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Abstract

Latent variable models are useful tools for statistical data analysis in many appli-
cations. Examples of popular models include factor analysis, state-space models
and independent component analysis. These types of models can be used for
solving the source separation problem in which the latent variables should have
a meaningful interpretation and represent the actual sources generating data.
Source separation methods is the main focus of this work.

Bayesian statistical theory provides a principled way to learn latent variable
models and therefore to solve the source separation problem. The first part of
this work studies variational Bayesian methods and their application to different
latent variable models. The properties of variational Bayesian methods are inves-
tigated both theoretically and experimentally using linear source separation mod-
els. A new nonlinear factor analysis model which restricts the generative mapping
to the practically important case of post-nonlinear mixtures is presented. The
variational Bayesian approach to learning nonlinear state-space models is studied
as well. This method is applied to the practical problem of detecting changes in
the dynamics of complex nonlinear processes.

The main drawback of Bayesian methods is their high computational bur-
den. This complicates their use for exploratory data analysis in which observed
data regularities often suggest what kind of models could be tried. Therefore,
the second part of this work proposes several faster source separation algorithms
implemented in a common algorithmic framework. The proposed approaches sep-
arate the sources by analyzing their spectral contents, decoupling their dynamic
models or by optimizing their prominent variance structures. These algorithms
are applied to spatio-temporal datasets containing global climate measurements
from a long period of time.
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6 A. Ilin and H. Valpola. Frequency-based separation of climate signals. In Pro-
ceedings of the 9th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD 2005), pages 519–526, Porto, Portugal,
October 2005.

7 A. Ilin, H. Valpola, and E. Oja. Exploratory analysis of climate data using
source separation methods. Neural Networks, Vol. 19, No. 2, pages 155–167,
March 2006.

8 A. Ilin. Independent dynamic subspace analysis. In Proceedings of the 14th
European Symposium on Artificial Neural Networks (ESANN 2006), pages 345–
350, Bruges, Belgium, April 2006.

9 A. Ilin, H. Valpola, and E. Oja. Extraction of climate components with struc-
tured variance. In Proceedings of the IEEE World Congress on Computational
Intelligence, (WCCI 2006), pages 10528–10535, Vancouver, BC, Canada, July
2006.

vi



List of abbreviations

ADF Assumed-density filtering
BSS Blind source separation
DCT Discrete cosine transform
DFA Dynamic factor analysis
DSS Denoising source separation
EEG Electroencephalogram
EM Expectation maximization
ENSO El Niño–Southern Oscillation
EOF Empirical orthogonal functions
EP Expectation propagation
FA Factor analysis
ICA Independent component analysis
IDSA Independent dynamics subspace analysis
IFA Independent factor analysis
ISA Independent subspace analysis
i.i.d. Independently and identically distributed
KL Kullback–Leibler (divergence)
LVM Latent variable model
MAP Maximum a posteriori
MEG Magnetoencephalogram
MLP Multilayer perceptron (network)
MoG Mixture of Gaussians
NCEP National Centers for Environmental Prediction
NCAR National Center for Atmospheric Research
NDFA Nonlinear dynamic factor analysis
NFA Nonlinear factor analysis
NIFA Nonlinear independent factor analysis
NH Northern Hemisphere
NSSM Nonlinear state-space model
PCA Principal component analysis
pdf Probability density function
PNL Post-nonlinear
PNFA Post-nonlinear factor analysis
RBF Radial basis function (network)
SSM State-space model
TJ Taleb and Jutten’s (algorithm)
VB Variational Bayesian

vii



Mathematical notation

lower- or upper-case letter scalar, constant or scalar function
bold-face lower-case letter column vector, vector-valued function
bold-face upper-case letter matrix

〈·〉 Expectation over the aproximating distribution q

θ Mean parameter of the approximating posterior distribution
q(θ)

θ̃ Variance parameter of the approximating posterior distribu-
tion q(θ)

A Mixing matrix in linear mixtures, N ×M
a, aj Mixing vector, N × 1
aij Mixing coefficient of the j-th source in the i-th observation
B Matrix of autoregressive dynamics, M ×M
C Sample covariance matrix, N ×N
Cf Sample covariance of filtered data, N ×N
C Cost function
C(t) The value of the variational Bayesian cost function calculated

after obtaining data x(1), . . . ,x(t)
D(q||p) The Kullback–Leibler divergence between the two distribu-

tions q and p
f Nonlinear generative mapping
fi Post-nonlinear distortions in post-nonlinear mixing model
F Maximized objective function
F, Fj Filtering matrix
g, gj Nonlinear mapping of autoregressive dynamics
H(x) Differential entropy of a continuous random variable x
h(s) The differential entropy rate of a stochastic process {st}
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Chapter 1

Introduction

1.1 Motivation and overview

Collecting data in various types of experiments is a common way of gathering
information and accumulating knowledge. A great amount of data appear in
all fields of human activity; examples include weather measurements, biomedical
signals, economical data, and many others. Analyzing the data can help in many
respects to improve the knowledge about observed natural or artificial systems.

The process of acquiring knowledge is called learning and this term is widely
used in the data analysis literature. A classical learning problem is to estimate
dependencies (mapping) between a system’s inputs and outputs using some ex-
amples of the correct output responses to the given inputs provided by a teacher.
Later on, the estimated mapping can be used to produce proper outputs for
new input values. This concept is called supervised learning (Haykin, 1999;
Cherkassky and Mulier, 1998) and practical examples include hand-written char-
acter recognition, speech recognition and fault diagnosis for industrial processes.

The present thesis mostly considers learning problems which fall into another
domain called unsupervised learning (Hinton and Sejnowski, 1999; Oja, 2002).
The purpose of unsupervised methods is to analyze available data in order to
find some interesting phenomena, regularities or patterns that could be useful for
understanding the processes reflected in the data. The knowledge obtained in an
unsupervised manner can also be useful for making predictions of the future or
making decisions for the purpose of controlling the processes, that is for solving
supervised learning tasks.

The learning algorithms considered in this thesis are always based on a model
which incorporates our prior knowledge and assumptions about the processes
underlying the data. This model may sometimes be constrained by some of

1



2 1. Introduction

the first principles (e.g., linear models in some applications are motivated by
the law of superposition of electromagnetic fields) but more often it is a general
mathematical model capable to capture dependencies between different variables.

The methods considered in this thesis are derived using the statistical frame-
work. Classical statistical modeling usually implies using a model of a specific
mathematical form and a number of unknown parameters to be estimated. The
goal of learning is to infer the values of the unknown parameters based on the
observed data. This can be a difficult problem especially for complex models with
a great number of parameters, noisy measurements or limited amount of data.

Latent variable models (LVMs) can be useful for capturing important data
regularities using a smaller number of parameters. They can also provide a mean-
ingful data representation which may give an insight on the processes reflected in
the data. The latter task is solved by so-called source separation methods which
are the main focus of this thesis. The basic modeling assumption made by the
source separation methods is that the observed measurements are combinations
of some hidden signals and the goal of the analysis is to estimate these unknown
signals from the data. This task cannot be solved without additional assumptions
or prior knowledge. A typical assumption used in this problem is independence
of the processes represented by the hidden signals.

This thesis considers different types of LVMs and different approaches to
their estimation. The first half of the work considers so-called Bayesian estima-
tion methods which describe unknown parameters using probability distributions.
The advantages of the Bayesian theory include its universality for expressing
modeling assumptions, its natural treatment of noise and elegant model selec-
tion. The research results reported in this part include a study of the properties
of variational Bayesian methods and a novel approach designed for a specific type
of source separation problems.

The second half of this thesis considers methods which compute point esti-
mates for the unknown quantities. The main advantages of such methods are that
they are fast and suit well for large-scale problems. Several new algorithms pre-
sented in this part of the work solve the source separation problem by analyzing
spectral, dynamic or variance characteristics of the hidden signals.

The methods considered in this thesis can be used in many fields such as
biomedical signal processing, speech signal processing or telecommunications.
This thesis contains some examples of using the proposed methods in real-world
problems. One of the presented applications is the process monitoring task when
the model estimated from training data is used for detecting changes in a com-
plex dynamic process. Another interesting application is exploratory analysis of
climate data which aims to find interesting phenomena in the climate system
using a vast collection of global weather measurements.
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1.2 Contributions of the thesis

The most important scientific contributions of this thesis are summarized in the
following:

• The properties of variational Bayesian methods are investigated both the-
oretically and experimentally using linear source separation models.

• A new nonlinear factor analysis model which restricts the generative map-
ping to the practically important case of post-nonlinear mixtures is pre-
sented.

• The variational Bayesian method for learning nonlinear state-space models
is applied to the practical problem of change detection in complex dynamic
processes.

• Two approaches for source separation based on the frequency contents are
presented.

• A computationally efficient algorithm which separates groups of sources by
decoupling their dynamic models is proposed.

• An algorithm which extracts components with the most prominent variance
structures in the timescale of interest is introduced.

• Several proposed algorithms are applied to spatio-temporal datasets con-
taining global climate measurements from a long period of time.

1.3 Contents of the publications and contribu-

tions of the author

This thesis consists of nine publications and an introductory part. The present
introductory part aims to provide a general description of the research goals,
to give an overview of existing works and to link together different publications
of this thesis. The introduction can be read as a separate article but it avoids
thorough derivations, for which the reader is addressed to the publications. In
any case, the publications should be considered in order to get the full view of
the thesis contributions.

The presented work was done in the Laboratory of Computer and Information
Science, Helsinki University of Technology. Most of the publications are joint
work or done in collaboration with Dr. Harri Valpola, who was the instructor
of this thesis. A large portion of the publications is joint work with Prof. Erkki
Oja, who was supervising all the work throughout my doctoral studies. In many
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cases, the work was done in collaboration or discussed with the members of the
research group Bayesian Algorithms for Latent Variable Models led by Prof. Juha
Karhunen. Part of the work was done during the author’s visit to the Laboratory
of Images and Signals (LIS), Institut National Polytechnique de Grenoble, led by
Prof. Christian Jutten.

The publications of this thesis can be divided into two parts. The first part
(Publications 1–4) deals with variational Bayesian methods applied to differ-
ent latent variable models. These publications are joint work with Dr. Valpola,
Prof. Oja, Dr. Honkela, Dr. Achard and Prof. Jutten, depending on the publica-
tions. The second part (Publications 5–9) presents research results on applying
source separation methods to exploratory analysis of large-scale climate datasets.
This is joint work with Dr. Valpola and Prof. Oja.

The content of the publications and the contributions of the present author
are listed in the following. Note that in all cases, writing was a joint effort of the
co-authors of the publications.

In Publication 1, the properties of the methods based on variational Bayesian
learning are studied both theoretically and experimentally. It is shown how the
form of the posterior approximation affects the solution found in linear source
separation models. In particular, assuming the sources to be independent a poste-
riori introduces a bias in favor of a solution which has orthogonal mixing vectors.
The author ran the experiments in which the effect was detected, derived parts of
the considered algorithms and implemented the models with improved posterior
approximations.

Publication 2 presents how the variational Bayesian method for nonlinear
dynamic factor analysis (NDFA) can be used for detecting abrupt changes in the
process dynamics. The changes are detected by monitoring the process entropy
rate whose reference value is estimated from training data. It is also possible to
analyze the cause of the change by tracking the state of the observed system.
The author proposed to use the NDFA algorithm in the change detection prob-
lem, participated in the derivations of the test statistic, implemented the change
detection algorithm and performed the experiments.

In Publication 3, the performance of the variational Bayesian approach
to nonlinear independent component analysis (ICA) problem is studied on post-
nonlinear test problems. The algorithm is experimentally compared with another
popular method of post-nonlinear ICA developed by Taleb and Jutten (1999b).
The comparison shows which method is preferred in particular types of problems.
This work was done in the LIS laboratory within the framework of the European
joint project BLISS on blind source separation and its applications. The author
participated in the discussion of the goals of the experimental study and ran the
experiments.

Publication 4 presents a new approach for solving the post-nonlinear ICA
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problem. It is based on variational Bayesian learning and overcomes some of the
limitations of the alternative methods. The author participated in deriving the
model, implemented the model and performed the experiments.

In Publication 5, it is shown that the well-known El Niño–Southern Os-
cillation (ENSO) phenomenon can be captured by semiblind source separation
methods tuned to extract components exhibiting prominent variability in the in-
terannual time scale. Other interesting components like a component resembling
differential ENSO are extracted as well. The author preprocessed the climate
dataset, implemented the algorithm and performed the experiments. The origi-
nal idea of the methodology for exploratory analysis of climate data was due to
Dr. Valpola.

Publication 6 proposes a method for rotating components based on their
frequency contents. The experimental part shows that the proposed algorithm
can give a meaningful representation of slow climate variability as a combination
of trends, interannual quasi-periodical signals, the annual cycle and components
slowly changing the seasonal variations. The idea and the algorithm were devel-
oped together by the authors. The present author implemented the algorithm
and performed the experiments.

Publication 7 presents different examples of exploratory analysis of climate
data using methods developed in the framework of denoising source separation.
The article combines the ideas and results reported in Publication 5 and Publi-
cation 6. The additional experiments included in this article were performed by
the present author.

Publication 8 presents a method which identifies the independent subspace
analysis model by decoupling the dynamics of different subspaces. The method
can be used to extract groups of dynamically coupled components which have
the most predictable time course.

Publication 9 proposes an algorithm which seeks components whose vari-
ances exhibit prominent slow behavior with specific temporal structure. The
algorithm is applied to the global surface temperature measurements and several
fast changing components whose variances have prominent annual and decadal
structures are extracted. The idea and the algorithm were developed together by
the authors. The present author implemented the algorithm and performed the
experiments.



Chapter 2

Introduction to latent

variable models

2.1 Basic latent variable models

The structure of measurement data typically depends on the specific problem
domain in which the information is gathered. In some applications, different
parts of the data can have certain relations, for example, raw sensor data in
image processing applications can be accompanied by object representations with
certain properties and relations to each other. This thesis, however, considers
only flat representations in which data are collected in the form of multivariate
measurement vectors x(t). Each element xi(t) of the vector x(t) represents one
measurement of the variable xi and t is the sampling index (e.g., the time instance
of the measurement). Such datasets may include various types of time series, for
example, sensor data registering video or audio information, weather conditions,
electrical activity etc.

The present thesis mostly considers spatio-temporal datasets in which ele-
ments of x correspond to sensors measuring continuous-valued variables in dif-
ferent spatial locations and the index t runs over all time instances in which the
measurements are taken. The full set of measurements is often denoted using
a matrix X in which the rows and columns correspond to different sensors and
time instances respectively:

X =
[
x(1), . . . ,x(t), . . . ,x(T )

]
. (2.1)

An illustration of such a dataset is presented in Fig. 2.1. Only the deviations of
the observed variables from their mean values are usually interesting and there-
fore a usual preprocessing step is centering observations x(t). It can be done

6
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time

Figure 2.1: An illustration of a spatio-temporal dataset containing global weather
measurements. The dots correspond to a 5◦×5◦ grid (spatial locations) in which
the measurements are taken. The measurements made at the same time t all over
the globe are collected in one vector x(t).

by subtracting the estimated mean from each row of the data matrix X. The
observations are assumed to be centered everywhere throughout this thesis.

The measured data can be analyzed in many different ways depending on the
goals of research. One typical task is to estimate a probabilistic model which
covers the regularities in the data, among which the simplest problem is to esti-
mate the probability distribution of the data. The estimated probabilistic model
can be used, for example, to make predictions of the future, to detect changes in
the process behavior or simply to visualize the data.

The dimensionality of the data matrix X can be very high in many applica-
tions such as exploratory analysis of climate data, image processing and others.
However, the processes underlying the data often have limited complexity (Hinton
and Sejnowski, 1999; Oja, 2002) and can be described by another set of variables
which may have a smaller dimensionality or a simpler (or more interpretable)
structure. This is the main modeling assumption used in so-called latent variable
models (LVMs).

The general property of LVMs is supplementing the set of observed variables
with additional latent (hidden) variables (see, e.g., Bishop, 1999a). The relation
between the two sets is generally expressed as

x(t) = f(s(t),θf ) + n(t) , (2.2)

where x(t) are the observed (measured) variables, s(t) are the latent variables,
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f is a nonlinear mapping parameterized with vector θf and n(t) is a noise term.
Different names can be used for the latent variables s(t) depending on the type
of a model; typical terms are factors, components, sources or states. The general
nonlinear model in Eq. (2.2) can be very difficult to estimate and therefore linear
LVMs have gained popularity:

x(t) = As(t) + n(t) . (2.3)

The matrix A is usually called a loading matrix or a mixing matrix depending
on the context.

The models in Eqs. (2.2)–(2.3) are called generative models as they explain
the way the data are “generated” from the underlying processes. In unsupervised
learning, the parameters of the models such as the hidden variables s(t), param-
eters θf , A of the generative mappings or parameters of the noise distributions
are not known and have to be estimated from the observations x(t).

The remaining sections of this chapter briefly review some of the basic latent
variable models and give short descriptions of popular methods for their esti-
mation. We start with some classical tools for dimensionality reduction or data
visualization, in which the models in Eqs. (2.2)–(2.3) are sometimes assumed only
implicitly. Then, several popular probabilistic models are presented. The charac-
teristic of these techniques is describing the hidden sources s(t) using probability
distributions. Finally, models with a meaningful interpretation of the latent vari-
ables are discussed. Interpretable solutions are generally found by taking into
account some prior information about the hidden signals.

2.1.1 Dimensionality reduction tools

Principal component analysis

Principal component analysis (PCA) is a standard technique for feature extrac-
tion, dimensionality reduction or data compression (Diamantaras and Kung,
1996; Oja, 1983). PCA implicitly assumes the linear model in Eq. (2.3) where
the dimensionality of the source vector s is smaller than the dimensionality of the
observation vector x. The goal of PCA is to find variables s such that they would
capture most of the data variations and would have less redundancy caused by
correlations between variables in x.

The most common derivation of PCA is to maximize the variance of the
projected data. The sources are estimated from data using an orthogonal matrix
W:

s(t) = Wx(t) , (2.4)

and the j-th row of W, denoted here by wT
j , is found by maximizing the variance

of the j-th source sj = wT
j x with the constraint that it is orthogonal to the
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previously found vectors w1, . . . , wj−1. Thus, the maximized criterion is

Fpca =
1

T

T∑

t=1

s2j (t) =
1

T

T∑

t=1

(
wT

j x(t)
)2

= wT
j Cwj (2.5)

with C the sample covariance matrix:

C =
1

T
XXT . (2.6)

It follows from the basic linear algebra (see, e.g., Diamantaras and Kung, 1996;
Oja, 1983) that the rows of W are given by the dominant eigenvectors of the
matrix C. It can be shown (see, e.g., Diamantaras and Kung, 1996; Hyvärinen
et al., 2001) that the principal components are uncorrelated (i.e. their covariance
matrix is diagonal) and that the PCA projection minimizes the squared error of
the linear reconstruction of x(t) from the latent variables s(t).

Nonlinear methods

In case the dimensionality of s is smaller than the dimensionality of x, the geomet-
rical interpretation of Eq. (2.2) is that data are constrained to a low-dimensional
manifold defined by the function f(s,θf ). This is illustrated in Fig. 2.2. The
latent variables s(t) are then the data coordinates on the manifold. The assump-
tion made by linear methods like PCA is that data lie on a hyperplane. In many
cases, however, the structure of the data cloud is more complex and linear meth-
ods cannot find its proper representation. With nonlinear models, curved data
manifolds, such as the one shown in Fig. 2.2, can be learned and therefore the
data variations can be captured by a smaller number of hidden variables. Thus,
nonlinear LVMs can be practical tools for dimensionality reduction or feature
extraction, and they can efficiently be used in the problems of data visualization,
classification or regression.

However, nonlinear models are much more flexible and finding a good non-
linear representation is generally a difficult problem. When flexible models are
learned, a serious problem is overfitting when complex models fit perfectly the
training data but do not generalize for new data (see, e.g., Bishop, 1995). Prac-
tical obstacles for the learning process include multiple local minima and high
computational complexity.

Many nonlinear methods for dimensionality reduction find s(t) so as to pre-
serve the structure of the data when projecting it to the manifold. This is practi-
cally implemented by preserving some measure of similarity between data points
where typical measures are distance, ordering of the distance, geodesic distance,
distance on a graph and others. There is a large number of methods developed
in this framework (see, e.g., Lee, 2003; Tipping, 1996; Mardia et al., 1979). The
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Figure 2.2: Data lying on a two-dimensional manifold embedded in the three-
dimensional space.

method called multidimensional scaling (MDS) is the classical technique among
such methods (Torgerson, 1952). Other techniques include, for example, Sam-
mon mapping (Sammon, 1969), Isomap (Tenenbaum et al., 2000) or local linear
embedding (Roweis and Saul, 2000).

Kernel PCA (Schölkopf et al., 1998) is a method closely connected to MDS
(Williams, 1995). The idea of Kernel PCA is to transform the data to a higher-
dimension space using an implicitly chosen nonlinear mapping. The sources are
then estimated as principal components in the new space. An implicit choice of
a suitable transformation makes it possible to do the calculations using a kernel
matrix whose dimensionality is restricted to the number of data samples. The
method can be used as a feature extraction tool but it is not specifically designed
for estimation of nonlinear data manifolds.

Some tools for multivariate data analysis have been implemented in neural
network architectures. For example, nonlinear autoassociators (Kramer, 1991;
Oja, 1991) use a feedforward neural network with an internal “bottleneck” layer
which forces the network to develop a compact representation of the data. A
popular data visualization tool is the self-organizing map (Kohonen, 1995) in
which the sources are placed on a regular grid and the compact representation is
learned by competitive learning. The generative topographic mapping (Bishop
et al., 1998) is a probabilistic version of the self-organizing map. A neural network
approach for nonlinear data representation and topographic mapping was also
developed by Ghahramani and Hinton (1998).

2.1.2 Probabilistic models for dimensionality reduction

There are several probabilistic models which can be used for finding a lower-
dimensional representation of data. The simplest ones are based on the linear
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generative model in Eq. (2.3) with the Gaussian assumption for the latent vari-
ables s. This approach was used, for example, by Tipping and Bishop (1999)
in a technique called probabilistic PCA and by Roweis (1998) in a similar model
called sensible PCA. This type of models can be used for the problem of den-
sity estimation as it usually requires less parameters than modeling the data x(t)
with the Gaussian distribution. The number of parameters in these models grows
linearly with the dimension of x, and yet the model can capture the dominant
correlations (Bishop, 1999a; Roweis and Ghahramani, 1999).

Nonlinear probabilistic extensions of PCA assume the general generative model
in Eq. (2.2). MacKay (1995a) introduced a probabilistic model called density net-
works in which he showed how to train a multi-layer perceptron (MLP) network
without knowing its inputs. Though the assumed model is rather general and
resembles Eq. (2.2), the emphasis in the experiments was on predicting binary
observations. The proposed training method is based on approximate Bayesian
inference and the required integrals are approximated using sampling methods.

A similar approach was used by Bishop et al. (1995) who focused on continuous
data and proposed to use radial basis function (RBF) networks for modeling f in
order to reduce the computational complexity of the method. Later, this method
evolved into the generative topographic mapping. A good description of the MLP
and RBF networks used in the mentioned models can be found, for instance, in
the books by Haykin (1999) and by Bishop (1995).

A probabilistic model considered by Valpola and Honkela (Lappalainen and
Honkela, 2000; Honkela and Valpola, 2005) is a nonlinear extension of the factor
analysis model (see Section 2.2.1). The authors present a nonlinear factor anal-
ysis (NFA) model in which the mapping f is modeled by an MLP network, the
latent variables s are assumed uncorrelated and they are described by Gaussian
probability distributions. The inference of the unknown parameters is done by
variational Bayesian learning.

Recently, Lawrence (2005) has introduced a Gaussian process LVM in which
the mapping f is modeled by a Gaussian process (see, e.g., MacKay, 2003). The
covariance of the Gaussian process is parameterized with the unknown source
values. The sources are described by Gaussian distributions and their values are
found as maximum a posteriori (MAP) estimates. This model can be seen as a
nonlinear extension of probabilistic PCA.

Publication 4 of this thesis presents a model which is close to NFA and which
can be used for learning data manifolds of a specific type. The presented model is
called post-nonlinear factor analysis (PNFA) and it can be seen as the special case
of NFA when the general mapping f is restricted to the practically important case
of post-nonlinear mixing structures. The hidden variables are also described by
Gaussian distributions and the model is learned using the variational Bayesian
principles. The PNFA model is useful for a certain type of source separation
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problems and it can overcome some of the limitations of the alternative methods,
as explained later in Section 3.3.

2.1.3 Dynamic models

In many situations, the elements xi(t) of the observed data x(t) are time series
which have a certain temporal structure. For example, successive observations in
weather measurements or EEG recordings at a given sensor are correlated. Such
correlations can be captured by dynamic models.

Autoregressive processes are classical tools to model temporally structured
signals. The basic modeling assumption is that the current observation vector can
be roughly estimated from past observations using a linear or nonlinear mapping
g:

x(t) = g(x(t− 1), . . . ,x(t−D)) + m(t) , (2.7)

where the term m(t) accounts for prediction errors and noise.
Linear autoregressive processes have been studied extensively (see, e.g., Lütke-

pohl, 1993). The nonlinear autoregressive model is, however, a much more pow-
erful tool. Taken’s delay-embedding theorem (Takens, 1981) says that under
suitable conditions, the model in Eq. (2.7) can reconstruct the dynamics of a
complex nonlinear process provided that the number of delays D is large enough
(Haykin and Principe, 1998). In practice, however, the required number of time
delays may be too large, which would lead to a great number of parameters in
the model and consequently such problems as overfitting.

Latent variable models for dynamical systems are traditionally called state-
space models and the hidden variables are termed states. Dynamic LVMs may
decrease the number of parameters required to capture process dynamics (Roweis
and Ghahramani, 2001). Another important advantage of these models is the
possibility to design an appropriate model from the first principles.

Linear state-space models

Linear state-space models are described by the following equations:

x(t) = As(t) + n(t) (2.8)

s(t) = Bs(t− 1) + m(t) . (2.9)

The states s(t) are usually assumed Gaussian and they follow a first-order au-
toregressive model. Using only one time delay in Eq. (2.9) does not restrict
the generality of the model as any dynamic model with more time delays can be
transformed to the model in Eqs. (2.8)–(2.9) by, for example, using an augmented
state vector. The observation vectors x(t) are connected to the states through
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a linear mapping A similarly to Eq. (2.3). The state noise m(t) and observa-
tion noise n(t) are also assumed Gaussian. Note that many central unsupervised
learning techniques can be unified as variations of the basic generative model in
Eqs. (2.8)–(2.9) (Roweis and Ghahramani, 1999).

Linear state-space models have been extensively studied in control theory.
There, the model usually contains external inputs which affect the observation
generation process in Eq. (2.8) and the state evolution in Eq. (2.9). The case
of external inputs is not considered in the models presented in this thesis but it
is important in many real process monitoring applications. A classical task for
state-space models with known parameters is estimation of the hidden states s(t)
corresponding to observed vectors x(t). The standard techniques for solving this
problem are Kalman filtering and smoothing (see, e.g., Grewal and Andrews,
1993). Learning a model with unknown parameters is termed system identifi-
cation and several approaches exist for the identification of linear state-space
models (see, e.g., Ljung, 1987).

In the machine learning community, learning the parameters of linear Gaus-
sian dynamical systems is traditionally done by the expectation-maximization
(EM) algorithm (see Section 3.2.2). It was originally derived for linear state-space
models with a known matrix A by Shumway and Stoffer (1982) and reintroduced
later for a more general case by Ghahramani and Hinton (1996). The focus of
these algorithms is on finding the most likely values for matrices A, B and the
noise covariance matrices.

Nonlinear state-space models

The nonlinear state-space model (NSSM) is a much more flexible tool for modeling
multivariate time series data. The observation vectors x(t) are assumed to be
generated from the hidden states of a dynamical system through a nonlinear
mapping f , and the states follow nonlinear dynamics g:

x(t) = f(s(t)) + n(t) (2.10)

s(t) = g(s(t− 1)) + m(t) . (2.11)

The terms n(t) and m(t) account for modeling errors and noise. The Gaussian
distribution is often used to model the states s(t) and the noise terms.

The geometrical intuition for NSSM is that the dynamic process (flow) de-
scribed by s(t) has been either projected or embedded into a manifold using the
function f (Roweis and Ghahramani, 2001). If the dimensionality of x is larger
than the dimensionality of s, the observed sequence forms a flow inside an em-
bedded manifold. Otherwise, some projection of the hidden flow is observed, as
shown in Fig. 2.3.
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Figure 2.3: An illustration of the nonlinear state-space model assumptions. Left:
The observation sequence forms a flow inside an embedded nonlinear manifold.
Right: The hidden states describe a three-dimensional dynamic process (dotted
line) but the observed flow (solid line) is a two-dimensional projection of the
hidden process.

Although nonlinear state-space models are often able to capture the essential
properties of a complex dynamical system, they are not in extensive use as it is
usually difficult to find a sufficiently accurate model. Even using a NSSM with
known nonlinearities is not trivial. For example, estimation of the hidden states
for a known NSSM is difficult as the nonlinear transformations f and g break
down the Gaussianity of the state posterior distributions. Several techniques
such as the extended Kalman filtering (Grewal and Andrews, 1993), particle
filters (Doucet et al., 2001) or unscented transform (Julier and Uhlmann, 1996;
Wan and van der Merwe, 2001) have been proposed to do approximate inference.

Estimating an NSSM with unknown nonlinearities f ,g from the observations
is much more difficult than learning a linear state-space model. First, the model
is very flexible and it contains many unknown parameters including the hidden
states. Thus, the main obstacle is overfitting, and some regularization is nec-
essary. Second, there are infinitely many solutions. Any invertible nonlinear
transformation of the state-space can be compensated by a suitable transforma-
tion of the dynamics and the observation mapping.

Recently, Bayesian techniques have been introduced for identification of non-
linear state-space models. Roweis and Ghahramani (2001) estimate the nonlin-
earities using RBF networks whose parameters are learned by the EM algorithm.
Briegel and Tresp (1999) model the nonlinearities using MLP networks with sam-
pling. Valpola and Karhunen (2002) also used MLP networks for approximating
the nonlinear mappings in the model called nonlinear dynamic factor analysis
(NDFA). All the unknown quantities including the hidden states and the pa-
rameters of the MLPs are described by probability distributions inferred with
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variational Bayesian learning.

Nonlinear state-space models learned by the NDFA approach are considered
in Publication 2 of this thesis. In particular, it is shown how the model learned
with the NDFA algorithm can be used in the problem of detecting changes in
process dynamics. The proposed approach to change detection makes use of the
cost function provided by the NDFA algorithm in order to monitor the differential
entropy rate of the observed process. This quantity is taken as the indicator
of change. It is also shown how analyzing the structure of the cost function
helps localize a possible reason of change. The important results reported in
Publication 2 are outlined in Section 3.5.2.

2.2 Blind source separation

The basic LVMs considered in the previous section are powerful tools for data
compression, data visualization or feature extraction. They are able to provide
components which capture most of the data variablity and explain correlations
present in the data. However, they often provide components of a very limited
interpretation, as they are based on very vague prior assumptions. An indicator of
this fact is the existence of multiple solutions which satisfy the estimation criteria.
For example, a PCA solution derived from probabilistic principles is given by any
orthogonal rotation of the leading eigenvectors of the sample covariance. This
rotation degeneracy is usually fixed by the maximum variance criterion which
does not guarantee the interpretability of the results. In nonlinear methods,
there is even more ambiguity about the solution as the components are often
estimated only up to a nonlinear transformation.

In many applications, the goal is to find components that would have a mean-
ingful interpretation. For example, one of the goals of statistical climate data
analysis is to find components which would correspond to physically meaningful
modes of the weather conditions. Meaningful data representations are typically
obtained when some prior knowledge or assumptions (e.g., about the data gen-
eration process or the signals underlying the data) are used in the estimation
procedure. In this case, the obtained solutions are likely to be explained by do-
main experts. However, using this type of prior information can be a very difficult
task as it requires formalization of the knowledge of the domain experts.

The methods considered in this section are meant for finding interpretable
solutions for LVMs. They typically use some prior assumptions that proved
plausible and useful in many applications. This may correspond to exploratory
data analysis when the goal is to find components with distinct and interesting
features (a relevant method is projection pursuit, see, e.g., Jones and Sibson,
1987). Another possible goal is to solve the source separation problem, that is to
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extract the signals that would reflect the sources actually generating the data.

2.2.1 Factor analysis

Factor analysis (FA) is a classical statistical tool which was originally used in
social sciences and psychology in order to find relevant and meaningful compo-
nents explaining variability of observed variables (see, e.g., Harman, 1960, for
introduction). In FA, the observed variables x are modeled as linear combina-
tions of some hidden factors s as in Eq. (2.3). The elements of the matrix A

are called factor loadings and n(t) is an additive term whose elements are called
specific factors. The factors are assumed to be mutually uncorrelated Gaussian
variables with unit variances. The observation noise n is assumed Gaussian with
a diagonal covariance matrix Σn.

The unknown parameters of the model including the loading matrix A and
the noise covariance Σn should be estimated from the data. There is no closed-
form analytic solution for them. Moreover, the FA solution is not unique without
some additional constraints. In order to obtain interpretable results, several FA
techniques search for such A that would have only a small number of high loadings
and low loadings otherwise. This is implemented in iterative procedures called
Varimax, Quartimax or Oblimin rotations (Harman, 1960). Similar approaches
have been used in climatology to rotate principal components using general ideas
of simple structures in order to obtain components localized either in space or in
time (see, e.g., Richman, 1986).

2.2.2 Linear source separation problem

The basic modeling assumption of linear source separation methods is very simi-
lar to the one of FA. There are some hidden component signals or time series sj(t),
often called sources, which are linearly mixed into the multivariate measurements
xi(t):

xi(t) =

M∑

j=1

aijsj(t) + ni(t), i = 1, ..., N , (2.12)

where the observation noise term ni(t) is typically omitted. The index i runs over
the measurement sensors (typically spatial locations), and discretized time t runs
over the observation period t = 1, ..., T . Often, it is assumed that the number N
of the observed signals is equal to the number M of the hidden sources.

In the matrix notation, Eq. (2.12) is equivalent to the linear LVM in Eq. (2.3).
It is convenient to rewrite this model as

x(t) = As(t) + n(t) =

M∑

j=1

ajsj(t) + n(t) . (2.13)
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Figure 2.4: Left: Two independent components with non-Gaussian distributions.
Right: The joint distribution of two mixtures of these components. The mixing
directions are shown with the dashed lines.

The mapping A is called a mixing matrix and it is made up from the coefficients
aij in Eq. (2.12). The columns of matrix A are denoted here by aj and they are
called mixing vectors.

The goal of the analysis is to estimate the unknown components sj(t) and the
corresponding loading vectors aj from the observed data x(t). With minimum a
priori assumptions about the sources, the problem is called blind source separation
(BSS). A classical example of the source separation problem is the cocktail party
problem where several microphones pick up speeches of several people speaking
simultaneously and the goal is to separate individual voices from the microphone
recordings.

The BSS problem is typically solved by assuming independence of the mixed
signals sj . Methods that achieve source separation using some prior information
about the unknown parameters are often called semiblind. Several existing source
separation approaches (see, e.g., Hyvärinen et al., 2001; Cichocki and Amari,
2002, for introduction) are overviewed in the next sections.

2.2.3 Independent component analysis

Independent component analysis (ICA) is a popular method for solving the BSS
problem. ICA algorithms identify the model in Eq. (2.13) using only the as-
sumption that the sources are statistically independent. Each sj(t) is regarded
as a sample from a random variable sj and these variables are assumed mutually
independent. Statistical independence will be defined more rigorously in Sec-
tion 3.1.1. In simple terms, two variables are independent if knowing the value
of one variable does not give any information about the value of the other. The
statistical independence of the sources implies that these signals are produced by
physically independent processes and the goal of the analysis is to separate such
processes.
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ICA is based on the fundamental result about the separability of linear mix-
tures (see, e.g., Comon, 1994), which says that using the independence criterion it
is possible to estimate sources among which there is at most one Gaussian source.
Fig. 2.4 illustrates that linear mixtures of non-Gaussian sources are structured,
and therefore the reconstruction of the original sources can be achieved. How-
ever, there are well-known ambiguities about the ICA solution. First, the scale (or
variance) of the components cannot be determined and therefore the variances of
the sources are usually normalized to unity. This still leaves the ambiguity of the
sign. Second, the order of the independent components cannot be determined.
These ambiguities are known as the scaling and permutation indeterminacies of
ICA. They can be solved only with some additional information.

There exist several approaches to solve the ICA problem. Many classical
methods consider the noiseless case in which the noise term is omitted from
Eqs. (2.12)–(2.13). They typically estimate the sources using a demixing matrix
W:

s(t) = Wx(t) . (2.14)

Perhaps the most rigorously justified approach to ICA is minimizing the mu-
tual information (see, e.g., Cover and Thomas, 1991, for definition) as a measure
of dependence between the sources. There are several algorithms based on dif-
ferent approximations of the mutual information, for example, using cumulants
(Comon, 1994) or order statistics (Pham, 2000).

It can be shown, however, that the minimization of mutual information is
essentially equivalent to maximizing non-Gaussianity of the estimated sources
(Hyvärinen et al., 2001). This is a natural result which can be understood from
the central limit theorem saying that under certain conditions a linear combi-
nation of independent random variables tends toward a Gaussian distribution.
Thus, the distributions of the observations xi should be closer to Gaussian com-
pared to the original sources sj and the goal of ICA is intuitively to find maximally
non-Gaussian components.

FastICA (Hyvärinen and Oja, 1997; Hyvärinen, 1999a) is a popular algorithm
based on optimizing different measures of non-Gaussianity. Kurtosis (or the
fourth-order cumulant) is perhaps the simplest statistical quantity that can be
used for indicating non-Gaussianity. It is defined as

kurt(s) = E{s4} − 3(E{s2})2 . (2.15)

where E denotes expectation. The kurtosis is zero for a Gaussian s and is non-zero
for many other distributions. However, kurtosis is very sensitive to outliers and
therefore other measures are often used. Efficient algorithms can be derived by
optimizing some approximations of the quantity called negentropy. It is rigorously
defined as

J(s) = H(sgauss)−H(s) , (2.16)
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where H denotes the differential entropy of s (Cover and Thomas, 1991) and
sgauss is a Gaussian random variable with the same variance as s. The Gaussian
variable sgauss has the maximum entropy among all random variables with the
same variance and therefore negentropy is always nonnegative and attains zero if
and only if s has a Gaussian distribution. Estimating negentropy is very difficult
and it is usually approximated using higher-order moments or some appropriately
chosen functions (Hyvärinen et al., 2001).

Another popular approach is the maximum likelihood estimation of the demix-
ing matrix W in Eq. (2.14). In case the dimensionality N of x equals the dimen-
sionality M of s, the corresponding log-likelihood (see, e.g., Pham et al., 1992) is
given by

L =
T∑

t=1

N∑

j=1

log pj(w
T
j x(t)) + T log |detW| , (2.17)

where T is the number of samples, wT
j denotes the j-th row of matrix W and

the functions pj are the probability density functions of the sources sj . The
density functions pj are not known and have to be estimated somehow. It can be
shown (see, e.g., Cardoso, 1997) that the maximum likelihood approach is closely
related to the Infomax algorithm derived by Bell and Sejnowski (1995) from the
principle of maximizing the output entropy of a neural network. In practice,
the maximization of the likelihood is considerably simplified using the concept of
natural gradient, as introduced by Amari et al. (1996).

Another way to achieve independence is based on the theorem saying that
two random variables s1 and s2 are independent if and only if any of their func-
tions f(s1) and g(s2) are uncorrelated (see, e.g., Feller, 1968). Thus, ICA can
be performed by nonlinear decorrelation, that is by decorrelating some nonlinear
transformations of the sources. This approach includes the early algorithm devel-
oped by Jutten and Herault (1991), the Cichocki-Unbehauen algorithm (Cichocki
and Unbehauen, 1996) and the EASI algorithm by Cardoso and Laheld (1996).
The estimating function approach (Amari and Cardoso, 1997) gives a disciplined
basis for this. A related approach is Kernel ICA introduced by Bach and Jordan
(2002).

Note that independence of random variables is a stronger assumption than un-
correlatedness as it implies uncorrelatedness of any nonlinear transformations of
variables. Independence is equivalent to uncorrelatedness only for Gaussian vari-
ables, but since there are always infinitely many linear transformations providing
uncorrelated sources, ICA is not possible for Gaussian variables. In practice, the
preprocessing step called whitening is used in many ICA algorithms in order to
remove second-order correlations, and after that, higher-order statistics are con-
sidered. However, a problem with higher-order statistics is that their estimates
are very sensitive to outliers, which may cause overfitting (Hyvärinen et al., 1999).
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Among other ICA approaches, one should mention tensorial methods such
as the algorithms called FOBI and JADE (Cardoso, 1989, 1999), methods based
on minimizing the mean-square reconstruction error (Karhunen and Joutsensalo,
1994) and variational algorithms (Attias, 1999; Lappalainen, 1999; Miskin and
MacKay, 2001; Højen-Sørensen et al., 2002, see also references in Section 3.2.5).

Publication 1 of this thesis presents a theoretical and experimental study
of the properties of variational methods in their application to linear ICA mod-
els. Two ICA models with non-Gaussian source models are investigated. The
presented study shows how the form of the posterior approximation affects the
solution found by the variational methods in linear ICA models. In particular,
assuming the sources to be independent a posteriori introduces a bias in favor
of solutions which have orthogonal mixing vectors. This result suggests that for
sources with weak non-Gaussian structure, posterior correlations of the sources
should be taken into account in order to achieve good separation performance.
This is explained in more details in Section 3.4.

Independent subspace analysis

Multidimensional ICA or independent subspace analysis (ISA) is a natural exten-
sion of ICA. In this model, the source vector s in Eq. (2.13) is decomposed into
several groups (or linear subspaces):

s =
[
sT
1 . . . sT

k . . . sT
K

]T
. (2.18)

The sources within one group sk are generally assumed dependent while com-
ponents from different groups are mutually independent. Multidimensional ICA
has more ambiguity of the solution compared to classical ICA as the sources can
be estimated only up to a linear rotation within the subspaces. The problem
of estimating such a model was first addressed by Cardoso (1998) and later by
Hyvärinen and Hoyer (2000).

2.2.4 Separation using dynamic structure

The basic ICA model considered in the previous section assumes a mixture of
random variables, and their statistical independence is used as the only criterion
for source separation. No assumption is made there about the order of the data
samples x(t) and therefore the samples can be shuffled in any way without af-
fecting the separation results. In many applications, however, observed signals
are time series and their temporal structure can provide additional information
which can be used for source separation. An example of temporally structured
signals is presented in Fig. 2.5.
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Figure 2.5: Left: Two independent components with distinct temporal structures.
Right: The joint distribution of two mixtures of these components. The mixtures
are uncorrelated and have unit variances. The mixing directions are shown with
the dashed lines. The ellipsoid represents a symmetric lagged covariance matrix
1
2 (Cτ + CT

τ ) calculated for τ = 1.

One alternative way to solve the BSS problem is to exploit distinct dynamic
structures of the mixed signals. The independence assumption in this case implies
that the sources are produced by independent physical processes and a relevant
criterion for separation is that the sources should have as little dynamic couplings
as possible (cf. this physical independence with statistical independence criterion
in basic ICA). In practice, source separation can be performed by decoupling the
temporal correlations present in the sources or by explicitly modeling the source
dynamics using decoupled predictors. A related approach is based on separating
the frequency contents of the sources. The advantage of such methods is that they
are typically based on second-order statistics and they can separate sources with
Gaussian distributions provided that the sources have different time structures.

Using autocorrelation and frequency structures

The first approach is motivated by the fact that the independent components
should have zero cross-covariances calculated for different time lags τ :

E{sj(t)sl(t− τ)} = 0 , j 6= l . (2.19)

Therefore, BSS can be achieved by joint diagonalization of the covariance matrix
C and the estimate Cτ of the time-lagged covariance matrix E{x(t)x(t − τ)T}.
The example shown in Fig. 2.5 indicates that the mixing structure can be revealed
by analyzing the structure of a lagged covariance matrix. This idea was exploited
by several researchers (Tong et al., 1991; Molgedey and Schuster, 1994). Joint
diagonalization of several covariance matrices calculated for different time lags
usually improves the quality of separation. These principles are used in the
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algorithms called SOBI (Belouchrani et al., 1997), TDSEP (Ziehe and Müller,
1998) and in the algorithm proposed by Kawamoto et al. (1997).

Separation of sources can also be achieved by analyzing spectral structures of
signals. This is essentially equivalent to using cross-covariances but it is some-
times more natural to formulate the separation criterion in terms of frequencies
rather than time lags τ . Different spectral components of independent sources
can naturally be assumed uncorrelated and it is therefore possible to separate
the sources by joint diagonalization of the data covariance matrix C and the
covariance matrix of the filtered data xf (t):

Cf =
1

T

T∑

t=1

xf (t)xf (t)T . (2.20)

This approach was discussed, for example, by Cichocki and Amari (2002), and a
related BSS method was proposed by Stone (2001) where the slowest frequencies
are implicitly used for separation. The present approach requires the knowledge of
the frequency band in which the separation should be performed. Therefore, the
method can be regarded as semiblind. In some cases, the choice of the separation
frequency band is very natural and follows from the evident signal properties.

If there is no prior on the periodic structure of signals, frequency-based sepa-
ration can be performed in blinder settings. Gharieb and Cichocki (2003) propose
to diagonalize jointly several covariance matrices like in Eq. (2.20) calculated for
different frequency bands. This enables separation of signals with distinct spec-
tral contents. Cichocki and Belouchrani (2001) use a bank of adaptive band-pass
filters in order to separate sources with prominent dominant frequencies (see also
Cichocki and Amari, 2002; Cichocki et al., 2002).

Note that different separation approaches based on analyzing the dynamic
structures of the sources are connected. For example, choosing a proper time lag
τ for calculating Cτ is roughly equivalent to using a specific filter for producing a
covariance matrix in Eq. (2.20). Joint diagonalization can therefore include both
type of matrices (Gharieb and Cichocki, 2003). Therefore, the results produced
by different temporal methods can be quite similar in practice. Note also that the
temporal structure of the source signals can vary in time and this information can
be taken into account in order to achieve better separation quality. For example,
it is possible to use the non-stationarity of the spectral contents in order to
separate sources with the same overall frequency contents (see, e.g., Särelä and
Valpola, 2005).

Publication 5 of this thesis reports a practical application of the simple
semiblind approach based on the joint diagonalization of the data covariance
matrix C and the covariance matrix Cf of the filtered data defined in (2.20).
This frequency-based analysis is implemented following the algorithmic frame-
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work of denoising source separation (Särelä and Valpola, 2005) and it is used for
exploratory analysis of climate data. An interesting practical result of this anal-
ysis is the extraction of the well-known climate phenomenon El Niño–Southern
Oscillation as the component with the most prominent variability in the interan-
nual timescale. The practical details of the used algorithm is explained in more
details in Section 4.3.1 and the results for the climate data analysis are discussed
in Section 4.4.3.

Publication 6 of this thesis presents a more general (blinder) frequency-
based separation algorithm. Its aim is to separate the sources by making their
spectral contents as distinctive as possible. The algorithm is also implemented
in the algorithmic framework of denoising source separation and the separation
is achieved by using a competition mechanism between the power spectra of the
source estimates. This frequency-based approach is applied to exploratory anal-
ysis of global climate measurements and it provides a meaningful representation
of the slow climate variability as a combination of trends, interannual quasi-
periodical signals, the annual cycle and slowly changing seasonal variations. The
proposed algorithm is described in more details in Section 4.4.3 and the results
of the climate data application are discussed in Section 4.4.4.

Publication 7 presents a somewhat more detailed exposition of the frequency-
based separation approaches considered in this thesis with their application to
climate data analysis.

Separation by decoupling dynamic models

An alternative approach is to separate sources by using explicit dynamic models
for the sources. The dynamic models are decoupled, which means that the de-
velopment of each source is explained only from previous measurements of the
same source:

sj(t) = gj(sj(t− 1), . . . , sj(t−D)) +mj(t) . (2.21)

Together with Eq. (2.13), this equation defines a latent variable model with a
linear observation equation and decoupled source dynamics (see Fig. 2.6). Ci-
chocki and Thawonmas (2000) proposed to use linear predictors to model the
dynamics gj and the sources are extracted so as to minimize the prediction er-
rors given by the fitted linear autoregressive models. It is also possible to use a
nonlinear predictor gj modeled by, for example, a multi-layer perceptron or radial
basis function network (Cichocki and Amari, 2002). Särelä et al. (2001) used a
similar principle in the model called dynamic factor analysis (DFA). There, the
sources are combined into groups and each group is assumed to follow a separate
nonlinear dynamic model. The focus of the experiments was on finding coupled
oscillators in MEG data and therefore the sources appeared in pairs.

Two publications of the present thesis deal with similar separation models.
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Figure 2.6: An illustration of the linear LVM with decoupled dynamics of the
hidden variables.

Publication 1 considers a Bayesian model based on first-order linear predictors
as a test problem for studying general properties of variational Bayesian learning
in ICA problems. The presented study emphasizes the importance of modeling
posterior correlations of the sources in order to achieve good separation quality,
as explained later in Section 3.4.

Publication 8 of this thesis presents a method called independent dynamics
subspace analysis which combines several ideas discussed in this section. The
sources are combined into groups (like in ISA) and the independent subspaces are
separated by decoupling the dynamic models of the groups. First-order nonlinear
predictors are used to model the dynamics of each subspace and the subspaces are
extracted so as to minimize the prediction error given by a fitted dynamic model.
The model used in this approach is close to DFA but the proposed algorithm
is computationally more efficient. The algorithm is described in more details in
Section 4.3.3.

2.2.5 Separation using variance structure

The third popular criterion to achieve source separation is to use distinct non-
stationary structures of the source variances (activations). The assumption used
in this approach is that the variances of independent sources vary independently
in time. An example of such signals is presented in Fig. 2.7.

Separation of non-stationary signals was first considered by Matsuoka et al.
(1995). They proposed a neural network separation algorithm whose simplified
version can be derived from the requirement that the sources are uncorrelated
at any time instant (Hyvärinen et al., 2001). Then, the sources are estimated
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Figure 2.7: Left: Two independent components with temporally structured vari-
ances. Right: The joint distribution of two mixtures of these components. The
mixtures are uncorrelated and have unit variances. The mixing directions are
shown with the dashed lines. The two ellipsoids represent the covariance matri-
ces calculated on two subintervals T1 = [ 1, 1500 ] and T2 = [ 1501, 3000 ].

simultaneously, as in Eq. (2.14), so as to minimize the following measure:

C =
∑

t

∑

j

log vj(t)− log |det E{sts
T
t }| , (2.22)

where the source values s(t) are regarded as samples from random variables st

and vj(t) denotes the variance of the j-th source at time t (a somewhat more
detailed explanation of the notation is presented in Section 4.3.4).

There are other separation approaches based on the non-stationary of the
sources. Pham and Cardoso (2001) derived a maximum likelihood approach and
an algorithm minimizing the Gaussian mutual information. They argue that both
approaches can be reduced to joint diagonalization of a set of the data covariance
matrices calculated on several subintervals Tl:

CTl
=

1

#Tl

∑

t∈Tl

x(t)x(t)T , (2.23)

where #Tl denotes the number of time instants in Tl. This approach is illustrated
in the example shown in Fig. 2.7, where the mixing structure is visible from the
structures of two covariance matrices calculated on subintervals.

Hyvärinen (2001) gives an interpretation of non-stationary sources in terms
of higher order cross-cumulants

E{s2(t)s2(t− τ)} − E{s2(t)}E{s2(t− τ)} − 2E{s(t)s(t− τ)}2 (2.24)

and proposes an algorithm maximizing the absolute value of the quantity in
Eq. (2.24). Models combining non-stationarity of sources with other separation
criteria have also been proposed (see, e.g., Hyvärinen, 2005; Choi et al., 2002).
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Figure 2.8: Examples of nonlinear mixtures of independent sources. Joint dis-
tributions of mixtures are shown in two cases: when the dimensionality N of x

equals the dimensionality M of s (a) and when N > M (b).

Publication 9 of this thesis presents a separation algorithm also based on
analyzing the source variance structure. In order to facilitate the analysis of high-
dimensional data, we propose to extract components one by one by maximizing
a quantity related to the entropy rate and negentropy. This yields an algorithm
similar to the one proposed by Matsuoka et al. (1995). We emphasize the pos-
sibility to analyze distinct variance structure in different frequency ranges. The
proposed algorithm is applied to global climate measurements over a long period
of time. A more detailed exposition of the method is presented in Section 4.3.4
and the results of the climate data analysis are discussed in Section 4.4.5.

2.2.6 Nonlinear mixtures

A natural extension of the linear mixing model in Eq. (2.13) is to assume a
nonlinear mixture model for the observations:

x(t) = f(s(t)) + n(t) . (2.25)

This may be required if the linear model is too simple to describe the mixing
process (see, e.g., Almeida, 2005, for a practical example of such mixtures). A
nonlinear mixing structure can be quite prominent in the observations, as pre-
sented in the examples in Fig. 2.8.

A nonlinear BSS problem is much more difficult compared to the linear case.
As pointed out by many researchers (see, e.g., Hyvärinen and Pajunen, 1999;
Jutten and Karhunen, 2004), the independence assumption is not sufficient as
there exist infinitely many solutions to the nonlinear ICA problem. For exam-
ple, Hyvärinen and Pajunen (1999), generalizing the results of Darmois (1951),
describe a procedure that provides a family of nonlinear ICA solutions. Also, the
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fact that any nonlinear functions of two independent random variables are also
independent shows that the original sources can hopefully be estimated only up
to nonlinear scaling, if the independence assumption is used alone.

Thus, ICA as a method of finding as independent components as possible
does not make much sense in the general nonlinear case. ICA is possible only for
some special cases in which structural constraints are imposed on the nonlinear
mapping f (Jutten and Karhunen, 2004). Therefore, the term nonlinear BSS is
more often used in the context of nonlinear mixtures as it emphasizes that the
estimated components should be close to the original sources generating the data.
A good introduction to the existing methods of nonlinear BSS can be found in
the book by Almeida (2006).

Post-nonlinear mixtures

An important special case of the structural constraints are so-called post-nonlinear
(PNL) mixtures. These mixtures were first studied by Taleb and Jutten (1999b)
and they have the following form:

xi(t) = fi

( M∑

j=1

aijsj(t)

)
, i = 1, . . . , N . (2.26)

Thus, the sources are first mixed according to the basic linear model but after that
a component-wise nonlinearity fi is applied to each measuring channel. The post-
nonlinearities fi could correspond, for instance, to sensor nonlinear distortions.
The PNL mixing structure and an example of such a mixture is presented in
Fig. 2.9.

In the classical post-nonlinear ICA problem, it is typically assumed that the
dimensionality N of the observation vector is equal to the number M of the
sources and that all the nonlinearities fi are invertible. Then, the BSS problem
can be solved based on the assumption that the sources are statistically indepen-
dent. Taleb and Jutten (1999b) have shown that if there is at most one Gaussian
source in the mixture and the mixing matrix A (which is made up from the ele-
ments aij) has at least two nonzero entries on each row or column, PNL mixtures
are separable with the same scaling and permutation indeterminacies as for linear
mixtures.

The classical approach for separating post-nonlinear mixtures is based on
minimizing the mutual information (Taleb and Jutten, 1999b,a). The separating
structure, as shown in Fig. 2.9b, contains two subsequent stages: a nonlinear stage
which cancels the nonlinear distortions by estimating their inverse functions, and
a linear stage that solves the standard linear ICA problem. The parameters of
the separating systems are estimated by a gradient-based optimization process.
The optimization of the mutual information is in practice implemented using a
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Figure 2.9: (a): The distribution of a post-nonlinear mixture of two independent
components. The mixtures are generated by applying a nonlinearity to one of
the linear mixtures shown in Fig. 2.4. (b): The post-nonlinear mixing structure
which produces the outputs xi, and the separating structure used by Taleb and
Jutten.

cumulant-based approximation (Taleb and Jutten, 1999b) or a Gaussian kernel
density estimator of the score functions (Taleb and Jutten, 1999a).

Publication 4 of this thesis proposes a new approach for solving the post-
nonlinear BSS problem. The proposed algorithm is based on the post-nonlinear
factor analysis (PNFA) model and can be used in noisy PNL mixtures where
the number of the measurements is larger than the number of the hidden sources
(i.e. N > M). Then, as discussed in Section 2.1.1, the data lie on a smaller-
dimensional manifold which can be estimated using a probabilistic model. In
PNFA, the structure of the manifold is restricted to the post-nonlinear mixing
structure for the generative mapping f , as in Eq. (2.26). All the unknown quan-
tities are estimated using variational Bayesian learning. The proposed PNFA
algorithm can estimate the original sources only up to a rotation and therefore a
standard linear ICA algorithm is applied on the second stage. The advantage of
the proposed method is its ability to separate PNL mixture with non-invertible
nonlinear distortions fi provided that the full generative mapping is invertible.
The proposed PNFA algorithm is presented in Section 3.3.

General mixtures

General nonlinear BSS is an ill-posed problem and therefore it is necessary to
put some additional constraints or to use some sort of regularization in order
to find a meaningful solution. One of the earliest algorithms for nonlinear BSS
was proposed by Pajunen et al. (1996). They used a somewhat heuristic idea
to learn the inverse of the mixing function f using the self-organizing map. The
self-organizing map tries to preserve the structure of the data and therefore the
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Figure 2.10: (a): The separating structure used by MISEP. (b): The structure
of the model learned by NFA and NIFA. For both algorithms, the nonlinearities
ξ, φ1, ..., φN , and f are modeled using MLP networks.

implicit assumption is that the generative mapping should be as simple as pos-
sible. Later, Yang et al. (1998) introduced an MLP-based approach where the
inverse of the nonlinear mapping f is restricted to the class of functions approx-
imated by MLPs with the same number of hidden neurons as the number of
observations and the number of sources. Tan et al. (2001) use the constraint that
the moments of the sources are known. They use an RBF network to learn the
inverse of the generative mapping f and their learning algorithm minimizes the
mutual information.

Recently, Almeida (2003) has introduced a nonlinear BSS method called
MISEP. He proposed to use an MLP network for learning the inverse of f and to
estimate the parameters of the MLP such that the mutual information between
its outputs is minimized. The network is followed by component-wise output
nonlinearities modeled by a set of MLPs with bounded outputs, as illustrated
in Fig. 2.10a. Almeida uses the idea that minimizing the mutual information
between the estimated sources is essentially equivalent to maximizing the output
entropy of the separating system. A properly constructed backpropagation pro-
cedure is used to learn the parameters of the separating system. Even though
MISEP uses rather a general demixing model, the implicit idea of the method is
to find as smooth nonlinear transformation as possible, such that the provided
components are independent. The smoothness of the mapping can be achieved by
any standard regularization used for MLPs (see, e.g., Haykin, 1999). Although
the smoothness of the mapping does not guarantee the separation of nonlinear
mixtures (Jutten and Karhunen, 2004), MISEP is an elegant solution for the
nonlinear BSS problem.

All the methods mentioned so far aim to find the inverse of the nonlinear func-
tion f . The alternative approach is to learn the generative mapping f using the
model in Eq. (2.25) (see also Fig. 2.10b). This was done by Valpola and Honkela
(Lappalainen and Honkela, 2000) in a two-stage separation procedure which is
referred as NFA+FastICA in this thesis. In the case when the dimensionality of
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x is greater than the dimensionality of s, the data lie on a smaller-dimensional
manifold in the observation space, as shown in Fig. 2.8b. Then, this manifold can
be learned using the NFA model in which the latent variables are described by
Gaussian probability distributions. Based on the central limit theorem, one can
assume that the factors found by NFA are some linear combinations of the orig-
inal independent sources. These factors can be rotated using any algorithm for
linear ICA (e.g., FastICA) in order to achieve independence. A similar two-stage
approach was later used by Lee et al. (2004).

Valpola and Honkela also developed a modification of the NFA model which
takes into account the independence assumption for the sources. The result-
ing model is called nonlinear independent factor analysis (NIFA). Similarly to
the linear independent factor analysis technique (Attias, 1999), the sources are
described by mixtures of Gaussians. Again, the authors apply the variational
Bayesian approach for learning. The proposed NIFA algorithm obtains some-
what better separation quality compared to the NFA+FastICA approach. How-
ever, NFA+FastICA is faster and more practical.

There are several approaches to nonlinear ICA which use the temporal struc-
ture of the sources to achieve separation. Harmeling et al. (2003) derive kernel-
based algorithms and Blaschke and Wiskott (2004) combine nonlinear slow fea-
ture analysis (Wiskott and Sejnowski, 2002) with ICA based on temporal decor-
relation.

The algorithm for nonlinear dynamic factor analysis (NDFA) developed by
Valpola and Karhunen (2002) can also be seen as a method for nonlinear BSS
based on temporal structure. The generative model of NDFA follows the standard
NSSM equations (2.10)–(2.11). However, the type of posterior approximation
used in the proposed learning algorithm favors solutions in which the sources
have as little dynamic couplings as possible. This is explained in Section 3.5.1
of this thesis. Thus, the NDFA algorithm favors solutions with dynamically
independent sources or subspaces.

Publication 3 of this thesis studies the performance of the NFA+FastICA
approach on test problems with post-nonlinear mixtures and experimentally com-
pares it with Taleb and Jutten’s algorithm for post-nonlinear mixtures. The
study shows the limitations of the two compared methods and the domains of
their preferable use. A new interesting result of the presented experiments is
that globally invertible PNL mixtures, but with non-invertible component-wise
nonlinearities, can be identified and the sources can be separated. This shows
the relevance of exploiting more observations than sources. Some results of this
study are presented in Section 3.3.1.

Publication 4 presents a PNFA model which can be used to extend the
NFA+FastICA approach to the case of post-nonlinear mixtures. These studies
are presented in Section 3.3.
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2.3 Conclusions

In this chapter, basic latent variable models related to the publications of this
thesis have been introduced. Both classical and some recent approaches to learn-
ing these models have been outlined. We started from introducing some tools for
lower-dimensional data representation, among which PCA is the classical tech-
nique. The principles used in some nonlinear tools for dimensionality reduction
have been discussed. We also reviewed probabilistic models which either give a
probabilistic interpretation for the classical dimensionality reduction techniques
or provide some novel nonlinear approaches. In these models, the Gaussian prob-
ability distribution is typically used to describe the hidden variables.

Standard probabilistic tools for modeling time series have also been intro-
duced. Linear state-space representation has become a classical modeling tech-
nique in this task. It is also a probabilistic LVM with the Gaussian probability
model used for the latent variables. Nonlinear state-space models have been stud-
ied less extensively because even using a known NSSM is not trivial. Learning an
accurate NSSM is a difficult task and there is no classical tool in this problem.
We outlined several recent approaches based on approximate Bayesian methods.

Finding a compact data representation can be useful for different tasks such as
data compression, information visualization and others. In many applications, it
is also desirable that the estimated model would have a meaningful interpretation.
For example, individual hidden variables may correspond to independent physical
processes underlying the data, and this would provide an insight into the data
generation process. The methods considered in the first part of this chapter do
not generally provide models with a meaningful interpretation. They can often
be used as a first, preprocessing step followed by other techniques which rotate
the found components.

Several tools for finding meaningful data representations have been discussed.
The classical linear technique is factor analysis which is based on a probabilis-
tic LVM with Gaussian sources. The meaningful representation is achieved by
optimizing some measures of structure which are often rather heuristic.

Source separation methods can be seen as extension of factor analysis. These
methods typically assume independence of the individual hidden variables (called
sources), which implies independence of the physical processes represented by
individual sources. Separation is done by making the estimated components as
independent as possible. In this chapter, three standard ways to achieve source
separation have been discussed. The classical approach is ICA when the sources
are assumed to have non-Gaussian distributions. The second approach is based
on decoupling dynamic structures of the sources, and the third approach uses the
non-stationarity of the source variances. Several popular methods for solving the
source separation problem have been outlined.
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Nonlinear source separation is a much more difficult problem as the indepen-
dence assumption alone is not enough to find a meaningful nonlinear represen-
tation of data. Some additional assumptions have to be used in order to make
separation possible. Restricting the generative mapping to the post-nonlinear
mixing structure is an important case of such constraints. The general case of
nonlinear mixtures can be solved by finding an optimal compromise between the
accuracy of the model and its complexity, where simpler models typically imply
smoother mappings. Several methods for the general case of nonlinear BSS have
been outlined.

During the presentation, the connections between the discussed LVMs and the
models considered in the publications of this thesis have been emphasized. Thus,
this chapter links together different research results presented in this thesis. It
should be noted that the variety of LVMs is not constrained to the models intro-
duced in this chapter. For example, the discussion of so-called mixture models or
source separation methods for convolutive mixtures have been omitted.



Chapter 3

Variational Bayesian

methods

3.1 Introduction to Bayesian methods

Bayesian estimation is a principled framework to do inference about unknown
parts of a model. The characteristic feature of Bayesian methods is representing
all unknown quantities with probability distributions. The unknown parameters
of the model (as well as the observed variables) are always assumed to be random
variables rather than some deterministic constants. In the Bayesian viewpoint,
probability is seen as a measure of our uncertainty about the values of a random
variable. The solution provided by pure Bayesian methods is always probabilis-
tic, that is it contains several possible explanations for the data, accompanied
with the probabilities of different explanations. Therefore, Bayesian estimation
provides a natural way to overcome the well-known overfitting problem when
complex solutions explain the training data very well but do not generalize for
new data. Other advantages of Bayesian methods include their principled way to
do comparison between possible explanations for the data (which is called model
selection) and the natural treatment of noise.

3.1.1 Basics of probability theory

Let us recall some basic concepts from probability theory (Papoulis, 1991). A
popular way to characterize the probability distribution of a continuous variable
X is probability density function (pdf) p(x) from which the probability that the

33
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variable X takes on a value x on an interval [a b] is calculated as

P (a ≤ X ≤ b) =

∫ b

a

p(x) dx . (3.1)

In analogy to physical mass, P is often called probability mass. The joint density
function p(x, y)1 of two random variables X, Y is a function from which the
probability that the value of a pair (X,Y ) lies in a region A is calculated as

P ((X,Y ) ∈ A) =

∫∫

A

p(x, y) dx dy . (3.2)

This can be easily generalized to the case of multiple variables.
The marginal pdfs of the individual variables X or Y can be calculated from

the joint pdf p(x, y) using the marginalization principle:

p(y) =

∫
p(x, y) dx , p(x) =

∫
p(x, y) dy . (3.3)

The ratio of the joint pdf and the marginal pdf is called the conditional probability
density:

p(x | y) =
p(x, y)

p(y)
, p(y |x) =

p(x, y)

p(x)
. (3.4)

The conditional pdf p(x | y) can be understood as the uncertainty about the value
of X if the value of Y is known.

Two random variables are said to be independent if their joint pdf is the
product of the two marginals:

p(x, y) = p(x) p(y) . (3.5)

It follows from Eq. (3.4) that two random variables are independent if the con-
ditional density of one of the variables does not depend on the value of the other
variable, that is

p(x | y) = p(x) , p(y |x) = p(y) . (3.6)

In simple terms, two random variables are independent if knowing the value of
one variable does not give any information about the value of the other.

The basic principle used by Bayesian methods is the direct consequence of
Eq. (3.4). The conditional probability of the unknown variable Y given the value
x of the observed variable X can be calculated as

p(y |x) =
p(x, y)

p(x)
=
p(x | y)p(y)

p(x)
. (3.7)

1Following the common practice, p(·) is used as a generic symbol for a pdf, although rigor-
ously subscripts like px(x), px,y(x, y) should be used.
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This equation is known as the Bayes rule.
All the above definitions generalize to random vectors (see, e.g., Papoulis,

1991; Hyvärinen et al., 2001).

3.1.2 Density function of latent variable models

In Bayesian methods, all our assumptions about the data structure are expressed
in the form of a joint pdf over all the known and unknown variables. This thesis
considers latent variable models

x(t) = f(s(t),θf ) + n(t) , (3.8)

for which the joint pdf always includes the observed variables X, the hidden
variables S and the rest of the parameters θ (e.g., the parameters θf of the
generative mapping f). Here, we can assume that the matrix S of source values
is defined similarly to Eq. (2.1).

The joint pdf for all the probabilistic LVMs considered in this thesis is ex-
pressed in the following form:

p(X,S,θ) = p(X |S,θ) p(S,θ) . (3.9)

The term p(X |S,θ) is called the likelihood of S and θ and it reflects our assump-
tions on the way the data X are generated from the hidden variables S. As an
example, consider a linear model

x(t) = As(t) + n(t) (3.10)

with the Gaussian assumption for the observation noise n(t). The corresponding
likelihood factor is given by:

T∏

t=1

p(x(t) | s(t),θ) =

T∏

t=1

N (x(t) | As(t), Σn ) . (3.11)

Here and throughout this thesis, N (x | µ, Σ ) denotes the Gaussian (or normal)
distribution over x, with mean µ and covariance matrix Σ.

The terms p(S,θ) in the density model in Eq. (3.9) define our prior uncer-
tainty (prior expectations) about the values of the unknown parameters S, θ. For
example, the simple factor analysis model specifies the same prior distribution
for each s(t):

p(s(t) |θ) = N ( s(t) | 0, I ) , (3.12)

where 0 is a vector containing all zeros and I denotes the identity matrix. In
dynamic models, the prior source distribution is more complex and it takes into
account the source dynamics defined, for example, by Eq. (2.9):

p(s(t) | s(t− 1),θ) = N ( s(t) | Bs(t− 1), Σm ) . (3.13)
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Assigning priors for the rest of the parameters θ can be nontrivial. When it
is desirable to introduce minimum information in the prior so that the solution
would be maximally defined by the likelihood, noninformative priors are used
(Gelman et al., 1995). In many cases, however, suitably chosen priors bias the
model in favor of specific types of solutions. For example, when the generative
mapping f is modeled by an MLP network, using so-called weight decay priors
for the parameters of the MLP can penalize non-smooth solutions for f (see, e.g.,
Haykin, 1999).

It should be noted that selecting priors is the most subjective part of Bayesian
methods. One should generally specify all plausible values for the unknown quan-
tities and express the prior expectations in the form of pdf. A specific form of pdf
can be chosen in order to enable mathematical tractability of further inference.

3.1.3 Bayesian inference

The density model p(X,S,θ) expresses all our assumptions about the modeled
process. Once the density model is defined, all one has to do is to infer the
probabilistic solution for the unknown parts of the model. This is generally
done by applying the Bayes rule in Eq. (3.7) in order to find the conditional
distributions of the unknown parameters given the observations:

p(S,θ |X) =
p(X,S,θ)

p(X)
=
p(X |S,θ) p(S,θ)

p(X)
. (3.14)

Here, the numerator is the full joint pdf and the denominator is the marginal pdf
of the observed variables. The pdf in Eq. (3.14) is called the posterior pdf as
it expresses our uncertainty about the values of the unknown variables after the
measurements X have been obtained. The posterior pdf is always a compromise
between the prior p(S,θ) and the likelihood p(X |S,θ).

Computing the posterior distribution of the unknown quantities is a central
problem of Bayesian methods. Evaluation of the posterior is relatively easy for
simple models with so-called conjugate priors (see, e.g., Gelman et al., 1995) when
the parametric form of p(S,θ |X) in Eq. (3.14) is known. However, computing
the posterior is generally a difficult task and, in most cases, the posterior has to
be approximated somehow.

The evaluated posterior pdf is usually used for further inference or decision
making. For example, one may want to compute the probability distribution for
a future measurement x(t) given the observed data X. Such a density function
p(x(t) |X) is called a predictive pdf. As an example, let us consider the predictive
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pdf for the model described in Eqs. (3.11)–(3.12):

p(x(t) |X) =

∫∫
p(x(t), s(t),θ |X) ds(t) dθ

=

∫∫
p(x(t), s(t) |θ,X) p(θ |X) ds(t) dθ . (3.15)

Now we note that the likelihood p(x(t), s(t) |θ,X) does not depend on X and
integrating out the source s(t) yields

∫
p(x(t), s(t) |θ,X) ds(t) = p(x(t) |θ) . (3.16)

This gives the predictive pdf in the following form:

p(x(t) |X) =

∫
p(x(t) |θ) p(θ |X) dθ . (3.17)

The predictive probability in Eq. (3.17) can be understood as a sum of sep-
arate probabilistic models p(x(t) |θ) weighted by their posterior probabilities
p(θ |X). Thus, the pure Bayesian approach takes into account a set of possible
models, which offers a good compromise between under- and overfitting, that is
using too simple or complex models in light of the available data.

The same averaging principle should also be used in case of a discrete set
of possible models Mi. In this context, each possible density model is often
written as p(X,S,θ |Mi) as it expresses some structural assumptions Mi. One
may assign a prior distribution over model structures p(Mi) and then average
similarly to Eq. (3.17) using as the weights the posterior probablities of the models

p(Mi |X) =
p(Mi) p(X |Mi)∑
i p(Mi) p(X |Mi)

. (3.18)

The term p(X |Mi) in Eq. (3.18) is called the evidence (or marginal likelihood)
for the model Mi. It appears as the denominator (normalization constant) in
the posterior distribution in Eq. (3.14).

A pragmatic approach, however, is to select one model among the possible
ones and use it for future inference. In general, the most suitable model should
be chosen depending on the goals and some utility function is needed in order
to assess the usefulness of a model. For example, for prediction and decision
problems, comparison and selection between Bayesian models can be done by
the assessment of the predictive abilities of the models (see, e.g., Vehtari and
Lampinen, 2002). Since it is often difficult to find a proper utility function which
should include all informal knowledge of domain experts, a practical approach is
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to select the most probable model, that is the one that maximizes the posterior
in Eq. (3.18).

Computation of the model evidence p(X |Mi) is another central problem of
Bayesian methods. It is formally calculated by integrating out the unknown
parameters from the joint pdf:

P (X |M) =

∫∫
p(X,S,θ |M) dS dθ . (3.19)

However, this integral is intractable in most cases and some approximations have
to be made.

3.2 Approximate Bayesian methods

This section considers the classical methods for evaluating the posterior distribu-
tion of the unknown parameters p(S,θ |X). Computation of the posterior is an
important problem as the posterior can be used, for example, to infer the most
probable values of the unknown parameters, to calculate the predictive distribu-
tion, or to approximate the integral defining the evidence in Eq. (3.19). As was
pointed out in the previous section, the posterior can be calculated exactly only
for simple models and some sort of approximation is typically required.

Posterior approximations can be useful in practice as, for example, they can
reduce the information in the posterior to the neighborhood of one particular
solution. Sometimes, they can also regularize the estimation problem. However,
the possible negative side effects of posterior approximation is overfitting, as some
of the probable models are typically discarded from the posterior.

3.2.1 MAP and sampling methods

Perhaps the simplest way to approximate the posterior distribution is the max-
imum a posteriori (MAP) estimation, in which the posterior is characterized by
the values that maximize it:

{SMAP,θMAP} = arg max
S,θ

p(S,θ |X) . (3.20)

The MAP estimation is equivalent to the popular maximum likelihood (ML)
method under the assumption that the prior for the unknown parameters p(S,θ)
is uniform and therefore the posterior is proportional to the likelihood p(X |S,θ).

The main advantage of the MAP estimate is its simplicity because to maxi-
mize the posterior can be a relatively easy task. However, its main drawback is
reducing the full posterior to only one point. For example, MAP estimation does
not generally provide the confidence regions showing the posterior uncertainty
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about the MAP estimates. Another possible problem is overfitting. For com-
plex models without proper regularization, it is possible that the MAP estimate
corresponds to a narrow peak in the posterior and therefore the estimate can be
very sensitive to small changes in the data.

A somewhat improved approach is the Laplace approximation which uses a lo-
cal Gaussian approximation of the posterior around the MAP estimate (MacKay,
1995c). The covariance matrix of the Gaussian approximation is taken as the Hes-
sian matrix of the log-posterior. However, the drawback of this approach is that
the approximation can be poor, especially for small datasets, and the calculation
of the Hessian can be computationally expensive. Note also that the Laplace
approximation can detect overfitting problems but not fix them directly.

Markov chain-Monte Carlo methods (Neal, 1993) approximate the posterior
by a collection of samples drawn from it. These methods are typically very slow
and computationally very demanding. Also, it is generally difficult to assess
the convergence of the sampling procedure. Another problem is that sampling
methods require that all the samples drawn from the posterior be stored for
future inference, which is usually memory consuming. Despite their drawbacks,
sampling methods are very popular because they are easy to implement and to
use. These methods are often preferred if they are computationally feasible.

3.2.2 The EM algorithm

The Expectation-Maximization (EM) algorithm is the extension of the ML/MAP
estimation2 to the case when some of the unknown parameters are uninteresting
or unimportant for future inference (they are called nuisance parameters). As
an example, consider the predictive distribution in Eq. (3.17) where all relevant
information is contained in the marginal posterior p(θ |X). The sources S are
not important for future inference and therefore they can be integrated out from
the posterior. Thus, the problem addressed by the EM algorithm is to find the
MAP estimate for the set of interesting parameters (typically θ) in the presence
of nuisance parameters (typically the hidden variables S):

θMAP = arg max
θ

p(θ |X) = arg max
θ

∫
p(θ,S |X) dS . (3.21)

The classical presentation of the algorithm was done by Dempster et al. (1977)
but here we follow the view of the EM algorithm presented by Neal and Hinton
(1999).

The function that should be maximized is the logarithm of the marginal pos-
terior:

L = log p(θ |X) = log

∫
p(θ,S |X) dS . (3.22)

2The EM algorithm originally extends the ML approach but is applicable to MAP too.
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However, it is possible to estimate the lower bound of L using any distribution
over the hidden variables q(S):

L = log

∫
q(S)

p(θ,S |X)

q(S)
dS ≥

∫
q(S) log

p(θ,S |X)

q(S)
dS = F(q,θ) , (3.23)

which holds due to Jensen’s inequality. The lower bound F(q,S) is the actual
functional optimized in the EM algorithm.

The optimization of F is practically done by alternate updating q(S) and
θ in the steps called E-step and M-step (Ghahramani and Beal, 2001). In the

following, these steps are presented using the notation θ(k) and q(k)(θ) for the
instances computed on the k-th iteration:

1. The E-step maximizes F(q,θ) w.r.t. the distribution over the latent vari-

ables q(S) given the fixed parameters θ(k−1):

q(k)(S) = arg max
q(S)

F(q(S),θ(k−1)) . (3.24)

It can be shown that the optimal q(k)(S) is the posterior distribution of S

given the fixed value θ(k−1):

q(k)(S) = p(S |X,θ(k−1)) . (3.25)

2. The M-step optimizes F(q,θ) w.r.t. the parameters θ given the fixed dis-
tribution q(k)(S):

θ(k) = arg max
θ

F(q(k)(S),θ) = arg max
θ

∫
q(k)(S) log p(θ,S |X) dS .

(3.26)
The term −

∫
q(S) log q(S) dS is removed from F in Eq. (3.26) as it does

not depend on θ.

It can be shown that each iteration of the presented procedure always increases
the true posterior p(θ |X) or leaves it unchanged. This algorithm converges to a
local maximum of the posterior except in some special cases.

The generalized EM algorithm extends the classical EM algorithm by mak-
ing partial M-steps, when the parameters θ are updated so as to increase the
functional F(q,θ) but not necessarily maximize it. In the extension proposed by
Neal and Hinton (1999), partial E-steps are made as well: the functional F(q,θ)
is increased but not necessarily maximized w.r.t. to the distribution q(S). In
practice, this could speed up the convergence of the EM algorithm.
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3.2.3 Variational Bayesian learning

Recently, variational Bayesian (VB) learning has been widely used in Bayesian
latent variable models. Its goal is to approximate the actual posterior probability
density of the unknown variables by a function with a restricted form. This ap-
proach was introduced in the neural network literature by Hinton and van Camp
(1993) and the term ensemble learning was also used to describe the method
(MacKay, 1995b; Lappalainen and Miskin, 2000). VB learning is closely related
to variational mean-field methods (Jaakkola, 2000; MacKay, 2003).

In the case of latent variable models, the approximating distribution q(S,θ)
is defined over the sources S and the other parameters θ. The goodness of fit
between the two probability density functions p(S,θ |X) and q(S,θ) is measured
by the Kullback-Leibler divergence:

D(q(S,θ) || p(S,θ |X)) =

∫
q(S,θ) log

q(S,θ)

p(S,θ |X)
dS dX . (3.27)

The Kullback-Leibler (KL) divergence is a standard dissimilarity measure for
probability densities (see, e.g., Cover and Thomas, 1991). It is always nonnegative
and attains the value zero if and only if the two distributions are equal. Therefore,
the pdf q(S,θ) is optimized to get the approximation as close to the true posterior
as possible. Interpreted in information-geometric terms (Amari and Nagaoka,
2000), minimizing the KL divergence means finding the projection of the true
pdf p(S,θ |X) on the manifold of the approximating densities q(S,θ).

Unfortunately, the KL divergence is difficult to compute as the posterior
p(S,θ |X) in Eq. (3.27) includes the term p(X) which cannot be evaluated. How-
ever, as it is constant w.r.t. q(S,θ), it can be subtracted from Eq. (3.27), and the
actually minimized function is

C(q) = D(q(S,θ) || p(S,θ |X))− log p(X)

=

∫
q(S,θ) log

q(S,θ)

p(S,θ |X)p(X)
dS dX

=

∫
q(S,θ) log

q(S,θ)

p(X,S,θ)
dS dX . (3.28)

It follows from the nonnegativity property of the KL divergence that the cost
function in Eq. (3.28) gives the lower bound for the model evidence:

−C(q) ≤ log p(X) . (3.29)

Therefore, the VB approach is sometimes seen as a way to optimize the lower
bound for the marginal likelihood p(X |M).
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Figure 3.1: Left: A hypothetical posterior distribution p (solid) approximated by
a Gaussian distribution q (dashed) so as to minimize the KL divergence D(q ||p).
Right: The KL divergence as a function of the mean (abscissa) and the standard
deviation (ordinate) of the approximating Gaussian distribution. The wider pos-
terior mode corresponds to the global minimum of the KL divergence.

The posterior approximation q(S,θ) has to be tractable and therefore it is
always chosen to have a suitably factorial form. In latent variable models, at
least the sources S are typically assumed independent a posteriori of the rest of
the parameters θ:

q(S,θ) = q(S)q(θ) . (3.30)

The optimization of the cost function is done by alternate updating the factors
of q. For example, if q is factorized as in Eq. (3.30), q(S) and q(θ) are alternately
updated, each while holding the other fixed.

Characteristics of variational Bayesian learning

In flexible models, the true posterior typically has multiple peaks and each peak
corresponds to one possible explanation for the data. Let us present an example
which shows that the VB approximation usually captures only the neighborhood
of one of the posterior modes. Thus, the VB approximation typically underesti-
mates the posterior uncertainty about the unknown parameters.

Fig. 3.1 presents a hypothetical bimodal posterior distribution approximated
by a Gaussian distribution so as to minimize the KL divergence in Eq. (3.27).
The cost function presented in the right plot of Fig. 3.1 has two local minima,
each corresponding to one of the two modes of the posterior. The global min-
imum, however, corresponds to the wider peak that contains more probability
mass. Note also that in practice the wider peak could be more attractive for the
optimization procedure.
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VB learning has gained popularity because of its attractive characteristics
that we summarize in the following:

1. The VB cost function provides the lower bound of the model evidence
p(X |Mi), which allows for elegant model selection.

2. The VB approximation is sensitive to high posterior mass in contrast to the
MAP estimation which is sensitive to high posterior densities (Lappalainen
and Miskin, 2000). Thus, VB learning is less subject to overfitting and
provides more robust solutions.

3. Selecting a suitable form for the posterior approximation corresponds to
a specific regularization of the solution, which also helps avoid overfitting
and sometimes makes the estimation problem well-posed (see Section 3.4
and Publication 1).

4. Using densities for representing the unknown quantities preserves more in-
formation about the full posterior, compared to point estimates. For ex-
ample, if necessary, the mean 〈θ〉 =

∫
θq(θ) dθ can be taken as a point

estimate of the parameter θ, and the variance
∫

(θ−〈θ〉)2q(θ) dθ can define
a confidence region for the point estimate 〈θ〉. Note also that the approx-
imating distribution could be used for sampling from the true posterior
(Ghahramani and Beal, 2001).

However, applying VB methods can be difficult in practice because of the
following problems:

1. One of the main drawbacks of VB methods is their high computational
complexity, which often results in long time until convergence.

2. The cost function usually has multiple local minima and it can be difficult
to find the global minimum because of the slow convergence.

3. VB may tend to converge to solutions that correspond to wider posterior
modes. Such solutions typically provide simpler explanations of the data.
Therefore, VB methods may suffer from the underfitting problem.

4. Too simple posterior approximations usually result in an efficient learning
algorithm but they can introduce a bias in favor of some type of solutions
(see Section 3.4 and Publication 1).

3.2.4 Other approaches related to VB learning

The view presented by Neal and Hinton (1999) helps understand the relation
between the EM algorithm and the VB approach. The generalized EM algorithm
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can be seen as the special case of the VB approach when the approximating
distribution q(S,θ) uses point estimates for one set of parameters θ and distri-
butions for the other set S. In such a viewpoint, a point estimate for a scalar
can be seen as a uniform distribution defined on an interval of infinitely small,
but fixed length. Then, the E-step and the M-step can be seen as the two steps
on the alternate minimization of the cost function in Eq. (3.28) w.r.t. q(S) and
q(θ), respectively.

Using conjugate priors in VB models allows for the optimal update of the
marginal approximations (e.g., q(S) or q(θ)) on each iteration (Attias, 2000b;
Beal and Ghahramani, 2003). The cost function is then minimized on each step,
which corresponds to full steps in the EM terminology. For example, Beal and
Ghahramani (2003) present a variational Bayesian EM algorithm based on a
family of conjugate-exponential models. The alternate update of q(S) and q(θ)
is simple there and the algorithm reduces to the full-step EM algorithm if the
density q(θ) is restricted to point estimates.

Variational approximations have also been used for some LVMs learned by
the EM-algorithm in which the full E-step is not tractable. There, the optimal
posterior in Eq. (3.25) is approximated by minimizing the same type of cost
function (see, e.g., Frey and Hinton, 1999; Attias, 1999; Ghahramani and Hinton,
2000).

Approximation of the posterior distribution is also done in online Bayesian
learning (Opper, 1998) or assumed-density filtering (ADF) (Maybeck, 1982) as it
is called in the control literature. This method considers the problem of updating
the posterior distribution p(θ |x(1), . . . ,x(t)) after obtaining new measurements.
For each new measurement x(t), the posterior is approximated by a convenient
parametric distribution q(t)(θ) by minimizing the KL divergence D(p̃ || q), where
the new posterior p̃ is calculated using the previously found approximation:

p̃(θ) ∝ p(x(t) |θ)q(t−1)(θ) . (3.31)

The expectation-propagation (EP) method (Minka, 2001) modifies the basic ADF
procedure such that the results become less dependent on the order in which the
measurements are processed. Note that the ADF/EP approximation typically
overestimates the posterior uncertainty as the form D(p||q) of the minimized KL-
divergence is different from the form D(q || p) used in VB methods (see Fig. 3.2).
The EP approach provides a better global approximation and therefore more
accurate moments.

The EP and VB approximations are suited well to different problems. The
VB approximation is more appropriate for parameter estimation (e.g., estimating
parameters of an MLP network) where the posterior pdfs are often complex and
severely multimodal. The EP approach would underfit hopelessly in this problem.
However, the EP approximation can be better for state estimation (tracking the
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Figure 3.2: Approximating a hypothetical bimodal posterior by a Gaussian distri-
bution using variational Bayesian methods (VB), expectation propagation (EP)
and the Laplace approximation. The Laplace approximation is scaled by 0.5 for
better presentation.

state of a dynamical system) as it can track several posterior modes, while the
VB approach would track only one of the modes.

There are also variational approaches for approximating complex distribu-
tions which are not based on minimizing the KL-divergence. Jaakkola and Jor-
dan (2000) use a family of adjustable bounds for the likelihood, which yields a
tractable expression for the approximate posterior. The bounds are adjusted on
each iteration in order to obtain the most accurate approximation around the
points of interest. A similar approach was used by Girolami (2001) to derive an
approximation based on a lower bound for the Laplacian prior in the problem of
learning an overcomplete basis from a linear mixing model.

3.2.5 Basic LVMs with variational approximations

VB learning has been applied to various latent variable models reviewed in Sec-
tion 2.1. The Gaussian model with linear mixing was considered by Bishop
(1999b) in the technique called variational PCA. The model containing a mix-
ture of linear factor analyzers was introduced by Ghahramani and Beal (2000).
Valpola and Honkela extended the factor analysis model to the case of nonlinear
mixing (Lappalainen and Honkela, 2000; Valpola et al., 2003b,a). The case with
missing data was considered by Raiko et al. (2003).

A state-space model with switching between several linear regimes was con-
sidered by Ghahramani and Hinton (2000). Learning the standard state-space
model using the VB principles was considered by Beal (2003) in the linear case,
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and by Valpola and Karhunen (2002) for the more general nonlinear state-space
models. A model with nonlinear state dynamics but with a linear mapping from
the states to the observations was developed by Särelä et al. (2001).

Several researches have applied the VB principles to the ICA problem. Attias
(1999) presented a model called independent factor analysis (IFA) in which the
sources are described by mixtures of Gaussians. Later, Attias (2000a) extended
the IFA model by taking into account the temporal statistical characteristics
of the factors. The linear ICA model was considered by Valpola (Lappalainen,
1999), Attias (2000b), Miskin and MacKay (2001), and by Choudrey and Roberts
(2001). The case of positive components was considered by Miskin and MacKay
(2000), and later by Harva and Kabán (2005). Extensions with cluster ICA
models were introduced by Chan et al. (2002) and by Choudrey and Roberts
(2003). ICA problems with missing data were considered by Chan et al. (2003).
A nonlinear source separation model based on the independence assumption was
addressed by Valpola (2000) in the NIFA model.

Application of VB learning to other types of models have been considered, for
example, by Hinton and van Camp (1993), Barber and Bishop (1998), Ghahra-
mani and Hinton (2000).

3.3 Post-nonlinear factor analysis

This section presents a latent variable model called post-nonlinear factor anal-
ysis (PNFA) which is learned by using the variational Bayesian approach. The
motivation for the PNFA model is given based on the experiments reported in
Publication 3. After that, the model structure is specified and the optimization
algorithm is briefly described. Finally, the experimental results are presented.
This section is largely based on Publication 4 of this thesis.

3.3.1 Motivation

Publication 3 presents experimental comparison of two approaches to the non-
linear BSS problem: the NFA+FastICA approach based on the model developed
by Valpola and Honkela (Lappalainen and Honkela, 2000) and Taleb and Jut-
ten’s (TJ) algorithm for post-nonlinear mixtures (Taleb and Jutten, 1999b, see
also the general introduction of the two algorithms in Section 2.2.6). The com-
parison is performed on artificial test problems containing PNL mixtures, for
which both algorithms are applicable. Both the classical case when the number
M of the sources is equal to the number N of the observations and the case of
overdetermined mixtures (when M < N) are considered.

A new interesting result of the experiments is that globally invertible PNL
mixtures, but with non-invertible component-wise nonlinearities, can be iden-
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Figure 3.3: (a): A two-dimensional manifold defined by a post-nonlinear mapping
with one non-invertible post-nonlinearity. (b): The representation of the manifold
in the source space estimated by NFA+FastICA. (c): The representation of the
manifold in the source space estimated by Taleb and Jutten’s algorithm.

tified and sources can be separated, extending the earlier results of Taleb and
Jutten (1999b). In Publication 3, we explain this result using the following sim-
ple example of a three-dimensional PNL mixture of two sources. The sources are
transformed using a PNL mapping of Eq. (2.26) with one non-invertible post-
nonlinear distortion:

f1(y) = y2 , f2(y) = tanh(y) , f3(y) = tanh(y) . (3.32)

After the PNL transformation, the data lie on a two-dimensional manifold embed-
ded in the three-dimensional space. If the sources are described in the original
source space using an even grid, this manifold can be visualized by the trans-
formed source grid, as shown in Fig. 3.3a. The PNL transformation is invertible
as there exists a bijection from the two-dimensional source space to the data
manifold in the three-dimensional observation space.

A nonlinear data representation modeled by an invertible generative mapping
can be learned using the NFA algorithm. Fig. 3.3b shows the representation of the
original source grid in the source space estimated by the NFA+FastICA approach.
If s and ŝ are the original and the estimated sources, respectively, the algorithm
implicitly estimates the mapping ξ such that ŝ(t) = ξ(s(t)) , t = 1, . . . , T . The
plot in Fig. 3.3b is the reconstruction of the even source grid using the mapping
ξ explicitly estimated for this demonstration. As follows from the figure, the
reconstruction of the original sources obtained using the Bayesian algorithm is
pretty good.

Fig. 3.3c presents the same plot for the TJ algorithm. It shows that the TJ
algorithm cannot achieve reconstruction of the sources. This happens due to
its constrained structure as it estimates the inverse of the PNL transformation
under the assumption that all the post-nonlinear distortions fi are invertible. As
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Figure 3.4: The structure of the PNFA model.

a result, it cannot unfold the curved data manifold.

The demonstrated result shows the relevance of exploiting more observations
than sources and the relevance of learning a generative mapping instead of in-
verting the mixing transformation. This can be done by applying the Bayesian
approach to the model in Eq. (2.2) with the restriction that the generative map-
ping f has the post-nonlinear structure. Combined with the Gaussian model for
the sources s, this yields the model that we call PNFA. Its structure is presented
in Fig. 3.4.

The post-nonlinear ICA problem can be solved using PNFA in two steps
similarly to the NFA+FastICA approach. First, the PNFA model is learned
to find underlying Gaussian factors. After that, the factors found by PNFA
are rotated using a linear ICA algorithm which is chosen to be FastICA in the
experiments. These two steps are termed the PNFA+FastICA approach.

3.3.2 Density model

This section describes the density model p(X,S,θ) used for PNFA. The latent
variables are introduced first. The sources sj are assumed to be zero-mean Gaus-
sian variables and the corresponding prior is

p(S |θ) =
M∏

j=1

T∏

t=1

N ( sj(t) | 0, vs,j ) . (3.33)

Variable vs,j is the variance parameter defining the prior distribution for the j-th
source. Parameters defining priors for other variables are often called hyperpa-
rameters. The hyperparameters vs,j are assigned log-normal priors, making the
source prior model hierarchical.

The variances of the source distributions are assumed different for individual
sources to enable the automatic relevance determination, when irrelevant sources
have posterior variances close to zero. This allows for automatic determination
of the appropriate dimensionality of the latent space and avoids discrete model
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selection (Bishop, 1999b). The idea of relevant input variable selection was first
used by MacKay and Neal in the context of neural networks (Neal, 1998).

The observation model expresses the PNL structure of the generative map-
ping:

p(X |S,θ) =

N∏

i=1

T∏

t=1

N (xi(t) | fi,t, vx,i ) , (3.34)

where

fi,t = fi(yi(t),θf,i) , (3.35)

yi(t) =
M∑

j=1

aijsj(t) , (3.36)

and θf,i denotes the parameters of the post-nonlinearities fi. The post-nonlinear
distortions are modeled by multi-layer perceptron (MLP) networks with one hid-
den layer:

fi(y,θf,i) = dT
1,i φ(c1,i y + c2,i) + d2,i . (3.37)

and thus the parameters θf,i include vectors c1,i, c2,i, d1,i and a scalar d2,i. A
sigmoidal activation function φ operates component-wise on its inputs.

The prior distributions for the parameters modeling the generative mapping
are chosen as follows. The linear mixing part A containing the linear coefficients
aij in Eq. (3.36) has a fixed Gaussian prior

p(A) =
∏

i,j

N ( aij | 0, 1 ) . (3.38)

The variance of the weights are fixed to a constant because the scale of the weights
can be defined by the changing variances vs,j of the sources (Lappalainen and
Honkela, 2000). The nonlinearities in Eq. (3.37) are regularized by using zero
mean Gaussian priors for the weights c1,i and d1,i. Hierarchical Gaussian priors
are also assigned to parameters c2,i, d2,i and the noise variance parameters vx,i.

Thus, the overall pdf p(X,S,θ) has a simple factorial form

p(X,S,θ) = p(X |S,θ)p(S |θ)
∏

k

N ( θk | θk,m, θk,v ) (3.39)

where the first two factors are defined in Eqs. (3.34) and (3.33), respectively, and
θk,m, θk,v denote the mean and variance parameters of the prior for a parameter
or a hyperparameter θk. The parameters θ include variables A, c1,i, c2,i, d1,i,
d2,i and various hyperparameters such as log vs,j and log vx,i.
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3.3.3 Optimization of the cost function

Learning the PNFA model is done using the variational Bayesian principles ex-
plained in Section 3.2.3. The posterior of the unknown parameters S, θ is ap-
proximated using a fully factorial distribution

q(S,θ) =
∏

j,t

q(sj(t))
∏

k

q(θk) , (3.40)

where each individual factor q(θ) is a Gaussian distribution parameterized with

the mean θ and the variance θ̃. Such parameters θ and θ̃ are called variational
parameters. The approximation in Eq. (3.40) is fitted to the true posterior by
minimizing the cost function in Eq. (3.28):

C(q) =

〈
log

q(S,θ)

p(X,S,θ)

〉
= 〈log q(S,θ)〉 − 〈log p(X,S,θ)〉 . (3.41)

Due to the factorial structures of q(S,θ) and p(X,S,θ), the cost function splits
into a sum of simple terms:

C(q) =
∑

j,t

〈log q(sj(t))〉+
∑

k

〈log q(θk)〉 (3.42)

−
∑

i,t

〈logN (xi(t) | fi,t, vx,i )〉 (3.43)

−
∑

j,t

〈logN ( sj(t) | 0, vs,j )〉 −
∑

k

〈logN ( θk | θk,m, θk,v )〉 , (3.44)

where 〈·〉 denotes the expectation over distribution q(S,θ).
During learning, individual factors q(sj(t)), q(θk) of the approximation in

Eq. (3.40) are updated one at a time while keeping the others fixed. For each
update of one factor, only the terms containing the corresponding variable are
relevant. For example, for updating q(θk), the part of the cost function to be
minimized is

Ck = 〈log q(θk)〉 −
∑

l

〈log p(θl | θk)〉 − 〈logN ( θk | θk,m, θk,v )〉 , (3.45)

where θl are all the variables whose distribution is conditioned on θk. Since
each factor q(θk) is a univariate Gaussian distribution, one has to minimize the
quantity in Eq. (3.45) w.r.t. the variational parameters θk and θ̃k.

For the variables θk that do not contribute to the evaluation of the outputs
fi,t (and therefore do not affect the likelihood terms in Eq. (3.43)), the cost terms

in Eq. (3.45) and the gradients ∂Ck/∂θ̄k ∂Ck/∂θ̃k can be evaluated exactly. Then,
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Figure 3.5: Experimental results for a test problem with a three-dimensional
PNL mixture of two sources; two out of three post-nonlinearities are non-
invertible. The plots show the representation of the even source grid found by
PNFA+FastICA (left) and by Taleb and Jutten’s algorithm (right).

a numerical optimization algorithm derived for the NFA model (Lappalainen and
Honkela, 2000) can be used.

The difficulties arise when updating the posterior for the variables that con-
tribute to the evaluation of fi,t, because the likelihood terms in Eq. (3.43) and
the corresponding gradients cannot be evaluated exactly. In Publication 4, it
is shown how the likelihood terms depend on the means and variances of the
outputs fi,t and it is explained how those means and variances (and therefore
the cost function) can be calculated using first-order Taylor approximation and
Gauss-Hermite quadrature. Using this approximation, the gradients of the likeli-
hood terms can be propagated from the outputs fi,t to the rest of the parameters
using a scheme resembling backpropagation (see, e.g., Haykin, 1999).

Since the cost function and its gradients can be computed, it is possible to
do the minimization numerically. For many parameters, the resulting minimiza-
tion procedure is similar to the gradient-based algorithm used in NFA (see Lap-
palainen and Honkela, 2000).

3.3.4 Experimental example

In Publication 4, we test the proposed PNFA algorithm on an artificial example
of a three-dimensional PNL mixture of two independent sources. The PNL map-
pings is chosen such that it is globally invertible but contains two non-invertible
post-nonlinear distortions. The mixtures are noisy, that is white Gaussian noise
is added to the data after mixing. In the experiment, we use the PNFA+FastICA
approach to find independent components underlying the test data.

The left plot in Fig. 3.5 is the representation of the original source grid in
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the source space estimated by PNFA+FastICA (the interpretation of the plots
is same as in Fig. 3.3). The results indicate that the source space and the PNL
mapping are estimated pretty well. The achieved quality of the original source
reconstruction is moderate but note that the classical PNL algorithms cannot
achieve comparable quality (see the results of the TJ algorithm in the right plot
of Fig. 3.5).

One of the probable reasons for the moderate quality of the source estimation
is the coarse model for the sources, which is chosen to be Gaussian. A better
approach might be to use a mixture model, as in the independent factor analysis
model developed by Attias (1999). In order to obtain good separation quality,
such an approach would most probably require a more complex posterior approx-
imation because the fully factorial posterior approximation used in the presented
PNFA algorithm is too simple to capture any posterior correlations in the vicinity
of the correct BSS solution. The effect of the form of the posterior approximation
is explained in more details in the following section.

3.4 Effect of posterior approximation

The computational complexity of the algorithms implementing the variational
Bayesian principles significantly depends on the chosen form of the posterior ap-
proximation. In addition to the most commonly used factorization q(S,θ) =
q(S)q(θ), the source and parameter posterior approximations are typically fac-
torized further. For example, the parameters can be divided into subsets

q(θ) =
∏

i

q(θi) , (3.46)

and each term q(θi) captures the correlations between the variables in the set θi

while all posterior correlations with the variables in other sets θj are neglected.
The extreme case is the fully factorial approximation such as the one in Eq. (3.40)
used in the PNFA algorithm.

Although assuming suitably factorial q usually results in computationally effi-
cient learning algorithms, we show in Publication 1 that the form of the poste-
rior approximation can affect the solution found by VB methods. Two common
cases are investigated in detail:

1. sources are approximated to be independent a posteriori

q(S) =
∏

j,t

q(sj(t)) ; (3.47)
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2. the posterior correlations of the sources are modeled

q(S) =

T∏

t=1

q(s(t)) . (3.48)

This effect is studied in Publication 1 both theoretically and experimentally by
considering the source separation problem in linear mixtures

x(t) = As(t) + n(t) , (3.49)

when the sources are assumed to have either decoupled dynamics or non-Gaussian
distributions. The analysis, however, extends to the case of nonlinear mixtures
as well.

It is shown that neglecting the posterior correlations of the sources in Eq. (3.47)
introduces a bias in favor of the PCA solution. By the PCA solution we mean
the solution in which the mixing vectors, columns of mixing matrix A, are or-
thogonal w.r.t. the inverse of the estimated noise covariance Σn = E{nnT}, that
is ATΣ−1

n A is a diagonal matrix. This effect can be unimportant in many la-
tent variable models introduced in Section 2.1 where individual sources may not
have meaningful interpretations. However, this matter is crucial for the source
separation models discussed in Section 2.2.

3.4.1 Trade-off between posterior mass and posterior misfit

In variational methods, there is a general trade-off between the amount of poste-
rior mass in the neighborhood of the solution and the misfit between the approx-
imation and the true local probability distributions. This effect can be shown to
exist for both Bayesian methods which are discussed in this thesis and also for ML
methods which use variational approximations (e.g., Attias, 1999; Ghahramani
and Hinton, 2000).

In general, Bayesian methods aim to find a solution which corresponds to a
model whose neighborhood contains a large portion of the posterior probability
mass. This implies that the posterior density of the unknown parameters is high.
For linear models described by Eq. (3.49), this is achieved if

1. the sources and the mixing matrix together explain the observations well;

2. the source estimates fit their prior model.

Large posterior mass also implies that the solution corresponds to a wide peak in
the posterior density, which means that

3. the solution is robust.
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As was discussed in Section 3.2.3, VB learning is able to find a solution which
meets these three requirements.

However, the restricted form of the posterior approximation results in an
additional requirement:

4. the form of the posterior approximation q(S,θ) = q(S)q(θ) should match
the posterior p(S,θ |X) around the solution.

In practice, the choice of the functional form of q(S) may affect the optimal
solution significantly, while the effect of the form of q(A) is smaller. For the rest
of the parameters, this effect is usually negligible as their number is typically
much smaller than the number of unknown quantities in A and especially in S.

The solution found by variational methods is usually a compromise between
the amount of posterior mass (requirements 1–3) and the misfit between the ap-
proximation and the true local posterior (requirement 4). Usually it is desirable
that the requirement 4 affects the solution as little as possible although some-
times it is possible to use it to select an appropriate solution among otherwise
degenerate solutions (see Section 3.5 for an example of such regularization).

In the following, the trade-off between the misfit of the posterior approxima-
tion and the accuracy of the model is explained using a hypothetical example.
Let us assume that the data are described well by a probabilistic LVM with
the joint pdf p(x, s, θ) in the solution s = strue and θ = θtrue. Then, the joint
posterior p(s, θ |x) has a peak in the vicinity of the correct solution (θtrue, strue)
and its fragment could look like the one presented in Fig. 3.6. Note that there
are typically correlations between the hidden variables and the other parame-
ters. For example, in the linear model in Eq. (3.49), these correlations reflect the
fact that rotating A could be compensated by rotating s correspondingly. These
correlations are typically neglected in the posterior approximation.

Let us assume that the variational principles are used to approximate the
posterior using a point estimate for θ and a Gaussian distribution q(s) for the
variable s. Then, VB learning reduces to the EM algorithm which uses a varia-
tional approximation for the posterior p(s |X, θ). Examples of this posterior are
shown in Fig. 3.6 with the bold curves for two values of θ.

The peak in the posterior means that the cost of inaccurate modeling is min-
imized in the correct solution (θtrue, strue) where the model is most accurate.
However, the posterior p(s |X, θ) is closest to Gaussian in the vicinity of another
solution which we denote by (θq, sq). There, the true posterior p(s |X, θ) can be
approximated best by q(s) and therefore the misfit between the optimal poste-
rior and its approximation is minimized. The actual solution found by variational
methods will generally be a compromise between these two solutions.

The presented example is rather illustrative as the mismatch between the true
local posterior and its Gaussian approximation is more important in nonlinear
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Figure 3.6: A hypothetical posterior p(s, θ |x). The data are explained best in
the solution (θtrue, strue) where the posterior has a peak. The bold black curves
represent the posterior pdfs p(s |x, θq) and p(s |x, θtrue). The form of the posterior
for s is closer to Gaussian in the solution (θq, sq).

models (e.g., Valpola and Karhunen, 2002). The Gaussian form of the posterior
approximation typically introduces a bias in favor of smooth mappings. For
linear ICA models in Eq. (3.49), the more important factor is that the posterior
approximation q(S) often neglects the posterior correlations between the sources.
As we show in Publication 1, this introduces a bias in favor of the PCA solution.
Therefore, the found solution is a result of a trade-off between the ICA solution
where the explanation of the sources is best and the PCA solution where the
posterior approximation of the sources is most accurate. If the mixing vectors
are close to orthogonal and the source model is strongly in favor of the ICA
solution, the optimal solution can be expected to be close to the ICA solution.
If the mixing matrix cannot be made more orthogonal (e.g., by pre-whitening),
it is possible to end up close to the PCA solution even though the model should
be able to judge the ICA solution to be better.

3.4.2 Factorial q(S) favors orthogonality

The fully factorial approximation in Eq. (3.47) is often used in Bayesian ICA
models. However, Publication 1 shows that it favors solutions with an orthog-
onal mixing matrix, which is a characteristic of PCA.

Publication 1 considers three cases of linear models with different source mod-
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els: temporally correlated sources, super-Gaussian sources and sources described
with a mixture model. In the following, the form of the optimal unrestricted
Gaussian approximation q(s(t)) is presented for the three models.

Temporally correlated sources

In the simplest case, the temporal correlations in the sources can be modeled
using a linear first-order autoregressive process with Gaussian innovations:

p(s(t) | s(t− 1),θ) = N ( s(t) | Bs(t− 1), Σm ) . (3.50)

The matrix of dynamics B and the covariance matrix of innovations Σm are
assumed diagonal due to the independence of the sources.

It can be shown that the optimal unrestricted posterior q(s(t)) for this model
is a Gaussian distribution whose covariance for t = 2, . . . , T − 1 is given by

Σs,opt =
〈
ATΣ−1

n A + Σ−1
m + BTΣ−1

m B
〉−1

, (3.51)

where Σn is the diagonal covariance matrix of the observation noise.

Super-Gaussian sources

If the sources are known to be super-Gaussian (i.e. their kurtosis is positive),
each source can be modeled as a Gaussian variable whose variance changes with
time. Then, the source prior model is

p(s(t) |θ) = N ( s(t) | 0, Σs(t) ) (3.52)

where Σs(t) is the time-dependent diagonal covariance matrix. The diagonal ele-
ments of Σs(t) are the variances of individual sources at different time instances,
they are modeled in Publication 1 using log-normal parameterization.

The optimal unrestricted posterior q(s(t)) is Gaussian for this model and its
covariance matrix is

Σs(t),opt =
〈
ATΣ−1

n A + Σ−1
s (t)

〉−1
. (3.53)

Mixture-of-Gaussians model

The source prior that is most commonly used in Bayesian ICA models is the
mixture-of-Gaussians (MoG). The distribution of each source sj is modeled by a
mixture of Kj Gaussian components

p(sj(t) |θ) =

Kj∑

k=1

πj,kN ( sj(t) | mj,k, vj,k ) (3.54)
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and therefore the prior for the source vector s(t) is a mixture of
∏

j Kj Gaussian
components, each having a diagonal covariance matrix:

p(s(t) |θ) =
∏

j

p(sj(t) |θ) =
∑

ν

πνN ( s(t) | µν , Σs,ν ) . (3.55)

Here, ν is a vector whose j-th component νj ∈ {1, . . . ,Kj} defines the mix-

ture component chosen for source sj . The sum
∑

ν
means

∑K1

ν1=1 · · ·
∑KM

νM=1,
πν =

∏
j πj,νj

denotes the prior probability that s(t) is drawn from the mixture
component defined by ν, and Σs,ν are the diagonal covariance matrices of the
mixture components.

The optimal unrestricted posterior q(s(t)) for this model would be a mixture
of Gaussians with

∏
j Kj mixture components. The estimation of such posterior

becomes computationally intractable in high dimensions and therefore a simpler
approximation by only one Gaussian is sometimes used (Miskin and MacKay,
2001). The covariance matrix of this Gaussian approximation is given by

Σs(t),opt =
〈
ATΣ−1

n A + D(t)
〉−1

(3.56)

where D(t) is a diagonal matrix with the elements dj(t) =
∑Kj

k=1 λtjkv
−1
j,k on the

main diagonal. The coefficients λtjk estimate the posterior probability that a
sample sj(t) is drawn from the k-th mixture component N ( sj(t) | mj,k, vj,k ).

The misfit between the factorial approximation in Eq. (3.47) and the optimal
unrestricted q(s(t)) is minimized when the form of the optimal q(s(t)) agrees
with Eq. (3.47). This is the case when the optimal covariance matrices given in
Eqs. (3.51), (3.53), (3.56) are diagonal. This, in turn, happens if and only if the
columns of A are orthogonal w.r.t. the inverse noise covariance Σ−1

n . Since VB
learning is trying to minimize the misfit, it favors orthogonal solutions for A. A
similar effect can be shown to exist for the posterior approximation of the mixing
matrix when the fully factorial approximation favors uncorrelated sources.

The experiments reported in Publication 1 confirm these theoretical re-
sults. Some results for a model with non-Gaussian sources are reproduced in
Fig. 3.7. When the source distributions are close to Gaussian (experiment (a)),
the PCA solution is found even after initialization in the correct solution. In
experiment (c), the ICA solution is found because the sources are strongly non-
Gaussian. Some other solution is obtained in the mediate case (experiment (b)).

Similar results were reported by other researchers. Højen-Sørensen et al.
(2002) argue that posterior correlations should be taken into account in the ap-
plication of variational methods to the ICA problem. Wang and Titterington
(2004) consider a similar problem in which the parameters of a linear state-space
model in Eqs. (2.8)–(2.9) are estimated using the variational Bayesian approach
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Figure 3.7: The two columns of the mixing matrix during learning an ICA model
with two non-Gaussian sources. The sources are modeled by mixtures of Gaus-
sians, and the factorial q(s(t)) is used. The final solutions are circled. The degree
of non-Gaussianity of the mixed signals grows from (a) to (c).

with a fully factorial approximation. In particular, they show that the estimate of
the matrix B in Eq. (2.9) tends to the true value of B only for B = 0. Thus, the
fully factorial approximation introduces a bias in favor of a static factor analysis
model.

3.5 Nonlinear state-space models

The effect of the posterior approximation is to introduce a bias in favor of certain
types of solutions. This can be a negative result as was shown in the previous sec-
tion. However, sometimes it is possible to use this effect to select an appropriate
solution among otherwise degenerate solutions.

This section considers a nonlinear dynamic factor analysis (NDFA) method
introduced by Valpola and Karhunen (2002) for estimation of nonlinear state-
space models (see Section 2.1.3) using variational Bayesian learning. First, the
modeling assumptions are briefly introduced. It is also shown how the method can
achieve a meaningful representation of the sources by using a suitable posterior
approximation. Then, it is demonstrated how the NDFA algorithm can be used
for the problem of detecting changes in the dynamics of an observed dynamical
system.
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3.5.1 Nonlinear dynamic factor analysis

NDFA considers the classical nonlinear state-space model

x(t) = f(s(t)) + n(t) (3.57)

s(t) = g(s(t− 1)) + m(t) , (3.58)

in which the states s(t) and the noise terms n(t), m(t) are described by Gaussian
distributions. All the structural assumptions of NDFA are expressed in the form
of the density model p(X,S,θ). The observation equation (3.57) is expressed in
the likelihood factor and the state equation (3.58) defines the source prior. The
unknown nonlinear mappings f and g are modeled by MLP networks with one
hidden layer of sigmoidal tanh nonlinearities. Gaussian distributions are used to
describe the weights of the MLPs for computational tractability.

The posterior distribution of the unknown parts of the model is learned us-
ing the variational Bayesian principles. The posterior approximation q(θ,S) =
q(θ)q(S) is chosen to be fully factorial Gaussian for q(θ), but the posterior q(S)
is somewhat more complex. It takes into account the posterior dependences be-
tween the state values at successive time instants in order to avoid the problem
described by Wang and Titterington (2004):

q(S) =
∏

j

[
q(sj(1))

T∏

t=2

q(sj(t) | sj(t− 1))

]
. (3.59)

The conditional distribution in Eq. (3.59) is assumed Gaussian

q(sj(t) | sj(t− 1)) = N ( sj(t) | µj(t), s̃j(t) ) (3.60)

with the mean µj(t) that depends linearly on the previous value sj(t− 1):

µj(t) = sj(t) + ρj,(t−1),t(sj(t− 1)− sj(t− 1)) . (3.61)

A positive side-effect of the restrictions on the approximating distribution
q(S,θ) is that the nonlinear dynamical reconstruction problem is regularized and
becomes well-posed. With linear f and g, the true posterior distribution of the
states S would be Gaussian, while nonlinear f and g result in a non-Gaussian
posterior distribution. Restricting the approximation q(S) to be Gaussian even
in the nonlinear model therefore favors smooth mappings and regularizes the
problem. The simpler Gaussian approximation q(S) =

∏T
t=1 q(s(t)) would still

leave a rotational ambiguity within the source space, which would in practice yield
a PCA-like solution. This is resolved by discouraging the posterior dependences
between sj(t) and sl(t− 1) with j 6= l.
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NDFA favors decoupled dynamics of sources

It can be shown (see the Appendix at the end of this chapter) that the used
parameterization of the posterior in Eq. (3.59) corresponds to modeling the pos-
terior of all the source values

[
s(1)T s(2)T s(3)T . . .

]T
(3.62)

with a Gaussian distribution whose covariance is parameterized as




D1 D1,2 0 0 . . .
D1,2 D2 D2,3 0 . . .
0 D2,3 D3 D3,4 . . .
...

...
...

. . . · · ·




−1

, (3.63)

where Dt and D(t−1),t are diagonal matrices made up from the elements s̃−1
j (t)+

ρ2
j,t,(t+1)s̃

−1
j (t+1) and −ρj,(t−1),ts̃

−1
j (t), respectively. There are also some excep-

tions for the last source values s(T ).
Let us now assume for simplicity that the mappings f and g were restricted

to be linear, that is the linear state-space model described by Eqs. (2.8)-(2.9)
is learned. In this case, the optimal unrestricted posterior for the sources in
Eq. (3.62) would be Gaussian with the covariance matrix




Σ̃1 −BTΣ−1
m 0 0 . . .

−Σ−1
m B Σ̃ −BTΣ−1

m 0 . . .

0 −Σ−1
m B Σ̃ −BTΣ−1

m . . .
...

...
...

. . . · · ·




−1

, (3.64)

where

Σ̃1 = ATΣ−1
n A + Σ−1

s1
+ BTΣ−1

m B (3.65)

Σ̃ = ATΣ−1
n A + Σ−1

m + BTΣ−1
m B , (3.66)

with Σs1
the prior covariance for the source values s(1). There are some ex-

ceptions in Eq. (3.64) for the last source values s(T ). The misfit between the
posterior approximation in Eq. (3.59) and the optimal unrestricted posterior is
minimized when the covariance matrix in Eq. (3.63) agrees with the optimal
structure in Eqs. (3.64)–(3.66). This is the case if and only if the columns of A

are orthogonal w.r.t. Σ−1
n and the matrix of dynamics B is diagonal, that is the

sources have independent dynamic models. This result can also be extended to
the case of nonlinear mappings. Thus, the NDFA algorithm tries to find such
a representation in which the dynamics of different sources are as decoupled as
possible.
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Subspace separation example

The experimental results reported by Valpola and Karhunen (2002) are repro-
duced here with the emphasis that the NDFA algorithm is able not only to learn
a good dynamic model but also to find a meaningful source representation, that
is the NDFA method can achieve nonlinear source separation.

The artificial dataset is produced by mixing in a nonlinear manner three
independent dynamic processes, two of which are Lorenz processes and one is a
harmonic oscillator. Only five linear projections of the eight states are used to
produce the observations. Finally, the data are corrupted by observation noise.
Five out of 10 observations are presented in Fig. 3.8.

As reported by Valpola and Karhunen (2002), the NDFA algorithm is able
to learn a very good dynamic model for this artificial dataset. In addition to
this, the dynamics of the sources is decoupled in such a way that three groups of
sources reconstruct the three original dynamic processes (see Fig. 3.8). Within
the three subspaces, the sources are estimated up to a nonlinear transformation
but the subspaces are separated correctly. Note that the number of sources was
set to 9 in the experiments but one of the sources was considered irrelevant by
the algorithm and its values were estimated as zeros.

3.5.2 State change detection with NDFA

The presented experiment demonstrates that the NDFA algorithm is a powerful
tool for estimating a good model for quite complex dynamical systems. The
model can be used for many purposes, one of which could be monitoring the
state of an industrial or natural process. In Publication 2, we demonstrate
how the NDFA approach can be used for the problem of detecting changes in an
observed dynamic process.

Change detection problem

The task of change detection is important in many fields of engineering and it
is often related to fault diagnosis (Chen and Patton, 1999; Chiang et al., 2001).
An abrupt change in the process usually indicates a fault, and the goal of change
detection is to pinpoint the occurrence of the fault and to give an alarm. It
would also be very desirable to be able to analyze exactly where in the process
the original reason for the fault is. This may be quite difficult because a fault
in some underlying subsystems or parameters may manifest itself in complicated
ways in the observables, or sometimes be hardly observable at all.

Detection of changes in stochastic processes has been studied extensively (see,
e.g., books by Basseville and Nikiforov, 1993; Gustafsson, 2000). Many classical
methods monitor some direct indicators of the process observables and respond to
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Figure 3.8: Above: Observations artificially generated as a nonlinear mixture of
three dynamic processes. Only five out of ten observations used in the experi-
ments are presented here. Below: The 9 sources estimated by NDFA. The left
plot shows the time series for the beginning of the observation period (first 600
samples). The plots on the r.h.s. are the phase curves of the three separated
subspaces: subspaces of components 1–3, 4–6 and 7–8 (from top to bottom).
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changes in the indicators, such as the mean or variance of a process measurement.
Such indicator-based approaches do not take all the relevant information about
the process into account which usually means a delayed response to a change or
neglect of the change in the worst case.

A better solution is to estimate a more sensitive model of the process and
then use the goodness-of-fit of the new observations to the previously established
model as the change indicator. For dynamical systems, state-space models are
typical modeling tools. For linear SSMs, the change detection problem has been
studied well and the most common technique is to test the statistical properties
of the innovations generated by a Kalman filter (Basseville and Nikiforov, 1993;
Gustafsson, 2000). For nonlinear SSMs, the results on detecting changes have
been quite limited. The main approach to this problem is linearization like in
the extended Kalman filter, and applying change detection methods to linearized
systems.

The classical change detection methods often assume that the model of a pro-
cess is known. In many cases, however, the model must be learned from available
training data. For example, in real industrial processes, the state variables, dy-
namics and observation mapping are rarely known accurately enough to allow
model-based approaches without estimating the process from the data. NDFA is
a powerful tool for learning a nonlinear state-space model, which can efficiently
be used in the problem of change detection.

NDFA for state change detection

The approach to change detection proposed in Publication 2 makes use of the
cost function provided by the NDFA algorithm in order to monitor the (differ-
ential) entropy rate of the observed process. For stationary stochastic processes,
the entropy rate is defined as

h(x) = lim
t→∞

E{− log p(x(t) |x(t− 1), . . . ,x(1)} , (3.67)

where the expectation is taken over p(x(1), . . . ,x(t)) (Cover and Thomas, 1991).
Using a process realization {x(t−L+ 1), . . . ,x(t)} of length L, the entropy rate
can be estimated as

ĥL(t) =
1

L

L−1∑

τ=0

− log p(x(t− τ) |x(t− τ − 1), . . . ,x(1)) (3.68)

= −
1

L
log p(x(t− L+ 1), . . . ,x(t) |x(t− L), . . . ,x(1)) . (3.69)

Now, based on the stationarity assumption, one can assume that short-time es-
timates ĥL(t) of the entropy rate fluctuate around a constant mean which is the
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true value of the entropy rate. If the process changes, it is likely that its en-
tropy changes as well and so does the mean value for ĥL(t). The entropy rate
can therefore be taken as the indicator of change and alarm can be raised if the
estimated value of the entropy rate either decreases or increases.

The estimation of the entropy rate can be done using the VB cost function
provided by the NDFA algorithm. To see that, let us assume that the posterior
approximation q(S,θ) is close to the true posterior p(S,θ |X) and therefore the
KL-divergence between the two densities is close to zero

Dt = D(q(St,θ) || p(St,θ |Xt)) ≈ 0 . (3.70)

In this equation, the subscript t emphasizes the fact that the data matrix X grows
when new data arrive and therefore D depends on time. It follows from Eq. (3.70)
that the cost function in Eq. (3.28) gives the estimate of the log-evidence:

C(t) ≈ − log p(x(1), . . . ,x(t)) . (3.71)

Then, a short-time estimate of the entropy rate can be computed as

ĥL(t) =
1

L

(
C(t)− C(t− L)

)
. (3.72)

The deviations of the quantity ĥL(t) from the entropy rate value calculated
from the training sequence can then be monitored using the standard CUSUM
test (Basseville and Nikiforov, 1993). Note that this approach is valid if Dt in
Eq. (3.70) is not zero but represents a process with a stationary mean.

In Publication 2, we show how the cost function in Eq. (3.71) can be cal-
culated efficiently when new measurements arrive. It is demonstrated that mon-
itoring the terms of the cost function helps detect the states that undergo the
most significant changes. Thus, an important feature of the proposed NDFA ap-
proach to change detection is that it is able not only to pinpoint the time of the
change, but also to show which of the underlying states might be the reason for
the change.

Example of state change detection

A change in a real process can take place in a variety of ways. In the NSSM
model, it is reflected in a change either in the mapping f from the states to the
observations, in the underlying state dynamics determined by the mapping g,
or in the noise levels. These changes can be detected by monitoring the NDFA
cost function. Publication 2 concentrates on the most demanding case where
the nonlinearity g undergoes some change. The nonlinear mapping f can make
this change hardly discernible in the observations, making the change detection
problem very challenging.
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Figure 3.9: The phase curves of the three separated subspaces (refer to Fig. 3.8)
for test data with a simulated pronounced change. The presented components
are estimated using the NDFA model learned for the training data. The dotted
and solid lines represent the estimated components before and after the moment
of change, respectively. The cost function contribution changes most significantly
for the components of the second subspace.

In the experiments, we consider the same artificial dynamic process for which
Valpola and Karhunen (2002) estimated the NDFA model (see Fig. 3.8). The
changes in the process are simulated by changing the parameters of one of the
Lorenz processes or the harmonic oscillator. Both the case of pronounced changes
in the dynamics (which become clearly visible in the measurements) and the case
of slight changes (which are hardly visible in the observations) are investigated
experimentally. The proposed approach is shown to detect the simulated changes
and in the considered change detection tasks, it outperforms other approaches
based on alternative models.

Fig. 3.9 presents the states estimated using the NDFA algorithm for test
data which contains a simulated pronounced change. Note that the curves of
the second decoupled subspace undergo the most significant changes. Also, the
cost function terms corresponding to the states of this subspace changes most
noticeably (see the cost function values in Publication 2).

3.6 Conclusions

In this chapter, several results on applying variational Bayesian methods to differ-
ent LVMs have been presented. We started with a brief introduction to the basics
of probability theory and the principles of Bayesian inference. Then, we outlined
several popular methods for approximate evaluation of the posterior distribution
of the unknown model parameters. Variational Bayesian learning, which is the
main focus of this chapter, was emphasized.

The important characteristic of variational Bayesian learning have been dis-
cussed. The main advantages of VB methods include their elegant way to do
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model selection, resistance against overfitting, and the possibility to regularize
solutions by choosing a suitable form of the posterior approximation. We also
discussed potential problems with applying VB learning in practice. They in-
clude high computational complexity, multiple local minima, the possibility to
underfit, and a possible bias in favor of some types of solutions. Methods related
to VB estimation have been outlined as well.

This chapter presented a model called post-nonlinear factor analysis which is
learned using the VB approach. PNFA is a generative LVM where the hidden
variables are described by the Gaussian distribution and the generative mapping
is restricted to the post-nonlinear type. The proposed PNFA method can be
applied to the ICA problem in post-nonlinear mixtures and it can overcome some
limitations of the existing alternative methods. In particular, it can separate
sources from mixtures with non-invertible PNL distortions provided that the
number of the observed variables is greater than the number of the sources and
the full generative mapping is invertible.

The computational complexity of VB methods depends significantly on the
chosen form of the posterior approximation. A simpler, factorial form usually
yields a faster learning algorithm. However, the form of the posterior approxi-
mation can introduce a bias in favor of some type of solutions and the result of
VB learning is usually a compromise between the solutions where the explana-
tion of the data is best and the solutions where the posterior approximation is
most accurate. In this chapter, this effect was discussed first using a hypothetical
example. Then, it was shown both theoretically and experimentally that a fully
factorial approximation in linear ICA models introduces a bias in favor of the
PCA solution. This result also generalizes to the case of nonlinear mixtures.

The effect of posterior approximation can be a negative result but sometimes it
is possible to use it to select an appropriate solution among otherwise degenerate
solutions. In this chapter, this regularization was shown to exist in the nonlinear
dynamic factor analysis model introduced by Valpola and Karhunen (2002) for
estimation of nonlinear state-space models. The NDFA algorithm based on VB
learning can achieve a meaningful representation of the sources by using a suitable
posterior approximation. This was shown here by emphasizing the subspace
separation results in the experiments reported by Valpola and Karhunen (2002).

The last part of this chapter presented a potential application for the models
learned using the VB approach. It was demonstrated how the NDFA algorithm
can be applied to the problem of detecting changes in the dynamics of a complex
process. The proposed approach uses the VB cost function in order to calculate a
short-time estimate of the entropy rate of the process. This quantity is assumed
stationary if the process does not undergo any changes and therefore it can be
used as the indicator of change.
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Appendix to Chapter 3: proofs

Posterior approximation q(S) in NDFA

The following derivations show that the parameterization of the posterior in
Eqs. (3.59)–(3.61) used in the NDFA algorithm corresponds to modeling the
posterior of all the source values with a Gaussian distribution whose covariance
is parameterized as presented in Eq. (3.63).

It follows from Eq. (3.59) that the sources are modeled to be independent a
posteriori, that is

q(S) =
∏

j

q(sj(1), . . . , sj(T )) . (3.73)

Let us first consider the posterior q(sj(1), . . . , sj(T )) describing the values of one
source sj . We use the following notation zt = sj(t), zt = sj(t), z̃t = s̃j(t) where
s(t), s̃(t) parameterize the posterior as presented in Eqs. (3.60) and (3.61).

The approximate pdf q(z1, z2) for two successive values is equal to

q(z1, z2) = q(z1)q(z2 | z1)

∝ exp

(
−

1

2
z̃−1
1 (z1 − z1)

2

)
exp

(
−

1

2
z̃−1
2 (z2 − z2 − ρ1,2(z1 − z1))

2

)

= exp

(
−

1

2

[
z̃−1
1 (z1 − z1)

2 + z̃−1
2 (z2 − z2)

2

−2z̃−1
2 ρ1,2(z1 − z1)(z2 − z2) + z̃−1

2 ρ2
1,2(z1 − z1)

2
])

= exp

(
−

1

2

[
(z1 − z1)

2(z̃−1
1 + z̃−1

2 ρ2
1,2)

+z̃−1
2 (z2 − z2)

2 − 2z̃−1
2 ρ1,2(z1 − z1)(z2 − z2)

])

∝ exp

(
−

1

2
zT
1..2Σ̃

−1

1..2z1..2

)
,

where
z1..2 =

[
z1 − z1 z2 − z2

]T

and

Σ̃
−1

1..2 =

[
z̃−1
1 + z̃−1

2 ρ2
1,2 −z̃−1

2 ρ1,2

−z̃−1
2 ρ1,2 z̃−1

2

]
.

It can be shown likewise that the approximate pdf q(z1, z2, z3) is equal to

q(z1, z2, z3) = q(z1, z2)q(z3 | z2) ∝ exp

(
−

1

2
zT
1..3Σ̃

−1

1..3z1..3

)
,



68 3. Variational Bayesian methods

where
z1..3 =

[
z1 − z1 z2 − z2 z3 − z3

]T

and Σ̃
−1

1..3 is a tridiagonal matrix

Σ̃
−1

1..3 =



z̃−1
1 + z̃−1

2 ρ2
1,2 −z̃−1

2 ρ1,2 0

−z̃−1
2 ρ1,2 z̃−1

2 + z̃−1
3 ρ2

2,3 −z̃−1
3 ρ2,3

0 −z̃−1
3 ρ2,3 z̃−1

3


 . (3.74)

These results can easily be generalized to T source values. Thus, the approx-
imate pdf q(sj(1), . . . , sj(T )) is Gaussian and the inverse of the corresponding
covariance matrix has a tridiagonal structure, similar to Eq. (3.74). Note that
non-zero elements in Eq. (3.74) appear only on the main diagonal and in the
elements corresponding to two successive source values.

Now taking into account other sources and formatting all source values accord-
ing to Eq. (3.62) yields a Gaussian pdf whose covariance is given by Eq. (3.63).



Chapter 4

Faster separation algorithms

4.1 Introduction

The source separation methods considered in this chapter assume the linear mix-
ing model in Eq. (2.13) in which the noise term n(t) is typically omitted:

x(t) = As(t) =

M∑

j=1

ajsj(t) . (4.1)

Using the matrix notation of Eq. (2.1), this can be written as

X = AS . (4.2)

As was discussed in Section 2.2, the reconstruction of the sources sj(t) can be
achieved based on some prior assumptions or by using knowledge about the un-
known parts of the model. Independence of sources is often used when very little
is known about the underlying processes and therefore ICA has become a popular
tool for exploratory data analysis. As was reviewed in Section 2.2, independence
can be utilized in different ways by using such assumptions as non-Gaussianity
of source distributions, distinct autocorrelation or frequency structures of the
sources, or non-stationarity of source variances. Different approaches may be
suited better for particular problems or applications. Sometimes it is also possi-
ble to combine several approaches in order to improve the quality of separation.

Very often, one may have some idea about the nature of the sources which
might be underlying the data. Relevant signals are often expected to have spe-
cific temporal, spectral or spatial characteristics and it would be very useful to
incorporate such prior knowledge into the separation algorithm directly. For ex-
ample, in biomedical applications, some idea about the waveform of the heart

69
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beat can help extract cardiac artifacts from MEG recordings. Such prior infor-
mation can also be used in exploratory data analysis when one investigates what
kind of components it is possible to find in the data by using different types of
assumptions. This kind of problem setting, with some prior knowledge available,
is often called semiblind.

Bayesian methods considered in Chapter 3 are popular for their principled
way to express modeling assumptions and prior knowledge in terms of proba-
bility distributions. For example, the known characteristics of the sources and
the mixing matrix could be modeled by properly chosen priors for S and A, re-
spectively. Thus, Bayesian methods are good candidates to be used in semiblind
source separation problems. However, the main drawback of Bayesian methods is
their high computational burden. For example, learning a model like NDFA with
a decent number of unknown parameters may take several days on a modern com-
puter. This makes these methods hardly applicable to large-scale problems and
complicates exploratory data analysis when different types of models are likely
to be tried.

This chapter considers semiblind methods which are not Bayesian as they do
not have an explicit density model for all the unknown parameters. It is shown
however, that the resulting algorithms can sometimes have an interpretation as
approximate Bayesian inference. All the algorithms presented in this chapter
follow the unifying algorithmic framework of denoising source separation intro-
duced by Särelä and Valpola (2005). This framework allows for easy development
of source separation methods which can be either completely blind, or combine
such blind criteria as independence with some prior knowledge (which is done in
constrained ICA methods, James and Hesse, 2005), or use the prior information
alone to achieve separation.

The methods proposed in this chapter were originally designed for exploratory
analysis of climate data. The dataset considered in this thesis is a huge collection
of global climate measurements obtained for the last 56 years and thus the high
dimensionality of the dataset (more than 20,000 time instances in about 10,000
spatial locations) was one of the main reasons for applying fast and relatively
simple separation algorithms. Most of the presented algorithms were motivated
by the patterns and regularities found in the considered climate dataset. Yet, the
proposed methods are quite general and could be applied to other types of data
as well.

4.2 The general algorithmic framework

The algorithmic framework of denoising source separation (DSS), as presented by
Särelä and Valpola (2005), is a general sequence of steps used by different source
separation algorithms. The sources estimated in that framework are generally
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assumed

1. to be mutually uncorrelated,

2. to have some structure known from the available prior information.

Typically, maximizing the structure of components makes them more independent
and thus DSS can be seen as generalization of ICA with relaxed independence
assumption.

4.2.1 Preprocessing and demixing

The requirement that the sources are uncorrelated is assured by using a prepro-
cessing step called whitening or sphering (Hyvärinen et al., 2001). Whitening
makes the covariance structure of the data uniform in such a way that any linear
projection of the data has unit variance. The positive effect of such a transfor-
mation is that any orthogonal basis in the whitened space defines uncorrelated
sources. Therefore, whitening is used as a preprocessing step in many ICA algo-
rithms, and the mixing matrix can be restricted to be orthogonal afterwards.

Whitening is usually performed by PCA with normalizing the principal com-
ponents to unit variances. If measurements X are centered, the matrix of sphered
data Y, defined similarly to Eq. (2.1), is calculated as

Y = D−1/2VTX , (4.3)

where D is the diagonal matrix of the eigenvalues of the data covariance matrix
defined in Eq. (2.6). The columns of matrix V are the corresponding eigenvectors.
The dimensionality of the data can also be reduced at this stage by retaining only
the principal components corresponding to the largest eigenvalues in D.

It is easy to show that the covariance matrix calculated for the whitened
data Y is the identity matrix. Matrix Y is not unique, though; any orthogonal
rotation of its columns produces a matrix

S = WY (4.4)

that also has unit covariance. Therefore, a set of uncorrelated sources can be
found by using Eq. (4.4) with the restriction that W is an orthogonal matrix.
Matrix W (or the overall transformation matrix WD−1/2VT) is often called a
demixing matrix in the ICA literature.

The matrix S of the source values is defined similarly to Eq. (2.1). Each row
of S contains all the values of one source for the whole observation period. In
this chapter, one row of S is denoted by

sT
1..T =

[
s(1) . . . s(T )

]
. (4.5)
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In some applications, it can be desirable to extract only one source at a time.
Then, the rows sT

1..T,j are estimated one after another as

sT
1..T,j = wT

j Y , (4.6)

where the demixing vectors wT
j are the rows of the matrix W.

The optimal matrix W (or its rows wT
j ) is found so as to maximize the desired

properties of components S, that is by using the second DSS requirement.

4.2.2 Special case with linear filtering

In some cases, the interesting properties of a source signal can be obtained by
applying a linear temporal filter. For example, the sources are sometimes known
to be cyclic over a certain period of time or to have prominent variability in a
certain timescale and filtering would emphasize this characteristic structure of
the sources.

Using the notation of Eq. (4.5), linear filtering is written as

ŝT
1..T = sT

1..T F , (4.7)

where F is the filtering matrix of dimensionality T×T . The amount of structure in
the signal can then be measured by a quantity that gives the ratio of the variance
of the filtered component ŝ and the variance of the non-filtered component s:

F(s1..T (w)) =
var{ŝ}

var{s}
=

∑T
t=1 ŝ

2(t)
∑T

t=1 s
2(t)

=
‖sT

1..T F‖2

‖s1..T ‖2
=
‖wTYF‖2

‖wTY‖2
, (4.8)

where ŝ(t) denotes one element of ŝ1..T . The measure in Eq. (4.8) can be under-
stood as the relative amount of energy contained in the interesting part of the
signal and it attains its maximum value of unity if filtering does not change the
signal. In Publication 7, we use the term clarity for this quantity.

The sources can be estimated one by one using Eq. (4.6) so as to maximize the
objective function in Eq. (4.8). It can be shown, however, that for many practical
cases such estimation can be performed in just three steps, when whitening is
followed by filtering and PCA (see Fig. 4.1).

The intuition behind this approach is that filtering on the second step renders
the variances of the sphered components different and the covariance matrix of
Ŷ is no more equal to the identity matrix. Note that in many practical situa-
tions, this filtering can be done using the same filter F as in Eq. (4.8) (Särelä and
Valpola, 2005). Then, PCA can identify the directions which maximize the prop-
erties of interest. The eigenvalues obtained from PCA on the third step give the
values of the objective function F for the found sources. Thus, the components
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Figure 4.1: Separation algorithm in case of linear denoising.

are ranked according to the prominence of the desired properties (their clarity
values) the same way as the principal components in PCA are ranked according
to the amount of variance they explain.

The procedure presented in Fig. 4.1 is basically equivalent to joint diagonal-
ization of the data covariance matrix C and the covariance of the filtered data Cf

given in Eqs. (2.6) and (2.20), respectively. Thus, this algorithm can solve the
source separation problem, that is it can reconstruct the original sources, under
the following conditions: 1) the original sources and their filtered versions are
mutually uncorrelated and 2) the clarity values of the components are different.
Note also that the considered three-step algorithm optimizes the same type of
cost function as the maximum noise fraction transform proposed by Green et al.
(1988).

4.2.3 General case of nonlinear denoising

In the general case, the interesting properties of the sources could be quite sophis-
ticated and the quantity F(s1..T (w)) measuring the amount of desired structure
in a signal could be quite complex. This measure depends on the source val-
ues which are estimated using the demixing vector w. Therefore, F should be
optimized w.r.t. w.

The optimization of such an objective function could be done by the following
gradient-based algorithm. It follows from Eq. (4.6) that for whitened data Y it
holds that

w =
1

T
Ys1..T . (4.9)

Using the chain rule for computing derivatives, it follows from Eq. (4.6) that the
gradient of F(s1..T (w)) w.r.t. w can be computed from the gradient w.r.t. s1..T

as
∂F

∂w
= Y

∂F

∂s1..T
. (4.10)

Now using Eqs. (4.9)–(4.10), the gradient ascent step for w can be written as

wnew = w + µ
∂F

∂w
=

1

T
Y

(
s1..T + Tµ

∂F

∂s1..T

)
, (4.11)
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Figure 4.2: The general sequence of steps in the algorithmic framework of denois-
ing source separation. The equations explain the operations on different steps for
the deflation and symmetric approaches.

where µ is the step size. Eq. (4.11) shows that one step for optimizing w can be
performed by first updating the sources with the step size µs:

ŝ1..T = s1..T + µs
∂F

∂s1..T
= ϕ(s1..T ) (4.12)

and then calculating the new value for w using Eq. (4.9). This yields the sequence
of steps presented in Fig. 4.2, which is iterated until convergence.

In the deflation approach, the components sj are estimated one after another.
Then, the function orth(.) in Step 4 implements the Gram-Schmidt orthogonal-
ization, when the demixing vector wj is made orthogonal to the previously found
vectors w1, . . . ,wj−1 (see, e.g., Hyvärinen et al., 2001).

In the symmetric approach, all the components are estimated simultaneously,
as in Eq. (4.4). Then, the denoising function in Step 3 is applied to all the sources,

that is Ŝ = ϕ(S), which means that the values of one source can affect the new
values for another source. The operator orth(.) in Step 4 gives the orthogonal

projection of the matrix YŜT onto the set of orthogonal matrices.
The basic idea of the algorithmic framework called denoising source separation

(Särelä and Valpola, 2005) is to design separation algorithms following the general
sequence of steps presented in Fig. 4.2. The separation criterion is introduced in
the procedure in the form of a suitably chosen denoising function ϕ. In case the
algorithm is derived from an optimized measure F , the corresponding denoising
function is given by Eq. (4.12). For many practical cases, however, it can be
easier to construct an update rule

ŝ1..T = ϕ(s1..T ) (4.13)

with a sensible function ϕ than to derive a gradient-based rule in Eq. (4.12) from
an objective function. First, the interesting signal structure could be difficult to
measure using a simple index F . Second, the derivation of the gradient ∂F/∂s1..T
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could be cumbersome, especially for complex F . It is also possible that the
gradient-based update rule in Eq. (4.12) is not robust as, for example, it can be
sensitive to some particular values of s (see an example in Section 4.3.4).

In general, the denoising function ϕ(s1..T ) should be designed such that it em-
phasizes the desired (interesting) properties of the signal and removes irrelevant
information from s1..T . It can represent a gradient-based update rule or its mod-
ification. Sometimes, it is possible to derive an appropriate denoising function
from rather heuristic principles. Also note that for any ϕ(s1..T ), it is possible to
modify Eq. (4.13) by adding a term α+ βs1..T , with α, β some constants, as in

ŝ1..T ∝ α+ βs1..T + ϕ(s1..T ) , (4.14)

without changing the fixed points of the algorithm (Särelä and Valpola, 2005).
In DSS terminology, the iterative procedure in Fig. 4.2 is usually interpreted

as extension of the power method for computing the principal components of
Y. Without denoising, this procedure is indeed equivalent to the power method,
because then Steps 2 and 4 give w = orth(YYTw). Since Y is white, all the
eigenvalues are equal and the solution without denoising becomes degenerate.
Therefore, even slightest changes made by denoising ϕ can determine the rotation.
Since the denoising procedure emphasizes the desired properties of the sources,
the algorithm can find the rotation where the properties of interest are maximized.

It should be noted that the presented procedure is very general. The essential
part of any specific algorithm implemented in this framework is the denoising
procedure. In fact, many existing ICA algorithms fall into the pattern of DSS al-
though they have been derived from other perspectives, typically from a properly
chosen cost function. Examples of such algorithms include the FastICA algo-
rithm where the maximized structure is non-Gaussianity of the sources (Hyväri-
nen et al., 2001), the semiblind algorithm which uses the knowledge of the source
autocorrelation function (Barros and Cichocki, 2001) and the blind algorithm for
extraction of sources which are expected to have prominent frequencies in their
spectra (Cichocki et al., 2002; Cichocki and Amari, 2002).

4.2.4 Calculation of spatial patterns

In the applications, we are interested not only in the sources S, but also in the
matrix A in Eq. (4.1). From Eqs. (4.2)–(4.4), it follows that

X = AS = AWY = AWD−1/2VTX . (4.15)

Thus A should be chosen as the (pseudo)inverse of WD−1/2VT which is

A = VD1/2WT . (4.16)
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Since the extracted components are normalized to unit variances, the columns of
A have a meaningful scale. If the sensor array has a spatial arrangement, which
is the case for spatio-temporal datasets, each column aj of the mixing matrix
can be visualized as a spatial map showing how the effect of the j-th source is
distributed over the sensor array.

Note that the signs of the extracted components cannot generally be deter-
mined, which is a well-known property of the classical ICA problem. Such ambi-
guity arises when ϕ(s1..T ) = −ϕ(−s1..T ). The sign indeterminacy can be resolved
if there exists some information about the asymmetry of the source distributions.

The ambiguity of the solution is even higher for subspace models such as inde-
pendent subspace analysis (Hyvärinen and Hoyer, 2000) or independent dynamics
subspace analysis presented in Publication 8. There, the sources are decomposed
into groups and the sources within a group are generally assumed dependent
while components from different groups are mutually independent. Such models
can be estimated only up to orthogonal rotations of sources within the groups.

A subspace of sources can be visualized by the observation variance explained
by its components. For the model in Eq. (4.1), the variance of one observation
xi equals

var{xi} =

M∑

j=1

a2
ij var{sj} =

M∑

j=1

a2
ij , (4.17)

which follows from the condition that the sources sj are mutually uncorrelated
and have unit variances. Thus, the variances explained by the sources from one
subspace {sj |j ∈ Jk} equal

varJk
{x} =

∑

j∈Jk

a2
j , (4.18)

where a2
j denotes the vector of the squared elements of the mixing vector aj . The

quantity in Eq. (4.18) is a vector whose dimensionality equals the number of sen-
sors and therefore, for datasets with a spatial arrangement, it can be represented
as a spatial pattern showing the effect on the observation variance in different
spatial locations.

4.2.5 Connection to Bayesian methods

This section shows that learning Baysian ICA models can often be done in the
presented algorithmic framework. This can be shown, for example, under the
assumption that the mixing matrix A is point estimated and the source posterior
is modeled using probability distributions, that is learning the posterior is done
using the EM-algorithm: The source distributions are updated on the E-step and
the mixing matrix is reestimated on the M-step.



4.2. The general algorithmic framework 77

In the following, let us consider the noisy model in Eq. (2.13) and assume that
the data X have been prewhitened. Therefore, the mixing matrix is restricted to
be orthogonal, that is ATA = I, and the transpose of A gives the demixing matrix
W. Another assumption made here is that the observation noise is isotropic in
the whitened space, that is the observation noise covariance is Σn = vxI.

The update rules are derived here by simplifying the learning rules used in
variational Bayesian methods discussed in Chapter 3. Some of the notation used
in this section is taken from Chapter 3, where 〈·〉 denotes the expectation over
the (approximating) posterior, and θ is the variational parameter giving the (ap-
proximate) posterior mean of the parameter θ.

Reestimation of the mixing matrix

Let us first show that the new values of the mixing matrix obtained on the M-step
are defined mostly by the means of the source posterior distributions.

When the Gaussian distribution is used both as the prior for the elements of A
and to model the observation noise, the optimal posterior q(A) is also Gaussian.
Then, a natural choice for the point estimates for A is the mean of the Gaussian
distribution q(A). The i-th row of the mixing matrix A is here denoted by αi.
If αi has a zero-mean prior, the update rule for its posterior mean can be shown
to be

αi =

〈
v−1

x,i

T∑

t=1

s(t)s(t)T + Σ−1
α,i

〉−1
〈
v−1

x,i

〉 T∑

t=1

xi(t) 〈s(t)〉 , (4.19)

where Σα,i is the covariance of the Gaussian prior for αi and vx,i denotes the
variance of the noise in the i-th measurement channel. If the prior for the rows
is very flat, Σ−1

α,i is close to zero and Eq. (4.19) simplifies to

αi =

〈
T∑

t=1

s(t)s(t)T

〉−1 T∑

t=1

xi(t) 〈s(t)〉 (4.20)

or in the matrix notation

A = X 〈S〉
T 〈

SST
〉−1

. (4.21)

For whitened data, the factor
〈
SST

〉−1
accounts mostly for scaling the so-

lution for A. This follows from the fact that the sources should practically be
uncorrelated when the estimates are close to the optimal solution, which yields

〈
SST

〉
= 〈S〉 〈S〉

T
+

T∑

t=1

Σs(t) ≈ T I +

T∑

t=1

Σs(t) , (4.22)
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where the posterior covariances of the sources Σs(t) are diagonal due to the or-
thogonality restriction on A (see Publication 1).

Now it follows from Eqs. (4.21)–(4.22) that the update of A can be done as

A← orth(X 〈S〉
T
) , (4.23)

which is equivalent to Step 3 of the general algorithmic framework as W = AT.

ICA model with super-Gaussian sources

Let us now consider an example of the E-step, that is the update rules for the
source distribution q(s(t)). We consider here the ICA model with super-Gaussian
sources presented in Publication 1. There, each source is modeled a priori as a
Gaussian variable with zero mean and a time-dependent variance vs,j(t):

p(sj(t) |θ) = N ( sj(t) | 0, vs,j(t) ) . (4.24)

The mean of the fully factorial posterior approximation q(s(t)) is updated
using the following rule:

s(t) =
〈
ATΣ−1

n A + Σ−1
s (t)

〉−1 〈
ATΣ−1

n x(t)
〉
, (4.25)

where Σs(t) is a diagonal matrix made up from the variances vs,j(t). Note that
the mean values s(t) are the most important for the M-step as was showed pre-
viously. It can be shown after straightforward calculations that each element of
s(t) in Eq. (4.25) can be computed as

sj(t) =
1

1 +
〈
v−1

s,j (t)
〉
/
〈
v−1

x

〉sx,j(t) , (4.26)

where sx,j(t) denotes the j-th element of the source vector computed from the
data x(t) as

sx(t) = ATx(t) . (4.27)

Since W = AT, Eq. (4.27) is equivalent to Step 2 of the general alorithmic
framework and therefore Eq. (4.26) defines the denoising function.

Fig. 4.3a presents the function in Eq. (4.26) if
〈
v−1

x

〉
= 1 and the source

variance is estimated such that
〈
v−1

s,j (t)
〉

= s−2
x,j(t). This function is a typi-

cal shrinkage function that can be used for extracting super-Gaussian sources
(Hyvärinen, 1999b). Thus, the EM algorithm for this model can be simplified to
a DSS procedure which uses a shrinkage function as denoising.
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Figure 4.3: Left: The denoising function corresponding to the Bayesian model
with super-Gaussian sources. Right: The prior model for the sources used in
the Bayesian interpretation of FastICA with the tanh nonlinearity. The curves
represent probability density functions defined by Eq. (4.39) with negative, zero
and positive values for c.

Bayesian interpretation of FastICA

It is also possible to show that some algorithms which are derived without using
the Bayesian principles and which follow the general DSS framework can have
a Bayesian interpretation. In the following, the FastICA algorithm (Hyvärinen
et al., 2001) is shown to have an interpretation as the EM-algorithm for a linear
LVM with specific prior distributions for the sources. The presented derivations
follow the view of the fast separation algorithms presented by Valpola and Pa-
junen (2000).

Let us first assume that each source is modeled as a Gaussian random variable
with time-dependent mean and variance:

p(sj(t) |θ) = N ( sj(t) | µj(t), vs,j(t) ) . (4.28)

The rule for updating the posterior mean for q(s(t)) is then given by

s(t) =
〈
ATΣ−1

n A + Σ−1
s (t)

〉−1 〈
ATΣ−1

n x(t) + Σ−1
s (t)µ(t)

〉
, (4.29)

where µ(t) is made up from the elements µj(t), and Σs(t) is a diagonal matrix
made up from the variances vs,j(t). This can be transformed to

sj(t) =
sx,j(t)vs,j(t) + µj(t)vx

vx + vs,j(t)
, (4.30)

where sx(t) is defined in Eq. (4.27) and parameters vs,j , vx are assumed to be
point estimated.
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It is convenient to reformulate Eq. (4.30) using the score function ψ(s) =
∂
∂s ln p(s) and its derivative, defined for a Gaussian distribution with mean µ and
variance v as

ψg(s) =
µ− s

v
, ψ′

g =
∂ψg(s)

∂s
= −

1

v
. (4.31)

This transforms Eq. (4.30) to the following update rule:

sj(t) = sx,j(t) +
ψg,j(sx,j(t))vx

1− vxψ′
g,j(sx,j(t))

= sx,j(t) +
ψg,j(sx,j(t))vx

1 + vx/vs,j(t)
. (4.32)

Let us assume now that the prior model for each source is not restricted to
Gaussian and the distribution in Eq. (4.28) is just a local Gaussian approximation
of the true prior distribution. The noise variance vx is typically much smaller
than the variance vs,j(t) of the local approximation and therefore Eq. (4.32) can
be approximated as

sj(t) ≈ sx,j(t) + ψg,j(sx,j(t))vx = sx,j(t) +
(
µj(t)− sx,j(t)

) vx

vs,j(t)
, (4.33)

which means that the solution for sj(t) would be close to sx,j(t). Therefore, the
Gaussian approximation in Eq. (4.28) can be computed in the vicinity of sx,j(t)
by choosing the parameters µj(t) and vs,j(t) such that

ψtrue,j(sx,j(t)) = ψg,j(sx,j(t)) , ψ′
true,j(sx,j(t)) = ψ′

g,j . (4.34)

This transforms Eq. (4.33) to the update rule

sj(t) ≈ sx,j(t) + ψtrue,j(sx,j(t))vx , (4.35)

which is equivalent to the following denoising function

ŝ1..T = β′ s1..T + ψtrue(s1..T ) , (4.36)

with β′ some constant. Eq. (4.36) should be compared with the update rule used
in FastICA:

ŝ1..T = β′′s1..T + g(s1..T ) (4.37)

where g is some chosen nonlinearity applied component-wise and β′′ is an updated
constant. The criteria optimized with Eqs. (4.36) and (4.37) are equivalent if

ψtrue(s) ∝ α+ βs+ g(s) . (4.38)

A popular choice for g(s) is the hyperbolic tangent and then it follows from
Eq. (4.38) that the corresponding prior density model for the sources is defined
by

p(s) = Z exp(as+ bs2 + c log cosh s) , (4.39)
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where Z is the normalization constant. In the noiseless case, coefficients a, b, c
should be chosen such that

∫ ∞

−∞

p(s) ds = 1 ,

∫ ∞

−∞

sp(s) ds = 0 ,

∫ ∞

−∞

s2p(s) ds = 1 . (4.40)

The requirement that s has zero mean yields a = 0, and the pair (b, c) has only
one degree of freedom since the variance of s is constrained to unity. Depending
on the sign of the parameter c, the distribution in Eq. (4.39) can model either
super-Gaussian or sub-Gaussian sources as demonstrated in Fig. 4.3b. Negative c
correspond to super-Gaussian distributions while positive c define sub-Gaussian
distributions. Thus, one denoising ϕ used in FastICA suits a family of source
distributions.

4.3 Fast algorithms proposed in this thesis

This section presents several source separation algorithms proposed in this thesis.
All the presented algorithms follow the unifying algorithmic framework described
in Section 4.2. Some of the proposed methods are derived so as to maximize an
objective function F measuring the amount of the desired structure, while others
are based on properly designed denoising procedures.

The following sections describe the optimized signal structure for each al-
gorithm and outline the corresponding denoising procedure. Artificial source
separation examples are presented for some of the algorithms. This section is
based on Publications 5-9 of this thesis.

4.3.1 Clarity-based analysis

Publication 5 presents a simple frequency-based analysis based on a linear
filtering procedure, as explained in Section 4.2.2. In this analysis, filtering means
passing spectral components within a certain frequency band and removing all
other frequencies. Therefore, the algorithm can be used if relevant sources are
expected to have prominent variability in a certain timescale.

The filtering matrix F used in the objective function in Eq. (4.8) is imple-
mented in practice using the discrete cosine transform (DCT):

F = VT
dctΛVdct , (4.41)

where Vdct is the orthogonal matrix of the DCT basis in which one row vT
f

corresponds to one DCT component with frequency f . Λ is a diagonal matrix
with elements λf ∈ [ 0, 1 ] on the main diagonal. Then, the filtered signal can be
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written as

ŝT
1..T = sT

1..T F =
∑

f

λf (vT
f s1..T )vT

f . (4.42)

Thus, a spectral component vf is fully passed if the corresponding element λf

equals unity, and it is removed from the signal if λf = 0.
The analysis is tuned to a specific frequency band by assigning large values to

the elements λf corresponding to the frequencies of interest and setting λf = 0
for other frequencies. Then, the three-step procedure described in Section 4.2.2
can find the components that contain the largest relative amount of interest-
ing frequencies in their power spectra. The extracted components are ordered
according to their clarity values defined in Eq. (4.8).

The algorithm can be considered semiblind as it uses the knowledge of the
frequency band of the prominent source variations. With low-pass filtering, the
analysis is similar to the maximum autocorrelation factor transform proposed
by Switzer (1985) and the linear case of slow feature analysis (Wiskott and Se-
jnowski, 2002). Therefore, we refer to this step as slow feature analysis in Publi-
cation 7. The application of this algorithm to global climate data is discussed in
Section 4.4.3.

4.3.2 Frequency-based blind source separation

The algorithm described in the previous section is useful for extracting com-
ponents with prominent structures in a certain frequency range. This requires
some knowledge about the expected power spectra of the original components.
In blinder settings, this information does not exist and the prominent spectral
characteristics of the sources should be found automatically.

In Publications 6 and 7, we present an algorithm which can be seen as an
extension of the previous approach. It achieves signal separation based on the
assumption that the sources have distinct power spectra. Similarly to the previous
approach, the interesting signal properties are emphasized by linear temporal
filtering. However, since the sources are expected to have distinct frequency
contents, an individual filter is applied to each source. The characteristic spectral
properties of the sources are not known in advance, and therefore the filters are
adjusted to the prominent spectral characteristics of the sources which emerge
during the learning procedure. This approach is implemented using the general
sequence of steps presented in Fig. 4.2, where the denoising function performs
temporal filtering using a set of adaptive filters.

The corresponding denoising procedure is briefly outlined in the following, see
also Table 4.1 for details. Note that each filter is in practice implemented using
the filtering matrix Fj defined similarly to Eq. (4.41). Note also that the filtering
matrix in Eq. (4.41) is defined by the diagonal elements λf of the matrix Λ. A
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Table 4.1: Denoising procedure for frequency-based separation

1. Compute DCT: Sdct = SVT
dctΛf, where Λf retains only interesting

frequencies similarly to Λ in Eq. (4.41).

1. Estimate matrix P of power spectra values Pj(f) for different sources j
(in rows) and different frequencies f (in columns). This is done by, e.g.,
low-pass filtering the squares of the elements Sdct in each row.

3. To increase the competition in weak frequencies, normalize P such the
1
M

∑M
j=1 Pj(f) = 1, for all interesting frequencies.

4. Compute the eigen decomposition 1
T PPT = VpDpV

T
p and do partial

whitening to a degree α:

Λm = max
(
VpD

−α/2
p VT

p P , 0
)
.

Each row of matrix Λm defines one frequency mask λj .

5. Implement topographic idea by, e.g., low-pass filtering the columns of Λm.

6. Calculate new source values: Ŝ = (Sdct ◦Λm)Vdct, where ◦ denotes
element-wise multiplication.

vector of these elements defining the filter used for the j-th source is denoted
here by λj . We call each vector λj a frequency mask.

The first step of the denoising procedure is to compute the power spectra of
the current source estimates. This gives an idea about the characteristic spectral
properties of each source and suggests which frequencies should be emphasized
by filtering. The next step is to calculate the individual frequency masks λj such
that they are distinctive compared to each other. The intuition here is to make
a coefficient λf,j large if the frequency f is more prominent in sj compared to
the other sources. Correspondingly, λf,j is made small if the frequency f is less
prominent in sj . Such a competition procedure naturally requires that all the
sources are estimated simultaneously and the deflation approach is not applica-
ble here. The competition mechanism is in practice implemented using rather
heuristic principles and it is based on partial whitening the power spectra. This
is somewhat similar to the whitening-based estimation of the source variances
proposed by Valpola and Särelä (2004). The algorithm also uses some ideas simi-
lar to topographic ICA (Hyvärinen et al., 2001) in order to relax the competition
in the power spectra of the neighboring sources. The final step of the denois-
ing procedure is filtering the source estimates, as in Eq. (4.42), using the filters
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Figure 4.4: (a): Artificially generated sources three of which (sources 1, 2 and
3) have prominent variability in the slow timescale. (b): Observations generated
as a linear mixture of the five sources. (c): Three components extracted by the
clarity-based analysis with the emphasis on the prominent slow variability, where
the period of slow spectral components is assumed to be longer than 80. (d):
The result of the frequency-based rotation of components in (c).

defined by the estimated frequency masks.

Note that the proposed algorithm essentially performs separation in the fre-
quency domain using an approach closely related to structured variances, which
is discussed in Section 2.2.5.

Let us demonstrate an example of a frequency-based analysis using the two
presented approaches. The test signals are generated by mixing linearly five
sources, as shown in Fig. 4.4a,b. Sources 1–3 have prominent variability in the
slow timescale while the other two signals are white Gaussian noise.

First, the clarity-based analysis is applied to extract three sources with the
most prominent slow variability. The period of slow spectral components is cho-
sen to be longer than 80. The extracted sources are shown in Fig. 4.4c to recon-
struct the subspace of the original components 1–3. The first original component
is reconstructed by source 3 due to its distinct clarity value. However, the original
components 2 and 3 are still mixed in sources 1 and 2. These components cannot
be separated using the clarity-based analysis as their clarity values are identical.
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On the second stage, the frequency-based rotation is applied to the three ex-
tracted sources. It is easy to see from Fig. 4.4d that now the resulting components
reconstruct the original components 1–3.

4.3.3 Independent dynamics subspace analysis

Frequency-based approach can find a meaningful representation of complex multi-
dimensional data as it can separate different phenomena by the timescales of their
prominent variations. This approach is not applicable, however, if the mixed phe-
nomena have similar frequency contents. In this case, a combined time-frequency
analysis (see, e.g., Särelä and Valpola, 2005) could be useful provided that inter-
esting spectral components of different sources have distinct activation structures.
However, the time-frequency analysis is difficult when the observation period is
short compared to the timescale of the interesting data variations.

It is also possible that several components are related to the same phenomenon
and their separation is not really possible. This might be the case, for example,
in climate data, which is explained in Publication 7. Climate phenomena con-
stantly interact with each other and cannot be independent. Most probably, they
can be described by multidimensional dynamic processes and a meaningful sep-
aration criterion would be making the dynamics of different groups of sources as
decoupled as possible.

Publication 8 presents a model called independent dynamics subspace anal-
ysis (IDSA) which implements the aforementioned assumptions. Now the sources
are decomposed into groups as in Eq. (2.18). Each group sk is assumed to be of
known dimensionality and to follow an independent first-order nonlinear dynamic
model:

sk(t) = gk(sk(t− 1)) + mk(t) , k = 1, . . . ,K , (4.43)

where gk is an unknown nonlinear function and mk(t) accounts for modeling
errors and noise. Assuming separate gk in Eq. (4.43) means that the subspaces
have decoupled dynamics, that is sources from one subspace do not affect the
development of sources from other subspaces (see Fig. 4.5). In the linear case

s(t) = Bs(t− 1) + m(t) , (4.44)

decoupled dynamics is equivalent to having a block-diagonal matrix B with non-
zero blocks Bk.

The IDSA model resembles linear dynamic factor analysis (DFA) considered
by Särelä et al. (2001). The main difference is that the IDSA model requires all
the sources be directly visible in the observations, which implies that they can be
estimated using Eq. (4.4). The DFA model is more general as it permits sources
which are important only for explaining the source dynamics and which cannot
be identified as certain linear projections of the data.
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Figure 4.5: The model used in independent dynamics subspace analysis.

Without loss of generality, we can retain the assumption that all the sources
are mutually uncorrelated and have unit variances. The sources from different
subspaces are uncorrelated due to independence and the correlations within the
subspaces can always be removed by a linear transformation (whitening). Note
that IDSA identifies the sources only up to linear rotations within the subspaces,
which is a known indeterminacy of multidimensional ICA (Cardoso, 1998).

Each subspace is estimated so as to minimize the prediction error of the
corresponding subspace dynamic model in Eq. (4.43). Hence, the minimized
objective function is

C =
1

2

∑

t

‖sk(t)− gk(sk(t− 1))‖2 . (4.45)

The source values are calculated using the separating structure in Eq. (4.4), and
therefore

sk(t) = Wkx(t) , (4.46)

where each row of the matrix Wk defines one source of the k-th subspace. The ob-
jective function in Eq. (4.45) should be optimized w.r.t. the nonlinear function gk

and the sources sk(t) with the constraint that the demixing matrix is orthogonal.
This can be done using the general algorithmic framework outlined in Fig. 4.2, as
was explained in Section 4.2.3. Therefore, the corresponding denoising procedure
alternately updates gk and sk(t) (see Table 4.2).

The nonlinearity gk is updated so as to minimize the cost function in Eq. (4.45)
keeping the current source estimates sk(t) fixed. The exact implementation of
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Table 4.2: Denoising procedure for independent dynamics subspace analysis

1. Update dynamics gk so as to minimize C for current sk(t).

2. Calculate the new source estimates ŝk(t) = sk(t)− µ∂C/∂sk(t) , where

∂C

∂sk(t)
= sk(t)− gk(sk(t− 1))−

[
∂gk(sk(t))

∂sk

]T [
sk(t+ 1)− gk(sk(t))

]

with the following exceptions: when t = 1, the term sk(t)− gk(sk(t− 1)) is
omitted; and when t = T , the term [ ∂gk(sk(t))/∂sk ]T[. . .] is omitted. The
Jacobian matrix of gk calculated at sk(t) is denoted by ∂gk(sk(t))/∂sk.

this step depends on the chosen mathematical model for gk. For example, the
case of linear dynamics is trivial as minimizing the cost function w.r.t. the blocks
Bk of the matrix B yields

Bk = Sk,t+1S
†
k,t , (4.47)

where Sk,t and Sk,t+1 are matrices whose columns contain the source values
sk(t) at times t = 1, . . . , T − 1 and t = 2, . . . , T , respectively, and † denotes a
pseudoinverse matrix.

In Publication 8, an MLP network is used to model gk:

gk(s) = Dkφ(Cks + ck) + dk , (4.48)

where Dk, Ck, ck, dk are the parameters of the MLP and φ is a sigmoidal
function that operates component-wise on its inputs. The parameters of the
MLP can be updated using the standard backpropagation procedure (see, e.g.,
Haykin, 1999). It should be noted that the solution for gk should be regularized.
If gk is overfitted to the current source estimates sk(t), yielding C = 0, the
algorithm stops in a degenerate solution.

The update of the sources s(t) is done using the gradient descent step similarly
to Eq. (4.12). If the MLP model in Eq. (4.48) is used, the Jacobian matrix
required for computing the gradient is given by

∂gk(s)/∂sk = Dk diag(φ′(Cksk + ck))Ck , (4.49)

where φ′ denotes the derivative of φ. Note that in practice the update of the
dynamics gk can be done more rarely than the update of the sources.

The independent subspaces can be estimated either symmetrically or one af-
ter another using deflation. The possibility to extract subspaces one by one
provides a useful tool for extracting dynamically coupled components with the
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most predictable time course from multivariate data. This is an important ad-
vantage compared to other methods where the model is learned for all data (e.g.,
Särelä et al., 2001), which can be very difficult for highly multidimensional and
noisy data. Another important advantage of the proposed method is its com-
putationally efficient learning algorithm, which is fast compared to the models
estimated using the variational Bayesian approach.

Fig. 4.6 reproduces the experimental results reported in Publication 8. The
artificial dataset is generated by mixing linearly three independent dynamic pro-
cesses, two of which are Lorenz processes and one is a harmonic oscillator, and two
white Gaussian noise signals. Five out of 10 observations are presented in Fig. 4.6.
The algorithm is set to estimate symmetrically three independent subspaces: a
two-dimensional subspace with linear dynamics and two three-dimensional sub-
spaces with nonlinear dynamics. The recovered sources are shown in Fig. 4.6 to
reconstruct the three subspaces of the original dynamic processes.

The current implementation of IDSA is based on the first-order autoregressive
model for subspace dynamics. Including more time delays in the dynamic model
can be useful when some of the subspace dimensions are not present in the data
(like in the DFA model). However, one should be careful as introducing a higher-
order memory to the dynamic model may cause the problem when the dynamics
of any linear projection of the data can be perfectly modeled, which makes the
separation of the subspaces impossible.

In practice, a frequency-based representation of data considered in Section 4.3.2
might be useful before performing IDSA. Slower components are generally eas-
ier to predict and the algorithm can favor them. Then, a good initialization is
important for obtaining meaningful results. Therefore, it is preferable that all
subspaces in the data would have the same timescale of prominent variations.

4.3.4 Extraction of components with structured variance

The previous sections considered algorithms for extracting prominent compo-
nents with slowly changing time course. However, interesting slow behavior can
be found in fast changing components as well. Publication 9 introduces an
algorithm which seeks fast components with prominent temporal structure of
variances. The motivation of the proposed analysis comes from the inspection of
the global weather measurements and the observation that fast weather variations
have distinct yearly structure. This raises the question whether there are simi-
lar variations on slower timescales. The aim of the algorithm is to capture such
prominent slow variability of the variances with the possibility to put emphasis
on different timescales.

An assumption made in our analysis is that the interesting sources have non-
stationary variances, that is their level of activation changes with time. More-
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Figure 4.6: Above: Observations artificially generated as a linear mixture of three
dynamic processes and two noise signals. Only five out of 10 observations used
in the experiments are presented here. Below: The eight sources estimated by
IDSA. The left plot shows the time series for the beginning of the observation
period (first 600 samples). The plots on the r.h.s. are the phase curves of the
three separated subspaces: subspaces of components 1–3, 4–6 and 7–8 (from top
to bottom).
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over, the variances of the sources have prominent temporal structure in a specific
timescale. In the derivation of the algorithm, the source values {s(t)|t = 1, . . . , T}
are regarded as a realization of a stochastic process {st} consisting of random
variables st. Note the difference in notations: s(t) denotes a sample from the
random variable st. The variables st are assumed Gaussian with zero mean and
changing variances v(t). We also define the mean variance of {st} as

lim
T→∞

1

T

T∑

t=1

v(t) . (4.50)

The following quantity is proposed to measure the amount of structure in
each source:

F = h(ν)− h(s) , (4.51)

where h(s) denotes the (differential) entropy rate of {st} and h(ν) is the entropy
rate of a Gaussian process {νt} with i.i.d. zero-mean variables νt whose variances
E{ν2

t } are stationary and equal to the mean variance of {st} defined in Eq. (4.50).
The Gaussian process with stationary variances has the highest entropy rate
among all the processes with the same mean variance. Therefore, F is a good
measure of non-stationarity, it is always nonnegative and it attains its minimum
value of zero if and only if {st} is a Gaussian process with stationary variances.
The proposed measure resembles negentropy in Eq. (2.16) which is used as a
measure of non-Gaussianity of a random variable.

The assumption that variances v(t) have prominent variability in the known
timescale helps estimate v(t) from one realization of the stochastic process. Then,
given a realization of length T , the quantity in Eq. (4.50) can be estimated as
1
T

∑
t v(t). The Gaussian variables st are assumed independent given v(t) and

therefore the entropy rate of {st} can be estimated as

h(s) ≈
1

T

∑

t

H(st) =
1

T

∑

t

1

2
log 2πev(t) , (4.52)

where H(st) denotes the entropy of st. This yields

F =
1

2
log

1

T

∑

t

v(t)−
1

T

∑

t

1

2
log v(t) ≥ 0 . (4.53)

In practice, whitening makes 1
T

∑
t s

2(t) = 1 for any source estimate, which allows
for the assumption that

1

T

∑

t

v(t) = 1 . (4.54)
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This simplifies Eq. (4.53) to

F1 = −
1

T

∑

t

1

2
log v(t) . (4.55)

The statistic F is a good measure of the structure which is related to non-
stationarity of variances and has some connection to non-Gaussianity. The latter
can be seen by noting from Eq. (4.54) that the variances v(t) fluctuate around
unity and therefore one can use the approximation log(1 + ǫ) ≈ ǫ − 1

2ǫ
2. This

yields from Eq. (4.55) the quantity

F2 ∝
1

T

∑

t

v2(t)− 1 (4.56)

which measures the magnitude of the variance fluctuations around the mean
variance. For a process with stationary and unit variance, F2 equals zero. Now
note that if the local variance v(t) is approximated by s2(t), Eq. (4.56) gives the
fourth moment of the random variable s. Such higher-order moments are often
used for measuring non-Gaussianity (Hyvärinen et al., 2001).

In order to use the proposed measure, one needs to estimate the variances
v(t) of a signal at each time instant. This is usually done by estimating local
sample variances because the variance is assumed to change slowly. We, however,
want to concentrate on a specific timescale of variance variability and therefore
we assume that the variance can be estimated in practice by filtering the squared
signal values s2(t) such that only the interesting frequencies are preserved:

v1..T = Fs2
1..T . (4.57)

Here, v1..T is the vector of variances v(t) and s2
1..T is the vector made up from

the squared source values s2(t), both defined similarly to Eq. (4.5), and F is the
symmetric filtering matrix defined as in Eq. (4.41).

The measures F1 and F2 are functions of the variances v(t) which are esti-
mated from the sources s(t) using Eq. (4.57). Thus, F1 and F2 are functions of
s(t) and can be maximized w.r.t. s(t) by the gradient ascent method explained
in Section 4.2.3. The required gradient can be approximated as

∂F

∂s(t)
≈

∂F

∂v(t)
s(t) , (4.58)

which yields the denoising function

ŝ(t) = g(v(t))s(t) , (4.59)
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where the nonlinearity g is given by

for F1 : g(v) ∝ β − 1/v , (4.60)

for F2 : g(v) ∝ β + v , (4.61)

and β is an arbitrary constant. The values g(v(t)) can be termed masks as they
are applied to the current source estimates to get the new ones.

However, neither of the two nonlinearities is robust. The nonlinearity in
Eq. (4.61) behaves well for small values of v but it gives too much weight to large
v. This makes the algorithm very sensitive to outliers and very often results
in overfitting (Hyvärinen et al., 1999). Note that F2 is related to higher-order
moments which often suffer from this problem. In contrast, the nonlinearity in
Eq. (4.60) saturates for large v but it is sensitive to small v where the gradient
goes to infinity.

More robust algorithms can be derived by adjusting the nonlinearity g. For
example, Eq. (4.60) could be transformed into

g(v) ∝ β −
1

v + α
, (4.62)

where α accounts for the uncertainty of the local variance estimate v(t). The exact
shape of the nonlinearity g is usually not important and one can approximate
Eq. (4.62) by another function which saturates for large v, for example, by

g(v) = β + tanh(αv) , (4.63)

where α is a constant.
In general, the update rule in Eq. (4.59) with an arbitrary smooth g can be

shown to maximize the following criterion:

F3 =

(
1

T

∑

t

G(v(t))−G(1)

)2

, (4.64)

where g(v) = ∂G(v)/∂v. Note that F3 with G(v) = v2 and F2 defined in
Eq. (4.56) are maximized at the same points. To decrease overfitting, G can be
chosen to be a function growing slower than v2. For example, G(v) = log cosh v
yields g(v) = tanh(v). Note that the measure in Eq. (4.64) bears some similarity
to the approximation of negentropy used by Hyvärinen (1999a).

The outline of the denoising procedure is presented in Table 4.3. It starts
with estimating the local variances using Eq. (4.57). Then, the nonlinearity g is
applied to the variance estimates in order to calculate the masks. In practice,
we have used the nonlinearities defined in Eqs. (4.63) and (4.61). In order to
emphasize the dominant signal activations, the constant β was chosen such that
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Table 4.3: Denoising procedure for ICA with structured variance

1. Calculate the variance estimates as v1..T,j = Fs2
1..T,j

2. Compute the masks mj = g(vj)

3. Shift the mask: mj = mj −mintmj(t)

4. Calculate the new source estimates ŝj(t) = mj(t)sj(t)

the minimum values of the masks are put to zero. This does not change the fixed
points of the algorithm but speeds up convergence. Finally, the denoised source
estimates are calculated by applying the mask to the current source values.

The proposed algorithm can be modified for subspace analysis where several
sources are assumed to share the same variance structure. In this case, the
subspace activation can be estimated on Step 1 by taking the average of the
squared sources from the same subspace:

v1..T = F

(
1

K

K∑

j=1

s2
1..T,j

)
. (4.65)

Then, the same mask calculated from v1..T is applied to each component from
the corresponding subspace.

In Publication 9, we present an example of applying the proposed algorithm
to artificial data. The example shows that focusing on a specific timescale of the
variance variability helps extract the most relevant components from data. In
blinder settings, the method can be used as a tool for exploratory data analysis.
Different interesting phenomena can be found in the same dataset by concentrat-
ing on different timescales. The focus of the analysis is changed by simply using
another filter in the variance estimation. The results of such exploratory analysis
for climate data are presented in Publication 9. The emphasis on a properly
chosen timescale can also be important for solving the BSS problem as it can
improve the separation results, especially for noisy data when other separation
criteria cannot provide reliable components.

4.4 Application to climate data analysis

4.4.1 Extraction of patterns of climate variability

One of the main goals of statistical analysis of climate data is to extract physi-
cally meaningful patterns of climate variability from highly multivariate weather
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measurements. The classical technique for defining such dominant patterns is
PCA, or empirical orthogonal functions (EOF), as it is called in climatology (see,
e.g., von Storch and Zwiers, 1999). However, the maximum remaining variance
criterion used in PCA can lead to such problems as mixing different physical
phenomena in one extracted component (Richman, 1986). This makes PCA a
useful tool for information compression but limits its ability to isolate individual
modes of climate variations.

To overcome this problem, rotation of the principal components has proven
useful. The classical rotation criteria used in climatology are based on the general
concept of “simple structure” which can provide spatially or temporally localized
components (Richman, 1986). Independent component analysis is a technique
which can also be used for the rotation of principal components (Aires et al.,
2002). The criterion used by ICA is the assumption of the statistical indepen-
dence of the components. Even though ICA can sometimes give a meaningful
representation of weather data (see, e.g., Aires et al., 2000; Lotsch et al., 2003;
Basak et al., 2004), the statistical independence is quite a restrictive assumption
which can often lead to naive solutions.

In the algorithmic framework of DSS, it is easy to implement various rotation
criteria. One can efficiently incorporate prior knowledge about the interesting
properties of the sources of data variability. The motivation for seeking a partic-
ular type of components can come from general statistical principles (e.g., maxi-
mizing non-Gaussianity of components gives the ICA solution), expert knowledge
(e.g., some information about the spectral structure of components), or based on
some elementary inspection of data (e.g., by observing some regular patterns
in them). For example, in the climate data analysis we might be interested in
some phenomena that would have prominent variability in a certain timescale or
exhibit slow changes. Thus, DSS presents a powerful tool for exploratory anal-
ysis of large spatio-temporal climate datasets. In Publications 5, 6, 7 and 9,
we present several algorithms designed in this algorithmic framework and apply
them to global long-term climate measurements.

4.4.2 Climate data and preprocessing method

In the publications of this thesis, measurements of three major atmospheric vari-
ables are analyzed. The considered set of variables includes surface temperature,
sea level pressure and precipitation and it is often used for describing global cli-
mate phenomena such as El Niño–Southern Oscillation (ENSO) (Trenberth and
Caron, 2000). The datasets are provided by the reanalysis project of the Na-
tional Centers for Environmental Prediction–National Center for Atmospheric
Research (NCEP/NCAR) (Kalnay et al., 1996; NCEP data, 2004). The data
represent globally gridded daily measurements over a long period of time. The
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spatial grid is regularly spaced over the globe with 2.5◦ × 2.5◦ resolution.

The reanalysis data is not fully real because the missing measurements have
been reestimated based on the available data and approximation models. Yet,
the data is as close to the real measurements as possible. Although the quality
of the data varies over time and spatial location, we used the whole period of
1948–2004 and the whole global grid. Thus, the data contain more than 10,000
spatial locations and about 20,000 time instances.

To preprocess the data, the long-term mean was removed and the data points
were weighted to diminish the effect of a denser sampling grid around the poles:
each data point was multiplied by a weight proportional to the square root of
the corresponding area of its location. The spatial dimensionality of the data
was then reduced using the PCA/EOF analysis applied to the weighted data.
We retained 100 principal components which explain more than 90% of the total
variance, which is due to the high spatial correlation between nearby points on
the global grid. In Publication 9, where fast changing phenomena are of interest,
the principal components are additionally preprocessed by high-pass filtering.

4.4.3 Clarity-based extraction of slow components

Publications 5, 6 and 7 concentrate on slowly changing sources of climate vari-
ability. The clarity-based analysis presented in Section 4.3.1 is applied to extract
components exhibiting the most prominent variability in a specific timescale. In
Publication 5, the components with the most prominent interannual variabil-
ity are found to be related to the well-known ENSO phenomenon. For all three
datasets that were tested, the time course of the most prominent component
provides a good ENSO index and the corresponding spatial patterns contain
many features traditionally associated with ENSO. Several other components
with prominent interannual structures are extracted as well. For example, the
second component extracted from the dataset combining the three variables re-
sembles the derivative of the first component. Thus, it is likely to be related to
ENSO as well. The time courses and the spatial patterns of the two most promi-
nent component extracted from the combined dataset are reproduced in Figs. 4.7
and 4.8, respectively.

4.4.4 Frequency-based separation of slow components

Publications 6-7 extend the analysis of slow climate variations to a wider fre-
quency range. First, the slow subspace of the climate system is identified using
the clarity-based approach applied to the combined measurements of the three
variables. Then, the found slow components are separated based on their fre-
quency contents using the algorithm from Section 4.3.2. Preliminary results of
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Figure 4.7: The dark curves on the two upper plots are the time courses of
the two components with the most prominent interannual variability. They are
extracted from the dataset combining surface temperature, sea level pressure
and precipitation. The red curves are the same components after filtering in the
interannual timescale. The two lower plots present the index which is used in
climatology to measure the strength of El Niño (above) and its derivative (below).

this analysis are reported in Publication 6, and somewhat improved results are
presented in Publication 7.

The extracted components turn out to represent the subspace of the slow
climate phenomena as a linear combination of trends, decadal-interannual quasi-
periodic signals, the annual cycle and other phenomena with distinct spectral
contents. Using this approach, the known climate phenomena are identified as
certain subspaces of the climate system and some other interesting phenomena
hidden in the weather measurements are found.

Figs. 4.9–4.11 reproduce the surface temperature and sea level patterns of
some of the 16 slow components reported in Publication 7. Only the components
with prominent loadings around the poles are presented here.

4.4.5 Components with structured variance

In Publication 9, the algorithm presented in Section 4.3.4 is used in order
to extract fast changing components whose variances have prominent temporal
structure. When we concentrate on the dominant, annual variance variations, two
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Figure 4.8: The spatial patterns corresponding to the first (left column) and sec-
ond (right column) components with the most prominent interannual variability.
The maps tell how strongly the component is expressed in the measurement data.

subspaces with different phases of the yearly activations are extracted. The first
subspace explains the fast temperature variability in the Northern Hemisphere
and has higher activations during Northern Hemisphere (NH) winters. The sec-
ond subspace corresponds to the fast oscillations in the Southern Hemisphere
with higher activations during NH summers.

In the second experiment, we concentrate on the slower, decadal timescale of
the fast temperature variations. Several components with prominent temporal
and spatial structures are extracted. Fig. 4.12 reproduces the temporal patterns
of some of the components found in the data. The prominent slow structure of
the variance emerge very clearly in the extracted components.
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Figure 4.9: The spatial patterns of components 1–3 (trends) found by frequency-
based rotation of the 16 most prominent slow components.
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Figure 4.10: The spatial patterns of components 4–5 (trends) and components
11–12 (prominent slow and annual frequencies) found by frequency-based rotation
of the 16 most prominent slow components.
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Figure 4.11: The spatial patterns of components 13–14 (prominent close-to-
annual oscillations) and components 15–16 (the annual cycle) found by frequency-
based rotation of the 16 most prominent slow components.
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Figure 4.12: The temporal patterns of the fast components extracted from surface
temperature measurements (black). The red curves emphasize the prominent
slow structure.

4.4.6 Discussion and future directions

This section presented some results of exploratory analysis of global weather
measurements using several algorithms which follow the algorithmic framework
of denoising source separation. The obtained results are very promising but the
meaning of the results needs to be further investigated, as some of the found
components may correspond to significant climate phenomena while others may
reflect some artifacts produced during the data acquisition. A third alternative
would be that the components may have been overfitted to the data. In some of
the experiments, for example, in the extraction of components with structured
variance, some of the results looked like typical overfits. To be sure, the reliability
of the results could be tested by cross-validation.

The results of the analysis open up many possible directions for future re-
search. The results on prominent slow climate variability presented in Publi-

cations 5–7 suggest that there might be phenomena that could be described
by multidimensional processes with complex nonlinear dynamics. This makes
the IDSA model presented in Publication 8 very promising in this application.
The fact that there are climate phenomena like ENSO which can be observed
in different weather variables (such as temperature, air pressure, precipitation)
raises the question whether there are other climate phenomena like that. It might
be that such phenomena manifest themselves in more complicated ways in the
observables and could be extracted using more complex (nonlinear, hierarchical)
models.

The results on prominent variance structures reported in Publication 9 indi-
cate what kind of features could be found in the fast climate variations when the
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emphasis is put on different timescales. The presented analysis of the variance
structures can be extended in many different ways. For example, it would be
interesting to relate the components with prominent variance structures to the
known climate phenomena visible as specific projections of global weather data.
It would also be possible to use more information for more robust variance es-
timation. The additional information could be in the form of other components
extracted from climate data or a hierarchical variance model (Valpola et al.,
2004).

The presented algorithms can easily be applied to other weather measure-
ments with the possibility to concentrate on various properties of interest, dif-
ferent timescales and spatial localizations. It is also possible that some new
interesting properties emerge during such exploratory analysis. This could moti-
vate other types of models and algorithms, and the algorithmic framework used
in this chapter can be a useful tool.

4.5 Conclusions

In this chapter, faster source separation algorithms based on the linear mixing
model have been considered. The presented algorithms have been implemented
following the unifying algorithmic framework of denoising source separation. This
framework allows for fast development of semiblind algorithms which use available
prior knowledge in the separation process. Thus, the framework provides a useful
tool for exploratory data analysis.

The general algorithmic framework has been presented in the beginning of this
chapter. It includes the preprocessing step called whitening followed by rotation
using an orthogonal demixing matrix. This matrix is found so as to optimize the
signal properties that are known from the prior information. This is generally
done using an iterative procedure in which the desired (interesting) properties
are emphasized by means of a denoising function. In the special case when the
interesting part of a signal is obtained by linear temporal filtering, the whole
procedure can be reduced to three simple steps: whitening, filtering and PCA.
The presented exposition of the algorithmic framework shows the connection
between the denoising function and the measure of structure that is optimized
either implicitly or explicitly.

The approaches considered in this chapter have some connection to Bayesian
methods studied in Chapter 3. It has been shown that approximate Bayesian
methods applied to source separation problems can often be implemented in the
considered algorithmic framework. For example, a simple Bayesian model with
super-Gaussian sources was shown to correspond to using a shrinkage function
in the denoising procedure. A Bayesian interpretation of the FastICA algorithm
was also presented.
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After the general introduction to the used framework, the algorithms pro-
posed in this thesis have been presented. Two algorithms perform separation of
signals based on their spectral contents. A simple algorithm, that was presented
first, focuses on a specific timescale of prominent signal variations. In the second
algorithm, this approach was extended to blinder case when sources are sepa-
rated by making their frequency contents as distinctive as possible. The model
called independent dynamics subspace analysis considers the case when a group of
sources may share a common dynamic model. The proposed algorithm performs
separation of the different groups by decoupling explicitly their dynamic models.
The approach presented last allows for finding components with prominent vari-
ance structures. The proposed algorithm can easily be tuned to concentrate on
different timescales of variance variations.

The last part of this chapter presents several results on applying some of the
proposed algorithms to exploratory analysis of climate data. In fact, the proposed
algorithms were largely motivated by this particular application. Some of the
components extracted from global climate data with the proposed techniques
have evident and meaningful interpretations, while other results may require
some further investigations.



Chapter 5

Conclusions

Latent variable models are important tools for statistical analysis of spatio-
temporal datasets. Using these models, it is possible to capture basic data regu-
larities or to find interesting and meaningful patterns hidden in the data. LVMs
with meaningful interpretations can be learned by source separation methods
which assume that the hidden variables correspond to some significant sources
generating the data. Independence of the processes reflected in the source signals
is the typical assumption used by the methods of this kind.

This thesis considered several source separation models and different ap-
proaches to their estimation. The first half considered Bayesian estimation meth-
ods which describe all the unknown variables using probability distributions. The
main focus has been variational Bayesian methods based on approximating com-
plex posterior distributions using simpler and tractable distributions. Three basic
results include a study of the effect of the posterior approximation, a new model
for solving post-nonlinear ICA problems, and the application of the nonlinear
dynamic factor analysis approach to the problem of state change detection.

The first result is a theoretical and experimental study of the properties of
VB methods using linear ICA models. It shows that the solution provided by
VB methods is always a compromise between the accuracy of the model (i.e., a
good explanation of data) and the accuracy of the posterior approximation. This
may be a negative effect as too simple posterior approximations may introduce a
significant bias in favor of some types of solutions. This problem can be overcome
by either modeling posterior correlations or by applying suitable preprocessing.
Otherwise the found solution may not be meaningful. Sometimes, however, it is
possible to use this effect to regularize otherwise degenerate solutions.

Another important result is the application of the VB approach to the model
called post-nonlinear factor analysis. The model is a special case of the general
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NFA with a restriction that the generative mapping has a special, post-nonlinear
structure. The proposed technique can be used in post-nonlinear ICA problems
and it can overcome some of the limitations of the existing alternative methods.

The thesis presents a study of the nonlinear dynamic factor analysis presented
by Valpola and Karhunen (2002) in which the VB approach is applied to estima-
tion of nonlinear state-space models. In the introductory part of this thesis, it
has been shown that the NDFA algorithm can be considered a source separation
method as it can find representations with dynamically decoupled subspaces. In
Publication 2, the NDFA algorithm has been applied to the problem of detecting
changes in complex dynamic processes. The VB cost function provided by the
NDFA algorithm was used to calculate the estimate of the process entropy rate.
This estimate was proposed to be taken as the indicator of change. The exten-
sive experimental study has shown that the proposed approach can outperform
greatly other alternative techniques applicable to the change detection problem.

The second half of this thesis considered faster source separation algorithms
which use point estimates for the unknown parameters. Several algorithms
assuming the linear mixing model have been proposed. The algorithms were
largely motivated by the analysis of the highly-multidimensional spatio-temporal
datasets containing daily weather measurements all over the globe for a period
of 56 years. The algorithms follow the unifying algorithmic framework of denois-
ing source separation. Three basic approaches to source separation have been
used: frequency-based analysis, separation by decoupling dynamic models and
extraction of components with structured variances.

The frequency-based analysis aims to find components with prominent spec-
tral contents. The first algorithm concentrates on a specific timescale of data
variations and extracts components in which such variations are most prominent.
When applied to the global climate data with concentration on the interannual
timescale, the first extracted components were clearly related to the El Niño–
Southern Oscillation phenomenon. The first component extracted from surface
temperature, sea level pressure and precipitation data provided a good ENSO
index, and the second component somewhat resembled the derivative of the first
one. The second frequency-based algorithm extends the previous approach to
the more general case when the sources are estimated so as to make their fre-
quency contents as distinctive as possible. The application of the technique to the
global climate data turned out to give a meaningful representation of the slow cli-
mate variability as a combination of slowest trends, interannual quasi-periodical
signals, the annual cycle and components which slowly modify the seasonal vari-
ations. Several components which might be related to ENSO emerged in the
results. This fact suggests that there might exist complex climate phenomena
which could be described by a group of components, and such groups of compo-
nents could have a predictable time course.
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Another technique proposed in this thesis is called independent dynamics
subspace analysis. Its model takes into account the assumptions motivated by the
results obtained by the application of the frequency-based analysis to the climate
data. The sources are decomposed into groups and each group is assumed to
share a common dynamic model. An efficient algorithm for learning this model
has been proposed. It is much faster than alternative methods, for example, based
on the VB principles. The proposed model is rather general and could be used
in different applications for finding groups of the most predictable components.

The third approach considered in the second half is the analysis of components
based on their variance structures. The algorithm that can extract components
with prominent variance variations in a specific timescale has been proposed.
It was derived as an approximate algorithm for optimizing a measure of non-
stationarity which somewhat resembles negentropy. The results obtained for the
global climate data contained some remarkable patterns both in spatial localiza-
tion and in time courses. This result suggests that the algorithm can potentially
extract components that would correspond to meaningful climate phenomena.

There are many open research questions related to the results presented in
this thesis. For example, the proposed Bayesian post-nonlinear model could
be improved by using a more complex model for the hidden variables. Using
the mixture model similar to independent factor analysis (Attias, 1999) could
potentially improve the quality of the source reconstruction. The effect of the
posterior approximation in this type of nonlinear models could be investigated
in more details. Modeling posterior correlations of the sources may be required
in order to diminish the bias introduced by simple approximations. Improved
approximation techniques (e.g., similar to the ideas presented by Barber and
Bishop, 1998) could be useful in this problem.

An important line of future research is application of the proposed techniques
to real-world problems. For example, the change detection approach based on
variational Bayesian learning could be applied to real process monitoring tasks.
The faster algorithms presented in the second half of this thesis could be useful for
analysis of other types of spatio-temporal datasets (e.g., biomedical data). These
algorithms could easily be modified in order to capture interesting data prop-
erties which might emerge in a specific application. Hierarchical and nonlinear
extensions (e.g., similar to Wiskott and Sejnowski, 2002) of the faster algorithms
might be useful as well.

The presented analysis of the global climate data can be continued in many
ways. Some ideas were outlined in the discussion of Section 4.4.6. The impor-
tant directions include investigation of the meaning of the found components, a
potential application of the proposed subspace model with independent dynam-
ics, nonlinear extensions of the proposed techniques and finding out the relations
between components with different kinds of prominent structures.
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Valpola, H., Östman, T., and Karhunen, J. (2003b). Nonlinear independent
factor analysis by hierarchical models. In Proceedings of the 4th International
Symposium on Independent Component Analysis and Blind Signal Separation
(ICA 2003), pages 257–262, Nara, Japan.

Valpola, H. and Pajunen, P. (2000). Fast algorithms for Bayesian independent
component analysis. In Proceedings of International Workshop on Independent
Component Analysis and Blind Signal Separation (ICA 2000), pages 233–237,
Helsinki, Finland.
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