dobson and Ulaby 1986, Lin et al. 1994a, 

1994b). The approach adopted by Oh et al. (1992) is based on scattering behavior 

in limiting cases and on experimental data. They have developed an empirical 

model in terms of the root mean square (rms) roughness height, the wave number, 

and the relative dielectric constant. By using this model with multipolarized radar 

data, the soil moisture content and the surface roughness can be determined. An 

algorithm was derived that uses L-band HH and VV radar cross sections only to 

estimate surface roughness and soil moisture (Dubois et al. 1995). In this case, the 

algorithm was tested with both airborne and spaceborne SAR data and an absolute 

accuracy of 3-4 % was found for surfaces with vegetation that has a normalized 

difference vegetation index (NDVI) < 0.4. 

Nolan and Fatland (2003) investigated the relationship between soil moisture and 

the penetration depth of SAR at L-, C-, and X-bands. They found this relationship 

to be nonlinear and that a change of 5 % volumetric water content can cause 1 to 

50 mm of change in C-band penetration depth depending on initial volumetric 

water content of soil. 
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3.3 Microwave Properties of Snow 

 

Microwave properties of snow are closely related to understanding the relations 

between the electromagnetic interactions in different parts of the spectrum and the 

physical snow properties. The relationship between backscattering and physical 

snow properties is controlled by the scattering mechanism. At C-band, 

backscattering is controlled by snow volume backscattering and the surface 

backscattering at air - snow interface. When wetness is low, the dielectric contrast 

between air and snow is small and volume scattering dominates, so backscattering 

is not sensitive to surface roughness. As snow wetness further increases, 

backscattering becomes sensitive to surface roughness. This is because the surface 

scattering component becomes dominating, resulted from rapidly increasing 

surface scattering component and decreasing volume scattering component. At 

long wavelength (L-band with 24 cm wavelength) snow particle size has little 

effect on the backscattering signals from a dry snow cover. The scattering 

mechanism can be considered as a homogeneous dielectric layer (snow) over a 

rough surface. The relationships between backscattering signals and snow water 

equivalent can be either positive or negative depending on the snow physical 

parameters, ground surface parameters and incidence angle. In addition to snow 

density and ice particle size, size variation, snow stratification, and underlying 

ground conditions affect the interpretation of the observed backscattering signals. 
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3.3.1 Correlation Functions and Lengths of Snow  

 

The correlation function and correlation lengths are associated with the physical 

structure of the media. In the correlation function of snow, the variances 

characterize the strength of the permittivity fluctuation in snow and the correlation 

lengths correspond to the scale of the fluctuation. A common parameter for 

describing the inclusions such as ice particles and water particles in snow is the 

effective size of particles. To determine the effective size of particles is not an 

easy problem due to the highly different shapes. The correlation lengths can be 

only measured by using image analysis for snow samples. 

Generally, a spatial autocorrelation function ACF( rr ) in three dimensions is 

defined by (Mätzler 1997): 

 'rd )r'-rf(  )'rf(
V
1 =)rACF( 3

V

rrrrr
∫∫∫ ⋅                                                 (3.3.1) 

 

where f( rr ) is a spatially fluctuating function of position rr ,  'rr  is the displacement, 

V is the total volume of the medium under investigation; f( rr ) is normalised so 

that ACF(0)=1. In the surface model such as Integral Equation Model (IEM), f( rr ) 

is the surface profile z(x) (in one-dimensional case).  Autocorrelation function 

ACF(x) is a measure of the similarity between the height z at a point x and a point 

x’ away from x. Dealing with the interaction between the electromagnetic 

radiation and a random media such as in strong fluctuation theory, f( rr ) represents 

the medium’s permittivity ε( rr ) for a given location rr  in space.  

 

Many autocorrelation functions are assumed to be of exponential form (Debye 

1957, Valleese and Kong 1981). It can be written as form (Weise 1996):  

 

 )
l
rexp(-=ACF(r)                                                                       (3.3.2) 

 

where l is called the correlation length.  
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ACFs were calculated for spheres, spherical shells and ellipsoids (oblate spheroids 

or disk like shapes and prolate spheroids or needle like shapes) in (Mätzler 1997). 

For spheres, the correlation function is (Mätzler 1997): 

⎩
⎨
⎧

≥ 2ar                                                          0
       2a<r                              /16(r/a)+3r/4a-1

 = ACF(r)
3

                         (3.3.3)  

where a is the grain radius. 

For the case of penetrable sphere, the normalised correlation function is (Lim et 

al. 1994): 
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f
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                      (3.3.4) 

where a is the radius and f the volume fraction of the spheres. If , Lim’s 

model and Mätzler’s model are identical. Gaussian correlation function can be 

written as (Tsang and Kong 1981): 

0f →

 )
L
rexp(-=ACF(r) 2

2

                                                                   (3.3.5) 

Some applications of strong fluctuation theory suggest that the ACF is 

exponential form in vertical direction and Gaussian form in horizontal (Jin 1989, 

Tsang and Kong 1981, Calvet et al. 1994, Wigneron et al. 1993, Ulaby et al. 

1986).  

 )
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2
p
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−

+
−                                                  (3.3.6) 

Anisotropic correlation function with azimuthal symmetry is given (Yueh and 

Kong 1990 ):  
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where  is the correlation length in horizontal direction and  is the correlation 

length in vertical direction. A general case for Equation (3.3.5) for random media 

with ellipsoidal scatterers is (Nghiem et al. 1993, Nghiem et al. 1995, Nghiem et 

al. 1996): 

pl zl
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where  , ,  are the minor, the meridian and the major axes of the scatterer in 

the local co-ordinates respectively. 

xl yl zl

 

 3.3.2 Effective Permittivity of Snow  

 

An effective permittivity describes propagation and attenuation in the media. The 

relative effective permittivity of most natural materials, when dry, is between 3 

and 8 (for a typical radar frequency). For such values, the penetration depth is 

quite large and the reflectivity correspondingly small. The permittivity for water, 

on the other hand, is around 80 resulting in high reflectivity from the surface and 

almost no penetration. The effective permittivity for a material varies almost 

linearly with the moisture content per unit volume. The higher the moisture 

content, the smaller the penetration depth is and the greater the reflectivity is. 

Since the effective permittivity depends on the frequency of the electromagnetic 

wave, so does the reflectivity. The higher the frequency (or the smaller the 

wavelength), the smaller the penetration is. 

 

The effective permittivity of snow is a function of frequency, temperature, 

volumetric water content, snow density, ice-particle shape and the shape of the 

water inclusions. Snow can be modeled as a mixture of constituents, which exhibit 

a variety of dielectric characteristics. Dry snow is a mixture of air and ice and wet 

snow is a mixture of air, ice and water.  

 

In theoretical backscattering modeling of the terrain, calculation of the effective 

permittivity of a random medium is essential. Investigation of the effective 

permittivity of snow has a long history. Experimental studies of the effective 

permittivity of snow started in 1952 (Cumming 1952) and were followed by many 

others (Glen and Paren 1975, Colbeck 1980, Ambach and Denoth 1980, Tiuri et 

al. 1984, Mätzler et al. 1984). A summary of the semi-empirical dielectric models 
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of snow is found in (Hallikainen et al. 1986). Sihvola (1999) derived general 

mixing formulas of the effective permittivity for discrete scatterers immersed in a 

host medium. 

 

The simple mixing models that relate the effective permittivity of the mixture to 

the permittivities of the constituent (inclusions and host) describe the situation 

well enough if the size of the inclusions is much smaller than the wavelength and 

if their shape is known. The empirical models are also confined by the frequency. 

 

In order to investigate the dielectric properties of snow at higher frequencies the 

strong permittivity fluctuation theory for snow cover was introduced in 1986 

(Stogryn 1986) and its application to calculate the effective permittivity has been 

reported by many authors (Tsang 1982, Yueh and Kong 1990, Lim et al. 1994, 

Nghiem et al. 1993, Nghiem et al. 1995). 

 

Using the strong fluctuation theory, an inhomogeneous layer can be modeled as a 

continuous medium. Snow is described by a correlation function, with the 

variance characterizing the strength of the permittivity function of the medium. 

The correlation function contains information on the physical parameters of 

discrete particles, such as size, shape; it is approximately represented by 

correlation lengths corresponding to the scales of the fluctuation in horizontal and 

vertical directions (Lim et al. 1994, Vallese and Kong 1981, Mätzler 1997). 

Once the grain size and shape, fraction volume (or snow density), permittivity of 

the layer background, permittivity of the scatterer (ice particles) embedded in the 

layer and frequency are given using the strong fluctuation theory, we can calculate 

the effective permittivity of snow. Note that the imaginary part of the permittivity 

of the scatterer (ice particles) depends on temperature and frequency; hence, the 

effective permittivity of snow based on strong fluctuation theory also depends on 

temperature and frequency. 

Consider scatterers with permittivity sε embedded in a background medium with 

permittivity . For the case of dry snow, the scatterers are ice particles and the bε
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background is air. The fraction volume occupied by the scatterers is   and the 

fraction volume occupied by the background medium is 1- .  From the point of 

view of random medium theory, the medium is characterized by a random 

permittivity (Tsang and Kong 1981a, 1981b): 

vf

vf

                        )r( + ε )=εrε ( fm                                                 (3.3.9) 
 
                        ( )  =εr mε                                                         (3.3.10) 
 
                                           ( ) 0=f rε ,                                                         (3.3.11) 
 
where r  is the position vector,  the average permittivity and mε )r(ε f the spatially 

fluctuating permittivity. The angular bracket < > stands for ensemble average and 

corresponds to spatial average on account of the ergodic theorem. Thus, 

vsr  )=f)=r  ((P εε   and  v1-f )=)=εr  ((P br ε , where  stands for probability. The 

random process is non-Gaussian, as 

rP

( )rε  can have either of the two values sε  and 

bε .  

 
The correlation function of the fluctuation of  )r(ε f  is (Tsang and Kong 1981a, 

1981b): 

                                            ( ) ( ) ')r-r ACF(=rεrε 2
mff δε′                             (3.3.12) 

where δ is the normalized variance of the fluctuations and ')r-rACF(  is the 

normalized correlation function with ACF (0)=1. 

 

In terms of the medium properties (Tsang and Kong 1981a, 1981b): 

 

              svbvm  εf) ε f=(1ε +−                                           (3.3.13) 
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We should note that the effective permittivity is not equal to the average 

permittivity .  
effε

mε
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IV Results and Discussion 
 4.1 Microwave Radar Backscattering Signatures of Snow 

 

In [P1], the backscattering coefficients for snow-covered and snow-free non-

forested (open) areas were calculated as average values for sample plots of 25 m 

by 25 m along the test site center lines, where the snow ground truth 

measurements were conducted, using an interval of 100 meters. The empirical 

SAR data were acquired by EMISAR of Technical University of Denmark near 

the city of Oulu in Northern Finland during the European Multisensor Airborne 

Campaign 1995 (EMAC’95). Airborne measurements were conducted on 22 and 

23 March, on 2 and 3 May 1995.  The correlations between snowpack parameters 

and the backscattering coefficients are computed at C-and L-band for all 

polarizations. A statistical analysis is carried out between the backscattering 

coefficient and snow water equivalent for the chosen sample plots. The analysis 

covers two situations (March and May), three snow test sites (1, 2 and 4) and all 

polarizations for both C-and L-band. Test site 3 is forested area and did not have 

non-forested areas (open). Hence it was not considered in the analysis. The results 

show that the correlation coefficients are higher at C-band than L-band, obviously 

due to stronger interaction of the radar signal with the snow cover. The level of 

backscatter is higher at C-band than L-band for high snow water equivalent values 

at all polarizations. On the other hand, there is no clear separation between C-and 

L-band for low snow water equivalent values. This may be due to the high 

contribution of the snow-ground interface. 

 

In [P1], the development of an empirical model is presented to retrieve the snow 

water equivalent from C-band SAR data in non-forested (open) areas. Total 

backscattering coefficient  of dry snow is modeled empirically by fitting the 

data with a linear expression:  

0σ

                                                  ,                                                (4.1) bswea += .0σ
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where a and b are constant coefficients and swe is  snow water equivalent of dry 

snow (mm). The coefficients were determined by the least square sum fitting of 

(4.1) to the measurement data as follows, 

                      minimum                            (4.2) ( )(∑
=

=−
N

i
MODEL,iMEAS,i b,a,swe

1

200 σσ )

where N is the number of training sample plots of dry snow,  is the 

measured mean backscatter for sample plot i of dry snow and  is 

the modeled backscatter for sample plot i of dry snow.  

0
MEAS,iσ

( )b,a,sweMODEL,i
0σ

 

This is a simple data fitting experiment in order to see if there is any correlation 

between the backscattering coefficient  of dry snow and snow water equivalent 

parameter. A comparison between 108 averaged data for swe in 20 mm intervals 

such as 0 - 20, 21 – 40, etc. and model at C-band for three polarizations is shown 

in Figure 4.1. Scatter of the data points at CVV- band is much smaller than at 

CVH band. This may cause the high correlation at CVV band. CHH has also the 

data points almost as sparse as CVH which may explain smaller correlation. The 

data points were selected from agricultural land (non-forested). Any existing 

vegetation may cause some errors. The vegetation could increase the scatter and 

decrease correlation. This effect is higher at cross-polarization than at co-

polarization.  

0σ

 

Since the empirical model presented in this study is able to estimate   values for 

snow-covered terrain in a reasonable manner, we can invert the model to obtain 

snow water equivalent as follows, 

 

           
a

bswe MEAS −=
0σ ,       IF    bMEAS >

0σ

                                             ELSE 0=swe                                               (4.3) 

 

Results from the retrieval of snow water equivalent at C-band VV polarization are 

shown in Figure 4.2. The data used for the retrieval of snow water equivalent is 
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the testing data that is 50% of the all data set. The RMSE values are 71 mm, 

77mm and 88 mm for VV, VH and HH polarization, respectively. The best fit 

with the data is obtained using VV polarization. Although the possibility to 

determine SWE with an RMSE of 71 mm seems to be of little practical use  this is 

good information in various polarizations and the results would be much better 

without a couple of data points. 
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Figure 4.1 Comparison between the averaged data for SWE in 20 mm intervals 
and model at C-band for three polarizations. The model lines show the empirically 
modeled (see Eq. 4.1) responses by using training data. 
 
It was shown that dry snow can be discriminated from bare ground by using ERS-

1 C-band SAR data (Bernier and Fortin, 1992) and , on the contrary, it was also 

reported that dry snow could not be discriminated from bare ground when single 

polarization data is used (Koskinen et.al, 1997). The limitations for application of 

C-band backscatter intensities to retrieve snow water equivalent because of the 

weak signal of dry snowpack was also reported in EnviSnow final report (Malnes, 

E., 2005). The estimation of snow water equivalent by using dual-frequency 

polarimetric SAR data has been studied with promising results (Shi and Dozier, 

1996).  
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Figure 4.2 Comparison of estimated (Eq. 4.1) and measured snow water 
equivalent values using the C-band, VV polarization algorithm. 
 

Figure 4.3 shows that our model gives better results when the data were averaged 

over the test site. In the EnviSnow final report (Malnes, E., 2005) C-band data 

were not averaged at all and, thus, no retrieval of SWE seemed possible. The 

number of averaged data points is 88, 17, and 3 for test site 1, 2, and 4 

respectively. The difference between estimated and measured snow water 

equivalent values is in range of 14 %, 6 %, 5 % for test site 1, 2 and 4 

respectively.  
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Figure 4.3 Comparison of estimated and measured averaged snow water 
equivalent for test sites, 1, 2 and 4, respectively. 
 

 4.2 Semi-Empirical Backscattering Model for a Forest-Snow-Ground System 

 

The main problem with the forest canopy models is the complexity of the target. 

The more accurately the model includes the physical features of the target, the 

larger is the number of parameters needed. Empirical models typically have a 

substantially smaller number of parameters than theoretical models. Semi-

empirical models can basically combine benefits of both modeling approaches. In 

[P2], a C-band semi-empirical backscattering model is presented for the forest-

snow-ground system. The backscattering coefficients for snow-covered and snow-

free forested  areas were calculated as average values for sample plots of 25 m by 

25 m along the test site center lines, where the snow ground truth measurements 

were conducted, using an interval of 100 meters during the European Multisensor 

Airborne Campaign 1995 (EMAC’95) in northern Finland same as in [P1] . The 

analysis covers two situations (March and May), two forested test sites (2 and 4) 

and all polarizations for both C-and L-band.  
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The average backscattering coefficient of forested land-cover can be 

approximately modeled ignoring trunk-ground and multiple scattering 

mechanisms (Pulliainen et. al 1996, Pulliainen et. al 1999). 

In [P2], we also used an empirical boreal forest canopy transmittivity model 

which was developed on the basis of passive microwave measurements (Kruopis 

et. al 1999). Airborne passive-microwave data was collected in Northern Finland 

during EMAC’95. Profiling passive-microwave data were acquired by the TKK 

(Helsinki University of Technology) radiometer HUTRAD onboard the TKK 

Short Skyvan aircraft. On March 22, two measurement flights were conducted 

along the test lines in opposite directions. During the first flight, the radiometer 

system operated at 6.8 GHz and 18.7 GHz. While flying back, the 10.65-GHz 

channel was used, along with the 18.7 GHz. The receivers measured both 

vertically and horizontally polarized radiation. The incidence angle of the antenna 

beam was set to 50 degree off nadir. During the data collection, the nominal flight 

altitude was 300 meter and the nominal flight speed was 110 knots (≈59m/s), 

which resulted in footprint sizes 41 x 93, 26 x 70, and 30 x 77 at 6.8, 10.65 and 

18.7 GHz, respectively.   

The total backscattering coefficient is calculated by using the forest canopy semi-

empirical backscatter model and the empirical ground model. Figure 4.4 shows 

the total backscattering coefficients data, the total backscattering model and 

backscattering contributions from the forest canopy backscatter model and the 

ground floor as a function of stem volume at 5.3 GHz, VV polarization, 50o 

incidence angle. The difference between Figure 4.4 (a) and (b) is the forest 

canopy transmissivity. The canopy backscatter model shown in Figure 4.4 (a) 

includes the forest transmissivity model developed on the basis of passive 

microwave measurement (Kruopis et. al 1999). The backscatter model shown in 

Figure 4.4 (b) includes the forest canopy transmissivity model developed on the 

basis of radar data (Pulliainen et. al 1996, Pulliainen et. al 1999). The behavior of 

ground backscattering data versus stem volume in Figure 4.4 is as expected; 

backscattering decreases when stem volume increases. 
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Figure 4.4 Computed backscattering contributions as a function of stem volume at 
5.3 GHz, VV polarization: (a) the forest transmissivity model developed on the 
basis of passive microwave measurement (Kruopis et. al 1999) (b) the forest 
transmissivity model developed on the basis of radar data (Pulliainen et. al 1996, 
Pulliainen et. al 1999).  
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In [P2], the semi-empirical backscattering model approach for a forest-snow-

ground system is shown by combining the semi-empirical and empirical models 

developed on the different data sets of passive and active sensors. The results of 

the empirical backscattering modeling of snow and the semi-empirical 

backscattering modeling of forest canopy covered by snow presented in [P2] are 

important due to the following reasons:(a) backscattering modeling of snow using 

SAR data is still under study by many researchers and different results have been 

published in the literature, (b) because of the availability of empirical data (even 

though it is very limited) on forest-snow-ground system, the developed semi-

empirical backscattering model with applicability of the forest transmissivity 

formulas developed by using the different data sets of passive and active sensors 

may give a better understanding of forest-snow-ground system for future studies. 

 

4.3 Effective Permittivity of Wet Snow  

 

In [P3], the strong fluctuation theory is applied to calculate the effective 

permittivity of wet snow by a two-phase model with non-symmetrical inclusions. 

Wet snow is treated as a two-phase mixture, where the water is considered as 

inclusions embedded in dry snow that is the background material. The shape of 

the water inclusions is taken into account by using an anisotropic azimuthally 

symmetric correlation function. The effective permittivity is calculated by using a 

two-phase strong fluctuation theory model with non-symmetrical inclusions. The 

three-phase strong fluctuation theory model with symmetrical inclusions is 

presented for theoretical comparison. The results are compared with the Debye-

like semi-empirical model and a comparison with the experimental data at 6, 18 

and 37 GHz is also presented (Hallikainen et. al 1986).  

 

Figures 4.5 to 4.7 show the effect of the size and shape of the water inclusions on 

the effective permittivity of wet snow at 6, 18 and 37 GHz. The results are shown 

separately for the real and imaginary part of the effective permittivity of wet 

snow. The effect of the size and shape of water inclusions on the effective 

permittivity of wet snow is seen clearly at the three frequencies. When the 
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correlation length in horizontal direction is set to be 0.1mm and the correlation 

length in vertical direction is changed from 0.2 mm to 1 mm, the effective 

permittivity of wet snow increases at all 6, 18 and 37 GHz with increasing . The 

increase is significant for high snow wetness values. However, the magnitude of 

increase, from = 0.1 mm and = 0.2 mm to = 0.1 mm and = 1 mm, 

decreases when the frequency increases from 6 GHz to 37 GHz.  The effective 

permittivity of wet snow decreases as  increases from 0.1 mm to 0.3 mm. The 

decrease is more significant when the frequency changes from 37 GHz to 6 GHz. 

These results indicated that the size and shape of the water inclusions are 

important to take into account for calculating the effective permittivity of wet 

snow. 
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                                                              (b) 

Figure 4.5 Computed effective permittivity of wet snow at 6 GHz with various 
correlation lengths (in mm). (a) Real part of the effective permittivity. (b) 
Imaginary part of the effective permittivity. 
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                                                               (b) 

Figure 4.6 Computed effective permittivity of wet snow at 18 GHz with various 
correlation lengths (in mm). (a) Real part of the effective permittivity. (b) 
Imaginary part of the effective permittivity. 
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                                                            (b) 

Figure 4.7 Computed effective permittivity of wet snow at 37 GHz with various 
correlation lengths (in mm). (a) Real part of the effective permittivity. (b) 
Imaginary part of the effective permittivity. 
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The results from the two-phase strong fluctuation theory model with non-

symmetrical inclusions are compared with those from the three-phase strong 

fluctuation theory with symmetrical inclusions, Debye-Like semi-empirical model 

and the experimental data collected for snow (Hallikainen et. al 1986). 

In the two-phase strong fluctuation theory model with non-symmetrical 

inclusions, we used the following values of the correlation lengths of water 

inclusions in horizontal and vertical directions are = 0.11 mm, = 0.43 mm. 

These values gave the best results in comparison with the experimental data at 6, 

18 and 37 GHz. In the three-phase strong fluctuation theory model, the radius of 

spherical scatterers are a

ρl zl

1 = 0.4 mm and a2 = 0.7 mm for water and ice particles, 

respectively (Jin and Kong 1984). The comparisons between the two-phase strong 

fluctuation theory model with non-symmetrical inclusions and three-phase strong 

fluctuation theory model with symmetrical inclusions, Debye-Like semi-empirical 

model and the experimental data given in (Hallikainen et. al 1986) at 6, 18 and 37 

GHz are depicted in Figures 4.8 to 4.10.  

The results show that the two-phase strong fluctuation theory model with non-

symmetrical inclusions provides a reasonably good agreement with the 

experimental data and the other models. When the frequency increases from 6 to 

37 GHz the two-phase strong fluctuation theory model with non-symmetrical 

inclusions gives a better fit with experimental data for the real part of permittivity. 

However, concerning the imaginary part the prediction from the two-phase model 

underestimates the imaginary part of permittivity at 6 GHz and overestimates it at 

37 GHz. The reason for this could be that the sensitivity of two-phase model to 

size and shape of water inclusions are different at different frequencies as shown 

in Figure 4.5, 4.6 and 4.7. Another explanation could be that according to 

(Hallikainen et. al 1986), the water inclusions in wet snow appear needle-like in 

shape for the volume fraction below %3=vf . However, they become disk-like for 

. This change in shape appears to be due to the transition from the 

pendular regime to the funicular regime. In [P4], we used this approach; we used 

different correlation lengths at different snow volume fractions and we got good 

results. 

%3≥vf
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                                                               (b) 

Figure 4.8 Comparison of two-phase strong fluctuation theory model with 
experimental data (Hallikainen et. al 1986) for the effective permittivity of wet 
snow and other models at 6 GHz. (a) Real part of the effective permittivity. (b) 
Imaginary part of the effective permittivity. 
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Figure 4.9 Comparison of two-phase strong fluctuation theory model with 
experimental data (Hallikainen et. al 1986) for the effective permittivity of wet 
snow and other models at 18 GHz. (a) Real part of the effective permittivity. (b) 
Imaginary part of the effective permittivity.  
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                                                         (b) 
Figure 4.10 Comparison of two-phase strong fluctuation theory model with 
experimental data (Hallikainen et. al 1986) for the effective permittivity of wet 
snow and other models at 37 GHz. (a) Real part of the effective permittivity. (b) 
Imaginary part of the effective permittivity.  
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 4.4 Brightness Temperature of Wet Snow-Covered Terrain 

 

In [P4], the development of a model is presented to describe microwave emission 

from wet snow. The model is based on the radiative transfer and the strong 

fluctuation theory. The effective permittivity is calculated by using the two-phase 

strong fluctuation theory model with non-symmetrical inclusions [P3]. The phase 

matrix and extinction coefficients of wet snow for an anisotropic correlation 

function with azimuth symmetric are used. The vector radiative transfer equation 

for a layer of a random medium was solved by using Gaussian quadrature and 

Eigen analysis.  

 

Comparisons with brightness temperature data at 11, 21 and 35 GHz (Wiesmann 

et.al, 1996) are shown in Figure 4.11 to 4.13, respectively.  In the experimental 

data (Wiesmann et.al, 1996), a set of three microwave radiometers at frequencies 

11, 21 and 35 GHz was used to measure the brightness temperatures of melting 

snow at an Alpine test site, Weissfluhjoch, Davos, Switzerland on June 20, 1995. 

Only limited ground-truth information is given in (Wiesmann et.al, 1996): the 

snow depth is 81 cm, the air temperature is 8o C, the snow temperature is 0.1o C at 

the top of snow layer, and 0o C on the ground. In the model, the basic set of input 

parameters for the calculations is listed in Table 1 and the values the correlation 

lengths of water inclusions in vertical and horizontal direction  mm and 

 mm.   It is shown that the model agrees with the experimental data. 

11.0=ρl

lz = 0 43.

 
 
Table 1: The basic set of input parameters 
 
 

f (GHz) T (K) H (mm) icevf _  iceD (mm) watervf _  
11, 21, 35 273 810 0.3 0.8 0.05 
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Figure 4.11 Comparison of the predictions from the wet snow model with 
experimental emissivity values (Wiesmann et.al, 1996) at 11 GHz.  
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Figure 4.12 Comparison of the predictions from the wet snow model with 
experimental emissivity values (Wiesmann et.al, 1996) at 21 GHz.  
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Figure 4.13 Comparison of the predictions from the wet snow model with 
experimental emissivity values (Wiesmann et.al, 1996) at 35 GHz. 
 

 4.5 Backscattering from Wet Snow 

 

The strong fluctuation theory has been applied to calculate scattering from 

random medium such as snow and vegetation canopy (Jin and Kong 1984, Tsang 

and Kong 1981a, Tsang and Kong 1981b, Tsang et. al 1982). Random medium is 

characterized by an effective permittivity that describes propagation and 

attenuation in the medium. Jin and Kong used the strong fluctuation theory with a 

three-phase mixture (air, ice and water particles) to calculate the permittivity of 

wet snow (Jin and Kong 1984). In their calculation, the shape of scattering 

inclusions is considered to be spherical. Our studies in [P3] show that the real 

shape of the scatterers may be important and so should be considered in the 

calculation of the effective permittivity of wet snow.  

 

In [P5], the backscattering coefficients of wet snow are calculated from a half 

space of wet snow (shown in Figure 4.14) by taking into account of the shape of 

the scatterers using non-symmetrical inclusions in the strong fluctuation theory. 
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The wet snow is treated as a two-phase mixture, where the water is considered to 

be particles as inclusions embedded in a background material of dry snow. The 

shape of the water inclusions is taken into account by using an anisotropic 

azimuthally symmetric correlation function (Jin 1989, Tsang and Kong 1981b).   
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Figure 4.14 Scattering from a half-space wet snow with effective permittivity. 

 

The results of the two-phase strong fluctuation theory model with non-

symmetrical inclusions are compared with the three-phase strong fluctuation 

theory with symmetrical inclusions and the experimental data (Stiles and Ulaby 

1980) in Figure 4.15. The fractional volumes for water and ice inclusions are 2 

and 23 percent, respectively, in both models (Jin and Kong 1984). In the two-

phase strong fluctuation theory model with non-symmetrical inclusions, the 

correlation lengths are considered as free fitting parameters. We used the values 

of the correlation lengths of water inclusions in vertical and horizontal directions 

which are = 0.5 mm, = 0.6 mm. These values are chosen to fit the 

experimental data (Jin and Kong 1984). In the three-phase strong fluctuation 

theory model, the radii of spherical scatterers are a

ρl zl

1 = 0.4 mm and a2 = 0.7 mm 
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for water and ice particles respectively (Jin and Kong 1984).  The results are in 

very good agreement with each other.  

 

We compare the two-phase strong fluctuation theory model with non-symmetrical 

inclusions with a different set of experimental data (Stiles and Ulaby 1980). In 

(Stiles and Ulaby 1980), the experimental data was acquired during February and 

March 1977 at the test site near Steamboat Springs, Colorado. The temperature of 

the snowpack varied from –13o C and 0o C. The ground temperature was 0o C, and 

-1o C. Snow depth, water equivalent and snow wetness were 26 cm, 5.9 cm and 

3.1 %, respectively. In Figure 4.15, the backscattering coefficients are plotted as a 

function of frequency at an incidence angle of 50o. In the two-phase strong 

fluctuation theory model with non-symmetrical inclusions, we used the following 

values of the correlation lengths of water inclusions in vertical and horizontal 

directions which are = 0.5 mm, = 0.6 mm.  The fractional volume for water is 

3.1 percent which was given in the experimental data (Stiles and Ulaby 1980). 

The comparison shows that the two-phase model with non-symmetrical inclusions 

provides the good results to the backscattering coefficients of wet snow. 

ρl zl
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Figuere 4.15 Comparison of two-phase strong fluctuation theory model with non-
symmetrical inclusions with experimental data (Stiles and Ulaby 1980) for the 
backscattering coefficients of wet snow as a function of frequency at an incidence 
angle of 50o. Snow depth = 26 cm, water equivalent = 5.9 cm, and snow wetness 
= 3.1 %. 
 
4.6 Retrieval of Wet Snow Parameters from Radar Data 
 
We examined in [P5] the effect of the size and shape of water inclusions on the 

backscattering coefficient. In [P6], we investigate the relationship between 

correlation lengths and snow wetness by comparing the results from the two-

phase backscattering model with experimental data in (Stiles and Ulaby 1980). 

The effect of size and shape of water inclusions on different snow wetness values 

was also examined in order to see possible relations between correlation lengths 

and snow wetness parameters and how these differ at various frequencies. In [P6], 

in order to know what frequencies are high enough to allow comparison between 

our model (snow contribution only) and data (snow and ground contributions) we 

estimated the penetration depth versus frequency and snow wetness. The results 

are in line with previous studies (Rott et. al, 1992, Mätzler, 2001).   
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Figure 4.16 shows a comparison between the two-phase backscattering model 

with non-symmetrical inclusions and experimental data versus snow wetness for 

1.2 GHz, 8.6 GHz, 17 GHz and 35.6 GHz for HH polarization, 50o angle of 

incidence, snow depth 45 cm, snow water equivalent 13.5 cm.    
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Figure 4.16 Comparison between the two-phase backscattering model with non-
symmetrical inclusions and the experimental data (Stiles and Ulaby 1980) versus 
snow wetness at 1.2 GHz, 8.6 GHz, 17 GHz and 35.6 GHz for HH polarization, 
50o angle of incidence, snow depth 45 cm, snow water equivalent 13.5 cm. 
Different correlation lengths used as a fitting parameter for each frequency [P6]. 
 

In real life, we need to consider inclusions of the same size and shape at all 

frequencies. In Figure 4.17, a comparison with experimental data is shown using 

the same correlation lengths for all frequencies. The backscattering contribution 

from snow at 1.2 GHz is very low and contribution from ground dominates. The 

model agrees well with experimental data at 8.6 GHz and 17 GHz, but not at 1.2 

GHz and 35.6 GHz. These results are in line with the experimental results (Stiles 

and Ulaby 1980). In (Stiles and Ulaby 1980) the snow samples used for wetness 
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determination were acquired from the top 5cm layer of the snowpack. As 

explained in more detail in (Stiles and Ulaby 1980), the top 5cm layer may be an 

adequate descriptor of the effective depth at 8.6 GHz and 17 GHz but not at 1.2 

GHz and 35.6 GHz. The effective depth is the depth that is responsible for the 

majority of backscattering contributions. The effective depth at 35.6 GHz may be 

smaller than 5 cm. On the other hand, the backscattering coefficient at 1.2 GHz is 

rather independent of snow wetness of the top 5 cm layer due to the greater depth 

of penetration. 
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Figure 4.17 The comparison between two-phase backscattering model with non-
symmetrical inclusions and the experimental data (Stiles and Ulaby 1980) versus 
snow wetness at 1.2 GHz, 8.6 GHz, 17 GHz and 35.6 GHz for HH polarization, 
50o angle of incidence, snow depth 45 cm, snow water equivalent 13.5 cm. Same 
correlation lengths used as a fitting parameter for each frequency [P6]. 
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V Conclusions 
The objective of the thesis was to develop microwave models for investigating the 

complex behaviour of microwave interaction with snow.  Papers [P1]-[P2] 

combine semi-empirical and empirical models of snow for a forest-snow-ground 

system. In [P3] the two-phase model with non-symmetrical inclusions is 

presented for calculating the effective permittivity of snow using strong 

fluctuation theory. Papers [P4]-[P5] are concerned with developing microwave 

emission and scattering models for wet snow.  Paper [P6] investigates the 

relationship of the physical parameters such as size and shape of inclusions and 

snow wetness together with the incidence angle and frequency. 

 

The new scientific knowledge achieved in the thesis includes: 

 

• In [P1], the radar backscattering signal from dry snow in non-forested (open) 

areas was examined using polarimetric EMISAR data at L- and C-band. An 

empirical snow backscatter model at C-band was developed for large, 

relatively homogeneous areas. 

• In [P2], the semi-empirical backscattering model approach for a forest-snow-

ground system was developed, based on combining the semi-empirical and 

empirical models developed on the different data sets of passive and active 

sensors. 

• In [P3], a model was developed for calculating the effective permittivity of 

wet snow using the strong fluctuation theory and the results were compared 

with experimental data. Wet snow was considered as a mixture of dry snow 

and non-symmetrical water inclusions. 

• In [P4], a model based on the radiative transfer and the strong fluctuation 

theory to describe microwave emission from wet snow was developed using 

the effective permittivity model of wet snow developed in [P3]. 

• In [P5], a two-phase backscattering model for wet snow was developed using 

the effective permittivity model of wet snow developed in [P3]. 
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• In [P6], the relationship between correlation lengths and snow wetness were 

presented by comparing results from strong fluctuation theory with the 

experimental data at 1.2 GHz, 8.6 GHz, 17 GHz and 35.6 GHz. The effects of 

size and shape of water inclusions at different snow wetness values to 

backscatter level were shown. 

 

Possibilities to further develop the work in the thesis include: 

 

• The model presented in [P5] considers only volume scattering. The two-phase 

backscattering model needs further developments and should include air-snow 

and ground-snow interface effects. 

• Examining radar backscatter from a half-space of dry snow using the model 

presented in [P5] and verification of the empirical model in [P1] to retrieve 

snow water equivalent parameter. 

• Microwave multilayer emission and scattering models of snow. 
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VI Summary of Appended Papers 

 
[P1] 

A statistical analysis for the backscattering coefficient and snow water equivalent 

was carried out for EMISAR data. EMISAR operates at L-band (1.25 GHz) and 

C-band (5.3 GHz) and measures at the two frequencies both the amplitude and 

relative phase of the backscattering coefficient for VV, HH, VH, and HV 

polarizations. An empirical model is presented to retrieve the snow water 

equivalent from C-band SAR data for non-forested (open) areas. The model works 

better to retrieve snow water equivalent for large and relatively homogeneous 

areas. 

[P2] 

A semi-empirical backscattering model of forest-snow-ground system, which is a 

function of the forest stem volume, and the snow water equivalent is developed.  

Applicability of the forest transmissivity formulas developed by using the 

different data sets of passive and active sensors is investigated. 

 

[P3] 

The strong fluctuation theory is applied to calculate the effective permittivity of 

wet snow by a two-phase model with non-symmetrical inclusions. In the two-

phase model, wet snow is assumed to consist of dry snow (host) and liquid water 

(inclusions). Numerical results for the effective permittivity of wet snow are 

illustrated for random media with isotropic and anisotropic correlation functions. 

A three-phase strong fluctuation theory model with symmetrical inclusions is also 

presented for theoretical comparison. In the three-phase model, wet snow is 

assumed to consist of air (host), ice (inclusions) and water (inclusions) and the 

shape of the inclusions is spherical. The results are compared with the Debye-like 

semi-empirical model and a comparison with experimental data at 6, 18 and 37 

GHz is also presented. The results indicate that (a) the shape and the size of 

inclusions are important, and (b) the two-phase model with non-symmetrical 

inclusions provides good results for the effective permittivity of wet snow. 
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[P4] 

This paper is concerned with development of a model to describe microwave 

emission from wet snow. This model is based on the radiative transfer and the 

strong fluctuation theory. The wet snow is treated as a mixture of dry snow and 

water inclusions. The shape of the water inclusions is important. The effective 

permittivity is calculated by using the two-phase strong fluctuation theory model 

with non-symmetrical inclusions. The phase matrix and extinction coefficients of 

wet snow for an anisotropic correlation function with azimuth symmetric are used. 

The vector radiative transfer equation for a layer of a random medium was solved 

by using Gaussian quadrature and eigen analysis. Comparisons with brightness 

temperature data at 11, 21 and 35 GHz are made. It is shown that the model agrees 

with the experimental data. 

[P5] 

The strong fluctuation theory is applied to calculate the scattering from a half 

space of wet snow. The first and second moments of the fields are calculated 

using the bilocal and the distorted Born approximations, and the low frequency 

limit is taken. The effective permittivity of wet snow is calculated using the two-

phase model with non-symmetrical inclusions. Numerical results for the 

backscattering coefficients of wet snow are illustrated for random media with 

isotropic and anisotropic correlation functions. The results are in good agreement 

with the experimental data. 

[P6] 

The relationship between correlation lengths and snow wetness is presented 

comparing strong fluctuation theory with the experimental data at 1.2 GHz, 8.6 

GHz, 17 GHz and 35.6 GHz. The effect of snow wetness on the backscattering 

coefficient is investigated. Numerical results of comparison between the two-

phase backscattering model with non-symmetrical inclusions and the experimental 

data are illustrated at 1.2 GHz, 8.6 GHz, 17 GHz and 35.6 GHz.  The effect of 

size and shape of water inclusions at different snow wetness values to backscatter 

level is shown. The comparison of angular response of backscattering coefficient 

(dB) to wet snow between the model and the experimental data is presented at 2.6 

GHz, 8.6 GHz, 17 GHz and 35.6 GHz.   
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