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1 Introduction

The first laser was developed and demonstrated by the American physicist Theodore
Maiman in 1960. He succeeded in optically pumping a ruby crystal into a population
inverted state and in creating favorable conditions for lasing [1]. His work was preceded
by theoretical predictions of how to extend the operating range of masers into the optical
domain, and of course, the maser technology itself [2]. The demonstration of a working
laser revived rapid progress in optics and gave birth to a new field concentrating on the
study of lasers, waveguides and nonlinear optical phenomena.

The availability of lasers gave researchers inspiration and a new tool to create in-
tense and coherent monochromatic optical beams. New discoveries and demonstrations
on the nonlinear effects in different materials emerged at a very impressive pace in the
1960s. Soon after Maiman, a research group in Bell Laboratories developed the first
gas laser using a mixture of helium and neon as the lasing medium and several groups
reported stimulated emission in homojunction gallium arsenide diodes [3-5]. Second
harmonic generation in crystalline quartz, the ascertainment of stimulated Raman and
Brillouin scattering and many other nonlinear effects in optical fibers were also demon-
strated in the 60s [6-9].

In optical communications, the development of optical fibers has had at least as
crucial a role as the development of optical transmitters and receivers. Total reflection of
light in general was observed and understood already in the 19th century and elementary
fibers without the cladding were fabricated as early as in the 1920s. In the 1950s the use
of a cladding layer around the glass core led to the optical fiber structures primarily used
today [10]. Since then the evolution of the optical fiber technology has been driven by
the development of the manufacturing process, materials and the profiles of the core and
the cladding. The ability to significantly reduce the amount of water molecules and other
impurities in the fibers reduced the losses of optical fibers to a level of 0.2 dB/km and close
to the fundamental limit of Rayleigh scattering by the end of 1970s [11]. It also made
the nonlinear effects, which are primarily a nuisance in point to point links, in the long

fibers better noticeable. An equally important, and not only technical, advancement was
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the introduction of rare earth elements, especially erbium, as a dopant in the core of the
fibers in the late 1980s. They made fiber amplifiers possible and enabled even longer span
for the optical links without using electronics. More recently photonic crystal technology
has also been introduced in optical fibers.

The huge transmission capacity, long link lengths and the minimal interference
with the outside world offered by the optical technology were successfully taken into full
use in the backbone of the commercial communications networks in an ever accelerating
pace in the 1990s. However, optical networks of today still employ conceptionally very
simple linear optical devices like quantum well lasers, optical fibers, fiber amplifiers,
filters and add and drop multiplexers. Any complex operations such as switching, logic,
regeneration and memory are still handled by electronics and require converting the signal
from optical to electronic form and back.

The undisputed victory of optical fibers over copper cables as a transmission medium
is diminished only by the current inability of optical technologies to practically perform
the nonlinear complex operations. The electro-optic conversions required in the optical
networks are clumsy and costly and replacing the electronic components with optical so-
lutions that can tap into the enormous bandwidth of optical signals has been intensively
researched and expected. No cost effective optical alternatives for the electronic compo-
nents exist at the moment [12, 13].

Device prototypes demonstrated to this date have been able to reproduce most of the
functions needed in the next generation optical networks involving purely optical compo-
nents. However, the prototypes do not yet nadkthe requirements of practical commer-
cial switches, memories, delay lines, regenerators or logic gates. These requirements can
be summarized by compactness and suitability for integration, fast or extremely fast op-
eration, acceptable power consumption, stability under various operating conditions and
good tolerance for noise. In switching applications one would additionally hope for good
scalability and transparency.

The publications included in this thesis relate to the nonlinear components, trans-
mitters and amplifiers that could be used in the future optical networks. Publications I

and Il concentrate on quantum dot lasers and gain clamped semiconductor optical am-



plifiers, linear components with superior properties compared to the traditional lasers
and amplifiers. Publications Ill through VI exploit the properties of the gain clamped

laser amplifiers, phase locking and interferometers in creating a new form of nonlinearity.
The nonlinearity is used to generate all-optical regenerators, logic functions and flip-flop
circuits with many desirable properties. The summary part of the thesis gives a brief
overview of the physics and topics encountered in the publications: the properties of
light, its interaction with matter, the principles of laser operation and light amplification

and the principle of using interferometry with gain clamped amplifiers to generate a new

nonlinearity that lends a hand for new coherent nonlinear devices.
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2 Properties of light

Light is electromagnetidM) radiation in the frequency range covering the visible, ultra-
violet and infrared frequencies (Fig.1). The behaviour of light is usually described by
three models of increasing complexity and accuracy: ray optics, wave optics and quan-
tum optics. The fundamental equations of the wave and quantum optical descriptions
frequently encountered in preparation of this thesis are summarized in the following sec-
tions. The given presentation aims at briefly reviewing the key concepts and formulas
of the theory. For a detailed derivation of the results, the reader is referred to for exam-

ple [14-16].

2.1 Classical field theory

The classical theory of electromagnetism was combined and completed by James Maxwell
in 1873. The classicd&tM field is characterized by the electric and magnetic fields asso-
ciated with it. Both fields are vector quantities with well defined values.

In vector form Maxwell’s equations describe concisely and accurately the behaviour
of EM waves, when the quantum nature of the field can be neglected. The four Maxwell's

equations are [14]

VxE(,t) = —B(rt) (2.1)
VxH(r,t) = D(r,t)+J(rt) (2.2)
V-D(r,t) = p(rt) (2.3)
V-B(r,t) = 0 (2.4)

whereE is the electric fieldH the magnetic field strengti) the electric displacement
field, B the magnetic flux density, the free current density ancthe free charge density.
The time derivatives are indicated by the dots above the symbols. In linear isotropic media

the relations between the fields are given by the constitutive equations

= ¢ge0E=¢)E+P (2.5)

B = pupoH = po(H+ M) (2.6)
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frequency (THz) / energy (eV)
3000/12.4 300/1.24 30/0.124

~
10° 10 \léifn“m 10’
wavelength (nm)

Figure 2.1: The communications wavelengths in the electromagnetic spectrum of
light. The spectrum of visible light (indicative) has shorter wavelengths than the
most commonly used communications wavelengths, located at 1.3 ym and 1.55 pm.
The far infrared (up to wavelengths ~ 1 mm) is not included in the spectrum.

whereP is the polarization an®1 the magnetization of the material. The relative elec-
trical permittivity ¢, and the relative magnetic permeability in Egs. @.5-(2.6) are
generally frequency dependent tensors of rank two. In this thesis only materials which
are effectively isotropic and optically inactive are considered and hence scalar values are
assumed for, andy,.. The boundary conditions at the boundary of two materials, 1 and
2,arenxE; =nxE;,n-D;—n-Dy =p,,nxH; —nxH,; =J,andn-B; = n-B,,
wheren is a unit vector normal to the boundary and pointing to material 1 pa@ehdJ
are the surface charge and current densities, respectively.

In dealing with the theory of electromagnetism it is often useful to define two aux-
iliary functions, the scalar potentidl (r,¢) and the vector potentig\ (r,¢) defined by

the equations [17]

E(r,t) = —V&(r,t)—A(r,t) (2.7)
B(r,t) = VxA(r,t). (2.8)

The choice ofA is ambiguous. Although the selected gauge does not affect the physical
solution of the problem, it may result in simpler algebra. In static problems it is common
to use the Coulomb gauge and chod%e A = 0 whereas in magnetodynamics it is

customary to use the Lorenz gauge whereA = —p0®/0t.
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2.1.1 Wave equation

For many purposes of linear optics one can reduce the four Maxwell’s equations into
a single equation for the electric field (or the magnetic field, vector potential or scalar
potential). Ifu ande are assumed constants or piecewise constants, taking the curl of both
sides of Eq. 2.1) and using the constitutive equations and the vector ideRtityV x f =

V (V - f) — V?f gives the nonhomogeneous wave equation:

p(rt)

V?E (r,t) — pcE (r,t) = V + ud (r,t). (2.9)

Setting the free charges and currents to zero reduce2B)jinto the homogeneous wave

equation
V’E (r,t) — peE (r,t) = 0. (2.10)

The homogeneous wave equati@rilQ is satisfied by any function of the forfi(k - r — wt)

where
k= \/uew (2.11)
andw is the angular frequency, = /k2 + k2 + k2 is the wave number antl,, k£, and

k. are thex, y andz -components of the wave vectkrof the wave. Also functions of
the formf (k - r + wt) are solutions t04.10 with & = —,/ucw, but then the direction
of propagation of the wave would have to be alenk, instead of the customaty. By
Fourier transforming the electric field in the homogeneous wave equatiaf),(one

obtains the Helmholtz equation
V2u, (r) + pew’u, (r) =0 (2.12)

whereu,, are the Fourier components of the electric field. Usiad 1) in the Helmholtz

eguation gives the eigenvalue equation
VU, () + K*uy,, (r) =0 (2.13)

wherem indexes the different eigenvalues bound to the fixed wave numbEne eigen-
functionsuy,, (r) are called the normal modes of the field. The normal modes are orthog-
onal and normalized to satisff/ukm (r) - Wy (v) dPr = g 4r0p. They also depend

on the boundary conditions of the problem.
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Physically the general solutidh(k - r — wt) of the homogeneous wave equation
(2.10 describes a wave that propagates alkngth a phase velocity = w/k = 1/,/}ic.
In vacuum the velocity of light is a natural constagt= 1/,/10¢o, and inside matter
the velocity is given by: = ¢, /n, where the refractive index, is correspondingly:, =
Vert (typically n, ~ 3 for common semiconductors). When there are no free charges
and the permittivity and permeability of the material are constant, the solutions of the
wave equation are plane waves of the fainir, t) = e’*Te~*! where|k| = k andm
indexes the direction dk. From Maxwell’'s equations it then follows th&tand uy,,
are perpendicular to each other aHdis perpendicular to botk andE if there are no
free currents. Furthermore, the magnituddbtan be obtained fromil = E/n, where
n = +/ji/< is the wave impedance.

The intensityS of anEM wave is expressed by the Poynting vector [14]
S(r,t) =E(r,t) x H(r,t). (2.14)

For harmoni&EM fields propagating in homogeneous media the average magnitude of the

Poynting vector is
1

S(r):%

E (r)® (2.15)

whereF (r) is the magnitude of the electric field at The energy densityz of the EM

field is given by

wg = S[B O+ 5P (2.16)

When free charges or currents are present, the inhomogeneous wave equgtion (
must be used to describe the propagation of the wave. For harmonic signals (or Fourier
components of the signal) it then becomes useful to generalize the solutions of the homo-
geneous case so that imaginary values of the wave veetod the material permittivity
are used to account for the light—-matter interaction. The plane wave can then be written in
the formuy,, (r) = ek* = ¢®klre=S{kir \whereR denotes the real part afidenotes

the imaginary part.
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The absorption los& is defined as the relative change of the intensity along the
propagation path by
0S (r,t)

T S(r o (2.17)

where the derivative is taken along the direction of propagation. The connection of the
absorption and the refractive index to the complex permittivity and permeability of the

material is given by

e = R{Vam) (2.19)

wheren,; = & { /&MT} is imaginary part of the complex refractive index ands the

wave number in vacuunz (= g andu = fi)-

2.1.2 Kramers-Kronig relations

The Kramers-Kronig —relations link together the spectra of the real and imaginary parts
of complex functions that have no poles in the upper (or lower) complex plane and for
which f (—w) = f* (w). In optics they are often used to link together the refractive index
n, (w) (proportional to the real part df) and the absorption (w) (proportional to the

imaginary part o) by the relations [18, 19]

c * a(W)
s (w) = 1 + ;P/O w’z — w2 dw' (220)
w? *n.(W)—1,,

whereP [ denotes the principal value of the integral.
The relations provide a tool for evaluating the change in the refractive index if
the absorption spectrum changes. This is particularly useful in evaluating the linewidth

enhancement factor in semiconductor lasers.

2.1.3 Linewidth enhancement factor

The linewidth enhancement factdrEF) describes how the refractive index of the mate-

rial changes along with the carrier density. It is defined as the ratio of the change in real
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and imaginary parts, andn,; of the complex refractive index [20]

A, ()
Ang (hw)

on, (hw)

Oef (hw) W

= —2kg (2.22)

In addition of being related to the chirp in optical components, the linewidth of continuous
wave CW) semiconductor lasers is also increased by a facten?; with respect to gas

lasers, for whichyes ~ 0.

2.2 Quantized electro-magnetic field

In a more fundamental treatment, ¥ field must be described as a quantum field. The
field quanta are called photons and they are bosonic particles with zero rest mass [15,21].
In this thesis, quantum theory of light is mainly needed for better understanding of some
fundamental concepts of optics, particularly the interaction with matter and the noise
analysis of publication Il.

To show the analogy between the quantum field and the harmonic oscillator, the
electric field in the classical homogeneous wave equaidi)is first written as

E(r,t) = Epm () U (r). (2.23)
k,m

For now Ey,,, (t) are assumed to be real functions and denote the strength of the normal
mode km. The normal modes,,, are assumed real as well and satis?yl®. The

homogenous wave equation for edgeh simplifies into
k2 Epm () — pieEpn (1) = 0. (2.24)

This equation is identical in form with the equation of motion of a classical harmonic
oscillator. Experiments and more extensive theories have shown that this analogy extends
all the way to the quantum theory and it is straightforward to apply the properties of the
guantum mechanical harmonic oscillator to B oscillator.

The Schrddinger equation of the simple harmonic oscillator is [22]

. d
HsnoV = il (2.25)
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with the HamiltonianH s given by
~2 ~2
Hspo = -+ KTJC (2.26)
The harmonic oscillator is characterized by the massf the oscillator and the spring
constant’. Termsp andz are the momentum and position operators, respectively. The
eigenvalue spectrum of the Schrodinger equationHgk;o is discrete and the energy
eigenvalues are given , = (n + 1/2) liw wherew = /K /m.

The eigenstatels: > of the HamiltonianH s ;o can be obtained recursively from
each others by using the creation and annihilation operataada and their properties
afln >= v/n+ 1|n+1 > anda|n >= /n|n — 1 >. The operatoréf, 4,  andp and the
commutator{a, at] (defined for two arbitrary operatofg and” by [[), F} — DE—FD)

have the following properties and relations [22]:

a = T4+ 2.27
2h vV 2mwh (2.27)
A P B 298
¢ ohw” "\ 2en” (2.28)
i o= h (a+al) (2.29)
2mw
R mwh b
o= (a' —a) (2.30)
[a,a"] = 1. (2.31)

The analogy of the equation of motion of the classical harmonic oscillator and Eq.
(2.24) for the normal modém on one hand and of the energy of the harmonic oscillator
and the energy of thEM field (2.16) on the other suggest substituting the mass, the spring

constant and position of the classical oscillator with

m o« elwi, (2.32)
K < ¢ (2.33)
& o B, (2.34)

in Egs. @.29-(2.31) when dealing witfEM oscillators.
Substituting 2.32-(2.34) in Egs. .29 and .23 and generalizing for complex

uy,, gives the electric field operator of &M field as [15]
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n / hwkm * N R
E = Z 2¢ (ukm (I‘) G,Lm + Ugm (I‘) akm) . (235)
k,m

The expectation value of the electric field of a normal mbden state|ny,, > is then ob-
tained from< nkmyE\nkm >. The sinusoidal time dependence of the electric field arises
from the time dependence of the state vectors in the Schrodinger pibtyge$~ e™?)

or of the time dependence of the operat@r§~ ¢**) anda (~ e~**) in the Heisenberg

picture. The magnetic field and the vector potential are represented by the operators [15]

~ ] h . . )

S

A = Dy " (UZ (v) aj _ukm(r)dkm>- (2.37)
—\ 2ewpm m il

Other important operators in the quantiZel field description are the position and mo-

mentum quadrature operatapsand P which are related to the creation and annihilation

operators by the relations [21, 23]

Q = 2:;m (dkm +d2m) (2.38)
P o= —iyf h‘;’“m (akm — k) (2.39)

2.2.1 Fock states and Glauber states

Two alternative basis are most often used to represent the state of an electromagnetic
field. The eigenstateg:,, > of the photon number operatar,,, = dlmd;@m of the

normal modé:m are called Fock states or photon number states and satisfy the eigenvalue
equation [16, 23]

ﬁkzm|nkm >= nkm|nkm > (240)

while the eigenstatdsy,,, > of the annihilation operataty,, are called Glauber states or

coherent states and satisfy

&km|akm >= Qlpm |Okm > - (241)
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In pure Glauber states the electric and magnetic fields have a well defined amplitude and
phase in the classical Iim|it>zkm]2 > 1 whereEy,, ~ \/2hw/cay,,. The light generated
by high quality lasers corresponds closely to pure Glauber states.

Any Glauber state can be represented in the Fock state basis by [16, 23]
_ —|Oék~m|2/2 aZm
O, >= € —n > 2.42
| nEO hn!| (2.42)

and the probability,, of there being: photons in the statey,,, > is given by

2n
o

n

(2.43)

Pn = |< nlagm >7 =¢
The energy of the normal moden for a Fock statén,,, > or a Glauber statgy,, > is

1 1
Eim = (5 + nk;m> hw = <§ + ’akm|2) hw. (2.44)

In addition to the coherent states, a commonly encountered photon state is the
chaotic state created by a thermal source. In Fock basis the chaoti¢¢gtate can
be represented as [16]
[€m >= Zn: #]n > (2.45)
whereny,, is the average number of photons contained in the normal redeChaotic
states differ from the Fock and Glauber states in the property that even,for- 1 the

maximum of the probability distributiop,, = |< &, |nem >|° is located ai = 0.

2.2.2 Light-matter interaction

According to the Fermi golden rule (FGR), arising from the time dependent perturbation
theory, the transition raté/;; from an initial statel; > to a final statg f > due to a
harmonic perturbatio®/’ at an angular frequency is given by [24]

2w |(f1H0)

Wiy 5

L (hwy; + hw) (2.46)

whereL (hwy; £ hw) is the probability distribution ofw; (usually Dirac delta function
or a Lorenz-distribution). The transition energy is giveniay;; = (E; — E;) with Ey
and FE; being the energies of the final and initial states. The + sign in the probability

distribution is for emission and - for absorption.
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For optical excitations it is convenient to write the states of the system as a direct
product of the electronip > and optical stateg: >, in the form|f >= |¢; > |n >.
The absorptiorWﬁPSand emissionV5" rates for a single optical moden with n,; initial
photons, Hamiltoniadl’ = ep - A, /mo andA,,, given by Eq. 2.37) can be calculated
from [24]

abs _ me? Mpi . 2 R
W) = T 1< olp w6 > L (g — h) (2.47)
) = W) W= T < g e >
x L (hwy; + hw) (2.48)

where emission occurs by stimulated emissW;jE‘"‘ [the term proportional to,; in
(2.48] and spontaneous emissmm [the term independent of,; in (2.48)].

The macroscopic absorption coefficient of a material can be obtained from the rate
of absorption and stimulated emission by summing over all the possible initial and final
electronic states and weighting by the corresponding probability of the initial state being
occupied ;) and the final state being available{ p;). The absorption for a linearly
polarized plane wave with polarization along the veatdrecomes [24]

me?

a(hw) = o E— ; < ¢slp-u(r)|g; >|?
x L(hwy —hw) (pi —py) - (2.49)

In 11I-V compound semiconductors the final and initial electronic states are defined
by the band, spin and electron wave vector. If the semiconductor is in thermal quasi-
equilibrium the probabilitiep; andp; can be calculated from the quasi-Fermi distribu-
tions f., (E) = {1+exp [(E — E}") /kpT| }_1 whereE}" are the quasi-Fermi levels
of the conduction and valence bands, respectively [19]. The absorption of a semiconduc-

tor within the parabolic band approximation is given by

a(hw) = aowconerVZW'pxm'/ AEG(E )
X [fv< U>_fC( c)] (250)

The momentum matrix elememp? | (~ 1072* kgm/s for typical semiconductors) is

evaluated over the unit cell for the initial bandnd final bandr and for light polarization
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alongu. The overlap of the electronic envelope functiohsand ¥; with the envelope
functionyy,, (r) of the normal electric field mode gives rise to the confinement fatter

|< Wylv (r) [P, >|. If [' = 1itis customary to speak of the material gain in distinction to
modal gain. Summation over andn is over the sub bands of the valence and conduction
bands (if applicable) and the transition enefgyf the electronic state is contributed to

the valence £,) and conduction£.) bands according to the requirement of preserving
the electron wave vector in the transition. The joint density of st@tissthe density of
states for the initial — final state pairs that are possible for transitions that preserve the
wave vector [19]. The differences in the characteristics of the absorption spectrum of
bulk, quantum well and quantum dot materials is primarily manifested by the different

forms of the joint density of states.

2.3 Noise

2.3.1 Figures of merit for noise

An optical signals (¢) can be represented as a sum of the actual signal pawer and

an additional noise signa), (¢) in the form

s(t) =s0(t)+sn (). (2.51)

The noise can be statistically described by the variance and the optical signal to noise

ratio (SN R,,) of the signal by [17]

)—s(t)]zzs(t)Q—s(t) (2.52)
SN Ropt[s ()] = % (2.53)

Var[s(t)] = [s (t

where the overbar denotes the time average over samplingltin@ptical signals, and

noise, however, are usually measured using electrical components in which the generated
current is proportional to the optical power and electric power is proportional to the square
of the optical power in the normal operating regime. Therefore it is customary to use the

electrical signal to noise rati®(R) for optical signals as well (compare for example [17]
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and [25]):

—2
t)
NR=SNR2 — L 2.54
SNR = SN Ry = G b (2.54)
A figure of merit for the amount of noise in optical amplifiers is the noise fighie),(
defined by using th&NRat the input and at the output of the amplifier [26]

_ SNR;

NF = :
SN Rout

(2.55)

2.3.2 Photon detection

Photon detection is based on measuring the current generated by light in semiconductors.
Different semiconductor device configurations ranging from photoconductors to photodi-
odes and phototransistors can be used for this purpose [17]. The noise in the measured
signal is composed of the noise present in the original optical signal and the noise gener-
ated in the detector itself. Only the noise directly related to optical signals is considered
here.

Starting from the Fermi golden rul@.46) the absorption and emission rat@sA(/)
and @.48 were obtained. The quantum mechanical absorption and emission rate oper-
ators for constant excitation with optical pumping or electrical injection can be corre-

spondingly written for a single normal mode as

~

Wabs - Uabsﬁkm (256)

Wem = Oem (g + 1) (2.57)
whereny,, is the photon number operator of the normal mdaade and o.,; and o,
are obtained directly from2(47) and .48 and describe the absorption and emission
strengths in the media.

For sufficiently small time periodst the probabilities of emitting or absorbing a
single photon are@,, ., 1 = Gapsipmdt aNdp, ., 1 = TemNrmdt and the probability of
emitting or absorbing more than one photon is negligible. For longer time periods the
possibility of absorbing or emitting more than one photon must be accounted for. The

operator measuring the probability of observihghotons during intervalt, ¢ + T is
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given by [16, 27]
. M-
whereQ is the normal ordering operator that arranges the creation opeééatmrthe left

of the annihilation operatoisand the operator
R t+T R R
M = / Wabs — Wemdt == (Uabs — O'em) ﬁka (259)
t

gives the number of electron - hole pairs created in the intéfvaEvaluation of the
integral in .59 assumes that the detection conditions remain unchanged.

For an ideal detector in which the generated electrons and holes are swiftly swept
away from the active region, the emission strength can be approximated as 0 and

thenM = 0.,k FOr a coherent statey.,,, > the probability of measuring photons

becomes
At A J
A ~ <0absTakmakm> Tal
Pj =< Oékm’P]‘Oékm > = < Ozkm’O j' e7abs? G tlem Qm >
2\J
_ (O—abST ’akm| ) eaabsT|0¢km|2 (2‘60)

7!

which is the Poisson probability distribution. TB&IR of a coherent state is given by
SNRcoherent: UabsT |akm’2 - UabsTﬁkm (261)

whereny,, is the average number of photons in the statg, >.
For a large photon reservoir represented by the state-= > p,|n, > the

resulting probability distribution is [16]

n

P; =< \Il‘pJ’\I] >= an

n=j ]

(GabsT) (1 — 0apsT)" 7. (2.62)

The derivation of these probability distributions doesn’t account for the possible change
in the photon state as a result of the detection (absorption). Hence the results generally be-
come inaccurate when the detection probability, or quantum efficiengyl, approaches

unity. More accurate treatments of the measuring process can be found for example in

references [28-31].
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The probability distribution of chaotic light obtained fror2.§2 by using .49

has the same form as the original chaotic distribution [16]

abs 177
py = 7T ) - (2.63)
(1 + O'absTﬁ) J
and theSNR of the chaotic state is
O-absTﬁ
SNR, o= ————— < 1. 2.64
chaotic 1+ UabsTﬁ = ( )

For long sampling time%' the probability distribution for chaotic light is not equal to Eq.
(2.63 but approaches again the Poisson distribut@®@ because of the assumption
thato,,s1T' < 11in (2.62 [16]. To achieve higtsNR transfering optical signals should be
done using coherent light. If chaotic light is used, the quantum efficiency of the detection
should approach unity, ie the sampling tifieshould be long, to reduce the amount of
noise.

Another means to measure an optical signal is by homodyne detectors, where, in
addition to a semiconductor detector a beam splitter and a local oscillator are used [23].
The response of a heterodyne detector is proportional to the expectation value of the
guadrature operator2.89-(2.39, instead of the photon count as in plain semiconductor

devices.
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3.1 Semiconductor lasers

Semiconductor lasers are the most important light sources in telecommunications. They
are compact, their spectrum is narrow, their wavelength compatible with the transmission
windows of optical fibers and they can be operated by electric current. The semiconductor
lasers can be classified by the structure of their active region into bulk, quantum well,
guantum wire, quantum dot or quantum cascade lasers. Of these, quantum well lasers
dominate the market, because their power consumption, processing and other properties
make an optimal cost-effective combination of today’s technology.

Basically lasers are simple devices: they are forward biased diodes made of a direct
bandgap semiconductor and enclosed in an optical cavityJH)g.In the active region
of the diode electrons and holes are simultaneously electrically injected in the conduction
and valence bands, respectively. As a result of the recombination of the carriers, photons
are emitted by spontaneous and stimulated emission [seeZ49-(2.48] in the optical
modes allowed by the optical cavity.

In the current optical networks the transmitter of choice is usually a quantum well
laser QWL) built in the quaternary G&s,In;_.P,_,/InP material system and operating
close to the loss minimum of optical fibers (1.568) [32]. In direct modulation standard
QW.Ls exhibit large fluctuations in the optical frequency, ie they chirp. Therefore the
transmitters are operated in t@V mode and costly external modulators based on the

Pockels effect are used to electrically modulate the signal amplitude.

3.1.1 Laser cavities

The cavity of a semiconductor laser is usually composed of a short waveguide with re-
flective facet surfaces at both ends. The transverse resonator modes of the cavity can be
transverse electricTE), transverse magnetidil) or hybrid modes, depending on the
waveguide geometry [19]. THEE (TM) polarization in a planar waveguide is character-

ized by the electric (magnetic) field in plane of the waveguide and perpendicular to the
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Figure 3.1: Basic operation principle and the schematic structure of double het-
erostructure semiconductor lasers. Electrical injection in a p-n double heterojunc-
tion diode creates a local population inversion in the active region (dark gray).
Photons are guided in the waveguide structure formed by the heterojunction inter-
faces (light gray) and amplified by stimulated emission in the active region. The
optical cavity formed by the mirrors or the cleaved semiconductor edge — air inter-
faces (black) is an optical resonator where optical modes with suitable wavelengths
are allowed. The modes that have the highest gain are favored over other modes
and have high power and large photon population.

direction of propagation, while the magnetic (electric) field is perpendicular to the electric
(magnetic) field and may have a small component in the direction of propagation. In the
hybrid modes both the electric and magnetic fields have small components in direction of
propagation. Generally, the fewer modes the cavity supports in the region of the positive
gain spectrum, the better.

The reflection coefficienf? of a conventional symmetrical Fabry-Per&# res-
onator as a function of the wavelength (in vacuum) is [19]

4Rysin’ d (\g)
(1 — Ry)® + 4Ry sin? § (o)

R(Xo) = (3.1)

where Ry is the reflection coefficient of the reflecting interface and,) = 27n,. L/
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Distributed Bragg reflector cavity
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Figure 3.2: Frequency selective resonator structures. In a Fabry-Perot resonator of
length L the wavelength A of an optical signal must satisfy An = 2L (n is an integer)
and the resonance frequencies are closely spaced if L is large. In DBR and DFB
type resonators the wavelength must additionally satisfy the resonance condition of
the DBR or DFB grating and the spacing of the resonance frequencies can be more
freely adjusted.

with n, being the refractive index in the cavity adthe length of the cavity. The prop-
agation constant, (assuming that the waveguide is alongxis) of theFP resonator
satisfies to a good approximation the conditibh. = mm, wherem is an integer. If
the resonator is long (typical length of a conventional laseg i$ mm), the resonance
frequencies of the longitudinal modes are very closely spaced.

To achieve better frequency selectivity and larger frequency separation, one or both
of the mirrors of theFP cavity can be replaced by a distributed Bragg refledBBR),
which provides high reflectivity for selected frequencies. Alternatively the refractive in-
dex in the cavity can be modulated by a distributed feedbBé&iB] grating. Then the
wavelength must additionally meet the resonance condition dDBR or theDFB grat-
ing. The cavity types and their response are sketched I8 Rig

The quality of an optical cavity for a given wavelength is described by the loss of
the cavitya which is affected by scattering, material absorption and the cavity mirrors.

The main source of cavity loss is usually caused by the transmission through the cavity
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facets. In this case, the loss is approximated by

InR
L

o =

whereR is the effective reflectivity of the facet aridis the cavity length.

The DBR or DFB grating increases the cost of the laser significantly. In some
applications sufficient frequency selectivity can be reached by using a very short laser
cavity instead of the gratings. In vertical cavity surface emitting lasé@&SELS) the
cavity is formed in the growth direction of the substrate and the laser emits light through
the surface VCSELs usually have only one longitudinal mode and are easier to process
thanDBR or DFB lasers with cavity in plane of the substrate, but often several transverse

modes are active iIWCSELs.

3.1.2 Laser structures

Double heterostructure lasers, like the one shown in&ify.are used to spatially confine
both light and carriers in order to optimize the photon-electron coupling. When the width
of the potential well where the carriers are confined, gets smaller, quantum effects in
carrier distribution become significant. QRWLs the well width is of the order of a
few tens of nanometers or less. Reducing the size of the active region in two or three
dimensions results in quantum wire lasers and quantum dot 1a3Biss], respectively.
The different active material types and their density of stal#¥3S]) are schematically
represented in FigB.3

The quantization of the eigenstates of the carriers modifies the density of states
and affect many properties of the active material. It becomes possible to increase the
efficiency of a laser because the threshold gain is reached with smaller injection current.
The differential gain in reduced dimensionality active materials becomes higher than in
bulk lasers. The modulation induced fluctuations in the optical frequency of the laser, ie
chirping and the_.EF associated whith chirping is affected by the modifiZdS as well.
The measured EF for different laser structures typically ranges from aboyt > 4
for bulk lasers toaer = 1 for QWLs andaes = 0.1 for QDLs [20, 33—-40]. These

Y ~Y

values naturally depend on the specific operating point and measuring frequency, but they
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Figure 3.3: Density of states in active materials exhibiting different quantum fea-
tures. In bulk material the density of states is proportional to /E — E,. In quantum
wells the density of states is of the step function form and in quantum wires it is
proportional to 1/y/E — E,. In quantum dots the DOS is basically a delta-function,
but because the dot sizes and energies fluctuate from dot to dot, the effective DOS
of the dots becomes Gaussian and has a finite width.

indicate a general tendency of achieving low#iF for reduced dimensionality active

materials.

3.1.3 Properties of quantum dot lasers

From the middle of the 1990s, it has become possible to fabri@ates operating at

room temperature. The active material in these lasers is made of self-organized quan-
tum dots fabricated by the modified Stranski-Krastanov method [41]. The manufacturing
of the active material iQDLs is based on growing a thin film (a few monolayers) of a
semiconductor material on top of the substrate (for exampl&adn ,As on GaAs) by
molecular beam epitaxy or metal organic vapor phase epitaxy. If the lattice constant of
the film is mismatched with that of the substrate, the film breaks when the layer reaches

a critical thickness and the newly deposited atoms form numerous small islands and pos-
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sibly a monolayer thick wetting layer between them. The quantum @ids) can then
be overgrown by a suitable barrier material. These steps can be repeated several times
leading to a stack with man@D layers.

The density of states of a singlgD is delta function -like and only broadened by
the finite lifetimes of the carriers in the dots. The homogeneous lifetime broadening has
the Lorentzian form [42]

L. /m
(E — E, — E)* + 12

Ly (FE)= (3.2)

wherel'; = h/7 andr is the lifetime of the statef, the band gap energy of th@D
material andE, the quantization energy of the dot. However, due to the self-organized
growth of the islands, th®OS of the QD system is also inhomogeneously broadened.
The inhomogeneous broadening leads to@ieeigenstate energy distribution that obey

the normal distribution [41]

[o(B) = —— e (PEymE0)/Cap)’ (3.3)
2m0%,
op ~ 2%E, (3.4)

The probability L that theQD states with transition energlf exist depends on the
relative standard deviation (¢ = 0.1) of the energy states [43]. The inhomogeneous
broadening (typically~ 10 — 20 meV) usually dominates over the homogeneous lifetime
broadening £ 0.1 meV), and the lifetime broadening can be neglected in the eigenstate
energy distribution 0QDs.

The distinguished density of states of Q®Ls offers many potential advantages
over other active materials [43—-47]. The threshold current density Qs can be
significantly lower than in the more conventior@WLs resulting in higher efficiency.

The differential gain is higher and the frequency fluctuations caused by the changes in the
carrier density can be made smaller.

Formerly it was believed that the relaxation processes of the carriers in the inhomo-
geneously broadene@Ds was severely limited by the so called phonon bottleneck and
that the spectral hole burning would maR®Ls unpractical [48, 49]. However, more re-

cent studies suggest that the relaxation processes are sufficiently fast@ipghe reach
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thermal quasi-equilibrium with reasonable output powers [50, 51]. This approximation
significantly simplifies dynamical modeling @DLs.

The advantages of usingDLs as directly modulated transmitters depend on the
possibility of reducing the chirp and the inhomogeneous broadening. It has often been
argued that due to the symmetriddDS the LEF of QDLs is inherently very close to
zero at the lasing frequency [33-35]. However, this may only apply when the inhomoge-
neous broadening is small compared to the lifetime broadening, which is not the case for
self-organizedDs. Even perfectly symmetribOS does not result in zerbEF at the
gain peak for numerous reasons, if the energy spectrum of the dots is inhomogeneously
broadened (see Publication | for further details). The effect of tuning.E#es in QWLs
by shifting the lasing wavelength has been generally acknowledg@¥\hs for some
time [52]. The same method to control thEF is not only possible iQDLs, but the re-
guired shift and the resulting increase in the threshold current are smaller and more easily

achievable.

3.1.4 A dynamical laser model: the rate equations

Describing an optical system directly with the quantum mechanical or even the classi-
cal equations becomes highly unpractical when the system composes of several separate
components. There are several approximations that can be used to simplify the system.
One of the most widely adapted methods in modeling the dynamics of optical compo-
nents are the rate equations, which describe the average carrier density and the average
photon densities in different optical modes whose frequencies are widely separated from
one another [19].

Rate equations describe the rate of change of the cantipof photon ¢ ;) density
of a cavity mode by simple, often linear, approximate laws obtained experimentally or

theoretically. For a typical current injected single mode laser, the equations are of the

form
dn,
dt = I/Vinj —Cg (ne) ng, — Whst (3.5)
dTLL
= clg(ne) —alng + Wep+ Wext (3.6)

dt
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The rate of change of the carrier density is divided in three terms. The carrier density
is increased by the current injection, given by the téiifgy = Ier/eV, where e is

the effective injection current and is the effective volume of optical cavity (or the ac-
tive region, depending on the normalization). On the other hand, the carrier density is
decreased by stimulated emission at the ratgé:.) n;, and by the other recombination
processedlV,. Often one can well approximaté,s; ~ n./7 wherer is the average
lifetime of carriers, excluding the recombination by the stimulated emission process.

The photon density in the cavity changes due to the gain (the combined effect of
stimulated emission and absorptionand the losses of the cavity. The cavity losses
contain the scattering losses. and the mirror losseSmror = — In R/ L, whereR is the
mirror reflection coefficient and the length of the cavity. Additional sources of photons
that may increase the photon density are the spontaneous emission into the laser mode
Wy, and the ratéV.,; at which photons are injected into the cavity from outside sources.

In phase locked lasers, there is an external coherent optical signal injected to the
laser. To account for the phase of the signal, E336)(must be modified to describe the
complex electric field phasdr;, of the laser instead of the average carrier density [53,54].

The equation describing the optical field then becomes

dbry,

& X C
dt - 5 [g (ne) —a+ 1Aw (ne)] EL + _Eext- (37)

2L

Here Aw (n.) = aefAa (n,) is the difference between the frequency of the externally
injected field Fey and the resonance frequency of the cavity mode, which depends on
the carrier density. The change in the absorption(n.) is calculated with respect to

the absorption at which the cavity resonance coincides with the frequency of the external

signal Fey;.

3.1.5 Small signal modulation properties of lasers

The small signal analysis of a laser is instructive to see what factors in general affect
the operating speed of a semiconductor laser. This information is also important in the

evaluation of the capabilities of the coherent nonlinear devices to be introduced in this
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thesis. The rate equations of a single mode laser in the small signal approximation are

dnse 1

dzf = - (C’yLnLo + ;) nse — corngr, + A (3.8)
dn

diL = YLNLoNse (3.9)

where the carrier and photon densities= n.y + ns. andn; = nry + ns;, have been
divided in constant parts., andn;, and a small deviation from the constant values,

andns,. The termry, = dgr (n.) /dn.

n.=n., denotes the differential gain of the laser
andA is the change in the injection. Making a Laplace transformation for the equations

and solving for the carrier density deviation gives

—sL{A}
L et = 3.10
{nac cypnpoar + 8%+ s (1/7 4+ eypnro) (3.10
L {nse
E{n5L} = CcyLNMro {:J(S } (311)

The solutions of3.10 in time domain for a step function inpuf,{A} = 1/s, are

easily obtained using partial fraction decomposition in the form

1

51— 82

nse (t) = (e — ") (3.12)

wheres; , are the poles of Eq.3(10. The characteristics of the solution are then easily
deduced from location of the poles. If the poles have an imaginary part, the solutions are
oscillatory (relaxation oscillations occur). If they are real, the solution moves to its new

steady state value monotonously. The discriminant of the denominatdridy {s

D = (1/7+cypnw)’ — 4Pyrnmoar. (3.13)

Real solutions are obtainedif > 0, ie

(1/7 + cynwo)’ VLMo

a
t 4cyrnro 4

(3.14)

where the latter approximation assumes that the term., > 1/7. In single mode
lasers the relaxation oscillations therefore disappear if the laser is biased so that the

(steady state) photon density - differential gain prodyet;, is sufficiently large. The
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decay time of the perturbation is obtained from the pelesnds, of (3.10 according to

(3.12. The poles are given by

— (1/7 + c¢ypnge) — VD

sy = _(1/T+CVQL”L°)+\@. (3.16)

The outcome of the simple timescale derivation above shows that the operating
speed of current injected lasers is limited by the carrier lifetime at low output powers.
At higher powers the large number of photons in the cavity begins to dominate and the
operating speed begins to grow (— —oo, ss — —cay asnry — o00) . In the on-off
amplitude modulation the small signal analysis does not give accurate results, although
it makes it easier to appreciate the slow response caused by the vanishing of the photon
population in the off state. In practise the direct current modulation frequency of the
lasers is limited to a few tens of GHz [39, 55].

The results calculated for a laser with one laser mode and one signal mode dif-
fer from the simple results derived here by an additional time constant — ¢s) /20,
whereag andgg are the losses and the gain of the signal mode (see Publication IIl). Al-
though small signal approximation can not accurately describe operation in large signal
conditions, they give an estimate on the operating speed obtainable by a laser construction

that always has a nonzero photon population in the laser mode.

3.1.6 Photon statistics of laser generated light

Photon statistics of the light generated by lasers can be evaluated by using rate equations
written for the weight coefficients, (¢) of the statd¥V >= >" p, (t) |k, > [16]. The
outcome for a laser that is above the threshold is

(B + )™ (g

Fu= (B +n)

(3.17)

whereny,, is the average number of photons in the mode @mla parameter describing
the strength of spontaneous emission with respect to the pumpingoratec(eases as

pumping becomes stronger). With high pumping rates the distribudidi)(approaches
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Poisson distribution and therefore the light emitted by a good quality laser is approxi-
mately coherent. If the laser operates below the laser threshold the photon distribution
becomes chaotic. Note that the coherence of lasers is just a result of the process where
the delicate interaction between the photons, the active medium and the cavity results in
a photon distribution that corresponds to the distribution of coherent light.

The signal to noise ratio of a signal measured by a photodetector and generated by
a laser can be calculated usir8y7) and @.54). When the relative power of spontaneous
emission becomes negligible far above the laser threshioid (), the SNR approaches
the value obtained for coherent ligi2 61) and the noise level is reduced when the output
power of the laser is increased. Below and very close to the threshdiiNiRepproaches
(2.64) for short measuring times.

Another measure of the laser signal quality is the linewidth of the laser. The laser
linewidth can be approximated semiclassically starting from the properties of sponta-
neous emission and stimulated emission and their relative powers in the laser [56]. If
the cavity mode has,,, photons on average, there is one spontaneous emission process
for eachny,, — 1 ~ 7y, Stimulated emission processes. Since stimulated emission pro-
cesses tend to conserve the coherent statistics and spontaneously emitted photons tend to
destroy coherence, the situation can be described by a coherent electric field phasor with
Tem Photons on average being perturbed by one photon with a random phase. A single
spontaneously emitted photon can then cause a phase shiftsf 1/1/7.,,, radians. The
random walk process changes the electric field phasor at éniazt)é [Teay = (TeavTkm)

wherer,,, is the cavity lifetime for the photons. The laser linewidth then becomes [56]

Afm—t (3.18)

QWﬁkm Teav

Writing the result with the average photon count replaced with the optical pBveard

accounting for the linewidth enhancement factor of semiconductors gives

hw (1 + Oé|ef)2
272 P

cav

Af ~ (3.19)

as the linewidth of the laser.
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Figure 3.4: Gain clamped semiconductor optical amplifiers are lasers which allow
the amplified signal(s) to propagate through an optical cavity with an active laser
mode. In the conventional traveling wave GCSOA the laser cavity, formed by two
frequency selective mirrors, is parallel with the signal waveguide (a). In the so
called linear optical amplifiers (LOA) the laser field is perpendicular to the signal
waveguide (b). When the signal is amplified it takes power from the laser mode. In
LOA this results in pronounced spatial variation of the laser field.

3.2 Gain clamped optical amplifiers

Impurity doped fiber optical amplifiers are commonly used in the optical networks. Their
largest drawbacks are their bulky size, the requirement of optical pumping and the gradual
saturation as the input power increases. Alternatives for the fiber amplifiers ranging from
Raman fiber amplifiers to several kinds of semiconductor devices have been proposed [19,
57,58]. The most interesting alternatives, in the context of this thesis, are the gain clamped
semiconductor optical amplifier&CSOAs). These amplifiers are operated directly with
current and their response is more linear than that of conventional fiber optical amplifiers
or semiconductor optical amplifierSQAs). Furthermore, they are used in the optical
flip-flops described later in this thesis.

The operation of th&CSO4As is based on amplifying the signal by stimulated
emission in the presence of an additional laser field (8id). The laser field is confined
in a cavity that is parallel to the direction of signal propagation (conventiGizEOA
or perpendicular to it (linear optical amplifiet@A)). In GCSOAs the overall gain
of the laser mode needs to be higher than the gain of the signal mode. This can be
achieved either by frequency selective mirrors or by frequency selective gain in conven-

tional GCSOAs. In LOA the mirrors need not have any frequency selectivity because
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different mirrors are used for the signal and laser modes. The amplifiers where the signal
propagates through the amplifier without reflections are further categorized as traveling
wave amplifiers TWAs) while the amplifiers where the signal is filtered by an optical
cavity are of the Fabry-Perot amplifiéfRA) type.

A generalized position dependent rate equation model of the form

one (x,t) ne (z,t)

—or = Winj — cgrng (x,t) — c; GiSix (x,1) — — (3.20)
a”La—f”t) = c(gr — ap)n (z,1) (3.21)
Osip (x,t) 0s; s (z,1)
gy T TRe—o + ¢giSip (T, 1) (3.22)

can be used to describe either one of the amplifier types when boundary conditions that
suitably account for the reflections at the cavity ends are used.rHére ) is the photon
density in the vertical laser field (applicable only tdDA), s; . (x,t) the photon density
of the signal mode propagating in the-z (x = 1) or —z (k = —1) direction. The gain
of the GCSO4As is basically determined by the threshold valag (n case ofLOA) that
is required for laser operation. The gain stays approximately constant while the laser is
above the threshold and only the optical power of the laser mode changes when the signal
is amplified. This process minimizes changes in the amplification and carrier density and
the amplifier is very tolerant to variations in the input signal.

In Publication Il the differences of thBWAs of theSOA, GCSOAandLOA types
are studied. The results verify that the gain of b@&E&SOA types, the conventional
GCSOAand theLOA, are quite independent of the input signal power. An approximation
where the rate equations are averaged over the length of the amplifier is also possible
with good accuracy [59]. This approximation applies especially well foiFP&s and is

adapted in the other publications of this thesis.

3.2.1 Photon statistics of optical amplifiers

The quantum mechanical approach to the photon statistics of an optical amplifier is
based on writing the rate equations for the probability distribufig) of the state

> 0 Pn (t) [nEm > in the normal modem in a two level picture and solving the time
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evolution of the probability distribution. This approach leads to the Kolmogorov equa-
tions that describe the evolution of the probabilitigst) [60—62]. Despite the apparent
difference in the phenomenology at the first sight, the equations are formally similar to the
equations describing the biological birth-death-immigration processes [63]. This makes
the problem conceptually straightforward and easy to simulate stochastically.

Basically, a group of photons enters an amplifier. As they propagate along the
amplifier there is a chance per unit time (distance) that any of the photons get absorbed
(death), generate a new photon by stimulated emission (birth) or that a spontaneously
emitted photon is created (immigration).

Closed form solutions to the probability distributions at the output of a travel-
ing wave amplifier are readily available in the form of probability generating functions
(PGFs), from which the mean and higher moments are easily obtained [64]. The proba-

bility generating function at the input of an amplifier is defined by
Fy ()= pond" (3.23)

wherep, ,, is the probability of there being photons at the input at time= 0 and( is a

real parameter. TheGFat the output becomes

F(C,1) = Fy (Z (¢, 1,0)) ehlZ@an-1lvndr (3.24)
where
Z(CtT) = 1+ - (C=Vh(r) (3.25)
h(t)—[¢—1] [fo h(u) A (u) du — [T b (u) A (u) du
hu) = elon®-A0du (3.26)

and) (¢) is the birth ratey (¢) is the death rate and(t) is the immigration rate.
An important special case of the output probability generating funcB&¥is the
probability density in the case of coherent light at the input 3M#A. The probability

density is of the noncentral-negative-binomial (NNB) form,

Mamp =G/ (4 Tiamp) [ M1 Grs (3.27)

Pn = oy -
(1+ namp) i Namp (1+ namp)
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wherenm, = G (L) fOL st (2) /G (2) dz , s IS the stimulated emission raté; (L) is
the amplification of the amplifier frorfato L, 72, is the mean photon number at the input,
M = M'T/t., M'"is the number of modes available for spontaneous emisgias the
measuring time,. is the coherence time ard’ " is the Laguerre polynomial.

The mean and variance of the distributi@27) are [65—67]

n = Gy + MTgmp (3.28)

Var{n} = Gn;+ 2GT; Tamp + MTamp (1 + Tamp) - (3.29)

The components of the variance in the output photon distribution are the amplified noise
of the input signal (first term), the noise added by the random amplification process (sec-
ond term) and the spontaneously emitted photons that are also amplified (last term). From
these results the fundamental limitation of optical amplifiers, the lowest achievable noise
factor of~ 2, becomes apparent. Even if the amplified spontaneous emission is negligible
(last term~ 0), the noise associated with the fluctuations in the amplification is signifi-
cant. For constant gain along the amplifi@f.,,) = (G — 1) st/ (Yst — Vabs) > G — 1

with 7.1, being the absorption rate. The noise factordoys> 1 then becomes

G+2G(G-1)
G2

Other types of optical amplifiers which exploit the quadrature states of light and use

NF =

— 2. (3.30)

complicated setups, may, however, provide lower noise figures in specific circumstances
[68].

3.3 Nonlinear effects

In the classical theory the light - matter interaction is accounted for by the material pa-
rameters: and . that are functions of the electric field. Usually the variations in the
permeability, are small and neglected. The relative permittivity can be expanded in

powers of the electric fieldL:

e (B)=1+> Y"E, (3.31)
1=0
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wherey®) are the expansion coefficients of the susceptibility. The best known nonlinear
effects that are used in nonlinear optical components are the Pockel’s gffect)(and
the Kerr effectj = 2).

Pockel's effect is found in crystals lacking inversion symmetry, such as lithium
niobate (LINbQ, xV ~ 10~ m/V) or gallium arsenidex(® ~ 10~ m/V) [32]. The
effect is predominantly used in electro-optic modulators [69]. The Kerr effect is a second
order effect, in which the material permittivity changes in proportion to the intensity
(~ E?) of the light. All materials exhibit Kerr effect, although in most cases it's extremely
weak. Kerr effect is also responsible for self focusing and self phase-modulation and it is
an important factor in soliton formation. The nonlinearity of matter is the key element in

many prototypes or theoretical descriptions of nonlinear optical devices [6, 70-72].

3.4 Nonlinear optical components

The most important device types for the next generation optical networks are the optical
isolators, switches, regenerators, memories and logic gates that are suitable for integra-
tion. Many variations of these devices have been demonstrated over the years with differ-
ent operating principles. Some examples of these operating principles and references to
the devices are given below.

Discrete optical isolators are based on the Faraday rotation which has not been
successfully demonstrated in integrated form. Alternative techniques for the integrated
environment are for example using nonlinear asymmetric structures or inducing a nonre-
siprocal absorption in an amplifying waveguide by introducing a layer of ferromagnetic
metal close to the waveguide [71, 73, 74]. These techniques are suitable for integration in
principle, but their performance is not sufficient to date.

All-optical switching is most often based on changing the optical length of an in-
terferometer arm or the resonance condition of a resonator. Common methods to achieve
this are the Kerr effect or the use of optical components likeS®& that saturate with
optical power [75-77].

In many cases optical logic gates, threshold circuits and memories are strongly in-
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tertwined and the same technology can be used to realize all of the devices with only
minor modifications. Optical regenerators have been realized using the saturation ef-
fects in optical amplifiers, mode hopping in side-mode injection-locked lasers and phase
modulation in interferometers [78-83]. Optical logic gates exploit the same saturation
and phase modulation effects as regenerators [84—89]. In addition logic gates based on
polarization rotation, periodic nonlinear structures and wavelength converters have been
reported [90-92].

In principle optical flip-flop circuits can be trivially realized by arranging two op-
tical logic gates in a suitable feedback configuration, just like in electronics. However,
many, if not most, flip-flop circuits are based on bistable lasers or on the bistability of two
coupled lasers. First bistable laser structures were based on the coexistence of saturable
absorbers and active material with gain in the same laser cavity [93—-96]. Later realiza-
tions of optical flip-flops use separate lasers with feedback between them [97-99]. All of
these flip-flop configurations involve switching on and of at least one laser field when the

flip-flop changes state.
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4 Coupled systems of coherent gain clamped laser

amplifiers

In this chapter a new nonlinearity based on using gain clamped amplifiers together with
interferometers is introduced. The nonlinearity has potentially much faster response than
the nonlinearities previously utilized in implementing nonlinear optical devices. The non-
linearity is suitable for creating for example optical flip-flop circuits, regenerators and
logic gates. The advantage of the nonlinearity is that it is present above the laser thresh-
old, in contrast to the previously introduced nonlinearities of bistable lasers, coupled
GCSO#As, microring lasers etc, in which the nonlinearity is strongest at the laser thresh-
old.

4.1 Fast nonlinearity by interference

Interference of coherent optical signals is inherently a very fast process. The complex
electric field phasoF,, at the output of a balanced two arm interferometer [Bid(a)]
is given by [25]

Eout = % (Ein + Eb) (4.1)

whereFE;, and E, are the electric field phasors at the two inputs of the interferometer. In-
put £, is later referred to as the bias signal driglas the input signal. The corresponding
optical output poweP,: (Eout) Of the interferometer as a function of the input powers

Py (Ein) and P, (E,) and the phase differengebetweenF;, and E, is
Poyt = % [Pin + P+ 2@008 gzﬁ] . (4.2)
Scaling @.2) with the variables, , = Pouw/ P, and P, = P/ P, corresponds to amplify-
ing or attenuating the input and output signals. The scaled output power is
S % [P,’n + 1+ 2\/P_i’ncos gzﬁ} (4.3)
which reveals that the response of any two interferometers with constant input bias fields

E} andE? # E} is identical if the input and output signals of the interferometers are

scaled byl /E} and1/E?, respectively.
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Figure 4.1: (a) A two arm interferometer and (b) the output power (4.3) of the
interferometer for various phase differences between the input signals. The strongest
nonlinearity is obtained for the value ¢ = .

Equation 4.1) shows that interference is a linear process in terms of the electric
field. In terms of the optical power [Eg4 )], however, the transfer function is nonlinear
if ¢ # +7/2. The strongest nonlinearity is obtained fpe= 7 as shown in Fig4.1(b).

Even though the output optical power of an arbitrary interferometer structure is
a nonlinear function of the input power for # +/2, the output electric field is a
linear function of the input fields. However, combining the nonlinearity (in terms of
optical power) of the interferometers with the nonlinearity (in terms of electric field) of
some other structure allows one to create functions that are nonlinear both in terms of the
electric field and the optical power.

In this thesis the electric field nonlinearity to be combined with the nonlinearity of
the interferometers is obtained by utilizi®CSOAs. The output poweP,,; of a GCSOA

at the laser mode wavelengith of the GCSOAIs a function of the input powef;, at the



4.1 Fast nonlinearity by interference 39

Ein
P in .+
(EytE N2 GCSOA | E,=A/E —(E,+E,)/2
P out =

E, (Py+ P, )2 Fo” (Puthy)f2

P, + PPy cos ¢ /PPy cos ¢

Figure 4.2: Combining an interferometer with a GCSOA allows creating nonlinear
functions of the form (4.6). In a GCSOA the cavity mode with wavelength A, is
above the laser threshold and active even if no input signals are present. In the
signal mode with wavelength A, there is optical power only when an input signal is
present. The signals at different locations are marked in the picture by using both
the electric field and optical power and with C' = 1. The expressions to the left of
the GCSOA correspond to the power and electric field of the signal mode A, of the

GCSOA. To the right they refer to the laser mode A, of the GCSOA. The response
time is limited by the modulation properties of the amplifier, but can be very high
if the operating point and the properties of the amplifier are optimized.

signal mode wavelength, (A, # \;). Above the laser threshold the output powsy;
can be approximated as
Pout = PO - CPin (4'4)

where F, is the output power of the laser mode when the power of all other modes is
~ 0 andC' is a factor of proportionality that describes the amplification of the signal. For
C < 0 the signal is absorbed and for > 0 it is amplified. In terms of the electric field

the output of th&sCSOAIs given by

where £ is the electric field of the mod&; when there is no input electric field, ie
Ein — O.
With an interferometer and a phase locke@SOA(Fig. 4.2) it becomes possible

to generate functions of the form (all equations are equivalent)
1 2
Pow = Py—5C (VA= VP) (4.6)
1 2
P = 1-50 (VPR - VF,) (4.7)

1
Eowt = \/E§—§C(Eb+Em)2 (4.8)
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when the phase difference of the signals entering the interferometer is/set toin EQs.
(4.2 and @.3). The primed variables are obtained by scaling Witt,. Functions 4.6)-
(4.8) are nonlineabothin terms of the electric fieldndthe optical power, in contrast to
(4.2 and @.4). Now the functions4.7) with different ratiosP, = P,/ P, can no longer
be reproduced from one another by scaling the input and output of the interferometer
— GCSOA combination, like in the case of a simple interferomet®B); In principle
the interferometer -GCSOA structures can be chained or used as a basis to generate
other functions, like the regenerator function of Publication Ill. In this thesis it is always
assumed’ > 0, but constructing flip-flop configurations whete< 0 is possible as well.
This could actually be an important simplification for processing the devices, because
then the active region could have negative gain at the signal frequency.

Note that the optical fields in the input of the interferometers are coherent and have
a constant phase differenceg¥ 7. The requirement of constant phase differepce =
can be satisfied by locking the phase of the input sigiiato the phase of the constant
bias signalE,. The most straightforward way to do that in the components modeled in
this thesis is to phase lock the laser field of GESOA

The major advantage of the combined nonlinearity of interferometry aB€C&OAs
is the potential for high speed operation. In most other nonlinear devices involving lasers,
the nonlinearity originates from the laser threshold when setting on and off the lasers.

Operating the lasers on both sides of the laser threshold limits the speed of the device.

4.2 Coherent optical Flip-Flops

The nonlinearity achieved by using interferometers &@50As in the previous section
provides a new mechanism to create nonlinear feedback betweeG®&DAs. The
nonlinear feedback can be used to create an optical flip-flop memory, the coherent optical
flip-flop (COFP, based on a bistable configuration of tB&SOAs.

The laser modes of the tw@CSOAs, L, and L, are denoted by; and X, (\; #
A2), respectively. The signal modes occur correspondingly,and \;. Additionally

the GCSOAs support a third modg; that allows setting and resetting tFFE The
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Figure 4.3: A foherent optical flip-flop (COFF) with two bistable states can be cre-
ated if biased interferometers are used in the feedback channel between two phase
locked GCSOAs with different laser mode frequencies. The COFF may be con-
structed using the two GCSOAs, two optical isolators and optical filters. The set-
and reset-operations of the flip-flop are done by sending light pulses to the respective
input ports, and the output (inverted output) of the COFF can be read from the
respective output ports. The laser modes of the GCSOAs L; and L, are A\; and A,
respectively.

GCSO#5As are arranged so that (\;) is injected intol, (L) as the feedback signal after
making it interfere with a suitable constant bias signpalThe bistability of theCOFFis

based on a feedback scheme whose speed is limited by the response timé 6E0O&

The difference to previous bistable laser systems is that the laser mode maintains a large
photon population at all times, which allows fast operati@1§-(3.16)].

In the simplest form, if optical isolators are available, @@FFis formed of two
phase lockedsCSOA two interferometers, two optical isolators and two coherent light
sources used as the sources of the bias signals and the phase locking.grigThe
feedback equation of the system is derived in the following by tracing the feedback signal
x through the waveguides, interferometers andGI@SO4As. In the derivation the cavity
response is omitted for simplicity,’ = 1, parametet, describes the strength of the
coupling between th&CSO#As, ¢, the strength of the bias signal and parametéys,

and Ey» the maximum electric field of th& CSOAwhen no input is present.
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To generate the feedback equation, the feedback signsilfirst followed into
GCSOA L, where it interacts with the laser mode resulting inz, = / E2;, — |:c|2.
The outputz; of L, at the laser mode, is then made to interfere with a constant bias
signal, resulting in the term, = t,x1 + t,. Next, the signal propagates through the opti-
cal isolator into th&sCSOA L, as the feedback signal of the amplifiet\atand interacts
with the laser mode\; (z3 = / EZ;, — |x2|2). Finally x5 interferes with the bias signal
t, closing the feedback loop and resultingun= t,x3 + t,. Substituting the intermediate
signals recursively gives the feedback equation of the structure for the electrie freld
Fig. 4.3going intoGCSOA L, at frequency\;:

x = ta\/Eng —

The left and right hand sides 6£.9) give the inputz before and after a round trip through

2
+ 1. (4.9)

ta \V EgLQ - |$|2 + U

the device. If both sides o#(9) are equal (ie the input is the same before and after a
round trip), the state of the system remains unchanged. If the delayed input (right hand
side) is larger than the stimulus it then follows thatz grows with time until 4.9) is
satisfied. Similarly, if the delayed input is smaller than the inguhenz must decrease
with time until 4.9) is fulfilled. From these facts it follows that the system is stable when
(4.9 is satisfied, and the derivative of the right hand side i$. If (4.9) is satisfied but
the derivative is> 1 the system is in a labile state and starts to converge towards a stable
state. Figurel.4illustrates the stable and labile areas of operation.

Injecting an additional input signal tb; or L, reduces the maximum fields,;,
and Ey, of the GCSOAs, respectively. When the input signal is strong enough and one
of the parametersiy,; or Ey;., is reduced below a threshold value, one of the stable
states disappears and the system is left with only one stable state. Graphical solution of
Eq. @.9 and the transition from a bistable system to a monostable system is illustrated
in Fig. 4.4. The existence of the monostable regime allows setting or resettingQifé

by simply injecting an optical signal iINtGCSOAL; or L.
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Figure 4.4: Graphical solutions of the feedback equation (4.9) of the flip-flop for
different values of Erg; and Eprgs. The black curve is the left hand side of Eq.
(4.9). The red curve is drawn for the case of no input power in the set or reset port
(Ero1 = Epge = 1). Other values of Er¢ and Epgy describe the cases where an input
signal is present in the set or reset port of the flip-flop. The stable (labile) operating
points of the flip-flop are located inside the rectangles (circles) at the crossings of
the curves with the black curve. For the two extreme curves (For; = 1, Egr2 = 0.9
and For; = 0.9, Egro = 1) there is only one stable state left, and the flip-flop will
move to this state.

4.2.1 The rate equation model of the optical flip-flops

The dynamics of th€ OFFcan be modeled by a set of coupled rate equations that describe
the carrier densities and electric field phasors of the perti@&$0As. The equations
resemble closely the rate equatioB5 and @.7) of a single phase locked laser, but the
carrier densityn, and the electric field&; andEje.Xt are now vectors whose components
describe the quantity in question in eaBIESOA of the system. The equations are not
crucial for understanding the principle of operation of @@FF, and they are only dis-

cussed very briefly and partly incompletely in this summary. For further details the reader
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is referred to publications IlI-VI.

The rate equations for a general coherent nonlinear system can be written in vector

form as

dne 1 2 ne
T > 2eg; (ne) By - — (4.10)
je{1,2,3}
dE; c .
d_tj = 3 g (n.) — aj +iAw; (n.)| E; (4.11)
c c
—E™®L _~_M.E.
ot o

where the gairg;, absorptioro; and frequency detuningw; are correspondingly diag-
onal matrices. The diagonal elements give the values of the respective quantities for each
GCSOA Index; denotes the mode of tHeCSOA (herej € {1,2,3}). The coupling
matricesM; describe the coupling of the laser fields between the diffea&H0As. The
termé = \/ep~1/ (2hwe) is the conversion factor that transforms the square of the abso-
lute value of the electric field to photon density. The factor 2 in frong of Eq. @.10
results from the presence of the two counter propagating electric fields both contributing
to the photon density. The absolute value in E41Q) is applied to each component of
E; independently. The vectdE?Xt describes the fields injected from outside the cavity
into the modegj. Other parameters have the same significance as in E&¢saqd @.7).

To model theCOFFcomposed of twdGCSO#As, presented in Subsectidr?, the

following parameter values are used:

0 t,

M, = /T.T, (4.12)
0 0
0 0

M, = /T.T, (4.13)
ta 0

M; = 0 (4.14)

- T
VT, | 4, o} EM o (4.15)
EgXt = \/Ts-o ty
VT,

: ss (D) sn(t) }T (4.17)

.
Eg?;ax (4.16)

[ I—
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Qay, 0

o = (4.18)
0 oy
ag; 0

ay = (4.19)
0 Qaj,
ags 0

a3 = i (4.20)
0 a4

The parameter§;, T, and«o; anda, (as > «f) describe the effective transmittance

of the cavity facets and the cavity losses of the laser mode and of the signal mode, re-
spectively. The set and reset signaigt) and sy (t) are used to switch the state. The
parameters, andt, are configured so that the device operates with the desired properties
and are normalized so that the maximum output electric figlg},,,of the laser mode

can be used as a reference value. Numerical values for the parameters can be found in
Publication V.

The results obtained for parametrized structures, that are optimistic but within the
limits of current technological feasibility, show that t@®FFs can be operated at fre-
guencies well above 40 GHz. Theoretically the operating frequency can be increased
along with the optical power and differential gain of BE€SOA towards the fundamen-
tal upper limit~ v (a5 — G) /20 (or ~ vy, if it is smaller) which depends on the cavity
losses and available material gain.

Two examples of typical results obtained by using the rate equation model are
shown in Figs4.5and4.6. In Fig. 4.5the output of theCOFFis shown as a function of
the input power in the set -port. There is a very clear threshold for the input power for the
COFFto change state. In Figd.6 the dynamic operation of theOFFis demonstrated
for set and reset -pulses. After setting (resetting)@K¥-F, its state remains unchanged

until a reset (set) pulse is sent to the input.

4.3 Active antireflectors

Because optical isolators that are suitable for integration are presently not available, other

means to prevent unwanted signals from reaching36&04As of theCOFFare needed.
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Output power (10™* W)
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Figure 4.5: When a sufficient input power is injected in the set-port, the output
power in the output port of the COFF rises abruptly, as predicted by the feedback
equation (4.9). The threshold for changing the state is very clear. With increasing
input power, however, the output power decreases slowly, which may be a minor
drawback in some applications. The results shown here are calculated using the more

accurate rate equation model for a slowly changing input signal (see Publications
IV and V for details).

The components preventing backward propagation of signals in this thesis, however, need
not necessarily be optical isolators — antireflectors satisfy the requirements as well.

The reflection of any optical signa (¢) that is transformed and reflected back
as f (S) by some optical device, linear or nonlinear, can be cancelled by destructive
interference using another replica of the respofi§€) (Fig. 4.7). Creating the replica
can be done by approximating the resporfseor, for better cancellation, by using a
duplicate of the device creating the reflection. The performance of the antireflector is
limited by the accuracy of the phase shift and the (anti)symmetry of the antireflector
structure.

Using the principle of antireflection allows one to modify 8®FFstructure into
a form that is in principle suitable for integration, as described in #i§. This configu-
ration has been used in all the calculations in publications IV-VI. The drawback of using
antireflectors is that they add to the complexity of @@FFconfiguration.

Accounting for the antireflectors and the lasers providing the bias signals and phase
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Figure 4.6: Sending input signals into the COFF nicely demonstrates the operation
as a memory unit. The output power rises abruptly when a set-pulse is sent into
the set-port. Even when the set-pulse disappears, the output power remains close
to the value set by the pulse. Resetting the COFF can only be done by using a
reset-pulse. The insets show a magnification of the output at the moment of (b)
setting and (c) resetting the COFF.

locking signals in the rate equation model presented in Sedt results in the cou-

pling matrices of the form

0 C iC iB B 0
C 0 0 iA A0
iC 0 0 0 0 0
M, = (4.21)
iBiA 0 0 0 0
B A 0 0 00
0 0 0 0 00
(Ms),,, = Mi)r 7 (4.22)

M; = 0 (4.23)
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-f(S) f(S) A reflot
< retlecting
> === object
S
f(S)
— A?eﬂectlng
object
0 N
S
S s (S)

A replica of
! the object

Figure 4.7: Availability of optical isolators in integrated environments is severely
limited. Active antireflectors can be used to replace optical isolators in systems
where a replica of the reflected signal can be created. The reflection from an object
that reflects a forward propagating signal S back as f(S) may be cancelled by
interference if a replica of the reflected signal can be created and made to interfere
with the original reflection destructively.

1
A = Z\/TLTSgAt?A (4.24)
1
B = ——=/TiT.gatat 4.25
4\/§ LLsgAtAlB ( )
1
¢ = 3Tite. (4.26)

The elements of the matrices and vectors are associated to the lasets L 41, L 49,

L, and Ly, of Fig. 4.8, respectively. Again, the effective transmission coefficients of the
cavity facets for the laser and signal modes are givefi’bpandT,, respectively. The
termst 4, t g andt are the waveguide transmission coefficients for the electric field (Fig.
4.8) andg 4 is the amplification of the electric field in the optional amplifier compensating
for the losses of the waveguide junctions. The vectors describing the external injection

(set and reset signals) are zero, except for
= | 0 s5(t) iss(t) ise(t) sa(t) 0]
The loss matrixx; of eachGCSOAIs diagonal and given by

a1=Diag[ozL ap o Qs o ozs}
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Figure 4.8: The full COFF configuration with antireflectors no longer uses optical
isolators. They have been replaced by active antireflectors that are able to cancel
the reflections from the GCSOAs L; and Ly. The structure also includes two lasers
that provide bias signals and phase locking for the system. The state of the COFF
can be changed by applying a signal to the set or reset input port, and the output
or the inverted output can be read from the respective output ports.

062:Diag[ozs as O o QO aL}
aS:Diag[as Oy Qg g O ozs]

where the operatdpiag constructs a diagonal matrix from the vector following it. Nu-

merical values can be found in publication V.

4.4 Optical decision circuits and logic

The basicCOFF has two stable states when no external input signals are present. In
presence of an appropriate set or reset signal only one stable state remains, enabling the set
and reset operations of the memory. Making@@FFstructure asymmetric by adjusting

the injection current or the strength of the feedback fl6@SOAL, to L, to be different

from the feedback froni, to L, leads to a similar situation. With a suitable amount of

asymmetry only one stable state remains even when an input signal is not present. An
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Figure 4.9: Steady state characteristics of three different decision circuit configura-
tions. The curves are calculated both analytically using Eq. (4.27) and numerically
using the rate equation model introduced in Publication V for various values of
LEF. The steepness and hysteresis of the decision threshold can be affected by the
device parameters, which describe the feedback strength between the amplifiers. In
(a) the parameters are such that the threshold is gentle, while in (b) and (c) the
threshold is steep. In (b) hysteresis is visible in the analytical approximation but
not in the more accurate numerical simulation. In (c) hysteresis is present in both
the analytical and numerical results.

input signal to theGCSOA L, (or L, depending on how the feedback was modified) can
then be injected to reduce the output power of the laser mode. As a result the stability
conditions change so that first, at moderate input power, a second stable state is created.
Then, when the input power reaches a threshold, the original stable state disappears and
the system is driven to the newly created stable state which is different from the original

stable state. The disappearance of the stable state takes place abruptly, which makes the
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asymmetrically adjuste@OFFsuitable for use as a decision circuit.
Introducing the asymmetry to the feedback equatf)(in the form of modified

feedback and bias signal strengths t.2, t,1 andt,, transforms the feedback equation

xr = tal\/Eng — tag\/ E02L2 — |ZL‘|2 +tb2

which is different from the original feedback equatigh9) of the COFF only by the

into

2
+ 1 (4.27)

asymmetric feedback parameters and the different maximum laser fields@CEOA
However, the system may now be monostable and returns quickly to its unexcited stable
state when an input signal drops below a threshold value, as shown idEg.The
dynamical properties of the decision circuit remain similar to those of the GFEF
circuit.

A decision circuit with steep threshold characteristics is not only useful in regener-
ation of optical signals, but also in constructing logic gates. Creating an and gate or an or
gate only requires a two arm interferometer in addition to a decision circuit with a steep
decision threshold. The output power of an interferometer followed by a threshold circuit
is given by

Pow= [ [£|Ea+ Ep[’] (4.28)

where f (P) is the response of the decision circuit. The output has different properties
depending on the phase differerttef the input signals. If the signals, and Ez are

in phase, and-like output is obtained. With phase difference of ab@itthe response
resembles the logical or function. Fig.10shows some examples of the responses of the

logic circuits realized with the decision circuits of Figs9(b) and4.9(c).
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Figure 4.10: The two dimensional truth tables of the and (left) and or (right)
gates for input signals A and B realized with an interferometer and the threshold
circuits of Figs. 4.9(b) [(a) and (b)] and 4.9(c) [(c) and (d) for the lower hysteresis
curve of Fig. 4.9(c) and (e) and (f) for the upper hysteresis curve]. For and gates
constructive interference in the interferometer is used (6 = 0) and for the or gates

6 = 110°. Although the output is circularly symmetric, it provides a fairly good
approximation of the ideal truth table.
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In the future optical networks will continue expanding and getting closer to the end user
as the bandwidth requirements increase. The new optical components developed in the
laboratories will be adopted and commercialized by the telecommunications industry only
when they are cost effective. Other fields of technology, where very fast serialized data
transfer is needed and cost-effectiveness does not play so crucial a role is a potential step-
ping stone for the more complex new optical components on their way to mass production.
The new components might find their first applications for example in the communication
links between the nodes of a supercomputer. Thereafter, as the technology matures and
costs decrease, they may become commercially available for optical networks as well.

The progress made in the laser materials, modulators, amplifiers and optical fibers
are all important steps on the way to better devices and systems. The introduction of
qguantum wells and dots as the active material in lasers has improved several operation
characteristics of semiconductor lasers. Integrated optical amplifiers with gain clamp-
ing have linearized the amplification. The losses in optical fibers have become almost
negligible and the dispersion in the fibers can be controlled.

The most salient problem of today’s optical networks, and transferring data opti-
cally in general, is the so called electronic bottleneck. It emerges from the need to convert
optical signals into electric form and back for routing, retiming or processing. In labora-
tories all over the world many different methods and components to help overcoming the
electronic bottleneck have been proposed. However, no fast commercial breakthrough is
at sight for the moment.

Coherent optics is sometimes dismissed as a research topic by the networking in-
dustry. In networks involving optical fibers this is easily justified, since it is impossible
to accurately control all conditions affecting the optical properties and optical phase of
the system. In integrated circuits, however, the situation is somewhat different. In small
scale local coherence is and has long been an essential part of many modulators and non-
linear devices, since they depend on interference of optical signals. In this thesis the

use of local coherence is extended to a small group of phase locked lasers connected by
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waveguides. The key result is a new form of nonlinearity obtained by interferometry and
GCSO#As. The nonlinearity is used to theoretically demonstrate an optical flip-flop that
uses coherent signals internally, but communicates with the external world using intensity
only.

This thesis has been devoted to the study of the dynamical properties of quantum
dot lasers and gain clamped optical amplifiers and their use with interferometers to create
a new type of nonlinearity for nonlinear optical circuits. The study of quantum dot lasers
was done with particular interest in the linewidth enhancement factor. In the literature
it is commonly stated that ideally tHeEF of QDLs is inherently small because of the
symmetry of the inhomogeneously broadened density of states. This turned out to be an
inaccurate approximation even in ideal conditions. The signal propagatldDAs was
also studied and compared to the conventi@@B50As andSOAs. The superiority of the
linearity and crosstalk properties in th®As with respect to the properties 80OAs was
verified. Most of the attention in the summary and the publications, however, is given to
the introduction of an optical flip-flop circuit and related devices that have been realized
using nonlinear feedback formed BCSOAs and interferometers.

In the very best possible scenario, coherent optical devices developed from the
devices introduced in this thesis may become as versatile tools for optics as the transistors
are for electronics. Coherent optics have the potential for high speed operation, now
obtaining possibly~ 100 GHz operating frequency with the current level of technology
and perhaps even THz or tens of THz in the future. Processing the devices is challenging,
but in principle possible even with today’s technology. The differences between the flip-
flops and logic circuits are so small that only a few extra steps are needed to process both
on the same chip. The power consumption is at least slightly elevated and the footprint
is huge in comparison to electronic transistors. The footprint is ultimately limited by the
wavelength of optical signals even if using photonic crystal waveguides allowing sharp
bends.

The use ofGCSOAs is not an optimal choice for the electric field nonlinearity due
to its complexity and slow operation in comparison to the interferometers. Being able to

replace it with some other means to produce a similar output with a simpler arrangement
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would offer a great leap for coherent technology.

All the optical components investigated in this thesis have been separately realized
in practice. Combining them on a chip and making them interact coherently is more chal-
lenging. Even in theory, there remains several issues, mostly of technological nature, that
have not been thoroughly investigated. However, these issues should not be insuperable.
Building a prototype on an optical table may be hampered by the need for phase control
and by the cavity mode requirements of tBESOA Integration of a prototype directly
on a chip is even more demanding.

If the manufacturing technology of optical components develops with a pace com-
parable to that of silicon technology, optical signal processing will meet many of the
expectations placed for it in the near future. The co-operation of the optical and elec-
trical technologies will still remain strong for at least a while, but with a few important
innovations the purely optical signal processing capabilities may become sufficient by

themselves.
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