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of amplifiers, optical fibers and other linear devices. The next generation optical networks, on the other hand, need
nonlinear optical components with signal processing capabilities. To create components that meet the demands of
tomorrow, it is necessary to understand, control, exploit and enhance the available weak nonlinearities.

In this thesis the dynamic properties of quantum dot lasers and linear optical amplifiers are investigated. Additionally,
optical memories and logic ports exploiting a new type of nonlinearity based on gain clamped optical amplifiers and
interferometers are proposed. The properties of quantum dot lasers are studied by using a parametrized model for the
bandstructure of the dots and the surrounding layers. The model is used to calculate the absorption spectrum,
refractive index and other properties of the lasers at different excitation levels.

The properties of linear optical amplifiers, conventional gain clamped amplifiers and semiconductor optical amplifiers
are described by a stochastic traveling wave rate equation model. The gain clamped optical amplifiers used together
with interferometers are shown to provide a new fast nonlinearity, which can be used to construct coherent nonlinear
optical circuits, including optical regenerators, flip-flop memories and logic gates.

The speed of the nonlinear devices presented in this thesis is limited by the modulation response of the gain clamped
optical amplifiers above the laser threshold in the regime where there always is a large photon population in the laser
mode. The speed may therefore reach values in excess of 100 GHz, or even higher values if the level of optical
technologies evolves closer to the level of silicon technology. In principle the flip-flop structure developed in this
thesis is suitable for integration.
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Optisten signaalien epälineaarinen vuorovaikutus väliaineen kanssa on usein ongelmallista optisten kuitujen,
vahvistimien ja monien muiden optisten verkkojen komponenttien kannalta. Toisaalta seuraavan sukupolven optisissa
verkoissa tarvitaan epälineaarisia signaalin käsittelyyn kykeneviä optisia komponentteja. Tulevaisuudessa tarvittavien
komponenttien valmistamiseksi on tarpeen ymmärtää, hallita ja hyödyntää komponenteissa käytettyjen materiaalien
heikkoja epälineaarisuuksia.

Tässä väitöskirjassa on tutkittu kvanttipistelasereiden ja lineaaristen optisten vahvistimien dynamiikkaa. Lisäksi on
kehitetty ja mallinnettu uudentyyppisiä optisia muisteja sekä logiikkaportteja, joiden toiminta perustuu
vahvistuslukittujen optisten vahvistimien ja interferometrien epälineaarisiin ominaisuuksiin. Kvanttipistelasereiden
ominaisuuksia on tutkittu käyttämällä parametrisoitua vyörakennemallia, jossa on huomioitu kvanttipisteiden lisäksi
myös ympäröivät materiaalikerrokset. Vyörakennemallia käyttäen on laskettu kvanttipistelaserin absorptio- ja
taitekerroinspektri sekä laserin muita ominaisuuksia erilaisilla varauksenkuljettajien injektiotasoilla.

Lineaaristen optisten vahvistimien, perinteisten vahvistuslukittujen vahvistimien ja optisten puolijohdevahvistimien
ominaisuuksia on kuvattu stokastisella etenevän aallon rate-yhtälömallilla. Koherenttien vahvistuslukittujen optisten
vahvistimien käyttö yhdessä interferometrien kanssa mahdollistaa uudenlaisen nopean epälineaarisuuden, jonka
avulla voidaan toteuttaa optisia piirejä kuten optisia regeneraattoreita, flip-flop muisteja ja logiikkaportteja.

Väitöskirjassa kuvattujen epälineaaristen piirien nopeutta rajoittaa optisten vahvistuslukittujen vahvistimien
modulaationopeus laserointikynnyksen yläpuolella alueella, jossa laseroivassa moodissa on jatkuvasti suuri
fotonipopulaatio. Siitä johtuen epälineaarisuus voi toimia yli 100 GHz nopeudella, tai jopa nopeammin optisen
teknologian tason kehittyessä lähemmäs piiteknologian tasoa. Väitöskirjassa kehitetyt komponentit soveltuvat
periaatteessa integroitaviksi.
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1 Introduction

The first laser was developed and demonstrated by the American physicist Theodore

Maiman in 1960. He succeeded in optically pumping a ruby crystal into a population

inverted state and in creating favorable conditions for lasing [1]. His work was preceded

by theoretical predictions of how to extend the operating range of masers into the optical

domain, and of course, the maser technology itself [2]. The demonstration of a working

laser revived rapid progress in optics and gave birth to a new field concentrating on the

study of lasers, waveguides and nonlinear optical phenomena.

The availability of lasers gave researchers inspiration and a new tool to create in-

tense and coherent monochromatic optical beams. New discoveries and demonstrations

on the nonlinear effects in different materials emerged at a very impressive pace in the

1960s. Soon after Maiman, a research group in Bell Laboratories developed the first

gas laser using a mixture of helium and neon as the lasing medium and several groups

reported stimulated emission in homojunction gallium arsenide diodes [3–5]. Second

harmonic generation in crystalline quartz, the ascertainment of stimulated Raman and

Brillouin scattering and many other nonlinear effects in optical fibers were also demon-

strated in the 60s [6–9].

In optical communications, the development of optical fibers has had at least as

crucial a role as the development of optical transmitters and receivers. Total reflection of

light in general was observed and understood already in the 19th century and elementary

fibers without the cladding were fabricated as early as in the 1920s. In the 1950s the use

of a cladding layer around the glass core led to the optical fiber structures primarily used

today [10]. Since then the evolution of the optical fiber technology has been driven by

the development of the manufacturing process, materials and the profiles of the core and

the cladding. The ability to significantly reduce the amount of water molecules and other

impurities in the fibers reduced the losses of optical fibers to a level of 0.2 dB/km and close

to the fundamental limit of Rayleigh scattering by the end of 1970s [11]. It also made

the nonlinear effects, which are primarily a nuisance in point to point links, in the long

fibers better noticeable. An equally important, and not only technical, advancement was
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the introduction of rare earth elements, especially erbium, as a dopant in the core of the

fibers in the late 1980s. They made fiber amplifiers possible and enabled even longer span

for the optical links without using electronics. More recently photonic crystal technology

has also been introduced in optical fibers.

The huge transmission capacity, long link lengths and the minimal interference

with the outside world offered by the optical technology were successfully taken into full

use in the backbone of the commercial communications networks in an ever accelerating

pace in the 1990s. However, optical networks of today still employ conceptionally very

simple linear optical devices like quantum well lasers, optical fibers, fiber amplifiers,

filters and add and drop multiplexers. Any complex operations such as switching, logic,

regeneration and memory are still handled by electronics and require converting the signal

from optical to electronic form and back.

The undisputed victory of optical fibers over copper cables as a transmission medium

is diminished only by the current inability of optical technologies to practically perform

the nonlinear complex operations. The electro-optic conversions required in the optical

networks are clumsy and costly and replacing the electronic components with optical so-

lutions that can tap into the enormous bandwidth of optical signals has been intensively

researched and expected. No cost effective optical alternatives for the electronic compo-

nents exist at the moment [12,13].

Device prototypes demonstrated to this date have been able to reproduce most of the

functions needed in the next generation optical networks involving purely optical compo-

nents. However, the prototypes do not yet meetall the requirements of practical commer-

cial switches, memories, delay lines, regenerators or logic gates. These requirements can

be summarized by compactness and suitability for integration, fast or extremely fast op-

eration, acceptable power consumption, stability under various operating conditions and

good tolerance for noise. In switching applications one would additionally hope for good

scalability and transparency.

The publications included in this thesis relate to the nonlinear components, trans-

mitters and amplifiers that could be used in the future optical networks. Publications I

and II concentrate on quantum dot lasers and gain clamped semiconductor optical am-
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plifiers, linear components with superior properties compared to the traditional lasers

and amplifiers. Publications III through VI exploit the properties of the gain clamped

laser amplifiers, phase locking and interferometers in creating a new form of nonlinearity.

The nonlinearity is used to generate all-optical regenerators, logic functions and flip-flop

circuits with many desirable properties. The summary part of the thesis gives a brief

overview of the physics and topics encountered in the publications: the properties of

light, its interaction with matter, the principles of laser operation and light amplification

and the principle of using interferometry with gain clamped amplifiers to generate a new

nonlinearity that lends a hand for new coherent nonlinear devices.
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2 Properties of light

Light is electromagnetic (EM) radiation in the frequency range covering the visible, ultra-

violet and infrared frequencies (Fig.2.1). The behaviour of light is usually described by

three models of increasing complexity and accuracy: ray optics, wave optics and quan-

tum optics. The fundamental equations of the wave and quantum optical descriptions

frequently encountered in preparation of this thesis are summarized in the following sec-

tions. The given presentation aims at briefly reviewing the key concepts and formulas

of the theory. For a detailed derivation of the results, the reader is referred to for exam-

ple [14–16].

2.1 Classical field theory

The classical theory of electromagnetism was combined and completed by James Maxwell

in 1873. The classicalEM field is characterized by the electric and magnetic fields asso-

ciated with it. Both fields are vector quantities with well defined values.

In vector form Maxwell’s equations describe concisely and accurately the behaviour

of EM waves, when the quantum nature of the field can be neglected. The four Maxwell’s

equations are [14]

∇× E (r, t) = −Ḃ (r, t) (2.1)

∇×H (r, t) = Ḋ (r, t) + J (r, t) (2.2)

∇ ·D (r, t) = ρ (r, t) (2.3)

∇ ·B (r, t) = 0 (2.4)

whereE is the electric field,H the magnetic field strength,D the electric displacement

field,B the magnetic flux density,J the free current density andρ the free charge density.

The time derivatives are indicated by the dots above the symbols. In linear isotropic media

the relations between the fields are given by the constitutive equations

D = εrε0E = ε0E + P (2.5)

B = µrµ0H = µ0 (H + M) (2.6)
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Figure 2.1: The communications wavelengths in the electromagnetic spectrum of
light. The spectrum of visible light (indicative) has shorter wavelengths than the
most commonly used communications wavelengths, located at 1.3 µm and 1.55 µm.
The far infrared (up to wavelengths ∼ 1 mm) is not included in the spectrum.

whereP is the polarization andM the magnetization of the material. The relative elec-

trical permittivity εr and the relative magnetic permeabilityµr in Eqs. (2.5)-(2.6) are

generally frequency dependent tensors of rank two. In this thesis only materials which

are effectively isotropic and optically inactive are considered and hence scalar values are

assumed forεr andµr. The boundary conditions at the boundary of two materials, 1 and

2, aren×E1 = n×E2, n ·D1−n ·D2 = ρs, n×H1−n×H2 = Js andn ·B1 = n ·B2,

wheren is a unit vector normal to the boundary and pointing to material 1, andρs andJs

are the surface charge and current densities, respectively.

In dealing with the theory of electromagnetism it is often useful to define two aux-

iliary functions, the scalar potentialΦ (r, t) and the vector potentialA (r, t) defined by

the equations [17]

E (r, t) = −∇Φ (r, t)− Ȧ (r, t) (2.7)

B (r, t) = ∇×A (r, t) . (2.8)

The choice ofA is ambiguous. Although the selected gauge does not affect the physical

solution of the problem, it may result in simpler algebra. In static problems it is common

to use the Coulomb gauge and choose∇ · A = 0 whereas in magnetodynamics it is

customary to use the Lorenz gauge where∇ ·A = −µε∂Φ/∂t.
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2.1.1 Wave equation

For many purposes of linear optics one can reduce the four Maxwell’s equations into

a single equation for the electric field (or the magnetic field, vector potential or scalar

potential). Ifµ andε are assumed constants or piecewise constants, taking the curl of both

sides of Eq. (2.1) and using the constitutive equations and the vector identity∇×∇×f =

∇ (∇ · f)−∇2f gives the nonhomogeneous wave equation:

∇2E (r, t)− µεË (r, t) = ∇ρ (r, t)

ε
+ µJ̇ (r, t) . (2.9)

Setting the free charges and currents to zero reduces Eq. (2.9) into the homogeneous wave

equation

∇2E (r, t)− µεË (r, t) = 0. (2.10)

The homogeneous wave equation (2.10) is satisfied by any function of the formf (k · r− ωt)

where

k =
√

µεω (2.11)

andω is the angular frequency,k =
√

k2
x + k2

y + k2
z is the wave number andkx, ky and

kz are thex, y andz -components of the wave vectork of the wave. Also functions of

the formf (k · r + ωt) are solutions to (2.10) with k = −√µεω, but then the direction

of propagation of the wave would have to be along−k, instead of the customaryk. By

Fourier transforming the electric field in the homogeneous wave equation (2.10), one

obtains the Helmholtz equation

∇2uω (r) + µεω2uω (r) = 0 (2.12)

whereuω are the Fourier components of the electric field. Using (2.11) in the Helmholtz

equation gives the eigenvalue equation

∇2ukm (r) + k2ukm (r) = 0 (2.13)

wherem indexes the different eigenvalues bound to the fixed wave numberk. The eigen-

functionsukm (r) are called the normal modes of the field. The normal modes are orthog-

onal and normalized to satisfy
∫

ukm (r) · uk′m′ (r) d3r = δk,k′δm,m′. They also depend

on the boundary conditions of the problem.
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Physically the general solutionf (k · r− ωt) of the homogeneous wave equation

(2.10) describes a wave that propagates alongk with a phase velocityc = ω/k = 1/
√

µε.

In vacuum the velocity of light is a natural constantc0 = 1/
√

µ0ε0, and inside matter

the velocity is given byc = c0/nr where the refractive indexnr is correspondinglynr =
√

εrµr (typically nr ∼ 3 for common semiconductors). When there are no free charges

and the permittivity and permeability of the material are constant, the solutions of the

wave equation are plane waves of the formE (r, t) = eik·re−iωt where|k| = k andm

indexes the direction ofk. From Maxwell’s equations it then follows thatk andukm

are perpendicular to each other andH is perpendicular to bothk andE if there are no

free currents. Furthermore, the magnitude ofH can be obtained fromH = E/η, where

η =
√

µ/ε is the wave impedance.

The intensityS of anEM wave is expressed by the Poynting vector [14]

S (r, t) = E (r, t)×H (r, t) . (2.14)

For harmonicEM fields propagating in homogeneous media the average magnitude of the

Poynting vector is

S (r) =
1

2η
E (r)2 (2.15)

whereE (r) is the magnitude of the electric field atr. The energy densitywE of theEM

field is given by

wE =
ε

2
|E (r, t)|2 +

µ

2
|H (r, t)|2 . (2.16)

When free charges or currents are present, the inhomogeneous wave equation (2.9)

must be used to describe the propagation of the wave. For harmonic signals (or Fourier

components of the signal) it then becomes useful to generalize the solutions of the homo-

geneous case so that imaginary values of the wave vectork and the material permittivityε

are used to account for the light–matter interaction. The plane wave can then be written in

the formukm (r) = eik·r = ei<{k}·re−={k}·r, where< denotes the real part and= denotes

the imaginary part.
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The absorption lossα is defined as the relative change of the intensity along the

propagation path by

α = − ∂S (r, t)

S (r, t) ∂rk

, (2.17)

where the derivative is taken along the direction of propagation. The connection of the

absorption and the refractive index to the complex permittivity and permeability of the

material is given by

α = 2={k} = 2ω={√εµ} /c0 = 2k0={√εrµr} = 2k0nri (2.18)

nr = <{√εrµr} (2.19)

wherenri = ={√
εrµr

}
is imaginary part of the complex refractive index andk0 is the

wave number in vacuum (ε = ε0 andµ = µ0).

2.1.2 Kramers-Kronig relations

The Kramers-Kronig –relations link together the spectra of the real and imaginary parts

of complex functions that have no poles in the upper (or lower) complex plane and for

whichf (−ω) = f ? (ω). In optics they are often used to link together the refractive index

nr (ω) (proportional to the real part ofk) and the absorptionα (ω) (proportional to the

imaginary part ofk) by the relations [18,19]

nr (ω) = 1 +
c

π
P

∫ ∞

0

α (ω′)
ω′2 − ω2

dω′ (2.20)

α (ω) = −4
ω2

cπ
P

∫ ∞

0

nr (ω′)− 1

ω′2 − ω2
dω′ (2.21)

whereP
∫

denotes the principal value of the integral.

The relations provide a tool for evaluating the change in the refractive index if

the absorption spectrum changes. This is particularly useful in evaluating the linewidth

enhancement factor in semiconductor lasers.

2.1.3 Linewidth enhancement factor

The linewidth enhancement factor (LEF) describes how the refractive index of the mate-

rial changes along with the carrier density. It is defined as the ratio of the change in real
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and imaginary partsnr andnri of the complex refractive index [20]

αlef (~ω) =
∆nr (~ω)

∆nri (~ω)
= −2k0

∂nr (~ω)

∂α (~ω)
. (2.22)

In addition of being related to the chirp in optical components, the linewidth of continuous

wave (CW) semiconductor lasers is also increased by a factor1 + α2
lef with respect to gas

lasers, for whichαlef ≈ 0.

2.2 Quantized electro-magnetic field

In a more fundamental treatment, theEM field must be described as a quantum field. The

field quanta are called photons and they are bosonic particles with zero rest mass [15,21].

In this thesis, quantum theory of light is mainly needed for better understanding of some

fundamental concepts of optics, particularly the interaction with matter and the noise

analysis of publication II.

To show the analogy between the quantum field and the harmonic oscillator, the

electric field in the classical homogeneous wave equation (2.10) is first written as

E (r, t) =
∑

k,m

Ekm (t)ukm (r) . (2.23)

For nowEkm (t) are assumed to be real functions and denote the strength of the normal

modekm. The normal modesukm are assumed real as well and satisfy (2.13). The

homogenous wave equation for eachkm simplifies into

k2Ekm (t)− µεËkm (t) = 0. (2.24)

This equation is identical in form with the equation of motion of a classical harmonic

oscillator. Experiments and more extensive theories have shown that this analogy extends

all the way to the quantum theory and it is straightforward to apply the properties of the

quantum mechanical harmonic oscillator to theEM oscillator.

The Schrödinger equation of the simple harmonic oscillator is [22]

ĤSHOΨ = i~
d

dt
Ψ (2.25)
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with the HamiltonianĤSHO given by

ĤSHO =
p̂2

2m
+

Kx̂2

2
. (2.26)

The harmonic oscillator is characterized by the massm of the oscillator and the spring

constantK. Termsp̂ andx̂ are the momentum and position operators, respectively. The

eigenvalue spectrum of the Schrödinger equation forĤSHO is discrete and the energy

eigenvalues are given byEn = (n + 1/2) ~ω whereω =
√

K/m.

The eigenstates|n > of the HamiltonianĤSHO can be obtained recursively from

each others by using the creation and annihilation operatorsâ† andâ and their properties

â†|n >=
√

n + 1|n + 1 > andâ|n >=
√

n|n− 1 >. The operatorŝa†, â, x̂ andp̂ and the

commutator
[
â, â†

]
(defined for two arbitrary operatorŝD andF̂ by

[
D̂, F̂

]
= D̂F̂−F̂ D̂)

have the following properties and relations [22]:

â =

√
mω

2~
x̂ + i

p̂√
2mω~

(2.27)

â† =

√
ε

2~ω
x̂− i

√
ω

2ε~
p̂ (2.28)

x̂ =

√
~

2mω

(
â + â†

)
(2.29)

p̂ = i

√
mω~

2

(
â† − â

)
(2.30)

[
â, â†

]
= 1. (2.31)

The analogy of the equation of motion of the classical harmonic oscillator and Eq.

(2.24) for the normal modekm on one hand and of the energy of the harmonic oscillator

and the energy of theEM field (2.16) on the other suggest substituting the mass, the spring

constant and position of the classical oscillator with

m ↔ ε/ω2
km (2.32)

K ↔ ε (2.33)

x̂ ↔ Êkm (2.34)

in Eqs. (2.25)-(2.31) when dealing withEM oscillators.

Substituting (2.32)-(2.34) in Eqs. (2.29) and (2.23) and generalizing for complex

ukm gives the electric field operator of anEM field as [15]
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Ê =
∑

k,m

√
~ωkm

2ε

(
u?

km (r) â†km + ukm (r) âkm

)
. (2.35)

The expectation value of the electric field of a normal modekm in state|nkm > is then ob-

tained from< nkm|Ê|nkm >. The sinusoidal time dependence of the electric field arises

from the time dependence of the state vectors in the Schrödinger picture (|nkm >∼ eiωt)

or of the time dependence of the operatorsâ† (∼ eiωt) andâ (∼ e−iωt) in the Heisenberg

picture. The magnetic field and the vector potential are represented by the operators [15]

B̂ =
∑

k,m

i

√
~

2εωkm

(
∇× u?

km (r) â†km −∇× ukm (r) âkm

)
(2.36)

Â =
∑

k,m

i

√
~

2εωkm

(
u?

km (r) â†km − ukm (r) âkm

)
. (2.37)

Other important operators in the quantizedEM field description are the position and mo-

mentum quadrature operatorŝQ andP̂ which are related to the creation and annihilation

operators by the relations [21,23]

Q̂ =

√
~

2ωkm

(
âkm + â†km

)
(2.38)

P̂ = −i

√
~ωkm

2

(
âkm − â†km

)
. (2.39)

2.2.1 Fock states and Glauber states

Two alternative basis are most often used to represent the state of an electromagnetic

field. The eigenstates|nkm > of the photon number operator̂nkm = â†kmâkm of the

normal modekm are called Fock states or photon number states and satisfy the eigenvalue

equation [16,23]

n̂km|nkm >= nkm|nkm > (2.40)

while the eigenstates|αkm > of the annihilation operator̂akm are called Glauber states or

coherent states and satisfy

âkm|αkm >= αkm|αkm > . (2.41)
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In pure Glauber states the electric and magnetic fields have a well defined amplitude and

phase in the classical limit|αkm|2 À 1 whereEkm ≈
√

2~ω/εαkm. The light generated

by high quality lasers corresponds closely to pure Glauber states.

Any Glauber state can be represented in the Fock state basis by [16,23]

|αkm >= e−|αkm|2/2

∞∑
n=0

αn
km√
n!
|n > (2.42)

and the probabilitypn of there beingn photons in the state|αkm > is given by

pn = |< n|αkm >|2 = e−|αkm|2 |αkm|2n

n
. (2.43)

The energy of the normal modekm for a Fock state|nkm > or a Glauber state|αkm > is

Ekm =

(
1

2
+ nkm

)
~ω =

(
1

2
+ |αkm|2

)
~ω. (2.44)

In addition to the coherent states, a commonly encountered photon state is the

chaotic state created by a thermal source. In Fock basis the chaotic state|ξkm > can

be represented as [16]

|ξkm >=
∑

n

nn
km

(1 + nkm)1+n |n > (2.45)

wherenkm is the average number of photons contained in the normal modekm. Chaotic

states differ from the Fock and Glauber states in the property that even fornkm À 1 the

maximum of the probability distributionpn = |< ξkm|nkm >|2 is located atn = 0.

2.2.2 Light-matter interaction

According to the Fermi golden rule (FGR), arising from the time dependent perturbation

theory, the transition rateWif from an initial state|i > to a final state|f > due to a

harmonic perturbationH ′ at an angular frequencyω is given by [24]

Wif =
2π |〈f |H ′|i〉|2

~
L (~ωfi ± ~ω) (2.46)

whereL (~ωfi ± ~ω) is the probability distribution of~ωfi (usually Dirac delta function

or a Lorenz-distribution). The transition energy is given by~ωfi = (Ef − Ei) with Ef

andEi being the energies of the final and initial states. The + sign in the probability

distribution is for emission and - for absorption.
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For optical excitations it is convenient to write the states of the system as a direct

product of the electronic|φ > and optical states|n >, in the form|f >= |φf > |n >.

The absorptionW abs
if and emissionW em

if rates for a single optical modekm with npi initial

photons, Hamiltonian̂H ′ = ep̂ · Âkm/m0 andÂkm given by Eq. (2.37) can be calculated

from [24]

W abs
if (ω) =

πe2npi

εωm2
0

|< φf |p̂ · u (r) |φi >|2 L (~ωfi − ~ω) (2.47)

W em
if (ω) = W stim

if (ni) + W sp
if =

πe2 (npi + 1)

εωm2
0

|< φf |p̂ · u (r) |φi >|2

× L (~ωfi + ~ω) (2.48)

where emission occurs by stimulated emissionW stim
if [the term proportional tonpi in

(2.48)] and spontaneous emissionW sp
if [the term independent ofnpi in (2.48)].

The macroscopic absorption coefficient of a material can be obtained from the rate

of absorption and stimulated emission by summing over all the possible initial and final

electronic states and weighting by the corresponding probability of the initial state being

occupied (pi) and the final state being available (1 − pf ). The absorption for a linearly

polarized plane wave with polarization along the vectoru becomes [24]

α (~ω) =
πe2

ε0ωc0nrm2
0

∑

f,i

|< φf |p̂ · u (r) |φi >|2

× L (~ωfi − ~ω) (pi − pf ) . (2.49)

In III-V compound semiconductors the final and initial electronic states are defined

by the band, spin and electron wave vector. If the semiconductor is in thermal quasi-

equilibrium, the probabilitiespi andpf can be calculated from the quasi-Fermi distribu-

tionsfc,v (E) =
{
1 + exp

[(
E − Ec,v

f

)
/kBT

]}−1
whereEc,v

f are the quasi-Fermi levels

of the conduction and valence bands, respectively [19]. The absorption of a semiconduc-

tor within the parabolic band approximation is given by

α (~ω) =
πe2

ε0ωc0nrm2
0V

∑
m,n

Γ2 |pu
mn|2

∫ ∞

0

dE G (E) L (E − ~ω)

× [fv (Ev)− fc (Ec)] . (2.50)

The momentum matrix element|pu
mn| (∼ 10−24 kgm/s for typical semiconductors) is

evaluated over the unit cell for the initial bandn and final bandm and for light polarization
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alongu. The overlap of the electronic envelope functionsΨf andΨi with the envelope

functionνkm (r) of the normal electric field mode gives rise to the confinement factorΓ =

|< Ψf |ν (r) |Ψi >|. If Γ = 1 it is customary to speak of the material gain in distinction to

modal gain. Summation overm andn is over the sub bands of the valence and conduction

bands (if applicable) and the transition energyE of the electronic state is contributed to

the valence (Ev) and conduction (Ec) bands according to the requirement of preserving

the electron wave vector in the transition. The joint density of statesG is the density of

states for the initial – final state pairs that are possible for transitions that preserve the

wave vector [19]. The differences in the characteristics of the absorption spectrum of

bulk, quantum well and quantum dot materials is primarily manifested by the different

forms of the joint density of states.

2.3 Noise

2.3.1 Figures of merit for noise

An optical signals (t) can be represented as a sum of the actual signal powers0 (t) and

an additional noise signalsn (t) in the form

s (t) = s0 (t) + sn (t) . (2.51)

The noise can be statistically described by the variance and the optical signal to noise

ratio (SNRopt) of the signal by [17]

V ar [s (t)] =
[
s (t)− s (t)

]2

= s (t)2 − s (t)
2

(2.52)

SNRopt [s (t)] =
s (t)√

V ar [s (t)]
(2.53)

where the overbar denotes the time average over sampling timeT . Optical signals, and

noise, however, are usually measured using electrical components in which the generated

current is proportional to the optical power and electric power is proportional to the square

of the optical power in the normal operating regime. Therefore it is customary to use the

electrical signal to noise ratio (SNR) for optical signals as well (compare for example [17]
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and [25]):

SNR = SNR2
opt =

s (t)
2

V ar [s (t)]
. (2.54)

A figure of merit for the amount of noise in optical amplifiers is the noise figure (NF),

defined by using theSNRat the input and at the output of the amplifier [26]

NF =
SNRin

SNRout
. (2.55)

2.3.2 Photon detection

Photon detection is based on measuring the current generated by light in semiconductors.

Different semiconductor device configurations ranging from photoconductors to photodi-

odes and phototransistors can be used for this purpose [17]. The noise in the measured

signal is composed of the noise present in the original optical signal and the noise gener-

ated in the detector itself. Only the noise directly related to optical signals is considered

here.

Starting from the Fermi golden rule (2.46) the absorption and emission rates (2.47)

and (2.48) were obtained. The quantum mechanical absorption and emission rate oper-

ators for constant excitation with optical pumping or electrical injection can be corre-

spondingly written for a single normal mode as

Ŵabs = σabsn̂km (2.56)

Ŵem = σem (n̂km + 1) (2.57)

where n̂km is the photon number operator of the normal modekm and σabs and σem

are obtained directly from (2.47) and (2.48) and describe the absorption and emission

strengths in the media.

For sufficiently small time periodsdt the probabilities of emitting or absorbing a

single photon arêpn→n−1 = σabsn̂kmdt andp̂n→n+1 = σemn̂kmdt and the probability of

emitting or absorbing more than one photon is negligible. For longer time periods the

possibility of absorbing or emitting more than one photon must be accounted for. The

operator measuring the probability of observingj photons during interval[t, t + T ] is
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given by [16,27]

P̂j (t, t + T ) = Ô
M̂ j

j!
eM̂ (2.58)

whereÔ is the normal ordering operator that arranges the creation operatorsâ† to the left

of the annihilation operatorŝa and the operator

M̂ =

∫ t+T

t

Ŵabs − Ŵemdt = (σabs − σem) n̂kmT (2.59)

gives the number of electron - hole pairs created in the intervalT . Evaluation of the

integral in (2.59) assumes that the detection conditions remain unchanged.

For an ideal detector in which the generated electrons and holes are swiftly swept

away from the active region, the emission strength can be approximated asσem = 0 and

thenM̂ = σabsT n̂km. For a coherent state|αkm > the probability of measuringj photons

becomes

Pj =< αkm|P̂j|αkm > = < αkm|Ô

(
σabsT â†kmâkm

)j

j!
eσabsT â†kmâkm |αkm >

=

(
σabsT |αkm|2

)j

j!
eσabsT |αkm|2 (2.60)

which is the Poisson probability distribution. TheSNRof a coherent state is given by

SNRcoherent= σabsT |αkm|2 = σabsTnkm (2.61)

wherenkm is the average number of photons in the state|αkm >.

For a large photon reservoir represented by the state|Ψ >=
∑

n pn|nkm > the

resulting probability distribution is [16]

Pj =< Ψ|P̂j|Ψ >=
∞∑

n=j

pn


 n

j


 (σabsT )j (1− σabsT )n−j . (2.62)

The derivation of these probability distributions doesn’t account for the possible change

in the photon state as a result of the detection (absorption). Hence the results generally be-

come inaccurate when the detection probability, or quantum efficiency,σabsT approaches

unity. More accurate treatments of the measuring process can be found for example in

references [28–31].
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The probability distribution of chaotic light obtained from (2.62) by using (2.45)

has the same form as the original chaotic distribution [16]

Pj =
(σabsTn)j

(1 + σabsTn)1+j (2.63)

and theSNRof the chaotic state is

SNRchaotic =
σabsTn

1 + σabsTn
≤ 1. (2.64)

For long sampling timesT the probability distribution for chaotic light is not equal to Eq.

(2.63) but approaches again the Poisson distribution (2.60) because of the assumption

thatσabsT ¿ 1 in (2.62) [16]. To achieve highSNR, transfering optical signals should be

done using coherent light. If chaotic light is used, the quantum efficiency of the detection

should approach unity, ie the sampling timeT should be long, to reduce the amount of

noise.

Another means to measure an optical signal is by homodyne detectors, where, in

addition to a semiconductor detector a beam splitter and a local oscillator are used [23].

The response of a heterodyne detector is proportional to the expectation value of the

quadrature operators (2.38)-(2.39), instead of the photon count as in plain semiconductor

devices.
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3.1 Semiconductor lasers

Semiconductor lasers are the most important light sources in telecommunications. They

are compact, their spectrum is narrow, their wavelength compatible with the transmission

windows of optical fibers and they can be operated by electric current. The semiconductor

lasers can be classified by the structure of their active region into bulk, quantum well,

quantum wire, quantum dot or quantum cascade lasers. Of these, quantum well lasers

dominate the market, because their power consumption, processing and other properties

make an optimal cost-effective combination of today’s technology.

Basically lasers are simple devices: they are forward biased diodes made of a direct

bandgap semiconductor and enclosed in an optical cavity (Fig.3.1). In the active region

of the diode electrons and holes are simultaneously electrically injected in the conduction

and valence bands, respectively. As a result of the recombination of the carriers, photons

are emitted by spontaneous and stimulated emission [see Eqs. (2.47)-(2.48)] in the optical

modes allowed by the optical cavity.

In the current optical networks the transmitter of choice is usually a quantum well

laser (QWL) built in the quaternary GaxAsyIn1−xP1−y/InP material system and operating

close to the loss minimum of optical fibers (1.55µm) [32]. In direct modulation standard

QWLs exhibit large fluctuations in the optical frequency, ie they chirp. Therefore the

transmitters are operated in theCW mode and costly external modulators based on the

Pockels effect are used to electrically modulate the signal amplitude.

3.1.1 Laser cavities

The cavity of a semiconductor laser is usually composed of a short waveguide with re-

flective facet surfaces at both ends. The transverse resonator modes of the cavity can be

transverse electric (TE), transverse magnetic (TM) or hybrid modes, depending on the

waveguide geometry [19]. TheTE (TM) polarization in a planar waveguide is character-

ized by the electric (magnetic) field in plane of the waveguide and perpendicular to the
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Figure 3.1: Basic operation principle and the schematic structure of double het-
erostructure semiconductor lasers. Electrical injection in a p-n double heterojunc-
tion diode creates a local population inversion in the active region (dark gray).
Photons are guided in the waveguide structure formed by the heterojunction inter-
faces (light gray) and amplified by stimulated emission in the active region. The
optical cavity formed by the mirrors or the cleaved semiconductor edge – air inter-
faces (black) is an optical resonator where optical modes with suitable wavelengths
are allowed. The modes that have the highest gain are favored over other modes
and have high power and large photon population.

direction of propagation, while the magnetic (electric) field is perpendicular to the electric

(magnetic) field and may have a small component in the direction of propagation. In the

hybrid modes both the electric and magnetic fields have small components in direction of

propagation. Generally, the fewer modes the cavity supports in the region of the positive

gain spectrum, the better.

The reflection coefficientR of a conventional symmetrical Fabry-Perot (FP) res-

onator as a function of the wavelengthλ0 (in vacuum) is [19]

R (λ0) =
4R0 sin2 δ (λ0)

(1−R0)
2 + 4R0 sin2 δ (λ0)

(3.1)

whereR0 is the reflection coefficient of the reflecting interface andδ (λ0) = 2πnrL/λ0
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Figure 3.2: Frequency selective resonator structures. In a Fabry-Perot resonator of
length L the wavelength λ of an optical signal must satisfy λn = 2L (n is an integer)
and the resonance frequencies are closely spaced if L is large. In DBR and DFB
type resonators the wavelength must additionally satisfy the resonance condition of
the DBR or DFB grating and the spacing of the resonance frequencies can be more
freely adjusted.

with nr being the refractive index in the cavity andL the length of the cavity. The prop-

agation constantkz (assuming that the waveguide is alongz-axis) of theFP resonator

satisfies to a good approximation the conditionLkz = mπ, wherem is an integer. If

the resonator is long (typical length of a conventional laser is. 1 mm), the resonance

frequencies of the longitudinal modes are very closely spaced.

To achieve better frequency selectivity and larger frequency separation, one or both

of the mirrors of theFP cavity can be replaced by a distributed Bragg reflector (DBR),

which provides high reflectivity for selected frequencies. Alternatively the refractive in-

dex in the cavity can be modulated by a distributed feedback (DFB) grating. Then the

wavelength must additionally meet the resonance condition of theDBR or theDFB grat-

ing. The cavity types and their response are sketched in Fig3.2.

The quality of an optical cavity for a given wavelength is described by the loss of

the cavityα which is affected by scattering, material absorption and the cavity mirrors.

The main source of cavity loss is usually caused by the transmission through the cavity
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facets. In this case, the loss is approximated by

α = − ln R

L

whereR is the effective reflectivity of the facet andL is the cavity length.

The DBR or DFB grating increases the cost of the laser significantly. In some

applications sufficient frequency selectivity can be reached by using a very short laser

cavity instead of the gratings. In vertical cavity surface emitting lasers (VCSELs) the

cavity is formed in the growth direction of the substrate and the laser emits light through

the surface.VCSELs usually have only one longitudinal mode and are easier to process

thanDBR or DFB lasers with cavity in plane of the substrate, but often several transverse

modes are active inVCSELs.

3.1.2 Laser structures

Double heterostructure lasers, like the one shown in Fig.3.1, are used to spatially confine

both light and carriers in order to optimize the photon-electron coupling. When the width

of the potential well where the carriers are confined, gets smaller, quantum effects in

carrier distribution become significant. InQWLs the well width is of the order of a

few tens of nanometers or less. Reducing the size of the active region in two or three

dimensions results in quantum wire lasers and quantum dot lasers (QDLs), respectively.

The different active material types and their density of states (DOS) are schematically

represented in Fig.3.3.

The quantization of the eigenstates of the carriers modifies the density of states

and affect many properties of the active material. It becomes possible to increase the

efficiency of a laser because the threshold gain is reached with smaller injection current.

The differential gain in reduced dimensionality active materials becomes higher than in

bulk lasers. The modulation induced fluctuations in the optical frequency of the laser, ie

chirping and theLEF associated whith chirping is affected by the modifiedDOSas well.

The measuredLEF for different laser structures typically ranges from aboutαlef & 4

for bulk lasers toαlef & 1 for QWLs andαlef & 0.1 for QDLs [20, 33–40]. These

values naturally depend on the specific operating point and measuring frequency, but they
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Figure 3.3: Density of states in active materials exhibiting different quantum fea-
tures. In bulk material the density of states is proportional to

√
E − Eg. In quantum

wells the density of states is of the step function form and in quantum wires it is
proportional to 1/

√
E − Eg. In quantum dots the DOS is basically a delta-function,

but because the dot sizes and energies fluctuate from dot to dot, the effective DOS
of the dots becomes Gaussian and has a finite width.

indicate a general tendency of achieving lowerLEF for reduced dimensionality active

materials.

3.1.3 Properties of quantum dot lasers

From the middle of the 1990s, it has become possible to fabricateQDLs operating at

room temperature. The active material in these lasers is made of self-organized quan-

tum dots fabricated by the modified Stranski-Krastanov method [41]. The manufacturing

of the active material inQDLs is based on growing a thin film (a few monolayers) of a

semiconductor material on top of the substrate (for example InxGa1−xAs on GaAs) by

molecular beam epitaxy or metal organic vapor phase epitaxy. If the lattice constant of

the film is mismatched with that of the substrate, the film breaks when the layer reaches

a critical thickness and the newly deposited atoms form numerous small islands and pos-
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sibly a monolayer thick wetting layer between them. The quantum dots (QDs) can then

be overgrown by a suitable barrier material. These steps can be repeated several times

leading to a stack with manyQD layers.

The density of states of a singleQD is delta function -like and only broadened by

the finite lifetimes of the carriers in the dots. The homogeneous lifetime broadening has

the Lorentzian form [42]

LL (E) =
Γτ/π

(E − Eg − E0)
2 + Γ2

τ

(3.2)

whereΓτ = ~/τ andτ is the lifetime of the state,Eg the band gap energy of theQD

material andE0 the quantization energy of the dot. However, due to the self-organized

growth of the islands, theDOS of the QD system is also inhomogeneously broadened.

The inhomogeneous broadening leads to theQD eigenstate energy distribution that obey

the normal distribution [41]

LG (E) =
1√

2πσ2
E

e−(E−Eg−E0)2/(2σE)2 (3.3)

σE ≈ 2ςE0. (3.4)

The probabilityLG that theQD states with transition energyE exist depends on the

relative standard deviationς (ς & 0.1) of the energy states [43]. The inhomogeneous

broadening (typically∼ 10− 20 meV) usually dominates over the homogeneous lifetime

broadening (∼ 0.1 meV), and the lifetime broadening can be neglected in the eigenstate

energy distribution ofQDs.

The distinguished density of states of theQDLs offers many potential advantages

over other active materials [43–47]. The threshold current density in theQDLs can be

significantly lower than in the more conventionalQWLs resulting in higher efficiency.

The differential gain is higher and the frequency fluctuations caused by the changes in the

carrier density can be made smaller.

Formerly it was believed that the relaxation processes of the carriers in the inhomo-

geneously broadenedQDs was severely limited by the so called phonon bottleneck and

that the spectral hole burning would makeQDLs unpractical [48,49]. However, more re-

cent studies suggest that the relaxation processes are sufficiently fast for theQDs to reach
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thermal quasi-equilibrium with reasonable output powers [50, 51]. This approximation

significantly simplifies dynamical modeling ofQDLs.

The advantages of usingQDLs as directly modulated transmitters depend on the

possibility of reducing the chirp and the inhomogeneous broadening. It has often been

argued that due to the symmetricalDOS the LEF of QDLs is inherently very close to

zero at the lasing frequency [33–35]. However, this may only apply when the inhomoge-

neous broadening is small compared to the lifetime broadening, which is not the case for

self-organizedQDs. Even perfectly symmetricDOS does not result in zeroLEF at the

gain peak for numerous reasons, if the energy spectrum of the dots is inhomogeneously

broadened (see Publication I for further details). The effect of tuning theLEFs in QWLs

by shifting the lasing wavelength has been generally acknowledged inQWLs for some

time [52]. The same method to control theLEF is not only possible inQDLs, but the re-

quired shift and the resulting increase in the threshold current are smaller and more easily

achievable.

3.1.4 A dynamical laser model: the rate equations

Describing an optical system directly with the quantum mechanical or even the classi-

cal equations becomes highly unpractical when the system composes of several separate

components. There are several approximations that can be used to simplify the system.

One of the most widely adapted methods in modeling the dynamics of optical compo-

nents are the rate equations, which describe the average carrier density and the average

photon densities in different optical modes whose frequencies are widely separated from

one another [19].

Rate equations describe the rate of change of the carrier (ne) or photon (nL) density

of a cavity mode by simple, often linear, approximate laws obtained experimentally or

theoretically. For a typical current injected single mode laser, the equations are of the

form

dne

dt
= Winj − cg (ne) nL −Wnst (3.5)

dnL

dt
= c [g (ne)− α] nL + Wsp + Wext. (3.6)
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The rate of change of the carrier density is divided in three terms. The carrier density

is increased by the current injection, given by the termWinj = Ieff/eV , whereIeff is

the effective injection current andV is the effective volume of optical cavity (or the ac-

tive region, depending on the normalization). On the other hand, the carrier density is

decreased by stimulated emission at the ratecg (ne) nL and by the other recombination

processesWnst. Often one can well approximateWnst ≈ ne/τ whereτ is the average

lifetime of carriers, excluding the recombination by the stimulated emission process.

The photon density in the cavity changes due to the gain (the combined effect of

stimulated emission and absorption)g and the losses of the cavityα. The cavity losses

contain the scattering lossesαsc and the mirror lossesαmirror = − ln R/L, whereR is the

mirror reflection coefficient andL the length of the cavity. Additional sources of photons

that may increase the photon density are the spontaneous emission into the laser mode

Wsp and the rateWext at which photons are injected into the cavity from outside sources.

In phase locked lasers, there is an external coherent optical signal injected to the

laser. To account for the phase of the signal, Eq. (3.6) must be modified to describe the

complex electric field phasorEL of the laser instead of the average carrier density [53,54].

The equation describing the optical field then becomes

dEL

dt
=

c

2
[g (ne)− α + i∆ω (ne)] EL +

c

2L
Eext. (3.7)

Here∆ω (ne) = αlef∆α (ne) is the difference between the frequency of the externally

injected fieldEext and the resonance frequency of the cavity mode, which depends on

the carrier density. The change in the absorption∆α (ne) is calculated with respect to

the absorption at which the cavity resonance coincides with the frequency of the external

signalEext.

3.1.5 Small signal modulation properties of lasers

The small signal analysis of a laser is instructive to see what factors in general affect

the operating speed of a semiconductor laser. This information is also important in the

evaluation of the capabilities of the coherent nonlinear devices to be introduced in this
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thesis. The rate equations of a single mode laser in the small signal approximation are

dnδe

dt
= −

(
cγLnL0 +

1

τ

)
nδe − cαLnδL + ∆ (3.8)

dnδL

dt
= cγLnL0nδe (3.9)

where the carrier and photon densitiesne = ne0 + nδe andnL = nL0 + nδL have been

divided in constant partsne0 andnL0 and a small deviation from the constant values,nδe

andnδL. The termγL = dgL (ne) /dne|ne=ne0 denotes the differential gain of the laser

and∆ is the change in the injection. Making a Laplace transformation for the equations

and solving for the carrier density deviation gives

L{nδe} =
−sL{∆}

c2γLnL0αL + s2 + s (1/τ + cγLnL0)
(3.10)

L{nδL} = cγLnL0
L{nδe}

s
. (3.11)

The solutions of (3.10) in time domain for a step function input,L{∆} = 1/s, are

easily obtained using partial fraction decomposition in the form

nδe (t) =
1

s1 − s2

(
es1t − es2t

)
(3.12)

wheres1,2 are the poles of Eq. (3.10). The characteristics of the solution are then easily

deduced from location of the poles. If the poles have an imaginary part, the solutions are

oscillatory (relaxation oscillations occur). If they are real, the solution moves to its new

steady state value monotonously. The discriminant of the denominator of (3.10) is

D = (1/τ + cγLnL0)
2 − 4c2γLnL0αL. (3.13)

Real solutions are obtained ifD ≥ 0, ie

αL ≤ (1/τ + cγLnL0)
2

4c2γLnL0

≈ γLnL0

4
(3.14)

where the latter approximation assumes that the termcγLnL0 À 1/τ . In single mode

lasers the relaxation oscillations therefore disappear if the laser is biased so that the

(steady state) photon density - differential gain productγLnL0 is sufficiently large. The
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decay time of the perturbation is obtained from the poless1 ands2 of (3.10) according to

(3.12). The poles are given by

s1 =
− (1/τ + cγLnL0)−

√
D

2
(3.15)

s2 =
− (1/τ + cγLnL0) +

√
D

2
. (3.16)

The outcome of the simple timescale derivation above shows that the operating

speed of current injected lasers is limited by the carrier lifetime at low output powers.

At higher powers the large number of photons in the cavity begins to dominate and the

operating speed begins to grow (s1 → −∞, s2 → −cαL asnL0 → ∞) . In the on-off

amplitude modulation the small signal analysis does not give accurate results, although

it makes it easier to appreciate the slow response caused by the vanishing of the photon

population in the off state. In practise the direct current modulation frequency of the

lasers is limited to a few tens of GHz [39,55].

The results calculated for a laser with one laser mode and one signal mode dif-

fer from the simple results derived here by an additional time constantc (αS − gS) /20,

whereαS andgS are the losses and the gain of the signal mode (see Publication III). Al-

though small signal approximation can not accurately describe operation in large signal

conditions, they give an estimate on the operating speed obtainable by a laser construction

that always has a nonzero photon population in the laser mode.

3.1.6 Photon statistics of laser generated light

Photon statistics of the light generated by lasers can be evaluated by using rate equations

written for the weight coefficientspn (t) of the state|Ψ >=
∑

n pn (t) |nkm > [16]. The

outcome for a laser that is above the threshold is

Pn =
(β + nkm)β+n

(β + n)!
e(−β−nkm) (3.17)

wherenkm is the average number of photons in the mode andβ is a parameter describing

the strength of spontaneous emission with respect to the pumping rate (β decreases as

pumping becomes stronger). With high pumping rates the distribution (3.17) approaches
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Poisson distribution and therefore the light emitted by a good quality laser is approxi-

mately coherent. If the laser operates below the laser threshold the photon distribution

becomes chaotic. Note that the coherence of lasers is just a result of the process where

the delicate interaction between the photons, the active medium and the cavity results in

a photon distribution that corresponds to the distribution of coherent light.

The signal to noise ratio of a signal measured by a photodetector and generated by

a laser can be calculated using (3.17) and (2.54). When the relative power of spontaneous

emission becomes negligible far above the laser threshold (β = 0), theSNRapproaches

the value obtained for coherent light (2.61) and the noise level is reduced when the output

power of the laser is increased. Below and very close to the threshold theSNRapproaches

(2.64) for short measuring times.

Another measure of the laser signal quality is the linewidth of the laser. The laser

linewidth can be approximated semiclassically starting from the properties of sponta-

neous emission and stimulated emission and their relative powers in the laser [56]. If

the cavity mode hasnkm photons on average, there is one spontaneous emission process

for eachnkm − 1 ≈ nkm stimulated emission processes. Since stimulated emission pro-

cesses tend to conserve the coherent statistics and spontaneously emitted photons tend to

destroy coherence, the situation can be described by a coherent electric field phasor with

nkm photons on average being perturbed by one photon with a random phase. A single

spontaneously emitted photon can then cause a phase shift of∆φ ≈ 1/
√

nkm radians. The

random walk process changes the electric field phasor at a rate(∆φ)2 /τcav = (τcavnkm)−1

whereτcav is the cavity lifetime for the photons. The laser linewidth then becomes [56]

∆f ≈ 1

2πnkmτcav

. (3.18)

Writing the result with the average photon count replaced with the optical powerP and

accounting for the linewidth enhancement factor of semiconductors gives

∆f ≈ ~ω (1 + αlef)
2

2πτ 2
cavP

(3.19)

as the linewidth of the laser.
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Figure 3.4: Gain clamped semiconductor optical amplifiers are lasers which allow
the amplified signal(s) to propagate through an optical cavity with an active laser
mode. In the conventional traveling wave GCSOA the laser cavity, formed by two
frequency selective mirrors, is parallel with the signal waveguide (a). In the so
called linear optical amplifiers (LOA) the laser field is perpendicular to the signal
waveguide (b). When the signal is amplified it takes power from the laser mode. In
LOA this results in pronounced spatial variation of the laser field.

3.2 Gain clamped optical amplifiers

Impurity doped fiber optical amplifiers are commonly used in the optical networks. Their

largest drawbacks are their bulky size, the requirement of optical pumping and the gradual

saturation as the input power increases. Alternatives for the fiber amplifiers ranging from

Raman fiber amplifiers to several kinds of semiconductor devices have been proposed [19,

57,58]. The most interesting alternatives, in the context of this thesis, are the gain clamped

semiconductor optical amplifiers (GCSOAs). These amplifiers are operated directly with

current and their response is more linear than that of conventional fiber optical amplifiers

or semiconductor optical amplifiers (SOAs). Furthermore, they are used in the optical

flip-flops described later in this thesis.

The operation of theGCSOAs is based on amplifying the signal by stimulated

emission in the presence of an additional laser field (Fig.3.4). The laser field is confined

in a cavity that is parallel to the direction of signal propagation (conventionalGCSOA)

or perpendicular to it (linear optical amplifier (LOA)). In GCSOAs the overall gain

of the laser mode needs to be higher than the gain of the signal mode. This can be

achieved either by frequency selective mirrors or by frequency selective gain in conven-

tional GCSOAs. In LOA the mirrors need not have any frequency selectivity because
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different mirrors are used for the signal and laser modes. The amplifiers where the signal

propagates through the amplifier without reflections are further categorized as traveling

wave amplifiers (TWAs) while the amplifiers where the signal is filtered by an optical

cavity are of the Fabry-Perot amplifier (FPA) type.

A generalized position dependent rate equation model of the form

∂ne (x, t)

∂t
= Winj − cgLnL (x, t)− c

∑
i,κ

gisi,κ (x, t)− ne (x, t)

τ
(3.20)

∂nL (x, t)

∂t
= c (gL − αL) nL (x, t) (3.21)

∂si,κ (x, t)

∂t
= −κc

∂si,κ (x, t)

∂x
+ cgisi,κ (x, t) (3.22)

can be used to describe either one of the amplifier types when boundary conditions that

suitably account for the reflections at the cavity ends are used. HerenL (x, t) is the photon

density in the vertical laser field (applicable only forLOA), si,κ (x, t) the photon density

of the signal modei propagating in the+x (κ = 1) or−x (κ = −1) direction. The gain

of theGCSOAs is basically determined by the threshold value (αL in case ofLOA) that

is required for laser operation. The gain stays approximately constant while the laser is

above the threshold and only the optical power of the laser mode changes when the signal

is amplified. This process minimizes changes in the amplification and carrier density and

the amplifier is very tolerant to variations in the input signal.

In Publication II the differences of theTWAs of theSOA, GCSOAandLOA types

are studied. The results verify that the gain of bothGCSOA types, the conventional

GCSOAand theLOA, are quite independent of the input signal power. An approximation

where the rate equations are averaged over the length of the amplifier is also possible

with good accuracy [59]. This approximation applies especially well for theFPAs and is

adapted in the other publications of this thesis.

3.2.1 Photon statistics of optical amplifiers

The quantum mechanical approach to the photon statistics of an optical amplifier is

based on writing the rate equations for the probability distributionpn (t) of the state
∑

n pn (t) |nkm > in the normal modekm in a two level picture and solving the time
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evolution of the probability distribution. This approach leads to the Kolmogorov equa-

tions that describe the evolution of the probabilitiespn (t) [60–62]. Despite the apparent

difference in the phenomenology at the first sight, the equations are formally similar to the

equations describing the biological birth-death-immigration processes [63]. This makes

the problem conceptually straightforward and easy to simulate stochastically.

Basically, a group of photons enters an amplifier. As they propagate along the

amplifier there is a chance per unit time (distance) that any of the photons get absorbed

(death), generate a new photon by stimulated emission (birth) or that a spontaneously

emitted photon is created (immigration).

Closed form solutions to the probability distributions at the output of a travel-

ing wave amplifier are readily available in the form of probability generating functions

(PGFs), from which the mean and higher moments are easily obtained [64]. The proba-

bility generating function at the input of an amplifier is defined by

F0 (ζ) =
∑

n

p0,nζn (3.23)

wherep0,n is the probability of there beingn photons at the input at timet = 0 andζ is a

real parameter. ThePGFat the output becomes

F (ζ, t) = F0 (Z (ζ, t; 0)) e
∫ t
0 [Z(ζ,t;τ)−1]ν(τ)dτ (3.24)

where

Z (ζ, t; τ) = 1 +
(ζ − 1) h (τ)

h (t)− [ζ − 1]
[∫ t

0
h (u) λ (u) du− ∫ τ

0
h (u) λ (u) du

] (3.25)

h (u) = e
∫ u
0 µ(t)−λ(t)du (3.26)

andλ (t) is the birth rate,µ (t) is the death rate andν (t) is the immigration rate.

An important special case of the output probability generating function (3.24) is the

probability density in the case of coherent light at the input of aTWA. The probability

density is of the noncentral-negative-binomial (NNB) form,

pn =
namp

n

(1 + namp)
n+M

e−Gns/(1+namp)LM−1
n

[
− Gns

namp (1 + namp)

]
(3.27)
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wherenamp = G (L)
∫ L

0
γst (z) /G (z) dz , γst is the stimulated emission rate,G (L) is

the amplification of the amplifier from0 to L, ns is the mean photon number at the input,

M = M ′T/tc, M ′ is the number of modes available for spontaneous emission,T is the

measuring time,tc is the coherence time andL(M−1)
n is the Laguerre polynomial.

The mean and variance of the distribution (3.27) are [65–67]

n = Gns + Mnamp (3.28)

V ar {n} = Gns + 2Gns namp + Mnamp (1 + namp) . (3.29)

The components of the variance in the output photon distribution are the amplified noise

of the input signal (first term), the noise added by the random amplification process (sec-

ond term) and the spontaneously emitted photons that are also amplified (last term). From

these results the fundamental limitation of optical amplifiers, the lowest achievable noise

factor of∼ 2, becomes apparent. Even if the amplified spontaneous emission is negligible

(last term∼ 0), the noise associated with the fluctuations in the amplification is signifi-

cant. For constant gain along the amplifier〈namp〉 = (G− 1) γst/ (γst − γabs) ≥ G − 1

with γabs being the absorption rate. The noise factor forG À 1 then becomes

NF =
G + 2G (G− 1)

G2
→ 2. (3.30)

Other types of optical amplifiers which exploit the quadrature states of light and use

complicated setups, may, however, provide lower noise figures in specific circumstances

[68].

3.3 Nonlinear effects

In the classical theory the light - matter interaction is accounted for by the material pa-

rametersε andµ that are functions of the electric fieldE. Usually the variations in the

permeabilityµ are small and neglected. The relative permittivity can be expanded in

powers of the electric fieldE:

εr (E) = 1 +
∞∑
i=0

χ(i)Ei, (3.31)
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whereχ(i) are the expansion coefficients of the susceptibility. The best known nonlinear

effects that are used in nonlinear optical components are the Pockel’s effect (j = 1) and

the Kerr effect(j = 2).

Pockel’s effect is found in crystals lacking inversion symmetry, such as lithium

niobate (LiNbO3, χ(1) ∼ 10−11 m/V) or gallium arsenide (χ(2) ∼ 10−13 m/V) [32]. The

effect is predominantly used in electro-optic modulators [69]. The Kerr effect is a second

order effect, in which the material permittivity changes in proportion to the intensity

(∼ E2) of the light. All materials exhibit Kerr effect, although in most cases it’s extremely

weak. Kerr effect is also responsible for self focusing and self phase-modulation and it is

an important factor in soliton formation. The nonlinearity of matter is the key element in

many prototypes or theoretical descriptions of nonlinear optical devices [6,70–72].

3.4 Nonlinear optical components

The most important device types for the next generation optical networks are the optical

isolators, switches, regenerators, memories and logic gates that are suitable for integra-

tion. Many variations of these devices have been demonstrated over the years with differ-

ent operating principles. Some examples of these operating principles and references to

the devices are given below.

Discrete optical isolators are based on the Faraday rotation which has not been

successfully demonstrated in integrated form. Alternative techniques for the integrated

environment are for example using nonlinear asymmetric structures or inducing a nonre-

siprocal absorption in an amplifying waveguide by introducing a layer of ferromagnetic

metal close to the waveguide [71,73,74]. These techniques are suitable for integration in

principle, but their performance is not sufficient to date.

All-optical switching is most often based on changing the optical length of an in-

terferometer arm or the resonance condition of a resonator. Common methods to achieve

this are the Kerr effect or the use of optical components like theSOA that saturate with

optical power [75–77].

In many cases optical logic gates, threshold circuits and memories are strongly in-
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tertwined and the same technology can be used to realize all of the devices with only

minor modifications. Optical regenerators have been realized using the saturation ef-

fects in optical amplifiers, mode hopping in side-mode injection-locked lasers and phase

modulation in interferometers [78–83]. Optical logic gates exploit the same saturation

and phase modulation effects as regenerators [84–89]. In addition logic gates based on

polarization rotation, periodic nonlinear structures and wavelength converters have been

reported [90–92].

In principle optical flip-flop circuits can be trivially realized by arranging two op-

tical logic gates in a suitable feedback configuration, just like in electronics. However,

many, if not most, flip-flop circuits are based on bistable lasers or on the bistability of two

coupled lasers. First bistable laser structures were based on the coexistence of saturable

absorbers and active material with gain in the same laser cavity [93–96]. Later realiza-

tions of optical flip-flops use separate lasers with feedback between them [97–99]. All of

these flip-flop configurations involve switching on and of at least one laser field when the

flip-flop changes state.
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4 Coupled systems of coherent gain clamped laser

amplifiers

In this chapter a new nonlinearity based on using gain clamped amplifiers together with

interferometers is introduced. The nonlinearity has potentially much faster response than

the nonlinearities previously utilized in implementing nonlinear optical devices. The non-

linearity is suitable for creating for example optical flip-flop circuits, regenerators and

logic gates. The advantage of the nonlinearity is that it is present above the laser thresh-

old, in contrast to the previously introduced nonlinearities of bistable lasers, coupled

GCSOAs, microring lasers etc, in which the nonlinearity is strongest at the laser thresh-

old.

4.1 Fast nonlinearity by interference

Interference of coherent optical signals is inherently a very fast process. The complex

electric field phasorEout at the output of a balanced two arm interferometer [Fig.4.1(a)]

is given by [25]

Eout =
1√
2

(Ein + Eb) (4.1)

whereEin andEb are the electric field phasors at the two inputs of the interferometer. In-

putEb is later referred to as the bias signal andEin as the input signal. The corresponding

optical output powerPout (Eout) of the interferometer as a function of the input powers

Pin (Ein) andPb (Eb) and the phase differenceφ betweenEin andEb is

Pout =
1

2

[
Pin + Pb + 2

√
PinPb cos φ

]
. (4.2)

Scaling (4.2) with the variablesP ′
out = Pout/Pb andP ′

in = Pin/Pb corresponds to amplify-

ing or attenuating the input and output signals. The scaled output power is

P ′
out =

1

2

[
P ′

in + 1 + 2
√

P ′
in cos φ

]
(4.3)

which reveals that the response of any two interferometers with constant input bias fields

E1
b andE2

b 6= E1
b is identical if the input and output signals of the interferometers are

scaled by1/E1
b and1/E2

b , respectively.



38 4 Coupled systems of coherent gain clamped laser amplifiers

P ou
t

E o u t

E i n

E b

( a )

( b )

0 2 4
0

2

4

 

 
,

 f  =  0
 f  =  p  /  4
 f  =  p  /  2
 f  =  3  p  /  4
 f  =  p

P i n

P b

P o u t

P i n
,

Figure 4.1: (a) A two arm interferometer and (b) the output power (4.3) of the
interferometer for various phase differences between the input signals. The strongest
nonlinearity is obtained for the value φ = π.

Equation (4.1) shows that interference is a linear process in terms of the electric

field. In terms of the optical power [Eq. (4.2)], however, the transfer function is nonlinear

if φ 6= ±π/2. The strongest nonlinearity is obtained forφ = π as shown in Fig.4.1(b).

Even though the output optical power of an arbitrary interferometer structure is

a nonlinear function of the input power forφ 6= ±π/2, the output electric field is a

linear function of the input fields. However, combining the nonlinearity (in terms of

optical power) of the interferometers with the nonlinearity (in terms of electric field) of

some other structure allows one to create functions that are nonlinear both in terms of the

electric field and the optical power.

In this thesis the electric field nonlinearity to be combined with the nonlinearity of

the interferometers is obtained by utilizingGCSOAs. The output powerPout of aGCSOA

at the laser mode wavelengthλL of theGCSOAis a function of the input powerPin at the
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Figure 4.2: Combining an interferometer with a GCSOA allows creating nonlinear
functions of the form (4.6). In a GCSOA the cavity mode with wavelength λL is
above the laser threshold and active even if no input signals are present. In the
signal mode with wavelength λs there is optical power only when an input signal is
present. The signals at different locations are marked in the picture by using both
the electric field and optical power and with C = 1. The expressions to the left of
the GCSOA correspond to the power and electric field of the signal mode λs of the
GCSOA. To the right they refer to the laser mode λL of the GCSOA. The response
time is limited by the modulation properties of the amplifier, but can be very high
if the operating point and the properties of the amplifier are optimized.

signal mode wavelengthλs (λs 6= λL). Above the laser threshold the output powerPout

can be approximated as

Pout = P0 − CPin (4.4)

whereP0 is the output power of the laser mode when the power of all other modes is

∼ 0 andC is a factor of proportionality that describes the amplification of the signal. For

C < 0 the signal is absorbed and forC > 0 it is amplified. In terms of the electric field

the output of theGCSOAis given by

Eout =
√

E2
0 − CE2

in (4.5)

whereE0 is the electric field of the modeλL when there is no input electric field, ie

Ein = 0.

With an interferometer and a phase lockedGCSOA(Fig. 4.2) it becomes possible

to generate functions of the form (all equations are equivalent)

Pout = P0 − 1

2
C

(√
Pb −

√
Pin

)2

(4.6)

P ′
out = 1− 1

2
C

(√
P ′

b −
√

P ′
in

)2

(4.7)

Eout =

√
E2

0 −
1

2
C (Eb + Ein)

2 (4.8)
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when the phase difference of the signals entering the interferometer is set toφ = π in Eqs.

(4.2) and (4.3). The primed variables are obtained by scaling with1/P0. Functions (4.6)-

(4.8) are nonlinearboth in terms of the electric fieldand the optical power, in contrast to

(4.2) and (4.4). Now the functions (4.7) with different ratiosP ′
b = Pb/P0 can no longer

be reproduced from one another by scaling the input and output of the interferometer

– GCSOAcombination, like in the case of a simple interferometer (4.3). In principle

the interferometer –GCSOA structures can be chained or used as a basis to generate

other functions, like the regenerator function of Publication III. In this thesis it is always

assumedC > 0, but constructing flip-flop configurations whereC < 0 is possible as well.

This could actually be an important simplification for processing the devices, because

then the active region could have negative gain at the signal frequency.

Note that the optical fields in the input of the interferometers are coherent and have

a constant phase difference ofφ = π. The requirement of constant phase differenceφ = π

can be satisfied by locking the phase of the input signalEin to the phase of the constant

bias signalEb. The most straightforward way to do that in the components modeled in

this thesis is to phase lock the laser field of theGCSOA.

The major advantage of the combined nonlinearity of interferometry and ofGCSOAs

is the potential for high speed operation. In most other nonlinear devices involving lasers,

the nonlinearity originates from the laser threshold when setting on and off the lasers.

Operating the lasers on both sides of the laser threshold limits the speed of the device.

4.2 Coherent optical Flip-Flops

The nonlinearity achieved by using interferometers andGCSOAs in the previous section

provides a new mechanism to create nonlinear feedback between twoGCSOAs. The

nonlinear feedback can be used to create an optical flip-flop memory, the coherent optical

flip-flop (COFF), based on a bistable configuration of twoGCSOAs.

The laser modes of the twoGCSOAs, L1 andL2 are denoted byλ1 andλ2 (λ1 6=
λ2), respectively. The signal modes occur correspondingly atλ2 andλ1. Additionally

the GCSOAs support a third modeλ3 that allows setting and resetting theCOFF. The
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Figure 4.3: A foherent optical flip-flop (COFF) with two bistable states can be cre-
ated if biased interferometers are used in the feedback channel between two phase
locked GCSOAs with different laser mode frequencies. The COFF may be con-
structed using the two GCSOAs, two optical isolators and optical filters. The set-
and reset-operations of the flip-flop are done by sending light pulses to the respective
input ports, and the output (inverted output) of the COFF can be read from the
respective output ports. The laser modes of the GCSOAs L1 and L2 are λ1 and λ2,
respectively.

GCSOAs are arranged so thatλ1 (λ2) is injected intoL2 (L1) as the feedback signal after

making it interfere with a suitable constant bias signaltb. The bistability of theCOFFis

based on a feedback scheme whose speed is limited by the response time of theGCSOA.

The difference to previous bistable laser systems is that the laser mode maintains a large

photon population at all times, which allows fast operation [(3.15)-(3.16)].

In the simplest form, if optical isolators are available, theCOFFis formed of two

phase lockedGCSOA, two interferometers, two optical isolators and two coherent light

sources used as the sources of the bias signals and the phase locking (Fig.4.3). The

feedback equation of the system is derived in the following by tracing the feedback signal

x through the waveguides, interferometers and theGCSOAs. In the derivation the cavity

response is omitted for simplicity,C = 1, parameterta describes the strength of the

coupling between theGCSOAs, tb the strength of the bias signal and parametersE0L1

andE0L2 the maximum electric field of theGCSOAwhen no input is present.
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To generate the feedback equation, the feedback signalx is first followed into

GCSOAL2 where it interacts with the laser modeλ2 resulting inx1 =
√

E2
0L2 − |x|2.

The outputx1 of L2 at the laser modeλ2 is then made to interfere with a constant bias

signal, resulting in the termx2 = tax1 + tb. Next, the signal propagates through the opti-

cal isolator into theGCSOAL1 as the feedback signal of the amplifier atλ2 and interacts

with the laser modeλ1 (x3 =
√

E2
0L1 − |x2|2). Finally x3 interferes with the bias signal

tb closing the feedback loop and resulting inx = tax3 + tb. Substituting the intermediate

signals recursively gives the feedback equation of the structure for the electric fieldx in

Fig. 4.3going intoGCSOAL2 at frequencyλ1:

x = ta

√
E2

0L1 −
∣∣∣∣ta

√
E2

0L2 − |x|2 + tb

∣∣∣∣
2

+ tb. (4.9)

The left and right hand sides of (4.9) give the inputx before and after a round trip through

the device. If both sides of (4.9) are equal (ie the inputx is the same before and after a

round trip), the state of the system remains unchanged. If the delayed input (right hand

side) is larger than the stimulusx, it then follows thatx grows with time until (4.9) is

satisfied. Similarly, if the delayed input is smaller than the inputx, thenx must decrease

with time until (4.9) is fulfilled. From these facts it follows that the system is stable when

(4.9) is satisfied, and the derivative of the right hand side is< 1. If (4.9) is satisfied but

the derivative is> 1 the system is in a labile state and starts to converge towards a stable

state. Figure4.4 illustrates the stable and labile areas of operation.

Injecting an additional input signal toL1 or L2 reduces the maximum fieldsE0L1

andE0L2 of theGCSOAs, respectively. When the input signal is strong enough and one

of the parameters,E0L1 or E0L2, is reduced below a threshold value, one of the stable

states disappears and the system is left with only one stable state. Graphical solution of

Eq. (4.9) and the transition from a bistable system to a monostable system is illustrated

in Fig. 4.4. The existence of the monostable regime allows setting or resetting theCOFF

by simply injecting an optical signal intoGCSOAL1 or L2.
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Figure 4.4: Graphical solutions of the feedback equation (4.9) of the flip-flop for
different values of EL01 and EL02. The black curve is the left hand side of Eq.
(4.9). The red curve is drawn for the case of no input power in the set or reset port
(EL01 = EL02 = 1). Other values of EL01 and EL02 describe the cases where an input
signal is present in the set or reset port of the flip-flop. The stable (labile) operating
points of the flip-flop are located inside the rectangles (circles) at the crossings of
the curves with the black curve. For the two extreme curves (E0L1 = 1, E0L2 = 0.9
and E0L1 = 0.9, E0L2 = 1) there is only one stable state left, and the flip-flop will
move to this state.

4.2.1 The rate equation model of the optical flip-flops

The dynamics of theCOFFcan be modeled by a set of coupled rate equations that describe

the carrier densities and electric field phasors of the pertinentGCSOAs. The equations

resemble closely the rate equations (3.5) and (3.7) of a single phase locked laser, but the

carrier densityne and the electric fieldsEj andEext
j are now vectors whose components

describe the quantity in question in eachGCSOAof the system. The equations are not

crucial for understanding the principle of operation of theCOFF, and they are only dis-

cussed very briefly and partly incompletely in this summary. For further details the reader
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is referred to publications III-VI.

The rate equations for a general coherent nonlinear system can be written in vector

form as

dne

dt
=

I

qV
−

∑

j∈{1,2,3}
2ξcgj (ne) |Ej|2 − ne

τ
(4.10)

dEj

dt
=

c

2
[gj (ne)−αj + i∆ωj (ne)]Ej (4.11)

+
c

2L
Eext

j +
c

2L
MjEj

where the gaingj, absorptionαj and frequency detuning∆ωj are correspondingly diag-

onal matrices. The diagonal elements give the values of the respective quantities for each

GCSOA. Index j denotes the mode of theGCSOA(herej ∈ {1, 2, 3}). The coupling

matricesMj describe the coupling of the laser fields between the differentGCSOAs. The

termξ =
√

εµ−1/ (2~ωc) is the conversion factor that transforms the square of the abso-

lute value of the electric field to photon density. The factor 2 in front ofξ in Eq. (4.10)

results from the presence of the two counter propagating electric fields both contributing

to the photon density. The absolute value in Eq. (4.10) is applied to each component of

Ej independently. The vectorEext
j describes the fields injected from outside the cavity

into the modej. Other parameters have the same significance as in Eqs. (3.5) and (3.7).

To model theCOFFcomposed of twoGCSOAs, presented in Subsection4.2, the

following parameter values are used:

M1 =
√

TLTs


 0 ta

0 0


 (4.12)

M2 =
√

TLTs


 0 0

ta 0


 (4.13)

M3 = 0 (4.14)

Eext
1 =

√
Ts

[
tb 0

]T
Eout

L,max (4.15)

Eext
2 =

√
Ts

[
0 tb

]T
Eout

L,max (4.16)

Eext
3 =

√
Ts

[
sS (t) sR (t)

]T
(4.17)
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α1 =


 αL 0

0 αs


 (4.18)

α2 =


 αs 0

0 αL


 (4.19)

α3 =


 αs 0

0 αs


 . (4.20)

The parametersTL, Ts andαL andαs (αs > αL) describe the effective transmittance

of the cavity facets and the cavity losses of the laser mode and of the signal mode, re-

spectively. The set and reset signalssS (t) andsR (t) are used to switch the state. The

parametersta andtb are configured so that the device operates with the desired properties

and are normalized so that the maximum output electric fieldEout
L,maxof the laser mode

can be used as a reference value. Numerical values for the parameters can be found in

Publication V.

The results obtained for parametrized structures, that are optimistic but within the

limits of current technological feasibility, show that theCOFFs can be operated at fre-

quencies well above 40 GHz. Theoretically the operating frequency can be increased

along with the optical power and differential gain of theGCSOA, towards the fundamen-

tal upper limit∼ v (αs −Gs) /20 (or∼ vαL if it is smaller) which depends on the cavity

losses and available material gain.

Two examples of typical results obtained by using the rate equation model are

shown in Figs.4.5and4.6. In Fig. 4.5 the output of theCOFFis shown as a function of

the input power in the set -port. There is a very clear threshold for the input power for the

COFFto change state. In Fig.4.6 the dynamic operation of theCOFFis demonstrated

for set and reset -pulses. After setting (resetting) theCOFF, its state remains unchanged

until a reset (set) pulse is sent to the input.

4.3 Active antireflectors

Because optical isolators that are suitable for integration are presently not available, other

means to prevent unwanted signals from reaching theGCSOAs of theCOFFare needed.
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Figure 4.5: When a sufficient input power is injected in the set-port, the output
power in the output port of the COFF rises abruptly, as predicted by the feedback
equation (4.9). The threshold for changing the state is very clear. With increasing
input power, however, the output power decreases slowly, which may be a minor
drawback in some applications. The results shown here are calculated using the more
accurate rate equation model for a slowly changing input signal (see Publications
IV and V for details).

The components preventing backward propagation of signals in this thesis, however, need

not necessarily be optical isolators – antireflectors satisfy the requirements as well.

The reflection of any optical signalS (t) that is transformed and reflected back

as f (S) by some optical device, linear or nonlinear, can be cancelled by destructive

interference using another replica of the responsef (S) (Fig. 4.7). Creating the replica

can be done by approximating the responsef , or, for better cancellation, by using a

duplicate of the device creating the reflection. The performance of the antireflector is

limited by the accuracy of the phase shift and the (anti)symmetry of the antireflector

structure.

Using the principle of antireflection allows one to modify theCOFFstructure into

a form that is in principle suitable for integration, as described in Fig.4.8. This configu-

ration has been used in all the calculations in publications IV-VI. The drawback of using

antireflectors is that they add to the complexity of theCOFFconfiguration.

Accounting for the antireflectors and the lasers providing the bias signals and phase
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Figure 4.6: Sending input signals into the COFF nicely demonstrates the operation
as a memory unit. The output power rises abruptly when a set-pulse is sent into
the set-port. Even when the set-pulse disappears, the output power remains close
to the value set by the pulse. Resetting the COFF can only be done by using a
reset-pulse. The insets show a magnification of the output at the moment of (b)
setting and (c) resetting the COFF.

locking signals in the rate equation model presented in Section4.2.1results in the cou-

pling matrices of the form

M1 =




0 C iC iB B 0

C 0 0 iA A 0

iC 0 0 0 0 0

iB iA 0 0 0 0

B A 0 0 0 0

0 0 0 0 0 0




(4.21)

(M2)n,m = (M1)7−n,7−m (4.22)

M3 = 0 (4.23)



48 4 Coupled systems of coherent gain clamped laser amplifiers

S
f ( S )

f ( S )

- f ( S )

S
0

- f ( S )

A  r e f l e c t i n g
o b j e c t

A  r e f l e c t i n g
o b j e c t

A  r e p l i c a  o f  
t h e  o b j e c t

Figure 4.7: Availability of optical isolators in integrated environments is severely
limited. Active antireflectors can be used to replace optical isolators in systems
where a replica of the reflected signal can be created. The reflection from an object
that reflects a forward propagating signal S back as f (S) may be cancelled by
interference if a replica of the reflected signal can be created and made to interfere
with the original reflection destructively.

A =
1

4

√
TLTsgAt2A (4.24)

B =
1

4
√

2

√
TLTsgAtAtB (4.25)

C =
1

2
TLtC . (4.26)

The elements of the matrices and vectors are associated to the lasers LB1, L1, LA1, LA2,

L2 and LB2 of Fig. 4.8, respectively. Again, the effective transmission coefficients of the

cavity facets for the laser and signal modes are given byTL andTs, respectively. The

termstA, tB andtC are the waveguide transmission coefficients for the electric field (Fig.

4.8) andgA is the amplification of the electric field in the optional amplifier compensating

for the losses of the waveguide junctions. The vectors describing the external injection

(set and reset signals) are zero, except for

Eext
3 =

[
0 sS (t) i sS (t) i sR (t) sR (t) 0

]
.T

The loss matrixαj of eachGCSOAis diagonal and given by

α1 = Diag
[

αL αL αL αs αs αs

]
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Figure 4.8: The full COFF configuration with antireflectors no longer uses optical
isolators. They have been replaced by active antireflectors that are able to cancel
the reflections from the GCSOAs L1 and L2. The structure also includes two lasers
that provide bias signals and phase locking for the system. The state of the COFF
can be changed by applying a signal to the set or reset input port, and the output
or the inverted output can be read from the respective output ports.

α2 = Diag
[

αs αs αs αL αL αL

]

α3 = Diag
[

αs αs αs αs αs αs

]

where the operatorDiag constructs a diagonal matrix from the vector following it. Nu-

merical values can be found in publication V.

4.4 Optical decision circuits and logic

The basicCOFF has two stable states when no external input signals are present. In

presence of an appropriate set or reset signal only one stable state remains, enabling the set

and reset operations of the memory. Making theCOFFstructure asymmetric by adjusting

the injection current or the strength of the feedback fromGCSOAL1 to L2 to be different

from the feedback fromL2 to L1 leads to a similar situation. With a suitable amount of

asymmetry only one stable state remains even when an input signal is not present. An
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Figure 4.9: Steady state characteristics of three different decision circuit configura-
tions. The curves are calculated both analytically using Eq. (4.27) and numerically
using the rate equation model introduced in Publication V for various values of
LEF. The steepness and hysteresis of the decision threshold can be affected by the
device parameters, which describe the feedback strength between the amplifiers. In
(a) the parameters are such that the threshold is gentle, while in (b) and (c) the
threshold is steep. In (b) hysteresis is visible in the analytical approximation but
not in the more accurate numerical simulation. In (c) hysteresis is present in both
the analytical and numerical results.

input signal to theGCSOAL1 (or L2 depending on how the feedback was modified) can

then be injected to reduce the output power of the laser mode. As a result the stability

conditions change so that first, at moderate input power, a second stable state is created.

Then, when the input power reaches a threshold, the original stable state disappears and

the system is driven to the newly created stable state which is different from the original

stable state. The disappearance of the stable state takes place abruptly, which makes the
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asymmetrically adjustedCOFFsuitable for use as a decision circuit.

Introducing the asymmetry to the feedback equation (4.9) in the form of modified

feedback and bias signal strengthsta1, ta2, tb1 andtb2 transforms the feedback equation

into

x = ta1

√
E2

0L1 −
∣∣∣∣ta2

√
E2

0L2 − |x|2 + tb2

∣∣∣∣
2

+ tb1 (4.27)

which is different from the original feedback equation (4.9) of the COFF only by the

asymmetric feedback parameters and the different maximum laser fields of theGCSOA.

However, the system may now be monostable and returns quickly to its unexcited stable

state when an input signal drops below a threshold value, as shown in Fig.4.9. The

dynamical properties of the decision circuit remain similar to those of the basicCOFF

circuit.

A decision circuit with steep threshold characteristics is not only useful in regener-

ation of optical signals, but also in constructing logic gates. Creating an and gate or an or

gate only requires a two arm interferometer in addition to a decision circuit with a steep

decision threshold. The output power of an interferometer followed by a threshold circuit

is given by

Pout = f
[
ξ |EA + EB|2

]
(4.28)

wheref (P ) is the response of the decision circuit. The output has different properties

depending on the phase differenceθ of the input signals. If the signalsEA andEB are

in phase, and-like output is obtained. With phase difference of about110◦ the response

resembles the logical or function. Fig.4.10shows some examples of the responses of the

logic circuits realized with the decision circuits of Figs.4.9(b) and4.9(c).
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Figure 4.10: The two dimensional truth tables of the and (left) and or (right)
gates for input signals A and B realized with an interferometer and the threshold
circuits of Figs. 4.9(b) [(a) and (b)] and 4.9(c) [(c) and (d) for the lower hysteresis
curve of Fig. 4.9(c) and (e) and (f) for the upper hysteresis curve]. For and gates
constructive interference in the interferometer is used (θ = 0) and for the or gates
θ = 110◦. Although the output is circularly symmetric, it provides a fairly good
approximation of the ideal truth table.
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In the future optical networks will continue expanding and getting closer to the end user

as the bandwidth requirements increase. The new optical components developed in the

laboratories will be adopted and commercialized by the telecommunications industry only

when they are cost effective. Other fields of technology, where very fast serialized data

transfer is needed and cost-effectiveness does not play so crucial a role is a potential step-

ping stone for the more complex new optical components on their way to mass production.

The new components might find their first applications for example in the communication

links between the nodes of a supercomputer. Thereafter, as the technology matures and

costs decrease, they may become commercially available for optical networks as well.

The progress made in the laser materials, modulators, amplifiers and optical fibers

are all important steps on the way to better devices and systems. The introduction of

quantum wells and dots as the active material in lasers has improved several operation

characteristics of semiconductor lasers. Integrated optical amplifiers with gain clamp-

ing have linearized the amplification. The losses in optical fibers have become almost

negligible and the dispersion in the fibers can be controlled.

The most salient problem of today’s optical networks, and transferring data opti-

cally in general, is the so called electronic bottleneck. It emerges from the need to convert

optical signals into electric form and back for routing, retiming or processing. In labora-

tories all over the world many different methods and components to help overcoming the

electronic bottleneck have been proposed. However, no fast commercial breakthrough is

at sight for the moment.

Coherent optics is sometimes dismissed as a research topic by the networking in-

dustry. In networks involving optical fibers this is easily justified, since it is impossible

to accurately control all conditions affecting the optical properties and optical phase of

the system. In integrated circuits, however, the situation is somewhat different. In small

scale local coherence is and has long been an essential part of many modulators and non-

linear devices, since they depend on interference of optical signals. In this thesis the

use of local coherence is extended to a small group of phase locked lasers connected by
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waveguides. The key result is a new form of nonlinearity obtained by interferometry and

GCSOAs. The nonlinearity is used to theoretically demonstrate an optical flip-flop that

uses coherent signals internally, but communicates with the external world using intensity

only.

This thesis has been devoted to the study of the dynamical properties of quantum

dot lasers and gain clamped optical amplifiers and their use with interferometers to create

a new type of nonlinearity for nonlinear optical circuits. The study of quantum dot lasers

was done with particular interest in the linewidth enhancement factor. In the literature

it is commonly stated that ideally theLEF of QDLs is inherently small because of the

symmetry of the inhomogeneously broadened density of states. This turned out to be an

inaccurate approximation even in ideal conditions. The signal propagation inLOAs was

also studied and compared to the conventionalGCSOAs andSOAs. The superiority of the

linearity and crosstalk properties in theLOAs with respect to the properties ofSOAs was

verified. Most of the attention in the summary and the publications, however, is given to

the introduction of an optical flip-flop circuit and related devices that have been realized

using nonlinear feedback formed byGCSOAs and interferometers.

In the very best possible scenario, coherent optical devices developed from the

devices introduced in this thesis may become as versatile tools for optics as the transistors

are for electronics. Coherent optics have the potential for high speed operation, now

obtaining possibly∼ 100 GHz operating frequency with the current level of technology

and perhaps even THz or tens of THz in the future. Processing the devices is challenging,

but in principle possible even with today’s technology. The differences between the flip-

flops and logic circuits are so small that only a few extra steps are needed to process both

on the same chip. The power consumption is at least slightly elevated and the footprint

is huge in comparison to electronic transistors. The footprint is ultimately limited by the

wavelength of optical signals even if using photonic crystal waveguides allowing sharp

bends.

The use ofGCSOAs is not an optimal choice for the electric field nonlinearity due

to its complexity and slow operation in comparison to the interferometers. Being able to

replace it with some other means to produce a similar output with a simpler arrangement
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would offer a great leap for coherent technology.

All the optical components investigated in this thesis have been separately realized

in practice. Combining them on a chip and making them interact coherently is more chal-

lenging. Even in theory, there remains several issues, mostly of technological nature, that

have not been thoroughly investigated. However, these issues should not be insuperable.

Building a prototype on an optical table may be hampered by the need for phase control

and by the cavity mode requirements of theGCSOA. Integration of a prototype directly

on a chip is even more demanding.

If the manufacturing technology of optical components develops with a pace com-

parable to that of silicon technology, optical signal processing will meet many of the

expectations placed for it in the near future. The co-operation of the optical and elec-

trical technologies will still remain strong for at least a while, but with a few important

innovations the purely optical signal processing capabilities may become sufficient by

themselves.
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