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Abstract

In this thesis, the implementation methods of digital signal processing and digital-

to-analog converters for wide-band transmitters are researched. With digital signal

processing, the problems of analog signal processing, such as sensitivity to interfer-

ence and nonidealities of the semiconductor processes, can be avoided. Also, the pro-

grammability can be implemented digitally more easily than by means of analog signal

processing.

During the past few years, wireless communications has evolved from analog to

digital, and signal bandwidths have increased, enabling faster and faster data trans-

mission. The evolution of semiconductor processes, decreasing linewidth and supply

voltages, has decreased the size of the electronics and power dissipation, enabling the

integration of larger and larger systems on single silicon chips.

There is little overall benefit in decreasing linewidths to meet the needs of analog

design, since it makes the design process more difficult as the device sizes cannot be

scaled according to minimum linewidth and because of the decreasing supply voltage.

On the other hand, the challenges of digital signal processing are related to the efficient

realization of signal processing algorithms in such a way that the required area and

power dissipation does not increase extensively.

In this book, the problems related to digital filters, upconversion algorithms and

digital-to-analog converters used in digital transmitters are researched. Research re-

sults are applied to the implementation of a transmitter for a third-generation WCDMA

base-station.

In addition, the theory of factors affecting the linearity and performance of digital-

to analog converters is researched, and a digital calibration algorithm for enhancement

of the static linearity has been presented. The algorithm has been implemented together

with a 16-bit converter; its functionality has been demonstrated with measurements.

Keywords: Direct digital synthesizer, Digital transmitter, modulator,

CORDIC, digital-to-analog converter, calibration.





Tiivistelmä

Tässä väitöskirjassa on tutkittu digitaalisen signaalinkäsittelyn toteuttamista ja digi-

taalisesta analogiseksi-muuntimia laajakaistaisiin lähettimiin. Digitaalisella signaalin-

käsittelyllä voidaan välttää monia analogiseen signaalinkäsittelyyn liittyviä ongelmia,

kuten häiriöherkkyyttä ja puolijohdeprosessien epäideaalisuuksien vaikutuksia. Myös

ohjelmoitavuus on helpommin toteutettavissa digitaalisesti kuin analogisen signaalin-

käsittelyn keinoin.

Viime vuosina on langattomien tietoliikennejärjestelmien kehitys kulkenut anal-

ogisesta digitaaliseen, ja käytettävät signaalikaistanleveydet ovat kasvaneet mahdol-

listaen yhä nopeamman tiedonsiirron. Puolijohdeprosessien kehitys, kapeneva min-

imiviivanleveys ja pienemmät käyttöjännitteet, on pienentänyt elektroniikan kokoa ja

tehonkulutusta mahdollistaen yhä suurempien kokonaisuuksien integroimisen yhdelle

piisirulle. Viivanleveyksien pieneneminen ei kuitenkaan suoraan hyödytä analogia-

suunnittelua, jossa piirielementtien kokoa ei välttämättä voida pienentää viivanlevey-

den pienentyessä, ja jossa madaltuva käyttöjännite ennemminkin hankaloittaa kuin

helpottaa suunnittelua. Siksi yhä suurempi osa signaalinkäsittelystä pyritään tekemään

digitaalisesti. Digitaalisen signaalinkäsittelyn ongelmat puolestaan liittyvät algorit-

mien tehokkaaseen toteuttamiseen siten, että piirien pinta-ala ja tehonkulutus eivät

kasva liian suuriksi.

Tässä kirjassa on tutkittu digitaalisessa lähettimessä tarvittavien digitaalisten suo-

dattimien, ylössekoitusalgoritmien ja digitaalisesta analogiseksi-muuntimien toteut-

tamiseen liittyviä ongelmia. Tutkimustuloksia on sovellettu kolmannen sukupolven

WCDMA-tukiasemalähettimen toteutuksessa.

Lisäksi on tutkittu digitaalisesta analogiseksi-muuntimien lineaarisuuteen ja suori-

tuskykyyn vaikuttavien seikkojen teoriaa, ja esitetty digitaalinen kalibrointialgoritmi

muuntimen staattisen suorituskyvyn parantamiseksi. Algoritmi on toteutettu 16-bittisen

muuntimen yhteydessä ja se on osoitettu toimivaksi mittauksin.

Avainsanat: Suora digitaalinen syntetisaattori, digitaalinen lähetin, modulaattori,

CORDIC, digitaalisesta analogiseksi-muunnin, kalibrointi.
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Chapter 1

Introduction

1.1 Motivation

The rapid growth of the wireless communications market has been the primus motor

of the development of integrated circuit technology during the past decade. This is

because the portable electronic devices for wireless communication has to be optimized

for low power consumption, light weight, and low manufacturing cost, and the fact that

these requirements can be met simultaneously by increasing the integration level of the

electronics. The minimum line-width of the semiconductor processes has seemed to

be ever-decreasing, enabling the integration of increasingly complicated systems on a

single chip.

Even though the evolution of the silicon processes has reduced the minimum line

width, operation voltages and, thereafter, the power dissipation of the digital parts, the

devices required for analog processing have not scaled along with the minimum line-

width, and the decreasing operation voltages tends to make the analog circuit design

more challenging.

In wireless communication systems, the trend has been to move from analog to

digital signal processing and increase the bandwidth. Wireless digital communications

have evolved from GSM through services such as GPRS and EDGE towards WCDMA

and 3G, which are capable of handling both the narrow voice band and wide data bands.

Simultaneously, wireless data transmission systems such as WLAN/WiFi and Wimax

have gained popularity. It is beneficial to perform most of the computation of the sys-

tem in the digital the domain. Analog signal processing is sensitive to noise generated

in several sources, whereas the accuracy of the digital signal processing (DSP) may

be selected almost arbitrarily. Digital signal processing also enables flexibility in the

system, since programmability and reconfigurability can be implemented more easily

digitally. Benefits of flexibility are obvious in systems like transmitters and receivers,
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in which the usage of DSP enables the realization of multi-mode transmitters such as

GSM/EDGE/WCDMA or software-configurable radio.

Digital signal processing can be performed with a general signal processor; how-

ever, it is not capable of handling the high data rates typical of digital-IF transmitters.

A dedicated DSP system for transmitter purposes is therefore usually used. The first

part of this work is based on research into hardware efficient realization methods of the

digital signal processing required for base-band and the intermediate frequency of the

multi-carrier wide-band code division multiple access (WCDMA) base-station trans-

mitter of the 3rd generation (3G) wireless communication system. This system is also

often referred to as the Universal Mobile Telecommunications System (UMTS). Area

efficient digital IF transmitters reduce the manufacturing cost of the transmitter chip,

decrease power consumption, and thus reduce the need for cooling and maintenance.

The second part of this work is based on research into the current-steering digital-to-

analog converters, which are the performance bottleneck of the digital-IF transmitter.

Research results are applied in the design of two prototype circuits, the first consist-

ing of the digital-IF WCDMA transmitter and the second being a current-steering D/A

converter with a digital calibration algorithm.

1.2 Organization of the thesis and research contribu-

tion

The research of the digital-IF transmitters presented in this book was performed during

the years 1998-2001 under the supervision of Dr. Jouko Vankka, who also performed

most of the algorithm design of the transmitter prototype. The author participated in

the algorithm design and is responsible for the design and implementation of the digital

signal processing blocks and D/A converter of the transmitter prototype.

The research of current-steering D/A converters was carried out during the years

2001-2005. The author, with help from Dr. Mikko Waltari, is responsible for the design

of the calibration algorithm, and also designed and implemented the D/A converter

core and analog parts related to calibration. The digital part of the calibration was

implemented by Jussi Pirkkalaniemi, M.Sc. under the supervision of the author.

During the research, the new ideas and circuits presented in this thesis have been

partially reported in related publications [1]-[15]. The results obtained are also applied

in design presented in [16] and [17].

The thesis is organized as follows. Chapters 2-5 represent the background for the

design of a digital-IF transmitter. In Chapter 2, the basic principles of the spread-

spectrum quadrature amplitude modulation is presented and the performance metrics

of the transmitter are given. In Chapter 3, the most common transmitter architectures
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are briefly introduced. In Chapter 4, methods for resource-efficient digital filter design

are introduced, and, in Chapter 5, the methods for direct digital frequency synthesis

and digital modulation are discussed.

Chapter 6 contains the theory of the current-steering D/A converter design. Sec-

tions 6.1 and 6.2 give an introduction to current-steering converters and their perfor-

mance metrics. In Section 6.3, the static linearity of the converter is analyzed. The

previously published linearity yield models are compared, and the yield model devel-

oped and published by the author, Dr. Vankka and Ilari Teikari M.Sc. [13] is pre-

sented. Section 6.4 is about calibration techniques. Previously published calibration

methods are discussed, and the method developed by the author, Mikko Waltari, and

Jussi Pirkkalaniemi [14] is presented. Section 6.5 considers the distortion effects due

to the output impedance variation. In Section 6.6, the signal conversion from discrete-

time digital to continuous time analog is discussed, and distortion mechanisms are

analyzed. In Section 6.7, timing-related nonlinearities are discussed. Results are also

partially published in [15]. Section 6.8 considers the layout techniques used to reduce

the effect of the process gradients on the current source mismatch. Section 6.9 is a

survey of published D/A converters.

Chapter 7 describes the designed prototypes. Section 7.1 describes the design and

experimental results of the WCDMA transmitter prototype.In this prototype, the author

is responsible of hardware optimization and implementation of digital signal process-

ing blocks, system simulations, and the design and implementation of the D/A con-

verter. Dr. Waltari also gave valuable instructions for the D/A converter design. The

design project was supervised by Dr. Jouko Vankka, who also developed algorithms

related to filter design and digital upconverter. The measurements of the prototype

were carried out by the author and Dr. Vankka. The results of this section are partially

published in [1]-[12].

Section 7.2 describes the design and experimental results of the D/A converter pro-

totype. The author is responsible of design and implementation of the D/A converter

core including the comparator chain. Calibration algorithm is developed by the author,

Jussi Pirkkalaniemi and Dr. Mikko Waltari. The digital parts of the calibration algo-

rithm were designed and implemented by Jussi Pirkkalaniemi under supervision of the

author. Measurements were carried out by the author and Jussi Pirkkalaniemi.

Finally, conclusions are drawn.





Chapter 2

Direct sequence

spread-spectrum quadrature

amplitude modulation

In CDMA systems, the data of different users are transmitted on the frequency band

common to all users. The capacity of the frequency band is divided among the users

by assigning a code channel to a single user by using a spreading code. A user in

the system may use one or multiple code channels simultaneously. The spreading also

improves system capacity by introducing the gain to the signal-to-noise ratio (SNR).

In the following sections, the fundamentals of direct sequence spread-spectrum

QAM are presented in order to give some insight into the design presented in Chapter

7. More detailed information on the subject can be found in textbooks [18] and [19].

2.1 Principle of QAM

In the quadrature amplitude modulation scheme, two carriers, in phase and quadrature,

are modulated with the data sequences i(t) and q(t) (Fig. 2.1)

st (t) = i(t)cos(ωct)+q(t)sin(ωct)

=

√

i(t)2 +q(t)2
cos(ωct −φd (t)), (2.1)

φd (t) = arctan

(

q(t)

i(t)

)

. (2.2)

In other words the information is shifted in frequency around the carrier frequency

ωc by multiplying with two orthogonal signals. While receiving, the signal st (t) is
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ωcos( t )

i(t)

q(t)

c

+90
o

s
t
(t) = ( )tω

c
i(t) q(t)cos sin( )tω +

c

Figure 2.1 The principle of QAM.

downconverted around zero frequency.

sri (t) = st (t)cos(ωct)

=
1

2
i(t)(1+ cos(2ωct))+

1

2
q(t)sin(2ωct) (2.3)

srq (t) = st (t)sin(ωct)

=
1

2
i(t)sin(2ωct)+

1

2
q(t)(1− cos(2ωct)) . (2.4)

After downconversion, the data signals i(t) and q(t) can be extracted by low-pass

filtering.

The benefit of the QAM is that twice as much data as in bare in-phase modulation

can be transmitted over the same frequency band due to the fact that both the amplitude

and the phase of the carrier are modulated (see. Eq. (2.1)).

2.2 Spreading

Let’s assume that the data signal d (t) is an infinite random sequence of pulses with

amplitude ad and duration Td (Fig. 2.2). This signal has an autocorrelation function

t

a

−a

...

T

Figure 2.2 The data signal.
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Rd (τ) =

{

a2
d

(

1− |τ|
Td

)

, |τ| ≤ Td

0 , |τ|> Td

, (2.5)

where τ is the time misalignment between the two pulse sequences [18].

The power density function D( f ) of the data signal d (t) is the Fourier transform

of its autocorrelation function

D( f ) =
∫ +∞

−∞
Rd (τ)e− j2π f τdτ

= a2
dTd

sin2 (π f Td)

(π f Td)
2

= a2
dTdsinc2 (π f Td)

=
a2

d

Fd

sinc2

(

π f

Fd

)

, (2.6)

where Fd is the data rate. The main lobe, which contains most of the signal energy,

has the width of Bd =
2
Td

= 2Fd centered at the zero frequency, so the upconverted data

occupies the frequency band of 2Fd .

Next we may define a sequence c(t), which is a pulse sequence with magnitude

value ac = 1 and pulse duration Tc and pulse rate Fc =
1
Tc

. The autocorrelation function

of c(t) is

Rc (τ) =

{

(

1− |τ|
Tc

)

, |τ| ≤ Tc

0 , |τ|> Tc

. (2.7)

Next the data signal d (t) is multiplied by c(t).

s(t) = c(t)d (t) (2.8)

Since c(t) and d (t) are independent of each other, the autocorrelation function of s(t)

is a product of the autocorrelation functions Rc (t) and Rd (t).

Rs (τ) = Rc (τ)Rd (τ) =

{

a2
(

1− |τ|
Td
− |τ|

Tc
+ τ2

TdTc

)

, |τ|< Tc

0 , |τ|> Tc

. (2.9)

The power density function of s(t) may now be calculated as [18].

S ( f ) =
∫ ∞

−∞
Rs (τ)e− j2π f τdτ

≃ a2

(

1

Td

+
1

Tc

)

sin2 (πTc f )

π2 f 2
. (2.10)
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When Td ≫ Tc, Eq. (2.10) can be approximated as

S ( f ) ∼= a2
cTc

sin2 (πTc f )

T 2
c π2 f 2

= a2
cTcsinc2 (πTc f )

=
α2

Fc

sinc2

(

π f

Fc

)

, (2.11)

which has a main lobe of width Bs =
2
Tc

= 2Fc centered at zero frequency. This means

that the energy of the signal d (t) is spread to Gs =
2Td
2Tc

= Fc
Fd

times wider frequency

band. Gs is called spreading gain for the reason given in the next paragraph. The

spreading pulses are also called chips, so Tc is also called the chip time and Fc the chip

rate. After the spreading, data may be transmitted with, for example, an ordinary QAM

structure. Such a structure is presented in Fig. 2.1.

While receiving, the sequence of spread data is multiplied with the same sequence

that has been spread with

r (t) = d (t)c(t)c(t − τ), (2.12)

where τ is the timing misalignment. This multiplication despreads the data signal to

its original frequency band while it spreads all possible jamming signals. Other data

signals that have been spread with the codes uncorrelated with the spreading signals

are not despread. The quality of despreading improves as the τ diminishes. In the ideal

case τ = 0, the power of the received signal is maximized relative to the noise. This is

the main idea of the code division multiple access; users in the system can send their

data on the same frequency band and the data sequences can be separated from each

other by using uncorrelated spreading sequences for each user. This is presented in

Figs. 2.3, 2.4 and 2.5.

Signal

f

E

Figure 2.3 Signal before spreading.

The gain due to the despreading of the signal is Gs, which means, that after de-
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Jammer

Other users

Noise Signal

E

f

Figure 2.4 Spread signal in noisy environment with jammer signal and other users.

Other users

Noise Jammer

Signal

Filter
E

f

Figure 2.5 Signal in receiver after despreading.

spreading and filtering, the signal to noise ratio is increased with that factor compared

to SNR at the receiver input. This means that the same bit error rate (which is the func-

tion of SNR) can be achieved with Gs times worse SNR at the receiver input than in the

non-spreading systems.

2.3 Pulse shaping filtering

Usually it is necessary to limit the frequency band occupied by the signal in order not

to disturb the signals transmitted on other frequency bands of the same or different

systems. The filtering of the data sequences has to be performed in the time domain

so that sequential pulses do not disturb each other. This is the reason why the channel

bandwidth limiting filters are usually called pulse shaping filters when used in trans-

mitters.

In a WCDMA system, the signal to be transmitted is data sequence spread with the

spreading sequence. The spreading is performed with chip rate Fc and the filtering is
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accomplished with a root-raised cosine filter [20], which has the impulse response

rrc(t) =
sin
(

π t
Tc
(1−α)

)

+4α t
Tc

cos
(

π t
Tc
(1+α)

)

π t
Tc

(

1−
(

4α t
Tc

)2
) . (2.13)

where Tc is the chip duration and α is the roll-off factor. A causal discrete time coun-

terpart of Eq. (2.13) with N samples (N is odd) is

rrc(n) =
sin
(

π
(1−α)(n−Nc)

L

)

+ 4α(n−Nc)
L

cos
(

π
(1+α)(n−Nc)

L

)

π
(n−Nc)

L

(

1−
(

4α(n−Nc)
L

)2
) ,0 ≤ n ≤ N −1 . (2.14)

where Nc =
N−1

2
is the index of the center coefficient, L = Tc

Ts
= Fs

Fc
is the oversampling

ratio, Ts is the sampling interval and Fs =
1
Ts

is the sampling frequency. Typically

L = Tc
Ts

is an integer.

When used for pulse shaping filtering in the transmitter and channel filtering at the

receiver, the combination of these two filtering operations corresponds to a raised co-

sine (RCOS) filtering [21]. The ideal raised-cosine filter has two important properties.

It has a bandlimited frequency response given by

RCOS ( f ) =















1
Fc

,0 ≤ | f | ≤ (1−α) Fc
2

1
2Fc

(

1− sin
(

π 1
αFc

(

| f |− Fc
2

)

))

,(1−α) Fc
2
≤ | f | ≤ (1+α) Fc

2

0 , | f |> (1+α) Fc
2
,

(2.15)

and an impulse response

rcos(t) =





sin
(

π t
Tc

)

π t
Tc











sin
(

απ t
Tc

)

1−
(

2α t
Tc

)2






, (2.16)

which has a causal discrete time equivalence of length N [21] given by

rcos(n) =

(

sin
(

π(n−Nc)
L

)

π(n−Nc)
L

)(

cos
(

πα(n−Nc)
L

)

1−
(

2α(n−Nc)
L

)2

)

,0 ≤ n ≤ N −1, (2.17)

where Nc =
N−1

2
is the index of the center coefficient (N is odd) and L = Tc

Ts
is the

oversampling ratio. This impulse response has the property of having a zero value for

any integer value of n = N−1
2

± kL,0 < k < −∞. This means that there is no inter-

symbol interference (ISI) at the multiples of sampling interval Ts. The sequence of

raised cosine impulses is presented in Fig. 2.6.
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Figure 2.6 ISI-free impulses.

Because neither the transmit filter nor the receive filter are ideal root-raised cosine

filters and neither have infinite length, the ISI value is not zero in practical cases. The

ISI value is one of the performance metrics discussed in next section.

2.4 Performance metrics

Two fundamental metrics of digital communication system performance are bit error

rate (BER) and symbol error rate (SER), which are the probabilities that an error oc-

curs when receiving one transmitted bit or one transmitted symbol, respectively. Both

of them are dependent of modulation type, signal-to-noise ratio (SNR), channel char-

acteristics, detection type etc. [18]. However, when the base-station transmitter is

designed, information on the other signal processing parts of the system is not neces-

sarily available, so only the contribution of the subsystem under design to SNR and

BER can be controlled.

In this book, SNR is defined via the error vector magnitude (EV M), which is de-

fined to be the root mean square (RMS) deviation of the received symbol given as a

percentage of the symbol magnitude [20]. Actually, this is an RMS noise amplitude

given as a percentage of the symbol magnitude. EV M consists of all noise in the sys-

tem, including ISI and quantization noise etc. When designing the transmitter, EV M
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as a function of ISI and quantization noise has to be determined and minimized.

EV Mrms is defined as

EV Mrms =

√

σ2
s +σ2

n

|S| =

√

ISI2
rms +

σ2
n

|S|2
, (2.18)

where σ2
s is the variance of the symbol error generated by the nonidealities of the

combination of the transmit and receive filters, σ2
n is the noise added by the system,

and |S| is the magnitude of the received symbol.

ISIrms is defined as

ISIrms =
σs

|S| =

√

(

∑K
i=−K, i 6=0 htr (Nc + iL)2

)

htr (Nc)
, K = f loor

(

Nc −1

L

)

, (2.19)

where htr(n) is the combination of the channel filters of transmitter and the receiver.

L is the oversampling ratio and Nc =
N−1

2
is the index of the center coefficient of the

filter htr(n). N is the number of the filter coefficients (odd).

In addition to ISIrms, the contribution of the current frequency channel to EV M

of the adjacent frequency channels has to be minimized. This means minimization of

the contribution to the additive noise σ2
n of the adjacent channel. The amount of this

contribution is given as the adjacent channel power ratio (ACPRn) in decibels

ACPRn = 10log10

(

Pnth_ad j_chan

Pcchan

)

, (2.20)

or as the adjacent channel leakage power ratio, which is the inverse of ACPRn

ACLRn = 10log10

(

Pcchan

Pnth_ad j_chan

)

, (2.21)

where Pnth_ad j_chan is the power of nthadjacent frequency channel and Pcchan is the

power of the current signal channel.

ACLRn and EV Mrms are considered to be the key performance metrics of the base-

station transmitter throughout the design process described in this book.



Chapter 3

Transmitter structures

The most commonly used (and published) transmitter architectures are direct conver-

sion [22], [23], [24], [25], [26], [27] and two-step transmitter [22], [28], [29], [30],

[31], [32], [33], [34], [35], [36], [37]. A two step transmitter can be realized either

with an analog or digital intermediate frequency (IF) part.

Direct conversion and two-step transmitter structures are usually used in the ampli-

tude modulators, whereas the frequency synthesizer based transmitters [38], [39], [40],

[41], [42], [43] are used in narrow band phase and frequency modulators.

Two transmitter types used with the power amplifier (PA) linearization techniques

[44], [45] are also described, because the linearization techniques require that the

signals are presented in a different format at the IF frequency compared to the feed-

forward or look-up table methods[46], [47] in which the signal at the IF is still basically

the sinusoidal carrier multiplied by the filtered data.

3.1 Direct conversion transmitter

The principle of the direct conversion transmitter is presented in Fig. 3.1. In direct

90o

i(t)

q(t)

cos( ω )t
rf

D/A

D/A

Digital
baseband
signal
processing

s
t
(t) = sin(i(t)cos( ω )t

rf
q(t) ω )t

rf
+

Figure 3.1 Direct conversion transmitter.

conversion transmitters, the bandlimited baseband signals are converted directly up to

the radio frequency ωr f with in-phase and quadrature carriers. The band-pass filter
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after the signal summation is used to suppress the out-of-band signals generated by the

harmonic distortion of the carrier. The structure of this kind of transmitter is quite sim-

ple; however, it suffers from the following drawback. The strong signal at the output

of the power amplifier may couple to the local oscillator (LO), which is usually a volt-

age controlled oscillator, causing the phenomenon that is known as injection pulling

[22], [48]. This means that the frequency of the local oscillator is pulled away from

the desired value. The severity of the injection pulling is proportional to the difference

between the frequency of the local oscillator and the frequencies at the output of the

PA. By taking advantage of that, the problem of injection pulling can be alleviated by

using an offset LO direct-conversion structure (Fig. 3.2). In this structure the carrier

90o

i(t)

q(t)

D/A

D/A

Digital
baseband
signal
processing

cos( )tω
rf
−ω

if
( )

cos( ω )t
if

s
t
(t) = sin(i(t)cos( ω )t

rf
q(t) ω )t

rf
+

Figure 3.2 Offset LO direct-conversion transmitter.

signal is formed by mixing two lower frequency signals. An additional band-pass filter

is needed to filter away the undesired carrier at the frequency ωr f −2ωi f .

3.2 Two-step transmitter

The injection pulling can also be avoided by using the two-step transmitter presented

in Fig. 3.3. The two- (or multiple-) step transmitter can be considered as a dual of the

super-heterodyne receiver [22]. In this structure, the baseband data is first upconverted

i(t)

q(t)

D/A

D/A

Digital
baseband
signal
processing

cos( ω )t
if

90o

cos( )tω
rf
−ω

if
( )

s
t
(t) = sin(i(t)cos( ω )t

rf
q(t) ω )t

rf
+

Figure 3.3 Two-step transmitter.

to the intermediate frequency ωi f and then to the desired radio frequency ωr f . The two-

step transmitter has two advantages. First, the quadrature modulation is performed at a

fixed lower frequency resulting in better matching between in-phase and quadrature (I

and Q) carriers, which in turn diminishes the crosstalk between I and Q data streams.

Second, the additional attenuation of the adjacent channel spurs and noise may be

achieved by using a band-pass filter at the IF. The drawback is that the stop band
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attenuation at the RF frequency has to be larger than in a direct conversion transmitter

because the signal component at the frequency ωr f − 2ωi f has the same power as the

desired sideband.

3.3 Phase modulating synthesizers

When the narrow band phase or frequency modulation is performed, the phase modu-

lating synthesizer is often used [38], [39], [40], [41]. The synthesizer can be either an

analog one, such as a phase locked loop (PLL) or a direct digital synthesizer (DDS),

often also called a numerically controlled oscillator (NCO) . The PLL-based modula-

tor is presented in Fig. 3.4. This kind of transmitter generates the modulated carrier

H(s)

divider

∆Σ
Mod

Pulse shaping
data

Phase
Comp.ref

ω
ω
rf

Figure 3.4 PLL based modulator.

by controlling the frequency divider of the PLL with a pulse shaped ∆Σ-modulated

data stream, thus modulating either phase or frequency. The phase comparator detects

the phase difference between the reference oscillator and the output of the divider and

tunes the voltage-controlled oscillator (VCO) to minimize the average phase differ-

ence, thus producing a phase modulated carrier at radio frequency (RF). The usable

bandwidth of the data is limited by the bandwidth of the loop filter H(s), preventing

the usage of this kind of transmitter in wide-band systems. This kind of transmitter is

used in systems such as GSM [39], [40] or Bluetooth [49].

Instead of using an analog frequency synthesizer, the phase modulator can also be

realized with a digital frequency synthesizer [50], [43], [42]. The basic principle of

the digital phase modulator is presented in Fig. 3.5. With this kind of structure, both

frequency and phase synthesizers can be realized (the data could also be added to the

”frequency control” shown in Fig. 3.5 ). They are often used in the same kind of

applications as their analog counterparts, but they do not suffer from loop filter band-

width limitations like the PLL based synthesizers do. Because of this, it has become

increasingly interesting to implement multi-mode base-station transmitters, where the
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Figure 3.5 Digital phase modulation.

phase or frequency modulation is added to the digital frequency synthesizer used for

the digital QAM modulator enabling the same transmitter to be used in multiple com-

munications standards such as GSM, EDGE, and WCDMA. [17].

3.4 Constant envelope transmitters for power amplifier

linearization

The PA linearization techniques described in this section require special signal decom-

position at the baseband or at the IF frequencies. They can therefore be considered as

separate transmitter architectures, whereas techniques such as feed-forward- [46] and

look-up-table-based methods [47] are basically conventional QAM transmitters with

linearizing predistortion.

With constant envelope signals, it is possible to use nonlinear power-efficient (class

C, D, E or F) amplifiers because the constant envelope signals produce less distortion

in the signal frequency band than the signals with a varying envelope [22]. Constant

envelope signals are, for example, phase or frequency modulated signals, which have,

however, a poor spectral efficiency. In order to increase the spectral efficiency, modu-

lation techniques in which both the amplitude and phase are varying (such as the mul-

tilevel QAM) have to be used. Difficulties arise when the average transmitted power is

much lower than the maximum peak power.

The ratio of the peak power to average power is called the crest factor. A high crest

factor causes the following problems. First, it is not possible to use a nonlinear (power

efficient) PA, because the distortion destroys the signal integrity and detection of the

information that is coded to the amplitude becomes more difficult or impossible. Also,

the distortion of the non-constant envelope signal causes spectral re-growth (widens

the signal spectrum) and therefore disturbs the adjacent signal bands [51]. Even if

the distortion problem is solved by using a more linear (class A or AB) amplifier, the

efficiency is even further reduced because the amplifier has to be biased according to

the maximum signal amplitude.
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Both of the methods described in this section are based on the decomposition of the

IF signal. The IF signal is decomposed in the constant envelope components, which

allows the usage of a nonlinear power amplifier.

3.4.1 Envelope elimination and restoration

The envelope elimination and restoration (EER) [44], [52] transmitter is presented in

Fig. 3.6. The relationship between the general amplitude modulation and the decom-

PA

A(t)

A(t)

Vdd

Vdd adj.

cos( ω t φd(t))− cos( ω t φd(t))−

Figure 3.6 Envelope elimination and restoration.

posed presentation of Fig. 3.6 is

St (t) = i(t)cos(ωt)+q(t)sin(ωt)

= A(t)cos(ωt −φd (t)) , (3.1)

where

A(t) =

√

i(t)2 +q(t)2

φd (t) = arctan

(

q(t)

i(t)

)

. (3.2)

The cos(ωt −φd) term in Eq. (3.1) has a constant envelope and can be amplified with

a nonlinear PA. The amplitude information A(t) is added to the signal by controlling

the supply voltage of the amplifier.

The main weakness of this method is that it requires good matching between the

amplitude branch and the carrier branch.

3.4.2 LINC transmitter

LINC is an abbreviation meaning linear amplification with nonlinear components [45],

[53] (a.k.a. as an outphasing method [54]). The LINC transmitter is presented in Fig.

3.7.
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Figure 3.7 LINC power amplification.

The input signals of the power amplifiers are formed by further expanding Eq.

(3.1), resulting in

s(t) = A(t)cos(ωt −φd (t))

= Amax cos(φdc)cos(ωt −φd (t))

=
Amax

2
cos(ωt +φdc −φd (t))+

Amax

2
cos(ωt −φdc −φd (t)) , (3.3)

in which

A(t) =

√

i(t)2 +q(t)2

Amax = max(abs(A(t)))

φdc (t) = arccos

(

A(t)

Amax

)

= arccos





√

i(t)2 +q(t)2

Amax



 . (3.4)

The main weakness in the LINC realizations, as in the EER method, is the matching

between the signal paths in the analog domain. If the matching is not perfect, the

quality of the signal is degraded. Also, the bandwidth of the signal components is

increased when compared to the original signal, and therefore a high sampling rate is

usually required for the DSP. In addition, the lossless summation of high-power signals

is very difficult, resulting in efficiency degradation.

3.5 Digital QAM transmitter

The digital QAM transmitter is presented in Fig. 3.8. The digital signal processing

part of the transmitter usually consists of digital pulse shaping filters and a digital

frequency synthesizer, which are discussed in Chapters 4 and 5. In order to make

digital modulation possible, the sampling rate conversion (interpolation) between the

data input sampling rate and the sampling rate of the frequency synthesizers is needed.
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Figure 3.8 Digital QAM transmitter.

This also requires filtering, which is discussed in more detail in Chapter 4.

The main benefit of the digital QAM transmitter is that the modulation does not suf-

fer from any kind of physical accuracy limitations or distortion that may occur when an

analog multiplication is used to produce the QAM signal. Another benefit is that there

is only one signal branch in the analog domain, eliminating the gain and phase im-

balance problems between I and Q branches. When used in multi-carrier transmitters,

the digital QAM has the benefit of lossless signal addition and mismatch-free perfor-

mance. The digital QAM also has all the benefits that DSP provides. For example, the

frequency resolution of the digital frequency synthesizer can be selected arbitrarily.

This allows the frequencies of the carriers to be freely selectable within the frequency

band allocated to the system. It is also possible to implement several types of signal-

enhancement techniques with digital signal processing, including, but not limited to,

amplitude and phase-distortion compensation and power-amplifier linearization with

predistortion techniques. The main limitations of the usage of the digital QAM are

the high power dissipation, which makes it unusable in portable devices, and the accu-

racy of the D/A converter. Digital transmitters are mainly used in systems like cable

modems and base-station transmitters, in which the large power dissipation is not a

problem [37], [36], [35].





Chapter 4

Resource-efficient digital filter

design

Resource-efficient DSP generally becomes a topic when the system size integrated on

a single chip increases. The main resources that we are dealing with are power, speed

and area. It can be shown that each of these can be traded off against each other, hence

it is only a question of which one of these properties is the most important one in a

specific design case. For the mobile applications, it is almost always power, then area.

For the non-portable application, the power optimization is less important, although

not meaningless. Less power means the possibility of integrating more on a single chip

without melting-up the package or without needing to install a cooling fan.

Speed of computation is often considered a figure of merit when speaking about

DSP chips. The fact is that speed can be increased by using such techniques as pipelin-

ing and parallelism, that is, by increasing the chip area. The same techniques may also

be applied in order to achieve low-power performance. However, increasing the area

means increasing the price of the chip.

In this chapter, some techniques for a resource-efficient filter design are discussed.

It should be kept in mind that, in the design described in Section 7.1, the order of pri-

orization of the resources is first area, then power. The computation speed is fixed by

the system specification, so the special methods for high-speed designs are not con-

sidered. The top-down method is used to describe the techniques of the area-efficient

filter design.
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4.1 Filter design algorithms

4.1.1 Pulse shaping filter design algorithm

The pulse shaping filter design has two main objectives: minimization of the inter

symbol interference (ISI) and maximization of the adjacent channel leakage power

ratio (ACLR). Most of the algorithms used for the finite impulse response (FIR) filter

design, such as the methods introduced in [55], [56], [57] and [58], are suitable for

only the stop-band attenuation maximization (or equiripple filter design) and does not

take ISI into account.

One way to design filters that have at least some kind of ISI properties is to use

the sampled impulse response of the root-raised cosine filter (Eq. (2.17)) as filter co-

efficients. However, the performance is far from ideal, and the stop-band attenuation

is usually poor with a small number of coefficients. This problem may be alleviated

by using some window function, such as Kaiser, but this worsens ISI performance.

Windowing may also widen the pass band, which is not desirable. With the windowing

method, the stop-band attenuation and ISI may be traded off against each other, but

usually the number of coefficients for the practical values of ACLR and ISI becomes

quite high. A better method for finding the pulse shaping filter coefficients was de-

scribed in [6], which is based on Lagrange optimization. The Lagrange optimization

method is also used in [59] to design filters or multi-rate systems.

The method goes as follows. An ideal root-raised receive filter is approximated

with hr (n) with length I (odd). We try to design a transmit filter ht (n) of length K

in such a way that ISIrms is minimized and ACLR is maximized. Both filters have the

same oversampling ratio L. The combination of these two filters is the time domain

convolution of their impulse responses

htr (n) =
K−1

∑
i=0

ht(i)hr(n− i) n = 0 . . .N −1, N = K + I −1

= hT
t Snhr , (4.1)

in which Sn is a I ×K convolution matrix with elements

sna,b = 1, b = n+2−a, 1 ≤ b ≤ K 1 ≤ a ≤ I,

sna,b = 0 otherwise. (4.2)

Next ISIrms has to be defined as a function of ht(n). ISIrms can be presented in
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matrix form

ISI2
rms =

∑M
i=−M, i 6=0 hT

t (SNc+iLhr)(SNc+iLhr)
T

ht

hT
t (SNc hr)(SNc hr)

T
hr

, M = f loor(
Nc −1

L
) ,Nc =

N −1

2

=
hT

t AAT ht

hT
t AcAT

c ht

, (4.3)

where

A =
M

∑
i=−M ,i 6=0

SNc+iLhr (4.4)

and

Ac = SNc hr , (4.5)

in which Nc =
N−1

2
(N odd) is the index of the center coefficient of the combination

of transmit and receive filters. Now, we have a matrix presentation for the normalized

ISI.

Next the matrix equations for the pass-band and stop-band power of the transmit

filter ht (n) are derived. The amplitude frequency response of the filter may be written

as

Ht ( f ) =
K−1

∑
n=0

ht(n)e
− j

2π f n
Fs

=
K−1

∑
n=0

ht(n)

(

cos

(

2π f n

Fs

)

− j sin

(

2π f n

Fs

))

, (4.6)

where Fs is the sampling frequency. The power transfer function may then be written

as

P( f ) = |Ht( f )|2

=
K−1

∑
i=0

K−1

∑
k=0

ht(i)ht(k)e
− j

2π f i
Fs e

j
2π f k

Fs (4.7)

=
K−1

∑
i=0

K−1

∑
j=0

ht(i)ht( j)cos

(

2π f (i− k)

Fs

)

− j
K−1

∑
i=0

K−1

∑
k=0

ht(i)ht(k)sin

(

2π f (i− k)

Fs

)

.

Because sin(−x) =−sin(x), the term

j
K−1

∑
i=0

K−1

∑
k=0

ht(i)ht(k)sin

(

2π f (i− k)

Fs

)

(4.8)

in Eq. (4.8) equals zero, and the power transfer function of the transmit filter ht (n)
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may be written as

P( f ) = |Ht ( f )|2

=
K−1

∑
i=0

K−1

∑
k=0

ht (i)ht (k)cos

(

2π f (i− k)

Fs

)

. (4.9)

Now we may discover the integrated power on some pass-band from −Fpb to Fpb.

Ep =
∫ Fpb

−Fpb

P( f )d f

=
K−1

∑
i=0

K−1

∑
k=0

ht(i)ht(k)
Fs

π(i− k)
sin

(

2πFpb(i− k)

Fs

)

, (4.10)

and for stop bands from −Fs
2

to Fsb and Fsb to Fs
2

Es =
∫ −Fsb

− Fs
2

P( f )d f +
∫ Fs

2

Fsb

P( f )d f

=
K−1

∑
i=0

K−1

∑
k=0

ht(i)ht(k)
Fs

π(i− k)

(

sin(π(i− k))− sin

(

2πFsb(i− k)

Fs

))

. (4.11)

We may write the passband power in the matrix form

Ep = hT
t Ppht (4.12)

in which Pp is a K ×K square matrix with elements

ppi,k =

{

2Fpb, when i− k = 0

Fs

π(i−k) sin
(

2πFpb(i−k)

Fs

)

otherwise.
(4.13)

Similarly, for the stop-band power we get

Es = hT
t Psht , (4.14)

in which Ps is a K ×K matrix with elements

psi,k =

{

Fs −2Fsb, when i− k = 0

− Fs

π(i−k) sin
(

2πFsb(i−k)
Fs

)

otherwise.
(4.15)

Now, when we have the matrix equations for ISI2
rms, Ep and Es, we may write the
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Lagrangian cost function to be maximized

L(ht ,λ) = hT
t Ppht −ahT

t Psht −bhT
t AAT ht +λ

(

hT
t Ac −1

)

, (4.16)

in which the a and b are the weight factors for the stop band-power and the ISI2
rms. λ

rule sets the value of the center coefficient of htr (n) to be one. By taking the partial

derivatives and setting them to zero we get

∂L(ht ,λ)

∂ht

= 2Ppht −2aPsht −2bAAT ht +λAc = 0 (4.17)

∂L(ht ,λ)

∂λ
= hT

t Ac −1 = 0. (4.18)

By setting

Q = 2Pp −2aPs −2bAAT (4.19)

and solving Eqs. (4.17) and (4.18) we obtain

ht =
Q−1Ac

(Q−1Ac)
T

Ac

, (4.20)

which is the Lagrange optimized transmitter filter.

It should be noted that the filter that was used for the receiver may also include

the combination of all filters in the transmitter after the pulse shaping filter. With this

method, the effect of the filters after the pulse shaping filter in the transmitter may be

compensated.

The main shortcoming of this algorithm is that the effect of the weighting factors a

and b has to discovered by trial and error. Results of different filter design methods are

compared in Table 4.1. The number of the filter coefficients is 37 for each filter.

Table 4.1 Comparison of filter design methods.

Method ACLR ISI

Truncation 45.30dB -59.21dB

Window with Kaiser, β = 4 36.15dB -40.07dB

Lagrange 73.38dB -45.08dB

Root-raised cosine with 1001 coefficients 71.22dB -106.10dB

In simulations, the oversampling ratio is 2 and the sample frequency is normalized

to that. The pass band is defined to be from 0 to 0.61Hz and the stop band (adjacent

channel) from 0.61Hz to 1Hz. It can be seen that the ACLR value of the filter de-

signed with the window method suffers from the increased width of the pass band. The

frequency responses of the filters are presented in Fig. 4.1.
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Figure 4.1 Frequency responses of the filters designed with different design methods.

4.1.2 Half-band filters for interpolation

When sampling rate conversion takes place, digital filters are needed. Filters used in

sampling rate conversion must fulfill two criteria. The first and most important is that

they have to filter out the image band in the case of interpolation, or the aliasing band

in the case of decimation. The second is that they should be as simple as possible.

When we have to interpolate or decimate signals with a reasonably wide bandwidth

compared to sampling frequency, the usage of comb filters [60], [61] is not preferable

because they introduce droop on their pass band. The second best approach compared

to comb filters is to interpolate in steps of two if possible. This is because the number

FIR filter coefficients needed for the filtering has an approximate dependency [58]

N ∼= K
Fs

∆F
, (4.21)

where K is a factor depending on the stop-band and pass-band ripple characteristics

of the filter, Fs is the sample frequency and ∆F is the width of the transition band. In

addition, when interpolating by two, half-band filters may be used. Half-band filters

have the center of their transition band at the quarter of the sampling frequency. They

can be designed with any of the filter design algorithms described in, for example,

[58]. However a shortcut for their design has been introduced in [62]. Half-band filters
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have the property that every other of their coefficients except the center coefficient (odd

N) has zero value. This is expandable to s.c. Φ-band filters [63], in which every Lth

coefficient is zero except the center one [62]. Φ-band filters are filters that have L−1

don’t care bands. The half-band filters that are used in the transmitter of Chapter 7 are

designed with the Least Squares error minimization algorithm [58] and by using the

”trick” described in [62].

4.2 Mapping the floating point filter coefficients to canonic

signed digit format

In the previous section, the method for efficient filter design for floating point presen-

tation of the filter coefficients was presented. Because the floating point computation

is quite tricky to perform on the silicon, it is preferable to use fixed point presentations

of the filter coefficients. Moving from floating point to the fixed point presentation de-

grades the accuracy of the presentation and introduces error into the filtering operation.

Multiplication of two fixed point number consumes a lot more power and area on

silicon when compared to summation. In the case when the filter has constant coeffi-

cients it is preferable to use a signed digit (SD) presentation for the filter coefficients

[64]. In SD presentation, the filter coefficient is presented as sums and differences of

powers of two

h(n) =
∞

∑
i=−∞

cni2
i ,cni ∈ {−1,0,1} . (4.22)

In digital filters, it is convenient to normalize the maximum value of the filter coef-

ficient so that the maximum power of two is zero. It is also possible to present the filter

coefficient only with some limited accuracy by fixing the minimum value of i. This

leads to the approximation of h(n)

hsd (n) =
0

∑
i=−p

cni2
i ,cni ∈ {−1,0,1} . (4.23)

When the number is presented with a minimum number of non-zero digits, the

presentation is said to be a minimum signed digit (MSD) presentation. There can be

multiple MSD representations for a single number, but there is only one MSD presen-

tation in which there is no non-zero digits in parallel. This representation is called the

canonic signed digit presentation (CSD). For example 0.75, in decimal notation can

be presented as ”1 0 -1” or ”0 1 1” in signed digit presentation, of which ”1 0 -1” is

CSD presentation. The benefit of the SD representations is that the multiplication op-

eration can be realized by using only adders/subtracters and shift operations that can

be realized with hardwired shifts.
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Several algorithms have been presented for mapping the floating point or regular

two’s complement presentation to the CSD presentation [65], [66], [67], [68], [69]. In

the design described in Chapter 7, the modification of the method presented in [67]

was used. The method was modified in order to trade off ACLR and ISI rather than the

peak amplitude ripple and ISI. This is because the parameter to be optimized is the ad-

jacent channel power relative to the channel power, not the ripple of the power transfer

function. The equiripple design algorithms usually give poorer power attenuation on

the stop band than the filters that have been designed in the sense of the least squares

stop-band. Almost same kind of method was used in [70].

4.3 Efficient FIR filter structures

Once the filters have been converted to the SD representation, the further area and

power reductions may be achieved by rearranging the computation on the silicon chip.

In this chapter, a couple of well -known methods are described.

4.3.1 Polyphase FIR filters in sampling rate converters

The basic operations in sampling rate conversion are converting the sampling rate up-

wards (i.e. interpolation) and downwards (i.e. decimation). The interpolation consists

of upsampling followed by filtering, while the decimation consists of filtering followed

by downsampling. The decimation and interpolation and their efficient realizations are

described in the following paragraphs.

The upsampling operation for the data sequence x(n) may be described with

xi (n) =

{

x
(

n
L

)

, n
L
∈ Z

0 otherwise,
(4.24)

which means that L− 1 zeros are inserted between the samples. Equation (4.24) can

also be presented with discrete Fourier series as

xi (n) =
1

L

L−1

∑
l=0

x
( n

L

)

e j 2πnl
L , (4.25)

which is a suitable format when, for example, analyzing upsampling in the frequency

domain.

Downsampling may be described with

xd (n) = x(nM), (4.26)

which means that only every Mth sample of x(n) is included in xd(n).
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The effects of the upsampling in the frequency domain can be discovered by cal-

culating the Z-transform of xi(n) and by evaluating it on the unit circle (i.e. by substi-

tuting Z = e
j

2π f
Fs ), resulting in

Xi ( f ) =
1

L

L−1

∑
l=0

L(N−1)

∑
n=0

x
( n

L

)

e j 2πnl
L e

− j
2π f n
LFs

=
1

L

L−1

∑
l=0

N−1

∑
b=0

x(b)e
− j 2πb

Fsi
L

(

f−l
Fsi
L

)

=
1

L

L−1

∑
l=0

X( f − l
Fsi

L
)

=
1

L

L−1

∑
l=0

X( f − lFs) = X( f ) (4.27)

where Fs is the sampling frequency before interpolation, n
L
= b and LFs = Fsi. This

means that the spectrum is the same, although the sampling frequency has been changed,

meaning that there are unwanted images between the new sampling frequency and the

original signal band. The effects in the frequency domain are presented in Fig. 4.2.

FsFs0 f2 L Fs

FsFs0 f2 L Fs

Images

Figure 4.2 Effects of interpolation in the frequency domain.

The images should be filtered out after upsampling because they contain redundant

information, which may, for example contaminate signals on the adjacent frequency

bands.
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For downsampling, xd(n) in the frequency domain may be written as

Xd ( f ) =

N−1
M

∑
n=0

x(nM)e
− j

2πn f
Fsb

=
N−1

∑
b=0

(

1

M

M−1

∑
l=0

x(b)e j 2πbl
M

)

e
− j

2πb f
Fs

=
1

M

M−1

∑
l=0

N−1

∑
b=0

x(b)e− j 2πb
Fs
( f−l Fs

M )

=
1

M

M−1

∑
l=0

X( f − lFsd), (4.28)

in which b = nM and Fsd =
Fs
M

. This means that the spectrum after decimation contains

aliased components from the frequency bands centered l Fs
M
, l = 1 . . .M−1. In order to

avoid aliasing (Fig. 4.3), the signal should be bandlimited before decimation (i.e. the

signal power of the aliasing bands should be zero).

0 fFs

0 fFs

Fs

M

2 Fs

M

Figure 4.3 Effects of decimation in the frequency domain.

Interpolation and decimation filters can be realized efficiently by using so-called

polyphase decomposition. Polyphase decomposition is based on identities presented

in Fig. 4.4 and holds for every L and M [58]. The polyphase decomposition of the

interpolation filter and one possible realization of it are presented in Figs. 4.5 and

4.6. The decomposed filter for decimation and one possible implementation of it are

presented in Figs. 4.7 and 4.8.
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Figure 4.4 Identities for the order of filtering and up/down sampling.
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Figure 4.5 Polyphase decomposition of the interpolation filter.
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Figure 4.6 One possible realization of polyphase decomposed interpolation filter.
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Figure 4.7 Polyphase decomposition of the decimation filter.
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Figure 4.8 One possible realization of the polyphase decomposed decimation filter

The advantage of the polyphase decompositions is that the computation can al-

ways be performed with the lower clock frequency, resulting in either the possibility

of reducing supply voltage in order to minimize power dissipation or the use of the

pipelining/interleaving (P/I) technique in order to minimize the area [71].

In the case of FIR filters with symmetrical or anti symmetrical coefficients (linear

phase FIR filters), the symmetry of the coefficients can be exploited in order to further

reduce the area. The maximum number of symmetrical sub-filters in sampling rate

conversion with different filter tap and sampling-rate combinations are listed in Table

4.2 [72].
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Table 4.2 Maximum number of symmetrical sub-filters.

Odd number of coefficients Even number of coefficients

Odd L or M 1 1

Even L or M 2 0

4.3.2 Efficient realizations of FIR filters

In this section, the two main structures of digital FIR filters, namely the direct form

and the transposed direct form, are presented. The pros and cons of both of them are

considered and some methods for reducing the amount of hardware in filter realizations

are also discussed.

4.3.2.1 Direct form structure

The folded direct form FIR filter structure is presented in Fig. 4.9. Folding is only

Z
−1

Z
−1

Z
−1

Z
−1

X(n)

Y(n)

Figure 4.9 Folded regular direct form FIR filter structure.

applicable when the FIR filter has a linear phase, i.e. the coefficients are either sym-

metrical or anti-symmetrical relative to the center coefficient. Applications where the

coefficients may not be symmetrical are, for example, sub-filters in polyphase decom-

positions and in the predistortion filters for phase error correction.

In the folded regular direct form, the number of bits needed in the delay elements
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are defined by the number of input bits rather than the required word length of the filter,

which may lead to a reduced amount of hardware. Another advantage of the transposed

direct form is that, if the filter coefficients are updated (for example, in programmable

filters), the effect is seen immediately at the filter output. On the other hand, the delay

path from the registers to the output can be straightforwardly pipelined if the latency is

allowed [72].

4.3.2.2 Transposed direct form structure

The transposed direct form structure is presented in Fig. 4.10. Basically the amount of

Z
−1

Z
−1

Z
−1

Z
−1

X(n)

Y(n)

Figure 4.10 Folded transposed direct form FIR filter structure.

hardware is almost the same in direct form and transposed direct form FIR filters. The

benefit of the transposed direct form is that the maximum delay path in this structure

is shorter compared to the regular direct form, resulting in faster performance. Also,

the redundant arithmetic addition, such as carry-save addition, may be applied to the

adders between the register stages resulting in increased speed. This, however, requires

a doubling of the register elements, because the signal is divided into carry and sum

signals and an additional adder before the output to sum up the carry and sum signals.

Transposed direct form filters can also be pipelined, but it may be more difficult than

in a regular direct form structure, at least in the case of pipelining a single adder stage.

The subexpression sharing method can be applied to both of the structures, reduc-
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ing the amount of hardware effectively [73],[74], [75].

4.3.2.3 Pipelining/interleaving technique

The pipelining/interleaving (P/I) technique [71] is applicable when, for example, the

same filtering operation is to be performed for several independent data streams. In-

stead of using K times the same hardware, parallel data streams are interleaved in time,

and the computation is made with a K times higher clock frequency. Finally, the data

stream is deinterleaved either in K or some other amount of parallel data streams. When

having K parallel data streams to be filtered with the same filter, the same hardware for

filter coefficients may be used. However, register stages has to be added to the filter.

Instead of one delay element we have to have K delay elements. The P/I structure of

the polyphase interpolation filter is presented in Fig. 4.11. The main drawback of this

K*F

K pcs

F

IN
K:1

2:N

N pcs

2*K*F/N

OUT

Inter−
leaver 1H (Z

K

)

H 2 (Z
K

)

De−inter
leaver

Figure 4.11 Pipelined/Interleaved polyphase filter.

method is that the additional register stages increase the power consumption, because

the amount of the registers is the same as in parallel realization, but the clock frequency

is higher.

4.3.2.4 Reduction of the sign bit load

In the filters that are realized with the SD coefficients, the sign bit loading due to

the sign bit extension in shift and add operations may become a problem. This is

because the load at the sign bit position may slow down the circuit or it may require a

large amount of buffering. The loading is avoided by the usage of the constant vector

addition method proposed in [72]. In this method, the sum of sign bit extension vector

is computed a priori and added to the output of the filter. In this case, the sign bit

extension does not have to be performed inside the filter, and the extensive loading of

the sign bit is avoided.
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4.3.2.5 Word length effects and scaling

In order to get the best possible trade off between the signal-to-noise ratio and ACLR

at the output of the digital filter and the amount of hardware, the minimum accuracy

needed has to be found. Basically there are three sources of noise due to the finite

precision arithmetic in the FIR filter. The first source is the quantization of the result

of the multiplication. The second is the noise due to the truncation at the filter output,

and the third is the noise due to the overflows.

The variance of the quantization noise due to the finite internal word length is

σ2
n =

∆2

12
=

2−2B

3
, (4.29)

where ∆ is 2−B+1, and B is the internal word length of the filter. It is assumed here that

the computation is made in a 2’s complement format and that the most significant bit

(sign bit) has the weight of 20 = 1, so the absolute value of the number is less than, or

equal to, 1. Assuming an N tap transposed form filter, the noise variance at the filter

output due to the internal word length quantization is

σ2
iwl = Nσ2

n. (4.30)

If we want to keep the noise added by the filtering operation below the desired noise

level indicated by Bo output bits, the internal word length of the filter should be

B ≥ Bo +
ln(N)

2ln(2)
≈ Bo +0.721ln(N). (4.31)

The noise variance added due to the quantization at the filter output is

σ2
op =

∆2
o

3
=

2−2Bo

3
, (4.32)

in which ∆o = 2−Bo+1 and Bo is the number of bits at the filter output after quantization.

This means that quantization at the filter output has less effect on the signal-to-noise

ratio than shortening the internal word length of the filter. In the case of cascaded filter

stages, only minor hardware savings can be achieved by truncation of the filter output.

The third source of noise is the noise generated by overflows in the filter. The

overflows of the filter may be avoided if the internal word length of the filter is selected

so that the maximum presentable number in the filter is

Mout put = Minput

N−1

∑
n=0

|h(n)| , (4.33)
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where Minput is the maximum value at the filter input [76]. However this usually gives

over-pessimistic values for the bandlimited signals. Other methods for discovering the

dynamic range of the signal are presented in [76],[77] and [78], but they do not guar-

antee an overflow-free performance. The noise due to the overflows may be minimized

by using saturating logic in the adders [78]. This leads to clipping instead of overflows,

which reduces remarkably the generated noise. Because the maximum output value is

dependent on the statistics of the signal, the number of internal bits needed can also be

approximated with simulations, while the saturation logic may be applied in order to

minimize the effect of occasional overflows.





Chapter 5

Methods for direct digital

frequency synthesis and

modulation

The core of the digital QAM modulator is the direct digital synthesizer (DDS). The

most often used methods for the direct digital frequency synthesis are the look-up table

(LUT) based frequency synthesis methods and the methods based on the CORDIC

vector rotation algorithm. These methods are described in the following sections.

5.1 Direct digital frequency synthesizers using the look-

up table method.

The most straightforward approach for digital modulation is the LUT-based method

used in, for example, [79],[80], [35]. In this method, the carrier is formed by addressing

the memory with the phase value and mapping the current phase to the value of the

sinusoidal signal. Then the generated carrier is multiplied with the modulating data by

using digital multipliers. Advantages of this method are the good frequency resolution

and relative simplicity. Drawbacks are that the multipliers and memories may require

a large area, especially with high resolutions, and memories may become the speed

bottleneck at high sampling rates.

With a look-up table method, it is possible to realize every function y = f (x) of

variable x by mapping the value x to the output y with some mapping element, usually

a memory block. The accuracy of the mapping depends on the resolution of the input

value x and the area (=accuracy) of the mapping element. When this is applied to the
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frequency synthesis, the variable to be mapped is usually the phase of the sinusoid

and is mapped to the corresponding amplitude value [81]. The principle of the LUT-

based frequency synthesis is presented in Fig. 5.1. ∆φ is the phase increment, which is

z
−1∆

p

p k
Cosine
ROM

( )tωcos
a

φ

Figure 5.1 LUT-based DDS

integrated over time with a digital integrator also called a phase accumulator. The phase

value obtained by integration is then used as the address to the ROM memory, which

maps the phase value to the desired amplitude value. The accuracy of the synthesis is

controlled by the values of p, k and a (Fig. 5.1) [79], [80].

The enhancement of the performance of the synthesizer is usually achieved by

increasing the values of k and a. The value p affects mostly the frequency resolution

of the synthesizer that is not the speed bottleneck. The phase accumulator can be made

almost arbitrarily fast with pipelining techniques, for example [82]. The increase of

the values a and k results the increase of the area of the ROM memory. The increase of

this area may slow down the operation of the memory block and limit the achievable

frequency band. Therefore, several techniques of memory size reduction have been

developed.

The compression techniques can be roughly divided into three categories, namely

the symmetry reduction techniques [83], [84], [85], segmentation techniques [86], and

subtractive techniques [87], [88].

The symmetry reduction techniques are based on the fact that the shape of the

sinusoid is the same in each quadrant, so only the first quadrant should be coded into

the memory. The values in other three quadrants are obtained by controlling the sign of

the phase and magnitude (Fig. 5.2). In quadrature synthesizers, additional symmetry

Comp−
lementor

Phase
accu

Comp−
lementor

Phase
increment

MSB2ndMSB

2ndMSB MSB

ROM
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Figure 5.2 Symmetry reduction technique.
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reductions may be achieved by taking into account that [85]

cos(φ) = sin
(π

2
−φ
)

, 0 ≤ φ ≤ π

2
. (5.1)

In the subtractive reductions, the number of output bits of memory is reduced by

subtracting some simple function out of the sine function and by saving only the differ-

ence into the memory. The simplest subtractive method, called sine-phase difference

algorithm, is to subtract the phase out of the sine and add it to the output of the memory

[87], but also more complex functions such as double trigonometric [88], slope opti-

mized linear function [89], quadratic [90] and quad-line approximation [91] have been

used.

With segmentation techniques, the large memory is divided into smaller units by

exploiting the trigonometric identities, for example

sin(φ(n)) = sin
(π

2
(A(n)+B(n)+C (n))

)

= sin
(π

2
(A(n)+B(n))

)

cos
(π

2
C (n)

)

(5.2)

+cos
(π

2
(A(n)+B(n))

)

sin
(π

2
C (n)

)

,

where A(n), B(n), and C(n) are sub-buses of the phase value bus φ(n). For symmetry

reasons φ(n) is limited to be 0 ≤ φ(n)≤ π
2

. If C (n) is chosen to be small (i.e. few least

significant bits, LSBs), Eq. (5.2) may be approximated with

sin(φ(n))≈ sin
(π

2
(A(n)+B(n))

)

+ cos
(π

2
(A(n)+ 〈B(n)〉)

)

sin
(π

2
C (n)

)

, (5.3)

where 〈B(n)〉 is the mean value of B(n). Now the first term of Eq. (5.3) can be stored

in a coarse ROM and the second term in a fine ROM (Fig. 5.3).
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ROM

A(n)+B(n)
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Figure 5.3 Memory compression by trigonometric approximation.

A wide variety of segmentation techniques have been presented during the past few

years using trigonometric identities [83], [86], [92], interpolating [93], [94], and inter-

polating with nonlinear addressing [95]. With these methods, symmetry and subtrac-

tive reductions are usually also applied. The effectiveness of the compression method

is a trade-off between the memory size and complexity of the additional hardware re-
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quired to form the actual sinusoidal output. A comparison of memory compression

ratios obtained with various compression methods is presented in [95]; however, the

comparison of the memory compression ratios does not tell the whole truth, since the

highest compression ratios may be achieved with the methods that require an exten-

sive amount of additional hardware. A comparison of the respective areas required for

implementation of various DDS circuits is presented in Table 5.1 in Section 5.3

It is preferable to use the combination of the different compression methods, for

example, subtraction reduction, symmetry reduction, and segmentation [87], [96]. The

speed of the synthesizer can be increased with, for example, the parallel structures [97].

5.2 CORDIC vector rotation algorithm based frequency

synthesizer and modulator

CORDIC is an abbreviation for the coordinate rotation digital computer, which was

introduced by J. Volder in 1959 [98].

CORDIC type algorithms are suitable for calculating trigonometric functions [98],[99],

[100], hyperbolic trigonometric functions [101], logarithmic and exponent functions

[102], sine wave generation [103], [104], linear transformations [105],[106], digital fil-

ters and matrix based DSP algorithms [105] and inverse trigonometric functions [107].

The CORDIC algorithm is also suitable for digital modulator/demodulator applications

[108], [103],[6], [109] [110]. When applied to frequency synthesis and modulation, the

algorithm provides as good a frequency resolution as the LUT-based method, but the

modulation can be performed without any multipliers as in [103].

In hybrid realizations of the CORDIC algorithm [111], [112], [109], [110], a com-

bination of LUT and the CORDIC rotator is used in order to further reduce the area of

the synthesizer.

The CORDIC based modulation can be presented as follows. Discrete-time QAM

modulation may be presented as a matrix multiplication as

Mr =

[

i(n)cos(φ(n))+q(n)sin(φ(n))

−i(n)sin(φ(n))+q(n)cos(φ(n))

]

=

[

cos(φ(n)) sin(φ(n))

−sin(φ(n)) cos(φ(n))

][

i(n)

q(n)

]

, (5.4)

where φ(n) = ωnTs, Ts is the sampling interval and ω is the desired angular frequency.

Eq. (5.4) gives the desired modulation result as the first element of the resulting column
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vector. By notifying that

[

cos(φ1 ±φ2) sin(φ1 ±φ2)

−sin(φ1 ±φ2) cos(φ1 ±φ2)

]

=

[

cos(φ2) ±sin(φ2)

∓sin(φ2) cos(φ2)

]

×
[

cos(φ1) sin(φ2)

−sin(φ1) cos(φ1)

]

, (5.5)

it may be stated that the rotation φ(n) in Eq. (5.4) can be achieved by the chain of

multiplications

Mr ≃ Mra =
N−1

∏
k=0

([

cos(φk) σk (n)sin(φk)

−σk (n)sin(φk) cos(φk)

])[

i(n)

q(n)

]

, (5.6)

where σk (n) = {−1,1} and it is determined by

Z0 (n) = φ(n)

σk (n) = sign(Zk (n)) (5.7)

Zk+1 (n) = Zk (n)−σk (n)φk.

Zk+1 in Eq. (5.7) is the residual angle to be rotated after kth stage. To operate properly,

Eq. (5.6) has two terms of convergence [98]. First, the angle φ(n) should be bounded

and presentable by the sum of φk’s

N−1

∑
k=0

φk +φN−1 ≥ |φ(n)| , −π ≤ φ(n)≤ π.

φk ≤ φN−1 +
N−1

∑
i=k+1

φi (5.8)

Second, the residual rotation angle should converge to zero

lim
k→∞

|Zk(n)|= 0, (5.9)

which is always satisfied when

|Zk+1 (n)| ≤ φk. (5.10)

Furthermore Eq. (5.6) can be simplified by taking cos(φk) as a common subexpression.

This results in

Mra =

[

cos(φ0) σ0 (n)sin(φ0)

−σ0 (n)sin(φ0) cos(φ0)

]

×
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N−1

∏
k=1

cos(φk)

([

1 σk(n) tan(φk)

−σk (n) tan(φk) 1

])[

i(n)

q(n)

]

. (5.11)

By selecting

φk = arctan
(

2−k+1
)

(5.12)

and φ0 =
π
2

to satisfy the Eq. (5.8), we may write the Eq. (5.11) in a form

Mra = K

[

0 σ0(n)

−σ0(n) 0

]

×

N−1

∏
k=1

([

1 σk(n)2
−k+1

−σk(n)2
−k+1 1

])[

i(n)

q(n)

]

, (5.13)

where

K =
N−1

∏
k=1

cos(φk) . (5.14)

The values of φk and K can be computed beforehand because the number of stages

N is known and because the sign of cos(φk) = cos(−φk) is always positive, when

0 ≤ φk <
π
2

. The value of K is only dependent on the number of stages, approaching

1.6468 with large N. If the constant scaling factor of the modulated signal is allowed,

the effect of K can be discarded resulting in the modulation equation

Mb =

[

0 σ0 (n)

−σ0 (n) 0

]

×

N−1

∏
k=1

([

1 σk (n)2−k+1

−σk (n)2−k+1 1

])[

i(n)

q(n)

]

. (5.15)

Eq. (5.15) can be computed with the series of N CORDIC rotation blocks, which

may be realized by using only adders/subtracters and negators in the zero stage. The

input-output relation of the stages are

Xk+1 (n) = Xk (n)+ sign(Zk (n))Yk (n)2−k+1

Yk+1 (n) = −sign(Zk (n))Xk (n)2−k+1 +Yk (n) (5.16)

Zk+1 (n) = Zk (n)− sign(Zk (n))φk

for kth stage and

X1 (n) = sign(Z0 (n))Y0 (n)

= sign(φ(n))q(n)

Y1 (n) = −sign(Z0 (n))X0 (n)
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= −sign(φ(n)) i(n)

Z1 (n) = Z0 (n)− sign(Z0 (n))φ0

= φ(n)− sign(φ(n))
π

2
(5.17)

for the zero stage. φ(n) can be generated with the same kind of phase accumulator as

is presented in Fig. 5.1. It should be noted that the values of φk are presented with the

same notation as φ(n), usually in the two’s complement format.

One possible architecture for the CORDIC rotator is presented in Fig. 5.4. It takes
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Figure 5.4 CORDIC vector modulator.

the data values i(n) and q(n) as the input and the modulated carrier is X output of

the last stage. The accuracy of the modulation performed with the CORDIC rotator

is dependent on the number of stages N, number of bits p (Fig. 5.4) on the phase

computation path, and the number of bits a on the X/Y path. The frequency resolution

is selected by the number of bits in the phase accumulator. The effects of N, a and p

(Fig. 5.4) are analyzed in [113], [114] and [115]. The CORDIC may also be used as a

frequency synthesizer if q(n) and i(n) are constants.

With the CORDIC rotator, no digital multipliers are needed for the modulation of

the carrier, as is with the LUT-based digital frequency synthesizer. Also no memories

are required, thus enabling pipelining. If only the frequency synthesis is performed,

there is no or little advantage of the multiplier-free realization and the LUT-based or

LUT/CORDIC hybrid may result in a smaller area. Very efficient hybrid mixers have

also been presented [109], [110].

5.3 Survey of digital frequency synthesizers

Area, speed and resolution of various LUT- and CORDIC-based frequency synthesizer

implementations are presented in Table 5.1. It can be noticed that, with a hybrid re-

alization based on the combination of LUT and CORDIC vector rotation algorithm,

effective savings of hardware may be achieved. It should be noted that if the ”Mixer”

feature column in Table 5.1 contains ”No”, at least three multipliers are required in

addition to the reported hardware in order to enable quadrature modulation.
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Area-speed-resolution trade-off between LUT and CORDIC realizations is ana-

lyzed in detail in [112].

Table 5.1 Comparison of DDS implementations.

Method Type Process (P)hase,

(A)mpl.

resol.

Sampl.

freq.

[MHz]

Area

[mm2]

Mixer Comments

Sunderland

[83]

segm.

LUT

3.5µm

CMOS

P=14

A=12

7.5 48.1 No External

DAC

Nicholas

[86]

segm.

LUT

1.25µm

CMOS

P=15

A=12

150 24.55 No 8-b DAC

Bellaouar

[93]

interp.

LUT

0.8µm

CMOS

P=12

A=9

30 0.9 No Core area,

no DAC, IQ

Langlois1

[94]

interp.

LUT

0.35µm

CMOS

P=18

A=14

100 0.110 No Core area,

no DAC, IQ

Langlois2

[94]

interp.

LUT

0.35µm

CMOS

P=16

A=12

320 0.282 No Core area,

no DAC, IQ

Langlois3

[94]

interp.

LUT

0.35µm

CMOS

P=16

A=12

100 0.079 No Core area,

no DAC, IQ

Curticăpean

[92]

seqm.

LUT

0.35µm

CMOS

P=16

A=16

30 0.23 No Core area,

no DAC, IQ

De Caro

[116]

poly-

nom.

0.35µm

CMOS

P=14

A=12

80.4 0.31 No Core area,

no DAC, IQ

Yang [91] segm.

LUT

0.35µm

CMOS

P=11

A=9

800 1.3 No Core area,

9-b DAC

Gielis

[103]

COR. 1.0µm

bipolar

P=12

A=10

540 24.96 Yes No DAC,

IQ

Madisetti

[117]

hybr.

COR.

1.0µm

CMOS

P=22

A=16

100 12.00 No Core area,

no DAC, IQ

Janiszewski

[112]

hybr.

COR.

0.35µm

CMOS

P=20

A=16

310 3.72 No Core area,

no DAC

Curticăpean

[118]

hybr.

COR.

0.35µm

CMOS

P=19

A=16

100 0.46 No Core area,

no DAC, IQ

Torosyan1

[109]

hybr.

COR.

0.25µm

CMOS

P=19

A=13

300 0.36 Yes Core area,

no DAC, IQ

Torosyan2

[109]

hybr.

COR.

0.25µm

CMOS

P=19

A=13

600 0.72 Yes Core area,

no DAC, IQ

Song1

[119]

hybr.

COR.

0.35µm

CMOS

P=18

A=16

150 1.4 No Core area,

no DAC, IQ

Song2

[110]

hybr.

COR.

0.25µm

CMOS

P=18

A=15

330 0.51 Yes Core area,

no DAC, IQ
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5.4 Other digital modulation methods

5.4.1 Modulation to quarter of the sampling rate

Similarly to CORDIC modulation, multipliers are not needed with this method [36],[37]

[120]. The upconversion is made to a quarter of the system clock frequency by multi-

plying the data values repeatedly by sequence [1, 0,−1, 0]. If the sequence [+1,−1]

is used, the data is upconverted to half of the sampling frequency. The only hard-

ware required for this modulation is a negator and a multiplexer. The sign control can

also be included in, for example, coefficients of a digital filter [37]. A shortcoming

of the method is the fixed carrier frequency. This method can be expanded in order to

generate carrier frequencies other than the quarter of a single sampling frequency. In

this case, the method is called multistage modulation and is described in, for example,

[121].

5.4.2 Frequency synthesis with nonlinear D/A converter

A memory-free method for frequency synthesis is presented in [122]. In this method,

the phase-to-sinusoid mapping is achieved by a nonlinear D/A converter. While the

usage of memories is avoided, the implementation of a good-quality nonlinear D/A

converter is not trivial. Also, the amplitude modulation has to be performed in the

analog domain; the advantage of DSP in modulation is lost.





Chapter 6

Current-steering

digital-to-analog converter

design

Current-steering digital-to-analog converters have become the mainstream architecture

of D/A converters since the late 80’s. This is due to following properties of current-

steering architecture. With this it is possible to provide relatively large currents (10

to 20mA) to 50Ω load without buffering. The operation speed of a current-steering

converter is determined by the ability to drive the gates of the switches, instead of

the gain bandwidth product (GBW) of the buffer circuitry, as in resistor-string and

switched-capacitor D/A converters. Sample rates of several hundreds of millions of

samples per second can therefore be achieved, which makes the current-steering D/A

converter the most suitable architecture for, for example, digital IF transmitters and

direct digital synthesizers. In addition, only transistors are used to provide the output

current; this enables the usage of the standard CMOS process, whereas high-accuracy

resistors and capacitors are required in resistor-string or switched-capacitor converters.

This chapter describes the theory of current-steering D/A converters applied in the

design of the prototype circuits presented in Chapter 7. As an introduction to the

subject, some general issues considering the current-steering D/A converters and their

performance metrics are discussed in Sections 6.1 and 6.2. In Section 6.3, the static

linearity as a function of transistor mismatch is analyzed. The previously published

linearity yield models are compared with simulations, and the yield model developed

and published by the author [13] is presented. Section 6.4 discusses the previously

published calibration methods that are used to improve the static linearity of the con-

verters above 12 bits. Also the digital calibration method developed and published by
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Figure 6.1 Block diagram of a typical current-steering D/A converter.

the author and his team [14] is presented. Section 6.5 considers the effects due to the

output impedance variation. In Section 6.6, the signal conversion from discrete time

digital to continuous time analog is discussed and mathematically modeled, while dis-

tortion sources such as transition asymmetry are analyzed. In Section 6.7, the timing

nonlinearities are added to the model presented in Section 6.6. The effect of the jitter

on the spectral performance is analyzed by simulations, and the performance degrada-

tion due to code-dependent clock load and power supply interference is demonstrated.

The jitter analysis is also partially published by the author in [15]. Section 6.8 is about

the layout techniques used to reduce the effect of the process gradients on the current

source mismatch. The previously published methods are discussed, and methods used

in the prototype circuit presented in Section 7.2 are described.

6.1 General description of the current steering D/A con-

verter

A block diagram of a typical current-steering D/A converter is presented in Fig. 6.1

A current-steering D/A converter consists of current sources and cascode transistors

that are often used to increase the impedance of the current source. Switches are used

to combine the current of the current sources and form an output signal. Gates of the

switches are driven by control signals decoded from input data with digital circuitry.

Clock buffers and some analog bias circuitry are also required. These circuit blocks

together form a complex mixed-mode circuit entity.

In an N-bit converter, there are 2N input codes, of which one is zero, resulting
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in a total current requirement of 2N − 1 times the current corresponding to the LSB

(Ilsb). Current sources can be weighted (usually binary weighted), thermometer coded,

(i.e. each current source has the same weight), or segmented (i.e. combination of

binary weighted and thermometer coded), which is usually the case. The usage of

binary weighted current sources reduces the number of switches, but introduces diffi-

culties in switch-driver synchronization, since larger currents require larger switches,

thus providing a larger capacitive load. The timing differences in switch control sig-

nals result in glitches, i.e. spikes in the output current. For example, MSB transition

01111−> 1000 in a binary-weighted D/A converter may cause a glitch, since the tran-

sition of the MSB bit is slower than the three LSB bits. It is therefore preferable to use

as many as possible thermometer-coded bits at the MSB end in order to produce good

synchronization of the most significant bit transitions, and use binary weighting for

the LSB part. The practical limit for thermometer-coded bits is around 7, due to the

increased area required for the switch drivers and the decoder logic.

A current-steering D/A converter can be divided into four types of circuitry do-

mains each of them having a unique contribution to the performance of the converter.

The domains of the D/A converter are presented in Fig. 6.2.

The digital domain of a D/A converter includes all of the pure digital circuitry of

the converter. The digital domain is less sensitive to noise and interference. It is more

like a source of interference, whose propagation to any of the other domains should be

eliminated, or, at least, minimized. The digital circuitry usually consists of at least a

thermometer decoder, since segmented architecture is often used. Calibration, which

is often needed for accuracies of 12-bit or more, requires also some kind of digital

circuitry. Switching activity equalization, which is used to decorrelate the switching

activity from the input code, is also mostly performed in the digital domain.

In the mixed-mode domain, the control signals for the switches of the converter are

formed and the switch control signals are synchronized with flip-flops. The synchro-

nization flip-flops/latches usually convert the digital data signal from a single-ended
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digital bit to an fully differential analog signal, which can then be transformed to an

actual control signal with some simple logic circuitry and buffering. The power sup-

plies of the mixed-mode domain are usually separated from the digital domain in order

to avoid coupling and interference after synchronization. The transition activity in the

digital domain is related to the input data, thus generating input data dependent in-

terference, whose coupling to the mixed-mode domain can result in code-dependent

timing jitter, and thus harmonic distortion at the converter output. In addition, even

though the switch control signals in the mixed-mode domain are sensitive to interfer-

ence, they are digital like signals switching from rail-to-rail, and therefore generate

interference that can couple to the analog domain.

In the analog domain, the unit currents are generated and combined in order to

form the analog output signal. Usually one or multiple cascode transistors are used to

increase the output impedances of the current sources in order to reduce the distortion

generated by the code dependent output impedance variation. The analog domain is

sensitive to interference, but, whereas the sensitivity in the mixed-mode domain is

mainly related to the jitter of the sampling instance, the sensitivity in the analog domain

is continuous. All nodes in the analog domain (except the output nodes and gates of

the switch transistors) are biased to a certain operating point, and they should remain

stable even when switching occurs. Unfortunately this kind of stability is unachievable.

Interference can, and will, couple to every possible node in the analog domain. Effects

are more severe on one node than on another, and they can be reduced by various

means, such as shielding with ground planes; however, coupling to the analog domain

cannot be totally prevented.

The sensitivity of the clock domain is related to sampling. Interference in the clock

domain will cause jitter. Because the clock takes care of all synchronization in the

converter, the interference in the clock domain will be reflected in the performance of

the whole converter. The higher the sampling frequency, the more severe the effect of

the jitter on the performance of the converter. Unfortunately, the clock net, and thus the

clock domain, has to be distributed around the converter because it is connected to both

digital and mixed-mode domains. Therefore it is subjected to interference originated

in both of these domains. It is also sensitive to the coupling of the analog output to

the clock signal, but because the clock domain is not directly connected to the analog

domain, this kind of coupling can be more easily avoided.
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6.2 Performance metrics

6.2.1 Static linearity: Gain error, DNL and INL

In the ideal case, the output current of the converter is linearly dependent on the input

code, i.e. the input code “7” causes 7Ilsb current to flow to the output load. If the

average LSB step is smaller or larger than was originally intended, there is gain error

(Fig. 6.3). The gain error is usually not a problem, since the relative accuracy of the

conversion is much more important than the absolute accuracy, i.e. it is more impor-

tant than that with input code “8”, the output is twice as large as with input code “4”

regardless of the actual output values corresponding to “4” and “8”. However, in some

applications, such as I/Q transmitters, where two converters have to have equal gain,

the gain error is an important parameter, since the imbalance between I and Q signal

branches results in reduced sideband rejection in I/Q mixers and inter-channel interfer-

ence in reception. Gain calibration between converters is therefore usually needed in

that kind of application.

Within a single converter, the gain error is usually not a problem, since the error

does not introduce nonlinearity, which would distort the output signal. More severe

nonidealities are the Differential Nonlinearity (DNL) and Integral Nonlinearity (INL).

They are nonlinearities mainly caused by a mismatch of the current source transistors

and limited output impedance of the current branch. The INL of a D/A converter is

defined as the difference between the analog output value and the straight line drawn

between output values corresponding to the smallest and the largest input code, divided
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Figure 6.4 Differential Nonlinearity and Integral Nonlinearity.

by the average LSB step. INL is sometimes also defined as the difference of the analog

output and best-fit straight line throughout the output values [123]. In this book, the

former definition is used. DNL is defined as the variation of the step size relative to

average LSB step. It should be noted that, because DNL and INL are obtained by

referring the actual output to the linear output obtained by using the average LSB step,

INL values corresponding to the smallest and the largest input codes are always zero.

Definitions of DNL and INL presented in Fig. 6.4.

The information included in DNL can be further analyzed as follows. DNL tells us

how much the step at code transition from k to k+1 actually differs from the average

step size. If the value of DNL is less than -1, the converter is no longer monotonic,

i.e. the output value decreases as the input code increases. Fully thermometer-coded

converters are always monotonic. Monotonicity can only be lost with binary weighted

converters. A converter is considered to have N bit accuracy if DNL does not exceed

±0.5LSB, i.e. the output value is within the bounds of quantization error.

INL is a curve that tells us how much the actual output corresponding to input

code k differs from linear (not ideal) output. INL is often reported as a single figure

(maximum INL = x) or as a range (INL =±x), but these figures will not tell us much

about a single converter. More important is the shape of INL curve, because it includes

all information about the low-frequency nonlinearity of the converter.

DNL and INL are important performance metrics in the sense that they define the

limits of the linearity of the converter. Linearity is further degraded by dynamic non-

idealities as the signal frequency and sampling rate are increased. The role of DNL
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and INL of the converters as a performance metric is two-fold. On the one hand, they

define the quality of the low frequency operation, on the other, with modern Nyquist-

rate converters with sample rates from 100MHz to 1GHz, the dynamic nonlinearities

are clearly limiting the performance, and therefore the static linearity of the converter

is quite meaningless.

6.2.2 Linearity and noise: SNR, SFDR, THD, SINAD and ENOB

In addition to DNL and INL, various figures of merit are commonly used to indicate

the quality of a D/A converter.

A signal-to-noise ratio (SNR) is the ratio of the signal power (usually the power of

a sinusoidal signal) and the noise power integrated over certain signal band in decibels.

When Nyquist-rate converters are considered, SNR is usually defined for the signal

band from 0 to half of the sample rate. The upper limit of the SNR is defined by

quantization noise,

σ2
n =

∆2

12
, (6.1)

in which ∆ is the size of the quantization step. Presenting the sinusoidal signal with an

amplitude A with N-bits results in

∆ =
2A

2N
, (6.2)

and SNR of

SNR = 6.02N +1.76. (6.3)

SNR will be further degraded by other noise sources, such as thermal noise and 1/f-

noise.

Very often interference spurs exist in the output spectrum of the converter. These

spurs are most often due to harmonic distortion, i.e nonlinearity, of the converter, but

they can also occur for some other reason, such as coupling. The figure of merit that

tells us the level of highest spurious tone relative to the signal power is the spurious

free dynamic range (SFDR), which is given in decibels relative to (given) signal power.

Total harmonic distortion (T HD) is the sum of the power of the all harmonic dis-

tortion components, relative to signal power. T HD is also usually given in decibels.

The signal-to-noise and distortion ratio SINAD is the sum of noise and distortion

power relative to signal power. With SINAD, it is possible to calculate the effective

number of bits (ENOB) of the converter. Assuming the SINAD is determined, ENOB

can be defined as

ENOB =
SINAD−1.76

6.02
. (6.4)

In current steering D/A converters, the figures of merit that are generally announced
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RC−settling

Settling

Glitch

Figure 6.5 Settling and glitches.

are DNL, INL and SFDR since they give a comparable figure for the linearity of the

device. However, very often the SFDR (and therefore also the SINAD) of the device is

so low that the ENOB of the device is quite far from the value defined by INL or DNL.

6.2.3 Time domain performance: Settling and glitches

In Fig. 6.5, a typical time-domain waveform of a current steering D/A converter is pre-

sented. There are two major time-domain properties that are often referred to, namely

settling and glitches.

Settling is the time required by the output signal to settle to its current value after

transition with certain accuracy, e.g. within a 0.5 LSB range of the “ideal value”. There

are several types of settling, depending on the load of the converter. With RC-loads,

the settling is low-pass type RC-settling, indicating filtering of the higher-frequency

components. With RLC type of loads, the settling takes place as damped oscillations.

Because the settling is a filtering operation for the output signal, no serious harm results

from it as long as the filtering does not affect the desired signal band (from 0 to half of

the sampling frequency in general).

“Glitch” is a spike on the output signal. Glitches can be generated in various ways,

and often they are referred as a form of signal degradation. Glitches can be problematic

when they are generated by the timing differences in synchronization. Also unequal

rise and fall times in binary weighted converters may generate glitches even with dif-

ferential output, whereas in thermometer coded converters the asymmetry in transitions

is usually canceled by differentiality. It is essential to understand what the phenomena

behind the glitch is, because most of the glitches or spikes at the output do not intro-

duce any kind of nonlinearity to the signal. As long as the glitch is linearly dependent
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on the signal or its discrete time derivative, it only carries part of the signal energy, or

indicates that some signal energy is missing, as later demonstrated in Section 6.6.

6.3 Models and relations of transistor mismatch and

static linearity

In this section, the analysis of the statistical behavior of INL yield as a function of

the current source mismatch is presented. It is demonstrated how the segmentation of

current sources affects the statistical behavior of INL and DNL. Various yield mod-

els published during the past decade are analyzed and compared by simulations. In

addition, regression models for DNL and INL yields are presented. These models are

applicable in cases of 10 to 16 bits with 1 to 6 and 1 to 3 thermometer coded MSB bits

for INL and DNL, respectively. The regression model presented is published by the

author in [13].

6.3.1 Current source mismatch and yield

DNL and INL are generated by the mismatch of the drain currents of the current source

transistors. The mismatch of the drain currents is due to global and local variations dur-

ing the manufacturing process of a silicon chip. The relative variance of the difference

between the two transistors, having the same dimensions, orientation and operation

point, can be expressed as [124] [125]

σ2
Id

I2
d

=
4σ2

vt

(Vgs −VT )
2
+

σ2
β

β2

=
4A2

vt

WL(Vgs −VT )
2
+

4S2
vtD

2

(Vgs −VT )
2
+

A2
β

WL
+S2

βD2, (6.5)

where Avt , Aβ, Svt , and Sβ are process related constants, Vgs is the gate-source voltage

of the transistor, VT is the threshold voltage of the transistor, W is the channel width

and L is the channel length.

The magnitudes of INL and DNL are dependent on the mismatch of the drain cur-

rents of the current sources and the structure of the D/A converter. The following

figures represent DNLs of a 14-bit thermometer-coded (Fig. 6.6) and binary-weighted

(Fig. 6.7) D/A converter. It can be seen that the maximum value of DNL is strongly

dependent on the structure of the D/A converter, i.e. segmentation has an effect on

DNL. Obviously, it is dependent on the number of current sources switched when

moving from one input code to another.

In Fig. 6.8 and Fig. 6.9 the standard deviations of DNL values of the thermometer
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Figure 6.6 20 DNLs of the thermometer coded D/A converter.

Figure 6.7 20 DNLs of the binary weighted D/A converter.
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Figure 6.8 Standard deviation of 500 DNLs of the thermometer coded D/A converter.

coded and binary weighted D/A converters are presented. It can be observed, that the

variance of the maximum value of DNL is

σ2
DNLmax = Bσ2

lsb, (6.6)

[126], where B is the maximum number of unit current sources switched in the single

code transition and σlsb is the relative standard deviation of the error current of a unit

current source.

The same kind of simulations were carried out for the INL of the thermometer-

coded and binary-weighted D/A converters. INL curves for these converters are pre-

sented in Fig. 6.10 and Fig. 6.11 The dependency of INL on the converter structure is

analyzed in the following sections.

6.3.2 Statistical model of the static linearity

In order to analyze the static behavior of INL, equations for the variances and covari-

ances of INL as function of the input code are derived for the thermometer-coded and

binary-weighted D/A converter.

The single-ended output current of the thermometer coded D/A converter that cor-
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Figure 6.9 Standard deviation of 500 DNLs of the binary weighted D/A converter.

Figure 6.10 20 INLs of the thermometer coded D/A converter.
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Figure 6.11 20 INLs of the binary weighted D/A converter.

responds to the offset binary type input code k can be written as

Iout(k) =
k

∑
i=0

Ilsb +
k

∑
i=0

εi, Iout(0) = 0, ε0 = 0 (6.7)

where Ilsb is the ideal LSB current and εi is the error current of ith current source. εi is

assumed to have a normal distribution with zero mean and variance σ2
Ilsb

. Because the

shape of the envelope of the INL is the same for both the single-ended and differential

case, only the single-ended case is examined here for simplicity. The actual LSB step

can be found by fitting the straight line between the end points of the curve obtained

by sweeping the value of k from 0 to 2N −1, where N is the number of bits resulting in

Ilsba = Ilsb +
2N−1

∑
i=1

εi

2N −1
, (6.8)

where the summation term corresponds to the gain error of the converter. Now it is
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possible to define INL relative to Ilsba as the function of k as

INLt (k) =
Iout − kIlsba

Ilsba

=

Ilsb

(

∑k
i=1

εi
Ilsb

− k ∑
2N−1
i=1

εi

Ilsb(2N−1)

)

Ilsb

(

1+∑
2N−1
i=1

εi

2N−1

) . (6.9)

If it is assumed that the denominator of the right side of Eq. (6.9) is approximately Ilsb,

Eq. (6.9) can be approximated as

INLt (k)≈
k

∑
i=1

εri − k
2N−1

∑
i=1

εri

2N −1
, (6.10)

where εri =
εi

Ilsb
is error of the ith current source relative to LSB current Ilsb. The

subscript t in It (k) stands for the thermometer coded D/A converter.

The INL of the converter can also be presented with the matrix notation

INLt = KT E − KT IvtI
T
vt E

2N −1
= KT (It −

IvtI
T
vt

2N −1
)E = KT AtEt , (6.11)

where K is a 2N − 1× 2N matrix with each column containing k 1’s starting from the

topmost element and 2N − k zeros, Ivt is 2N − 1× 1 unity vector, It is a unity matrix,

and Et is 2N − 1× 1 vector containing the relative error values. From Eq. (6.11), the

covariance matrix of INL values at code values k1 and k2 can be calculated, and result

in

Ct = E
[

INLt × INLT
t

]

= E
[

KT AtEtE
T
t AT

t K
]

=
(

KT AtA
T
t K
)

σ2
lsb, (6.12)

where σ2
lsb = VAR [εri] is the relative error variance of the unit current source. The

elements of Ct are

ct (k1,k2) =

(

MIN (k1,k2)−
k1k2

2N −1

)

σ2
lsb (6.13)

and they represent the covariances between INLt(k1) and INLt(k2). By setting k1 =

k2 = k, the variance of the INL at the code value k is obtained.

σ2
INLt

(k) =

(

k− k2

2N −1

)

σ2
lsb (6.14)
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which are the values on the diagonal of Ct . The correlation coefficient between the two

INL values is

ρt (k1,k2) =
COV [INLt k1, INLt k2)]

σIk1σIk2

=
MIN (k1,k2)− k1k2

2N−1
√

k1 − k2
1

2N−1

√

k2 − k2
2

2N−1

. (6.15)

In a similar manner, the covariance matrix for the binary weighted and segmented

D/A converter can be computed. The INL of the binary-weighted converter can be

written as

INLb ≈ BTWdbE − BTWbIT
vbWdbE

2N −1

= BT

(

Ib −
WbIT

vb

2N −1

)

WdbE = BT AbEb, (6.16)

where B is an N × 2N matrix with each column containing the binary presentation of

k, Wb is an N × 1 weighting vector with elements wi = 2N−1−i, i = [0...N − 1], Wdb =
√

Diag(Wb), and Eb is an N ×1 error vector of normally distributed random variables

with zero mean and variance σ2
lsb.

By combining the INL matrix equations of the binary-weighted and thermometer

coded converters, the INL equation for the segmented converter is obtained as

INLs ≈ STWdsEs −
STWsI

T
vsWdsEs

2N −1

= ST

(

Is −
WsI

T
vs

2N −1

)

WdsEs

= ST AsEs, (6.17)

where

S =

[

Ks

Bs

]

, (6.18)

Ws =

[

2B × Ivt

Wb

]

, (6.19)

Ks is a matrix with columns containing 2N−B −1 thermometer coded MSB bits and Bs

with columns containing B binary weighted LSB bits, Wds =
√

Diag(Ws), and Es is

2N−B+B−1×1 error vector of normally distributed random variables with zero mean

and variance σ2
lsb.
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The INL covariance matrix of the segmented D/A converter is

Cs = E
[

INLs × INLT
s

]

= E
[

ST AsEsE
T
s AT

s S
]

=
(

ST AsA
T
s S
)

σ2
lsb (6.20)

with elements

csk1,k2
=

(

ST
k1

W T
dsWdsSk2

− k1k2

2N −1

)

σ2
lsb (6.21)

The variances of INL can be found on the diagonal of Cs resulting in

σ2
INLsk

=

(

k− k2

2N −1

)

σ2
lsb. (6.22)

The correlation coefficients are given by

ρsk1,k2
=

COV [INLsk1
, INLsk2

)]

σIk1σIk2

=
ST

k1
W T

dsWdsS− k1k2

2N−1
√

k1 − k2
1

2N−1

√

k2 − k2
2

2N−1

. (6.23)

To give an example of the differences between the correlation matrices of a thermometer-

coded and binary-weighted D/A converter, correlation matrices for 3-bit converters are

presented. The correlation matrix Rt for the 3-bit thermometer-coded D/A converter is

Rt =

0 0 0 0 0 0 0 0

0 1 0.6455 0.4714 0.3536 0.2582 0.1667 0

0 0.6455 1 0.7303 0.5477 0.4000 0.2582 0

0 0.4714 0.7303 1 0.7500 0.5477 0.3536 0

0 0.3536 0.5477 0.7500 1 0.7303 0.4714 0

0 0.2582 0.400 0.5477 0.7303 1 0.6455 0

0 0.1667 0.2582 0.3536 0.4714 0.6455 1 0

0 0 0 0 0 0 0 0

. (6.24)
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Correlation matrix Rb for the 3-bit binary weighted D/A converter is

Rb =

0 0 0 0 0 0 0 0

0 1 −0.2582 0.4714 −0.4714 0.2582 −1 0

0 −0.2582 1 0.7303 −0.7303 −1 0.2582 0

0 0.4714 0.7303 1 −1 −0.7303 −0.4714 0

0 −0.4714 −0.7303 −1 1 0.7303 0.4714 0

0 0.2582 −1 −0.7303 0.7303 1 −0.2582 0

0 −1 0.2582 −0.4714 0.4714 −0.2582 1 0

0 0 0 0 0 0 0 0

.

(6.25)

Correlation matrix for the 3-bit converter with 2 segmented MSB bits

Rs =

0 0 0 0 0 0 0 0

0 1 −0.2582 0.4714 −0.4714 0.2582 −1 0

0 −0.2582 1 0.7303 0.5477 0.4000 0.2582 0

0 0.4714 0.7303 1 0.1667 0.5477 −0.4714 0

0 −0.4714 0.5477 0.1667 1 0.7303 0.4714 0

0 0.2582 0.4 0.5477 0.7303 1 −0.2582 0

0 −1 0.2582 −0.4714 0.4714 −0.2582 1 0

0 0 0 0 0 0 0 0

.

(6.26)

The following observations can be made about the covariance matrices Ct , Cb, and

Cs, and correlation matrices Rt ,Rb, and Rs:

1) Values on the edges of the covariance matrices are zero which means that INL

values at k = 0 and k = 2N −1 are zero, and therefore they can be discarded from

the statistical model of INL.

2) If the edge rows and columns are discarded from Ct , the resulting matrix Ct2 is

a symmetrical positive definite matrix and hence invertible. Its inverse is also

positive definite. The square root of the positive definite matrix is non-singular.

3) If the edge rows and columns are discarded from Cb and Cs, the resulting matri-

ces Cb2 and Cs2 are singular, their determinants are zero, and therefore they are

not invertible. They are symmetrical positive semi-definite matrices.

4) The correlation factors of INLs of the thermometer-coded D/A converters are

positive and their values are less than one.

5) The correlation factors of the segmented and binary-weighted D/A converters

can be negative. The correlation factors of the binary-weighted converter be-
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Figure 6.12 RMS of 500 INLs of the thermometer-coded D/A converter.

tween INLs positioned symmetrically relative to the midpoint of the INL curve

have the correlation factor -1, indicating the perfect negative correlation.

Figs 6.12 and 6.13 represent the simulated and computed values of the standard

deviation of INL for the thermometer-coded and binary-weighted D/A converter. It

can be seen that the simulated values follow quite accurately the values computed with

Eq. (6.14).

Once the variances, covariances and correlation factors are calculated, it is possible

to try to find a statistical model for the INL. One good candidate for the statistical

distribution model of the INL is the multivariate normal distribution (MVN) . The

probability density function (PDF) of the MVN is

fx (x) =
1

(2π)
n
2 |Cx|

1
2

e−
1
2 (x−mx)C

−1
x (x−mx), (6.27)

where x= [x1,x2, ...xn]
T

is a vector of n real valued random variables, mx = [m1,m2, ...mn]
T

is a vector containing the means of x, and Cx is a symmetric positive definite covariance

matrix.

For INLt2 (INL, from which the first and last values are discarded because they are
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Figure 6.13 RMS of 500 INLs of the binary-weighted D/A converter.

always zero), the MVN density function can be written as

fINLt2
(INLt2) =

1

(2π)
2N−2

2 |Ct2|
1
2

e−
1
2 INLT

t2C−1
t2 INLt2 , (6.28)

but for INLb2 and INLs2 (INL, from which the first and last values are discarded be-

cause they are always zero) this is not possible, since Cb2 and Cs2 are singular and

therefore not invertible, and because their determinants are zero.

Once the PDF is defined, the cumulative distribution function (CDF) of INLt2 can

be defined as

FINLt2
(INLt2) =

1

(2π)
2N−2

2 |Ct2|
1
2

∫ I1

−∞
...

∫ I
2N−2

−∞
e−

1
2 INLT

t2C−1
t2 INLt2dI1...dI2N−2. (6.29)

In order to validate the assumption of the multinormal distribution, simulations

were performed by generating vectors of random variables that have the desired vari-

ance and covariance properties. This is achieved by variable transformation

X =C
− 1

2
t2 INLt2, INLt2 =C

1
2

t2X , (6.30)

where X is a vector of an independent N(0,1) distributed random variable. Simulation
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Figure 6.14 PDF of INL of a thermometer-coded D/A converter with various values of σ.

results for the 8-bit thermometer coded D/A converter are presented in Figs. 6.14-6.17.

It can be observed, that the results obtained with Monte-Carlo simulation follows quite

accurately the MVN distribution generated by variable transformation. Similarly,

the comparison can be made for the segmented 8-bit converter with 4 binary-weighted

bits. The results are presented in Figs. 6.18-6.21.

Simulation results indicate that the assumption of the multivariate normal distribu-

tion is valid for INL values of the thermometer-coded D/A converter. Due to the fact

that the covariance matrices for the binary-weighted and the segmented D/A converter

are not invertible, the multivariate normal distribution is not directly applicable. Sin-

gular Value Decomposition can be used in order to calculate an approximation of the

inverse of covariance matrices; however, this does not solve the problem related to the

zero-valued determinant of the singular covariance matrices.

Eq. (6.29) is probably solvable by numerical methods [127],[128],[129]; however,

in all practical cases (N > 12), the number of random variables (2N −2) is much larger

than the number of variables (7) that the program presented in [127] could handle.

However, if we take into account the development of computer resources, the N = 14

case is perhaps solvable with modern computers.

Despite the difficulties solving Eq. (6.29), we may write the exact definition of INL

yield in the case of thermometer-coded D/A converter (assuming that the distribution
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Figure 6.15 CDF of INL of a thermometer-coded D/A converter with various values of σ.
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Figure 6.16 PDF of the maximum absolute value of INL of a thermometer-coded D/A converter

with various values of σ.
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Figure 6.17 CDF of the maximum absolute value of INL of a thermometer-coded D/A converter

with various values of σ.
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Figure 6.18 PDF of INL of a segmented D/A converter with various values of σ.
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Figure 6.19 CDF of INL of a segmented D/A converter with various values of σ.
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Figure 6.20 PDF of the maximum absolute value of INL of a segmented D/A converter with

various values of σ.
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Figure 6.21 CDF of the maximum absolute value of INL of a segmented D/A converter with

various values of σ.

follows the MVN distribution)

YieldINLt = P(|INLt2|< 0.5)×100% (6.31)

= (2FINLt2
(INLt2)−1)×100%, (6.32)

INLt2 = [0.5,0.5...0.5]T . (6.33)

This equals the proportion of converters selected from a random set of converters

that fulfills INL specification |INL| ≤ 0.5. Thus, because the yield is a function of the

relative variance of the unit current source, which is a function of transistor area and

operation point [124], we could, in theory, discover the area and operating point that

would give a desired yield.

The result that the INL of the converter follows the multivariate normal distribution

is also presented by Cong an Geiger in [130]. The yield analysis presented in this book

was performed by the author most likely at the same time as Cong and Geiger without

knowledge of their work. The analysis is included in this book also to complete the

analysis of the previously published yield models, performed in the next section.
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6.3.3 INL yield models

Because the solution of Eq. (6.29) is quite hard to compute, the relation of YieldINL and

σ2
lsb has to be defined by other means. Various methods [124], [131], [126], [132] has

been suggested for evaluating the maximum current source variance allowed in order

to achieve the desired accuracy of the converter (or, in other words, a high-enough

yield). In [124] the assumption is made that the INL values are independent, and thus

the probability to have a certain INL value can be computed as a product of normally

distributed probabilities over the input range. Using this assumption yields pessimistic

results. This is commented on [133] and the model is improved in [131] so that only the

two most probable error values at MSB transition are taken into account; however, this

model results in optimistic results as demonstrated by simulations later in this section.

In [126], an observation is made that the maximum standard deviation of the output

values is achieved at the two center-most input codes; the value is 0.5
√

2Nσlsb (half

of the maximum value due to fitting a line between the endpoints). This statement is

verified with simulations. The result is approximately the same as the results obtained

with Eq. (6.14) and Eq. (6.22).

In [132], it is assumed that, if an INL error occurs when passing through all the

possible input codes, there is a 50% chance that the error still occurs for fictive code

2N . resulting in

Yieldinl =
(

P
(

Y
(

2N
)

< 0.5
)

−0.75
)

×4×100%, (6.34)

where Y
(

2N
)

is normally distributed error at the fictive input code 2N , with variance

2Nσ2
lsb, and P

(

Y
(

2N
)

< 0.5
)

can be obtained from the CDF of the normal distribution.

This model does not take into account the fitting of the output between the code values

0 and 2N − 1. Also with probability values P
(

Y
(

2N
)

< 0.5
)

< 0.75 the Yieldinl be-

comes negative, which is not possible in any case, since the yield is inherently positive

for all finite error variance values. However, according to simulation results presented

in [132],it seems to model the statistical behavior of the sum of error sources very

accurately in the certain parameter range.

The model presented in [132] gives a quite accurate estimate of the statistical be-

havior of INL+gain error, and therefore it is worth of trying to further improve it to

model the actual INL yield with line fitted between the endpoints. Assuming that if

there is a INL error somewhere at the code positions k = 0...2N−1−2, there is a proba-

bility of 0.5 that it still exists at the fictive code position k = 2N−1
2

. If it is assumed that

the probability of an INL error existing at some code position k = 2N−1 − 2...2N − 1

is equal to the probability of an INL error existing in the code range k = 0...2N−1 −2,

and that the INL error values of these two halves are uncorrelated (which is not true),
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Figure 6.22 INL yield as a function of standard deviation divider C.

the following equation for INL yield can be written

Yieldinl2 =

((

P

(

Y2

(

2N −1

2

)

< 0.5

)

−0.75

)

×4

)2

×100%, (6.35)

where Y2

(

2N−1
2

)

is a normally distributed random variable with variance σ2
y2
= 2N−1

4
σ2

lsb,

which is obtained from Eq. (6.14).

As a reference, it is also tested how an INL yield follows the normal distribution

with variance σ2
inl = (2N −1)σ2

lsb. This equals the assumption that the maximum INL

is the sum of the error currents.

In order to find out, which of these models gives the most reliable results for the

D/A converter design, they are compared to the results obtained with Monte-Carlo

simulations. In Fig. 6.22 the simulated yield and different estimation methods are

compared. The simulated converter is a 14-bit segmented one with 10 binary weighted

bits. One thousand converters are used in Monte-Carlo simulations. The relative stan-

dard deviation of a unit current source is assumed to be σlsb=
1

2C
√

2N−1
.

The INL yield obtained with various methods as the function of unit current source

standard deviation is presented in Fig. 6.23. In order to demonstrate the shortcoming

of the modification of the Van den Bosch method, the simulations were also carried

out for the 5 and 6-bit thermometer-coded D/A converters (Fig. 6.24 and Fig. 6.25).
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Figure 6.23 INL yield as a function of standard deviation of the unit current source.

It can be observed that, when a 14-bit segmented case, the results obtained from

the proposed model are somewhat optimistic, in the 5-bit case, results are (almost)

identical compared to Monte-Carlo simulations, and in the 6-bit case, the results are

just slightly optimistic. So, it can be seen that the accuracy of the model depends on

the number of bits of the converter.

Based on the simulation results, it is justified to say that none of presented INL

yield approximations gives an accurate basis for the design of the D/A converter.

For accurate information, the designer is still dependent on Monte-Carlo simulations.

With the assumption of normally distributed INL with the standard deviation σinl =√
2N −1σlsb, pessimistic yield estimations are obtained in the practical yield range. It

can be used as a “rule of thumb”-model: “The Rule of three sigmas” results in high-

enough yield.

6.3.4 Regression model for the INL and DNL yields

Due to difficulties in the evaluation of the cumulative distribution function of the INL

yield, it is mandatory to use some kind of approximative approach if an accurate es-

timation of the yield is required. Instead of the sophisticated variations of guessing

discussed in the previous section, one can always rely on numerical methods.

In [130], it was argued that, for certain INL and DNL yields, the required relative
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Figure 6.24 Modification of the Van den Bosch method in 5 bit case.
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Figure 6.25 Modification of the Van den Bosch method in 6 bit case.
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Figure 6.26 Average INL yield as a function of C for various number of segmented bits (M).

standard deviation of the unit current source can be written as

σlsb ≈
A√
2N

Z (Yield) , (6.36)

where A is the range limit to where INL and DNL values should be, and Z(Yield)

is a weighting function that is independent of the number of bits (N). Because of

this, the required σlsb can be discovered easily with, for example, tabulated values of

Z(Yield). It was demonstrated that the binary-weighted and the thermometer-coded

D/A converters have different Z(Yield), and that the binary-weighted D/A converters

have worse differential nonlinearity (DNL) performance.

INL yield is dependent on the segmentation of the converter as can be seen from

Fig. 6.26. C in the figure is the divider of the relative standard deviation of the LSB

σlsb =
1

2C
√

2N−1
. This is obtained from Eq. (6.36) by substitution A= 1

2
and Z(Yield) =

1
C

. 2N in Eq. (6.36) is substituted by 2N − 1 in order to define the required σlsb to be

dependent on the total number of current sources in the converter. By defining σlsb this

way, the effect of the number of bits on the yield is small (also in [130]) (absolute error

to average yield, is ±4%, Fig. 6.28 and Fig. 6.29) on the bit range from 10 to 16, as

explained later. Therefore the average of the yields obtained with a different number

of bits can be used in Fig. 6.26 and Fig. 6.27.
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Figure 6.27 Average DNL yield as a function of C with various number of segmented bits (M).

INL yield is also a function of the number of segmented bits, as shown in, for ex-

ample, Fig. 6.26, and the model can be developed in such a way that it also includes the

dependency on the segmentation level. The yield as a function of C and segmentation

could be tabulated, or curves could be given as in [130]. The solution proposed in [14]

is a regression model based on the results of Monte-Carlo simulations. The number of

INL curves simulated per each N,M,C combination is 2500. It is emphasized, that the

regression model is applicable only within the variable ranges that it was developed

in.

As a basis of the model, the following assumptions are made. The range of bits is

10-16, which is applicable for most of the design cases at the moment. The number of

thermometer-coded bits is selected to vary from 1-6.

It is also assumed, that INL and DNL yields are dependent on the number of

thermometer-coded MSB bits because of their larger weight. This assumption is vali-

dated by simulations by using the variable ranges under consideration; however, it does

not hold when the total number of bits is small, indicating that the dependency of the

required σlsb on N can not be modeled with Eq. (6.36) for all N.

With the help of Eq. (6.36), and by taking into account the number of segmented
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Table 6.1 g-coefficients of X(C,M) of the INL model

1 M1 M2 M3

1 -0.29711 1.75315 -0.55515 0.04734

C−1 1.75115 -11.75819 3.72128 -0.31774

C−2 -4.03389 29.83137 -9.46103 0.81011

C−3 4.49109 -34.85655 11.14615 -0.96023

C−4 -2.25836 18.06717 -5.89139 0.51356

C−5 0.37269 -3.45830 1.15067 -0.10156

bits also, INL yield can be written as

Yield = Φ(C,M), (6.37)

where C is related to σlsb as σlsb =
1

2C
√

2N−1
and M is the number of segmented bits.

The range of C is from 0.65 to 2.25. Φ(C,M) can be found by fitting some proper

function to the average of the data obtained by Monte-Carlo simulations. The chosen

function is

Φ(C,M) = eX(C,M) (6.38)

X(C,M) = g0 +
g1
C
...+ gi

Ci ...+gi+1M...+
g(i×l)M

l

Ci ,

where i and l are the highest powers of C and M, respectively. The fitting is performed

by minimizing the sum of squared errors between the Monte-Carlo simulation results

and the model, resulting in

∑ε2
f = (LYC,M −XG)T (LYC,M −XG), (6.39)

where LYC,M = ln(AV GN (YN,C,M)) is a vector containing the natural logarithm of the

average of the simulated yield values over the range of bits (N) from 10-16, corre-

sponding to a certain C and M. X is a matrix with rows containing the elements of

X(C,M) corresponding to certain values of C and M, and G =
[

g0...g(i×l)

]T
. The min-

imum of ∑ε2
f is obtained by setting the derivative of ∑ε2

f relative to G to zero. This

occurs when

G = (XT X)−1XT LYC,M . (6.40)

In the proposed model the values of i and l are chosen to be 5 and 3, respectively,

in order to achieve reasonable accuracy. The terms of X(C,M) and corresponding

coefficients are presented in Table 6.1.

In Fig. 6.28 the error between the Monte-Carlo simulation results and the proposed

model is presented in the case M = 4. Error bounds between the simulated INL yields
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Figure 6.28 Error between simulated INL yields and values given by the model as a function of

C. M = 4.

and the model are presented in Fig. 6.29.

The model for DNL yield is obtained with a similar method. The coefficients g for

the DNL yield model are presented in Table 6.2.

The error between the simulated DNL yields and the values given by the model is

presented in Fig. 6.30.

Table 6.2 g-coefficients of DNL model

1 M1 M2

1 2.52953 -2.64437 0.64198

C−1 -14.14603 14.25724 -3.47087

C−2 30.28905 -27.82176 6.63958

C−3 -32.86155 25.81305 -5.73440

C−4 16.94454 -11.77177 2.35736

C−5 -3.34097 2.08428 -0.36716
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Figure 6.29 Error bounds between simulated INL yields and values given by the model as a

function of C.
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Figure 6.30 Error bounds between simulated DNL yields and values given by the model as a

function of C.
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6.4 Calibration techniques

The static linearity of the current-steering D/A converter is dependent on the dimen-

sions of the current sources and their placement, as stated in Section 6.3. Various

layout techniques have been developed in order to reduce the effects of the gradients

on the silicon die and various algorithms have been developed in order to dimension

the current sources to achieve adequate static matching. However, the fact is that static

accuracy above 12 bits is hardly achievable with present silicon technologies, no mat-

ter how good the gradient cancellation might be, since the variances of INL and DNL

are inversely proportional to area of the current source Eq. (6.5). There is no way to

improve the matching without increasing the area, and the area required becomes quite

large when linearity above 12 bit is targeted.

Because there is no practical way to measure the INL of the converter on-chip, the

calibration algorithms usually calibrate the DNL of the converter; this also has an effect

on INL.

Since in any practical case of current-steering D/A converter design the structure

of the converter is either binary weighted or segmented, the DNL of the converter is

determined by the currents with the largest weight as

σ2
dnl ≈ Bσ2

lsb, (6.41)

in which B is the number of LSB currents switched during the code transition (assum-

ing no calibration is used). DNL can be reduced by reducing B by increasing the num-

ber of thermometer-coded bits. It is also possible to use multiple thermometer-coded

segments, which, in practice, divides the large DNL values of the binary weighted part

into multiple smaller DNLs, but does not affect DNL values at the transitions of the

current sources with largest weight. In addition, DNL can be reduced by minimizing

the error of the current sources of large weight by using calibration. The calibration

techniques usually concentrate on tuning the erroneous current values.

Several calibration techniques have been developed to reduce the amount of error

of the MSB current sources. Two main categories of calibration can be identified:

continuous and quantized.

An example of continuous calibration is presented in [134]. It is continuous be-

cause the tuning process is purely analog, and no quantization of the error occurs in

any phase of the calibration cycle, thereby enabling the tuning of the current to be

achieved theoretically with infinite accuracy. The principle of the tuning is presented

in Fig. 6.31. It can be observed, that the tuning of the current is performed by stor-

ing the Vgs of the diode connected transistor into the capacitance between the gate and

source of the current source transistor. By using the same reference source for all of
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Figure 6.32 Principle of quantizing calibration of current-steering D/A converter.

the MSB current sources, it is possible to equalize the currents of the MSB sources.

However, because the switches are nonideal, the calibration suffers from charge in-

jection from the switches and leakage currents, which is the main drawback of this

method. Because of leakage current the calibration of the source has to be repeated

continuously in order to maintain the accuracy. This problem can be avoided by using

digital memory to store the error value.

The most common calibration technique is to use digital storage elements to store

the error values of the MSB current sources and use these values to tune the currents.

The principle of this calibration method is presented in Fig. 6.32. This approach is used

in, for example, [135], [136], [137], [138] and [139]. The common factor for these

methods is the quantization of the measured error and the usage of additional digital-

to-analog converters to tune the values of the MSB current sources. These additional

digital to analog converters are usually called ”Calibration DACs”; there can be either

one large calibration DAC, as in [138] and [136], or multiple smaller calibration DACs

for each of the MSB sources, as in [135], [137] and [139].
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The methods differ from each other mainly in ways of performing the measurement

of the error and actual way of tuning the current, but the principle is the same; error is

measured, A/D converted, stored digitally and MSB currents are tuned by D/A conver-

sion of the stored error. The term quantized is therefore more valid in this context than

the term ”digital”, since the only digital part of these calibration methods is the storage

element; the tuning is made by analog means.

Also, the main drawback of these methods is related to quantization. Whereas the

continuous method was purely analog and therefore accurate but sensitive to nonide-

alities, the quantized method is inaccurate due to quantization noise, but insensitive

to interference due to the digital storage element. The quality of the calibration is

determined by the accuracy of the measurement, quality of the A/D conversion, and

resolution of the calibration DAC.

A slightly different technique is suggested by the author and presented in [14]. The

main difference between this method and previously introduced methods is that there is

no particular calibration DAC. Instead, redundancy is added to the converter by biasing

the MSB current sources so that the current of a single MSB source is less than the sum

of the LSB sources. Because of the redundancy, the input code space and output range

of the converter are extended with four additional MSB current sources, enabling the

correction of the errors of the MSB sources by digital predistortion of the input code.

The principle of the proposed calibration method is presented in Fig. 6.34 and Fig.

6.34.

The calibration is performed as follows: the MSB sources, including the additional
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Figure 6.34 Principle of the calibration algorithm using digital predistortion.

sources, are biased so that the current of the MSB source is less than the sum of the

LSB sources. This ensures, that the output value of the converter decreases as a new

MSB current source is added to the output. Then the REF-value in Fig. 6.34 is set to

CAL-1. While calibrating, the REF values are first decreased in 4 LSB steps. When

the output corresponding to the REF is less than that corresponding to the CAL, the

REF value is increased by steps of 1/8 LSB as long as the output corresponding to

REF is again greater than the output corresponding to the CAL-value. This is simply

a successive approximation register (SAR) A/D conversion of the error value. The

difference between the final CAL and REF values is then stored to memory as an

offset value. The CAL-value is then increased in order to add the next MSB current to

output, and the SAR-cycle is repeated. After all of the offsets are measured and stored,

the calibration cycle is completed and the offsets can be used in normal operation mode

to predistort the input code in order to linearize the transfer function of the converter.

The functionality of the calibration algorithm was verified with simulations. Figs.

6.35 - 6.39 represent the minmax envelope curves for DNL and INL uncalibrated and

calibrated 16-bit D/A converter with 6 thermometer coded MSB bits under various

matching conditions for the LSB and MSB current sources. DNL and INL yield curves

for various matching conditions are presented in Fig. 6.40. The number of converters

in each of the yield simulations is 1000.

In each of the presented cases DNL and INL yields for uncalibrated converters

is 0%. In the curves for the uncalibrated converters, the effect of the bias offset on

the yield is removed, so that the presented curves indicate directly the effect of the

matching on the yield.
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Simulation results indicate that DNL and INL yields are strongly dependent on

the matching of the LSB current sources which determines the achievable DNL and

INL yield. It can be seen that, when the matching of the LSB sources is deteriorated,

it begins to dominate the DNL, and thus the INL yield. It is also demonstrated that

acceptable yield levels can be achieved with very poor MSB matching, thus making it

possible to effectively reduce the area required for the MSB sources.

The amount of the error that can be calibrated with the algorithm is determined

by the amount of additional MSB current sources. Assuming zero mean error in the

sources, the maximum error that can be calibrated equals the bias offset of the MSB

current sources, whereas the sum of the bias errors cannot exceed the additional code

range obtained by adding the sources. In the presented case, the code range added is

4096 LSBs and the number of MSB sources is 67, resulting in a maximum correctable

error of 61 LSBs.

6.5 Effects of output impedance variation

The finite impedance of the current sources causes code-dependent variation on the

output impedance of the current-steering D/A converter, introducing nonlinearity to

the output signal. In this section, Taylor-series approximations of the INL of a single-

ended and differential converter are presented in order to give equations of the non-

linearities, which are then used to compute the analytical result of maximum INL and

SFDR as a function of output impedance.

Nonlinearities due to impedance variation have been previously discussed in [140],

[141], [142], and [143]. The second-order nonlinearities due to impedance variation

are discussed in [140], [141] and [142], third-order distortion is analyzed in [143], and

the frequency dependency of the output impedance is discussed in [142].

Results presented in this section equal the results presented in [142] for a single-

ended case; however, results for the SFDR of differential converter differ from the

results presented in [143].

The frequency dependency of the output impedance is analyzed mathematically

in detail and the results are verified with simulations. Results differ slightly when

compared to [142]. The limits of moving the poles and zeros of output impedance in

frequency are determined.

The analysis of the output impedance analysis is linked to implementation by an-

alyzing the effect of transistor dimensions on the frequency response of the output

impedance, demonstrating the effect of various design parameters, and the boundaries

of the output impedance optimization.
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Figure 6.41 Output impedance variation of the single-ended D/A converter.

6.5.1 Distortion due to low frequency impedance variation

Let a single current source branch of a fully thermometer coded D/A converter have the

impedance Zc when the switch is conducting, and impedance Zop when it is not. In this

case, the change in the impedance due to switching can be modeled as an impedance

in parallel with the impedance Zu of the open (not conducting) switch. Zu can be

computed as

Zu =
ZcZop

Zop −Zc

. (6.42)

Since Zop is usually very large at low frequencies, the low frequency analysis can

be performed by observing the value of the current branch in the conducting state;

however, in high-frequency analysis it is important to isolate Zop, since it is constant

and thus does not introduce any distortion. However, Zop may introduce some unde-

sired phenomena such as frequency-dependent attenuation and, in that sense, it should

be taken into account. Frequency dependency is discussed in more detail in Section

6.5.2.

The low-frequency effects of the impedance variation can be analyzed as follows.

In Fig. 6.41, the simplified circuit for a single-ended D/A converter is presented. The

single ended converter has the output voltage

Vout (k) =
kIlsbZl

1+ kZl
Zu

, (6.43)

in which Zl is the load impedance and Zu is the impedance of the unit current source.

INL caused by the finite output impedance of the current source can be written as

INLzse (k) =

kZl

1+
kZl
Zu

− kZl

1+
Zl(2N−1)

Zu

Zl

1+
Zl(2N−1)

Zu

. (6.44)

By performing third-order Taylor-series expansion for INLzse with respect to k, k ≈
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2N−1
2

, Eq. (6.44) can be written as

INLzse (k) ≈
Zl
Zu

(

2+(2N −1) Zl
Zu

)3

(

−8

(

1+
(

2N −1
) Zl

Zu

)

k2

+

(

8
(

2N −1
)

+6
(

2N −1
)2 Zl

Zu

−
(

2N −1
)3 Z2

l

Z2
u

)

k

+
(

2N −1
)3 Zl

Zu

+
(

2N −1
)4 Z2

l

Z2
u

)

. (6.45)

If k is considered as a real number instead of an integer, the maximum value of INL

due to finite impedance of the current source is

INLzsemax ≈ 1

32

Zl

Zu

(

2N −1
)2
(16+16

(

2N −1
)

Zl
Zu

+
(

2N −1
)2 Z2

l

Z2
u
)

(2+(2N −1) Zl
Zu
)(1+(2N −1) Zl

Zu
)

(6.46)

at

kmax ≈
(

2N −1
)

2
− 1

16

Zl

Zu

(

2N −1
)2
(

2+
(

2N −1
)

Zl
Zu

)

(

1+(2N −1) Zl
Zu

) . (6.47)

For differential output, fourth-order Taylor-series approximation of INL with re-

spect to k, k ≈ 2N−1
2

can be written as

INLzdi (k) ≈ 1

2

Z2
l

Z2
u

((

2N −1
)

−2k
)

(

2+(2N −1) Zl
Zu

)4

(

−16

(

1+
(

2N −1
) Zl

Zu

)

k2 (6.48)

+16
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)

(

1+
(

2N −1
) Zl

Zu

)

k+
Z2

l

Z2
u

(

2N −1
)4

)

(6.49)

with the maximum absolute value

INLzdimax ≈ Z2
l

Z2
u

(

2N −1
)3

6
√

3
√

1+ zl
Zu
(2N −1)

(

2+ zl
Zu
(2N −1)

) (6.50)

at

kmax ≈
(

2N −1
)

2
±
(

2N −1
)

(

2+
(

2N −1
)

Zl
Zu

)

4
√

3

√

(

1+(2N −1) Zl
Zu

)

(6.51)

It can be observed that INLzsemax is linearly dependent on
Zl
Zu

whereas INLzdimax is
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dependent on
Z2

l

Z2
u

. It can therefore be assumed that the even-order distortion generated

in a single-ended converter is much greater that the odd-order harmonics in a differen-

tial case. However, in real design, it is impossible to cancel all even-order distortion

with differential structure, although the second-order distortion is usually attenuated

about 20 dB.

INL equations, Eq. (6.45) and Eq. (6.49), include all nonlinearities due to output

impedance variation normalized to LSB. Thus the harmonic distortion can be discov-

ered by applying sinusoidal input k =
(2N−1)(1+sin(ωt))

2
Eq. (6.45) and Eq. (6.49),

from which the amplitudes of the second and the third harmonic components can be

determined.

In the single-ended case, the spurious free dynamic range (SFDR) is determined by

the second harmonic component. SFDR computed from Eq. (6.45) is approximately

SFDRzse ≈
4+2

(

2N −1
)

Zl
Zu

(2N −1) Zl
Zu

(6.52)

SFDRzse ≈ 12.04−6.02N +20log10

(

Zu

Zl

)

dB,
Zl

Zu

≪ 1

2(2N −1)
. (6.53)

In the differential case, SFDR is determined by the third harmonic, being approxi-

mately

SFDRzdi ≈
16+16

(

2N −1
)

Zl
Zu

+7
(

2N −1
)2 Z2

l

Z2
u

(2N −1)2 Z2
l

Z2
u

(6.54)

SFDRzdi ≈ 28.08−12.04N +40log10

(

Zu

Zl

)

dB,
Zl

Zu

≪ 1

16(2N −1)
. (6.55)

Comparison of simulated accurate distortion values and approximations from Eqs.

(6.52) and (6.54) are presented in Fig. 6.42. It can be observed that the accuracy of

Taylor approximations is exacerbated with large values of
Zl
Zu

.

It was stated that the even-order harmonics cannot be canceled, only attenuated. It

is therefore good to use Eq. (6.52) to find the required Zu
Zl

ratio in order to have good

enough SFDR. For example, with a 14-bit converter it requires approximately Zu
Zl

to be

greater than 72.9× 106 (157.25dB) in order to have SFDR better than 85 dB. If the

load impedance Zl = 50Ω, the impedance of the unit current source has to be greater

than 3.6×109Ω.
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differential converter.

6.5.2 Frequency dependency of the output impedance

The frequency behavior of the output impedance also affects the distortion, since the

impedance tends to decrease as the frequency increases, as presented in Fig. 6.43.

Fig. 6.44 represents a single current branch of a D/A converter with two cascode

transistors above the current source transistor.

By using a small-signal equivalent circuit for a transistor and by discarding the

capacitances on the drain node of M4, which are included in constant impedance Zop,
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it is possible to write the equation for Zu in S-domain as

Zu (s) =
N (s)

D(s)
(6.56)

N (s) = s3C1C2C3

+s2C3C2 (gm2 +gds2 +gds1)

+s2C3C1 (gm3 +gds3 +gds2)

+s2C2C1 (gm4 +gds4 +gds3)

+sC3 ((gm3 +gds3)(gm2 +gds2 +gds1)+gds2gds1)

+sC2 (gm2 +gds2 +gds1)(gm4 +gds4 +gds3)

+sC1 ((gm4 +gds4)(gm3 +gds3 +gds2)+gds3gds2)

+(gm4 +gds4)(gm3 +gds3)(gm2 +gds2 +gds1)

+(gm4 +gds4 +gds3)gds2gds1 (6.57)

D(s) = s3C1C2C3gds4

+s2C3C2 (gm2 +gds2 +gds1)gds4

+s2C3C1 (gm3 +gds3 +gds2)gds4

+s2C2C1gds4gds3

+sC3 ((gm3 +gds3)(gm2 +gds2 +gds1)+gds2gds1)gds4

+sC2 (gm2 +gds2 +gds1)gds3gds4

+sC1gds4gds3gds2

+gds4gds3gds2gds1. (6.58)

Because gm ≫ gds, Eq. (6.56) can be approximated with

Zu (s) ≈ Na (s)

Da (s)
(6.59)

Na (s) = gm4gm3gm2

(

s3 C1C2C3

gm4gm3gm2
+ s2

(

C3C2

gm4gm3
+

C3C1

gm4gm2
+

C2C1

gm3gm2

)

+s

(

C3

gm4
+

C2

gm3
+

C1

gm2

)

+1

)

(6.60)

Da (s) = gds4gds3gds2gds1

(

s3 C1C2C3

gds3gds2gds1

+s2

(

C3C2gm2

gds3gds2gds1

+
C3C1gm3

gds3gds2gds1

+
C2C1

gds2gds1

)

+s

(

C3gm3gm2

gds3gds2gds1

+
C2gm2

gds2gds1

+
C1

gds1

)

+1

)

. (6.61)
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It is possible to further simplify Eq. (6.61) with the following assumptions. Usually

C1 is very large compared to C2 and C3 because its value is determined by the routing

of the current source matrix. If C1
gds1

≫ C3gm3gm2
gds3gds2gds1

, the factorization results in

Zu (s) ≈ gm4gm3gm2

gds4gds3gds2gds1

(

s
C1
gm2

+1
)(

s
C3
gm4

+1
)

(

s
C1

gds1
+1
)(

s
C3gm3

gds3gds2
+1
) . (6.62)

On the other hand, if
C3gm3gm2

gds3gds2gds1
≫ C1

gds1

Zu (s) ≈ gm4gm3gm2

gds4gds3gds2gds1

(

s
C3
gm4

+1
)

(

s
C3gm3gm2

gds3gds2gds1
+1
) . (6.63)

Poles p1, p2, and p, and zeros z1 and z2 of Zu in the two-cascode case are at frequen-

cies

ωz1 ≈ gm2

C1
(6.64)

ωz2 ≈ gm4

C3
(6.65)

ωp1 ≈ gds1

C1
(6.66)

ωp2 ≈ gds3gds2

C3gm3
,

C1

gds1

≫ C3gm3gm2

gds3gds2gds1

(6.67)

ωp ≈ gds3gds2gds1

C3gm3gm2
,

C3gm3gm2

gds3gds2gds1

≫ C1

gds1

(6.68)

Similarly, we may write the equations for the case of only one cascode and current

source (Fig. 6.45) and current source only (Fig. 6.46). In the one-cascode case, the

output impedance can be written as

Zu (s) ≈ gm3gm2

gds3gds2gds1

(

s
C2
gm3

+1
)(

s
C1
gm2

+1
)

(

s
C1

gds1
+1
)(

s
C2

gds2
+1
) ,

C1

gds1

≫ C2gm2

gds2gds1

(6.69)

Zu (s) ≈ gm3gm2

gds3gds2gds1

(

s
C2
gm3

+1
)

(

s
C2gm2

gds2gds1
+1
) ,

C2gm2

gds2gds1

≫ C1

gds1

, (6.70)
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resulting in poles p1, p2, and p, and zeros z1 and z2 on frequencies

ωz1 ≈ gm2

C1
(6.71)

ωz2 ≈ gm3

C2
(6.72)

ωp1 ≈ gds1

C1
(6.73)

ωp2 ≈ gds2

C2
,

C1

gds1

≫ C2gm2

gds2gds1

(6.74)

ωp ≈ gds2gds1

C2gm2
,

C2gm2

gds2gds1

≫ C1

gds1

. (6.75)

Similarly for the case of current source only, the output impedance variation is

Zu (s) ≈ gm2

gds2gds1

(

s
C1
gm2

+1
)

(

s
C1

gds1
+1
) (6.76)

with pole p and zero z

ωz ≈ gm2

C1
(6.77)

ωp ≈ gds1

C1
. (6.78)

As analyzed in [142], it is obvious that the best frequency performance is obtained

when routing capacitances C1, C2, and C3 are minimized. Next, whether it is possible to

improve the frequency behavior by adjusting the dimensions (i.e.
gm

gds
ratio) of cascodes

and switches will be analyzed. The assumed parameter dependencies are presented in

Eqs. (6.79)-(6.83)

gm ∼ kgm

√

W/L (6.79)

gds ∼ kgds

L
(6.80)

C1 constant (6.81)

C2 ∼ AccW3L3 (6.82)

C3 ∼ AccW4L4. (6.83)

Dependencies of the capacitances are made on the assumption that C1 is determined

by the large routing capacitance from current sources to cascode transistors, whereas

C2, and C3 are determined by the channel capacitances of the transistors, and therefore

they are dependent on the dimensions of the transistors. Dependencies of the gm and

gds are generally known [144].
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Figure 6.47 Scaling W4 and L4 in 2-cascode case.

Frequency dependency of the impedance Zu can be analyzed with MATLAB. Fig.

6.47 presents the behavior of Zu when both W4 and L4 are scaled by the same factor

varying from 1 to 5. It can be observed that as the dimensions are increased, pole p2

in Eq. (6.62) is moved towards lower frequencies due to increasing C3, until it cancels

the zero z1. Further increasing the dimensions makes pole p dominant, resulting in Eq.

(6.63). The zero z2 is moved down in frequency due to increasing C3.

If C3 is determined by the routing, the scaling of W4 and L4 does not affect its value,

resulting in the behavior presented in Fig. 6.48.

The scaling of W3 and L3 affects Zu, as presented in Fig. 6.49. The pole p2 in Eq.

(6.62) is moved towards lower frequencies due to the decrease of gds3, until it cancels

the zero z1. Further increasing the dimensions makes the pole p dominant resulting in

Eq. (6.63). The zero z2 is unaffected. Scaling up W3 and L3 increases C2, but its effect

on zu is negligible. Therefore, it really does not matter whether C2 is constant or not,

as long as
gm2C2

gds2gds1
≪ C1

gds1
.

The scaling of W2 and L2 affects Zu, as presented in Fig. 6.50. The pole p2 in Eq.

(6.62) is moved towards lower frequencies due to decreasing gds2 until it cancels the

zero z1. Further increasing the dimensions makes the pole p dominant, resulting in Eq.

(6.63). The zero z2 is unaffected.

The scaling of W3 and L3 in the 1-cascode case of Fig. 6.45 affects Zu as presented
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Figure 6.48 Scaling W4 and L4 in 2-cascode case with constant C3.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

40

60

80

100

120

140

160

180
Scaling of W3 and L3, 2 cascodes

2
0

lo
g

1
0

(Z
u

/Z
l)

Frequency [Hz]

Scale 1

Scale 2

Scale 3

Scale 4

Scale 5

Figure 6.49 Scaling W3 and L3 in 2-cascode case.
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Figure 6.50 Scaling W2 and L2 in 2-cascode case.

in Fig. 6.51. The pole p2 in Eq. (6.69) is moved towards lower frequencies due to

increasing C2 until it cancels the zero z1. Further increasing the dimensions makes the

pole p dominant, resulting in Eq. (6.70). The zero z2 is moved down in frequency due

to increasing C2.

If C2 is determined by the routing, the scaling of W3 and L3 does not affect its value,

and results in behavior similar to that shown in Fig. 6.48.

The effect of scaling W2 and L2 is as presented in Fig. 6.52. The pole p1 in Eq.

(6.69) is moved to lower frequencies due to decreasing of gds2, until it cancels the zero

z1. Further increasing the dimensions makes the pole p dominant, resulting in Eq.

(6.70). The zero z2 remains unaffected.

The behavior of the output impedance of a current source without cascode transis-

tors is presented in Fig. 6.53. Since C1 is the only capacitance present and determined

by routing, the pole p in Eq. (6.76) is not affected, nor is the zero z. Increasing the

dimensions only scales the gain and thus increases the output impedance.

The effects of the cascode transistors and scaling of the transistor dimensions can

be concluded as follows. Adding cascode transistors will, in general, increase the

output impedance. Output impedance at higher frequencies is absolutely limited by

Eqs. (6.63), (6.70), and (6.76), once the dominant pole is not caused by the routing

capacitance C1. In any case, it is beneficial to increase the impedance by scaling gm
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Figure 6.51 Scaling W3 and L3 in 1-cascode case.
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Figure 6.52 Scaling W2 and L2 in 1-cascode case.
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Figure 6.53 Current source with one cascode transistor.

and gds of the switch, since it increases the impedance at all frequencies, whereas

scaling the cascodes seems to increase the impedance on the frequencies below the

second pole.

The impedance can also be increased by scaling only W of transistors; however,

the impedance is more effectively increased if L is also scaled. It should be noticed

that it is not possible to increase L, since it would affect the operating point and drop

the transistors out of the saturation.

As a rule of thumb, the impedance should be increased first by maximizing the gain

of the switch (the topmost transistor) within the limits set by the driving capability

of the switch driver and capacitive coupling from the switch gates. After that, the

impedance on the lower frequencies can be further boosted by increasing the size of

the cascode transistors if the pole due to the capacitor at the source node of the switch

is not dominant.

From the output impedance point-of-view, it would be probably beneficial to use

either transistor M2 or M3 as a switch and place additional cascodes above them; in this

case, the large transistor would not reduce the switching speed. This kind of structure

is used in the prototype described in Section 7.1.
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6.6 From discrete- to continuous-time domain

In the digital domain, the signal is a train of impulses with certain values without any

other nonideality but quantization noise. When the signal is fed to the D/A converter,

the converter adds nonidealities to the signal while converting it to the analog form. In

previous sections, the static nonlinearities were discussed and it was stated that INL

sets the limit of the linearity of the converter. In this section, the conversion from the

discrete-time to continuous-time domain is analyzed by presenting the D/A converter

as a system consisting of several subsystems each providing a response to the digital

discrete-time excitation signal. Typical subsystem impulse responses and their Fourier

transforms are presented in Appendix D. Observations on the nonidealities generated

due to conversion are listed at the end of the section.

The discrete-time excitation signal can be modeled as a continuous-time signal

sampled with a sequence of Dirac’s delta impulses (the effect of the quantization is not

considered here)

s(t) = s(nTs) = s(n) =
∞

∑
n=−∞

δ(t −nTs) , (6.84)

in which Ts is the sampling interval. The time domain sampling signal has an frequency

domain equivalent of

S ( f ) = Fs

∞

∑
n=−∞

δ( f −nFs) , (6.85)

in which Fs is the sampling frequency. Sampling of signal Xc (t) with the sampling

signal S (t) results in a continuous-time model of the sampled signal

x(t) = x(nTs) = x(n) = xc (t)
∞

∑
n=−∞

δ(t −nTs) , (6.86)

which has a spectrum

X ( f ) = Fs

∞

∑
n=−∞

X ( f −nFs) . (6.87)

A system diagram of a D/A converter is presented in Fig. 6.54. An ideal D/A con-

verter can be modeled with only one subsystem h1 (t), which usually has the impulse

response of a unit pulse of length Ts (τ = Ts), forming a sampled-and-held non-return-

to-zero (NRZ) type output signal (Fig. 6.55). The sample-and-hold impulse response

of the subsystem is defined as

h1 (t) = u(t)−u(t − τ) , (6.88)
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in which τ is the hold time. The sample-and-hold system has a frequency response

H1 ( f ) = τ
sin(π f τ)

π f τ
. (6.89)

If τ = Ts, the system is an NRZ sample and hold. The response y1 (t) of the subsystem

h1 (t) to excitation signal X (t) can now be determined as a convolution of the input

and the impulse response

y1 (t) = x(t)⊗h1 (t)

=

∫ ∞

−∞
x(t)h1 (t − τ)dt

=
∞

∑
−∞

x(nTs)(u(t −nTs)−u(t −nTs − τ)) , (6.90)

which can be presented in the frequency domain as

Y1 ( f ) =
τ

Ts

sin(π f τ)

π f τ

∞

∑
n=−∞

X ( f −nFs) . (6.91)

In addition to the sample-and-hold subsystem, there may exist several subsystems that

may or may not provide nonlinearity to the output signal. One of the simplest nonide-

alities to be included in the converter model is the effect of the finite rise and fall times

and their asymmetry.

The effect of the finite rise and fall times can be included in the model by adding a

subsystem h2 (t) which provides an impulse response, which, together with the sample-

and-hold impulse response of h1 (t), models the finite rise/fall time during the transition

(Fig. 6.56).

The impulse responses corresponding to the linear rising and falling transitions can

be written as

hr (t) =

(

t

Tr −1

)

(u(t)−u(t −Tr)) (6.92)

h f (t) =

(

t

Tf −1

)

(u(t)−u(t −Tf )) , (6.93)

in which Tr and Tf are the rise and fall time, respectively. The Fourier transforms of hr

and h f are

Hr ( f ) =

(

e− jωTr −1
)

−1

ω2Tr

− 1

jω
(6.94)

H f ( f ) =

(

e− jωTf −1
)

−1

ω2Tf

− 1

jω
(6.95)
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The effect of the finite transition time can be modeled as follows.

y2 (t) =

{

w2 (t)⊗hr (t) , w2 (t)≥ 0

w2 (t)⊗h f (t) , w2 (t)< 0
(6.96)

in which w2 (t) is the discrete-time derivative of the input signal

w2 (t) = (xc (t)− xc (t −Ts))
∞

∑
n=−∞

δ(t −nTs) . (6.97)

The Fourier transform of w2 (t) is

W2 ( f ) =
(

1− e
− 2π f

Fs

) ∞

∑
n=−∞

X ( f −nFs) , (6.98)

which approaches jωX (F)as Fs approaches infinity, corresponding to the Fourier trans-

form of the continuous-time derivative of the signal xc (t) .

The effect of the difference of the rise and fall can be determined by decomposing

the response of the subsystem h2 as follows. The average response common for both

the rising and falling edges can be defined as

h2a (t) =
hr (t)+h f (t)

2
, (6.99)
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resulting in average transition response

y2a (t) = w2 (t)⊗h2c (t) . (6.100)

The difference in the rise times can be included by adding a subsystem having an

impulse response

h2b (t) =
hr (t)−h f (t)

2
(6.101)

with excitation signal

w2b (t) = |xc (t)− xc (t −Ts)|
∞

∑
n=−∞

δ(t −nTs)

= |w2( t )| , (6.102)

resulting in response due to differences between rise and fall times

y2b (t) = w2b (n)⊗h2b (t) . (6.103)

For the sine signal, the spectrum of w2b can be computed by using Eqs. (D.6),

(D.8), (D.7), and (D.19) resulting in

W2b ( f ) = A
(

1− e j2π f0
)

Fs

∞

∑
n=−∞

∞

∑
k=−∞,odd

1

πk
(δ( f − (k+1) fo −nFs)−δ( f − (k−1) fo −nFs)) . (6.104)

From Eq. (6.104), it can be clearly seen that the absolute value of a sine signal con-

tains even-order harmonic components. When the transition shapes of the converter

output are known, the amount of distortion due to transition asymmetry can be easily

computed with Eqs. (6.103) and (6.104).

As a conclusion, the following observations are made:

1) The shape of the impulse response of a subsystem does not introduce any non-

linearity as long as it is independent from the excitation signal. This means that

glitches at the output do no harm as long as they are a part of the signal inde-

pendent impulse response of the subsystem. Therefore, observing the glitches at

the output of the converter does not necessarily give any information about the

linearity of the converter.

2) Transitions can be modeled with a subsystem with discrete-time derivative as

an excitation signal. Differentiation is a linear operation and therefore finite

transition speed does not generate distortion if the rising and falling transitions

are symmetrical.
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3) Asymmetry in transition-related nonidealities can be modeled with a subsystem

with an absolute value of the discrete-time derivative of the input signal as an

excitation signal. Absolute value is a nonlinear even function, introducing even-

order harmonics, as demonstrated in the case of the sine signal in Eq. (6.104).

Total power of the harmonic component is defined by the shapes of transitions

according to Eq. (6.103).

4) With sinusoidal signals, the amplitude of the derivative is linearly dependent on

the signal frequency (Eq. (D.7)), resulting in increased distortion as the signal

frequency increases. This holds for all transition-related nonidealities, including

jitter, as can be seen later in Section 6.7.

5) As the converters are usually segmented, the effect of the subsystems for the

binary weighted part should be analyzed on a per switch basis. However, the

performance is usually dominated by the thermometer coded part.

6.7 Sampling jitter

During the past few years, timing has become an important issue in the design of

current-steering D/A converters, due to the rapid increase of the sampling rates. The

importance of the static timing mismatch has been demonstrated by Chen et al. [145],

and the reduction of the data dependent clock load (which is a source of jitter) was

mentioned by Schofield et al. [139]. Special attention has been paid on timing and

jitter issues in the design reported in [146]. Also, various analyzes of timing and jitter

have been published [147], [148], [149].

In this section, a jitter model for a fully thermometer-coded D/A converter is de-

veloped. Thermometer coding is chosen because it simplifies the computation while

not resulting in significant inaccuracies, since the effect of timing inaccuracy of the

binary weighted LSB bits is typically the order of 1
64

to 1
16

compared to the effect of

thermometer-coded MSB bits (6 to 4 thermometer-coded MSB bits). Jitter analysis for

the binary-weighted part has to be performed on a per switch basis and would result in

very large signal matrices, because, in simulations, a high oversampling ratio has to be

used in order to be able to model the jitter.

In the following sections, a brief introduction to the relations of the jitter on SNR

of the converter is given. It is demonstrated by simulations how certain types of timing

uncertainty are mapped to the output signal of a D/A converter. Some sources of jitter

in current-steering D/A converters are identified and analyzed by design examples.



110 Current-steering digital-to-analog converter design

6.7.1 Effects of sinusoidal timing jitter

The jitter analysis in this book concentrates on the sinusoidal jitter signals because they

are most likely to produce spurious or harmonic tones to the output of a converter, thus

limiting SFDR.

The output signal of a non-return-to-zero (NRZ) D/A converter with sampling jitter

can be defined as the sum of the ideal sampled-and-held signal and the timing-jitter-

induced error signal (Eq. (6.105) and Eq. (6.106))

y(t) =
∞

∑
n=−∞

x(nT ) [u(t −nT )

−u(t − (n+1)T )]+ e(t) , (6.105)

e(t) = ∆x(n)g(t)

=
∞

∑
n=−∞

[x(nT )− x((n−1)T )]

× [u(t −nT −w(nT )))−u(t −nT )], (6.106)

in which T is the sampling interval, u(t) is the unit step function x(nT ) is the digital

discrete-time input of a converter, and w(nT ) is the value of the timing-jitter signal at

the time instant nT (Fig. 6.57). For simplicity, it is assumed here that the rise time of

the signal is zero. The effect of the nonzero rise time is analyzed later in this section.

A block diagram of the jitter model is presented in Fig. 6.58

The effect of jitter on the output signal of the converter can be determined by com-

puting the spectrum of the jitter signal g(t) as

G( f ) =
∞

∑
n=−∞

∫ ∞

nT+w(n)
e− jωtdt −

∫ ∞

nT
e− jωtdt (6.107)

=
∞

∑
n=−∞

(

e− jωw(nT )−1
)

e− jωnT

jω
. (6.108)

The spectrum of the error signal g(t) resulting from the sinusoidal jitter signal

w(n) = asin(ω1nT ) is then

G( f ) =
∞

∑
n=−∞

(

e− jωasin(ω1nT )−1
)

e− jωnT

jω
. (6.109)

If a is small, Eq. 6.109 can be approximated with the Taylor-series expansion as

G( f ) ≈ Fs

∞

∑
n=−∞

−a

j2
(σ( f + f1 +nFs)−σ( f − f1 +nFs)) . (6.110)
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Figure 6.58 Block diagram of the jitter model.

An analytical solution for the power spectrum of sinusoidal signals with the pres-

ence of sinusoidal jitter and Gaussian noise is presented in[150], and is given as

S ( f ) =
|C ( f )|2

(π f T )2 ∑
p,q

∑
k=1,odd

A2
k sin2 (π f T )

4
Ip (M)σ( f ± fk − p f1 −q fs) ,(6.111)

|C ( f )|2 = e−ω2σ2
E (6.112)

M =
8π2 f 2σ2

EA2
1

(2N −1)
sin

(

ω1T

2

)

, (6.113)

where C ( f ) is the Fourier transform of the autocorrelation function of jitter, Ak is the

amplitude of the signal and its harmonic components and Ip(M) is a pth-order modified

Bessel function of the 1st kind and σE is the standard deviation of the Gaussian noise.

Further analysis of the effects of jitter are made by simulations in order to gain

some insight into the jitter behavior.

Fig. 6.59 represents the eight first pulses of the jitter error signal of

g(t) = u(t −nT −w(n))−u(t −nT ) , (6.114)

w(n) = 0.01T sin(2π0.188n) , (6.115)

where the jitter signal w(n) has the frequency of 0.188Fs and amplitude of 0.01T , T

being the sampling interval.

The spectrum of g(t) with Tr = 0 is presented in Fig. 6.60, in which the power

of the signal g(t) is presented relative to the power of sinusoid sin(ωnT ). It can be

observed that, in the frequency range 0 to Fs
2

, the dominant frequency component is at

the frequency 0.188Fs, indicating that the energy of the jitter is mainly concentrated on

the frequency of the jitter signal, as predicted by Eq. (6.110). It may also be observed

that a significant amount of energy lies at frequencies higher than Fs
2

.
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Figure 6.61 Eight first pulses of g(t) with various Tr.

As the rise time increases, for example, because of the capacitive load at the output

of the converter, it effects the duration and amplitude of the g(t) according to

g(t) =
t −nT −w(n)

Tr

u(t −nT −w(n))− t −nT −Tr −w(n)

Tr

u(t −nT )

− t −nT

Tr

u(t −nT )+
t −nT −Tr

Tr

u(t −nT −Tr) . (6.116)

The effect of finite rise and fall time on the time-domain error pulses can be seen from

Fig. 6.61. It can be observed that the shape of the error pulse is an isosceles trapezoid

with duration and amplitude dependent on w(n). Spectra of error pulses under various

rise-time conditions are presented in Figs. 6.62 and 6.63. w(n) is still defined by Eq.

(6.115).

It is obvious that, as the rise time increases, the energy at the higher frequencies is

reduced, resulting in reduced total jitter energy, whereas energy in the frequency range

of 0 to Fs
2

is barely affected. This is verified by simulations, and the result is presented

in Fig. 6.63, which represents the signal-to-error power ratio and SFDR as a function

of rise time.

The signal-to-error power ratio is computed from the time-domain signal, whereas

SFDR is calculated from spectral components from 0 to Fs/2. Simulation results in-

dicate that, in the case when SFDR is determined by the jitter, SFDR can neither be



6.7 Sampling jitter 115

0 1 2 3 4 5
−120

−100

−80

−60

−40

−20

0
Spectrum of jitter−generated error pulses

Relative Frequency [Fs]

R
e
la

ti
v
e
 P

o
w

e
r 

[d
B

c
]

 

 

Tr=0.4Ts

Figure 6.62 Spectrum of g(t) with Tr = 0.4T .
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Figure 6.64 Signal-to-error power ratio and SFDR as a function of rise time.

increased by altering the rise time nor does there exist an optimal rise time in the

SFDR sense, meaning that SFDR is determined by only the standard deviation of w(n).

Typical behavior of SFDR as a function of the jitter magnitude of sinusoidal jitter w(n)

is presented in Fig. 6.65.

For Gaussian jitter, the derivation for the jitter energy on a certain frequency band

from −Fb to Fb resulting in SNR for a single sinusoid at the frequency Fsig sampled

with the rate Fs, is presented in Appendix C.

SNR(Fb) ≈ F2
s

4π2F2
sigFbσ2

w

(6.117)

In the case of return-to-zero (RZ) type of signals, jitter-induced SFDR decreases,

since shortening the signal pulse reduces signal energy linearly, whereas the amount of

jitter error energy remains constant.

6.7.2 Distortion due to signal-dependent jitter

Fig. 6.66 represents the spectra of a quantized sinusoidal signal x(nT ) and a jitter

signal w(nT ), which has second-order dependency on the input signal as

x(nT ) = Q [sin(2π f nT )] (6.118)
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Figure 6.65 Signal-to-error power ratio and SFDR as a function of jitter magnitude.

w(n) = K|x(nT )− x((n−1)T ) |2, (6.119)

in which K is chosen so that

max
(

|K (x(nT )− x((n−1)T )) |2
)

= 0.01T. (6.120)

w(n) in Eq. (6.119) is chosen to be dependent on the absolute value of the discrete

time derivative of the input signal since it reflects the physical origin of the jitter; often

the jitter is caused by activity of the circuitry, which is usually dependent on the number

of changing thermometer-coded bits.

In Fig. 6.67, the spectrum of e(t) in the case of second order jitter w(nT ) is

presented.

It can be observed that due to multiplication by the discrete time derivative (Eq.

(6.119)), the resulting distortion is of odd order. As a conclusion it can be stated that

even-order dependency of the w(nT ) on the input signal x(nT ) results in odd-order

distortion of the output signal y(t) and vice versa.

The signal-dependent jitter can originate from power-rail interference of the switch

driver circuitry of the converter or from the digital circuitry due to the substrate cou-

pling, from which the first one is usually the dominant source of jitter. Clock loading,

if not taken into account, may also result in jitter. Examples of these two jitter sources
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Figure 6.66 Spectra of the sinusoidal signal x(nT ) and second order jitter signal.
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Figure 6.68 Buffering of the switch drivers with single buffer.

are given in following sections.

6.7.3 Jitter due to code-dependent clock load

Sometimes, in the cases in which relatively accurate synchronization is required, the

clock pins of the synchronizing elements may be driven by one, usually very large,

buffer (Fig. 6.68). If the synchronizing elements driven are the latch/flip-flop stages of

the switch-driver stage of the D/A converter, this may result in distortion of the output

signal. This is because the load of the clock driver is dependent on the internal states

of the switch driver flip-flops, which are dependent on the data that is fed to them.

It can be assumed that code-dependent clock load causes code-dependent jitter. This

assumption can be validated by simulations as follows.

Fig. 6.69 represents the output spectrum of a 16-bit current-steering D/A converter

with the clock driving scheme of Fig. 6.68. This spectrum is the result of the transistor-

level simulation of the converter implemented in a 0.35 µm Si-Ge BiCMOS process.

In order to validate the assumption that the third-order distortion in Fig. 6.69 is due to

jitter, the jitter was extracted from the clock signal of the transistor-level simulation.

In Fig. 6.70, the output signal and the relative timing error of the clock signal are

presented. It can be observed that the jitter seems to be correlated with the output

signal, and thus dependent on the input code, and that the dependency is second-order.

As stated before, in the case of even-order jitter, odd order distortion may be expected

at the output as in Fig. 6.69.

In order to verify the origin of the distortion to be jitter, the jitter extracted from the

simulation is applied to the model described by Eqs. (6.105) and (6.106). The spectra

of x(nT ) and w(n) from the jitter-model simulations are presented in Figs. 6.71 and

6.72.

It can be observed that the spectral behavior due to jitter follows quite accurately

the spectrum obtained from the transistor-level simulation, and therefore it is justified

to say that the distortion is due to the code-dependent jitter.

Distortion caused by code-dependent clock loading can be reduced by, for example,

adding a small buffer to drive the clock pin of each of the switch driver flip-flops (Fig.

6.73). The simulation results for the D/A converter with modified clock buffering are
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Figure 6.69 Simulated spectrum obtained from the transistor-level simulation.
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Figure 6.71 Spectra of the input signal x(nT ) and w(nT ).
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Figure 6.72 Spectra of the input signal x(nT ) and error signal e(t).
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Figure 6.74 Simulated spectrum of the D/A converter with modified clock buffering.

presented in Figs. 6.74 and 6.75. It can be observed that the jitter-induced distortion

is effectively reduced with the altered buffering scheme.

6.7.4 Jitter due to power-rail interference

It can be assumed that the parasitic resistance of the power supply rails of the switch

driver circuitry may cause code-dependent interference during the transitions of the

switch driving signals, which may result in jitter. The interference on the supply rails

affects not only the clock signal (in those cases where the clock buffers share the same

supply rails), but also the switch driving signals. Therefore, in order to extract the

proper jitter signal from the transistor-level simulations, the jitter is extracted from the

switch driver signals instead of the clock signal. In order to reduce the code depen-

dency of the supply-rail interference, a transition of the switch driver signal may be
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Figure 6.75 Effect of the jitter with modified clock buffering.

ensured on every clock cycle by using the differential-quad switching scheme [151].

Switch drivers are designed so that, when a transition occurs, the switch is opened be-

fore the other switch is closed. Jitter is extracted by monitoring the time instants when

Vgs −VT of the closing transistor is zero, ensuring that there is only one conducting

transistor at that time instant.

A lumped resistor model is used for the supply-rail resistance in order to avoid

distortion being dependent on the position of the switch driver, which would be the

case with a distributed resistance model. The position-dependency of the jitter would

further exacerbate the performance of the D/A converter; it is, however, beyond the

scope of this analysis.

Fig. 6.76 represents the output spectrum of the converter obtained from the transistor-

level simulation, and Figs. 6.77 and 6.78 represent the reconstruction of the output

spectrum with the mathematical jitter model. It can be observed that resistive sup-

ply rails can generate an excessive amount of jitter even though the differential-quad

switching scheme [151] is used to reduce the code dependency of the power supply in-

terference. The benefits of using the differential-quad switching scheme are discussed

in more detail in Section 7.2.4.

In this section, the effects of the jitter on the spectral performance are demonstrated

by using a mathematical jitter model. Two design-related examples of the jitter-induced

distortion are given by analyzing the jitter signal extracted from transistor-level simu-
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Figure 6.76 Simulated output spectrum of the D/A converter with resistive supply rails.
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Figure 6.77 Spectra of the input signal x(nT ) and w(n) due to supply rail interference.



6.7 Sampling jitter 125

0 0.2 0.4 0.6 0.8 1
−120

−100

−80

−60

−40

−20

0
Power spectrum

Relative Frequency [Fs]

R
e

la
ti

v
e

 P
o

w
e

r 
[d

B
c

]

X(f)
E(f)

Figure 6.78 Effect of the jitter due to supply rail interference.

lations with the developed mathematical model. This model can be used to determine

whether the distortion at the output of the converter is due to jitter or not.

As a summary, the following observations can be made of these analyzes: spectral

components due to jitter are defined by the discrete-time derivative of the input signal

and the jitter signal w(n) The jitter signal that has an odd-order dependency on the

output signal of the converter will generate even-order harmonics due to multiplication

by the discrete-time derivative of the signal and vice versa.

Even though the total jitter-to-signal energy ratio is affected by the transition of the

signal, the increase in transition time mainly reduces the frequency component above
Fs
2

thus indicating that SFDR due to jitter can not be optimized by altering the transition

times.

It is demonstrated by simulations that the jitter-to-signal power ratio increases 3 dB

if the amplitude of the jitter is doubled. However, SFDR on the Nyquist band increases

6 dB due to the fact that increasing jitter amplitude transfers jitter energy from higher

to lower frequencies.
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6.8 Layout techniques for current source mismatch re-

duction

In addition to random variation of the process parameters that was discussed in Section

6.3, the gradient errors are an additional source of static nonlinearity. The gradient

errors are mainly due to the variation of the oxide thickness on the wafer, which is

stated to have a linear dependency on the distance between devices [125], and die

stress gradients, which has been reported to have a quadratic behavior over the device

matrix [152]. The gradient errors have a significant effect on the static linearity of the

converter, since the error due to gradients correlate with each other and therefore the

errors may accumulate, resulting in a large INL. The effect of accumulation can be

reduced by choosing the switching order so that the gradient errors of current sources

corresponding to the subsequent code values cancel each other. On the other hand, if

the errors do not correlate, the switching order has no statistical effect on the INL.

There have been several proposals for the layout techniques (also called ”Switching

schemes”) for the reduction of nonlinearity caused by process gradients. The methods

can be divided in two categories. In heuristic methods [153], [154], [155], [156],

[126], [157] , the cancellation of the gradient effect is based purely on the geometrical

aspects without any knowledge of the relations between linear and quadratic (odd- and

even-order) gradients. In the analytical methods presented in [158], [159], the optimal

placement of the current sources (i.e. the optimal switching sequence) in the INL sense

is evaluated by numerical methods. These methods require a priori knowledge about

the relations of the linear and quadratic gradients.

In the following paragraphs, the layout techniques are presented in the order of

publication to demonstrate the evolution of the layout techniques. The layout method

used in the prototype circuit presented in Section 7.2 is also discussed since it differs

slightly from the previously published methods.

The simplest possible sequence for ordering the current sources is presented in

Fig. 6.79. In this ”sequential switching” scheme, the current sources are selected in

the order they appear in the matrix in such a manner that, after all the sources in the

first row are selected, then the first source of the second row is selected and so on. This

method results in the accumulation of the error in both X and Y directions.

The first improvement is the ”symmetrical switching” presented in [153]. The

principle of symmetrical switching is presented in Fig. 6.80. A symmetrical switching

scheme ensures the cancellation of the linear gradient errors; however, the quadratic

errors ere accumulated.

The symmetrical switching scheme is further improved in [154], introducing the

”hierarchical symmetrical switching” scheme (Fig. 6.81), which is designed to reduce

the effect of the quadratic error gradient. In Fig. 6.81, the switching sequence in X
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Figure 6.81 Hierarchical symmetrical switching.

direction is ordered according to ”Type A” hierarchical symmetrical switching, and Y

direction is ordered according to ”Type B” hierarchical symmetrical switching.

Hierarchical symmetrical switching is further improved in [155]. All introduced

switching schemes so far exploit ”Row-Column Decoding”, meaning that all the cur-

rent sources on the row are selected before the row is changed. It is correctly stated in

[155] that this results in an accumulation of the error, since the error builds up column-

wise while the error in the direction of rows is canceled. This problem is avoided in

[155] by using four identical current source matrices mirrored with respect to X and Y

axis. Mirroring is also exploited in [126], [156].

The effect of using mirror symmetric matrices can be analyzed in the following

way. Let us begin with the plain current source matrix without any of the mirror sym-

metry presented in Fig. 6.82. The solid lines represent gradient, dashed lines represent

canceled gradient. It is well known that the linear (and odd-order) gradient can be can-

celed by using common centroid matrices of unity current source transistors, as in Fig.

6.83. Again, the dashed line represents the canceled gradient. This kind of structure,

however, does not necessarily cancel or reduce the second- (and even-) order gradient

effects. The second (and even) order mismatch can be reduced by further splitting the

unity current source and by using the mirror symmetric sub-matrices (Fig. 6.84).

The theory can be generalized as follows. For simplicity it is assumed that the

odd-order mismatch has only the first order (linear) component and the even-order
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Matrix dimension

Figure 6.82 Current source matrix with even and odd order error gradient.

Matrix dimension

Figure 6.83 Compensation of linear (and odd order) gradient with mirror symmetry.

Matrix dimension

Figure 6.84 Reduction of second (and even order) error gradient by further splitting the matrix.
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mismatch has only the second-order component. In addition, we may assume that any

constant error has no effect, since it is the same for all the units.

The linear dependency can be removed as in Fig. 6.83, and the residual second or-

der mismatch in X-dimension is defined by the parabola with its extreme at the middle

of the chip and zeros at the edges of the chip. The equation for this parabola can be

written as

E1(x) = M (x− p1)(x− p2) . (6.121)

It has its extreme at

xe1 =
(p1 + p2)

2
, (6.122)

which is exactly in the middle of the zero points. This extreme has the value

Ee1 =
M (p1 − p2)(p2 − p1)

4
. (6.123)

The line that goes through the point (p1,0) and (xe1,Ee1) has the equation

S11(x) =
M (p1 − p2)(x− p1)

2
. (6.124)

This linear mismatch is again canceled if the current source is further split and divided

into the common centroid matrices that are mirror symmetric relative to the centerline

of the original matrix. After Eq. (6.124) is subtracted from Eq. (6.121) the residual

error can be written as

E2(x) = M (x− p1)

(

x− (p2 + p1)

2

)

. (6.125)

This is a parabola with zeros at p1 and
p1+p2

2
and the extreme at xe2 =

3p1+p2
4

= xe1+p1
2

.

The extreme value is

Ee2 =
M (p2 − p1)(p1 − p2)

16
. (6.126)

It can be seen from Eq. (6.123) and Eq. (6.126) that the ratio of these extreme values is

Re =
Ee1
Ee2

= 4, so every time the unity source is halved and mirrored in one dimension,

the residual error in that dimension is divided by four.

Figure 6.85 represents the cancellation of linear and quadratic gradients by using

mirror symmetry. Gradients are modeled as

Gx (x) = gx1xcos(θ)+gx2x2, −1 ≤ x ≤ 1 (6.127)

Gy (y) = gy1ysin(θ)+gy2y2, −1 ≤ y ≤ 1, (6.128)

in which x and y ranges have been normalized to be ±1 at the matrix boundary,

gx1,gx2,gy1,n and gy1 are the gain factor for linear and quadratic gradients in x and
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Figure 6.85 Reduction of INL of 16 current sources with mirror symmetry.

y direction, and θ is the plane angle of the linear gradient. The effectiveness of the mir-

ror symmetry in removing the linear gradient can be clearly seen. Additional splitting

further reduces the INL due to quadratic gradient by a factor of 4, as calculated.

In the simulation result presented in Fig. 6.85, the plain ”sequential switching”

scheme was used. The effect of the residual error can be further reduced by using

some of the switching schemes discussed before.

In addition to mirror symmetry, the splitting of the current source into smaller

units can be used to very effectively reduce the gradient error. In [157], it was pre-

sented that if the current sources are divided into 22N elements, and if these elements

are arranged so that a current source has an element on every row and every column,

both linear and quadratic errors are canceled. The main shortcoming of this method

is the large number of unit elements. To overcome this problem, a new switching

scheme was developed for larger numbers of thermometer-coded bits providing very

promising results. The principle of this switching scheme is to translate the positions

of 22N elements to positions of unit current sources of 2N thermometer-coded bits with

a simple algorithm developed with numerical optimization to minimize the effect of

the quadratic gradient. This algorithm seems to be a very promising solution for the

gradient cancellation, and the main advantage of this method is that it does not need

any kind of a priori knowledge about the gradients.



132 Current-steering digital-to-analog converter design

2413

2413

3142

3142

3

1

4

2

3

1

4

2

1

3

2

4

1

3

2

4

7

3

14

10

1

5

12

16

12

9

8

4

3

1

4

2

3

1

4

2

1

3

2

4

1

3

2

4

11

15

2

6

3

1

4

2

19

9

4

14

7

17

12

2

11

1

16

6

5124 3

15

5

20

10

3

13

8

18

Figure 6.86 Reduction of INL with optimal row-column sequencing.

A rather similar method was developed by the author and used in the prototype pre-

sented in this book. The method is based on the ideas of switching sequences presented

in [159].

It is possible to minimize the maximum value of accumulated linear error of the

unit elements in dimension (X or X) by selecting them in certain order. Let us call this

an “”optimal sequence”. The principle of finding optimal sequences was presented in

[159]. As mentioned earlier, the problem with the ”Row-Column Decoding” is the ac-

cumulation of the error in one dimension while it is canceled in the other. This problem

can be alleviated by applying optimal sequences in the both dimensions simultaneously

(this kind of result is also obtained by applying the technique presented in [157]). Two

examples are given in Fig. 6.86. The number sequences around the matrices indicate

the order of selection and the numbers inside the matrices indicate the number of the

source, i.e. source number 1 is placed first into the position indicated by numbers 1,1

of sequences etc.

This technique has at least two shortcomings. First, if the number of rows and

columns are not relatively prime, the number of positions selectable with one sequence

pair is defined by the length of the longer sequence, after which a new optimal sequence

has to be selected as was done in the case of 4x4 matrix in Fig. 6.86. The newly

selected optimal sequence should also be valid in such a manner that already-occupied

positions are not selected again. It can be seen that in 4x4 case, there are too few

optimal sequences, so suboptimal sequences have to be used. On the other hand, there

is no problem if the number of rows and columns are relatively prime, as in the case of

the 4x5 matrix of Fig. 6.86.

Usually, the number of current sources (including biasing) is 2N in the matrix, and

therefore it may become difficult to find the optimal sequences, since 2N cannot be

presented as the product of relatively prime numbers. If, for some reason, such as in
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Figure 6.87 INL and effect of splitting with developed switching sequence.

the case of digital calibration, or due to including the LSB sources into the matrix,

the number of sources differ from 2N , the situation can be easier to handle. Simula-

tion results for this sequence in the case of 4x4 matrix is presented in Fig. 6.87. Its

effectiveness can be verified by comparing Fig. 6.87 to Fig. 6.85.

The methods of the layout design of binary-weighted converters are seldom dis-

cussed in the papers. Due to the binary weighting, the number of unit sources is large

for currents of larger weight, resulting in almost automatic cancellation of gradient er-

rors. Two examples are given in Fig. 6.88. The basic principle is to fill every other

empty position, starting from the opposite corners of the matrix simultaneously. The

filling of a row is started from side opposite the previous row was started. The same

holds for the sources of different weights.

6.9 Survey of published D/A converters

In this section, the key features and design methods of the recently published current

steering D/A converters are briefly introduced. The figures of merit of the converters

are listed in Table 6.3.

In [153], the principle of symmetrical switching was introduced and used to allevi-

ate the process-gradient-related mismatch of the current sources.
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Figure 6.88 Two possible current source matrices for 4-bit binary weighted D/A converter.

In [154], the switching method was further improved from symmetrical switching

to hierarchical symmetrical switching.

In [160], a switch structure is introduced to improve the switch driver timing, re-

duce the switching asymmetry and code dependent glitching at the output. Segmenta-

tion is mentioned as a technique for glitch reduction.

In [126], the development of the switching schemes continued with four quadrant

randomization technique. INL and DNL are analyzed as a function of the segmentation,

and the estimates of the standard deviations of INL and DNL are given based on Monte-

Carlo simulations. It is mentioned that glitches that are linearly dependent on the code

transition do not introduce distortion. The effect of segmentation is emphasized, and

the segmentation level is optimized in order to optimize DNL, INL, SFDR and area.

The cascode current sources are also used.

In [155], the switching sequence optimization is continued by the introduction of

a hierarchical symmetrical switching scheme using common centroid matrices. Linear

and quadratic error gradients are discussed. A Gaussian distribution is used as an

approximation for INL. Glitches due to switch driver feed-through are minimized.

Segmentation in two thermometer-coded segments with different weights is also used.

In [161] the return-to-zero output stage is used to reduce the effect of glitches,

code-dependent settling and timing skew between current sources.

In [158], the linearity errors due to current source mismatches are further optimized

with the Q2-random walk switching scheme. A dynamic latch is used for the switch

driver synchronization and the crossing point of the switch driver signals is optimized.

The effect of linear and quadratic gradients are analyzed.

In [162], a self-trimming D/A converter with a track-and-attenuate output stage is

presented. Self-trimming is based on the error value stored on the gate capacitance

of the current source, and the error is measured with a Σ∆ analog-to-digital converter

(ADC) over the resistance in series with the current source transistor.
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In [163], a converter capable of 1 GS/s operation is presented. The effect of output

impedance is taken into account, and the effort is put on the design of the high-speed

switch driver. A double-centroid switching scheme (mirror symmetry) is used to re-

duce gradient effects.

In [164], as in the previous design, the effort is put on the switch driver optimiza-

tion and signal symmetry in order to achieve high-speed operation. A triple centroid

switching scheme (16 units in one current source + mirror symmetry) is used to im-

prove the static matching.

In [137], the static accuracy is improved by calibration based on trimmable current

sources, which are adjusted with an additional calibration DAC.

In [138], the static performance is improved with calibration. The static nonlinear-

ity is measured with a 16-bit Σ∆ calibration ADC; values are stored in the memory and

addressed with the 6 MSB bits. An additional calibration DAC is used to adjust the

currents of the MSB sources.

In [139], a successive approximation calibration routine is used to trim the MSB

current sources to 18-b accuracy. The effect of the nonlinear capacitance at the source

node of the switches is emphasized, and back-gate-buffering (bulk-bootstrapping of

the switches) is used to reduce the effect of the nonlinear capacitance. Switch driver

timing is also emphasized, and the timing inaccuracies in switching are reduced by

using a local voltage generator that follows the source voltage of the switches. Also, a

differential-quad switching scheme [151] is applied in order to equalize the switching

activity, and thus the charge flow from the supply lines.

In [165], trimming of the floating-gate current source transistors is used to improve

the static nonlinearity. In addition, a return-to-zero output stage is used to improve

dynamic performance.

In [166], dynamic element matching is used to average the current source array

errors. 7-bit segmentation is used in order to improve dynamic performance and MSB

current sources are composed of 16 unit cells, which are divided into 16 current source

arrays in order to reduce the effect of process gradients.

In [167], capacitive current memory type of calibration is used to trim the MSB

current sources. An RZ stage is used at the output to improve the dynamic perfor-

mance. The dynamic performance is also compared to case in which the RZ-stage is

disabled, indicating that with this particular converter, better high-frequency operation

is obtained with the RZ output stage.

In [168], the importance of the switching dynamics is emphasized. The differential-

quad switching scheme is applied and kick-back (variation of the source node voltage

of the switch) is minimized with switch-driver crossing-point control.

In [146], attention is paid to the reduction of timing errors, and power supply and

bias disturbances targeting the elimination of the nonlinearity instead of removing it
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from the output. Current-mode logic is used to reduce the supply-rail and substrate

cross talk. The timing of the switch drivers is equalized with a replica structure similar

to as the prototype presented in Section 7.2.
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Table 6.3 Survey of published D/A converter implementations.

Publication Process Bits Sampl.

freq.

[MHz]

SFDR

[dBc]

@

[MHz]

Area

[mm2]

Power

[mW]

Comment

Miki

[153]

2µm

CMOS

8 80 ? 3.79 145

Nakamura

[154]

1µm

CMOS

10 70 ? 3.78 170

Mercer

[160]

2µm Bi-

CMOS

16 40 80 @

1.23

8.25 500 SFDR @

10MS/s

Lin [126] 0.35µm

CMOS

10 500 51 @

240

0.6 125

Bastos

[155]

0.5µm

CMOS

12 300 40 @

60

3.2 320

Bugeja1

[161]

0.5µm

CMOS

14 100 74 @

8.5

14.42 750

Van der

Plas [158]

0.5µm

CMOS

14 150 61 @ 5 13.10 300

Bugeja2

[162]

0.35µm

CMOS

14 100 72 @

42.5

11.83 180

Van den

Bosch1

[164]

0.35µm

CMOS

10 1000 61.2

@ 490

0.35 110 Core area

Van den

Bosch2

[163]

0.25µm

CMOS

12 500 62 @

125

7.14 102

Tiilikainen

[137]

0.18µm

CMOS

14 100 64 @ 1 1.0 20

Cong

[138]

0.13µm

CMOS

14 180 50 @

63

0.1 16.7 Power

@100MS/s,

core area

Schofield

[139]

0.25µm

CMOS

16 400 73 @

190

? 400

Hyde

[165]

0.18µm

CMOS

14 300 71 @

120

0.44 53 Power

@250MS/s,

core area

O’Sullivan

[166]

0.18µm

CMOS

12 320 60 @

60

0.44 82

Huang1

[167]

0.18µm

CMOS

14 200 60 @

90

1.0 97 RZ-mode,

core area

Huang2

[167]

0.18µm

CMOS

14 200 43 @

90

1.0 97 NRZ-mode,

core area

Schafferer

[168]

0.18µm

CMOS

14 1400 67 @

260

6.25 400

Doris

[146]

0.18µm

CMOS

12 500 60 @

220

1.13 216 Core area





Chapter 7

Prototypes and experimental

results

In this chapter, the methods used in the WCDMA prototype circuit design are described

and the measurement arrangements and the experimental results obtained from the

fabricated transmitter chip are reported.

The target of the design process was to advance our knowledge of the efficient

realization of the DSP algorithms, discover the system limitations set by the digital-to-

analog converter, learn more about the D/A converter design and apply the knowledge

gained to the design of the IF DSP part of the transmitter to see how the different

parameters affect the transmitter performance. The performance of the transmitter is

characterized by EV M and ACLR.

7.1 Prototype of WCDMA transmitter

The principle of the designed WCDMA transmitter is presented in Fig. 7.1. The trans-

mitter consists of pulse shaping filtering and interpolator blocks for four independent

I and Q data streams in order to alter the sampling rate from the input symbol rate

to the sampling rate used in the CORDIC vector-rotation-algorithm-based quadrature

modulators. After the modulation, the modulated carriers are summed and fed to the

inverse SINC predistortion filter [169]. The purpose of the filter is to eliminate the

SINC attenuation caused by the sample-and-hold function of the D/A converter. Two

constant scalers are used to maximize the signal dynamics before feeding it to the D/A

converter. The values of the scalers are discovered with simulations. Finally, the data

is fed to the D/A converter. A 14-bit current steering architecture is chosen because of

its capability in terms of high-speed operation and good static linearity. The design of
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Figure 7.1 Multicarrier transmitter.

Table 7.1 Design parameters of the system.

Symbol rate 3.84 Msymbols/s

Pulse shaping filter Root-raised cosine α = 0.22

Number of carriers 4

Assumed input signal statistics Normally distributed and truncated with crest factor 10

dB

Signal bandwidth 3.84MHz

Carrier spacing 5MHz

EV M Tested with 4-QAM signal with symbol magnitude 40dB

below maximum

ACLR123 Simulated with channel separation of 5, 10 and 15 MHz

respectively

Number of input bits 13

the IF filters, mixers and PA are beyond of the scope of this work.

The parameters and signal conditions used in the transmitter design are listed in

Table 7.1.
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7.1.1 Frequency planning

The design begins with the frequency planning. The number of carriers and carrier

spacing of 5MHz defines the total bandwidth that needs to be 19.68MHz. However,

in order to make the image filtering possible after the D/A conversion and after the

upconversion to the second IF, the frequency band used is 5.16-24.84MHz. To get the

first image far enough to be filtered, the sampling frequency should be selected high

enough. The lowest integer multiple of the input symbol frequency 3.84MHz that is

high enough to make the filtering possible is 61.44MHz, which is selected to be the

clock frequency of the CORDIC rotator, resulting in the total interpolation ratio of 16

for the input data.

7.1.2 Interpolation strategy

In order to be able to select the most effective strategy for the interpolation, the total

number of filter coefficients must be determined. The number of FIR filter coefficients

required for the PSF with certain stop-band and pass-band ripples and relative tran-

sition bandwidth can be approximated with the equation that holds for the equiripple

low-pass FIR filter [58]

N1 ≈ −20log10

(√
σpσs

)

−13

14.6∆ f
+1 = K

L1Fs

fs − fp

+1 L1 > 1 (7.1)

in which K =−20log10

(√
σpσs

)

−13, Fs is the sampling rate at the input of the PSF,

L1 is the oversampling ratio of the PSF, σp and σs are the pass-band and stop-band

ripples, respectively, ∆ f =
fs− fp

L1Fs
is the width of the transition band relative to the

out sampling frequency of the PSF, and fs and fp are the stop- and pass-band edge

frequencies, respectively.

When a chain of interpolation filters is used to perform the possible residual in-

terpolation after the PSF, the number of taps required for each of these interpolation

stages may be calculated as

Nk ≈ K
LkLpkFs

LpkFs −2 fs

+1 = K
Lk

1− 2 fs
LpkFs

+1 Lk > 1, k > 1 (7.2)

in which Lk is the interpolation ratio of the current stage, and Lpk = ∏
k−1
i=1 Li. With

equations (7.1) and (7.2), the total number of coefficients for each interpolation strat-

egy can be calculated. It can be observed that the total number of filter coefficients is

minimized either when the interpolation is made in four cascaded stages, each interpo-

lating by factor two, or with the cascaded interpolation stages with interpolation factors

2, 2, and 4, respectively. Comparison of the efficiency of the interpolation strategies is



142 Prototypes and experimental results

2 2 2 2

Channel filter 1st Half band 2nd Half band 3rd Half band

Figure 7.2 Interpolation chain.

presented in Table 7.2. The four cascaded filter stages with an interpolation factor of 2

Table 7.2 Comparison of interpolation strategies

Order of inter-

polators

Number of

coefficients per

stage

Total number of

coefficients

16 297 297

8, 2 149, 11 160

4, 4 74, 25 100

4, 2, 2 74, 13 ,11 99

2, 8 38, 84 122

2, 4, 2 38, 43, 11 92

2, 2, 4 38, 22, 24 84

2, 2, 2, 2 38, 22, 13, 11 84

is chosen because it facilitates the use of half-hand (HB) filters after the PSF. The use

of the HB filters further reduces the amount of hardware because approximately half of

their coefficients are zero valued. The structure of the interpolation chain is presented

in Fig. 7.2.

7.1.3 Digital FIR filter and interpolator design

The multi-step interpolation with an interpolation factor of 2 was chosen as an inter-

polation strategy because of its hardware efficiency, After the decision on the inter-

polation strategy, the floating point prototypes of the channel filters and the half band

interpolation filters were designed. The channel filter was designed with the Lagrange

algorithm described in Section 4.1.1. The half band filters were designed with the

least square error algorithm and with the “trick”-method described in [62]. With this

method, an even-order prototype filter with desired pass-band characteristics and a

transmission zero at half of the sampling frequency is converted to an odd-order half-

band filter by inserting a zero between the coefficients of the prototype and changing

the centermost zero to 1. In this design phase, some margin was left for the degradation

of the performance caused by CSD presentation and finite word length effects in order

to ensure that the performance of the transmitter can be designed to be limited by the

D/A converter.
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Figure 7.3 Frequency responses of the filters.

Once the coefficients of the prototype filters were discovered, the coefficients were

converted to CSD format with the modification of the algorithm presented in [67]. The

algorithm was modified in order to maximize ACLR rather than to minimize the peak

ripple on the stop-band.

The frequency responses of the designed filters are presented in Fig. 7.3 and the

frequency response of the interpolation chain is presented in Fig. 7.4. ISIrms of the

designed CSD interpolation filter chain is -45.022dB (0.561%) and ACLR values for

the first, second and the third adjacent channel are 85.89dB, 99.13dB and 92.15dB,

respectively. The quantization noise due to the D/A conversion or finite word length

effects is not included at this point.

The lower limit of EV M is set by ISI of the channel filter. The finite accuracy of

the computation in the filters and CORDIC modulator, and the quantization in the D/A

converter adds noise to the signal thus increasing EV M. Similarly, the limit of ACLR is

set by the D/A converter, the stop-band attenuation of the filters and the noise added by

the filters and CORDIC modulator. Since the 14-bit D/A converter sets the ACLR value

approximately to 75dB, the objective of the design was to obtain EV Mrms performance

better than -40dB (1%) and ACLR to be limited by the D/A converter.

After the CSD coefficients were discovered, the analysis of the finite word length

effects was performed. The simulation script was written in Matlab that modeled the
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Figure 7.4 Frequency response of the interpolation filter chain.

behavior of the transmitter. The effects of the CORDIC and inverse SINC filter were

left out at this point, and an ideal upconversion and reception was used. The D/A con-

verter was modeled as a quantization at the transmitter output. A normally distributed

and truncated data stream with the crest factor of 10dB was used as the input in ACLR

simulations in order to model the sum of 4 QAM data of 100 code channels (central

limit theorem [19]). In EV M simulations, the single 4 QAM modulated signal with a

symbol magnitude of 40dB below the maximum was used. The internal word length

of one filter was swept from 10 to 20 bits when the internal word lengths of the other

filters were kept at 20 bits. With this method, the effects of the one single filter to ACLR

and EV M were discovered. In Fig. 7.5, the effects of the internal word lengths and the

effect of the D/A converter on ACLR1 are presented. The effects on EV M are presented

in Fig. 7.6. Similar simulations were carried out for ACLR2 and ACLR3. The internal

word lengths chosen for the channel filter (pulse shaping filter) and for the first, second

and third half-band filters are 17, 18, 18, and 18 respectively. The simulated ACLR123

values with the finite word length effects included in the filters are 73.92dB, 75.62dB

and 73.70dB, respectively, and the EV Mrms is -40.5398dB (0.94%).

The polyphase structure that was described in section 4.3.1 was used in the realiza-

tion of the filters. In order to further reduce the area used by the filters, the interleaving

technique described in Section 4.3.2.3 was used [71]. In addition to the area reduction,
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Figure 7.5 ACLR1 as a function of the internal word lengths.
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Table 7.3 Number of filter coefficients and the number of realized coefficients in polyphase

decomposition.

Channel

filter

1st

half-

band

2nd

half-

band

3rd

half-

band
Number of coefficients 37 23 11 11

Maximum number of terms in CSD

coefficient

6 5 4 4

Maximum shift in CSD coefficient 13 13 12 12

Number of realized coefficients

in polyphase composition (subfilter

1/subfilter 2)

9/10 6/1 3/1 3/1

Internal word length 17 18 18 18

the advantage of using the interleaving technique is that all the clock frequencies used

in the filters are above the desired signal frequency band, reducing the possible spurs

generated by substrate coupling. The clock frequencies were selected so that the maxi-

mum clock frequency equals the one used in the CORDIC rotator, 61.44MHz. The first

filter, however, uses a clock of only 30.72MHz because there are only 8 data streams

to interleave and because the polyphase structure allows the computation at half of the

sampling frequency (sampling frequency after the interpolation). The structure of the

interleaved interpolation filter chain is presented in Fig. 7.7. The number of filter coef-

ficients and realized filter coefficients in the polyphase composition are listed in Table

7.3.

The simulated ACLR and ISIrms and EV Mrms values for the CSD-filters without

and with the finite word length effects are listed in Table 7.4.
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Table 7.4 ACLR and ISIrms/EV Mrms values.

ACLR1 ACLR2 ACLR3 ISIrms and EV Mrms

Without internal

word length effects

85.89dB 99.13dB 92.15dB -45.022dB (0.561%)

With internal word

length effects

73.92dB 75.62dB 73.70dB -40.5398dB (0.94%)

7.1.4 CORDIC and inverse-SINC filter design

7.1.4.1 CORDIC design

The word lengths of the CORDIC and the inverse SINC filter were determined in a

manner similar to that in the interpolation filter chain. The output of the interpolation

filter chain was used as the input of the CORDIC rotator and the number of stages

(N = 15) (Fig. 5.4), number of bits in the amplitude path (a = 20) and the number of

bits on the phase calculation path (p = 17) were discovered.

According to the theory presented in Section 5.2, the maximum output value of the

CORDIC rotator is Aoutmax = 1.6468
√

2 = 2.3281, assuming the input values to be 1.

However, when summing up four modulated wide band signals, it is very unlikely that

the signal has the value 4Aoutmax. It can be calculated as in [170], that the I/Q modulated

signal with Gaussian distributed I and Q data values and standard deviation σ is also

Gaussian distributed with standard deviation σ, and thus the multicarrier signal also

has a Gaussian distribution with variance linearly dependent on the number of carriers.

The simulated probability density of the sum of 1, 2, 3, and 4 wide-band signals are

presented in Fig. 7.8, and the probability density function of the Gaussian distribution

with corresponding standard deviations are presented in Fig. 7.9

Since the ratio of the variance (i.e. power) and maximum amplitude does not

change as the number of carrier increases, the consequence is that the power of a sin-

gle carrier is reduced relative to quantization noise, thus increasing EV M and ACLR.

Also, because the probability of overflow in the case of a limited number of bits is rel-

ative to the standard deviation of the signal, the number of bits should be increased as

a function of standard deviation (
√

N, N = Number of carriers) instead of theoretical

maximum amplitude, in order to maintain the probability of overflows.

One method to handle the occasional overflows and reduce the overflow originated

signal degradation is clipping. To clip the large values of the multicarrier signal, the

saturating scaler is added to the output of the CORDIC. In the case when the peak

value of the signal is just slightly above the half of the full scale, approximately 6dB

of the dynamic range is lost when the signal is truncated. Scaler maximizes the dy-

namic range of the signal and saturates the output in the cases of overflow. This also

minimizes the amount of hardware needed in the inverse SINC filter, since the internal
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wordlength of the filter is reduced. The value of the scaler is determined by simula-

tions. The effects of the clipping and various algorithms for clipping the wide band

signals are discussed in more detail for example in [171].

7.1.4.2 Inverse-SINC filter design

The inverse-SINC predistortion filter is used to compensate the droop in the frequency

response of the transmitter caused by the sample and hold operation of the D/A- con-

verter. This droop is -2.476dB at 24.84MHz which is not acceptable.

The inverse-SINC filter was designed by the method described in [169]. It has

7 coefficients which are symmetric relative to the center coefficient. The transposed

direct form is used in the realization of the filter. After correction, the gain ripple at

the band from 5.16 to 24.84MHz is 0.0895dB. The simulated internal word length for

the correction filter is 18 bits. A scaler similar to one after the CORDIC is used at the

output of the filter in order to maximize the signal dynamics. After scaling, the signal

is rounded to 14 bits and fed to the D/A converter.

7.1.5 Simulated QAM performance

After the internal resolution and the values of the scalers had been defined, the overall

performance of the multicarrier QAM modulator was determined by simulation. The

final EV M value is -40.38dB (0.96%), and the final ACLR123 values are 73.58dB,

75.58dB, and 73.65dB, respectively. The simulated spectrum of the multicarrier signal

at the transmitter output is presented in Fig. 7.10. The single carrier case is presented

in Fig. 7.11.

7.1.6 Digital ASIC synthesis flow

The digital part of the QAM modulator was realized with logic synthesis based on high

level description language. The synthesis flow is presented in Fig. 7.12.

Tools that was used for the synthesis were Synopsys Design Analyzer for the logic

synthesis and static timing verification, Synopsys VSS for VHDL simulations, Syn-

opsys Formality for static functional verification, Cadence Envisia Design Planner

and Silicon Ensemble for floorplanning, Cadence Envisia Silicon Ensemble for place

and route, Cadence Envisia PB-opt and CT-gen for placement-based optimization and

clock-tree generation and Mentor Graphics IC-Station for top-level manual editing,

layout versus schematic checking and design-rule checking.
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Figure 7.10 Spectrum of the multicarrier WCDMA signal at the output of the transmitter.
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Figure 7.11 Spectrum of the single carrier WCDMA signal.
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Figure 7.13 Block diagram of the D/A-converter.

7.1.7 14-bit 70MHz Digital-to-analog converter

In this section, only the theory applied to this particular design is discussed. In case

a more accurate analysis of the design methods is performed after the design of this

prototype, references are given.

The D/A converter designed for the transmitter is a segmented current steering

type converter. It has two current source matrices. The matrix of 8 LSBs is binary

weighted and the matrix for the 6 MSBs is partially weighted. Two least significant

bits of the MSB matrix are binary weighted and four MSB bits are thermometer coded

(unweighted). Each of the fifteen MSB current sources corresponding to the four ther-

mometer coded MSB bits provides a current of four times the least significant bit of

the MSB matrix. The topology of the D/A converter is presented in Fig. 7.13.

7.1.7.1 Static matching

It was assumed as a coarse approximation that INL follows the normal distribution

with variance

σINLmax =
√

2N −1
σlsb

Ilsb

. (7.3)
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The analysis of INL presented in Section 6.3 reveals that this assumption is not ab-

solutely accurate, but gives a good starting point for the dimensioning of the current

sources.

Method for finding the dimensions of the current sources is presented in Section

7.2.1. The area of the LSB current source is obtained by using the matching equations

presented in [125], [124]

σ2
id

I2
d

=
4A2

vt

WL(Vgs −VT )
2
+

(

Abeta√
WL

+Bbeta

)2

, (7.4)

where Avt , Abeta and Bbeta are process dependent constants given by the silicon ven-

dor, Vgs is the gate-source voltage of the transistor, VT is the threshold voltage of the

transistor, W is the channel width and L is the channel length.

The area of the LSB current source required for 14-bit matching, as determined by

equations Eq. (7.3) and Eq. (7.4), was too large to be realized. Therefore the area used

for the current source was determined in order to obtain 12-bit linearity (INL and DNL

< 2LSB).

In order to increase output impedance of a single current branch, additional cascode

transistors were added between the load and the current switches. These transistors

were made common to all of the switches connected to the particular signal branch.

Cascode transistors are also used between the current switch and the current source

transistor to further increase the output impedance of the current sources. Analysis of

the behavior of the output impedance is presented in more detail in Sections 6.5 and

7.2. The topology of the one current source, switch and output cascode set is presented

in Fig. 7.14.

7.1.7.2 Enhancement of dynamic properties

In order to minimize the capacitive coupling, swing as small as possible is used to drive

the switches. It is also ensured that both of the switches are not closed at the same time,

which would lead to the situation where no current flows through the current source.

In this case, the sources of the switch transistors would be driven to Vss. This would

cause a spike at the output, and the current sources would require a relative long time

to recover from the bounce. The switch driving principle is presented in Fig. 7.15.

Inaccuracies in synchronization of the switch drivers may cause harmonic distor-

tion. Because the currents in LSB and MSB matrices are different, the switches are

also of different size, which minimizes the difference between bias points and thus im-

proves the static matching. The synchronization of switching is enhanced by adding

dummy transistors in parallel with the gates of the smaller LSB switches in order to

equalize the load seen by the switch driver (Fig. 7.16).
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Figure 7.17 The common centroid MSB current source matrix.

7.1.7.3 Layout issues

In order to achieve the best possible static matching, it is preferable to make the en-

vironment of each current source identical to each other. The best way to do this is

to put the current sources in matrices and add some dummy transistors around the

current source transistors. It is also preferable to use the common centroid approach

when drawing the matrices in order to minimize the effect of the linear-gradient-type

processing parameter variation as the function of position on the wafer. It is also prefer-

able that the transistors are arranged so that all of the transistors of one source are not,

for example, on the periphery of the matrix. A better way is to balance the location so

that the mean distance from the center of the matrix is constant. This means that, if

two transistors of the single current source are at the edge of the matrix, another two

are near the center. The method used for the MSB current source matrix is presented

in Fig. 7.17. The sources are numbered from 8 to 24. The transistor marked with ”m”

is for current mirroring. The transistors labeled with 8 and 9 are the weighted sources

consisting of 1 and 2 transistors, respectively. The rest of the current sources have 4

transistors each. The common centroid matrix approach has also been used in the bias

generation. The layout techniques for improving the static matching are analyzed more

thoroughly in Sections 6.8 and 7.2.3.

In addition to the static matching optimization by common centroid matrices, the

dynamic performance is enhanced by using different supply voltage sources for the

analog part and bias, switch drivers and digital logic. Also, guard lines are used wher-

ever possible. Ground planes are also added to decrease the capacitive coupling be-

tween the digital and analog signals.

7.1.7.4 D/A converter simulations

The simulations for the spectral purity of the D/A converter were carried out with sinu-

soidal signals of different frequencies. The sampling frequency used for the simulation

was 66.67MHz. In Fig. 7.18 a spectrum of a 5.43MHz sine signal is presented. It can
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Figure 7.18 Spectrum of 5.43MHz sine signal.

be seen that the third and the fifth harmonic component dominates SFDR and that the

level of the even harmonics is low. The values for the 3rd and 5th harmonic components

are -80.32dB and -89.92dB, respectively.

In Fig. 7.19 the signal frequency of the sine is increased to 28.5MHz. Now the

dominant components of SFDR are the 2nd and the 3rd harmonic component.

7.1.8 Experimental results

The chip was fabricated in a 5 metal 2 poly 0.35µm BiCMOS process, but only CMOS

transistors were used. Isolation between the digital part of the chip and the D/A con-

verter is achieved by the usage of isolation rings. The same kind of isolation is also

available in triple well CMOS processes. The design features that are not available in

conventional CMOS processes are also used. Such features are, for example, isolated

NMOS transistors.

7.1.8.1 Measurement setup

The measurement setup for the circuit is shown in Fig. 7.20. The parallel port of the PC

is used to control the functionality of the chip. The control program, which controls

the parallel port, is written in C programming language [172]. With the program, it
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Figure 7.19 Spectrum of 28.5MHz sine signal.
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Figure 7.20 Measurement setup for the circuit.

is possible to set the carrier frequencies and select which part of the chip is tested.

It is possible to test each of the filters separately and also to test the CORDICs by

selecting either one or all of them to be used. The D/A- converter can be measured

either as connected to the digital transmitter or in a stand-alone mode. Manufacturers
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Table 7.5 Types of the measurement equipment

Pattern generator Tektronix TLA 720

Clock signal generator Rohde-Schwartz 1062.5502.11

Voltmeter Hewlett-Packard 3457A

Spectrum/Vector analyzer Rohde-Schwartz 1088.3494.30/FSIQ

DC-supply Hewlett-Packard E3631A

and models of the measurement equipment are listed in the Table 7.5.

7.1.8.2 D/A-converter performance

The dynamic performance of the D/A-converter was measured with the sample fre-

quency of 61.44MHz and the static performance with the sample frequency of 1Hz.

The supply voltage was 3V, which is the typical operation condition for the converter

used in the transmitter. The bias current of the current source matrices was 200µA,

as designed; however, the bias current for the switching level setting were increased

from 100µA to 450µA in order to lower the switching voltage levels at the input of

the switches. It is assumed that this enhances the dynamic performance of the D/A

converter because the switches stay better in the saturation region when they are open,

resulting in a reduced level of the 2nd harmonic component.

7.1.8.3 Static performance of the D/A-converter

The static performance of the D/A-converter is characterized by the differential non-

linearity and integral nonlinearity. These are measured by feeding the ramp signal with

1 LSB step to the D/A-converter operating with a 1Hz sampling frequency. The mea-

sured DNL and INL are presented in Fig. 7.21. The maximum absolute values of DNL

and INL are 1.87LSB and 2.165LSB, respectively.

In Fig. 7.22 the ideal sine signal is fed to the Matlab function that distorts the

signal with the static nonlinearities of the D/A-converter. It can be seen that the static

nonlinearities limits the spurious free dynamic range to be about 83dB.

7.1.8.4 Dynamic performance of the D/A-converter

In Figs 7.23 - 7.30 the spectra of the sine signals of frequencies 1, 3, 7.5, 12.5, 17.5,

22.5, 27.5 and 30MHz are presented. It can be seen that the third harmonic domi-

nates at the low frequencies. The second harmonic increases as the signal frequency

is increased and becomes dominant at the signal frequencies near half of the sampling

frequency. The spurious free dynamic range of the converter vs. signal frequency is

presented in Fig. 7.31.
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Figure 7.21 Differential and integral nonlinearities of the D/A-converter.
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Figure 7.22 Sine signal distorted with the static nonlinearities.
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Figure 7.23 Spectrum of the 1MHz sine signal.

Figure 7.24 Spectrum of the 3MHz sine signal.
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Figure 7.25 Spectrum of the 7.5MHz sine signal.

Figure 7.26 Spectrum of the 12.5MHz sine signal.
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Figure 7.27 Spectrum of the 17.5MHz sine signal.

Figure 7.28 Spectrum of the 22.5MHz sine signal.
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Figure 7.29 Spectrum of the 27.5MHz sine signal.

Figure 7.30 Spectrum of the 30MHz sine signal.
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Figure 7.31 Spurious free dynamic range vs. signal frequency.

Figure 7.32 Spectrum of multiple carriers.

In Fig. 7.32 the spectrum of the sum of four carrier signals of frequencies 7.5, 12.5,

17.5, and 22.5MHz is presented.
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Figure 7.33 Wide-band signal at 7.5MHz.

The total power dissipation of the D/A converter was measured to be 141mW. The

high power dissipation is mostly due to the static current flowing through the switch

drivers. The contribution of the switch drivers to the power consumption is 93mW.

The static current is used to set the level of the switch driving voltage. The power con-

sumption can be reduced if an inverter-type driver is used to drive the switch. However,

then the voltage level has to be generated by other means, with the regulator outside

the chip, for example. The area of the D/A converter is 3.45mm2.

7.1.8.5 QAM Performance

The QAM performance was measured with normally distributed and truncated data

with the crest factor of 10dB. In the multicarrier case, the data had to be scaled with the

factor of 0.9 before the transmission because of a slight bug in the system. There was

saturating adders at the output of the CORDIC. If the two signals saturates the adder

and the third signal has the opposite sign, the signal is no longer saturated, and the

step type error is generated, resulting in spurs generated on the sidebands. The system

clock frequency was 61.44MHz. The data was fed to the transmitter with the pattern

generator which was synchronized to the system clock. ACLR was measured with the

spectrum analyzer. The spectra of the WCDMA signal with different combinations of

the carrier frequencies are presented in Figs 7.33 - 7.37.

EV M was measured with the single and four carriers each modulated with 4 QAM

signals with the symbol magnitude 40dB below the maximum. The measured constel-
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Figure 7.34 Wide-band signal at 12.5MHz.

Figure 7.35 Wide-band signal at 17.5MHz.
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Figure 7.36 Wide-band signal at 22.5MHz.

Figure 7.37 Multicarrier WCDMA signal.
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Figure 7.38 Signal constellation and statistics of EV M measurement.

lation for the 22.5MHz carrier and the corresponding EV M, phase error and amplitude

error are presented in Fig. 7.38. The supply voltage of the digital signal processing

part has a huge effect on the total power consumption of the transmitter. The lowest

possible supply voltage for the digital part was determined by measurement. The de-

pendence of the power consumption and the supply voltage is presented in Fig. 7.39.

The minimum supply voltage that the digital transmitter operated with was 2.165V and

the maximum clock frequency that the transmitter operated with a 3V supply voltage

was 73MHz. The measured performance metrics are listed in Table 7.6.

ACLR specification of the WCDMA base station transmitter [20] is 45 and 50dB

for ACLR12 and 17.5% for EV M. It can be said that this digital IF part of the mul-

ticarrier WCDMA base station transmitter is applicable to the 3rd generation wireless

communications systems. There is also some margin left for the signal degradation in

the analog signal processing part.
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Figure 7.39 Power dissipation of the digital transmitter as a function of the supply voltage.

Table 7.6 Measured performance characteristics of the transmitter.

Symbol rate 3.84MHz

Channel bandwidth 3.84MHz

Carrier spacing 5MHz

Nominal clock frequency 61.44MHz

Worst case ACLR12 in single carrier case

(22.5MHz carrier)

62.09/62.76 dB

ACLR in multicarrier case 57.80/58.14dB

Worst case EV Mrms -37.5 dB (1.33%)

Power dissipation with nominal (3V) digital

power supply

1.33W+141mW=1.47W

Power dissipation with optimal (2.165 V) power

supply

660mW+141mW=801mW

Maximum operation frequency 73MHz

Area die/core/D/A converter 25.75/19.18/3.45mm2
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Figure 7.40 Block diagram of the prototype

7.2 Prototype of the 16-bit 400 MS/s D/A converter with

digital calibration

In this section, the design and experimental results of a 16-bit 400 MS/s D/A converter

prototype fabricated in a 3.3V 0.35 µm SiGe BiCMOS process are presented. The

converter is designed with CMOS transistors only.

The designed converter consists of converter core, digital calibration circuitry, con-

trol registers, and measurement circuitry for the current source mismatch. The block

diagram of the converter is presented in Fig. 7.40.

The architecture is a segmented current-steering converter with 6 thermometer-

coded and 10 binary-weighted bits. Four thermometer-coded current sources are added

to MSB sources in order to introduce redundancy in the transfer function. Redundancy

is required by the calibration algorithm as described in Section 6.4. Three additional

binary-weighted current sources with weights 0.5, 0.25, and 0.125 LSB, respectively,

are added in order to have adequate resolution for the calibration. The 2-to-1 multi-

plexer (MUX) is used at the input, in order to be able to achieve 400MS/s input data

rate.

Fig. 7.41 represents the single current branch and switch set used in the converter.

Two cascode transistors are used to increase the output impedance and reduce the dis-

tortion due to output impedance variation. An additional set of switches is used to

enable the differential quadrature switching scheme [151] [168], which will be dis-

cussed later in this section.
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Figure 7.41 Single current branch of the converter.

7.2.1 Current source dimensions and DC matching

Once the DC operation point of a current branch was defined in order to have adequate

output swing and large enough Vds for all the transistor in order to keep them in the

saturation region, the dimensions for the current source transistors were determined in

order to have adequate matching. Even though the usage of calibration alleviates the

matching requirement of the MSB current sources, the matching of the LSB sources is

important since it will define the quality of the calibration and thus the static linearity

of the converter. The methods for analyzing the INL and DNL behavior as a function

of matching were discussed in detail in Section 6.3.

Assuming the standard deviation of the maximum value of the INL is related to the

standard deviation of the current source as

σINLmax =C1

√

2N −1
σlsb

Ilsb

, (7.5)

as presented in Section 6.3.3, and by defining the INL yield to be

YieldINL = P(−INLlimit ≤ MAX (INL)≤ INLlimit) (7.6)

= P(−C2σINLmax ≤ MAX (INL)≤C2σINLmax) (7.7)
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we obtain

σINLmax ≤ INLlimit

C2
, (7.8)

σLSB

ILSB

≤ INLlimit

C1C2

√
2N −1

(7.9)

=
INLlimit

C
√

2N −1
, (7.10)

in which the product of constants C1 and C2 can be combined in a single constant C.

Combining the transistor matching equation Eq. (6.5) and Eq. (7.10), the product

of channel width and length of the current source transistor are obtained as

WL =

4A2
vt

(Vgs−VT )
2 +A2

β

INL2
limit

C2(2N−1)
− 4S2

vt D
2

(Vgs−VT )
2 −S2

βD2

, (7.11)

In which D is the average separation of two current sources. On the other hand, for the

MOS transistor in saturation holds

W

L
≈ 2Ilsb

µoCox (Vgs −VT )
2
. (7.12)

Together these two equations determine the dimensions of the LSB current source tran-

sistor.

It can be observed from the Monte-Carlo simulation curves presented in Section

6.3.3 that, by choosing C ≈ 2 , YieldINL very close to 100% should be achieved.

In the early phase of the design process, it was assumed as a coarse simplification

that the maximum absolute value of the INL follows the normal distribution, and, by

selecting C = 3, the YieldINL = 99.7 should be obtained. However, in the 16-bit case,

the total area required would become very large. Therefore the dimensions of the

current sources are determined by the maximum area that can be used for the converter.

Due to the limited area available, it was decided to increase the error limit to be

INLlimit = 8, which corresponds to the linearity requirement of a 12-bit converter. Re-

ferring to research results presented in Section 6.3, it can be stated that, when compar-

ing the above mentioned approximation method and Monte-Carlo simulation results,

the same area of the current sources is obtained with C = 2 and INLlimit ≈ 5.33, indi-

cating that, with the used current source area, nearly 100% of converters should have

INL ≤ 5.33 instead of INL ≤ 8. The area required for 16-bit matching (INLlimit = 0.5,

C = 2) is 113.7 times the current area, assuming the effect of increased distance be-

tween sources is negligible. On the other hand, there exists an optimum area of the

current source that gives the best matching for a certain number of bits, as presented in
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[173]. Assuming that the average distance between the current sources is

D =
√

2(2N −1)WL, (7.13)

the area WL that results minimizes the
σLSB
ILSB

in Eq. 7.10 can be calculated to be

WLopt =

√

√

√

√

4A2
vt +2A2

β (Vgs −VT )
2

4S2
vt (2N −1)+2Sβ (2N −1)(Vgs −VT )

2
(7.14)

Increasing the area beyond this limit will, however, exacerbate the matching. How-

ever, at the time of designing the prototype, the accurate information of the transistor

matching as a function of distance between transistor was not known.

7.2.2 Output impedance

As analyzed in Section 6.5, the variation of the output impedance may have a signif-

icant effect on the harmonic distortion of a current steering D/A converter. Increas-

ing the W and L of the switches instead of using minimum L increases the switching

impedance, as presented in Section 6.5. Simulation results for simultaneously stepping

the W and L of the MSB switch from minimum to 5 times the minimum is presented

in Fig. 7.42. The impedance value is 20log
(

210×Zumsb
50

)

corresponding to the effect of

MSB current source referred to the value of LSB unit impedance.

Increasing the W and L rapidly increases the Zu. The practical scaling range is from

1 to 5 times the minimum due to the fact that the area of the switches can not be further

increased due to the finite driving capability of the switch drivers. Also, capacitive

coupling may introduce undesired behavior if the area of the switches becomes large.

Fig. 7.42 indicates that the pole p with ωp ≈ gds3gds2gds1
C3gm3gm2

of Eq. (6.68) dominates

when the scaling factor is larger than 2, and therefore the impedance on the frequency

range from 10kHz to about 100MHz cannot be further improved by scaling the switch

transistor dimensions (in contrast to the situation presented in Fig. 7.43). Further

increasing the scaling factor will move the dominant pole to lower frequencies and

increase the DC impedance, which is already large enough. It can also be observed that

the capacitance of the source node of the switches (C3 in Fig. 6.44) is determined by the

transistor area, since the frequency of the zero z2 with ωz2 ≈ gm4
C3

scales down according

to transistor scaling. Moving down the zero also improves the impedance performance

from 100MHz to 200MHz, i.e. near the Nyquist frequency of the converter, which is

as desired.

In order to demonstrate the frequency behavior of the Zu in the presence of the

routing capacitance of current source matrices, the value of the current source capacitor
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Figure 7.42 Effective Zu of MSB current source reduced to LSB unit switch.

(C1 in 6.44) is increased to C1 = 1.2nF , which corresponds to an about 800x800µm2

metal-metal capacitor in a typical CMOS process. This ensures the C1 causes the

dominant pole. The result of the simulation is presented in Fig. 7.43. In this case, the

scaling of the switch effectively improves Zu on the frequency range from 10KHz to

1MHz according to scaling of
gm4
gds3

, since the pole due to C3 is not dominant. The zero

z2 is moved down in frequency according to scaling of C3.

In both cases, the usage of the scaling factor 3 is justified due to improvement of the

impedance within the frequency ranges from 10KHz to 1MHz and from 100MHz to

200MHz. A greater improvement is achieved if C1 initially causes the dominant pole.

There also seems to exist an additional zero around 1GHz, which is not present in the

small-signal analysis. However, it is above the Nyquist frequency, thus not affecting

the performance of the converter. Figure 7.44 represents the theoretical SFDR values

obtained with current switch dimensions. The true SFDR performance due to finite

output impedance lies somewhere between the lines presented in Fig. 7.44, due to the

fact that perfect differentiality can not be achieved.
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Figure 7.43 Effective Zu of MSB current source reduced to LSB unit switch when routing

capacitance C1 is very large.
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Figure 7.45 MSB current source matrix.

7.2.3 Current source matrices

The current source matrices were designed by using 16 sub-matrices mirrored in X-,

X- or both directions in order to produce one common-centroid current source matrix

that effectively reduces the effect of both even- and odd-order gradients. The principle

of the mirroring is presented in Fig. 7.45

The sub-matrix Q in Fig. 7.45 was designed by applying the optimal sequences

both in x- and y- direction simultaneously, as presented in 6.8. Sequences were chosen

in order to minimize the effect of even-order gradient, since the residual gradient not

canceled by symmetry will be of even order. Suitable shape of the matrix is obtained

by using 8x9 grid with four dummies in the corners. The matrix of 67 MSB current

sources and a mirroring transistor are presented in Fig. 7.46. When a dummy transistor

is encountered while placing the current sources according to the sequences presented

in Fig. 7.46, the current source is placed in the next available position. Therefore

source ”3” is not in the corner [3,3], but in the xy-position [4,4], which is the next

available position.

Fig. 7.47 represents the comparison between the maximum absolute value of INL

as a function of the plane angle θ (see Eq. 6.128). It can be seen that the even-order

optimal sequence results in a smaller error, since it cancels out the residual even-order

error more effectively than the linear sequence.

Fig. 7.48 represents the comparison between the maximum absolute value of INL

as a function of the plane angle θ in the case where the sub-matrices are placed in a

4x4 matrix with no mirroring in any direction. Comparison between the Figs 7.47 and

7.48 reveals that most of the benefit is achieved by using mirror symmetry, whereas the

sequence has a large effect when no mirroring is used.
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Figure 7.46 MSB sub-matrix and the optimal sequences used for even-order gradient cancella-

tion.
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Figure 7.48 Maximum absolute INL with various plane angles.

The layout of the binary-weighted LSB matrix was designed by using principles

presented in Section 6.8. In order to reduce the error between the MSB and LSB

matrices, the current sources are biased with current mirroring ratio 1:2, resulting in

the bias current of the LSB sources to be half of the bias of the MSB sources. This

reduces the effect of the gain error of bias current mirroring, since the bias current

in the LSB matrix is divided when the actual currents are formed, instead of being

multiplied, which would multiply also the gain error.

7.2.4 Dynamic performance

In addition to code-dependent output impedance variation, the dynamic performance

(SFDR) of the converter is determined by, for example, jitter and timing differences be-

tween signal paths to and from the switches. The distortion due to code-dependent jitter

can be effectively reduced by using the differential quad switching scheme (Fig.7.41)

[151] and duplicated ”toggle”-signal path [168] [139]. The toggle signal changes its

state on those clock cycles on which the actual data bit does not change its state. This

ensures that the circuit activity, and thus the power-rail interference, is constant, and

thus code-independent. The differential quad switching scheme ensures that the actual

and ”toggle” switch drivers have equal capacitive loading, and therefore the currents
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Figure 7.49 Switch driver for differential-quad switching.

drawn from supply rails should not vary between clock cycles. It also equalizes the

voltage variation on the source node of the switches.

The switch driver signals are generated from the digital data and ”toggle” bits with

the switch driver presented in Fig. 7.49. The clock buffers (marked with ”1”) are

added in order to remove the data dependent clock load variation, the effect of which

was analyzed in Section 6.7.3. The additional buffering (marked with ”2”) is used to

ensure symmetry in both the signal and its inversion, which is not guaranteed when a

true single-phase clocked input latch is used. The differential latch stage (marked with

”3”) is used to produce a differential switch driver signal and determine the crossing

point of those signals. Finally, a symmetrical NOR-stage (marked with ”4”) is used to

produce the combinations of data and ”toggle” signals required to steer the switches.
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Figure 7.50 Simulated output spectrum of the converter when the differential-quad switching

disabled.

Dedicated power supplies are used for the different stages in the driver in order to

reduce the distortion due to power supply-interference.

The simulated spectrum when the differential-quad switching is disabled is pre-

sented in Fig. 7.50. The simulated SFDR is 78.04 dB on the Nyquist band, and is

limited by the 2nd harmonic (DC component not taken into account).

The simulated spectrum when the differential-quad switching is enabled is pre-

sented in Fig. 7.51. The simulated SFDR is 62.3 dB in the Nyquist band, and is

limited by the 3rd harmonic (DC component not taken into account).

The increase of the third harmonic component can be explained as follows by con-

sidering a fully thermometer-coded D/A converter for simplicity. The transition on the

switch driver signals causes a bounce on the source node of the switches, as presented

in Fig. 7.52. The bounce can be either due to capacitive coupling or due to simultane-

ously conducting switches. In addition, it can be assumed that the source node follows

the output voltage of the conducting current branch attenuated by
gds
gm

of the switch.
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Figure 7.51 Simulated output spectrum of the converter when the differential-quad switching is

enabled.
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Next, let us define signals

sp (n) =
(

2N −1
)

(

1

2
+

1

2
sin(∆φn)

)

(7.15)

sn (n) =
(

2N −1
)

(

1

2
− 1

2
sin(∆φn)

)

(7.16)

∆sp (n) = sp (n)− sp (n−1) = ∆s(n) (7.17)

∆sn (n) = sn (n)− sn (n−1) =−∆s(n) (7.18)

|∆sn (n)| = |∆sp (n)| (7.19)

Mp (n) = sp (n)+
1

2
(∆sp (n)−|∆sp (n)|) (7.20)

Mn (n) = sn (n)+
1

2
(∆sn (n)−|∆sn (n)|) (7.21)

ep (t) = K
gds

gm
Mp (n)sp (n)⊗ p(t) (7.22)

en (t) = K
gds

gm
Mn (n)sn (n)⊗ p(t) (7.23)

in which s(n) = s(nT ) is the small-signal equivalent of the output for a sinusoidal

input (the ”p” and ”n” subscripts stands for positive and negative output, respectively),

∆s(n) corresponds to the discrete time derivative of the output, M (n) is the number

of unit currents in the thermometer-coded converter that does not change the output

branch during the clock period, p(t) is the pulse at the source node caused by the

transition, gm and gds are the transconductance and output conductance of the switch,

K is a constant that is used to model the attenuation of error from the source of the

switches to the output, and e(n) is the error seen at the output due to differential-quad

switching.

Now it is possible to write an equation for the error signal seen at the differential

output as

e(t)di f f = ep (t)− en (t) (7.24)

= K
gds

gm

(

sp (n)
2 − sn (n)

2

+
1

2
(sp (n)+ sn (n))∆s(n)

−1

2
(sp (n)− sn (n)) |∆s(n)|

)

⊗ p(t) (7.25)

= K
gds

gm

(

2N −1
)2
(

sin(∆φn)

+
1

2
(sin(∆φn)− sin(∆φ(n−1)))

−1

2
|sin(∆φn)− sin(∆φ(n−1))|sin(∆φn)

)

⊗ p(t) , (7.26)
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which means that instability on the source node of the switches may cause odd-order

harmonic distortion when differential-quad switching is used. However, since the dis-

tortion is proportional to the output signal as is also the distortion due to the output

impedance variation, these two sources of distortion are very difficult to distinguish

from each other in any other way than disabling the differential-quad switching.

It can be seen from the experimental results presented later in this chapter, and

from the simulation results presented in Section 6.7.4, that it is beneficial to use the

differential-quad switching scheme even though it seems to reduce the SFDR when

the converter is simulated without the power-supply-rail parasitics, as in Fig. 7.50 and

Fig. 7.51.

The static timing errors due to clock and signal path imbalances may introduce

timing-related harmonic distortion as presented in [145]. In order to avoid these imbal-

ances, the load of the switch drivers is equalized with dummy structures as presented

in Fig. 7.53. The method results in an almost identical operating point, and thus in

the Cgs, of the dummy and the MSB switches. The main drawback of the presented

method is (in this particular case) the 12.79% increase in static power consumption.

A similar method is also used in [146]. In addition to load equalization, the timing

imbalance was reduced by using a tree-like clock and output signaling, ensuring that

the path length from root to leaf is equal for each signal branch.

7.2.5 Logic for digital calibration

The principle of the digital calibration method used in this prototype is described in

Section 6.4.

The block diagram of the required DSP for the digital calibration is presented in

Fig. 7.54 The functionality of the logic is as follows. The ”calibration request signal”

resets the state machine, which takes care of the execution of the calibration algorithm

as described in Fig. 7.55.

After the calibration request, the state machine shuts down all the digital blocks that

are not needed in calibration, connects the comparator to the output of the converter,

and the first calibration cycle starts. The state machine sets the CAL input code and

steps down the REF input codes starting from CAL with steps of 4 LSB. Each com-

parison is repeated a maximum of N times in order to average out the effect of noise.

There is also the possibility of using a tunable threshold level for comparison in such a

manner that, if the value of the result counter exceeds the positive or negative thresh-

old, the decision is made, even though the number of comparisons performed is less

than N (N is also programmable from 1 to 230). This speeds up the calibration, since

the large differences in which the noise does not play an important role, are resolved

faster than smaller differences.
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Once the output corresponding to the REF-code is less than the output correspond-

ing to the CAL code, the REF code is increased in steps of 1/8LSB, and the comparison

is performed in a manner mentioned above. When the output corresponding to the REF

value exceeds the output corresponding to the CAL, the offset is found with 1/8 LSB

resolution, and the cumulative offset is computed by accumulating the current offsets

with the previous ones.

For each of the CAL values corresponding to the MSB current source, the cumula-

tive offset is stored to cumulative offset memory, which consists of 67 12-bit registers

in series. RAM-memories could also be used, but the speed requirements could not be

met with the memory elements provided by the silicon vendor, and the usage of the

registers and multiplexers enabled the usage of pipelining and parallelism more freely.

After the offset for the last MSB source is found, a constant offset is computed and

stored as

Oc =

(

216 −1+4∗210 +0.875
)

LSB−O67

2
, (7.27)

where O67 is the cumulative offset for the last MSB current source. The constant offset

is used to align the input code range to the center of the analog output range, since the

whole analog output range is not necessarily used.

After the calibration algorithm is executed, the state machine returns to initial state

to wait for the calibration request, while the converter is in its normal operation mode,

using stored cumulative offset values for the linearization.

The linearization of the conversion is performed in the normal operation mode

as follows. For every input data value, the 67-to-5 offset MUX selects five possible

offset values. This is due to the fact that the cumulative offset can be as large as

4x210LSB = 4MSB, so for each 10-bit LSB segments there are five possible offset

values, as presented in Fig. 7.56
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Figure 7.57 Comparator chain.

The when-to-use computer block is used to calculate the threshold values (T1-T4

in Fig. 7.56). The input code is compared to the when-to-use value, and the corre-

sponding offset (O0-O4 in Fig. 7.56) is selected. It would be possible to also store

the when-to-use values to memory, but since the memory is the speed bottleneck of

the calibration system, it is justified to compute the when-to-use values separately for

each input code rather than use memories, since the computation of when-to-use value

requires only five subtracters and some registers for pipelining.

Finally, the digital comparator is used to compare the input to the when-to-use

values, and the offset value is selected according to Fig. 7.56. The simulation result

demonstrating the effect of the calibration was presented in Fig. 6.39.

7.2.6 DNL measurement for calibration

The key function of the digital calibration is the successive approximation A/D conver-

sion of the error of the MSB current source, and the key component in the realization

of the SAR A/D converter is the comparator. The comparator is realized as a chain of

single-stage amplifiers with offset-compensation feedback (Fig. 7.57) In the design of

this comparator chain, the following aspects are taken into account. What is required

is a comparator that is able to provide a 3.3V output with a differential input voltage of

1.2µV, which corresponds to 1/16 LSB, half of the minimum step used in calibration.

Thus, a gain of 128dB is needed.

The chain-of-amplifiers type of structure enables the offset voltage cancellation and

amplification of the signal before the comparison in such a manner that the signal is

amplified, but only the charge injection of the third amplifier stage in Fig. 7.57 affects

the result of the comparison (offset and charge injection of the first and second stage
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are canceled by the feedback of the third amplifier) [174]. Using multiple stages makes

it also possible to use a simple single-stage differential amplifier as a comparator and

obtain the required gain simultaneously. Since the single-stage amplifiers are inher-

ently stable, no compensation is required, which would otherwise be the case due to

the offset-cancellation unity feedback.

The one comparison cycle is performed as follows. First, the CAL value corre-

sponding to the MSB current source to be calibrated (see Section 6.4 and Figs 7.55

7.57 ) is applied at the input of the comparator chain (i.e. output of the D/A con-

verter) by triggering signal SCAL. After that, the first three feedback loops are opened

by opening the switches S1, S2, and S3. Then the REF-value is applied to the input,

triggered with signal SREF. If the REF-value is larger than the CAL-value the output

of the third comparator is positive, otherwise it is negative. The output of the third

comparator is sampled with the signal Sr. Sampling of the difference of CAL and REF

will alleviate the 1/f-noise requirements of the amplifiers, since it introduces a trans-

mission zero on the noise transfer function at the zero frequency [175]. Furthermore

the noise bandwidth is reduced by parallel capacitors at the amplifier outputs. Thermal

noise is reduced by maximizing the gm of the input stage of the amplifier which also

increases the gain. Increasing the dimensions of the input transistors above a certain

point results in attenuation of the signal due to capacitive voltage division between the

series capacitors and Cgs of the input stage of the amplifier.

After sampling, the feedback of the fourth comparator is opened, and the bottom-

plate sampling is completed by closing the switch controlled by the signal C, which

also enables the latching comparator. Finally, the differential output of the latch-

comparator is read to JK-flip-flop with signal R.

The latch-comparator at the end of the chain is used to further boost the result of

the comparison in order to ensure full rail-to-rail signal to be read to digital calibration

circuitry. Circuit diagrams of the amplifier and the latch-comparator are presented in

Fig. 7.58 and Fig. 7.59.

7.2.7 Experimental results

The circuit was fabricated on a 5 metal 0.35µm BiCMOS SiGE process with metal-

insulator-metal capacitors. The photomicrograph of the circuit is presented in Ap-

pendix B. The chip was packed into a 160-pin TQFP package. The measurement board

was a 4-layer FR4 PCB. Two inner layers were dedicated to ground and supply in such

a manner that the ground plane was common to all analog and digital parts, whereas

the positive supply voltages were distributed with separate supply planes. Decoupling

capacitors were placed between the supplies and ground in order to stabilize the supply

voltages. Tunable regulators were used to produce the supply voltages from a single
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supply voltage input. Area and power dissipation characteristics of the converter are

presented in Tables 7.7 and 7.8.

Table 7.7 Area characteristics
Calibration logic D/A-core Total

Area 5.83mm2 5.77mm2 14.40mm2

Table 7.8 Power characteristics
Power dissipation: Logic bypassed Logic active

Digital@65MS/s 142mW 406mW

D/A core@65MS/s 95mW 95mW

Total 65MS/s 237mW 501mW

Digital@400MS/s 320mW 1449mW

D/A core@400MS/s 306mW 306mW

Total 400MS/s 626mW 1755mW

7.2.7.1 Static linearity

The static linearity of the uncalibrated converter was first measured in order to discover

the linearity achieved by transistor dimensioning and layout techniques. The DNL and

INL curves in the uncalibrated case are presented in Fig. 7.60. The maximum and

minimum of the DNL are 2.018 LSB and -1.62 LSB, respectively. INL varies between

5.32 LSB and -7.51 LSB.

In order to discover the effect of calibration, offset is applied between the binary-

weighted LSB and thermometer-coded MSB current source matrices. The static lin-

earity of the uncalibrated D/A converter with -14 LSB offset between the LSB matrix

and MSB matrix is presented in Fig. 7.61. In this case, DNL varies between 1.73 LSB

and -15.29 LSB, and INL between 4.26 LSB and -18.93 LSB, respectively.

The effect of the calibration on the DNL can be clearly seen in Fig. 7.62. The

variation of DNL is reduced to vary from 1.47 LSB to -1.41 LSB, while INL varies

from 3.79 LSB to -10.96 LSB.

It seems that, even though DNL is reduced due to calibration, the INL is increased

when compared to the results shown in Fig. 7.60. This is due to fact that DNL errors

in Fig. 7.60 seem to compensate the accumulation of the DNL from the LSB matrix,

whereas in Fig. 7.62, this does not happen. When it comes to the reduction of DNL,

the prototype seems to function as designed; however, due to the limited resolution of

the measurement, the absolute accuracy of the calibration cannot be determined.
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Figure 7.60 Static linearity of the uncalibrated D/A converter.
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Figure 7.61 Static linearity of the uncalibrated D/A converter with -14 LSB offset between

current source matrices.



7.2 Prototype of the 16-bit 400 MS/s D/A converter with digital calibration 193

1 2 3 4 5 6

x 10
4

−1

0

1

Static nonlinearities relative to LSB

D
N

L
 [

L
S

B
’s

]

Number of sample

1 2 3 4 5 6

x 10
4

−10

0

10

IN
L

 [
L

S
B

’s
]

Number of sample

Figure 7.62 Static linearity of the calibrated D/A converter.

7.2.7.2 Dynamic performance

Fig. 7.63 and Fig. 7.64 represents the output spectrum of the converter at sample rate

65Ms/s and signal frequency 22.75MHz with the differential-quad switching disabled

and enabled, respectively.

It can be observed that the level image of the third harmonic component is reduced

23.18dB , whereas the level of the second harmonic component remains the same. Spu-

rious free dynamic range at a sample rate of 65MS/s as a function of signal frequency

are presented in Figs 7.65 and 7.65.

Similar measurements were carried out at a 400Ms/s sample rate. Fig. 7.67 and

Fig. 7.68 represent the output spectrum of the 140MHz sine signal with the differential-

quad switching disabled and enabled, respectively.

It can be observed that the effect of the differential-quad switching on the third

harmonic is less than in the case of the 65Ms/s sample rate. Enabling the toggler

also increases the other spurious tones. This is mainly due to the increased activity

of the switch driver circuitry, which, together with the too-narrow power supply rails,

causes an increase in the power-rail interference. The effect of the power-supply-rail

interference-induced jitter was analyzed in Section 6.7.4. Parasitic resistance of the

power supply rails explains a large part of the degradation of the SFDR as can be

observed from the simulation results with estimated parasitic resistances presented in
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Figure 7.63 Output spectrum of a 22.75MHz sine signal with sampling frequency of 65MS/s

and differential-quad switching disabled.
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Figure 7.64 Output spectrum of a 22.75MHz sine signal with sampling frequency of 65MS/s

and differential quad switching enabled.
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Figure 7.65 Spurious free dynamic range of the converter sampling frequency of 65MS/s and

differential quad switching disabled.

Fig. 7.69 and Fig. 7.70.

The measured SFDR curves at 400MS/s sample rate are presented in Fig. 7.71 and

Fig. 7.72.

7.2.7.3 Summary

The measured performance of the digital calibration algorithm demonstrates that rela-

tively good static performance can be achieved by digital predistortion, even though the

matching of the MSB current sources is initially poor. With the process used, the speed

requirement of 400MHz is hard to achieve. Extensive parallelism, which increases the

power dissipation of the circuit, had to be used. Parallelism also increases the area

required for the calibration. However, in the future, the scaling of the silicon processes

will increase the speed and decrease the size of the digital circuitry, whereas the area

required for the current sources will scale down slower. Therefore the digital calibra-

tion may become an interesting option with the deep sub-micron silicon processes, in

which fast and small memories and digital circuitry are available. Also scaling down

the supply voltages along the scaling of the device size will make it more complicated

to implement high performance analog circuitry, whereas it alleviates the implementa-

tion of the digital part. This work reveals that the proposed digital calibration algorithm
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Figure 7.66 Spurious free dynamic range of the converter with sampling frequency of 65MS/s

and differential quad switching enabled.
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Figure 7.67 Output spectrum of 140MHz sine signal with sampling frequency of 400MS/s and

differential-quad switching disabled.
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Figure 7.68 Output spectrum of 140MHz sine signal with sampling frequency of 400MS/s and

differential quad switching enabled.
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Figure 7.69 Simulated spectrum with estimated parasitic power supply resistances and

differential-quad switching disabled.
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Figure 7.70 Simulated spectrum with estimated parasitic power supply resistances and

differential-quad switching enabled.
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Figure 7.71 Spurious free dynamic range of the converter with sampling frequency of 400MS/s

and differential quad switching disabled.
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Figure 7.72 Spurious free dynamic range of the converter with sampling frequency of 400MS/s

and differential quad switching enabled.

is a feasible way to perform the calibration of a current steering D/A converter.

The main shortcoming of the prototype is the poor SFDR with a 400MS/s sampling

rate. An adequate level of SFDR is achieved with 65 MS/s. The measured dynamic

performance of the converter differs from the simulated initial performance (Fig. 7.51

and Fig. 7.50) quite a lot due to the fact that the parasitic resistances were underesti-

mated in the layout design phase, resulting in an excessive amount of signal-dependent

jitter.

The performance degradation was analyzed with simulations including estimates of

post-layout parasitic resistances and capacitances. The post-measurement simulations

and simulation results match quite well, indicating that the parasitics are the source of

the degradation.

Also, the effect of differential-quad switching was also verified with simulations

and measurements revealing its effectiveness in reducing odd-order harmonic distor-

tion.

The quality of performance of the implemented prototype and the recently pub-

lished converters are presented in Table 7.9.
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Table 7.9 Comparison of the prototype and recently published D/A converters

Publication Process Bits Sampl.

freq.

[MHz]

SFDR

[dBc]

@

[MHz]

DNL

max/

min

INL

max/

min

Comment

Nakamura

[154]

1µm

CMOS

10 70 ? 0.5/

-0.5

0.5/

-0.5

Mercer

[160]

2µm Bi-

CMOS

16 40 80 @

1.23

3/

-3

4/

-4

SFDR @

10MS/s

Lin [126] 0.35µm

CMOS

10 500 51 @

240

0.05/

-0.1

0.2/

-0.2

Bastos

[155]

0.5µm

CMOS

12 300 40 @

60

0.3/

?

0.5/

-0.6

No minmax

DNL

Bugeja1

[161]

0.5µm

CMOS

14 100 74 @

8.5

0.5/

-0.5

0.5/

-0.5

Van der

Plas [158]

0.5µm

CMOS

14 150 61 @ 5 0.15/

-0.1

0.3/

-0.25

Bugeja2

[162]

0.35µm

CMOS

14 100 72 @

42.5

0.25/

-0.25

0.35/

-0.35

Van den

Bosch1

[164]

0.35µm

CMOS

10 1000 61.2

@ 490

0.14/

0.08

0.18/

-0.15

Van den

Bosch2

[163]

0.25µm

CMOS

12 500 62 @

125

0.2/

-0.25

0.3/

-0.25

Tiilikainen

[137]

0.18µm

CMOS

14 100 64 @ 1 0.5/

-0.5

0.5/

-0.5

Cong

[138]

0.13µm

CMOS

14 180 50 @

63

0.4/

-0.2

0.2/

-0.4

Schofield

[139]

0.25µm

CMOS

16 400 73 @

190

0.2/

-0.3

0.2/

-0.7

Hyde

[165]

0.18µm

CMOS

14 300 71 @

120

0.4/

-0.3

0.3/

-0.3

O’Sullivan

[166]

0.18µm

CMOS

12 320 60 @

60

0.3/

-0.3

0.3/

-0.3

Huang1

[167]

0.18µm

CMOS

14 200 60 @

90

0.6/

-0.4

0.6/

-0.6

RZ-mode

Schafferer

[168]

0.18µm

CMOS

14 1400 67 @

260

0.8 1.8 No minmax

DNL/INL

Doris

[146]

0.18µm

CMOS

12 500 60 @

220

0.6/

-0.6

1/

-1

This work 0.35µm

CMOS

16 65 62.9

@

31.68

1.47/

-1.41

3.79/

-10.96

Calibrated

DNL/INL

This work 0.35µm

CMOS

16 400 41.11

@ 195

2.02/

-1.62

5.32/

-7.51

Uncalibrated

DNL/INL

This work 1.73/

-15.89

4.26/

-18.93

Worst case

DNL/INL



Conclusions

Wireless communications have been the driving force of the development of the in-

tegrated circuits during the last decade. The trend has been to move from analog to

digital signal processing and increase the bandwidth. It started with analog, while

nowadays the first digital wireless systems like GSM are at the end of the trail, mak-

ing way for 3G systems. The wireless digital communications have evolved through

services such as GPRS and EDGE towards the WCDMA and 3G, which is capable of

handling both the narrow voice band and wide data bands. Simultaneously, the wireless

data transmission systems such as WLAN/WiFi and Wimax have gained popularity. In

the world of multiple standards, it is beneficial if a single system is capable of handling

multiple standards, or if the system is reconfigurable. This kind of flexibility can be

obtained by using digital signal processing in transmitters and receivers. In this book,

the research of digital signal processing and D/A converters for digital-IF transmit-

ters is presented. The first part of the book represents the research results obtained

during the design of the multi-carrier digital IF transmitter prototype for a WCDMA

base-station transmitter. The theory of the transmitters and the signal processing, and

efficient DSP realizations, was studied. The knowledge gained was then applied to the

practical design, and finally the experimental results were presented.

The transmitter prototype consists of an interpolate-by-16 interpolation filter chain

including a root-raised cosine pulse shaping filter and three half-band filters. The root

raised cosine filter was designed with the Langrange-optimization algorithm in order to

achieve adequate EV M and ALCR for the 3G WCDMA system. Polyphase structures,

CSD-multipliers, common subexpression sharing and time interleaving was used in

order to reduce the amount of hardware in the filters.

Upconversion to the digital IF frequency was performed with a digital modulator

based on a CORDIC vector rotation algorithm, which is very suitable for VLSI imple-

mentation and performs the modulation without digital multipliers, which are usually

considered area consuming. After upconversion, the multicarrier signal was formed

by summation of eight independent datapaths on four carrier frequencies, and the re-

sult was converted to the analog domain with a 14-bit current-steering D/A converter.
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The SINC-attenuation due to the sample-and-hold function of the D/A converter is

canceled with an inverse-SINC predistortion filter. Optimization of the dynamic range

of the signal was also considered briefly. Further research into sophisticated signal

clipping methods has been carried out at ECDL by Olli Väänänen, and published in

[176].

Experimental results from the transmitter prototype indicate that the selected archi-

tecture is suitable for integrated digital IF multicarrier modulator, resulting in reason-

able area and power dissipation, and that the quality requirements of the 3G WCDMA

transmitter can be met. The performance of the transmitter is limited by the D/A con-

verter. In the future, the requirement for high-quality high-speed D/A converters will

increase, since more-and-more signal processing will be performed digitally.

The second part of the book is about the design of the current-steering D/A con-

verters. The current-steering D/A converter is a complex entity composed of various

details, all of which have to be considered and designed carefully in order to achieve

good performance. The theory part of this book represents the problem scope related

to static linearity, dynamic linearity and timing jitter. The model for the static lin-

earity was developed and the effect of the output impedance was analyzed. A digital

calibration method based on predistortion was developed and implemented.

It was demonstrated with the prototype that digital predistortion is one possible

way to realize the calibration of the current-steering D/A converter. This method has

the advantage of having practically no matching requirement for the additional analog

current sources, as is the case when a dedicated calibration DAC is used to tune the

values of the MSB current source. The main difficulty is the measurement of the

nonlinearity and the realization of the DSP required for the predistortion, whereas the

requirements for the matching (and thus area) of the MSB sources are alleviated. In the

future, the size of the digital part will scale down and the speed will increase, whereas

the analog signal processing will become more-and-more challenging making digital

predistortion technique more-and-more attractive.

The future of the IC’s seems to be mainly digital, due to the decreasing cost of

digital signal processing. However, the real world is analog and the conversion between

the two worlds cannot be avoided. This will increase the demand for the various digital

enhancement algorithms of analog-signal processing.
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Appendix A

Photomicrograph of the

WCDMA transmitter

Figure A.1 Photomicrograph of the circuit.





Appendix B

Photomicrograph of the D/A

converter with digital

calibration

Figure B.1 Photomicrograph of the circuit.





Appendix C

Jitter energy as a function of

signal frequency and jitter

amplitude

The continuous time error signal e(t) due to timing jitter is defined by the jitter signal

w(n) and the discrete-time derivative ∆x(n) of the signal x(n) as

e(t) =
∞

∑
n=−∞

∆x(n)g(t)

=
∞

∑
n=−∞

[x(nT )− x((n−1)T )]

× [u(t −nT −w(n)))−u(t −nT )], (C.1)

in which ∆x(n) = x(n)− x(n−1) and u(t) is a unit step function. w(n) has the fol-

lowing properties.

E [w(n)] = 0 (C.2)

E [w(n)−w(n−1)] = 0, (C.3)

since E [w(n)] 6= 0 results in time shift of the signal and E [w(n)−w(n−1)] 6= 0 is

equal to change in sampling period T , therefore not affecting the energy of the signals.

The power of the error signal due to jitter can be computed as

Pj = lim
C→∞

1

C

∫ C

0

∞

∑
n=−∞

∆x(n)2 × (u(t −nT −w(n))−u(t −nT ))2
dt (C.4)
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= lim
N→∞

N

∑
n=0

1

NT
∆x(n)2

∣

∣

∣

∣

∫ nT+w(n)

nT
(u(t −nT −w(n))−u(t −nT ))dt

∣

∣

∣

∣

(C.5)

=
1

T
E
[

∆x(n)2 |w(n)|
]

(C.6)

in which E [] means expectation. By substituting

y = ∆x(n)2 −µd (C.7)

z = |w(n)|−µa, (C.8)

in which µd = E
[

∆x(n)2
]

and µa = E [|w(n)|], Eq. C.6 can be written as

Pj = ρσyσz +µdµa, (C.9)

ρ =
E [yz]

σyσz

. (C.10)

In case correlation factor ρ = 0, ∆x(n)2
and |w(n)| are independent resulting in

Pj = µdµa = E
[

∆x(n)2
]

E [|w(n)|] . (C.11)

Let us assume, that x(n) is a sinusoidal signal

x(n) = Asin(∆φn) (C.12)

∆φ =
2πFsig

Fs

, Fsig ≤ Fs/2, (C.13)

and w(n) is an arbitrary jitter signal independent of x(n) In this case the power of the

error signal due to jitter can be computed as

Pj = E
[

∆x2
]

E [|x|] (C.14)

= A2 (1− cos(∆φ))E

[ |w(n)|
T

]

(C.15)

= A2

(

1− cos

(

2πFsig

Fs

))

E

[ |w(n)|
T

]

, (C.16)

in which the value of the E
[

|w(n)|
T

]

is defined by the probability distribution and is

linearly dependent on the standard deviation.

It is possible to calculate E
[

|w(n)|
T

]

for some typical jitter signals.

For sine signal

E
[∣

∣asin(2πnTj)
∣

∣

]

=
2a

π
. (C.17)



225

For Gaussian white noise

E [|N (0,σ))|] =
√

2

π
σ. (C.18)

For uniformly distributed noise − a
2
≥ w(n)≤ a

2

E [|w(n)|] = a

4
=

√
3

2
σ ,σ =

a

2
√

3
. (C.19)

The power spectral density (PSD) function of error signal due to N (σw,0) Gaussian

jitter can be derived as follows. The Fourier transform of the jitter signal can be written

as

E ( jω) =
∞

∑
−∞

∆x(n)

− jω
e− jωnT

(

1− e jω(nT )
)

(C.20)

(C.21)

and

|E ( jω)|2 = Re{E ( jω)}2 + Im{E ( jω)}2
(C.22)

=
∞

∑
n=−∞

∞

∑
k=−∞

∆x(n)∆x(k)

ω2
e− jωnT e jωkT

(

1− e jωw(nT )
)(

1− e− jωw(kT )
)

=
∞

∑
n=−∞

∞

∑
k=−∞

∆x(n)∆x(k)

ω2
cos(ω(n− k)T )

×(1− cos(ωw(nT ))− cos(ωw(kT ))+ cos(ω(w(nT )−w(kT ))))

Assuming that there is no correlation between ∆x(n), cos(ω(n− k)T ) and w(nT ), the

only combination of n− k resulting in nonzero value is when n = k, and |E ( jω)|2

becomes

|E ( jω)|2 =
∞

∑
n=−∞

∆x(n)2

ω2
(2−2cos(ωw(nT ))) . (C.23)

The PSD function of the error signal is obtained by computing the expectation of

|E ( jω)|2. Since the expectation of cos(ωw(nT )) with Gaussian N (σw,0) distributed

w(nT ) is

E [cos(ωw(nT ))] = e
−ω2σ2

w
2 , (C.24)

(C.25)

and

E
[

∆x(n)2
]

= VAR [∆x(n)] (C.26)
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(C.27)

when ∆x(n) has zero mean, the PSD function can be expressed as

S ( f ) = VAR [∆x(n)]
2−2e−

4π2 f 2σ2
w

2

4∗π2 ∗ f 2
. (C.28)

For a sinusoidal signal x(n) at frequency Fsig, the PSD function is

S ( f ) = A2

(

1− cos

(

2π
Fsig

Fs

))

2−2e−
(2π f )2σ2

w
2

4∗π2 ∗ f 2
. (C.29)

The power of the error signal on a certain frequency band −Fb to Fb can be obtained

by integrating S ( f ) resulting in

Pj (Fb) = A2

(

1− cos

(

2π
Fsig

Fs

))

(C.30)

×
e−2π2F2

b s2
+
√

π
√

2πFbσwerf
(√

2πFbσw

)

−1

π2Fb

, (C.31)

where

erf
(√

2πFbσw

)

=
∫ √

2πFbσw

0
e−x2

dx. (C.32)

The first-order Taylor series approximation of Pj (Fb) is

Pj (Fb) ≈ 2A2

(

1− cos

(

2π
Fsig

Fs

))

Fbσ2
w (C.33)

The total error power is obtained by

lim
Fb→∞

Pj (Fb) = A2

(

1− cos

(

2π
Fsig

Fs

))

√

2

π
σw, (C.34)

which is equal to Eq. (C.16) with Gaussian jitter, thus following Parceval’s theorem.



Appendix D

Fourier transforms of some

functions used in this book

D.1 Elementary relations

Notation for transformation

F {x(t)} = X ( f ) (D.1)

Time shift

F {x(t + τ)} = X ( f )e− jωτ (D.2)

Derivative

F
{

x′ (t)
}

= jωX ( f ) (D.3)

D.2 Elementary functions and operations

Sampling function

F

{

∞

∑
n=−∞

δ(t −nTs)

}

=
∞

∑
n=−∞

e− jωnTs (D.4)

According to Poisson’s sum formula

∞

∑
n=−∞

e− jωnTs ↔ Fs

∞

∑
n=−∞

δ( f −nFs) , Fs =
1

Ts

(D.5)
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Sampling

F

{

x(t)
∞

∑
n=−∞

δ(t −nTs)

}

= Fs

∞

∑
n=−∞

X ( f −nFs) , Fs =
1

Ts

(D.6)

Discrete time derivative

F

{

(x(t)− x(t −Ts))
∞

∑
n=−∞

δ(t −nTs)

}

=
(

1− e
j2π f

Fs

)

Fs

∞

∑
n=−∞

X ( f −nFs) , Fs =
1

Ts

(D.7)

Sine

F {Asin(ω0t)} =
A

j2
(δ( f − f0)−δ( f + f0)) , f0 =

ω0

2π
(D.8)

Cosine

F {Acos(ω0t)} =
A

2
(δ( f − f0)+δ( f + f0)) , f0 =

ω0

2π
(D.9)

Trapezoidal pulse (Figure D.1)

TcTr Tf

A

0

Figure D.1 Trapezoid pulse.

x(t) =
A

Tr

t (u(t)−u(t −Tr))

+Tc (u(t −Tr)−u(t − (Tr +Tc)))

+

(

Tc −
(t −Tr −Tc)Tc

Tf

)

×(u(t − (Tr +Tc))−u(t − (Tr +Tc +Tf ))) (D.10)

F {x(t)} =
A

ω2Tr

(

e− jωTr −1
)

− A

ω2Tf

(

e− jωTt −1
)

e− jω(Tr+T c)

− 2 jA

ω2Tr

e− jω Tr
2 sinω

Tr

2
+

2 jA

ω2Tf

e
− jω

(

Tr+T c+
Tf
2

)

sinω
Tf

2
. (D.11)
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If Tr = Tf = TT we get

F {x(t)} =
4A

ω2TT

e− jω(TT+
Tc
2 ) sin

ωTT

2
sin

ω(TT +Tc)

2
(D.12)

The Fourier transform of a triangular pulse with equal rise and fall times is obtained

by setting Tc = 0 in Eq.D.12 resulting in

F {x(t)} = 4ATT e− jωTT
sin2 π f TT

(π f TT )
2

(D.13)

Ramp pulse (Figure D.2)

A

0

Tr

Figure D.2 Ramp pulse.

x(t) =
A

Tr

t (u(t)−u(t −Tr)) (D.14)

F {x(t)} =
A

ω2Tr

(

e− jωTr −1
)

− A

jω
e− jωTr (D.15)

Rectangular pulse (Figure D.3)

A

0

Tc

Figure D.3 Rectangular pulse.
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x(t) = A(u(t)−u(t −Tc)) (D.16)

F {x(t)} =
A

jω

(

1− e− jωTc
)

(D.17)

= TcAe jωTc
sinπ f Tc

π f Tc

(D.18)

Signum function of a zero-mean periodic signal x(t) with 50% duty cycle (Figure

D.4)

τ

t

sgn(0+)

+1

−1
T0

Figure D.4 Signum function of signal with 50% duty cycle and time shift τ.

F {sgn(x(t))} =
−sgn(0+)e− jωτ f0 sin2

(

π
2 f0

)

jπ f

∞

∑
n=−∞

δ( f −n f0) (D.19)

Absolute value function of a zero-mean periodic signal x(t) with 50% duty cycle

F {|x(t)|} =
(−sgn(0+)e− jωτ f0 sin2

(

π
2 f0

)

jπ f

∞

∑
n=−∞

δ( f −n f0)
)

⊗X ( f ) (D.20)


