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that are needed in such a system, including segmentation of images, model-based recognition of objects, robot
navigation and model complexity control.

The approach is based on generative probability models, and Bayesian statistical inference is used to match these
models with image data. Stochastic sampling methods are applied to obtain numerical results.

The self-organizing map is a neural network algorithm that has many applications in computer vision. In this thesis,
the algorithm is analyzed in a probabilistic framework. A probability density model is derived and new model
selection techniques are proposed, which enable complexity control for the self-organizing map.

The analysis of images is discussed from the point of view of segmentation and object recognition. Segmentation
aims at dividing the image into parts of different appearance, while object recognition is meant to identify objects that
fulfill given criteria. These are different goals, but they complement each other. When the recognition of all objects in
an image is not possible, segmentation can provide an explanation to the rest of the image. For object recognition,
different two and three dimensional object models are considered and Bayesian matching techniques are applied to
them. Efficient techniques for image segmentation are proposed and results are presented.
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Tässä väitöskirjassa sovelletaan todennäköisyyslaskennan menetelmiä eräisiin tietokonenäköongelmiin. Työn
tarkoituksena on tuottaa keinoja näköön perustuvaan järjestelmään, joka voi analysoida ja tunnistaa näkymiä ja
kohteita kamerakuvista ja käyttää näin saatua informaatiota itsenäiseen navigointiin ja koneoppimiseen. Työssä
kehitetään uusia menetelmiä järjestelmän tarvitsemiin toimintoihin kuten kuvien segmentointiin, mallipohjaiseen
kohteiden tunnistukseen, robottinavigointiin ja mallien kompleksisuuden hallintaan.

Työssä käytettävä lähestymistapa perustuu generatiivisiin todennäköisyysmalleihin, ja mallit sovitetaan kuvadataan
bayesiläistä tilastollista päättelyä soveltaen. Numeeristen tulosten saamiseksi käytetään stokastisia
poimintamenetelmiä.

Itsejärjestyvä kartta on neuroverkkoalgoritmi, jolla on useita tietokonenäköalan sovelluksia. Tässä työssä algoritmia
analysoidaan todennäköisyyspohjaisesti. Algoritmin tuottamalle mallille johdetaan todennäköisyysjakaumamalli ja
sille esitetään uusia mallinvalintamenetelmiä, jotka mahdollistavat itsejärjestyvän kartan kompleksisuuden hallinnan.

Kuvien analysointia käsitellään sekä segmentoinnin että kohteiden tunnistuksen näkökulmasta. Segmentoinnissa kuva
jaetaan erilaisilta näyttäviin osiin. Kohteiden tunnistus perustuu niiden ennalta tunnettuihin ominaisuuksiin.
Tavoitteet ovat siten varsin erilaisia, mutta ne täydentävät toisiaan. Silloin kun vain osa kuvassa olevista kohteista
pystytään tunnistamaan, segmentoinnilla voidaan saada kuvan muille osille selitys. Väitöskirjassa esitetään
laskennallisesti tehokkaita menetelmiä kuvien segmentointiin. Kohteiden tunnistusta kaksi- ja kolmiulotteisten
mallien avulla tarkastellaan bayesiläisiä menetelmiä käyttäen.
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Chapter 1

Introduction

Vision is the human sense that provides the highest bandwidth connection be-
tween the brain and the outside world. Vision is required in many activities per-
formed by humans. For example, most things designed for man, from tools to
built environments, rely on the ability to receive visual information. Therefore the
ability to imitate human vision is required in automating a great number of rou-
tine tasks. Pictures and images are an essential method of conveying information.
The amount of image material in digital form in different archives and databases
is huge and constantly increasing. There is a strong need for automatic annotation
and indexing of images to take full advantage of these resources.

Images contain information about objects in a very indirect form, and many
noise sources are involved. The properties of objects cannot easily be defined un-
ambiguously, and the conditions in which the images are captured are also subject
to many sources of variability. The objects that automated vision systems may be
required to recognize can also vary in many ways. The use of probability distri-
butions is an effective way to handle noisy data, and the variability in objects can
be modeled with probabilistic methods. Moreover, one image can only contain
a limited amount of information, and there may be several possible explanations
for one image. This means that the output of a vision system cannot always be
correct. In order for the system to be useful, the output should be accompanied
with an estimate of its confidence. Probabilistic methods are suitable for such
problems.

Recent development of computers has enabled the use of many computation-
ally demanding numerical tools such as Markov Cain Monte Carlo techniques to
the inference of complicated probability models [100]. These methods have found
numerous applications in various machine learning problems [1].

Scene analysis aims at producing an interpretation to the contents of a visual
image. All parts of an image can be thought to represent some object, so if all the
objects are recognized, the image is fully divided into separate parts, or segments.
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However, it is unrealistic to assume that all objects in an image could always be
recognized because of many disturbances such as partial visibility and variable
illumination. In addition, a vision system should also be able to deal with unfa-
miliar objects that are not previously known to it. Therefore a reasonable goal
for scene analysis is to recognize familiar objects and to classify the rest of the
image into background. Both segmentation and object recognition are needed in
that task.

The self-organizing map (SOM) is an important neural network algorithm,
which has applications in many areas of information processing, including com-
puter vision and pattern recognition. Among its most intense application areas are
image and video processing and pattern recognition [50, 90]. Unlike many other
models and methods in computer vision, the SOM is not defined based on prob-
ability theory. The SOM is an unsupervised learning method, which is why its
performance in data processing tasks cannot be directly evaluated. This has made
it difficult to compare the SOM with other types of methods. More importantly,
there has been a lack of quantitative tools for the basic task of selecting suitable
model parameters.

This thesis presents studies on the use of probabilistic models in selected
scene analysis tasks, including the segmentation of images and the detection and
matching of different types of objects. The models and methods are based on
Bayesian inference. Monte Carlo sampling methods such as Markov chain Monte
Carlo (MCMC) are used in numerical computations to determine model param-
eters from image data. In addition, a probabilistic interpretation is derived for
the self-organizing map algorithm, and its use for probabilistic model selection is
discussed. The work is organized as follows:

Chapter two contains a review of probabilistic inference and Bayesian meth-
ods that are used throughout this thesis. Monte Carlo sampling methods that are
used to produce numerical results are also described.

In Chapter three, the segmentation of scenes is discussed. An MCMC image
segmentation algorithm is presented. Its basic principle has been proposed previ-
ously. The aim is to present new sample generation techniques and demonstrate
their efficiency. Different application examples are also discussed. Most of the
results of this chapter have been published in publications [64, 63].

In Chapter four, the application of probabilistic sampling methods to model-
based object detection and matching are studied. The goal is to explore the pos-
sibilities of Monte Carlo sampling techniques in the matching of two and three
dimensional object models to image data. Most of the results of this chapter have
been published in publication [59].

Chapter five presents the probability density model that can be associated with
the self-organizing map algorithm. The aim is to derive the density model, discuss
its properties and how it can be used for model complexity selection. The results
have been published in publications [66, 60, 61, 62].
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The author’s major contributions to this thesis can be summarized as follows:

• new methods for generating proposal samples for Markov chain Monte
Carlo (MCMC) image segmentation: a method to alter segment outlines and
a method to subdivide segments; integration of these methods into the re-
versible jump MCMC segmentation framework and numerical simulations
to demonstrate their value

• a new method for map building and navigation for a mobile robot, based on
the MCMC segmentation techniques

• A new method for matching a model of two dimensional rectangles to im-
ages using MCMC techniques

• two different models for 3-D objects and their matching to images using
MCMC methods

• a solution to normalize the probability density model for the self-organizing
map (SOM) model

• analysis and description of properties of the SOM density model; new meth-
ods for model selection for the SOM.
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Chapter 2

Probabilistic inference and
Monte Carlo sampling

This chapter contains a review of the Bayesian approach to probabilistic modeling
and computational methods that can be used in its practical applications. The
focus is on applying the methods to computer vision problems.

2.1 Statistical models and probabilistic inference

Statistical models are basic tools in machine learning and computer vision. For
example, models that describe the properties of object classes are used in object
recognition, and models of image statistics are used for classification of images
or parts of images [46]. These models can be based on collections of data or they
can be explicitly designed. Statistical distributions are a natural way of describing
many phenomena.

A generative probability model for data describes a probability distribution
that is thought to be able to generate the data. Such a model may accurately de-
scribe the process that actually generated the data, but approximate models are
often used. For example, the normal distribution is used to approximate many
natural phenomena. Generative models are in contrast to discriminative models,
where the emphasis is on the models’ ability to describe differences between dif-
ferent classes of data samples. Discriminative models are most useful in specific
classification problems that can be narrowly defined [111].

A generative probability model describes the joint distribution of observed
data and all variables that are involved in the assumed generation process [8].
Some of these variables may be unobserved, and often the inference task is to
estimate values for some of the unobserved variables. In computer vision, the
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generative model for an image may be described by the probability distribution

p(I,θ|M) = p(I|θ,M)p(θ|M), (2.1)

where I is the observed image data, M is the model for the process that is assumed
to explain how the image was produced, and θ represents the parameters values of
the model M. In the hand right side of the equation, the distribution is represented
as the product of three terms, the first of which is the likelihood of the image data
given the model and its parameters. The second term is the prior distribution of
the parameters θ given the model M, and the last term p(M) is the probability
distribution that represents all the assumptions that are included in the model M.
Here θ is the unobserved part of the model. For example, if M were a model
for a 3-D object that appears in the image I, the parameters θ would include the
intrinsic parameters that control the shape and reflectance properties of the object,
as well as parameters that determine the object’s pose and illumination conditions.

A basic solution to inferring the unobserved parameters is the maximum like-
lihood (ML) principle, where the likelihood of observed data p(I|θ,M) is max-
imized with respect to θ [104]. If different parameter values are not considered
to be equally probable a priori, or before observing the data, this is expressed
in the prior distribution p(θ|M). Then, instead of the likelihood function, one
maximizes the product of the likelihood and the prior

p(I|θ,M)p(θ|M). (2.2)

This is the maximum a posteriori (MAP) estimate of θ. Thus if the prior distribu-
tion distribution p(θ|M) is uniform, the MAP estimate is reduced to the maximum
likelihood estimate. These methods result in point estimates of θ, that is, the so-
lution is a single parameter vector that maximizes the criterion.

2.1.1 Bayesian inference

Bayesian inference is based on defining the joint probability space for all vari-
ables, both observed and unobserved, and inferring the conditional distribution of
the variables of interest, given the observations [8]. The aim is to estimate the en-
tire conditional distributions of the variables of interest instead of point estimates.
Various statistics, such as the mean and confidence intervals, can be obtained from
these distributions [34].

Continuing from the object recognition example in the previous section, the
quantity of interest is p(θ|I,M), the posterior distribution of process parameters
given the observed image and model assumptions. In other words, we want to find
out what can be said about θ based on the observation I. This quantity is given by
Bayes’ rule as follows:

p(θ|I,M) =
p(I,θ|M)

p(I|M)
=

p(I|θ,M)p(θ|M)
R

p(I,θ|M)dθ
, (2.3)
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where the denominator is the total probability of the observed data I given the
model assumptions M, marginalized over θ.

The Bayesian framework enables inference in complicated model structures,
an important example of which is a hierarchical model of the form

p(I,θ,α|M) = p(I|θ,α,M)p(θ|α,M)p(α|M). (2.4)

This model differs from the model (2.1) in that it includes one additional unknown
parameter α. The parameter α is a hyperparameter that controls the parameter
θ, giving rise to a hierarchical model structure [38]. Bayesian inference of θ
from this model involves integration of the model over α to obtain the marginal
posterior distribution p(θ|I,M).

2.1.2 Model comparison

The above discussion is about fitting the parameters of a given model to data.
Another essential part of statistical inference is to select the right model for each
problem. This subject has been discussed by many authors in statistical litera-
ture [10, 8]. The problem of model selection is involved in the choice of model
hyperparameters that control the complexity of the model, such as regularization
parameters for neural network models. Another case is the choice between dif-
ferent types of models, for example whether to fit a polynomial or exponential
function to a given dataset.

In likelihood based methods the basic approach to the comparison of models
is based on measuring the fit of an independent test data set to each model after
fitting it to training data. The purpose is to find a model that, based on the available
data sample, will best generalize to the population that the data sample represents.
Methods such as cross-validation and bootstrapping have been developed to make
efficient use of the data without having to rely on just one division of samples for
training and testing [25].

In contrast to likelihood methods, the Bayesian framework automatically en-
compasses mechanisms for model selection [76]. The concept of estimating poste-
rior distributions instead of point estimates leads to model averaging. This means
that all possible outcomes are taken into account instead of using just the one that
is most likely. An example is the posterior distribution p(θ|I,M) computed from
(2.4) as the integral

p(θ|I,M) =
Z

p(θ|I,α,M)p(α|I,M)dα, (2.5)

where p(θ|I,α,M) is the posterior conditional on α, and p(α|I,M) represents the
posterior probabilities of different values of α.
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When considering a number of competing models Mi(i = 1,2, ...), it is often
convenient to choose just one of them instead of averaging. Models can be com-
pared by the evidence framework [76]. The evidence of model Mi of the form
(2.1), given the data I, is defined as

p(I|Mi) =
Z

p(I|θ,Mi)p(θ|Mi)dθ , (2.6)

where the parameters θ are integrated out or marginalized over. In the case of a
hierarchical model (2.4), the evidence in marginalized over the hyperparameters,
too. The evidence is the same as the normalization constant in the denominator
of equation (2.3). This means that although the posterior probabilities can be
compared as a function of different parameter values, different models can only
be compared by computing this integral.

2.1.3 Bayesian methods in practice

Above we have reviewed the theory of Bayesian inference. The challenging part
of Bayesian methods is their application to practice. Apart from textbook ex-
amples, it is rarely possible to compute the posterior distributions analytically.
Practical solutions are based on numerical approximation methods [3, 87]. These
methods are often computationally expensive, and this is why they have only be-
come realistic recently. Nonetheless, the comparison of all possible models and
combinations of parameter values is an extremely ambitious goal, and many short-
cuts must be taken.

A problem that is typically arises is the need to evaluate high-dimensional
integrals. Computation of marginal distributions over parameters and hyperpa-
rameters is one such situation. Also, Bayesian analysis produces estimates of the
posterior distributions of target quantities. To compute their expectations, one
has to integrate over these distributions. For example, the posterior mean of the
parameter θ is computed as the integral

E[θ|I,M] =
Z

θp(θ|I,M)dθ . (2.7)

In high-dimensional problems, these integrals are almost always analytically in-
tractable. One possible solution is to approximate the distributions by simple
functions that can be treated analytically, such as Gaussian functions for Laplace
approximations, but this may not be sufficiently accurate if the distributions are
multimodal or otherwise complicated [53]. In variational Bayes methods, the
posterior distributions are approximated by the product of data-dependent and pa-
rameter dependent terms. Such methods have been developed for several types of
problems [3, 37]. Another solution, which has wider applicability, is the numeri-
cal approximation of the integrals based on Monte Carlo integration [38]. In this
thesis, the focus is on Monte Carlo methods.
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2.2 Monte Carlo sampling

Monte Carlo integration is a stochastic technique for the approximation of inte-
grals by drawing random samples from a distribution and evaluating the integrand
in those sample points. The expected value of the function f (θ) of the random
variable θ, which follows the distribution π(θ), can be approximated as

E[ f (θ)] =
Z

f (θ)π(θ)dθ≈ 1
n

n

∑
i

f (θi) (2.8)

using n independent random samples θi from the distribution π(θ) [87].
In Bayesian data analysis, the target distribution is the posterior distribution

of the quantity that is being estimated. In the Monte Carlo approach, that distribu-
tion is represented as a collection of samples. The problem is to find methods to
generate of a representative set of samples in a computationally efficient manner.

Rejection sampling

Rejection sampling is a basic solution to produce samples from the distribution
π(θ). It is based on using a proposal distribution q(θ) ≥ π(θ), which can be di-
rectly sampled from and which does not need to be normalized. The proposal
samples θi that follow q(θ) are accepted with the probability π(θi)/q(θi). Sam-
pling is efficient when only a small proportion of samples are rejected, which
means that q(θ) should resemble π(θ) as closely as possible [38].

Importance sampling

Importance sampling is an alternative sampling method, where samples are as-
sociated with weights. The only restriction for the proposal distribution q(θ) is
that it has to be positive whenever π(θ) is positive. The parameter space to ex-
plore may be sparse such that most of it is occupied by very small probabilities.
If the rare areas of high probabilities can be identified, the proposal distribution
can be chosen to concentrate on them, which can greatly increase the efficiency
of sampling. In the sampling procedure, all samples θi from the proposal distri-
bution are accepted and are they are assigned with weights according to the ratio
wi = π(θi)/q(θi).

2.2.1 Markov chain Monte Carlo

In high dimensional and complex problems, it can be very difficult to find pro-
posal distributions that are suitable for importance or rejection sampling methods.
In Markov chain Monte Carlo (MCMC) sampling, this problem is circumvented
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by designing a sampling chain that converges to the target distribution. The indi-
vidual samples can then be generated from simpler proposal distributions.

In MCMC sampling, Markov chains are used to simulate random walk in
the space that converges to the target distribution π(θ). In a Markov chain, each
state θt depends only on the previous state, and the consecutive states are related
by a transition (or proposal) distribution jt(θt |θt−1). Markov chain simulation
provides efficient means of producing samples from arbitrary distributions. The
MCMC concept has inspired a great amount of research and numerous algorithms
and their variates have been proposed. Below, we review MCMC algorithms that
have relevance in later chapters of this thesis. More thorough treatments of the
subject can be found for example in books by Gilks et al. [38] and Liu [71].

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [42] produces a random sequence which con-
verges to the target distribution π(θ). One step in the algorithm consists of sam-
pling a point θ∗ from a proposal distribution jt(θ∗|θt), and accepting θ∗ in the
chain as a new point with probability

A(θt → θ∗) = min

{

1,
π(θ∗) j(θt |θ∗)
π(θt) j(θ∗|θt)

}

. (2.9)

The proposal distribution jt has to be able to eventually reach all states with a
finite probability [34]. The form of the proposal distribution is essential for fast
convergence of the algorithm. Finding good proposal distributions can be very
difficult in practice. In the basic form of the algorithm, the proposal distribution
is not adapted to the target distribution, which means that the proposed samples
are very much random. This may lead to very slow convergence, in many appli-
cations, especially in high dimensions.

Other MCMC algorithms

Many advances have been made to improve the slow convergence of the Metropolis-
Hastings algorithm by developing more complicated sampling schemes.

The Gibbs sampler picks samples from conditional distributions of the target
distribution π(θ). Each iteration cycles through all the components of θ in random
order. At each step in the cycle, the new state θt is the previous state θt−1 with
the component θt−1

{ j} substituted with a sample from the conditional distribution

π(θ{ j}|θt−1
{1...d\ j}). So the components of θ are updated one at a time. Since the

samples are taken directly from the conditional posterior density, all samples are
always accepted. In order for Gibbs sampling to work, sampling from all con-
ditional distributions of π(θ) must be possible. Then it is not necessary to know



2.2 Monte Carlo sampling 11

the target distribution explicitly. The fact that the conditional distributions are
univariate can be used for efficient sampling.

Hybrid Monte Carlo [23] and slice sampling [88] are other important MCMC
sampling methods. They are both based on using auxiliary variables to enable
sampling one variable at a time from a multivariate distribution, and their purpose
is to facilitate adaptation of the sampling chain to the target distribution. Hybrid
Monte Carlo uses information of the gradient of the target distribution. Slice sam-
pling is a special strategy to sample from a univariate distribution, which enables
choosing the step size of the sample chain adaptively.

Reversible jump MCMC

The sampling techniques discussed above for estimating one probability distri-
bution, such as the posterior distribution of model parameters (2.3). To compare
different models defined in different parameter spaces, the same analysis must be
carried out for each different model, and after that the models can be compared,
for example using the evidence method. If there are many models to compare, the
computational cost may often become prohibitively large.

Green [39] has introduced a strategy that enables simultaneous sampling in
different parameter spaces in some special situations. In other words, the pos-
terior distribution over the parameters of many models can be computed using a
single MCMC sampling chain. This is meaningful in cases where some of the
parameters are shared, or have the same meaning, in all parameter spaces con-
sidered. The advantage is that the shared subspaces only need to be estimated
once. An example of this is image segmentation, where the number of segments
is not known. Different solutions for some part of the image can be tested while
keeping other parts constant. Estimating the number of mixture components in a
mixture density model [98] or the number of hidden units in a radial basis function
network [44] are other examples of applications for the reversible jump MCMC
algorithm.

In the algorithm, the communicating spaces need to be extended to enforce a
match between the dimensions. Consider a move from the state of the Markov
chain (k,θk) of dimension nk to a new state (k′,θk′) that has dimension nk′ . The
matching can be done by introducing auxiliary variables u and u′ with dimensions
|u| and |u′| and an invertible function f , such that (θk′ ,u′) = f (θk,u) and nk +
|u|= nk′ + |u′|. The acceptance probability for the move is given by

A(k→ k′) =
π(θk′)

π(θk)

j(k′→ k)
j(k→ k′)

q′(u)

q(u′)

∣

∣

∣

∣

∣

∂(θk′ ,u′)

∂(θk,u)

∣

∣

∣

∣

∣

, (2.10)

where j represents the proposal probabilities of the opposite moves and the auxil-
iary variables are generated from the distributions q and q′. The last product term
is the Jacobian of the variable exchange function f .
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Data driven proposal distributions

MCMC sampling is a top-down process. Samples that are generated are evalu-
ated by computing their posterior probabilities. The computational complexity is
proportional to the number of samples needed to sufficiently represent the target
distribution. In general, the number of samples is exponentially related to the
dimensionality of the problem’s parameter space – this is known as the curse of
dimensionality, and the the sampling techniques described above cannot escape
it. In high-dimensional problems, it is essential to bring as much information into
the sampling process as possible to speed it up. An example of this is the use
of gradient information with hybrid Monte Carlo. In many complex problems,
including image analysis, careful adaptation of the sampling techniques using do-
main specific knowledge and heuristics can produce crucial advantages [1].

In MCMC methods, a key issue is efficient sample generation. High dimen-
sional distributions rarely consist of one smooth concentration in the space. In-
stead, they can often be characterized by narrow peaks that are broadly scattered.
Basic MCMC algorithms, such Metropolis-Hastings with a symmetrical proposal
distribution, search for these peaks by trial and error without direction, and all
the information is taken from the target function. Data driven techniques are a
special way of taking advantage of domain specific information by adapting pro-
posal distributions. The aim is to concentrate sampling on interesting parts of the
parameter space by using special cues in the design of the proposal distributions.
The use of these cues in sample generation can be seen as bottom-up information
processing, in contrast to the evaluation of the samples’ posterior probabilities
based on the model. Data driven MCMC methods have been successfully ap-
plied to image segmentation [17, 108] and in statistics to sampling from Dirichlet
mixture models [47].



Chapter 3

Scene segmentation

In this chapter, we discuss the segmentation of scenes into different parts. We
review previous research on segmentation techniques and the analysis of texture
features, which are the basis of segmentation. We discuss an MCMC image seg-
mentation method in detail and present new sample generation techniques for it.
We also present example results in different applications.

3.1 Introduction

A visual scene consists of objects. The visual input captured by a camera or
the retina of the eye is either directly emitted by objects or reflected from them.
Depending on the purpose of scene analysis, not all the objects are equally inter-
esting. Often it is convenient to divide the scene into foreground objects and a less
interesting background.

By image segmentation we mean the division of an image into segments that
are visually different. This is obviously a vague description, but there is no theory
for segmentation and no mathematically accurate definition can be given. For the
purposes of scene analysis, an ideal segment division would separate different ob-
jects from the scene. This is also the way that human intuition treats segmentation.
Unfortunately, the current status of research in this area indicates that human-like
segmentation results cannot be achieved without the recognition of objects and
understanding of the 3-D structure of the scene. However, segmentation is neces-
sary for image understanding, and it is possible to get results where most objects
are correctly segmented without knowledge of what the objects are. The lack
of a theoretic basis also makes it difficult to quantify and compare the results of
segmentation.

A traditional view of scene analysis presented by Marr regards the problem
as a sequential bottom-up task where detail and accuracy increase at each level of
processing from the extraction of elementary features toward object recognition
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and interpretation of the scene [79]. According to this view, segmentation of the
image will be among the first low-level tasks. More recently, the relevance of
feedback mechanisms has been recognized. Most authors currently believe that it
is important to combine both simple visual cues on the low-level and the feedback
from complex models on a higher level [55, 118]. This means that segmentation
and the recognition of objects should be joined into a concurrent process. In any
case, image analysis requires some type of a starting point, and that is what coarse
segmentation of the image provides.

3.2 Related work

Image segmentation has been studied for a long time and a wide variety of dif-
ferent techniques have been published [92]. Various nonparametric segmentation
techniques have been developed. Clustering and thresholding of the intensity his-
togram [70, 18] is a basic solution. Inclusion of connectivity constraints for the
segments [93] is essential for many applications. The algorithm based on mean
shift filtering [19] falls in the same category. The normalized cuts algorithm [101]
optimizes a graph theoretic criterion to find an optimal partitioning of the image
into segments.

Apart from homogeneity, an important property of segments are their contin-
uous boundaries, which appear as edges in the images. Many publications have
focused on using the edge information. Active contours [52] have been used for
separating a single object from its background. To determine the optimal contour,
variational minimization of the Mumford-Shah energy functional [85] may be
used. This approach has been applied especially in the segmentation of graylevel
medical images such as X-ray and magnetic resonance images. Ma and Man-
junath have proposed a method to recover boundaries of both color and texture
regions [75].

3.2.1 Bayesian image segmentation

Bayesian probabilistic methods have been applied in many authors to image seg-
mentation. The problem is one of finding an optimal decision between two op-
posite objectives: homogeneous segments and a simple segmentation [92]. It is
obvious that the segments should be homogeneous, but in order for the segmen-
tation to be informative, it must consist of a relatively small number of segments.
Bayesian methods are suitable for such decision tasks. Many authors have used
Bayesian methods aimed at MAP estimates for segmentation models based on
Markov random fields [35, 13].

Bayesian MCMC methods have been applied to image segmentation since
Green introduced the reversible jump scheme and showed a simple example appli-
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cation to segmentation [39]. Since then, other authors MCMC segmentation stud-
ies have been published, most of them based on MRF models [6, 54]. Typically
estimation of the distribution is done in a top-down manner: random samples are
picked and their fit to the data is evaluated. Segmentation is a high-dimensional
problem, and therefore a large number of samples are required and convergence
takes a long time. Clark and Quinn [17] have presented an MCMC image seg-
mentation algorithm where the sampling efficiency is improved by using image
information to produce data driven proposal samples. In their approach, image
segments are modeled by Gaussian intensity distributions, with a Markov random
field model for the prior probabilities of segment labels.

Tu and Zhu [108] have proposed another data driven MCMC approach to
image segmentation, in which various types of cues from image data are used to
drive the MCMC algorithm, that is, to produce good proposition samples using
bottom-up information processing. The probability model for the observed image
is based on different texture models for the image segments.

Lee [68] has presented a model designed to explain how texture segmenta-
tion could be performed by the human visual cortex. The following priors for the
statistics of surfaces and boundaries are used in the model: spatial homogeneity
within segments; the systematic variation of texture due to perspective and surface
shape variations (illumination is not mentioned but a contrast normalization mech-
anism is included in the processing); abrupt changes in statistics imply segment
boundaries, the number of segments and lengths of segments are limited.

3.2.2 Evaluation and comparison of segmentation results

The evaluation of segmentation results and the comparison of different methods is
very problematic. There is no standard dataset, and each author typically presents
results on a few example images. The types of images can be very different, from
aerial images to mosaics of synthetic textures. The goals of segmentation can be
very different, too. In some publications, the number of segments is restricted to
a pre-defined value, which can often be as low as two.

There is no standard method to compare different segmentations of the same
image. Since there is no theoretical framework for segmentation and no definite
ground truth for non-synthetic images, it seems unlikely that a universally ac-
cepted criterion could be established. Nonetheless, a number of methods and
criteria for the quantitative evaluation of segmentation quality have been pro-
posed [119]. For example, Levine and Nazif [69] have defined criteria for unifor-
mity of regions and edges. This type of approach is most suitable in a restricted
application, where the quality criteria are easy to define and to weight. It is un-
likely that the same set of goodness criteria could be used to evaluate arbitrary
types of images. Everingham et al. have proposed applying the Pareto front to
using a number of different segmentation quality measures together [29]. The
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choice of good measures still remains open.
If the correct segmentation is known, it can be used directly to evaluate seg-

mentation results. The correct segmentation can be defined without ambiguity in
the case of synthetic images or a restricted application (such as one object against
a uniform background). In general, definition of the correct segmentation can be
very subjective. A simple way to compare segmentation results with the ground
truth is to consider the proportion of pixels misclassified [117] or the probabil-
ity of misclassification [67]. These types of measures require that the segments
be identified using prior information, so they are best applicable in supervised
segmentation when the number of segments in the image is low. Martin et al.
suggest comparing segmentation results to ground truths produced by human sub-
jects [80]. They propose an error measure that is tolerant to different levels of
refinement, such that no penalty is incurred if the same segment is subdivided
into more than parts in another segmentation. The number of segments must be
approximately equal, however.

3.3 Features for image segmentation

Image segmentation is based on the assumption that different segments have dif-
ferent appearance. In computer vision, the appearance is characterized in terms of
variations in the colors and textures of the image. Segmentation algorithms either
attempt to detect edges between different areas or to model regions that can be
described by different values of color or texture features.

3.3.1 Color and gray values

The most basic choice of features are the three spectral channels of the colorspace
used to represent the color of each pixel, for example RGB used in display de-
vices or YCbCr [40] which is used in many image compression schemes. In
many colorspaces, brightness information is separated from color information, as
in YCbCr, where the Y channel is the brightness component and the two chromac-
ity channels carry color information. This is a way to minimize correlation be-
tween the three channels, which is essential for effective compression techniques.
Another interesting colorspace is called CIELAB, in which color differences are
designed to resemble human vision, such that visual perceptions of how close or
far apart colors seem should correspond to Euclidian distances measured in this
colorspace [46].

Pixel brightness values are the most important single feature in image process-
ing. In many computer vision publications, color information is not used at all.
Filters are often only applied to the monochrome intensity image. Monochrome
information is adequate for human vision. The effect of surface shape and illumi-
nation conditions appear as brightness differences. Strong brightness gradients on
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objects are common in natural images, and this causes spatial inhomogeneities in
brightness value distributions. A single dominant light source can often be asso-
ciated with a smooth brightness gradient, while edges of objects typically appear
as abrupt changes. This makes the brightness gradient a powerful tool in many
image processing tasks.

3.3.2 Texture features

The concept of texture in computer vision is difficult to describe mathematically,
and many different definitions have been proposed [109]. Here we consider the
use of texture features to discriminate different segments in images and texture is
understood as the variation of the color or grayscale values within a segment. In
many contexts, textures are regarded as homogeneous repetitive structures, but in
practice many objects have irregular and variable textures.

Early approaches to texture description have concentrated on single pixels and
their neighbourhood relationships. An example are features computed from the
co-occurrence matrix of intensity values of pixels at different spacings [41]. These
types of features are sensitive to scale and contrast of the image. Markov random
fields (MRF) [35] have been used extensively to model the spatial distribution of
pixels values. Different methods have been reviewed by Tuceryan and Jain [109].

More recently, the analysis of spatial frequencies has become a prominent ap-
proach. Several studies make use of the Brodatz set of images [14]. These images
are samples of different textures, which are mostly homogeneous and character-
ized by high spatial frequencies. Various wavelet representations are reported to
produce good results in texture classification and retrieval experiments [30]. One
possibility for the basis of a wavelet representation is the Gabor filter. The Ga-
bor filter has many advantageous properties [77], and cells that perform a similar
operation are found in the mammalian visual cortex. The descriptor for homo-
geneous texture that is included in the MPEG-7 multimedia content description
standard is based on Gabor filters [78].

The classification and retrieval of textures is a prominent area of texture re-
search. In that context, the division of images into different textures is not nec-
essarily considered. Often, images are treated as being composed of one single
texture [78]. This means that the images are assumed to be homogeneous through-
out and free of occlusions. Synthetic textures are also often used. In such cases,
highly specific descriptors are needed, which means that there is a large number
of free parameters. Extending results from such studies to the discrimination of
textures in natural images can be difficult.

When the goal is to segment an image into different objects and textures, the
boundaries of segments have a special significance. The transition between two
different textures appears as some kind of an edge, which is a high frequency
event, so the frequency distribution near the edge is quite different from the fre-
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quencies of either of the two textures. Moreover, many textures that appear in
natural images are too irregular from the point of view of many texture analysis
methods such as structural models based on texture primitives [109]. The dis-
cernibility of texture is highly dependent on scale. The texture segments may be
too small to constitute a repetitive structure that could be meaningfully described
by many texture modeling methods.

3.3.3 Distance measures for textures

Values of different feature measures for texture segments or textured images tend
to vary over the area, so instead of single values, it is usually more appropriate
to compare distributions of features, such as pixel intensities or outputs of differ-
ent filters. Histograms are typically used to estimate these distributions. Many
different methods can be used to compare texture histograms. These include non-
parametric statistical tests, information theoretical measures and various heuristic
measures such as intersection [103] and norms of vectorized histogram differ-
ences.

A comprehensive evaluation of different texture measures is difficult to per-
form because of the great number of different texture features and dissimilarity
measures that have been proposed. In addition, there are different goals for tex-
ture analysis, so the criteria for the most suitable texture measure may depend
on the application. Ojala et al. [91] have compared some different filter based
measures in the classification of Brodatz textures. They found simple gray-level
differences to produce best results. Puzicha et al. [96] report results from tests be-
tween many different measures of texture similarity on both Brodatz textures and
natural images. As features, they used histograms of Gabor filter responses for
Brodatz images and histograms of CIELAB color channels for the color photos,
which were treated as one single texture. The results are somewhat inconclusive,
as the ranking of different measures depends on the goal of the analysis, size of the
texture sample and the number of different classes, among other things. For seg-
mentation, the χ2-statistic and the L1 norm of multivariate histograms determined
by a clustering procedure were found to yield best results.

3.3.4 Comparison of different texture measures for segmentation

We used a large dataset of human segmented natural images [80] to evaluate the
ability of different texture measures to separate any object from its background.
We included 300 different images in the database, ranging from landscape images
to pictures of animals and people.

For each image, we examined all human segmented objects to see how clearly
they stand out from their environment with respect to different criteria. The en-
vironment of an object was taken to be the 10 pixels wide area that surrounds it.
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Table 3.1: Comparison of different texture distance measures for the YCbCr col-
orspace.

Y Cb Cr
KL distance 0.822 0.815 0.825

histogram distance 0.795 0.789 0.796
cumulative histogram 0.827 0.807 0.812

The objects were divided into two simply by drawing a vertical line in the mid-
dle. This produced four areas with different textures: the left and right parts of
the object Tl and Tr, the whole object Tl+r, and the background area Tb. The tex-
tures were represented using competing texture descriptors. We compared two
distances between the textures: left side–right side D(Tl||Tr) and foreground–
background D(Tl+r||Tb). The criterion is such that both the texture descriptors and
the distance measure are satisfactory for a given object if D(Tl+r||Tb) > D(Tl||Tr).
The quantity that was used to compare the different measures is γsep, the average
percentage of segments for which the above condition holds.

A 100 % correct result cannot be expected because of the nature of the database.
Some segments do not stand out from the background, and some objects’ left and
right side happen to be very different by appearance.

We compare the following measures: 1) Kullback–Leibler distance, 2) his-
togram distance, 3) cumulative histogram distance. The KL distance is a standard
information theoretical measure to compare the difference between two distribu-
tions. Distance between histograms is the most direct way to compare two dis-
tributions. We use the L2-norm to do this. There is some reason to assume that
the difference of cumulative histograms should be more robust against changes in
illumination, as they appear as shifts in the histogram [102]. The textures distri-
butions are represented as 35 bin histograms.

The values of γsep for different distance measures and different color spaces
are shown in Tables 3.1 and 3.2. From the results it appears that there is no
significant difference between YCbCr and CIELAB colorspaces. L2 norm be-
tween histograms is inferior to the other two distance measures. It is notable that
the chromacity channels are not significantly weaker features than the brightness
channels (the leftmost columns).

Another factor to consider is the correlation between different channels’ per-
formances. If the correlation is strong, then the inclusion of all channels will
not add much information compared to using only one of them. The correlation
coefficients are shown in Tables 3.3 and 3.4. The column labels indicate which
channels are being compared. For our test data the values are somewhat smaller
in the case of the CIELAB colorspace. This suggests that there may be a slight ad-
vantage in choosing the CIELAB colorspace, when all the channels are included
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Table 3.2: Comparison of different texture distance measures for the CIELAB
colorspace.

L* a* b*
KL distance 0.826 0.813 0.815

histogram distance 0.792 0.791 0.805
cumulative histograms 0.824 0.805 0.820

Table 3.3: Correlation coefficients between segment discriminability of color
channels using different distance measures; YCbCr colorspace.

Y–Cb Y–Cr Cb–Cr
KL distance 0.387 0.382 0.411

histogram distance 0.423 0.350 0.362
cumulative histograms 0.404 0.314 0.392

in the model. An advantage of YCbCr is that it is used in many common image
storage formats, so some savings in computation time can be made by avoiding the
colorspace conversions. As for the distance measures, no significant differences
can be observed between them.

The Sobel mask is a simple gradient operator which is used in image pro-
cessing as an edge extraction tool. The operator can be vertical or horizontal.
We carried out experiments similar to those described above using histograms
of responses of both horizontal and vertical Sobel filters. Using one of the fil-
ter responses yields a poor 50 % accuracy (on average 50 % of the segments are
separated from their background). When the combination of horizontal and ver-
tical edge histograms is used, the value is 76 %, which is worse than any of the
individual color channels. We assume that this is because a continuous line or
edge structure is rare and strongest edges appear at boundaries, where their effect
extends both inside and outside the segments.

3.4 A method for MCMC image segmentation

In this section, we present an MCMC method for the unsupervised segmenta-
tion of natural images. The method is based on defining a likelihood function
and a prior probability distribution for different segmentations of an image. The
probabilistic framework of the algorithm is similar to the approach of Tu and Zhu
[108], but the sampling method is different [63]. The goal is a rough segmentation
of different objects into different segments. Our emphasis is on minimizing com-
putational complexity without allowing any significant degradation in the quality
of results.
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Table 3.4: Correlation coefficients between segment discriminability of color
channels using different distance measures; CIELAB colorspace.

L*–a* L*–b* a*–b*
KL distance 0.271 0.330 0.404

histogram distance 0.218 0.364 0.402
cumulative histograms 0.212 0.304 0.422

We first describe the overall probability model and discuss details of the prior
distributions and texture distribution model selection.

3.4.1 Probability model for image segmentation

The segment division S : {S1, ...,SK} divides the image I into K different seg-
ments, such that each image pixel is assigned with a segment label. A texture
model tr, controlled by parameters θr, is associated with each segment Sr. The
probability model for the likelihood of the segment Sr is defined in terms of the
texture model as p(Ir|S, tr,θr,M), Ir is the part of the image that belongs to seg-
ment Sr. We treat the segments as independent of each other, so the likelihood of
the image I with segmentation S is the product of segment likelihoods

p(I|S, t,θ,M) =
K

∏
r

p(Ir|S, tr,θr,M). (3.1)

The M reminds that the probabilities are conditional to constraints that are due to
this using this kind of a model.

Using Bayes’ theorem, the posterior probability of the segment division S and
model parameters t and θ, given the observed image I, can be written as follows:

p(S, t,θ|I,M) =
p(I|S, t,θ,M)p(S, t,θ|M)

p(I|M)
. (3.2)

The term p(S, t,θ|M) is the prior distribution of the segment division and segment
texture model parameters. We are interested in the segment division of the image,
not the texture models. Therefore, we choose the prior distribution of the segment
division p(S|M) to be independent of t and θ, such that

p(S, t,θ|M) = p(S|M)p(t,θ|M), (3.3)

and integrate out the parameters t and θ to obtain the posterior distribution of the
segment division:

p(S|I,M) ∝
Z Z

p(I|S, t,θ,M)p(t,θ|M)dtdθp(S|M). (3.4)
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For computational efficiency, we approximate the likelihood function for each
segment Sr as a function of the parameters tr and θr with a delta function at the
maximum of the these parameters’ conditional posterior distribution:

p(Ir|S, tr,θr,M)≈ p(Ir|S, tMAP
r ,θMAP

r ,M)δ(tr− tMAP
r ,θr−θMAP

r ), (3.5)

where
{tMAP

r ,θMAP
r }= max p(tr,θr|I,S,M). (3.6)

This approximation leads to an empirical Bayes method and in theory it has the ef-
fect of over-fitting the rest of the parameters, but the following arguments support
this choice:

• We choose simple texture models which have unimodal likelihood functions
(MAP estimates for parameters θMAP

r can be computed in closed form)1

• The texture models have only a few degrees of freedom, and a validation
technique is used to prevent over-fitting

• The likelihood functions are expected to be highly peaked as functions of
texture model parameters, and our experiments with images indicate that
the difference between the likelihood of the point estimate and the expected
likelihood obtained by taking samples from the conditional posterior is neg-
ligible

• Savings in the computational cost are substantial.

Computation of segment likelihoods

The probability model for image segmentation (3.1) is based on the assumption
that different segments are independent and have different appearance. The like-
lihood of a given image segment

Lr(tr,θr) = p(Ir|S, tr,θr,M) (3.7)

is a function of the segment’s texture model tr and the parameters of that model
θr.

Ideally, the segments would have consistent, distinctive pixel patterns or tex-
tures, but in real images strong variability within segments are common. Since
there is no theoretically correct way to define the general segmentation of natural
images in terms of texture models, the choice of texture models will have to be
heuristic and its goodness can only be measured by subjective evaluation of prac-
tical results. Our goal is not to produce an accurate model that is able to generate

1The concept of modeling images as independent segments is a strong simplification of reality,
so there is no point in using overly complex texture models.
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a realistic-looking reconstruction of the image in terms of the segment division
and the texture models. Instead, we seek a rough segmentation where different-
looking objects should be classified into different segments. For this purpose we
find that the texture models for the segments should have low complexity. More-
over, we prefer texture descriptors that are reasonably quick to compute, because
the search involves performing a comparison for each possible segment division.

We define a number of alternative segment texture models. To choose one of
these models for a segment Ir, we randomly divide the pixels in the segment into
two sets: a training set for fitting the models and a test set for evaluating model fit.
The best model tr is that which gives the highest likelihood value on the test pixels.
Parameter values θr for the models are estimated by maximizing their posterior
probabilities conditional on the segment division and the training pixels according
to (3.6), and one of the alternative models is selected based on the predictive
likelihood of test pixels. This procedure corresponds to the comparison of partial
predictive likelihoods [89] of the texture models, which we use as submodels
of the full probability model. The competing texture models have equal prior
probabilities.

We define four different models that describe the distribution of pixel color
values. We use the YCbCr color space, which consists of one luminance channel
I1 and two chrominance channels I2 and I3. The channels are modeled indepen-
dently, so the likelihood (3.7) is computed as the product of individual channels’
likelihood terms

Lr(tr,θr) =
3

∏
c=1

Lc
r(t

c
r ,θ

c
r). (3.8)

The distribution models are Gaussian, Laplacian, multinomial, or – for the lumi-
nance channel only – a linear spatial model with additive Gaussian noise. The
multinomial model has a large number of degrees of freedom, and to avoid over-
fitting we apply a Dirichlet distribution as its conjugate prior. For the rest of the
models, which have no more than a few free parameters, we use non-informative
uniform priors.

The Gaussian model

Lr(θc
r ; tc

r =g) = ∏
i∈Sr

1√
2πσ

e−(Ic
i −µ)2/(2σ2), θc

r = (µ,σ) (3.9)

is suitable when there is little structure in the distribution of the spectral channel
in the segment. Parameters of the model θc

r are noise variance σ and the mean
value µ. The index i runs through the list of pixels that belong to the segment Sr,
which defines the image region Ir.

The Laplace distribution model

Lr(θc
r ; tc

r = l) = ∏
i∈Sr

1
2β

e−|I
c
i −µ|/β, θc

r = (µ,β) (3.10)
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has heavier tails than the Gaussian distribution, and it is appropriate for modeling
a cluttered background, for example.

The multinomial model expresses the distribution of the pixels in terms of
a non-parametric histogram. The histogram h for the intensity or chrominance
channel c is computed from discrete (8 bit) values Ic

r of the channel. The likeli-
hood of the channel c in segment Sr can be written as

Lr(θc
r ; tc

r =m) = ∏
k

(hk)
nk , θc

r = h, (3.11)

where hk denotes the histogram density of (discrete) pixel values within the seg-
ment, and nk is the number of pixels with intensity value k. Model parameters are
values of the histogram hc

s , so the number of degrees of freedom is high compared
to the number of samples (number of pixels in a segment). Therefore the use of
an appropriate prior is essential. We apply a Dirichlet prior

p(h) =
Γ(∑k αk)

∏k Γ(αk)
∏

k

(hk)
αk−1, (3.12)

where the parameters αk = α are equal, to get the MAP estimate for h. The value
α = 4 has been used in simulations. We have experimentally evaluated the error
in the likelihood of the MAP estimate and the expected likelihood obtained taking
random samples from the conditional posterior distribution of h. We found this
error to be negligible for typical size segments. Other texture models that we use
have very few parameters compared to the multinomial model.

The brightness gradient model is only enabled for the luminance channel.
Nearly constant luminance gradients caused by uneven lighting are common in
natural images. This is a spatial linear regression model, written as

Lr(θc
r ; tc

r =r) = ∏
xi∈Sr

N



Ic(xi)|w





X(xi)
Y (xi)

1



 ,σ



 , θc
r = (w,σ), (3.13)

where X(xi) and Y (xi) are the image coordinates of the pixel xi, and w is the
vector of regression coefficients. N(x|µ,σ) represents the Gaussian residual noise
distribution.

Prior probability

In this section we describe the prior probability of the segment division p(S|M),
which is required in equation (3.4). The prior controls certain properties of the
segments.

In a problem as complex as model based image analysis, there will necessarily
be many implicit restrictions incurred by the structural properties of the models
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that are chosen. There are also adjustable parameters that cannot be practically
resolved in a purely Bayesian framework. In a specialized application, the prior
probabilities can describe known statistical properties of the types of objects or
image areas that are expected to be found. Because we want our methods to be
applicable to a broad variety of different images, our choices for the priors are
quite general and they are not tuned for any particular type of scene.

One property of segment boundaries that is generally applied in computer vi-
sion, is their smoothness (see e.g. the discussion on representing boundaries by
snakes in ref. [46]). The smoothness prior is effective especially for man-made
objects. We evaluate the smoothness of the segment outline by comparing the
boundary to its low-pass filtered version. The boundary of segment Sr is repre-
sented as a sequence of n connected points Br

i , i = 1, . . . ,n, which are vectors in
image coordinates. The number of points n is determined by the pixel resolution.
A moving average filter is used to compute a smoothed version of the boundary:

B̂r
i =

1
m

i+m/2

∑
j=i−m/2

Br
j. (3.14)

Values around 50 have been used for the length of the filter m in most simulations.
A Gaussian prior is applied to the distance between the boundary and its low-pass
filtered version, as follows

psmoothness(B
r) ∝ e−αs

1
n ∑n

i (|Br
i−B̂r

i |2), (3.15)

where αs is a constant.
We use a Poisson distribution for the number of segments

pK(K) =
e−λλK

K!
, (3.16)

where the expected value is λ = 7. following Tu and Zhu [108], the prior for the
sizes of the segments is given by

psize(Ar) ∝ A−κ
r , (3.17)

where Ar is the number of pixels in the segment Sr and κ = 0.9 is a constant.
These two priors control the detail level of the segment division.

The prior probability of the segment division is computed as the product of
the above components:

p(S|M) ∝ pK(K)
K

∏
r

psize(Ar)psmoothness(B
r). (3.18)
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3.4.2 MCMC segmentation process

The problem is to estimate the posterior probability distribution of segment divi-
sions for the given image (3.4). We apply the reversible jump MCMC technique
[39] to obtain samples of the posterior distribution. The samples are different seg-
ment divisions of the image. Proposal samples are generated using three different
methods. The proposal samples are accepted with a probability that maintains the
balance of the MCMC chain, according to equation (2.10).

Ehlers and Brooks [26] have shown that if in the RJMCMC jump from di-
mension k to k′, the variables specific to k′ are generated from their conditional
posterior distributions, conditioned on the variables common to k and k′, then the
generated variables do not contribute to the acceptance probability of the jump.
We use this result and generate the parameters of the texture models for segments
created in the MCMC transitions by approximating their posterior distributions.

Data driven techniques are used to to generate the proposal samples. Three
different transition steps are defined: diffusion, split and merge. Diffusion does
not affect the dimension of the parameter space, while split and merge form a
pair of opposite transitions between different dimensions. Together, they enable
reversible jumps between the segmentation states of different dimensionalities.
Each proposal sample is generated using one of these three mechanisms, which
are equally probable.

The segmentation is initialized by classifying the whole image into one single
segment. An overview of the whole process is described in Algorithm 3.1.

Diffusion

The diffusion routine draws the proposal samples directly from the segment like-
lihood functions (3.7). We randomly select one of the segments, Sg, for region
growing. All segments have an equal probability of being selected. We choose a
random radius value ρ for a circular diffusion kernel. We dilate the selected seg-
ment by moving the kernel along its boundary and denote the resulting segment
S′g. For each pixel on the diffusion area, {xi|(xi ∈ S′g,xi /∈ Sg)}, we compute two
likelihood values: the likelihood p(xi|to,θo) for the model (to,θo) of the segment
that the xi currently belongs to and p(xi|tg,θg) for the model (tg,θg) of the growing
segment Sg. The likelihood ratio γ(xi) = p(xi|tgθg)/p(xi|to,θo) determines which
pixels should be transferred to segment Sg. We use a spatial low-pass filter F with
a radius proportional to ρ to smooth the values of γ(xi) between neighboring pixels
in order to keep the segments contiguous. Those pixels x j for which the filtered
values of the likelihood ratio is γ̃(x j) = F [γ(x j)] > 1 are proposed to be transferred
to the segment Sg. We have found this procedure to maintain the contiguity and
smoothness of segment boundaries relatively well. The diffusion process is illus-
trated in Fig. 3.1. It is possible that the balance of the MCMC chain is not strictly
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Compute the posterior probability of the initial segment division S0 ;
repeat Generate new sample Si+1

Select transition step at random (diffusion, split or merge) ;
Generate new segmentation state S′ according to selected transition ;
foreach segment Sr that changes in the transition Si→ S′, do

Estimate texture models tr and their parameters θr ;
Compute new likelihood value Lr(tr,θr) from (3.8);

end

Compute the change in the prior probability p(S′|M)
p(Si|M)

from (3.18) ;
Compute the change in the marginal posterior probability
p(S′|I,M)/p(Si|I,M) from (3.4) ;
Compute the acceptance probability A(Si→ S′) using (2.10) or (2.9) ;
Generate a random number q∼ Uniform[0,1] ;
if A(Si→ S′) > q then

Si+1← S′

else
Si+1← Si

end
until sampling chain is sufficiently converged;
Algorithm 3.1: Overview of the RJMCMC segmentation process.

preserved in the diffusion step, but we have not encountered any problems due to
this in our experiments.

Split

The split transition attempts to divide a segment into two new segments along
apparent edges. First, one of the segments is selected for splitting, and a starting
point is picked within that segment. These choices are based on using the likeli-
hood values of segments and pixels, such that poorly fitting areas and segments
are likely to be targeted. Finally, an edge tracing method is applied to produce a
division of the segment.

The edges are extracted using Gabor filters [77]. The type of filter is not a
critical choice; other types of edge-sensitive filters would probably apply as well.
We use six different filter orientations. Responses of Gabor filters are complex,
but we only use their absolute values.

Poorly fitting segments are assigned with high probabilities of being selected
for splitting. We have two alternative ways of determining the selection probabil-
ities. The first way is to use the likelihood values of the segments (3.7) directly
(sums of pixel log-likelihoods divided by the number of pixels in the segment;
these have been computed previously). The probability of a segment to be se-
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a)

A

b)

A

c) d)

Figure 3.1: Diffusion of segment boundaries. a) The initial segment division.
The segment marked with A is selected for growing. b) The segment A is di-
lated by moving a circular kernel along the boundary of the segment. c) The
pixel-wise likelihood ratio of competing models in the diffusion area (see text for
explanation). d) Old boundary of segment A and the new boundary, determined
by low-pass-filtering and thresholding the likelihood ratio map. The neighbouring
segments (not shown) are modified to accommodate for the change.

lected for splitting is proportional to the inverse of the geometric average of the
likelihoods of pixels in that segment. A problem with this is that a large seg-
ment that contains small, poorly fitting areas may have a very small probability
of being selected. Such areas within segments would be good candidates for new
segments. To find such areas we use an alternative segment selection rule: we
examine single-pixel likelihood values smoothed by a spatial median filter to find
contiguous poorly fitting areas. The starting point for edge tracing will be on such
an area, and the segment containing this point gets selected. In the case of the
former segment selection method, the starting point is chosen randomly such that
the probability is proportional to the strength of the edge filter response.

Edge tracing proceeds in two opposite directions, following continuous edges
in the edge map with a random step size. We use a weighting mask to emphasize
those edges that lie ahead in the direction of the tracing path. This has the effect
that a sharp change of direction requires strong support from the edge map. The
split is complete either when the tracing path reaches segment boundaries at both
ends or when the tracing path crosses itself.

The resulting split curve is a function of the selected starting point (which
indicates the selected segment, too) and the selected step size for edge tracing. In
mathematical terms, the split move proposes a transition from the segmentation
state S to the state S′. The selected segment Sk ∈ S is divided into Si,S j ∈ S′, so
only the parameters of these segments are affected, as follows:

Sk : {Ωk}→ Si : {Ωk,γi j},S j : {Ωk,γi j}, (3.19)

where Ωk is the boundary of segment Sk, and γi j is the new proposed split curve,
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which together with Ωk defines boundaries of Si and S j. An auxiliary random vari-
able u is needed to define a bijection from the parameters of S to the parameters
of S′. The acceptance probability is given by

A(S→ S′) = min

{

1,
p(Si|I)p(S j|I)

p(Sk|I)
jMi j(S′)
jSk(S)

q′(γi j)

q(u)

∣

∣

∣

∣

∂(γi j)

∂(u)

∣

∣

∣

∣

}

, (3.20)

where jSk(S) is the probability of proposing to split the segment Sk and jMi j(S′)
is the probability of proposing the opposite move, that is, to merge Si and S j.
Let u be equivalent to γi j, so the Jacobian term becomes |∂(γi j)/∂(u)| = 1. The
distribution q(u) is the proposal distribution for the split curve, and we compute it
based on the probabilities of selecting different starting points and step sizes for
the edge tracing. The opposite probability equals q′(γi j) = 1, because there is only
one way to merge two regions.

Merge

The merge transition is for joining two randomly selected adjacent segments. We
choose the first segment with equal probabilities for all segments, but for the other
one we use probabilities proportional to the inverse of the Kullback-Leibler dis-
tance between the probability models of the first segment and its neighbors. The
Kullback-Leibler distance is a standard measure for comparing the similarity of
probability density functions, and for discretized density functions h1 and h2 it is
computed as follows:

DKL(h1‖h2) = ∑
j

h j
1 log

h j
1

h j
2

(3.21)

The density histograms h1 and h2 are computed by discretizing the probability
models for the segment spectral channels. We compute the sum of the KL dis-
tances over the three channels in each of the competing neighbor segments, and
select one of these for merging with a probability that is inversely proportional to
this sum. The acceptance probability is the reciprocal of (3.20).

3.4.3 Analysis of the posterior distribution

The result of MCMC sampling is a chain of samples from the posterior distribu-
tion. In the beginning of the sampling chain, there is a transient effect known as
the burn-in period, where the chain moves from the improbable initial value (just
one segment) to states that have much higher probabilities. We determine the end
of the burn-in period by monitoring the stabilization of number of segments K.
The burn-in samples are discarded.

In the context of image segmentation, it is not obvious how to combine the
samples in a way that is easy to interpret. The result is a set of N sample seg-
mentations S = {S1, . . . ,SN}, and each segmentation Si = {Si

1, . . . ,S
i
Mi
} consists
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of Mi segments. Thus we can identify M = max(Mi) distinct segment labels
sm : m = 1, ...,M. To compute an average segment label for each pixel, we suggest
the following scheme, which is based on the co-occurrence of pixels in the same
segment:

1. Choose a pivot pixel xp(sm) for each segment label sm. xp(sm) is any of
those pixels that most often get classified to the segment labeled by sm.
Discard those segment labels that get winning support in no pixel.

2. For each pixel x, compute the number of samples in which the pixel gets
the same label as pivot pixel xp(sm), that is,

η(x,sm) = |
{

Sk ⊂ S : {Sk
j ∈ Sk : x,xp(sm) ∈ Sk

j}
}

|, (3.22)

where | · | denotes set cardinality.

3. The expected label ŝ(x) of the pixel x is the value sm that maximizes η(x,sm).

4. The value c(x) = maxn{η(x,sm)}/∑m η(x,sm) can be used as a measure of
confidence in the classification of pixel x.

3.4.4 Comparison with a related approach

This segmentation method is in many respects similar to the one proposed by
Tu and Zhu [108]. Both methods share the same basic generative probability
model that defines the image in terms of independent segments that follow differ-
ent stochastic texture models, and both methods use data-driven proposal distribu-
tions in the reversible jump MCMC algorithm to estimate the posterior distribution
of the segment division. Here we explain the key differences between these two
approaches.

Tu and Zhu define MCMC transition steps model adaptation, which means
altering segment model parameters, and switching image models, which means
changing the texture model of a segment. Model fitting is done by steepest ascent
toward the maximum of the segment likelihood function, however. We integrate
the estimation of segment models into the transition steps that change the segment
division (diffusion, split and merge).

The data-driven proposal mechanisms are different. For diffusion, Tu and Zhu
apply a curve based region competition method, whereas our approach is based
on contiguous areas. For segment splitting proposals, clustering and edge tracing
are used in both approaches. Tu and Zhu do clustering based on current texture
models, while we do clustering based on the likelihoods of the models. They trace
all potential edges beforehand; we trace edges online.
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3.5 Experimental results

The segmentation method has been tested on 300 images of various subjects in
the Berkeley segmentation dataset [80]. Examples of results are shown in Fig. 3.2
2. In Fig. 3.3, two examples are shown, where an artificial mosaic of five different
textures is segmented. All segment boundaries are accurately identified, but some
of the segments are subdivided into more than one parts.

Figure 3.2: Examples of segmentation results.

2More images are available at the web address http://www.lce.hut.fi/research/compinf/segment/
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Figure 3.3: Segmentation results for two artificial images made up of five (upper
image) or six (lower image) different textures.

In Fig. 3.4, three more segmentation examples are shown, including images
synthesized from the estimated texture models.

Due to efficient generation of proposal samples, especially the diffusion algo-
rithm, most of the computation time is spent evaluating the segment likelihoods.
With 300× 400 pixel images, running Matlab on a 1.8 GHz processor, 5 – 10
MCMC samples per second can be processed. Upward of one hundred samples
are required for practically sufficient convergence, so running times per image
range between 20 – 60 seconds. Tu and Zhu report processing times of 10 – 50
minutes for their data driven MCMC algorithm in a similar setting [108].

The evaluation of segmentation results is difficult because there is no ground
truth and there is no generally accepted method for quantitative analysis. How-
ever, we have computed scores according to the method proposed by Martin et al.,
which is based on comparing human segmentations of the images in the Berkeley
dataset [80]. The average F-measure as defined by Martin et al. was 0.55 for the
100 test images. We also compared the probabilities of hand segmented solutions
computed from our model (3.4) with posterior probabilities of the results given by
the proposed segmentation method for 200 images. In that group, there were only
two images in which some hand segmentations had higher posterior probabilities
than our segmentations. This shows that the probability model is not good at rep-
resenting the properties of segments that are important to humans. On the other
hand, this result suggests that the MCMC algorithm is quite reliable in finding
good solutions conditional on the model.
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Figure 3.4: Segmentation results with texture model synthesis. Left: Original
images with segment boundaries. Middle: Images generated from the segment
texture models and their parameters. Right: Texture models of the brightness
channel color-coded: black – Gaussian, white – Laplace, dark gray – Multinomial,
light gray – Brightness gradient.

In order to evaluate the advantage of the data driven proposal distributions,
in Fig. 3.5 we compare the performance of the proposed algorithm to that of a
sampling chain in which the proposal samples are random and do not depend on
the data. The difference in the rate of convergence is very significant.

In Fig. 3.6 we compare our method to two segmentation algorithms based
on color clustering. A simple segmentation method to produce spatially confined
segments can be obtained by including image coordinates as input variables to the
clustering algorithm in addition to the three color channels. We applied the fuzzy
c-means algorithm directly to do the segmentation on the five dimensional input
data. We scaled the variance of the coordinate values to twice the variance of
the RGB channels. The result appears in Fig. 3.6d. This algorithm has a conver-
gence time that is approximately equal to that of our MCMC method for 0.1 – 1
megapixel image sizes. The result that the MCMC method gives in an equal CPU
time is shown in Fig. 3.6b. Both were implemented in Matlab. The algorithm
presented in ref. [70] (Fig. 3.6c) analyses color channel histograms to determine
thresholds for segment classification, and applies fuzzy c-means clustering to pro-
duce a vector quantization in color space. We applied a C implementation that
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Figure 3.5: Data driven vs. random proposals. Left: result of data driven segmen-
tation after 179 samples. Center: result of segmentation using random proposal
distributions in the same amount of CPU time (365 samples). Metropolis-Hastings
acceptance probabilities were 27 % and 20 %, respectively. Right: evolution of
log posterior probabilities log p(S|I,M) in the MCMC chains with data driven
(continuous) and random (dashed) proposal distributions.

runs roughly twice as fast as the other two algorithms.
The example shows that MCMC techniques, despite their reputation as being

frustratingly slow, can be quite competitive against classical heuristic techniques
if they are designed to combine different types of information effectively. The use
of bottom-up information in the generation of MCMC samples yields substantial
savings in computation time.

3.6 Application in mobile robot navigation

In this section, we describe an application of the segmentation method to map
building and navigation for a mobile robot. The task is to use a single camera
to build a map of obstacle free area to enable navigation for a mobile robot. A
standard solution to this problem involves the use of active sensors, such as laser
or infrared. Instead, we attempt to accomplish this with a robot that is equipped
with a single inexpensive camera.

3.6.1 Simultaneous localization and mapping

One interesting application for computer vision and scene analysis is in the con-
trol of autonomous mobile robots. On the other hand, a mobile robot can be used
to explore an area and vision is essential for classification and recognition of the
area. Active sensors such as active laser and sonar devices are commonly used
in robot navigation. Their advantage when compared to vision is the accuracy
and certainty of depth information, and the fact that the sensor data do not re-
quire much processing. The main limitation is the inability to distinguish between
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Figure 3.6: Comparison with segmentation methods based on clustering. Seg-
ments are displayed using different grayscales in no particular order. a) Original
target image. b) Segmentation produced by the MCMC based method with a run-
ning time equal to that in d). c) Results of the FCM method [70] d) Fuzzy c-means
clustering of color channels and spatial coordinates.

different objects. Using both vision and active sensors in combination should pro-
duce the best results. The main reason for the limited use of vision is the lack of
reliable methods for analysing the images and the high computational cost.

The skill to simultaneously locate a robot and to generate a map of its sur-
roundings is essential for enabling robots to function autonomously. Most ap-
proaches are based on defining landmark locations according to which the robot’s
pose is estimated [106]. Typically, the landmarks are point-like features which
are identified in images. As the robot moves, methods such as extended Kalman
filter are used to track the landmarks. Bayesian Monte Carlo sampling methods
have been applied to the simultaneous mapping and localization problem by using
particle filters as an alternative to the extended Kalman filter [82].

Point-like landmarks have many advantages: they may be easy to detect and
three measurements in a coordinate system are enough for accurate representa-
tion of their location. On the other hand, if the scene consists of large objects or
surfaces, detection of uniquely identifiable landmarks in them may be difficult.
If the landmarks are not unique enough to be reliably identified from each other
by appearance, data association becomes a major problem in tracking. Indoor
environments mostly consist of regularly shaped surfaces and objects. To repre-
sent each object as a collection of multiple independent landmarks is redundant
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and overly complex compared to a wireframe model, for example. Some authors
have studied such representations [72], but they have been much less popular than
2-D point landmarks. A mapping system that identifies surfaces such as floors,
walls and doors might be more robust than a system that is based on independent
landmark points, but reliable recognition of such objects is difficult.

3.6.2 Solution based on scene segmentation

Color segmentation techniques applied in the map building problem typically clas-
sify image pixels using one or more predefined color models. This is a valid
approach when the colors of different object classes are distinctive and do not
overlap. However, in many real-world situations objects of interest have complex
textures, similar colors appear on different surfaces, and shadows and reflections
add to the complexity of the problem.

In our approach, we divide each image into two segments: the foreground
that represents an obstacle-free ground area, and the background, which includes
everything else and is treated as obstacles. The foreground is contiguous, since
we only consider areas that the robot has access to. An initial division of the first
image in a sequence is required to get an initial model for both foreground and
background textures. [64]

Similar approaches to the robot navigation task have been proposed previ-
ously. For example, Thorpe et al. [105] have presented a system for outdoor
navigation which divides pixels to road and non-road classes based on color and
texture models. The color model is adaptive to a certain extent.

We apply the probabilistic image segmentation algorithm described earlier in
this chapter. The method should be suitable for the real-time navigation task, so
a computationally efficient solution is needed. In this application, the number of
segments can be constant. Addition of a new segment to the model requires some
external information. For example, if the surface material changes, bumpers or
short range infra-red sensors can be used to determine that it is not an obstacle.

To demonstrate the advantage of the approach based on contiguous segments,
we compare it to some more simple strategies of using the color models. The com-
parison is illustrated in Fig. 3.7, where the initial division between the foreground
(floor) and the background can be seen in the image a). Color distribution models
are learned for both segments and the result of applying the models directly to
classify each pixel is shown in 3.7b). Pixel classification in a single pass is very
quick, but the result is significantly inferior to our MCMC method (3.7c), and it
cannot be relied on for map building. It is apparent here how the reflective glass
walls make the task difficult. If those parts that are not connected with the initial
floor segment are left out, the result is still very blotchy (3.7d). Finally, we show
the result of region growing using the same model adaptation as in the proposed
method but without the MCMC dynamics (3.7e, 3.7f). Segment texture models
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a) b) c)

d) e) f)

Figure 3.7: Segmentation vs. pixelwise classification. a) Initial segment division.
b) Pixelwise classification result (probabilities of pixels belonging to the floor
segment). c) Result of probabilistic segmentation. d) Parts of result (b) that are
not connected with the initial segment have been left out. e) Sequential region
growing with model adaptation over 4-connected neighbour pixels; equal CPU
time as in (c). f) Same as (e) but twice the CPU time.

are updated after two cycles of adding those neighbouring pixels to the floor seg-
ment that are classified to belong to it. After a sufficient number of iterations, the
result is not much different from 3.7c), but some type of post-processing would be
needed to resolve the numerous holes in the floor segment to enable navigation.

3.6.3 Results

We have tested the concept with a mobile robot that is equipped with a camera
that is supported at the height of 1.6 m and can be rotated about both vertical and
horizontal axes. Viewed from above, the robot has a round shape with a diameter
of 0.5 m, and it is able to move at the speed of 0.5 m/s.

Given a target point, the robot’s task is to build a map between its present
location and the target and then to use that map in navigating to the target. The
robot has knowledge of the location of a small patch that contains obstacle-free
ground area. The robot aims its camera such that the patch is within the field of
view and grabs an image. The MCMC diffusion algorithm is applied to grow the
homogeneous ground area up to a boundary that naturally separates it from the
rest of the scene. With knowledge of the position of the camera, its focal length
and calibration parameters to account for lens distortion, and assuming the ground
planar, image coordinates can be mapped to intersections of the ground plane and
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3-D ray vectors originating from the camera. The boundary on the image is thus
projected onto an occupancy grid [27] of the area. What is within the boundary is
regarded as safe ground.

Based on the target point and the map, the robot checks whether the map to
the target is complete, and if not, chooses a point on the map that is preferably
in the direction of the target but not too close to the edge of the safe ground
area. The map is filtered by a circular mask that is the size of the robot and
transformed into the form of a graph by skeletonization, so that a graph search
algorithm can be used to plan a path to the selected point. The robot follows
the path and acquires a new image such that the field of view includes part of
the mapped area. Now the patch of mapped area is used as the initial state for
the segmentation algorithm, after projecting it onto the new image. Odometer
measurements are used to determine the robot’s current position.

Processing typically takes around one second per image in a Matlab imple-
mentation on a 1.8 GHz processor. The robot autonomously decides when it needs
a new image for further path planning. Thus the rate at which new images are re-
quired varies according to visibility (obstacles, corners, etc.). The robot travels
at the speed of 0.5 m / s, and image processing rarely causes any delays. In our
experiments the navigation system has proved relatively robust against variations
in floor appearance caused by illumination effects. The system works on different
floor materials without any modification. An example case is shown in Fig 3.8.

The results show that this method enables collision-free navigation on the
office floor. The robot odometer measurements are subject to small inaccuracies,
which are the source of cumulative error in the maps. Thus the maps can only be
used locally. An accurate mapping would require the compensation of this error
by comparing the scenes of consecutive images.

3.7 Interactive segmentation

An important problem in photo editing is the separation of objects from arbitrary
backgrounds. It is obvious that any unsupervised segmentation algorithm cannot
match human abilities in such a task. In order to get results of acceptable quality,
external information is needed. In the context of image editing, user interaction
is a natural way to bring in the information. Some solutions to this problem have
been proposed based on boundary detection. One of the best known methods is
called intelligent scissors, proposed by Mortensen and Barrett [84], where graph
search is used to find an optimal contour for an object through manually selected
control points along the boundary. The authors show that the method is an effec-
tive tool for object extraction. The user typically has to point and click dozens of
points right on the boundary to get the desired result.

The segmentation algorithm discussed in this thesis can be directly applied
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Figure 3.8: Robot navigates to target point along a curved corridor using image
segmentation. Five images were required to build a map from the starting point
to given target point (12m,−2.5m). Top: Three of the five images with initial
values (black) and segmentation results (white). Bottom: Final map based on
the images. The vectors starting from labeled points indicate camera orientation
during acquisition of the shown images. The target point is indicated with an
asterisk. The robot started from the origin and moved backward to the point A.
The track of this movement was used as the initial value for floor appearance.
For the rest of the images, the segmentation result of the previous image was
projected back on the current one and used as the initial value. At points B and
C, two images were acquired using different camera orientations. The first image
of each pair is shown. The approximate location of the true map is shown in the
background.

to the same problem, enabling a different means of user interaction: the user can
define regions by selecting smaller areas within them. This can be quicker and
easier than selecting boundary points, because the selection normally does not
need to follow the segment boundary. The selected areas are used as initial values
for segmentation and they are labeled permanently as belonging to the named
segments. Both the target object and the background can be divided to multiple
segments if they are not homogeneous. The user has control over the number of
segments, so splitting and merging are not used. This limits the solution space
and makes the process fast enough for interactive use.

Examples are shown in Fig. 3.9. In the first example, the colors are distinctive,
but the objects consist of differently colored regions. In the second image, the
object blends well with its surroundings and there is no clearly visible edge. In
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Figure 3.9: Example of interactive segmentation. Left: the user selects rectangu-
lar areas to control the segmentation. The process is interactive and the segmen-
tation is corrected by adding new areas to foreground or background segments.
Right: result based on the rectangles shown on the left.

both cases, nine rectangular areas were enough to produce a reasonably accurate
segmentation result.

Previously proposed methods for this object selection tasks are based on spec-
ifying the boundary of the object. The advantage of this segment based method
is that less accuracy is required from in mouse pointing by the user. In the exam-
ple tests, only rectangular area selections were used. The use of free-form areas
would make the process more efficient. The segment prior includes a boundary
smoothness constraint (3.15), which could be relaxed for fine-tuning the result.

3.8 Discussion

In this section we have discussed a method for Markov chain Monte Carlo image
segmentation and presented example results in different situations. The principle
of MCMC segmentation has been previously proposed, but new techniques for
efficient generation of samples are presented. A problem that is often associated
with Monte Carlo sampling methods in image processing is their slow conver-
gence. The results indicate that careful design of sample generation mechanisms
can help to reduce computation times significantly, though for general images the
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processing rates are still far from real-time.
All image segmentation methods are based on very simple models of reality,

and that is why results on general images cannot be accurate. A semantically
correct segmentation would requires recognition of objects and understanding the
3-D structure of the scene, which is beyond what is meant by segmentation in
computer vision literature. It is questionable whether using richer or more com-
plicated texture models in the 2-D segment framework would offer any advantage,
because the segments still would not be modeled realistically but further increased
model complexity would cause additional difficulty and lead to much slower com-
putation times. We expect that an increase in model complexity would need to be
balanced by bringing in new information.

The application examples show that the situation is quite different when the
problem is restricted, and the methods presented in this section can be directly
applied in practical problems. When the application is constrained, the use of
more specialized models becomes feasible.
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Chapter 4

Model based object matching

In this chapter, we discuss the matching of different two and three dimensional
object models to images by MCMC sampling.

4.1 Object representation

Choosing an effective scheme for representing three dimensional objects is a dif-
ficult task. There are many possible ways to model objects, but a great number
of parameters are needed for accurate descriptions. An important distinction in
approaches is between 3-D models, which focus on determining the volume oc-
cupied by the object, and representations based on 2-D views, which describe the
projected appearance of the object from one or more views. Though information
processing in digital computers is very different from biological systems, it is in-
teresting to note that brain research has produced evidence of both view based 3-D
model based representations [15] being used by humans.

In computer graphics, efficient methods have been developed for handling
various types of objects using three-dimensional models, and the rendering of im-
ages from these models can be performed very quickly on modern computers.
The structure of a scene specified as 3-D models fully explains the scene and can
be used in applications that require metric information. Geometric models used
in computer aided design (CAD) are a good example. These are a very effec-
tive way of describing objects that have simple geometric shapes. Complicated
surface shapes that cannot be conveniently modelled by analytical geometry can
be approximated by dense wireframe representations. For object recognition, the
parametrization of these models is a difficult problem. The number of parameters
needed for a sufficiently accurate representation varies widely between different
types of objects, so a general parametrization suitable for any object shape does
not seem practical. Instead, objects must be treated in terms of specialized object
classes. Geometrically simple shapes may be treated directly as CAD models,
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and and occasionally their special properties can be used to determine robust fea-
tures [97]. For more complex shapes, a regular grid representation is generally
used. The number of reference points in this type of a model is very large, so
dimensionality reduction techniques are needed to produce a tractable paramet-
ric representation for object recognition. The eigenshape representation that is
created by principal component analysis is a popular method. It has been suc-
cessfully applied in the modeling of human faces [2, 12]. The appearance of an
object depends not only on the 3-D shape but also on the surface texture, and these
two cannot be estimated separately. The acquisition of 3-D models is an impor-
tant question. CAD models can be designed manually, but to specify a statistical
model for an object class of variable shape, a large amount of measurement data
is needed. Laser, infrared or MRI scanners can be used to obtain surface depth
information. Another alternative is stereo imaging.

Representations based on two dimensional views of the objects are an impor-
tant alternative to 3-D models especially for the purposes of object recognition.
The appearance of many objects depends more on the surface texture than the 3-D
shape. The 2-D view representations can be treated directly as image templates,
or they can be based on various types of image features. The features can be
either holistic or point-like, and they can have various advantageous properties.
For example, features have been proposed that are invariant or insensitive to ro-
tations and scale differences [73]. The view based approach can be effective in
object recognition, especially in standard views, but handling the correspondence
between 2-D and 3-D representations is difficult. Treating objects as collections
of separate views easily leads to redundancies and does not advance actual un-
derstanding of the structures of scenes. Methods for view interpolation [110, 86]
and clustering [94] have been proposed to improve the trade-off between storage
space and accuracy. Models that describe the mutual positions of landmark points,
which can be recognized based on their features, add flexibility to the 2-D view
representation and some degree of view interpolation can possibly be combined
to such models [65].

Both view based and 3-D representation schemes lead to models that are
highly specific to the target objects, so object recognition requires either system-
atic matching of all candidate object classes or another level of model hierarchy.
The most suitable representation depends on the target object and the application.
For example, 3-D models can be preferred for sculptures, which are seen in arbi-
trary poses and their appearance is dominated by the shape. For the recognition
of faces from passport photographs, view-based approaches are likely to be more
effective.
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4.2 Detection and matching of object models

Object detection and matching are very broad subjects. In the model-based ap-
proach the problem is one of matching model-based descriptions of objects to im-
age data, which is the result of light reflected from or emitted by the objects and
projected onto the imaging device. Most solutions to object matching problems
concentrate on highly specific applications and object types. Robust detection and
matching require accurate model descriptions.

Approaches based on feature matching attempt to find a correspondence for
individual feature points. Such features may be included in an object model. For
example, the model may describe the positions of such feature points in the object.
The matching is based on an error measure or a cost function that quantifies the
match between the object and the image data. In the Bayesian approach, the target
of the analysis is the probability of object model parameter values given the image
data. This probability can be related with a cost function. It may be difficult to
determine the correct probability model or cost function accurately. Sometimes
simplified models are used due to this and also for computational efficiency.

Global approaches seek a transformation of the model such that the model
best fits with the image. Effect of the background of the object on the image
must be taken into account. If the object can be segmented from the background,
the problem is greatly simplified. This is especially important if the model relies
on the shape or appearance of the object’s outline. Object detection techniques
based on matching templates, grouped feature points or parametric models to the
image typically concentrate on fitting the object, without much emphasis on the
background. However, the environment of the object also affects the probability of
object classification. For example, let us consider using a crescent-shaped model
for what the moon looks like in a certain phase. If the model does not include any
assumptions of the background, it would fit just as well into an image of a full
moon. The rest of the moon would be left in the image without any explanation,
so the probability of this interpretation for the image should be very low.

All the data in a digital image is in the pixel values but that is a very high-
dimensional and low-level representation. Images can be processed in many ways
to produce compact representations of attributes that can be more directly linked
with properties of objects. Various methods have been developed for the extrac-
tion of robust features from an image, such as edges, homogeneous regions and
points that match specific descriptions. Clearly multiple different types of fea-
tures should be used together, but combining them is quite difficult. If different
features are used for object matching sequentially, the results will depend on the
weakest link in the chain. In theory, different information sources can be com-
bined using Bayesian probability theory, but this requires knowledge of the con-
ditional dependences between the information sources, which are difficult to esti-
mate. The method called boosting to combine different classification techniques
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has produced good results in object recognition [32, 114], but each classifier is
used separately and the results are only combined afterwards. For optimal per-
formance, different types of information should be exploited simultaneously, but
there is currently no general solution to this.

4.3 MCMC sampling for 2-D rectangles

Right angles and straight lines are very typical features of man-made objects and
environments. Rectangular structures of all scales tend to dominate indoor and
outdoor environments created by man. Walls, doors and windows are most often
rectangles. Importantly, these are very significant objects for navigation and map
building. If all the rectangles in an indoor scene can be correctly detected, the
problem of forming an interpretation of the area is greatly simplified.

In this section we propose an approach to finding rectangular objects in natu-
ral images. Relatively few studies on this subject have been published, although
rectangular structures occur frequently in images. Rectangle detection has mostly
been applied in the analysis of aerial images, where the targets of interest include
objects such as houses and vehicles. In such cases, perspective transformations
can be ignored. Our point of view is from scene analysis for robot navigation, so
many assumptions cannot be made about the sizes of rectangles and perspective
transformations need to be taken into account.

Hough transform is a traditional method for detecting objects with simple
parametric descriptions such as straight lines [46]. Jung and Schramm [49] have
proposed a method to detect rectangles by analyzing Hough transform spaces for
lines in local image regions. Sizes of rectangles are limited by the fact that the
method can only detect one rectangle per image region. A method to detect rect-
angular areas using a edge operator based rectangle model has been proposed
by Moon et al. [83]. Their results showed relatively robust performance, but the
method requires an exhaustive search over different rectangle sizes and orienta-
tions as well as perspective effects, which adds up to a heavy computational cost.
The model does not take into account perspective transformations.

In our approach, we concentrate on vertically aligned rectangles, so two of
the vertices of any rectangle an image are approximately vertical. This is used
for initialization of the search, as follows. We use the Canny edge detector [16] to
detect and trace edges in the image. From these we select those that are vertical by
applying a vertically oriented filter to the edge map. Finally, we eliminate edges
that are two short and parametrize the remaining edges by fitting a straight line
through each of them. The process is illustrated in Fig. 4.1.

The Metropolis-Hastings algorithm is used to locate the rectangles. Two sam-
pling chains are associated with each vertical line: the lines are used as both left
and right vertical edges of potential rectangles. As the horizontal position of one
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Figure 4.1: Example of the detection of vertical edges. Left to right: Original
image, Canny edges and the final edge map.

edge is fixed, five additional parameters are needed to fully represent a vertical
rectangle including perspective deformations. There are many alternative ways to
choose those parameters; our choice is the following: the distance between the
vertical edges w, vertical coordinates of the endpoints of the first edge relative to
the initial estimates oy

1 and oy
2, differences of the vertical coordinates of the other

two corners from the first ones oy
3 and oy

4.
Importance sampling is applied to the width parameter w, which determines

the location of one vertical edge of the rectangle. The edge is assumed to appear
in the vertical gradient image, so the marginal gradient histogram of that image
is used to form the proposal distribution. The marginal histogram is computed in
the image strip that extends from slightly below the bottom to above the top of
the first edge. The proposal distribution goes to zero very near the first edge as
well as near the edge of the image; this is a natural way to enforce these bounds.
The importance distribution causes the samples to concentrate at strong vertical
edge responses in the image and it significantly speeds up the search. The same
strategy is applied to the endpoints of the first edge, oy

1 and oy
2, based on the

horizontal gradient image.
The likelihood function is based on the assumption that the rectangle forms

a segment with a texture that is different from the texture of the segment’s back-
ground. Thus we compare the texture of the rectangle and its surroundings. Three
texture samples are used in the comparison. One of the samples is a strip next
to the first edge, Tm, the other two are the entire rectangle and the 8 pixels wide
area that surrounds the rectangle, Tf and Tb. The error function (negative log-
likelihood) is computed by comparing the Kullback-Leibler distances between
these areas, as follows:

l(r|I) ∝ [D(Tm|Tf )−D(Tb|Tf )]
2. (4.1)

Prior distributions for the parameters above are all normal distributions. The
prior for the rectangle width w has a wide variance. The vertical offsets have zero
mean, and standard deviations 10 % and 25 % of the initial length of the first edge
for endpoints of the first edge and the opposite edge, respectively. In addition,
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there are priors that control the size and shape of the rectangles and measure edge
support in the image. The size prior is a broad log-normal distribution, and the
shape prior is a Gaussian distribution on the ratio of lengths of the vertical edges
with mean 1.0 and standard deviation 0.1. The edge prior measures the average
edge response along the outline of the rectangle.

Sampling chains and results after convergence are shown in Fig. 4.2. The

Figure 4.2: Left: Sampling chains for six different rectangles. The colors run
from blue to red as sampling progresses Right: Final samples of 30 chains with
highest posterior probabilities. The blue line segments indicate the corresponding
edges used for initialization.

use of edge information in the proposal probabilities of the opposite vertical edge
makes the sampling efficient. Many of the matches coincide with actual rectan-
gular objects in the image. There is one solution for each of the vertical edge
proposals, and not all of these can be correct. Thus the false positive rate is high
unless some post-processing criteria are applied. The posterior probabilities of
the objects are correlated with the correctness of the rectangles. More results are
shown in Fig. 4.3.

4.4 MCMC sampling for 3-D objects

In this section we explore the possibilities of MCMC sampling for object detection
and matching with different three dimensional object models. We present results
of estimating model parameters based on the difference between the target image
and the projection of the model. A model of a rectangular solid and a more general
spline based volume model are considered.

4.4.1 Matching a rectangular solid using edge information

In this example we explore the use of edge information in matching a 3-D model
with an image. The estimation is based on information about the location of one
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Figure 4.3: Example results of rectangle search.

of the edges. A different solution to the same problem has been proposed by Rao
[97].

If the locations of some likely edges in an image are known, there is no ef-
fective way of finding out the parameter distribution of an object, given the infor-
mation that those edges are part of the object. The difficulty is in the complicated
relationship between the model parameters and the corresponding edge locations.
This causes the parameters to have strong mutual nonlinear correlations. The 3-D
model produces the locations of edges from given model parameter values, but
the inverse relationship is intractable in anything but the simplest cases. Even for
very simple models the possibility of rotation ensures that each edge location can
be dependent on every single model parameter. That is why in the general case,
the conditional model parameter distribution given the edge locations cannot be
computed or sampled from. This means that Gibbs sampling, where samples are
drawn from the conditional distributions, is not suitable for this case. Specific
strategies for computing the conditional distributions can be designed for some
simple object models, but they cannot be generalized to other models.

On the other hand, knowledge of the location of one model point in the image
can easily be exploited in the fitting procedure by making sure that the same point
in the model is projected to that location, for example using that information to
define a tight prior distribution for the coordinates of the point in the Bayesian
model fitting approach. Then the distribution of the rest of the parameters will be
conditioned on that information. That is easy because only the translation parame-
ters are involved. An example is shown in Fig. 4.4d. To include another parameter
in the model is much more difficult because rotational degrees of freedom causes
a dependence between all parameters.

We consider a wire-frame model of a rectangular solid that has seven free
parameters: edge lengths, coordinates of 2-D projection and camera angles. The
Metropolis-Hastings algorithm is used to estimate the position of such an object



50 Model based object matching

in an image using edge information.
The likelihood function for a given position is computed as the product of

pixelwise Gabor filter responses along the projection of the wire-frame onto the
image. Filters of eight different orientations are used and the nearest orientation
is chosen for each segment in the wireframe. A gamma distribution is used as
the prior for the length of one edge to ensure that all edge lengths are non-zero.
The camera angles have uniform prior distributions, and the rest of the parameters
have Gaussian priors.

Results obtained with a test image of a relatively cluttered scene are illustrated
in Fig. 4.4. Different initializations were used for the Metropolis chains. Two
positions where most of the chains converged with small error are shown in image
a). The sketches represent medians of the parameter distributions obtained from
two sample chains. Variance of the distributions was very small in this case. The
cardboard box cannot be matched more accurately because the wire-frame model
does not take perspective deformation into account. Images b) and c) display
typical values from chains which failed to converge in the course of a few hundred
samples.

In image d), the location of the strongest edge observation was used as prior
information of the location of one of the edges of the object. This was imple-
mented by assigning the edge center a Gaussian prior distribution, centered on
where the strongest edge filter response was obtained. In this case all sampling
chains converged to the correct result. Our experiments indicate that use of such
prior information normally yields savings in computation time, even if there are a
number of different candidates for the edge location.

4.4.2 Estimation of shape using the generalized cylinder model

In this section we discuss the MCMC estimation of the shape of a model that
describes generalized cylinders. In the model, the median axis is a linear combi-
nation of spline curves and the cross section is a circle or ellipse. The linear basis
for the median axis is created from B-spline approximations to random curves.
The random curves are generated from a Markov model, such that each increment
to the curve is correlated with the previous increment. The median axis is a para-
metric curve in the sense that x = x(z) and y = y(z). The x and y curves share
the same basis but have different parameters. One of the camera angle parameters
becomes redundant because the object can be rotated by changing the scaling of
the x and y curves. The radius can share the same model with x and y curves,
although it is favorable that the radius is always positive. This model lends itself
well to the representation of various man-made objects, especially if the definition
of the cross-section is changed to allow rectangular shape.

In the estimation of 3-D shape we use a likelihood function which includes
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a) b)

c) d)

Figure 4.4: Estimating parameters of a rectangular solid based on edge informa-
tion. a) Two modes of the distribution with small error. b) and c) Typical samples
of MCMC chains which did not converge well. d) Median of distribution obtained
using the assumption that the middle of one edge is located near the area marked
by the circle.

two different error measures:

P(I|θ) = exp

(

− 1
σ2

(

βEedge +∑‖Ire f − Im(θ)‖2)
)

. (4.2)

Eedge is a measure of edge match and the other error term is the pixel-wise inten-
sity difference between the target image Ire f and the rendered model Im. σ denotes
the error variance and β is a constant. Since at this stage we do not attempt to es-
timate the texture of the object, the edge error term is allowed to dominate and the
intensity error is basically only used to separate the object from the background.
We compute the edge error from smoothed edge filter responses at vertices which
lie on the edge of the rendered model. Whether the end points of the cylindrical
object are visible or not can be computed using knowledge of the tangent vector of
the model axis at the end points and the location of the camera. The edge vertices
on the side of the model will be connected to triangles which are approximately
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perpendicular to the camera angle. In the example illustrated in Fig. 4.5, we used
Metropolis sampling to estimate 11 parameters: eight for the model, three for the
camera angle and scale and two for the alignment of the target image with the
image of the rendered model (translation). There were no local minima because
the target object was well separated from the background. Since we did not use
a prior which would favor symmetric or linear objects the distribution of the side
axis profile is wider than that of the front profile. This means that there is more
ambiguity in the side view of the object than the front view.
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Figure 4.5: Results from fitting the generalized cylinder model to an image of a
mug. Top left: target image. Middle: model which corresponds to the mean of
estimated parameter distribution. Right: Side view of the same model. Neither
direction of light nor texture was estimated in this example. The distribution of
the estimated axis profile is shown in the bottom row; front view on the left and
side view on the right. The black curves depict the mean and standard deviation of
the distributions and the gray curves are a randomly chosen subset of individual
samples. Note the stretched aspect ratio which makes the samples seem less linear
than they actually are.

4.4.3 Texture estimation

Texture has a decisive effect on the appearance of the 3-D object. Texture accounts
for details that are not explained by the model geometry and for changes in the
surface color. Ideally the estimation of texture should be done jointly with the rest
of the model parameters. This requires a relatively constrained model for the tex-
ture (or the object) because, as an extreme example, any scene could be explained
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as a flat object where the texture accounts for every detail, like a photograph. Ac-
tually this is a good explanation and it is one mode of the posterior distribution. A
realistic model for texture is difficult to define and therefore we have kept texture
separate from the shape estimation. We first estimate the position, shape and ori-
entation of the object and then, keeping those parameters constant and assuming
a suitable lighting model, estimate the texture of the object.

Texture coordinates which establish the correspondence between the model
geometry and the texture map are computed using projective texturing. The same
3-D-to-2D projective transformation that transforms the 3-D coordinates of the
model to 2-D points on the screen is used to compute 2-D texture coordinates
associated with each 3-D triangle in the model. Projective texture mapping can be
performed efficiently using current graphics hardware. The approach is similar to
[22], but only a single texture is used on the object.

Lighting is computed using a simplified Phong lighting model [31] with four
parameters, including ka, kd , ks which control the contribution from ambient, dif-
fuse and specular terms and ν which controls the size of specular highlights. The
color value of a triangle after lighting calculation is determined by

CL = ka + kd(~N ·~L)+ ks(~R ·~V )ν, (4.3)

where ~N is the surface normal,~L is direction of illumination, ~R = 2~N(~N ·~L)−~L is
the direction of reflection, and ~V is the view direction.

The color value of a pixel is generated as a product of the lighting and texture
values, C = CLCT . Texturing is implemented in OpenGL graphics library using
the GL_MODULATE texturing function, and the multiplications are done rapidly
with the graphics hardware. Given the perceived image I and estimates of the light
direction and model geometry, the texture CT that is required to produce image I
is computed as

CT =
C
CL

=
I

ka + kd(~N ·~L)+ ks(~R ·~V )ν
. (4.4)

A non-zero ambient term ka ensures that the texture estimate remains finite ev-
erywhere. An example of the texture estimation procedure is shown in Fig. 4.6.
The shape of the object has been estimated using a generalized cylinder model
and Metropolis sampling as in section 4.4.2. The illumination-corrected texture,
estimated using eq. (4.4), is shown in Fig 4.6b. Note how the texture remains
uniformly white regardless of the shading present in the target image. The black
stripe on the rightmost edge of the mug appears because the shape estimate was
not quite accurate. The form of the texture is completely unconstrained, and thus
any texture that produces, together with the shape, an image similar to the target
image is considered plausible.
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a) b) c) d)

Figure 4.6: Estimation of shape and texture. a) Target image. b) Estimated,
illumination-corrected texture. c) Texture mapped shape estimate. The dark arti-
facts near the edge of the mug appear because of inaccuracies in the shape esti-
mation stage. d) New view and illumination.

4.5 Discussion

In this chapter Markov chain Monte Carlo sampling methods were applied to
different object matching tasks. Parametric models of certain object types were
matched to images to detect and identify objects.

First, the detection of rectangular objects under perspective transformations
was studied. The results indicate that the approach has good potential for applica-
tions in this type of a problem. The search for such broadly defined object shapes
in cluttered images is a computationally challenging problem, and the method is
too slow to consider for real-time use, unless the problem were restricted to locat-
ing one rectangle per image.

The results of experiments in matching parametric 3-D models to images sug-
gest that MCMC sampling techniques are a feasible solution in such tasks. The
wireframe model for a rectangular solid is sufficiently specific to be feasibly ap-
plied in a cluttered environment. The 3-D volume model, on the other hand,
requires that the target objects be distinctly visible. The main advantage of the
Bayesian model-based approach is that models can be defined freely and they can
be directly controlled using priors.

A negative aspect of the model based approach is that in order to be efficient,
the the sampling techniques need to be specifically adapted for each model, and
they cannot be easily extended or generalized for different object types. Instead,
specialized models and sampling methods need to be crafted for each object type
separately.



Chapter 5

Probability model for the
self-organizing map

The topic of this chapter is the neural network model called the self-organizing
map. The SOM is traditionally seen as a computational method for mapping
high dimensional data vectors to a lower dimensional space. In contrast to this
view, here we present the SOM as a generative probability density model in the
maximum likelihood framework. We first give a review of the SOM learning al-
gorithm, its properties and its applications. Next we derive the probability density
model that can be associated with the SOM. We present the theoretical and prac-
tical properties of the density model and its application to model selection and
conclude with a discussion of its significance.

The self-organizing map [58] is an unsupervised learning algorithm which
seeks to maintain a certain topology among prototype vectors arranged on a reg-
ular grid while letting them adapt to input data. In the input space, the model
produces a vector quantization of the data, and a mapping between the data sam-
ples and the discrete map is established. Topology preservation means that data
samples close in the input space are mapped onto nearby units in the SOM lattice
and vice versa [113].

There are several benefits in associating a probability density, or a generative
model, with a mapping method (see the discussion by Tipping and Bishop about
a generative model for principal component analysis [107]):

• The density model enables computation of the likelihood of any data sample
(training data or test data), facilitating statistical testing and comparison of
the SOM with other probabilistic techniques.

• Parameters of the SOM that control the model’s complexity or stiffness can
be optimized to ensure best fit to data using standard statistical methods,
such as cross-validation.
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• The density model facilitates quantitative analysis of the model, for exam-
ple, by computing conditional densities to test hypotheses found by visual
data analysis.

• The probabilistic interpretation offers a new view into the SOM algorithm,
which may aid in understanding its behaviour, its capabilities and its limi-
tations.

• In principle, the probability model enables the use of Bayesian methods for
model complexity control and model comparison. However, as shown later,
the normalization of the probability density in the original SOM requires a
numerical procedure that seems to render the Bayesian approach impracti-
cal.

5.1 SOM algorithm

The self-organizing map consists of a regular grid of map units that are tied to-
gether by their neighbourhood relationship. In the input space, each map unit is
represented by a prototype vector. During SOM training, the prototype vectors
are adapted to the data. The part of the input space that is mapped into a map unit
is called the receptive field of that unit.

5.1.1 Sequential algorithm

In the basic SOM algorithm [58], input data samples are presented sequentially.
The updating step begins by finding the map prototype vector mb that is nearest
to the presented input vector xn – its best matching unit (BMU). The matching
criterion is Euclidean distance. The BMU is determined by the condition

‖x−mb‖= min
k
{‖x−mk‖}. (5.1)

The prototype vectors are displaced toward the data sample a distance that de-
pends on the topological relationship between them and the BMU. The update
equation is written as

mk(t +1) = mk(t)+αHbk(t)[x(t)−mk(t)]. (5.2)

The parameter α is called the learning rate factor and it usually decreases mono-
tonically during training. The neighborhood function Hbk, defined in the map
lattice, is responsible for the topology preservation. The principle is that units
close to the BMU in the map lattice are updated along with the BMU. The ra-
dius or width of the neighborhood function is also meant to reduce as training
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progresses, enabling increasingly local adaptation. The most typical choice of the
neighborhood function is the Gaussian function

Hbk ∝ exp

(

−‖rb− rk‖2

2σ2

)

, (5.3)

where rb and rk are the coordinates of the best matching unit and the unit k on the
map lattice, respectively. The parameter σ controls the width of the neighbour-
hood. Reducing the size of the neighborhood is not related to convergence of the
algorithm; the SOM algorithm will converge at any neighbourhood size. Gradual
reducing of the neighbourhood improves chances of good topological ordering in
the map.

5.1.2 Batch algorithm

Another method of training the SOM is known as the batch map algorithm [58].
It consists of the following steps:

1. Assign initial values to the prototype vectors.

2. Let the new value of each prototype vector be the mean of the input samples
weighted by the neighborhood function

mk(t +1) = ∑
n

Hbk(t)xn, (5.4)

with the BMU taken to be the BMU of xn. Hbk must be normalized such
that ∑n Hbk = 1.

3. Repeat from step 2 until convergence.

The size of the neighborhood is reduced in the course of training as in the sequen-
tial algorithm. The batch algorithm is simpler than sequential training because
there is no learning rate parameter.

5.2 Error functions

The SOM algorithm is not defined in terms of an error function but directly via
the training rule, and the training rule is not a gradient of any global error function
[28]. This makes the mathematical analysis of the SOM algorithm fairly difficult.
However, the converged state of the SOM is a local minimum of the error function
which is given by [99]

E(X) =
N

∑
n=1

M

∑
j=1

Hb j‖xn−m j‖2, (5.5)
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where X = {xn},n = 1, . . . ,N is the discrete data sample, j is the index (or posi-
tion) of a unit in the SOM, with prototype vector m j, and Hb j = H(b(x)− j) is the
neighborhood function, b(x) being the index of the best matching unit for x.

When a sample is near a boundary of two or more receptive fields, a small
change in the position of one prototype vector can change the best matching unit
of that sample. Thus the gradient of the error function with respect to the pro-
totype vectors is infinite. The error function is not defined at the boundaries of
the receptive fields, or Voronoi cells [58], so the function does not exist in con-
tinuous input space. In the context of a discrete data set, the probability of any
sample lying at any boundary is zero (tie rules can be applied), so in the error
function can always be computed for any real data set. The error function changes
if any sample changes its best matching unit. That is why the error function is
only consistent with the SOM training rule when the algorithm has converged. In
practical data analysis the data set is always discrete and the algorithm is allowed
to converge, so analysis of the error function is thereby justified.

The error function (5.5) can be thought of as the sum of the distortion function

D(x) = ∑
j

Hb j‖x−m j‖2, (5.6)

computed over the data set. This is the sum of distances of a data point to all
prototype vectors that are in its topological neighborhood, weighted by the values
of the neighborhood function. The distortion function is also discontinuous at
the Voronoi cell boundaries. The discontinuity is a result of the winner selection
rule of the training algorithm. Luttrell [74] has shown that exact minimization of
equation (5.5) leads to an approximation to the SOM training rule, where, instead
of the nearest neighbor winner rule, the best matching unit is taken to be the one
that minimizes the value of the distortion function (5.6), as follows:

b(x) = argmin
i

∑
j

Hi j‖x−m j‖2. (5.7)

The minimum distortion rule avoids many theoretical problems associated with
the original rule, without compromising any desirable properties of the SOM ex-
cept for an increase in the computational burden [43]. The gradient of the error
function becomes continuous at the boundaries of receptive fields (which are no
longer the same as the Voronoi tessellation). The distortion function with the mod-
ified winner selection rule also becomes continuous across the unit boundaries.

5.3 Relation to constrained mixture density models

The main aspects of the SOM algorithm that make its analysis difficult are 1)
the hard assignment of the input samples to the nearest units, which makes the
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receptive fields irregularly shaped according to the Voronoi tessellation, and 2)
the regularizing effect defined in terms of updating the prototype vectors of the
neighboring units towards each input, instead of regularization applied directly to
the positions of the prototype vectors.

The first issue is due to the shortcut algorithm [57] devised to speed up the
computation and to enhance the organization of the map from a completely ran-
dom initial state, and it is not a characteristic of the assumed model for the self-
organization in biological networks. The original on-center off-surround lateral
feedback mechanism in [57] produces a possibly multimodal pattern of activity
on the map, which is in the SOM model approximated by a single activity bubble
around the best-matching unit, shaped by the neighborhood function. An equal
Hebbian learning rule in each unit produces the concerted updating towards the
input in the neighborhood of the BMU[58]. An interpretation of the mapping of
an input data point to the SOM lattice that is consistent with the biological model
would be to map the input point to an activity bubble Hib around the BMU b in-
stead of just one single unit. This is the same as using the minimum distortion
rule (5.7) instead of the shortest distance (5.1).

By ignoring the winner-take-all mechanism, the SOM can be approximated
by a kernel density estimator, where the activity of a unit is only dependent on the
match of the data point and the unit prototype vector. This is often called a soft
assignment of data samples to the map units, in contrast to the hard assignment of
a data point to one single unit.

The second characteristic of SOM training, the way of constraining the unit
positions, is dictated by the biological origin of the method. A regularizer directly
on the prototype vector positions would require a means for the neurons to up-
date their weights towards the weights of the neighboring neurons, while in the
SOM rule all learning is towards the input data. The biological plausibility is ob-
viously non-relevant in data analysis applications, even though it may have a role
in building a larger neural system with the SOM as a building block.

Utsugi has proposed a Bayesian model in which small approximations are
made to render the SOM more easily analyzable: the winner-take-all rule is re-
placed by a soft assignment, and the neighborhood effect is approximated by a
smoothing prior directly on the prototype vector positions [112]. The model is
thus a Gaussian mixture model with kernels constrained by the smoothing prior.
This approach yields a very efficient way to set the hyperparameters of the model,
that is, the widths of the kernels and the weighting coefficient of the smoothing
prior, by an empirical Bayesian approach. For any values of the hyperparameters,
the evidence, or conditional marginal probability of the values given the data and
prior distributions, can be computed by integrating over the posterior probability
of the model parameters (kernel positions). The values with maximum evidence
are then chosen as the most likely values.

Another model close to the SOM is the Generative Topographic Mapping pro-
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posed by Bishop et al. [9]. In that approach, the Gaussian mixture density model
is constrained by a nonlinear mapping from a regularly organized distribution in
a latent space to the component centroids in data space. Hyperparameters of the
model, which control noise variance, stiffness of the nonlinear mapping and the
prior distribution of mapping parameters, can be optimized using Bayesian evi-
dence approximation [11], similar to the one used by Utsugi.

5.4 Assessing the quality of maps

Factors that affect the training process are the topology of the map, initial values
of prototype vectors and training parameters, the most important of which is the
size of the neighbourhood. The choice of topology depends on the application,
and initial values are not a proper way to control the final state of a learning al-
gorithm. The width of the neighbourhood controls the degree of localization of
the map units and determines the amount of interaction between map units. In
the beginning of training, the neighbourhood is wide and prototype vectors are
affected by data points that belong to the receptive fields of topologically remote
units, hiding local variations – the model is underfitted to data. As the neigh-
bourhood reduces, regularization of the model is diminished and at some point,
depending on noise and the abundance of samples, some prototype vectors may be
determined by too few samples, in which case the model becomes overfitted. To
enable the generalization of the model to new data, an optimum should be found
between underfitting and overfitting.

The SOM is seen as producing a mapping from high-dimensional data to a
low-dimensional manifold. The topology of that manifold must be specified be-
fore SOM training (one or two dimensional topologies are common). The topol-
ogy should be suitable for the distribution of the data, and it should be ensured
that the map is organized according to the structure of the data.

Research on quantifing the adaptation of the SOM to data is mostly based on
measuring how well the topology is preserved in the map [7, 113]. Kaski and
Lagus [51] have proposed a heuristic measure of map goodness that is based on
the topological relationship between the two prototype vectors that are nearest to
each data point. None of these measures have gained much popularity among
publications on practical applications of the SOM.

5.5 Applications of the SOM

Since the introduction of the self-organizing map algorithm in 1981, it has found
applications in many areas ranging from engineering sciences to medicine, biol-
ogy and economics. Image and video processing and pattern recognition have
been among the most popular research topics [50, 90].
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5.5.1 Exploratory data analysis

Many applications are based on using the SOM for exploratory data analysis,
where the ambitious goal is to search for non-linear statistical dependences be-
tween multiple variables. The clustering property of the SOM together with the
topological ordering provide unique possibilities for the visualization and inter-
pretation of high-dimensional data distributions [20].

A basic task in practical data analysis problems is to search for dependences
between variables. A statistical dependence means that the conditional probabil-
ity distribution of one variable is dependent on the values of other (explanatory)
variables. Thus the analysis of dependences is closely related to the estimation of
variables’ joint probability density and conditional probability densities.

A common procedure for using the SOM in exploratory data analysis involves
fitting a two-dimensional map to data of higher dimensionality. A component
level representation is used for visual inspection of the map. The projections of
all SOM units on each data variable are displayed as cell patterns, with each cell
colored to reflect the variable’s value in the map unit associated with that cell.
See Fig. 5.1 for an example. In a topologically ordered map, the values of all
components will change smoothly with respect to map coordinates. One searches
for regions on the map where there are constant values in two or more variables.
Such a region is interpreted as a hypothesis that the variables are dependent such
that, for example, a low value of one variable indicates a low value for the other
variable, assuming that the rest of the variables are close to the corresponding
values in the prototype vectors.

A caveat in the approach is that what is seen in the component level display is
the model of the data, not the data itself. If the model produces a poor description
of the data, then any interpretation made based on the display will be subject to
error. Overfitting is a key source of generalization error in statistical models. In
the case of the SOM, overfitting means that prototype vectors of some units have
been determined by too few data points, and therefore they are not representative
of the underlying probability density. Conclusions based on such units are not
likely to generalize to new data. Of course, this only applies when analyzing a
finite sample from a population.

In the literature on the SOM, very little has been written about the selection of
model complexity. The main problem in visual inspection of the SOM is that in
general the lack of dependence between variables is difficult to observe visually.
That is, even if two variables, say, x1 and x2 both have high values at map unit mi j,
that alone is not enough to show that the variables have any mutual dependence.
As a simple example, consider a two-dimensional uniform distribution x1,x2 ∼
U(−1,1). A 2× 2 SOM with zero neighborhood would have component planes
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(in any order of the columns and rows)

m1 =

[

−0.5 −0.5
0.5 0.5

]

m2 =

[

−0.5 0.5
−0.5 0.5

]

The coincidence of high values in unit m22 and low values in m11 are only a result
of the vector quantization. To see that high values in m22 do not indicate depen-
dence between x1 and x2, one must observe that a high value for x1 also occurs in
m12 with low value for x2 (i.e., tallied over the map, high values for x1 co-occur
with both high and low values for x2).

In a high dimensional space, visual inspection of the dependences becomes
more difficult, as the map folds into the data space, and the range of values for
each variable is distributed around the map. Fig. 5.1 illustrates this for random
data with no dependences between the variables; the SOM was trained on three
random variables, x ∼ N(0,1). In Fig. 5.2, an example of a real data analysis
case is shown, where all hypotheses made from SOM maps were later rejected in
statistical testing.

5.5.2 Computer vision and robot navigation

Image processing has been one of the most active application areas of the SOM
algorithm. Most often the SOM is used for classification of pre-processed image
features [116, 4].

In landmark-based navigation tasks, the detection and identification of land-
marks is among the key problems. The SOM has been used as a basic pattern
recognition tool for this [45, 48]. Gerecke et al. [36] have proposed a method to
combine an ensemble of self-organizing maps for the landmark localization task.

A very prominent feature of the SOM is the topological ordering. It seems
natural to try to use this property in map building for navigation, such that spatial
neighbourhood relations would be encoded as connections between neighbouring
map units. A problem is the fact that the topology of the SOM is not adaptive but
it must be specified before training. Some variants of the SOM algorithm have
been introduced to overcome that limitation. Fritzke [33] has proposed a growing
self-organizing network structure based on the neural gas network by Martinetz
and Schulten [81], which appears to produce better results [5]. When compared
to alternative localization methods, the advantage of the neural gas is a very low
computational cost, but it is not as good in terms of accuracy [24].

5.6 Probability density model for the SOM

In this section we derive the probability density model for the original SOM in
the maximum likelihood framework, without any approximations to the neigh-
borhood regularization mechanism.
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Figure 5.1: Example of a SOM trained on purely random data, with zero neigh-
bourhood. Values of the three components of reference vectors are shown side
by side. Independence of the variables is not trivial to observe in the component
level display. For example, one might erroneously conclude that high values of
the rightmost variable would indicate low values of the variable in the middle.

−0.5
0
0.5
1
1.5

−0.5
0
0.5
1
1.5

−1

0

1

2

3

−1

0

1

2

3

−1

0

1

2

3

−1

0

1

2

3

−1

0

1

2

−1

0

1

2

−1

0

1

2

−1

0

1

2

0

5

10

0

5

10

Relative humidity Enthalpy Air freshness Ergonomics Carbon dioxide

m
ap

Allergic history

te
st

 d
at

aFigure 5.2: Example of real data analysis. In the case study, the dependence of
Air freshness on the other variables was investigated with the help of SOM maps.
In the final analysis, all hypotheses obtained using the SOM were rejected using
methods like RBF models, Bayesian neural networks, and hierarchical general-
ized linear models using Bayesian inference, etc. [115]. One evident conclusion,
from the lower right corner of the map, is that high value for variable Ergonomics
appears only with low value for Air freshness, but careful analysis showed that
this was just an effect of vector quantization.

The probability model is based on the mean-of-squares type error function
(5.5), discussed in section 5.2. The error function is specific to the given neigh-
borhood parameters, so it cannot be directly used to compare maps that have dif-
ferent neighborhoods. The maximum likelihood (ML) framework is based on
maximizing the likelihood of data given the model. We want to find a likelihood
function that is consistent with the error function. This can be achieved by making
the error function proportional to the negative logarithm of the likelihood of data.
Assuming the training samples xn independent, the likelihood of the training set
X = {xn},n = 1, . . . ,N is the product of probabilities

p(X |m,H) = ∏
n

p(xn|m,H), (5.8)

where m denotes the codebook (set of prototype vectors) and H is the neighbor-
hood. The negative log-likelihood is L = − log p(X |m,H) and setting it propor-
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tional to Eq. 5.5 yields

p(X |m,H) = Z′ exp(−βE) = Z′ exp(−β∑
n

∑
j

Hb j‖xn−m j‖2). (5.9)

Here we have introduced two constants, Z ′ and β, which are not needed in the
ML estimate of the codebook m but which are necessary for the complete density
model. The probability density function of the input space that is equivalent with
(5.9) is given by

p(x|m,H) = Z exp(−β∑
j

Hb j‖x−m j‖2), (5.10)

which is a product of Gaussian densities centered at m j, with variances inversely
proportional to the neighbourhood function values Hb j. Note that the discontinuity
of the density is due to the discontinuity of the best-matching unit index b for the
input x.

Within the receptive field, or Voronoi cell, of unit mb, the density function has
Gaussian form:

p(x|x ∈Vb) = Ze−βWb exp

(

− 1

2s2
b

‖x−µb‖2
)

, (5.11)

where Vb denotes the Voronoi cell around the unit mb. The mean and variance of
the Gaussian kernel are denoted by µb and s2

b, respectively, and Wb is a weighting
coefficient. The values of these parameters are

µb =
∑ j Hb jm j

∑ j Hb j
(5.12)

s2
b = 1/(2β∑

j

Hb j) (5.13)

Wb = ∑
j

Hb j‖m j−µb‖2. (5.14)

Thus the density model consists of spatially truncated Gaussian kernels, which
are centered at the neighborhood-weighted means of the prototype vectors and
clipped by the Voronoi cell boundaries. The parameter Wb controls the height of
the kernel; it depends on the density of the neighboring prototype vectors near
the centroid µb. The density function is discontinuous at the boundaries of the
Voronoi cells. See Figs. 5.3, 5.4 and 5.6 for examples of the density models.

The variances of the kernels depend on the parameter β and they are equal if
the neighborhood is normalized (as will be explained in section 5.6.1). In the
standard SOM formulation, the border units with incomplete neighborhood have
larger variances, as can be seen in Figs. 5.5 and 5.6, allowing the map to shrink
into the middle of the training data distribution.
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Figure 5.3: Example of the density model in a 3× 8 SOM. Top: training data
and the resulting SOM lattice using Gaussian neighborhood with σ = 1. Middle:
the density model of the SOM. Bottom: a detail of the density model above, with
contours and Voronoi cell boundaries added. Here it can be seen that the Gaussian
kernel centers do not coincide with the prototype vectors.
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l = 400 l = 388 l = 414

Figure 5.4: Training data and density estimates due to different SOM topologies
(1×10, 3×6 and 4×4). l =−logp(X |m,H) denotes the negative log-likelihood
of test data. The optimal value for the parameter β (which controls the widths of
the density components) is so small that the model is close to an additive Gaussian
mixture density. Among these alternatives, the 3×6 topology (middle) produces
the best model according to the ML criterion.

The normalizing constant Z and the noise variance parameter β are bound
together by the constraint that the integral of the probability density over the data
space must equal unity. The constraint can be written as

Z

p(x|m,H)dx = Z ∑
r

e−βWb

Z

x∈Vr

exp(− 1
2s2

r
‖x−µr‖2)dx = 1, (5.15)

where the integration over the data space is decomposed to the sum of integrals
over each Voronoi cell Vr. From this equation, Z can be solved for a given value
of β. The integrals cannot be computed in closed form, but they can be approx-
imated numerically using Monte Carlo rejection sampling. A simple solution is
the following algorithm:

For each cell r,

1. draw K samples from the normal distribution N(µr,sr)

2. For each sample, test if it is inside the cell r.

3. Compute the acceptance ratio qr = Kr/K, the fraction of the samples that
are inside the cell r.

4. The integral over Vr in (5.15) equals qr(2πs2
r )

d/2, where d is the dimension
of the data space.

For a map that contains M units, this algorithm requires the computation of dis-
tances between M×K samples and M prototype vectors. Thus if M is large the
computational cost of the normalization procedure exceeds that of the training
algorithm itself.
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In an efficient implementation the number of samples K should be chosen ac-
cording to the desired accuracy. The acceptance ratio qr varies in a large range ac-
cording to the neighborhood size. When the neighborhood is small, the neighborhood-
weighted center µr is close to the prototype vector mr and sr is likely to be small,
so qr is high. When the neighborhood is large, the situation is opposite and K will
have to be much greater to achieve an equivalent accuracy. A detailed analysis of
the dependence of the accuracy on K is presented in publication [62].

The maximum likelihood estimate for β can only be found by numerical op-
timization, for example by maximizing the likelihood of a validation data set.
The normalization procedure described above must be carried out for each candi-
date value of β, so the computational cost is quite significant. If an optimization
method such as golden section search [95] is applied, savings can be made by
allowing the accuracy to vary. Initial estimates can be very coarse, corresponding
to a small number of MC samples K, if the accuracy gradually increases towards
the convergence of the search. The final accuracy should reflect the size of the
validation data sample.

5.6.1 Border effects

In typical implementations of the SOM, the neighborhood function is the same
for each map unit. This causes problems near the borders of the map, where the
neighborhood is truncated on one side. The effect is that data samples in the re-
ceptive fields of border units are given less significance than those that belong to
more central units [56]. As can be seen from equation (5.13), the density compo-
nents associated with units close to the border have larger variance and data points
are allowed to reside farther away from the map units. Consequently, the border
units are pulled towards the center of the map, and the map does not extend close
to the edges of the input distribution until the neighborhood is relatively small and
the regularization is loose. This leads to a decrease in the likelihood of a map
with a large neighborhood (or an increase in the quantization error), biasing the
optimal width of the neighborhood toward smaller values.

This bias can be reduced by normalizing the neighborhood function at the
edges of the map [56]. In the case of the sequential algorithm, it suffices to nor-
malize the neighborhood function in (5.2) such that its sum is the same for all best
matching units:

∑
k

Hbk(t) = Hs,∀b. (5.16)

For the batch algorithm, the portion of the neighborhood function that gets clipped
off due to the finite size of the map lattice can be transferred to nearest edge
units. Normalization of the neighborhood function is of particular importance,
if the minimum distortion rule (5.7) is applied to winner selection. As can be
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Training data Original rule Normalized neighborhood Minimum distortion rule

Training data Original rule Normalized neighborhood Minimum distortion rule

Figure 5.5: Example of the effect of the minimum distortion training rule on
the density model. The neighborhood width is the same σ = 2.8 for all the maps.
(This value is greater than the optimal value, as the purpose of this example is to
highlight differences between these cases.) Note that the density kernel centers do
not coincide with the prototype vector positions. Especially in the middle of the
maps the kernels are shifted upwards from the unit positions.

seen from equation (5.13), when the sum of the neighborhood function is constant
throughout the map, all cells have equal noise variance.

In practice we find that the minimal distortion rule will produce very similar
results as the original rule in terms of model selection. The equalization of the
neighborhood volume near map borders smoothes out the density model some-
what, due to a better fit of the data in a map with a larger neighborhood. The
differences are illustrated in Fig. 5.5. The continuous density model, stemming
from the minimum distortion rule, has many favourable qualities [43].

5.7 Model selection

The SOM algorithm produces a model of the input data. The complexity of this
model is determined by the number of units and the width of the neighborhood,
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which has a regularizing effect on the model. When the input data is a sample
from a larger population, the objective is to choose the complexity such that the
model generalizes as well as possible to new samples from that population. The
maximum likelihood framework provides a consistent way to compare the fit of
different models. In this section we discuss how it can be applied to the self-
organizing map. The examples in this section have been computed using the stan-
dard SOM definition, including the nearest neighbor winner rule and the boundary
bias.

Let us first regard the number of units as given, so the neighbourhood width
σ is the only control parameter. The probability model allows us to select an
optimal value for the neighborhood width σ by maximizing the likelihood of data
p(X |m,H). In the course of SOM training, σ gradually decreases in some pre-
specified manner, such that σ = σ(t), t = 1, . . . ,K;σ(t + 1) < σ(t). We assume
that the training algorithm will find an ML estimate for the map codebook m(t) for
each value σ(t), if it is allowed to converge at every step. To construct the density
model for each of these K candidate maps, we numerically optimize β(t) for each
map. This yields K different density models to compare. To choose between these
we compute the likelihood values p(XV |m(t),σ(t),βML(t)) for validation data XV ,
by substituting into (5.10). Obviously, XV should be different from the data that
is used to select βML(t). Other statistical methods such as cross-validation can
also be applied. An example of model selection is shown in Fig. 5.6. The map
with neighbourhood σ = 1.00 maximizes the likelihood of validation data. This
approach extends directly to the comparison of different map sizes and topologies
(see Fig. 5.4). The computational cost is linearly related to the number of units on
the map; in the case of a large map, it may be advisable to first find the correct σ
for a smaller map and then to scale it up in proportion with the map dimensions.
(For example, if σ = σK is the optimal neighborhood width for a K×K map, then
σ = 5σK is likely to be a reasonable value for a 5K×5K map.)

Because the exact value of the density function cannot be directly evaluated,
it is difficult to apply methods such as Bayesian evidence to parameter selection.
The numerical normalization procedure causes such methods to be computation-
ally too expensive to be practical.

A common application of the SOM is to look for dependences between vari-
ables by visual inspection. In that context, the density model can be used to select
the complexity of the model, but it also enables quantitative analysis. Regression
or conditional expectations can be computed directly from the joint density (5.10)
by numerical integration. For example, the conditional distribution for variable x j

equals

p(x j|x\ j,m,H) =
p(x|m,H)

R

p(x|m,H)dx j
, (5.17)

where x\ j denotes the vector x with dimension j excluded. Likewise, the regres-
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sion of x j on other variables can be computed as the conditional mean E[x j|x\ j,m,H].
It should be noted that the SOM density model may not give the best possible de-
scription of the input distribution. The purpose of this discussion is to illustrate
the significance of model selection in data analysis.

An important special case of the density model is when the variance parameter
is reduced to zero, β→ ∞. This causes the conditional density of the “output”
variables x j to be sharply peaked at the best matching unit for the “input” variables
x\ j. The conditional mean E[x j|x\ j] then gives the same value as nearest neighbor
(NN) regression [21] with the neighborhood-weighted SOM prototype vectors
(5.12) as output values, producing a piecewise constant estimate. Comparison
with the NN rule is interesting, because it is a close quantitative counterpart of
visual analysis of the SOM.

Fig. 5.7 illustrates the difference between computing the conditional mean
from the density model and using the nearest neighbor rule. A random data set
of three normally distributed variables (x1,x2,x3 ∼ N(0,1)) is analyzed by a 6×6
SOM. We attempt to infer E(x2|x1,x3 = 0), the expected value of the variable x2

given x1, with x3 equal to zero. As the variables are truly independent, the re-
sult ought to be E(x2|x1,x3 = 0) = E(x2) = 0. The optimal width of the Gaussian
neighborhood function is σ = 4.2, which is a relatively large value, suggesting that
the distribution has a simple form. At zero neighborhood, the model is severely
overfitted. Clearly, neglecting to select the correct model complexity would give
unreliable results. When the complexity is right, the nearest neighbor rule can pro-
duce a good approximation of the conditional mean, though the lack of confidence
intervals limits the reliability of analysis.

An example of using the conditional distributions is shown in Fig. 5.8. The
neighborhood width was chosen based on the maximum likelihood of test data.
The data set is three dimensional. There is a dependence between two of the
variables x1 and x2, as follows:

x2 = Bsin(ωx1)+ ε, (5.18)

where B = 1.5 and normally distributed noise ε ∼ N(0,0.2). The third variable
is independent from the others (x3 ∼ N(0,1)). This kind of a distribution can be
easily modeled by means of a two dimensional SOM. That is why no severe over-
fitting is observed and a small neighborhood width gives the best fit to test data.
Yet it is not easy to observe the dependence from the component level display. The
conditional densities, on the other hand, are easy to interpret. Nearest neighbor
regression also gives relatively accurate results, because the model complexity is
correct.

By visual inspection of the map it is difficult to perceive the mean or the
shape of the conditional distributions. Therefore results may be very unreliable.
Choosing parameter values to optimize the density estimate does not necessarily
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result in a mapping that is optimal for visual display. However, the examples in
Figures 5.6 and 5.7 indicate that the results of ML model selection tend to agree
with intuition. In any case, the results of visual inspection should be validated by
other, more reliable techniques.

5.8 Discussion

In this chapter, we have presented the probability density model that is associated
with the self-organizing map model. We have also discussed certain difficulties
that arise in the application of the SOM to statistical data analysis and shown how
the density model can be used to alleviate them.

The determination of correct model complexity is an essential part of statisti-
cal modeling. In the analysis of a noisy data sample, the self-organizing map is
used as a statistical model, so the same applies to it, too. Previously, no principled
method of model selection has been proposed for the original SOM model. The
probability density model enables model selection for the SOM in the maximum
likelihood framework and thus fills that need. The parameter search involves a
considerable increase in computational cost, but that is the case in all statistical
modeling.

It should be stressed that although the density model is based on an error
function that is not defined in all cases, in practice the only restriction for the
application of the density function to data analysis is that the algorithm should
be allowed to converge at each step. Unfortunately, maximizing the likelihood
of data is not directly related with the accuracy of the visual representation of
the SOM. Especially when the data dimension is high, the units that encode the
co-occurrences of all correlated variables cannot be grouped together on the map,
and thus the conditional densities become distributed among different map units.
Such effects cannot be observed by visual inspection of the component levels, no
matter how the model hyperparameters are set. Examination of the conditional
densities, or the conditional means and the confidence intervals may reveal them
to some extent.

The association of a generative probability density model with the SOM en-
ables the comparison of the SOM with other similar methods, like Utsugi’s SOM
model [112] and the Generative Topographic Mapping [9]. If the minimum dis-
tortion rule for winner selection is adopted, thus avoiding many theoretical dif-
ficulties of the SOM, the main difference that remains between these is the hard
vs. soft assignment of data to the units. The hard assignments of the SOM are
perhaps easier to interpret and visualize. In the SOM the activation of the units
(that is, the posterior probability of the kernels given one data point) is always one
for the winning unit and zero for the others, or a unimodal activation bubble in the
shape of the neighborhood around the winning unit, depending on the interpreta-
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tion. With soft assignments, the posterior distribution may be multi-modal (when
two distant regions in the latent space are folded close to each other in the input
space), and thus the activation is more difficult to visualize. Note, however, that
this multi-modal response gives visual indication of the folding, which may also
be valuable. Ultimately, the choice of methods will depend on the application and
its objectives.
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σ = 8.30, β = 0.10, L=2.33 σ = 4.90, β = 0.25, L=2.01

σ = 1.00, β = 2.53, L=1.86 σ = 0.20, β = 9.34, L=1.92

Figure 5.6: SOM density models for different widths σ of the Gaussian neighbor-
hood. From the total likelihood of validation data the optimal neighborhood can
be chosen to avoid overfitting. L denotes the negative log-likelihood of validation
data (per sample), so the third model σ = 1.00 is the best of these. With greater
values of σ (a and b), we observe underfitting, where adaptation to data is limited,
and for smaller σ (d), overfitting has occurred and the effect of noise can be seen
in the SOM model.



74 Probability model for the self-organizing map

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x 2

x
1

p(x
2
|x

1
,x

3
=0), σ = 4.2

−4 −2 0 2 4

−2

−1

0

1

2

E(x
2
|x

1
,x

3
=0), NN rule, σ = 4.2

x
1

x 2 x 2

x
1

p(x
2
|x

1
,x

3
=0), σ = 0.01 E(x

2
|x

1
,x

3
=0), NN rule, σ = 0.01

x
1

x 2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x 2

x
1

p(x
2
|x

1
,x

3
=0), σ = 4.2

−4 −2 0 2 4

−2

−1

0

1

2

E(x
2
|x

1
,x

3
=0), NN rule, σ = 4.2

x
1

x 2 x 2

x
1

p(x
2
|x

1
,x

3
=0), σ = 0.01 E(x

2
|x

1
,x

3
=0), NN rule, σ = 0.01

x
1

x 2

Figure 5.7: Conditional densities from a SOM trained on random independent
data. The coordinates are the same in all graphs. Upper row: the conditional
density and the nearest neighbor prediction for the optimal neighborhood σ = 4.2.
Lower row: conditional density and the nearest neighbor prediction for a small
neighborhood σ = 0.01. The curves represent the means and standard deviations
computed from the density models.
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Figure 5.8: Example of the use of the SOM for data analysis. Top: all three
component levels of a SOM trained down to the optimal neighborhood width σ =
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computed from the SOM model, integrated over x3 and x2, respectively. Bottom:
nearest neighbor estimates based on the best matching units using five different
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Chapter 6

Conclusion

This thesis has described some probabilistic methods and examples of their ap-
plications in computer vision problems. New methods were proposed for image
segmentation and the model-based detection and matching of both two and three
dimensional objects. The self-organizing map method was analyzed from a prob-
abilistic viewpoint.

Different computer vision problems were studied from the point of view of
generative probability models. In this approach, object models and the image
production process are described by parametric models. If these parameters can
be estimated, the results directly describe the target of the image. The alternative
approach is to rely on indirect features and their statistical co-occurrence with
objects in the image. The latter approach is the only choice, if the model is too
complicated to be solved. In practice, fully accurate description of the image
formation process is not realistic due to the great number of factors involved.
Many approximations and restrictions are needed, and results can be improved by
including indirect features in the model. In this thesis, examples were presented
of cases where the model-based approach proved feasible. Advantages of the
model-based approach include adaptability of object models and conditions and
robustness against such variations that can be included in the model.

Markov chain Monte Carlo sampling methods were applied to estimating
model parameters in different scene analysis problems. The results indicate that
they are a viable solution to these high-dimensional problems. In principle, prob-
abilistic sampling methods are better at avoiding local minima of cost functions
than gradient based optimization methods. However, many high-dimensional and
sparse parameter spaces, which are typical of computer vision problems, cannot
be fully explored within a reasonable computation time. MCMC methods are one
possible solution, and they have many benefits. One example is the quite unique
reversible jump technique. The results in this thesis indicate that it is very suitable
for certain types of problems.
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In this thesis, both the segmentation of images and the detection and matching
of objects have been discussed. The integration of these tasks into a simultaneous
process is an important challenge for future research in computer vision. For ob-
ject detection, a segmentation that finds the boundary between the object and its
background and provides an explanation to the background is essential informa-
tion. On the other hand, complex objects cannot be accurately segmented without
a detailed model of the object.

In many computer vision problems, theories that solutions are based on are
very strong simplifications of reality, due to the highly complex dependence be-
tween an image and the objects that it represents. This means that results depend
very much on many details of the implementation of the solution. Having a good
optimization procedure is important, but it is crucial to be able to define suitable
target functions. Apparently, many implementation details and tricks are quite as
important as the basic principles and modeling framework.

The self-organizing map algorithm was analyzed from a probabilistic view-
point. This is a novel approach. A number of authors have proposed other models
and algorithms that are similar to the SOM but that are based on probabilistic
principles. With the help of the probability model for the SOM, these models can
be directly compared, and standard model selection techniques can be applied to
choose the model that is most suitable for the purpose.

The density model clearly reveals some important properties that are inherent
to the SOM. In practical data analysis, abrupt discontinuities in the density can
only be viewed as undesirable artifacts in the model, and their effect on results
should be estimated and taken into account. Model selection for the SOM can be
done, but it is difficult compared to mixture density models, because the likeli-
hood function cannot be computed without numerical approximations. These are
reasons why for each application, it should be considered whether related latent
variable methods that are based on mixture density models could be used instead
of the SOM. The possibility to visually display the component levels is an advan-
tage of the SOM, but its use requires careful reliability analysis.
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