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ABSTRACT

In order to develop computer applications that succesgspribcess natural language
data (text and speech), one needs good models of the vooalamd grammar of as
many languages as possible. According to standard linguistory, words consist of
morphemes, which are the smallest individually meaningfaments in a language.
Since an immense number of word forms can be constructedrbicing a limited set
of morphemes, the capability of understanding and producaw word forms depends
on knowing which morphemes are involved (e.g., “water, wetewater+y, water+less,
water+less+ness, sea+water”).

Morpheme boundaries are not normally marked in text unkesg ¢oincide with word
boundaries. The main objective of this thesis is to deviseethad that discovers the
likely locations of the morpheme boundaries in words of aamglage. The method
proposed, calletMorfessor learns a simple model of concatenative morphology (word
forming) in an unsupervised manner from plain text. Morfess formulated as a
Bayesian, probabilistic model. That is, it does not rely oedefined grammatical rules
of the language, but makes use of statistical propertidseoiitput text.

Morfessor situates itself between two types of existingupesvised methods: mor-
phology learning vs. word segmentation algorithms. In @sttto existing morphology
learning algorithms, Morfessor can handle words congjstina varying and possibly
high number of morphemes. This is a requirement for copirtty Wighly-inflecting
and compounding languages, such as Finnish. In contrastistng word segmen-
tation methods, Morfessor learns a simple grammar thastaikte account sequential
dependencies, which improves the quality of the proposgaheatations.

Morfessor is evaluated in two complementary ways in thiskwalirectly by compar-
ing to linguistic reference morpheme segmentations ofisinand English words and
indirectly as a component of a large (or virtually unlimifedcabulary Finnish speech
recognition system. In both cases, Morfessor is shown tpesfdarm state-of-the-art
solutions.

The linguistic reference segmentations were producedrasfthe current work, based
on existing linguistic resources. This has resulted in aphological gold standard,
called Hutmegs containing analyses of a large nhumber of Finnish and Emglisrd
forms.






Preface

Little did | know, as a boy and teenager, that some of my “hegbat that time would
materialize in a doctoral thesis. In elementary school, impiEh teacher once asked
me, since | easily remembered the names of the nominal cas&wmiish, whether | was
interested in grammar? | found this absurd: Why on earth wamjane bénterestedn
grammar? Nonetheless, | guess | was. | was also interestamriputer programming.
The fascinating thing about computer games was how to makedmputer a skillful
counterplayer; actually playing the games was less cajtggzaThen as now, | had an
interest for mathematics, which was more of an applied thaoretical nature. Maths
was a tool for the creation of beautiful things, such as dolgictures of fractals.

| have had the pleasure to work in close cooperation withra¢people, who have con-
tributed tremendously to this thesis. The papers we havésbelol together constitute
the principal part of the work. In addition, | wish to recopaithe valuable contributions
of many others, whose names do not appear in the list of dmweait

My supervisor, D. Sc. Krista Lagus suggested to me that nadogly can be learned
using unsupervised methods. | am grateful to Krista forlig@rme many things about
adaptive models. She set ambitious goals and consistemslyen me toward mathe-
matically more sound and elegant model formulation. In helination toward perfec-

tionism, Krista set a shining example how to write scienffiblications.

My other supervisor, Doc. Mikko Kurimo contributed with arosplementary, more
application-oriented approach. In managing the Speeclufisad the Laboratory of
Computer and Information Science (CIS), Mikko is an encging leader. He has
promoted the work in wider circles, especially through leading role in arranging
the so-called Morpho Challenge competition sponsored byetd PASCAL network.
Mikko's help and support also made my research visit to Begkpossible.

Dr. Krister Lindén has been my mentor for many years, botinduny time at Lingsoft,
Inc. and afterwards when we were both working on our doctheedes. It was Krister
who got me involved in the field of speech recognition, whamgsoft started to develop
a Finnish speech recognizer in 1998. During our numerousdagddiscussions | have
learned enormously.

| greatly appreciate Prof. Erkki Oja, head of the CIS labmmatfor his experienced
leadership that guarantees that things run smoothly araiegffiy. Doc. Timo Honkela
has inspired me with his creative ideas and his openness ttenmaeyond the daily
routine work. Timo also introduced me to the world of sushheTcooperation and



Vi

exchange of ideas with the Speech Group has been essentiatifiging out the present
work. In particular, | would like to recognize the efforts Téemu Hirsimaki and Vesa
Siivola. The first-class work carried out by Sami Virpiojassieeen very valuable; among
other things, he implemented the interactive web demo.

I am grateful to all the anonymous reviewers who have coumtgid to the quality of
the publications through their insightful comments. Mycsire thanks go to Assist.
Prof. Richard Wicentowski and Doc. Jukka Heikkonen for examining and com-
menting on this thesis. | particularly appreciate Richantfany suggestions for im-
provements, related both to content and language, as whlkagimulating company
while giving a course in Helsinki in 2005.

My colleagues and the staff at the CIS laboratory have hetpedn numerous occa-
sions and | have enjoyed their company very much. My fellavdents at the Finnish
Graduate School of Language Technology (KIT) have beenat greup, and we have
had so much fun together. | am deeply indebted to the KIT Gased8chool for funding

this work, and | really appreciate the friendly and helpfudfpssors and staff. | would
also like to remember the people at the International Coergitience Institute (ICSI)
in Berkeley for interesting discussions in the very final sghaf this thesis work.

When it comes to a long-term project such as a doctoral thdisisaction from work is
a vital part of actually getting the work done. Fortunatéhave a wonderful family and
great friends to whom | can turn for emotional support andwtider perspective that
springs from meeting people with diverse professional gemknds. | thank my parents,
Harriet and Svante, my sister Carola and her husband Xavidmmy grand-parents llse,
Nan and Carl-Johan for their love and support. Finally, | itarexpress my immense
gratitude to my partner Anders for his constant encouragéared so much more.

Thank you everyone!

Berkeley, March 2006
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Chapter 1

Introduction

Language learning in humans takes place through activeactten with the world
around us. Meaning for us is grounded in real-world expessninvolving all of our
senses. Compare this to a computer: One can expose a corplarye amounts of
language data, text or speech; however, the computer hasimétied means for active
interaction with the external world. What, then, can a coraplgarn or “understand”
about natural language?

In automatic Natural Language Processing (NLP), languatgeate processed and ma-
nipulated by a computer program that does not really unaedsianguage. Still com-
puter programs are able, among other things, to retrieesant documents from large
databases (e.g., the World Wide Web), correct spellingakést and bad grammar in
written texts, and convert speech to text (and vice verghgrauccessfully. Automatic
translation from one language to another has not yet bedagbed, but works well
when dealing with a limited domain, such as weather forsoaisproduct documenta-
tion.

Thus, existing software demonstrates that rudimentaiguage “skills” may suffice for
a machine to be a helpful tool. How these skills become dvailto the computer is
an important issue. A standard approach consists in haxipgres design the required
linguistic resources, e.g., vocabularies and grammatitdas, which are used as the ba-
sis for the computer skills. Unfortunately such resourcestnbe tailored separately
for each language, which demands a large amount of manu&l Wtareover, specific
task domains require specialized vocabularies which meesp kip with rapidly evolv-
ing terminologies, e.g., within news reporting and fieldscgnce: biology, medicine,
physics, etc.

An alternative approach to hand-creating linguistic resesi is to design systems that
mimic intelligent behavior by “learning” themselves andapting to the language and
task-specific data they encounter. Language is not randoene tare regularities that
can be captured mechanically, by exploiting distributigmatterns found in the lan-

guage data. For instance, in a particular language, cestaind sequences may oc-
cur frequently whereas others are rare. Linguistic stradists have claimed that the
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boundaries and identities of words and sentences can li#isiséal by statistical means
directly from unsegmented streams of speech, with no kragdeof the meanings of
the words (Harris, 1954). Saffran et al. (1996) show that dmsnare capable of dis-
covering word units rapidly in a stream of a nonsense languathout any connection
to meaning. This suggests that also humans use distrilalitiores, such as transition
probabilities between sounds, in language learning. BaedtCartwright (1996) share
this view and support their argument with computationaldation.

Based on a comprehensive review of contemporary studiesvefchildren start to ac-
quire language, Kit (2003) concludes that children celyaimake use of statistical cues.
As a probable underlying mechanism, Kit proposes the leffstt principle, which can
be given a straightforward mathematical formulation. Matlatical models can be im-
plemented on computers, making it possible to design systhat learn relevant lin-
guistic structure from ordinary language data in an unsuiged manner, without the
help of a “teacher” providing correct answers. The streloiguch methods is that they
can be applied irrespective of language or specializedbtdades. These methods can
serve to complement or even replace manual linguistic work.

1.1 Morfessor

This thesis focuses on the learning of a specific kind of lisigri knowledge, namely

morphology, which concerns the regularities within wordiitng. According to stan-

dard linguistic theory, morphemes are the smallest indailg meaningful elements
in the utterances of a language. Every word consists of osevaral morphemes into
which the word can be segmented; consider for instance tihgehame segmentations of
the following English words: “hand, hand+s, left+thand-+&ager+s, un+avail+able”.

Some natural language processing applications operatennitds as the smallest lin-
guistic elements. These systems will inevitably miss tliselsemantic relationships
between words (e.g., “hand, hands, left-handed”), as veelirammatical categories
(e.g., the relationship of the plural “s” in “hands” to oth@ural forms: “heads, arms,
fingers”). For instance, in an information retrieval tagke tonsequence of such an
approach is that only documents containing the exact séayakiord will be retrieved.
That is, a search for “hand” will not find documents contagnamly the plural form of
that word: “hands”.

In highly-inflecting and compounding languages (e.g., BinnTurkish, and German)
the number of possible word forms is very high. This posesiapehallenges to NLP
systems dealing with these languages. For example, in atitospeech recognition it
is customary to use pre-made lists of attested word forms‘agranative” vocabulary.
The incoming acoustic signal is matched against the list ety words contained in the
vocabulary can be recognized. Such a word list can be crégtedllecting word forms
from large text corpora or existing lexicons, and the ainoislitain as good coverage
as possible of the words of the language. When processingdgeg with extremely
rich word forming, the resulting word lists are typicallyrydarge, which is demanding
from a computational point of view. A more serious problerinet many perfectly valid
word forms are likely to be missing from the list anyway, &rthey might never have
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vaitds | kirja | n | teko | vaihee| ssa Figure 1.1. Morpheme segmenta-

thesis | book | of | act | phase | in tion of the Finnish word “vaitos-
kirjantekovaiheessa” (“in the phase of
doing a Ph.D.").

occurred in the corpus used as a source. For instance, itieybar Finnish 32 million
word corpus, there are 4400 different word forms containiegelement “puu” (“tree,
wood"), but the forms “puusi, puukaan, pyokkipuu” (“youeér, [not] even wood, beech
wood”) are missing, among numerous other possible forms.

The vocabulary problem can be alleviated considerably ygusorphemes instead of
words as basic vocabulary units, and this idea serves astagtaoint for the current
work.! A method, calledMorfessor has been developed for the discovery of morphemes
in an unsupervised manner from raw text data. This thesizithes the development of
Morfessor together with experimental results. The follogviist constitutes a subjective
assessment of the major contributions of the work:

e Morfessor learns a simple morphology in an unsupervisecherainom unanno-
tated text. No predefined grammatical rules of any specfifigdage are required,
which makes Morfessor a language-independent method.

e In contrast to other unsupervised morphology learning rityns, Morfessor
copes with morphologies in which words can consist of lepgdguences of mor-
phemes. This is computationally more demanding than theveamapproach of
assuming that words consist of only two parts, typically stem followed by
one ending. Such a restrictive assumption is justifiableséone, but not all lan-
guages. As is demonstrated by an example in Figure 1.1, dfinmords can
consist of multiple morphemes, where stems and endings atalternation.

e In contrast to existing unsupervised word segmentatiorhaus, the later ver-
sions of Morfessor take sequential dependencies into atc@¢/ord segmenta-
tion is necessary in many Asian languages, where there isved marking of
word boundaries in text.)

e The mathematical formulation of Morfessor relies on Bagestatistics and (in
some publications) on the Minimum Description Length piphe
(Rissanen, 1989). Since these theoretical frameworksamest and well un-
derstood, they provide elegant descriptions rather #ttiimocsolutions with poor
explanatory power.

e The role of “meaning” as well as “form” in the Morfessor modetouched upon.
The notion of these central linguistic concepts is rudiragnin the current imple-
mentation, but extensions are possible. Learning fromnekersus types is also
discussed, an issue that intrigues psycholinguists, widydanguage learning in

1A simpler alternative, applicable in some situationsstsmming The purpose of stemming is to map
related word forms onto the same word stem. For instance, the'sihaf “hands” would be dropped, and
thus “hands” would be mapped onto “hand”. Stemming is commonly uséformation retrieval, where it
is sufficient to determine whether some word form (“hands”) v&@aant of a relevant search term (“hand”).
However, stemming is not sufficient, when complete word formthérethan stems) need to be recognized or
generated, e.g., in speech recognition or machine tramslati
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humans. Learning from tokens means that the frequency ofeslts (e.g., word
forms) affect their processing and representation in thedwbrain. Learning
from types suggests that the identification of distinct elata (e.g., a word form
unlike previously encountered word forms) dominates oxegudency effects.

e The morpheme segmentation produced by Morfessor has sasviée language
model utilized in a large-vocabulary Finnish speech recagnin comparison to
the other studied models, the Morfessor-based model pasfoest.

e The morpheme segmentation produced by Morfessor has adsodoenpared di-
rectly to a grammatical, linguistic morpheme segmentatitém the evaluation
that has been carried out, Morfessor outperforms a widetywknbenchmark al-
gorithm (Goldsmith, 2001, 2005). Due to the fact that theuiistic resources
required for the evaluation did not yet exist, a segmentatéference, ogold
standard was constructed based on existing resources. Gold-stantarpho-
logical segmentations for a large collection of Finnish &mglish words were
produced. The resulting software package, caletinegs has been made pub-
licly available for research purposes.

Outside the scope of the current thesis, Morfessor has bseth successfully in the
recognition of Turkish as well as Estonian speech (Hacieghkl., 2003; Kurimo et al.,
2006b). In the so-called Morpho Challenge competitionaaiged within the EU PAS-
CAL Network of Excellence, Morfessor outperformed all papants in the Finnish
and Turkish morpheme segmentation task (Kurimo et al., 2008eutz, 2006). Ha-
gen and Pellom (2005) apply Morfessor in English speechgmition intended for oral
reading tracking within an interactive reading tutor pagrfor children. Morfessor has
also been used in Finnish information retrieval, both inréiteieval of text (Engstrom,
2005) and spoken documents (Kurimo and Turunen, 2005)h&wumore, in a number of
works on language modeling, the segments discovered bydgkof constitute the ba-
sic vocabulary (Siivola and Pellom, 2005; Broman and Kugi@@05; Virpioja, 2005).
Klami (2005) has analyzed the word splits obtained wheninghnMorfessor on stories
told by Finnish children.

There is an online demonstration of Morfessor on the Interhip://www.cis.
hut.fi/projects/morpho/ . Currently, the demo supports three languages: Finnish,
English, and Swedish. Those interested in larger-scalererpnts can download the
Morfessor program and train models using their own data $&ithin a period of one
year (May 2005 — April 2006) a monthly average of 17 downloaidthe program has
been registered.

1.2 Publications and Author’s Contribution

This thesis consists of an introductory part as well as esghtrate publications:

Publication 1. Mathias Creutz and Krista Lagus. Unsupervised Discoveriof-
phemes. InProceedings of the™ Meeting of the ACL Special Interest Group
in Computational Phonology in cooperation with the ACL Saldaterest Group
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in Natural Language Learning: Workshop on Morphologicabdahonological
Learning, held in conjunction with the #0Annual Meeting of the Association for
Computational Linguistics (ACL-02pages 21-30, Philadelphia, Pennsylvania,
USA, July 2002.

Publication 2. Mathias Creutz. Unsupervised Segmentation of Words Usiing Bis-
tributions of Morph Length and Frequency. Rroceedings of the 41Annual
Meeting of the Association for Computational Linguistid€[-03) pages 280—
287, Sapporo, Japan, July 2003.

Publication 3. Mathias Creutz and Krista Lagus. Induction of a Simple Maoiph
ogy for Highly-Inflecting Languages. IRroceedings of the'7 Meeting of the
ACL Special Interest Group in Computational Phonology: Kgbiop on Current
Themes in Computational Phonology and Morphology, heldbmunction with
the 429 Annual Meeting of the Association for Computational Lirsgies (ACL-
04), pages 43-51, Barcelona, Spain, July 2004.

Publication 4. Mathias Creutz and Krista Lagus. Inducing the Morpholodiexicon
of a Natural Language from Unannotated Text. Proceedings of the Interna-
tional and Interdisciplinary Conference on Adaptive Knetlde Representation
and Reasoning (AKRRQHages 106-113, Espoo, Finland, June 2005.

Publication 5. Mathias Creutz and Krista Lagus. Unsupervised Models forgfleme
Segmentation and Morphology Learning. Manuscript acckfatepublication in
the ACM Transactions on Speech and Language Proces2D@g.

Publication 6. Vesa Siivola, Teemu Hirsimaki, Mathias Creutz, and Mikkoriko.
Unlimited Vocabulary Speech Recognition Based on Morplrsc®iered in an
Unsupervised Manner. IRroceedings of the!8European Conference on Speech
Communication and Technology (EUROSPEECH 20Q%ges 2293-2296,
Geneva, Switzerland, September 2003.

Publication 7. Teemu Hirsimaki, Mathias Creutz, Vesa Siivola, Mikko KuanSami
Virpioja, and Janne Pylkkénen. Unlimited Vocabulary SeRecognition with
Morph Language Models Applied to Finnisi&omputer Speech and Language
2006 (in press).

Publication 8. Mathias Creutz and Krister Lindén. Morpheme Segmentatiotd G
Standards for Finnish and English. Report A77, PublicatiosnComputer and
Information Science, Helsinki University of Technologytober 2004.

Publications 1 -4 present four consecutive developmepssiEthe Morfessor model.
Retroactively these model versions have been naiMedessor BaselineMorfessor

Baseline-Freg-LengtiMorfessor Categories-MLandMorfessor Categories-MARe-

spectively. The model variants can be seen as instancesaieral model, which is
described in Publication 5. In Publications 1, 3, 4, and &, iteas that led to the
described methods were developed jointly with D. Sc. Kristgus. The detailed de-
velopment of the methods, their implementation and the rix@ats were carried out
by the author. The mathematical formulation of the modéis,glanning and analysis
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of the experiments, as well as the writing of the articlesenjeint work with primary
contributions by the author.

Publications 6 and 7 concern the application of Morfessdtfiimish large-vocabulary
speech recognition. The two publications describe twetkffit experimental setups, in
which different word fragments (segments of words) are @sedasic vocabulary ele-
ments. The author described and applied the Morfessor namdigbarticipated actively
in the interpretation of the experimental results. Esgligcia Publication 7 the author
contributed to the design of the language models used, giese were based on previ-
ous work by the author (the so called statistical and graneadanhorphs obtained from
Morfessor and Hutmegs, respectively). The solution to titeod-vocabulary problem
is the result of joint work.

Publication 8 describes the design of a linguistic refeeesegmentation of a large col-
lection of Finnish and English word forms. This referencegold standard, called
Hutmegs, has been utilized for evaluation purposes in Pafidins 3, 4, 5, and 7. Publi-
cation 8 is furthermore intended as a user’s guide for rekess interested in adopting
Hutmegs. Prior to the design of Hutmegs, the author prodegatliation material for
Finnish and English. Building on the experiences acquithd, better linguistically
motivated Hutmegs gold standard was created jointly witistiér Lindén, based on dis-
cussions on central issues: models of morphology, speefiild concerning Finnish
and English, evaluation strategies, and the notation usadter Lindén produced the
English gold standard, while the author produced the Hmgisld standard and the
evaluation programs, as well as did all the writing work.

1.3 Structure of the Thesis

The introductory part of the thesis is meant to be a coheresgntation that can be read
without much consultation to the eight attached publicetidHowever, there are some
issues that are discussed only in the publications (e.tpilslen search algorithms and
performed experiments).

The introductory part comprises five chapters. The curreapter (Introduction) is fol-
lowed by Chapter 2, which presents some central linguisgoity as well as the basics
of machine learning and automatic speech recognition. ©hapthen describes the
development of the Morfessor model and the mathematicatdtation of the model.
Chapter 3 additionally gives a general account of searabritihgns and related work.
Chapter 4 discusses the “direct” and “indirect” evaluatidrmorphology-learning al-
gorithms. A direct evaluation of the placement of morphemenularies is carried out
using Hutmegs as a gold standard. An indirect evaluatioar®pmed by utilizing Mor-
fessor in an unlimited-vocabulary Finnish speech recagni€hapter 5 concludes the
introductory part of the thesis.



Chapter 2

Building Blocks

This chapter is an introduction to the general foundatidrisecurrent work. The work

rests upon several “building blocks”, which represent @riindings within the fields

of linguistics, computational modeling, and machine l@ggn The chapter also cov-
ers some basics of automatic speech recognition, which @ies a natural language
application that can benefit from the type of model develapetis work.

2.1 Linguistic Theory

Linguistic theory is a vast field with many neighboring sdes. The current presen-
tation will addressomefundamental themes in general linguistics: meaning and for
lexicon and grammar, and morphology. In addition, some erattically tractable
models are discussed.

2.1.1 Meaning and Form

The work of Ferdinand de Saussure (circa 1900) is considesettie foundations of
linguistic structuralism Saussure argued that the object of linguistics must beu ke
(in French: “langue”) as opposed to speech (“parole”). leyg, for Saussure, is the
symbolic system through which we communicate, whereascpeders to actual ut-
terances. Since we can communicate an infinite number ofnttes, it is the system
behind them that is important. This system is made upigfs where each sign is
defined precisely by how it differs from the other signs in #ystem (e.g., “tree” vs.
“bush”, “branch”, or “hierarchy”). Languages are able torganeaning because they
are organized at every level by two sets of russtagmati@andparadigmatic Syntag-
matic rules govern how signs can be combined into sequendeseas paradigmatic
rules state which subset of all signs can be put in a specifit’i® the syntagm (see
Fig. 2.1).

Signs are composed of two parts: a signifier (“signifiant’yl ansignified (“signifié”).
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Syntagmatic—
Y Morphology is fun
g;_ That sounds boring
3 School seems OK
3 She was funny
T’- George must be insane

Figure 2.1: lllustration of syntagmatic and paradigmagi@tions. The syn-
tagm concerns the combination of several signifiers (henelsydnto a se-
guence, where the position is significant for the meanindnefghrase. The
paradigm concerns the selection of a signifier to occupy &iposn the
syntagm.

The signifier is aracoustic imagdée.g., the sound sequence [tri:]), which is used to refer
to aconcept(e.g., the idea of a tree). Saussure emphasizes that wagdgi€ss) are
not labels for real things that exist in the world. Words eathefer to ideas we have
about the world. For instance, the word “tree” refers to acemb we have in our heads,
and linking this concept to a particular tree in the real @amlolves particular kinds of
language work. (de Saussure, 1916; Peterson, 2001)

Arbitrariness of Form

Saussure claimed that the bond between the signifier (fonchsegnified (meaning) is
arbitrary. Thisarbitrariness of forntan be illustrated by comparing the words for “tree
in a few languages: “arbre”, “Baum”, “derevo”, “puu”, “tradThe choice of signifier
is based on social convention rather than on any naturalsenéal link. The above
words are equally well suited for referring to roughly thengaconcept because there
is nothing about any of these sounds that is more treelike dhg other. (de Saussure,

1916; Peterson, 2001)

Structuralist Approach to Meaning

Saussure was followed by several prominent structuralestsong others Leonard
Bloomfield, Edward Sapir, and Zellig S. Harris. A central gien was the role of
meaningwithin linguistic science. The structuralists argued tim&anings in language
are closely related to the forms in language. Real-worlcegrpces, such as pointing
to the referent of a word, or understanding the meaning of @fvom the situation in
which it is said, are adequate and essential, but not sufficdenditions. The less ob-
vious meanings of many words, such as “time”, “considefig™ “of”, can be learned
only by much experience with theeighboring words and sentencedth which they
occur (Harris, 1991). In Harris’ words: “we find that the maeys are not additional
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properties unrelated to the syntactic forms, but are close@mitant of the constraints
on word-choice in the operator-argument relation and orptrécipation of words in
various reductions and constructions.” That is, to undexba particular word, one has
to know in which possible combinations with other words itors.

Interestingly, Harris also claims that the boundaries alahtities of words and sen-
tences can be establisheddigtistical meanswith no knowledge of the meaningdar-
ris, 1954, 1991). This opens interesting perspectivesghwliie explored in the current
work.

Reflections

According to Saussure’s claim of arbitrariness of form,tfeaning of a word does not
depend on the individual sounds it consists of. Howeveretlige evidence that some
sounds and sound clusters can evoke certain types of mearij8jpme direct ‘sound
symbolism’ has been seen between certain sound types amal wis tactile shapes.
Most people agree that the made-up word ‘oomboolu’ woultebetesignate a round,
bulbous object than a spiky one. In addition, the appropniass of the vowel sound rep-
resented byein English ‘wee’ and in Frenchpetit ‘'small’ and Italianpiccolo‘small’
for expressing things of small size has been traced in Sdeaguages.” (“Language”,
2005)

The structuralist approach to meaning is related tarieaning-is-ustheory by Wittgen-
stein (1953). However, linguistic structuralists onlydstuneaningwithin language and
leave other types of meaning outside their scope of invatstig. This view has been
criticized by cognitive linguistse.g., George Lakoff, which see linguistic abilities as
but one part of general cognition. Cognition is embodiediamdlves multiple modal-
ities: auditory (hearing), visual (sight), tactile (toiredp), kinesthetic (movement), etc.
Cognitivists claim that the difference between language @her mental processes is
possibly one of degree but not one of kind. Thus, it makesesem#ook for general
principles that are shared across a range of mental domdeemning is reflected in the
mental categorie§i.e., concepts or ideas) which people have formed from growp
and acting in the world. (Saeed, 1997)

A third, and classical, meaning theory is thatdehotational semanticsThis theory
attempts to determine the truth conditions of uttered sex® A sentence refers to
a situation, and a listener who understands the senteneesknbat conditions in the
world would make the sentence true. An objection to thisthéothat we have no ac-
cess to a reality independent of human categorization, lagréfore linguistic symbols
cannot refer directly to states of affair in the world. (SheE997)

2.1.2 Lexicon and Grammar

Language is an open system where entirely new utterancebecanoduced and un-
derstood. This system relies @noductivemechanisms by which a virtually infinite
number of meanings can be conveyed by arranging a limitedf s8&ments according
to a limited set of rules. Commonly, the set of elements ikedahelexiconand the set
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of rules is called thgrammar®

In accordance with the principle known as Occam’s razorjensific theory should be
as simple as possible while still providing an adequaterifggm of the phenomenon it
tries to explain; see, e.g., Gibbs (1996). Such a striveifopkcity, or minimalism, has
guided the structuralists as well as representatives ef leguistic movements. Both
the structuralist Leonard Bloomfield and the generativisaid Chomsky prefer models
where all regularities found in language are captured bytaenmar, whereas the role
of the lexicon is to list the remaining facts, or “idiosynsies”, that cannot be covered
by any rules. (Bloomfield, 1933; Chomsky, 1965; de Beaugzafhf91)

Morphemes

The lexicon, according to Bloomfield, consists of the set afimal Saussurean signs,
calledmorphemesFurther definitions for morphemes include the following:

e the smallest individually meaningful elements in the w@hees of a language
(Hockett, 1958),

e minimal meaningful form-units (de Beaugrande, 2004),

o the primitive units of syntax, the smallest units that caarbbeeaning (Matthews,
1991),

e linguistic forms which bear no partial phonetic-semang®amblance to any other
forms (Bloomfield, 1933).

Morphemes are thus portions of utterances that recur irr otfterances with approx-
imately the same meaning. They are minimal in the sensetibgtdannot be broken
into independently recurring smaller pieces in such a wayttie meaning of the whole
form is related to the meanings of the smaller pieces (Hock668). For instance, if
this definition is applied on the sentence “Sun springs wsjayfulness.” the following
morpheme sequence is obtainedUN SPRING-S US IN- TO JOY -FUL -NESS.

In some cases the morphemic status of a sound sequence &llard For example,
the sequence “sl-” appears in the English words “slick,, dlpher, slide, slimy, slink,
sling, slog, slosh, slouch, slow” etc., words which seenmaxeiin common some notion
of a smooth trajectory or substance, possibly with someaghstnvolved. However,
“sl-" occurs in combination with neighboring sound sequen¢e.g., “-ick, -ip, -0g”)
that do not themselves combine in a sufficiently regular eaymorphemes; consider,
e.g., “sl-og” vs. “d-og, f-og, fr-og, j-og, I-og”: what wodlbe the common meaning of
“-0g” in these words? (Harris, 1991)

IMany linguists are likely to consider both the lexicon anksupart of the grammar, but in this work the
more informal use of terms will be practiced.
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Phonemes

The minimal meaninigl units, morphemes, consistjpfionemeswvhich are the minimal
meaningdistinguishingunits in language. Phonemes are sound units and their ergani
zation is studied within the field gfhonology Each language has a particular set of
phonemes. For instance, in English, the sounds [p] and gbphonemes, because this
sound opposition is sufficient for distinguishing betweeorphemes, as in “pin” vs.
“bin”. By contrast, the aspirated “p” [ occurring in “pin” [p"in] is not an instance of
another phoneme than the unaspirated “p” occurring in *ggimn]. If one pronounces
these words with the wrong quality of the “p” sound, they iill be intelligible and
mean the same thing (even though the speaker may reveaktiganbt a native speaker

of the English language). (Bloomfield, 1933)

Morphology and Syntax

Grammar is traditionally split into two subsystermsorphologyandsyntax Morphol-
ogy studies how words are formed from morphemes, wheredaxsgtudies how utter-
ances are formed from words. This split is based on the vietwtlords are important
units and that the processes going on within words are difteirom those going on
between words. In any case, it is difficult to draw a clear lofzupm between morphol-
ogy and syntax. There have been attempts to construct a gratresed directly on
morphemes without a division into morphology and syntaxweleer, current linguistic
theories do generally maintain the division. Derivatiod anmpounding are considered
purely morphological phenomena, because their effectbraited to within one word.
By contrast, inflection can be considered part of both mdig@and syntax, since in-
flection pertains to the role of the word in the sentence. gkson, 1992) (Inflection,
derivation, and compounding are described in Section 2.1.3

Reflections

The dualism between lexicon and grammar has been questieriedby modern con-
nectionists, who draw inspiration from findings in psychgliistic research. The con-
nectionists argue that learning, representation, andegedeg of grammatical rules as
well as lexical items takes place over a large number of dot@mected simple process-
ing units in the human brain. There are no mental rules andstioct system to process
rules. Rather both the lexical and grammatical knowledgedsessed in the same areas
of associative memory, and thus there is no clear divisidwéen lexicon and grammar
(see, e.g., EIman et al., 1996).

However, the distinction between lexicon and grammar aéte gome support, likewise
on psycholinguistic grounds. Ullman (2001) claims thatittemorization of arbitrary
form-meaning pairings depends upon an associative orddaole” memory (lexicon),
whereas a “procedural” system is specialized for compugeguences (grammar). Ac-
cording to Ullman, these systems are indeed distinct. Thieeamental lexicon as well
as nonlinguistic knowledge about facts and events aredsioréhe associative mem-
ory. The procedural circuits are implicated in the learrang expression of motor and
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cognitive “skills” and “habits”, from simple motor acts t&iked game playing.

The strive for optimality and minimalism in the descriptiohlanguage does not lead
to one well-defined optimal model. This is due to the fact that cost of different
linguistic subsystems is difficult to assess and may berdiffiein different situations.
Suppose that associative memory is cheap, whereas theapii of a multitude of
grammatical rules is slow, i.e., computationally expeasMoreover, some regularities
that could be captured by rules have low learnability in pcac that is, most speakers
of the language never grasp the particular underlying nmésha In this scenario, it
would be advantageous to store a large number of entireghinasn enormous lexicon
and reduce the number of rules to a minimum, as opposed toltdwmrilieldian view
of the lexicon as a storage only for the arbitrary knowledg tannot be captured by
rules.

Naturally, a linguistic theory can be elegant in its own tiglithout having to rely on
how language is processed in the human brain. Neverthélessjay morphemes are
combined is very often restricted by specific constraintt #re hard to capture by
general rules. For instance, it is customary to saygurpose” and by accident” rather
than ‘by purpose” or bn accident”. It is not impossible that such conventions may
be explained by general underlying regularities, but pbbbthey are best modeled as
arbitrary lexical facts.

Representatives of cognitive linguistics assume thaétisaa continuum between syntax
(grammatical rules) and lexicon. Cognitive linguists @terwithconstructiongather
than morphemes. Constructions are defined as symboliceortssting of a form and
a meaning. This definition resembles that of the morphemtetheuminimal status of
the construction is not stressed. Constructions can be ifikech-like expressions that
always appear exactly in the same form, e.ga €an dé. However, typically they allow
for modifications, such as inflection of some of their eleraeaty., rawaconclusiori
vs. “drawing conclusios” (see, e.g., Goldberg, 2003; Croft and Cruse, 2004).

In addition to the specific constraints and conventions dpaty to the combination of
morphemes, frequently co-occurring morphemes tend toigecquances of meaning as
a whole that are not deducible from the meanings of the iddai morphemes. For in-
stance, what is the morphemic status of the English wordstjoi™? On the one hand,
“joystick” can be defined as a morpheme, because its measimgt ia transparent com-
position of the meanings of the morphemes “joy” and “stio®h the other hand, these
constituents do contribute to the meaning of the whole;astlthe “stick” aspect is part
of the “joystick” concept. de Marcken (1996) proposes a méaleunsupervised lan-
guage acquisition, which involves two central conceptsnpositiorandperturbation
Composition means that an entry in the lexicon is composeusth#r entries. Pertur-
bation means that changes are introduced that give the vehofeque identity. This
framework is similar to the class hierarchy of many prograngranguages, where
classes can modify default behaviors that are inheritech fsaperclasses. The more
of its properties a lexical parameter inherits from its comgnts, the fewer need to be
specified via perturbations.

It is worth mentioning that not all scholars accept the memh as a unit in the first
place. A morphology based on whole words and word stems iscatied by Ander-
son (1992). He argues that if the morpheme is a basic meaaimging unit, there
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should predominantly existne-to-oneelations between categories of meaning and as-
pects of form. However, Anderson claims that this relat®oudry oftenmany-to-many
rather than one-to-one. For example, the Icelandic worddiia(you had) is consti-
tuted by the following links between meaning and form: thephemeHave — “haf”,
indicative mood— “a”, past tense (preterite)> “a-0i”, singular number- “ir", second
person— “r". Anderson prefers word formation rules that take stermsngut, apply
operations on them, and produce word forms as output. Fonjgbea the regular plural
formation of English nouns can be expressed as#XiXs/ (“dog” — “dogs”). Within

the general typology of morphology, this is an Item and Pseceodel of word structure
(see Section 2.1.3, page 16).

2.1.3 On Morphology

Due to the scope of this thesis, morphology is treated manetighly than other sub-
fields of general linguistics. In the following, some basiorphology-related concepts
will be introduced. The classical division of morphology aets into three types, as
suggested by Hockett (1954), will be covered, followed bysawksion of the applica-
bility of these models to different types of languages.

Morphs and Allomorphs

The sentence “Sun springs us into joyfulness.” was abovaseted into the morpheme
sequences$uUN SPRING-S US IN- TO JOY -FUL -NESS'. According to the classical con-
vention of term usage, “morpheme” is reserved for an abisti@wcept, whereas actual
segments of utterances are calfedrphs This distinction can be illustrated by repre-
senting the corresponding morph sequence as “sun+spring+g+to+joy+ful+ness”.
Morphemes are abstract classes, realized as sat®oforphs Allomorphs are morphs
that mean the same thing and occucamplementary distributiorif the word “sun” in
the example is replaced by “sunny weather”, the followingphosegmentation is ob-
tained: “sunn+y+weather+spring+s+us+in+to+joy+fulssie This demonstrates that
the morphemesun can be realized as the two morphs “sun” and “sunn”, which are a
lomorphs. The longer variant “sunn” is used before the menph “-v”, whereas the
shorter variant “sun” is used in other contexts.

An alternative term usage convention is to refrain from gshre term “morph” and talk
about morphemes both in the abstract and concrete sense.\&tessary to emphasize
the “morph” aspect, other expressions, sucimasphemic segments word-parts are
used. (Harris, 1951; de Beaugrande, 2004)

It should be noted that morphologies can be formulated batisfieech (pronounced
form) and text (orthographic form). For languages, suchragligh, where the connec-
tion between orthography and pronunciation is sometimegate, the two morpholo-
gies may exhibit allomorphy at different points. For ingt@nin our previous ortho-
graphic example two allomorphs were found for the morphepre, namely “sun” and

“sunn”. However, the two spelling variants are pronounakshtically and there is thus
only one allomorph from the point of view of pronunciationhélopposite is true for
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the past tense ending “-ed”, which can be pronounced in thegs: as [d] in “sailed”,
as [id] in “waited”, and as [t] in “kicked”.

Stems and Affixes

Mainly three processes are involved in the creation of caitipmal word forms, i.e.,
words consisting of multiple morphemaesflection derivation andcompoundingDif-
ferentinflectionalforms of a word express different grammatical relationshefword
with other words in the sentence. For instance, English saacur in both singular
and plural number, e.g., “ehild” vs. “all the childrer?. In derivation the semantics or
part-of-speech of the original word changes; e.chjltish’, “ childly”, and “childhood
are derived from “child”.

Inflection and derivation typically take place througffixation Affixesare morphemes
that never occur as free forms, but neestemto attach to. Depending on the position
of the affix in relation to the stem, the affix is classified gwefix suffix circumfix or
infix. A prefix precedes the stem and a sulffix follows it (e.g., Bigtun-" and “-ness”
in “unhappiness”). A circumfix consists of a pre- and suffiattbo-occur systematically,
e.g., German “ge- -en” in “gesprochen” (Eng. “spoken”). Xafi are rare in European
languages, but one example is the colloquial “bloody infix"British English, e.g.,
“abso-bloody-lutely, Coca-bloody-Cola, fan-bloodytte’s

A stem can be compositional and consist of layered substathaféixes. For instance,
in “childishness”, the suffix “-ness” is attached to the stahildish”, and the suffix
“-ish” is attached to the stem “child”. A minimal, individis, stem is called &ot (e.g.,
“child” in “childishness”). Words formed bgompoundingontain multiple roots (e.g.,
“childcare, childbirth, childbedfever, flowerchild”). (dthews, 1991; Karlsson, 1998)

Hockett's Models of Morphology

Hockett (1954) has identified and named three general apipesao the modeling of
morphology: Word and Paradigm(WP), Item and ArrangemenflA), and Item and
ProcesqIP).

Word and Paradigm is the classical school-book approach of grouping word$ wit
the same inflectional pattern into inflectional classes,aragigms. Each slot in the
paradigm corresponds to some grammatical features asdigriee word (e.g., present
tense, 8 person). For instance, the table below contains the inflestof five English
verbs that exhibit some differences in their forms and tlaehbeen grouped into five
separate paradigms:
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Paradigms
Grammatical form I Il 1l v \%
Infinitive wait invite split sell take
Present tense/%Bperson| waits invites  splits sells takes
Present participle waiting inviting splitting selling taking
Past tense waited invited  split sold took
Past participle waited invited  split sold taken

When the inflectional class of a new word is known, all its irntftats can be determined
by analogy from other words belonging to the same class. amgple, if the following
class memberships are assumed: “shout(l), like(ll), duttell(IV), shake(V)”, the
following inflected forms can be deduced, among others: Ushdiked, cutting, told,
shaken”.

In the Word and Paradigm model, morphemes are unnecessargmts, but they are
central in thdtem and Arrangement model. In |A, word forms are composed of mor-
phemes (items), which occur in certain arrangements. Thpmeme representations
of word forms can be sorted into paradigms just as in the WP medg:

I I 1] v \'
WAIT INVITE SPLIT SELL TAKE
WAIT +-S INVITE + -S SPLIT+-S SELL+-S TAKE + -S

WAIT +-ING INVITE +-ING SPLIT+-ING SELL+-ING TAKE +-ING
WAIT +-ED INVITE + -ED SPLIT+ -ED SELL+-ED TAKE + -ED
WAIT + -EN INVITE + -EN SPLIT+ -EN SELL+-EN TAKE + -EN

The inflection patterns now look identical for each paraditima infinitive consists only
of the verb stem whereas the other forms are obtained by gdaénendingss, -ING,
-ED, and €N, respectively. How the morpheme sequences are realizedrdfovrms is
governed byallomorphy

In the Item and Arrangement model, word segments which &matphs of the same
morpheme are identified and it is necessary to determinehaddlomorph to use in
which context. The following allomorphs are obtained fag thorphemes in our exam-
ple: waIT ={wait}, INVITE ={invite, invit}, spLIT={split, splitt}, SeLL={sell, sol},
TAKE = {take, tak, took}, s={s}, -ING ={ing}, - ED ={ed, d, @}, and -EN = {ed,
d, @, en}? Now, the production of word forms is a matter of selecting toerect
allomorph according to context. For instanaevITE +-ING — invit+ing = invit-
ing, SPLIT+-EN — split+2 = split, SELL + -EN — sol +d = sold, andAKE + -ED —
took +o = took.

The existence of theero morph(@) is somewhat controversial. In the inflection of
the verb “split”, the past tense and the past participle deatical to the verb stem,
which is “split”. Therefore, it is customary to think thatettending morphemesgp
and €N) are not realized at all in these forms, i.e., they are redlias zero morphs.
A more problematic analysis is provided for the past tensmfof the verb “take”.
The morphemekD is used as a past tense marker, even though it is realizedeas a z

2This list of allomorphs is not exhaustive with respect to theplete morphology of the English language.
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morph, whereas the fact that the stem undergoes a vowel el{dage” — “took”) is
merely seen as an instance of stem allomorphy. A more apgealtiernative solution
for “took” is to have a discontinuous allomorph “t-k” GAKE, and an infixed allomorph
“-00-" of - ED.

Theltem and Processmodel provides a more elegant framework for treating morpho
logical processes other than concatenation. The items odtBist of morphemes and
the processes correspond to morpho-phonological ruldse (forphemes are alterna-
tively called roots in order to contrast IP with 1A.) Word fos result from applying
rules to one or several morphemes, which may alter the eg@liz of the morphemes.
For instance, the present patrticiple of English verbs iglpced by appending “-ing”
to the verb stem, dropping the final “e” of the stem, and samedi doubling the final
consonant, if present: “wait+ing = waiting, invite+ing =viting, split+ing = splitting”.
The past tense forms are usually produced by appending thiegefred” (“wait” —
“waited”), but there are also cases of vowel change (“take*took”).

Note that in IP not every phoneme (or letter) of a word neadgdzelongs to a mor-
pheme. For instance, in the word form “waited” the suffix “-ésl a marker of the
past tense formation process. In the form “took” the passeéemarker consists of the
replacement of “-a-e” with “-00-". In principle, one couldse the terminology mor-
pheme/allomorph for the processes and their markers inasfthese carry meaning.
However, by tradition, morphemes are considered to be ifemssegments of words),
never processes.

Morphology Typologies and Applicability of Hockett's Models

In classical morphological typology, dating back to workigward Sapir (1921), the
world’s languages are characterized by their position om ¢antinua: isolating vs.
syntheti¢ andagglutinativevs. fusional®

The opposition between isolating and synthetic languaigssih the number of mor-
phemes words typically consist of. The higher degree ofl®gsis, the higher the
morpheme-per-word ratio is and the larger is the set of ptessiistinct word forms.
In a strictly isolating language (e.g., Chinese) each wanaststs of one single mor-
pheme. English is among the most isolating of the langua@éiseoindo-European
family. Examples of moderately synthetic languages arerfaarand Japanese. Finnish
and Turkish are very synthetic and Inuit is polysynthetie.(ivery highly synthetic).

The other continuum, agglutination vs. fusion, is concémith how morphemes are
put together in order to form words. Agglutination meang thards consist of mor-
phemes “glued” (or concatenated) together with a minimumisfup. In the resulting
word form, the morphs are easy to distinguish and each maobatly corresponds
to one unit of meaning, as for instance in the English worcetosheart+ed+ness” and
the Finnish word “sy6+ta+v+i+a” (“[some] edible [thing]sliterally: “eat+PASSIVE

+ PARTICIPLE+PLURAL + PARTITIVE"). Fusion, in contrast, implies that a combina-
tion of several morphemes is manifested in one single mayptvhich it is difficult to
find a segmentation into smaller parts. Examples of fusierttae English verb “could”

SIsolating languages are alternatively calstalyticlanguages.
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(can +PAST TENSH and the French article “au” (from “a +le” meaning “to the”),

Keeping these morphology typologies in mind, the three molggy models identi-
fied by Hockett can be ranked in order of increasing gengralg follows: Word and
Paradigm, Item and Arrangement and Item and Process.

The Word and Paradigm model is only applicable to languagtsavfairly high de-
gree of isolation, because the memaorization of paradigmtagting hundreds or thou-
sands of different forms, as would be the case for highlylstit languages, is hardly
fruitful. However, if fusion is common in a language, the WPdebmay be a rea-
sonable choice. For instance, in many European langualgere is a very limited
set of different endings, and each ending is typically “eglisin several inflectional
forms. One single ending can code for case, number as wekrdeg as for exam-
ple the German suffix “-er”, which can stand for the nominatsingular masculine
(“ein neteer Mann”; “a nice man”), the genitive plural feminine (“nettFrauen”; “of
nice women”) and so on. In this case it makes no sense to seégratdistinguish-
ing markers for plural, genitive, feminine etc., as oppogednalyzing agglutinative
word forming, as in Finnish “mukav+i+en nais+t+en” (“niC@tURAL + GENITIVE
woman +PLURAL + GENITIVE"). The German example illustrates how it sometimes
comes more naturally to think of inflection as a mechanisnmrelyea word takes differ-
ent shapes (e.g., “nett, netter, nette, nettes, nettetenriethan to think of a base form
onto which additional meanings can be attached (e.g., $tinfthukava— mukava+n
— mukav+i+en”).

The IA and IP models can nevertheless be applied to the cdsmre WP is used. For in-
stance, German adjectives can be thought to consist of aastdmn ending (“nett+er”),
where the ending is considered as a morph manifesting thoephmmes (e.g.,GENI-
TIVE + PLURAL + FEMININE"). Alternatively, one can maintain that case, number, and
gender systematically co-occur in German endings, whetabywould manifest one
such “heavy” morpheme. Note also that IA or IP are not only ption, but a re-
quirement, if one wants to describe adequately the wholgphwogy of the German
language. The productive compounding cannot be satisfigcttescribed by a WP
model; consider word forms such as “Fusdl-spielerdatenbank” (“database of foot-
ball players”) and “Kunsstoff-spritzmaschinen” (“plastics spraying machines”). When
it further comes to nonconcatenative phenomena (e.g., Wnmd'Fuss” vs. “Flsse”;
“foot” vs. “feet”), the IP modeling framework is to be prefed over IA.

2.1.4 Mathematically Tractable Linguistic Models

The analytic tools provided by the structuralists have hessu by linguists for studying
and describing the phonological and morphological systeimsimerous languages all
over the world. Zellig Harris took a further step by propasanfully automaticproce-
dure for discovering morphemes from words and sentencesmNehomsky suggested
a model of syntax that explicitly identifies all “well-forrdg or grammatical, sentences
of a language together with their phrase structure. Theléwelmorphology formalism
by Kimmo Koskenniemi provides an efficient means for the matted morphological
analysis and generation of word forms in languages with dexamorphology. In the
following, each of these approaches will be discussed irestetail.
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Harris’ Morpheme Segmentation Method

Harris (1955, 1967, 1991) suggests the following methodftomatic morpheme seg-
mentation: “given the firstn phonemes of a given-phoneme sentence, for every,

1 < m < n, we count how many different phonemes follow these fitgphonemes in

all sentences which begin with thesephonemes. The same procedure can be used to
count the predecessors of the lasphonemes of the sentence, for eachThe points

in the given sentence at which the number of successorsédepessors) forms a peak
are, to a first approximation, the boundaries between thgineonic segments of the
given sentence”.

For instance, the following segmentations are obtainedsfume English words:
“dis+turb+ance, dis+tem+body, di+sulf+ide, de+form+igpple”. (In this example,
spelled words are used instead of phonemic sequences.)egheeatation of “defor-
mity” is based on the following statistics: In the Englishrmas used, in all words
beginning with “d” there were 15 different second lettens.all words beginning with
“de” there were 26 different third letters. In all words beging with “def” there were
9 different fourth letters. That is, there is a peak in thecegsor count between “e” and
“f”, and thus a morpheme boundary is suggested at that mtafihe subsequent suc-
cessor counts form a series of decreasing numbers: 5, 414n8,more peaks). When
calculating the predecessor counts from the end of the wadallowing sequence is
obtained: 25, 17, 19, 9, 2, 2, 4, 1. That is, there are two pé&kkand 4): before the
third to last letter (“-ity”) and after the second letter €d).

Harris’ method has been widely used in later research. HafdrWeiss (1974) were
able to perform more extensive computer experiments thans{4967). They also ex-
plored a larger number of segmentation policies; in additiosuccessor and predeces-
sorcount they calculated successor and predecesstopyto measure the predictabil-
ity of the continuation of the word. Many modern word and nieame segmentation
algorithms rely entirely on Harris’ method or use it for betoapping.

Generative Grammar

Harris’ student Noam Chomsky criticized traditional graarsifor being incomplete
and “relying on the intelligence of the understanding readall languages provide
means for expressing indefinitely many thoughts, and agugrid Chomsky (1965),
the creative aspect of language use and related universplssmted regularities can
be captured by aniversal grammarChomsky wanted to supplement the grammars of
particular languages with the universal grammar, sincaiflg &dequate grammar must
assign to each of an infinite range of sentences a structesaligtion indicating how
this sentence is understood by the ideal speaker-hear@érémn having full compe-
tence of the language). A mechanism that provides such diciegmalysis is called a
generative grammar

The generative grammar comprises transformation rulessgpecify how any well-
formed string of a language can be generated frodeep-level'universal” represen-
tation. For instance, the two Englislirface-levesentences “The dog chases the cat.”
and “The cat is chased by the dog.” would have a common despdealysis. Chom-
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sky’s work has been tremendously influential in generaldistics, despite the fact that
many scholars do not share his view of an innate universahigar; for a discussion,
see, e.g., EIman et al. (1996).

Two-Level Morphology

In the 1960’s and 70's, Chomskyan generative grammars weviset for describ-
ing phonology and morphology. The implementation involegdered sequences of
context-sensitive rewrite rules that converted abstemtasentations into surface forms
through a series of intermediate representations. Farinst the Finnish words “kéades-
s4, késissa” (“in [the] hand, in [the] hands”) could be gabed from the deep-level
morpheme representations “kate+ssa, kate+i+ssa” thrihegfollowing steps: (1) The
stem-final “e” is dropped before the plural marker “i"; “k&tsa, kat+i+ssa”. (2) A
“t” followed by “i” is changed to an “s": “kate+ssa, kas+iss (3) A “t” in a closed
syllable (“tes”) is softened to a “d”: “k&de+ssa, kés+i+s¢d) Due to vowel harmony,
the back vowel in “-ssa” is changed to a front vowel: “-ss&&de+ssd, kds+i+ssa”.

A notable problem with ordered rewrite rules is that theyiadeed sensitive to the or-
dering. If rules (2) and (3) were to change place in the abgaenple, one of the result-
ing word forms would be different: “k&dessadissd”. Another problem consists in the
ambiguity of the underlying deep-level form. For exampl@rie observes the surface-
level form “kasissd”, how does one know that the deep-lemehfis “kate+i+ssa” rather
than, e.g., “kasi+ssa”?

Koskenniemi (1983) solved the ordering and ambiguity prots by introducing a non-
generative model which, however, retained the two sepdeatds: deep, ofexical,
level vs. surface level. Hence, the model was catied-level morpholog¢TWOL).
As opposed to the sequential rule processing in generatodels, the rules work in
parallel in the two-level formalism. The rules have simultaneouseasdo both the
lexical and surface-level representation, and the charaets may be different on the
different levels. For instance, the lexical representetiof the words “kadessa, kasissa”
may be “kATE+ssA, KATE+I+ssA’. The rul@’ <=> _ E:i " denotes thata “T" on
the lexical level should be realized as an “s”, when immetijafiollowed by a lexical

“E” realized on the surface as “i".

Each rule of a two-level morphology model can be implemented separate and fairly
simplefinite state transducgFST). The same applies to the lexicon, which contains the
deep-level representations of words and morphemes. Thelexdton can be splitinto
logical sublexicons, each implemented as a finite statengattn: One sublexicon can
contain the noun stems, another the verb stems, a third eneftactional endings of
nouns, and so on. All these components of the full morpholdgnodel can be merged
into one huge FST by means of finite-state algebra, for whilitient tools exist; see,
e.g., Karttunen and Beesley (2005); Mohri and Riley (2002).

The morphologies of numerous languages have been desdnitibd two-level mor-
phology formalisnt. Koskenniemi has formulated an explicit and principled rodth

4An early list of languages comprises Finnish, English, JapapRomanian, French, Swedish, Old Church
Slavonic, Greek, Lappish, Arabic, and Icelandic (Koskenrij 1984). A search on the Internet additionally
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addressed to linguists, for the discovery of appropriate-level rules (Koskenniemi,
1991). Theron and Cloete (1997) has proposed an automatioagh, suitable for ma-
chine learning. Their system takes word pairs as input @tee form vs. base form)
and attempts to find an optimal transformation of the basa fato the inflected form,
by adding a prefix and a suffix and by applying sound changegciéssary.

2.2 Machine Learning in Natural Language Processing

Natural language processing (NLP) is a subfield of artificitlligence and linguistics.
It studies how computers can process and manipulate nd@imglage and how com-
puters eventually could “understand” human language, l@aat, interact with humans
in a seemingly intelligent manner using language. NLP apfibns include, but are not
limited to speech synthes(gext-to-speech conversiorgpeech recognitiofspeech-to-
text conversion)machine translationinformation retrieval question answeringand
text proofing(checking and correction of misspellings and incorrectrgrear).

NLP applications typically rely on large databases of lisga knowledge, e.g., the vo-
cabulary of a language (including inflections), thesauainslation equivalents in pairs
of languages, and pronunciation dictionaries. The manesilgd of such resources is
labor-intensive and requires considerable effort by listiciexperts. Once the databases
have been created, they need to be maintained on a contilasiss since language
evolves and new terminology emerges in a number of speethlibmains. To reduce
the amount of tedious manual workachine learningan be utilized as a replacing or
complementary technique.

Machine learning is the capacity of a computer to learn fromeeience (i.e., data)
and to extract knowledge from examples. A successful leatmeuld be able to make
general conclusions about the data it is trained on. Thaswallit to act appropriately
in new situations. For instance, an NLP application mayridéhat there are different
categories of words: nouns, verbs, adjectives etc., andasedpories of these. When
confronted with an unknown word form in context: “Did you sekere | put my red
gambunk”, the program should ideally be able to classify this wdghfnbunk”) as
a noun designating some kind of an object. This entails, gnatiner things, that this
word can probably be inflected into plural number (“gambuks

The following presentation of machine learning focusesstatistical learningin an
unsupervised settingOther learning methodologies are also touched upon. Bnles
explicit reference to specific scientific publications isdaaa number of prominent text
books have been used as a source (Gelman et al., 1995; Ha@@8, Manning and
Schitze, 1999; MacKay, 2003; Nilsson, 1996; Russell andiiypt995) together with
WikipedieP.

finds references to works on Amharic, Croatian, Danish, Geridarwegian, Russian, Turkish, etc.
Shttp://en.wikipedia.org/wiki/Main_Page
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2.2.1 Types of Learning

There exist three major types of machine learnisigpervisedunsupervisedandrein-
forcement learning

In supervised learning, there is a “teacher” that provitiedéarner with a set of input-
output pairs. For instance, Erjavec and DZeroski (2004erea system that is trained
on pairs of Slovene inflected word forms and the morphosyictanalyses of these
words. The system is then capable of deducing the base formsswowords. Some
entries for the verb “gledati” (to look) are the followinggléda — gledati Vmi-
p3s-n, gledas — gledati Vmip2s-n, gledajo — gledati Vmip3p-n
When encountering the unknown word “igrajo” (they play), #ystem can correctly
suggest the base form “igrati” (and the tagip3p-n ).

In unsupervised learning, there is no teacher providingrel#®nswers, but since the
data are not entirely random, there are statistical retjigisithat can be captured and
that can be applied autonomously in new cases. One exanthiedsscovery of clusters

in a data set, e.g., the grouping of words that occur in simsiéatential contexts. The
categories that emerge, fully without supervision, candreeptually appealing: nouns
are separated from verbs, and subgroups, such as animaigaaimdate nouns, can be
distinguished; see e.g., Honkela et al. (1995).

Reinforcement learning corresponds to something betweesupervised and unsuper-
vised approaches. It differs from supervised learning éndlnse that explicit input-
output pairs are not available. In reinforcement learniry,agent explores an envi-
ronment (real or simulated) and is able to take actions. Ddipg on the outcome of
the series of actions taken, the agent is rewarded or pedalithe strive for maximal
reward makes the agent learn over time to improve its behavimrder to apply rein-
forcement learning in NLP, true situations of interactiottvhumans would be needed.
There are experiments with robots in which a common langeagerges in the robot
community (e.g., Steels, 1997), but naturally this robaglzage is not an existing hu-
man language.

2.2.2 Learning Methodologies

Different traditions have led to the emergence of differaathine learning methodolo-
gies, the most central beimgle-based artificial intelligence, artificial neural nebnks,
evolutionary modelingandstatistical learning

Traditional artificial intelligence (Al) is based on logic and the learning aims at dis-
coveringlogical rulesdescribing regularities in the data. Inductiordetision treeand
Inductive Logic Programmin@LP) are examples of the rule-based approach. Decision
trees represent Boolean functions and can be used for penigrclassification. For
instance, Vasilakopoulos (2003) utilizes an induced decigee for labeling unknown
words with part-of-speech tags. Inductive Logic Programgsystems (Muggleton and
Raedt, 1994) try to derive a logic program from a databasaa$fand expected results,
which are divided into positive and negative examples. Kazand Manandhar (2001)
generate word segmentation rules from a raw list of wordsguHiP in combination
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with genetic algorithms (see below).

Artificial neural networks draw inspiration from the functioning of living brainstulti-
layer perceptron{MLP) are a type of neural networks, which serve as univeapal
proximators of any continuous mappings frafdimensional inputs t&vV-dimensional
outputs. A classical example of the use of an MLP in natunadjleage processing is
NETtalk (Sejnowski and Rosenberg, 1987), which was abletwert English text to
speech. In the training phase, the network was suppliedthitltorrect pronunciation
of 1000 frequent words. Another highly influential work (Relfmart and McClelland,
1986) concerns the learning of the past tense form of Engégs; a pattern associator
network ended up mimicking the behavior of children acaqujboth regular and irreg-
ular forms (including incorrect regularized forms, such‘gsed” instead of “went”).
Self-organizing map6SOM) exemplify a network architecture that learns withsut
pervision (Kohonen, 1982, 2001). A SOM transforms an inegrsignal pattern of
arbitrary dimensionality into a usually two-dimensionaatete map in a topologically
ordered fashion. As a consequence, similar inputs will loatkd close to each other
on the map. Self-organizing maps have been used in a veryl bavege of NLP ap-
plications, including the following: exploratory informan retrieval (Honkela, 1997;
Kohonen et al., 2000), analysis of conceptual similaribésvords (Honkela, 1997;
Lagus et al., 2002), word sense disambiguation (Lindén3R2@hd acquisition of mor-
phological categories (Pirrelli et al., 2004).

In nature, not only do individual animals learn to perfornitée but species evolve
to better fit in their niches.Evolutionary modeling, or genetic algorithmsimitate
natural evolution in artificial environments and fit wellanthe reinforcement learning
paradigm. In a typical setting, one or more individuals (gger computer programs)
are put to a task and those who perform the best are allowegtoduce. The reproduc-
tion is often combined which some random “mutations” of tleaes of the offspring.
Evolutionary modeling is the natural choice for simulatai emergence and evolution
of language (e.g., Steels, 1997; Kirby, 2002). Kazakov amah&mdhar (2001) apply a
genetic algorithm in order to discover a “naive” morphologhere words are always
split into two parts.

A problem that intrigues statisticians is how best to usepasndrawn from unknown
probability distributions to help decide from which dibution some new sample is
drawn. A related problem is how to estimate the value of amaownk function at a
new point, when values of this function are known for someo$gebints. Making such
inferences can be callestatistical learning. Statistical learning is the methodology
used in the current work and the entire following sectionddidated to this topic.

2.2.3 Statistical Learning

The current presentation of statistical learning focuseBayesianprobability theory
(pages 23-26). Some central issues will be illustratediiinan example: the inductive
inference problem, maximum likelihood vs. maximum a pasteoptimization, and the
different views on probabilities advocated by Bayesiardsfaequentists.

There is an alternative interpretation of statistical éag, based orinformation the-
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ory. In information theory, the information content of a messagquantified intdits
according to statistical properties of the data. Inforoatiheoretic models comprise
the Minimum Description Length (MDL) and Minimum Messagenigéh (MML) for-
malisms (pages 27-29). Some further models are mentionefty/br

Probabilistic Modeling and Maximum Likelihood Optimization

Traditional rule-based systems can make inferences ssfatlgse.g., TWOL might tell
us that the Finnish word “kirjassa” is the inessive singofahe noun “kirja” (“book”).
However, sometimes the outcome is ambiguous, e.g., the ‘kirpasta” may be the
elative singular of “kirja” or the patrtitive singular of “kanen” (“little book, booklet”).
The latter interpretation is less likely than the former df additional information is
available, since “kirja” is a much more frequent word thairjaen”. The rule-based
TWOL, however, has no means of expressing this asymmetrgives the two alterna-
tives on an equal footing.

The problem can be remedied by introducing probabilitieshim model, that is, by
turning toprobabilistic modeling Probabilistics provides a means for ranking different
interpretations of the data, e.g., how likely it is that f&sta” means “book” vs. “book-
let”. Additionally, probabilities can be utilized for selecting a suitable giamong a
broad selection of possible models. A model can here be sealexicon of parameter
values The more parameters are used, the more expressive the ipodel, the more
degrees of freedom it has.

For instance, suppose that there is a family of simplistidet® each of which consists
of a lexicon of morphs. Lexicons emerge from a stochasticess, where letters are
chosen by random. The alphabet consists of the 26 lowerletises in the English
alphabet and of a morph separator (space). For simpliditigtters (including space)
have equal probability, i.e%. The lexicon is generated by iteratively producing letters
by random until two spaces are obtained in a row. Each letisitipn in the lexicon
can be considered as a parameter and the actual letter thagies that position can be
considered as the value of that parameter.

The lexicon is a morph collection in the sense that each sgelimited string is a
morph. The probability of the lexicon depends on its size (thmber of free parameters
in it). Some possible lexicons and their probabilities are:

Lexiconl1 “a,c_e.g.i . j.l._mnn_o_p.r

t_u_.", P(Lexicon] = (%)%

L
27

—

Lexicon 2 “apple _juice _lemon _orange _tree ", P(Lexicon 3 = (%)31

[ESTEN )

Lexicon 3 “apple _applejuice _appletree _juice _lemon _lemontree

orange _orangejuice ",  P(Lexicon3 = (5-)%

—

Lexicon 1consists of 29 letterd,exicon 2of 31, andLexicon 3of 69 letters. The larger
the lexicon is, the higher the number of possible configaretiis, and the smaller the
probability is, that the lexicon actually looks exactly ahappens to do. Therefore,
Lexicon 1 which is smallest, is the most probable model, bexicon 3which is largest,
is the least probable modda priori.
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Given these three models (lexicons), it is possible to camptobabilities for a small
data set, namely the word list: “apple, orange, lemon, jlapplejuice, orangejuice, ap-
pletree, lemontree”. We continue to keep the task simpleé agasume that all morphs in
a lexicon are equally likely to occur. In addition, we assuhs there is word boundary
morph (#), which is as likely as the other morphs in the lexico

Lexicon 1contains 14 morphs (which are actually individual lettesjiding the word
boundary morph makes them 15 and the probability of obsgraimy of the morphs
becomesl%,). The representation of the data usingxicon 1looks as follows, where
spaces indicate morph boundaries and number signs wordlbdes: ‘apple#or
ange#lemon#juice#applejuice#orangejuice#apple
tree#lemontree## . The sequence consists of 69 morphs and its probability
conditioned oriexicon lis thus: P(Data| Lexicon 3 = (%)% ~ 7.1 - 10752,

Lexicon 2contains only five morphs. With inclusion of the word bounydiarorph, the
probability of observing one of the morphs is tl"%lsLexicon 2produces the following
representation for the data, consisting of 21 morptsiplée # orange # lemon #
juice # apple juice # orange juice # apple tree # lemon tree # # ", The
probability of the data whehexicon 2is given as a model isP(Data| Lexicon 3 =
(3 ~4.6-10717.

Lexicon 3contains eight morphs, which are in fact identical to thedsan the data.
Including the word boundary morph, the uniform morph ocence probability is thus
%. Now there is no longer an unambiguous morph segmentatidineoflata, because
both “applejuice” and “orangejuice” can be representedvimways: ‘applejuice #
vs. “apple juice # ", and “orangejuice # "Vs.“orange juice # ", respectively.
Since all individual morphs have the same probability, theraatives with a smaller
number of morphs are more likely$)? > ($)®. The most likely segmentation of
the entire data thus consists of 17 morphapgle # orange # lemon # juice #
applejuice # orangejuice # appletree # lemontree # # ”. Consequently, the
probability of the data conditioned drexicon 3is: P(Data|Lexicon3 = (3)'7 ~
6.0 - 10717,

When the lexicons were compared according to tpaor probabilities the following
ranking was obtainedP(Lexicon 3 > P(Lexicon 3 > P(Lexicon 3. However, as
has also been demonstrated, if the lexicons are compareddaug to their likelihood
with respect to the data, another (the opposite) rankingem$(Data| Lexicon 3 >
P(Data|Lexicon 3 > P(Data|Lexicon 3. That is,Lexicon 3provides the best fit for
the data, wheredsexicon 1provides the worst fit. Selecting the model that assigns the
highest probability to the data is calletaximum likelihoodML) optimization.

Inductive Inference Problem

Inductive inference is the process of reaching a generatlasion from specific ex-
amples. This means that one can propose a model based aabéabservations and
hope that this model will serve well fa@redictionin new situations. The challenge, of
course, is how to discover a good model in general. This prolwill be illustrated
using the three lexicon models introduced above.
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Lexicon 3provides the best fit for the data available, which can be oredsas the
probability it assigns to the data. However, as such a lexisca very large model,
it is flexible in the sense that it can learn the data very ately, and in fact cap-
ture too many restrictions that by chance happen to be preSdre modeloverfits
the data by learning it by rote. This means that the predigbower of the model is
poor. For instance, the probability assigned to the possilord “orangetree” is zero,
P(“orangetree #” | Lexicon 3 = 0.

Lexicon 1does not provide a very good fit for the observed data. Theictshs
that apply are hardly modeled at all, which means that ptiedis made by the model
are not reliable. In contrast tioexicon 3 this model generalizes to new word forms
to a larger extent. For example, the possible word “oraegéthas the probability:
P(forangetree#"|Lexicon] = (&)''. This is not much lower than the
probability of the observed word “lemontreeP(“lemontree #"|Lexicon ) =
(%5)10. However, the nonsense string “akvppkrb” is more probalée tboth of the
previous words, because in this model the probability ofwwoyd is simply a function
of its length in lettersP(“ak vp pkr b #" | Lexicon ) = ({)°. Lexicon 1 underfits

the training data and therefooeergeneralizes to new data.

In this particular scenarid,.exicon 2appears to be a good compromise. It assigns
the same probabilities to the possible words “orangetred’ “eemonjuice” as to, for
instance, the observed words “appletree” and “orangejuide(“ orange tree #” |
Lexicon2 = (§)* = P(“lemon juice #” |Lexicon3 = P(“apple tree #" |
Lexicond = P(“orange juice #” |Lexicon 3. By contrast, the nonsense string

“akvppkrb” has zero probability in this model.

Bayesian Inference

In the fruit words example,exicon 2is by far the most likely model, if both the prior
probability of the model,P(Lexicon X, and the probability of the data conditioned
on the model,P(Data|Lexicon X, are taken into accountP(Lexicon 3 - P(Data|
Lexicon 2 ~ 1.9 - 107! > P(Lexicon 3 - P(Data|Lexicon3 ~ 1.0 - 1071 >
P(Lexicon 3 - P(Data| Lexicon 3 ~ 2.2 - 107123, In this comparison the complexity
of the model has been balanced against the fit of the trairatey @vhich favors a good
compromise, that is, a model that does not overlearn andtletuately generalizes to
unseen data. This can be seen as a mathematical applichti@roinimalist principle
called Occam'’s razor or the principle of parsimony: “Pliteed non est ponenda sine
necessitate”, in other words: “Keep things as simple asiplesdut no simpler”. The
latter is claimed to be a paraphrase by Albert Einstein; spe®ibbs (1996).

The proposed model selection procedure is based on maruilzeposterior proba-
bility of the model,P(Lexicon X Data). The posterior can be rewritten using Bayes
rule:

P(Lexicon X - P(Data| Lexicon X
P(Data) '
It can be cumbersome to estimd®Data), the prior probability of the data set itself.

This is the probability that, in general, we would come asrdata that actually look
exactly like the data set we happen to have. If, however,ritention is to compare

P(Lexicon X Data) = (2.2)
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different models on the very same data set, the probabilitieodata is a constant that
does not affect the result of the comparison. Thereforepthbability of the data can
be ignored, and we obtain the product used above:

P(Lexicon X Data) o< P(Lexicon X - P(Data| Lexicon X. (2.2)

In Bayesian inference, in principle, one does not choosertieemost likely model when
predictions are made about new observations. Rather, sdife models participate in
the prediction, but, the more likely a specific model is, thaeritrust” is put in it. This
optimal result is obtained by weighting the prediction magieeach individual model
by the posterior probability of that model. The estimateobability that a particular
new piece of data is observeldd¢w Ob%, when a specific data set is given, is thus:

P(New Obg Data) = Z P(New Obg Lexicon X - P(Lexicon X Data).  (2.3)
X

If the number of possible models is very high, as is usuaklydhse, optimal Bayesian
prediction is infeasible. A common approximation is to userhaximum a posteriori
(MAP) estimate. This implies that after all, only the one rabalith the highest posterior
probability is chosen.

In the fruit words example, the posterior probabilitylafxicon 2is much higher than
those ofLexicon land 3. ThereforeLexicon 2would dominate completely in the
weighted sum (2.3), and the predicted probability of a newdye.g., “orangetree”,
P(“orangetree#” | Data), would be very close to the value based on the MAP esti-
mate,P(“orangetree#” | Lexicon 3. Thisis, however, not always the case. Typically,
there may be multiple competing models that have nearlylgmuobability.

Bayesian and Frequentist View on Probabilities

There are two major formulations of probability theory,ttbéthe Bayesians and that
of the frequentists. The frequentist view is that probé&bgi can only beelative fre-
quencies of occurrencéor instance, if a database of English texts contains 5omil

letters, and the letter “y” occurs one million times, the kmbility of “y” can be esti-
mated to bel.

In contrast to the frequentists, Bayesians use probasiliior expressinglegrees of
belief For example, prior to observing any corpus of English terg could suggest
that the probability of the letter “y” ig%. That is, if one only knows that there are 26
different letters in the English alphabet, one might wardgeign the same probability
to each letter, a priori.

There are situations, in which probabilities make sensg fsom a Bayesian point of
view, e.g., the probability that there is life on Mars. Forequentist, there is one planet
Mars, and there either is life there or not.
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Minimum Description Length

As an alternative to the Bayesian approach, Jorma Rissat@duced the Minimum
Description Length (MDL) principle in 1978 (Rissanen, 1978DL is based on infor-
mation theory. Since its introduction, MDL has undergonanges, and when talking
about MDL one should be careful to specify which version of M@ne has in mind.
Regardless of version, the fundamental idea of MDL is to wiata compression as a
basis for inductive inference. Any regularity in data canused for compressing the
data. Therefore, the more compact description one canrofitaa data set, the more
regularity one has discovered and the more one has learoed thie data.

Another consistent theme in the MDL methodology is the tigacof Bayesian prior
probabilities. The Bayesian approach leaves room for stibjy and in principle it is
possible to “tailor priors for each occasion” by always csiag prior distributions that
give a high posterior probability to the specific data setaich Such bad modeling
practice is naturally not endorsed by the Bayesians, buatkesion against subjective
criteria is more outspoken in the MDL philosophy.

In Ideal MDL, the goal is to discover the shortest possible computerrpanodTuring
machine) that prints the desired data sequence and then haitrns out that the more
regular a sequence is, the shorter the program code redoirgaoducing it is. The
length of the code is called th&lmogorov complexityor algorithmic complexity of
the data sequence and it can be measured, e.g., in numbis {inary digits); see,
e.g., Grinwald et al. (2005). Theoretically, since for gneraginable data set there is an
associated shortest program code, it is possible to definebalpility distribution over
all possible data sets. The probability of a specific datess$ké probability of producing
the corresponding program code, i.e., a sequence of zedasas. The probability that
such a bit sequence emergeéj$? = 2~¢, whered is the Kolmogorov complexity, i.e.,
the code length in bits. Thus, even though MDL does not adioetiee Bayesian notion
of probability, it also abandons the frequentist view, hseaprobabilities are related
to code lengths rather than to relative frequencies of seage in some empirical test
setting.

The Kolmogorov complexity is an objective optimizationterion, but it is of little
practical use, since it can be shown that it is impossibleesigh an algorithm that
computes the Kolmogorov complexity of an arbitrary data det practice, one has
to choose coding schemes that are less expensive than lgpugrase programming
languages. Thus, one restricts the model search to a limitedkel family that one
judges appropriate for the task and gives up the idealized gfodiscovering every
possible regularity that is present in the data.

The most wide-spread application of practical MDL in natlaaguage processing is
based on @wo-part coding schemgRissanen, 1989). This approach has been rebap-
tized by Griinwald et al. (2005) &rude MDL in contrast to a more recent version,
calledRefined MDL Crude MDL picks the model that minimizes the surtModel) +
L(Data| Model), where L(Model) is the description length for coding the values of
the model parameters andData| Model) is the description length for coding the
data sequence conditioned on the particular model. Whendtae sttquence is long
enough, its optimal code length approaches the negatiegitbg of theprobability of



28 Chapter 2. Building Blocks

the data conditioned on the modél(Data| Model) ~ — log, P(Data| Model). Simi-
larly, L(Model) can be associated with a probability distribution such fH{atodel) ~
—log, P(Model). This implies that the minimization of the two-part MDL sum i
equivalent to maximizing the corresponding posterior phility, proportional to the
productP(Model) - P(Data| Model). Therefore, Crude MDL can be considered equiv-
alent to maximum a posteriori (MAP) optimization (see paZ@s26).

From the point of view of “objectivity”, the problem with Cde MDL is how to come
up with theModel part of the two-part code. One can use an “intuitively reabtet
coding scheme, but this is not satisfactory, since the g#gnT length L(Model) can
be large under one code and small under another. In Crude M&re is no principled
mechanism for banning “subjective” codes and imposingéotiye” ones.

Refined MDL differs considerably from Crude MDL. This modemrsion was intro-
duced in the late nineties (Rissanen, 1996; Barron et 808Y18nd a rather accessible
presentation can be found in the tutorial by Grunwald et 2006). Refined MDL
employs aone-partrather than two-part code, due to the fact that the code i3-ass
ciated with an entire model class instead of one specific n@de, set of optimal
parameter values). For instance, in the task of fitting aetova specific sequence
of data points, Refined MDL might choose between the claskif-grade polynomi-
als and that of fourth-grade polynomials, but it does nanprily state whether some
y = 2® — 22® + x — 5 is to be preferred ovey = $a* + 2 — 322 4+ 22 — 4. The
description length that is calculated for a particular datquence depends on two bal-
ancing factors: (1) How good a fit to the data can be obtaineudilse suggested model
class, i.e., how good is the best-fitting model within thess®aA good fit is reflected in
a short code length. (2) Does the class additionally comteidels that fit well to many
other data sequences of the same length as the data set &t Ifidind is the case, the
parametric complexitypf the model class is high, which results in longer code lengt
The parametric complexity is related to the degree-ofefome of the model class, but it
also takes the geometrical structure of the class into axtcdine parametric complex-
ity equals the logarithm of the number of essentially défdr distinguishable models
within the class.

For large samples, the one-part code of Refined MDL can bengivevo-part code

interpretation after all: Models in a class are encoded Is¢ fliscretizing the model
space into a set of “maximally distinguishable models”, #reh assigningqual code

length to each of theseAfter this, the data are encoded using the selected model.
any case, Refined MDL reduces the room for “subjectivity” &riding upon which

model classes to compare (e.g., polynomials of differegrel). Once this is done,
the probability distributions used for different paramet@lues emerge implicitly, in an
“objective” manner.

From the point of view of data compression, Refined MDL th&oadly produces shorter
codes than any two-part encoding schemes. Two-part codestagrently redundant
due to the fact that they fail to take into account that oneld/oever encode a data set
conditioned on just any model, but only on thetimalmodel within the model family
under consideration. That is, when one knows the first pati@tode, i.e., the values
of the model parameters, one can also infer that the secanafpidne code can only
represent data sets for which this particular parameteigumation is optimal.
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Minimum Message Length and Other Methods

The Minimum Message Length (MML) method (Wallace and Baulth968; Wallace
and Freeman, 1987) is closely related to MDL. The two mettamdsnot seldom mis-
taken one for another. MML is based on a two-part code alndesttical to that of Crude
MDL. In contrast to Rissanen, Wallace and Freeman (198 7¢radio the philosophical
view that prior information always exists and that it shobt&lformulated mathemati-
cally as well as possible: “The health of Bayesian stasstan only be undermined by
any return to the notions of ignorance current in the 1960%#0's.” Thus, MML relies
on the Bayesian notion of probability and can be seen as etaioeling-scheme variant
of MAP optimization.

The advocates of MML disagree with the later objectives ef MiDL research com-
munity. Even though Refined MDL may provide a slightly morenpact description
of the data, it proposes a model class rather than a fullgispé model. Wallace and
Dowe (1999) claim that the discovery of fully-specified misde more useful in many
situations. In some problems, two models within the samssctaay have markedly
different conceptual structure, which makes it questitmalow to define meaningful
classes in the first place.

The described methods for inductive inference (ML, full Bayan, MAP, MDL, MML)
rest on solid theoretical ground and their scope of apjtinas very general. Funda-
mental issues in statistical learning theory (SLT) are alddressed by Vapnik (1998),
where theoretical results are presented concerning therrobdata necessary for ob-
taining a desired approximation at a desired level of confide (For a more compact
introduction to SLT, consult, e.g., Evgeniou et al., 2000)d&r some circumstances
less general and computationally less intensive methadsiéalel selection might be
preferred, e.g., Akaike’s information criterion (AIC) (Alke, 1974) and the Bayesian
information criterion (BIC) (Schwarz, 1978). The latteraigjuick approximation of a
Bayesian model comparison procedure.

2.2.4 \ector Space Models

The treatment of machine learning in NLP is concluded withisguksion on vector
representations for linguistic units (e.g., words and rherpes). This topic may not
have direct relevance to the models implemented as a pdredaiurrent thesis, but it is
important for the understanding of some related work.

Morphemes that have similar semantic and syntactic priggsdstpically occur in similar
distribution. That is, the context of other morphemes inchitthese morphemes occur
are similar. In a machine learning setting, the context obaaiheme can be represented
as avector, which is a mathematically tractable object. A simple waycémstruct a
context vector for a target morpheme is to accumulate cdontsach morpheme that
occurs within a fixed-sized window around the occurrencetheftarget morpheme
in the corpus. The value on each dimension of the vector septe the number of
occurrences of a specific morpheme. Relying on such a repedim, the similarity of
morphemes can be calculated using vector algebra. One commeasure is theosine

of the angles between two vectors. (Consult a standard tek for concrete examples,
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e.g., Manning and Schutze, 1999.)

Since the number of distinct morphemes is generally vegelahe dimensionality (i.e.,
size) of the vectors is also very large. Moreover, most \&lnenost vectors are zero,
because most morphemes only occur in the context of a few othgpphemes. A more
compact representation can be obtained, e.g., usindom projection which rather
accurately preserves the mathematical properties ofsizéld vectors (Kaski, 1998).
Further experiments and references can be found in Binghanviannila (2001).

In addition to calculating similarities between differenorphemes, one may be inter-
ested in discovering categories, possibly with hieramhstructure. Clusteringtech-
nigues can be utilized for this purpose, whereby similarphemes are grouped to-
gether; see, e.g., Manning and Schiitze (1999); Schalke®f()L Also the Self-Organiz-
ing Map (Section 2.2.2) can be utilized for clustering.

A further step of analysis consists in hypothesizing that abserved variables (i.e.,
the dimensions in the vectors) can be explained using a enmalimber of underlying

variables and that the effect of these underlying varialdesanifested jointly in the

set of observed variables. Principal Component Analysi@®CA) a new coordinate
system is fitted to the data points, such that as much variante data as possible
is captured by the first dimensions. The last dimensions baveninor significance

and can be left out, which results in a reduction of the oebdimensionality; see e.g.,
Haykin (1999); Hyvérinen et al. (2001). In natural languggecessing, an extension
of PCA calledLatent Semantic Analys{gSA) is frequently used, e.g., in information
retrieval (Deerwester et al., 1990).

Independent Component Analy8iSA) resembles PCA, but the aim is to discover com-
ponents that are statistically independent in additiongimdp decorrelated as in PCA.
Within natural language processing, promising applicetiof ICA include work by
Bingham (2003), Honkela and Hyvérinen (2004), Vayrynen Hodkela (2005), and
Lagus et al. (2005).

Vector space models can be applied within both the stadlstitd neural learning method-
ologies mentioned in Section 2.2.2. Not surprisingly tremeconnections between the
two. For instance, it has been shown that neural network$eeain the principal com-
ponents of the statistical PCA method (Oja, 1982).

2.3 Automatic Speech Recognition

In automatic speech recognition (ASR), speech is transdribto text by a machine.
The recognition system is comprised of a number of compaenémtludingacoustic
models a lexicon and alanguage model The acoustic models represent sounds of
the language. Each phoneme is typically modeled separ@giythe immediate con-
text of the phoneme is taken into account; for instance, thedund in the Finnish
words “vaha” (wax) and “vihko” (notebook) are pronouncetfadiently, due to differ-
ent phonemic neighborhoods. Acoustic models are more sislascific to a particular
speaker under specific conditions of background noise. #atiap techniques may be
necessary in order to use the system in new situations Y&ikki, 1999).
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The lexicon of the ASR system consists of the recognizabtalvalary, typically a list
of words. Any other, out-of-vocabulary (OOV) words cannetriecognized correctly.
In a language, some word sequences are very likely to ocdile wthers are utterly
improbable. The role of the language model is to determireptiobability of word
sequences. Taken together, the lexicon and language mibolglthe recognizer to
make “good guesses” of what is uttered, given the speeclalsigtumans are known
to understand speech in a similar fashion: Our knowledgeeapéctations determine
what we hear, since the plain audio signal is often noisy.

In the following, only issues related to language modeling @overed. However, a
complete speech recognition system involves many othepoaents. Central ques-
tions are theextraction of relevant featurefsom the audio signal and thadecodingof
the signal, i.e., the search for the most probable recagnhiypothesis. Rabiner and
Juang (1993) present the mathematical foundations of Bpeeognition based aHid-
den Markov ModelgHMM's), which is the standard approach in modern ASR system
The reader can alternatively consult the manual of the HTéesh recognition tool kit
(Young et al., 1999) or the accessible introduction by Jlkaand Martin (2000).

2.3.1 Basics of Language Modeling

Language models can be seen as probabilistic models ofxsymkach determine the
probability of word sequences; . . . w;. The probabilityP (w; ... w;) is often decom-
posed into a chain of products of probabilities, where timguege model predicts the
following word, when the history of observed words is known:

P(wy ... w;) = P(wy) - P(wg |wy) « ... Plw; |wy ... wi—q). (2.4)

For instance, the history could consist of the word sequence . w;: “I like ice-
cream, but I don'tlike . .”, and the language model might suggest the words “chocolate
fudge”, and “milkshake” as likely continuations)§), whereas the words “they, says”,
and “afterwards” would be unlikely.

n-Grams

Since it is usually infeasible to compuf&(w; | w; ...w;_;) for large values of, the
history is generally truncated to a fixed number of previoosds. This is the so-called
Markov assumption:

P(U}i ‘U}l N wi_l) ~ P(’LUZ | Wi—(n—1) - -+ wi_l). (25)

In ann-gram of ordem the prediction of the next word is based on the 1 preceding
words. If one were to apply a trigrame (= 3) in the “icecream example”, the eighth
word would be predicted from the word sequence “don't lik&laturally, this short
context is much less informative than the longer history.e Tligram model might
assign high probabilities to continuations, such as “it"aivout” (cf. "What I don't like
aboutthis food..."”), although these alternatives do not seem plausible ircthieent
larger context.
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Neverthelessp-grams (especially trigrams) have traditionally been thsthused lan-
guage modeling technique, both in research and applicatitue to their simplicity and
surprising effectiveness.

Smoothing

A language model estimated directly from a training corgusased toward that corpus.
Many perfectly valid word sequences do not occur in the cognd therefore have zero
probability in the estimated model. By contrast, many obsgmord sequences, which
are very specific to the corpus, obtain probability estimathich are too high. (For
instance, the word sequence “the Morfessor model” is expettt be over-represented
in this thesis compared to a larger collection of Englishstgx

The purpose ofmoothingtechniques is to transfer some probability mass from over-
represented events to under-represented ones. Typib#lyakes place througdiis-
counting which implies that the maximum likelihood estimates ofxtai for the ob-
served events are decreased by a discounting term. The Vesfhprobability mass is
then reserved for new events, i.e., events that were notwdssen the data.

Smoothing is often combined with backing-off or interpa@at In backoff models, the
probability distribution of the predicted word is based be tongest observed history
sequence (up to some value— 1). All words following the different occurrences of
this sequence are likely continuations. Thus, if the cardiion of the phrase “I like
icecream, but | don't like..” is predicted using backoff 4-grams (= 4), one first
looks up occurrences of the three-word sequence “I dord’lik the training data.
If this sequence does not occur, one backs off to “don't likarid further to “like”
until occurrences of the desired word sequence is found. I3%teresort is to assign
a probability to the predicted word independent of contaxtording to the relative
frequency of this word in the training data.

In interpolation methods, the probability estimates ofesal/sources (e.gn-grams of
different order) are combined into one final estimate. Fstance, when predicting the
successor word of our example phrase, the observed cotitinsaf the following word
sequences are probable candidates, with more weight oorigedt observed contexts:
“like”, “don’t like”, “l don't like”, etc.

A more thorough discussion about smoothing can be foundgn, the books by Man-
ning and Schitze (1999) and Jurafsky and Martin (2000). Twoathing techniques,
in particular, are commonly used in language modeling foRABNtil recentlyKatz
backoff(Katz, 1987) was the state-of-the-art method,Kieser-Ney smoothirg{neser
and Ney, 1995) is now taking its place. The so-caléatifiedKneser-Ney smoothing
method, which utilizes interpolation, has been shown t@ediorm other smoothing
techniques (Chen and Goodman, 1999; Goodman, 2001a).

Beyondn-Grams

Basicn-gram models are unsophisticated from a linguistic pointiefv, as they es-
sentially do nothing but memorize a large number of word sagas observed in the
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training data.n-Grams miss dependencies extending beyemonsecutive words and
they are poor at generalizing, e.g., seeing the parallélgdam the phrases “I'll eat fish
for dinner.” and “You drank coffee for breakfast.”

A number of language modeling approaches have been sudgastesd at increasing
the generalizability of the models and at alleviating theadaparsity problem. Words
can be grouped intolassegor clusterg of resembling words, either based on linguistic
or data-driven statistical criteria. Words belonging te #ame class behave similarly
and can thus occur in similar contexts (e.g., “dinner” angdkfast” could belong to the
same class). The classes can be hard or soft, the formerimgphat each word neatly
falls into one single class, and the latter implying that advoan belong to several
classes with different strength. The following methodspagiothers, have been applied
in class-based language modeling (in a broad sense of thi tdard clustering based
on simple statistical techniquéBrown et al., 1992)Context-free grammar@.ari and
Young, 1990; Banerjee and Rosenfeld, 1992; Stolcke, 123&nt Semantic Analysis
(LSA) (Bellegarda, 2000), andeural networkgBengio et al., 2000). Additionally, in
the language modeling of Finnish, telf-Organizing MagSOM) has been used by
Siivola et al. (2001), and initial experiments usimglependent Component Analysis
(ICA) have been performed by Virpioja (2005).

In factored language modela/ords are viewed as bundles of features, or factors. Fac-
tors can be anything, including morphological classesnstand data-driven word
classes (Bilmes and Kirchhoff, 2003). Yet other modelsndbaing the strict left-to-
right anatomy of standard-grams, comprisskip-grams structured language models
(Chelba and Jelinek, 2000)ecision tree modelsvlaximum Entropy modeléRosen-
feld, 1996, 1997), andopic modelsincluding caching modelglyer and Ostendorf,
1999). Topic models are typically implementedrasture modelswhere one inter-
polates probabilities estimated from separate data ssitesmth representing a different
topic or style. A topic model for Finnish (and English) is posed by Kurimo and
Lagus (2002); Lagus and Kurimo (2002).

Despite the multitude of more sophisticated model typeseritains rather difficult to
obtain significant improvements over standard, high-gralgpropriately smoothea,-
grams trained on very large corpora.

2.3.2 Limiting the Size of the Lexicon

It is important to have a lexicon and a language model with adgooverage of the
likely utterances of the language. Problems arise withdaggs with rich, productive
word forming, such as Finnish. Even if all unique word forms eollected from a
large corpus, many perfectly valid words will not be congairin this set. Additionally,
the large mass of rare words will lead to a poor language mailete the estimated
probabilities are based on very few observations of eaatuenivord.

A possible solution is to split words into shorter, more freqtly occurring, segments.
Instead of entire words, these segments are collectedhiettexicon, and the language
model is estimated from sequences of such word segmentguikiically, morphemes
are a well motivated choice. New word forms can be creatediymtively by a combina-
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tion of morphemes. In addition, a morpheme is a unit with e syntactic behavior
and approximately the same meaning throughout the conitestzurs. Thus, mor-
phemes could be the basis of a language model that incoggaame knowledge of the
grammar of the language.

The use of morphemes alleviates the problem of vocabulaswtdr but it does not
solve it completely. A large mass of the vocabulary in anydfislcomposed of names
of people, places or items. Many of these names consist ofiogée morpheme. Con-
sequently, gains in vocabulary size can be made only beisglihe morphemes further
into sub-morphemic fragments, e.g., syllables. On the @mel hithe advantage of such
an approach is that rare names can be recognized by a motedftares typical sound
sequences of the language. On the other hand, the morphemetase is not recog-
nized as an entity, which is a disadvantage in the modelirgytax and semantics.

2.3.3 Evaluation of Language Models

The performance of a language model is ultimately deterchnydts contribution to the

overall performance of the speech recognition applicatibere it is used. However,
language models also need to be evaluated in their own Bgitte speech recognition
experiments are computationally expensive as well as tiomsuming and there are
many factors other than the language model that affect thferpgance of the ASR

system (such as the acoustic modeling).

The quality of a language model is customarily assessed tmpating the probability
assigned by the model to amdependentest set. This test set consists of data that were
not used in the training of the language model. Since thesetsprobability depends
strongly on the length of the text, derivative measuresmadized over the number of
words in the data, are typically used, the most common bparglexity and cross-
entropy(Chen and Goodman, 1999).

The perplexity is calculated as:
Perplexityw, . .. wx, |0) = P(w; ... wx, |0)” 57, (2.6)

where the test set consists of the word sequence . wy,. andP(w; ... wy,. | 0) isthe
probability assigned to this sequence by the language nfoddgte that the probability
can be computed as a chain of products (Eq. 2.4) er-gsams (Eq. 2.5), etc. It is not
required that the probability be based exclusively on podliges of word sequences;
sequences of other fragments (e.g., morphs or individut@r are equally suitable.
However, if language models operating on different fragharentories are compared,
it is important that they all be normalized on the same nurobenits, such as the total
number of words in the test se¥;; (in the exponent of Eq. 2.6).

The perplexity represents the average number of equiplelmdinices at each word
boundary. A perplexity op corresponds to a situation, where on average, the following
word needs to be drawn from a setfvords. Thus, the lower the perplexity of the
model is, the better the model is at predicting the followivayd.

Rosenfeld (2000) addresses the problem of predicting bBpesmognition error rates
from the perplexity of a language model: “Error rates arédgity nonlinear and poorly
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understood functions of the language model. Lower perplersually results in lower

error rates, but there are plenty of counterexamples initdr@ature. As a rough rule of
thumb, reduction of 5% in perplexity is usually not praciigaignificant; a 10 %—20 %

reduction is noteworthy, and usually (but not always) ti@es into some improvement
in application performance; a perplexity improvement of8@&r more over a good

baseline is quite significant (and rare).”

An alternative, but equivalent measure to perplexityr@ss-entropy The cross-entropy

is the two-base logarithmdg,) of perplexity and it corresponds to the average number
of bits per word that would be required to encode the test mahtesing an optimal
coder of the model.

As the result of a theoretical analysis, Goodman (2001 bpthgsizes #inear relation-
ship between cross-entropy and word error ratée also refers to previous work that
seems to support his claim. However, many researcherstregsuits where entropy
and word error rate do not correlate. Nevertheless, Goodrhgpothesis implies that
very large reductions in perplexity are necessary in ordeet meaningful word error
rate reductions. For instance, a 10 % perplexity reductiomfL00 to 90 corresponds to
only a 2 % entropy reduction, and conceivably a 2 % word eaduction. This example
seems to be in line with Rosenfeld’s rule of thumb.
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Chapter 3

Morfessor

Morfessor is an unsupervised morphology learner and manpleegmenter, developed
as part of the current thesis work. The following preseatatif Morfessor is divided
into four parts: First, general characteristics of the Mesior model are described, in-
cluding differences between Morfessor and other modelxt,Miee chronological de-
velopment of Morfessor is outlined, followed by an exact Imeatatical formulation.
The fourth part addresses search algorithms on a fairlyrgetevel. The chapter is
concluded by a survey of related work.

3.1 General Characteristics of the Model

In this section, some characteristics of the Morfessor madehighlighted. The inten-
tion is to position Morfessor theoretically, motivatingwse of the solutions made in this
work.

3.1.1 Full Morph Segmentation

Morfessor learns anorpheme segmentatiaf the word forms in the input data. This
is a necessary step towards an Item and Arrangement (IA)eor &nd Process (IP)
model of morphology (see Section 2.1.3). Current versidhéafessor do not identify
which morphs are allomorphs of the same morpheme and in éingeshe result does
not correspond to a model of the entire morphology of thedagg. The newer versions
of Morfessor do, however, propose grammatical categodethe morphs discovered.
Each morph is assigned a probability of its tendency to foncas a stem, prefix, or
suffix. Such information seems useful when one needs tandisgh between seman-
tically rich morphs (stems) and grammatical functions %aff). The stems are more
important, e.g., in information retrieval.

Morfessor produces &ll segmentatiorof the word forms in the data. This is an
important objective when dealing with languages in whickv weord forms are cre-
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ated productively not only through inflection, but also thgb derivation and com-
pounding. Many morphology induction methods focus on tHkedtions only (e.g.,
Goldsmith, 2001), and they typically separate only the $aftix from the rest of the
word form. The English word “dessertspoonfuls” would thessegmented as ‘dessert-
spoonful+s” by such methods, whereas Morfessor would gahferfull segmentation
“dessert+spoon-+ful+s”. To produce a full segmentatiommputationally much harder,
because the number of segments per word cannot be limitadytdveo.

3.1.2 Morph-Based Syntax

Morfessor does not induce inflectional paradigms (see &e@il.3, page 14). This
means that it does not make precise statements about wifikcbsadan be attached to
a particular stem. For example, if the word forms “spoon,osps, spoon+ful” are
attested in the training corpus, also other forms will hau@ae probability in the model.
Such forms are “spoon+ness, spoon+ing+ly, spoon+est§iwtd not not belong to the
standard inflectional paradigm of “spoon”. Ideally the mbitities reflect how likely
these imaginative words are to occur in real language use.approach implies that
there is no clear-cut border between morphology and symtaxgs as well as longer
phrases are formed by concatenating morphemes and the napessible words
and phrases is immense. (Yet most of the possible words ardgd have very low
probability.) A well estimated model mimics the actual laage use as it manifests
itself in the data. That is, it is a model of langugagrformancen Chomskyan terms
(Chomsky, 1965).

If one does prefer to describe word forming using inflectigraradigms, the distinc-
tion between morphology and syntax is clearer. First onerdehes an exhaustive list
of the existing inflectional forms (morphology) and then aletermines how the word
forms can be combined into phrases (syntax). There is atviskever, that the resulting
paradigms are not only logical and complete, but in factcomplete. For instance, if
one assumes that Finnish nominals are inflected in two nuwaef fifteen cases (which
is a customary view), one might want to fill each slot in theggggm with a word form.
Following this procedure, one can form words such as “hiimd &in”, which logically
are the instructive plural forms of “hiki” (sweat) and “ik@§&ge). However, it is ques-
tionable whether these forms would ever be used and undergtaa natural situation
of language use. Thus, we could say that we have a model ofidgegompetence
in Chomskyan terms, i.e., a theoretical construct. By sajmgpthis structure one may
actually have a model that reserves modeling capacity fivemely improbable words,
whereas it misses rather probable words that do not fit etlygato the paradigm. An
example of the latter is the frequently used double pagtitmontaa” ([not] many),
which is the partitive of “monta”, which is already the ptivé of “moni”. (The word
“montaa” is not recognized by the Finnish TWOL-analyzercamtrast to “hiin” and
“iin”.
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3.1.3 Bayesian and MDL Framework for Model Formulation

Morfessor learns a lexicon of morphs from the corpus it iie¢d on. The lexicon con-
sists of a set of morphs, such that every word form in the cogain be produced by
concatenating some morphs present in the lexicon. Theestersion of the Morfes-
sor model was formulated using the MDL formalism (Publicas 1, 6, and 7). Later
versions incorporate general linguistic constraints dedaas Bayesian priors, and thus
a Bayesian framework has been more appropriate for theselwaxiants (Publications
2, 4, and 5). The crucial aspect of all of these models is tina aittempt to find a
balance between modeling accuracy and model complexitys@ftion 2.2.3). That is,
the resulting lexicon should cover the words in the trairdagpus well, but additionally
generalize to new word forms not observed in the training.dat

3.1.4 Meaning and Form of Morphs

The morph lexicon stores information about every morphiittams. Each morph has a
form, which is here assumed to be a string of letters, e.g., “s g'olbwe were dealing
with speech instead of text, the form would consist of a gtahphonemes ([s p u: n])
rather than a string of letters.

Additionally, every morph has its own role in the language., iameaningor syntactic
function. In order for a system (biological or artificial) ppoduce or understand lan-
guage successfully, it conceivably needs to store this morganing (or whatever one
prefers to call it) in the lexicon alongside the form of therpta

Morfessor is trapped in a text world. From a corpus of texhalathe program has
to infer how language works. Therefore, any notion of meguirat is accessible to
Morfessor is based solely on structures manifested in i is compatible with the
structuralist view that the meaning of words (and morphgneeseflected directly in

how they are used. The idea is captured nicely in a clasditakp coined by J. R. Firth
in the 1950's: “You shall know a word by the company it keepstth, 1957). Thus, the
meaning of a morph “is” in a sense the distribution of pogsdantexts of other morphs
the morph can occur in.

By parameterizing the contextual distribution, or typioahge of a morph and stor-
ing the parameters in the lexicon, groups of morphs that kaw#ar behavior can be
detected. In this work, the parameterized usage of eachimsgilized for determin-
ing the likely grammatical category of the morph, namely tinedency of the morph
to function as a stem, prefix, or suffix, which affects the piality that the morph is
observed in different positions within words. For instanitee last morph of a word
cannot be a prefix nor the first morph a suffix.

In Publication 4, the usage-based features stored in theolefor each morph are in-
deed called “meaning”. However, due to the crude natureefdhtures utilized in the
current model, this term has later been replaced by the nearteal term “usage”, which
is is employed in Publication 5 and the introductory partef thesis.
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3.1.5 Frequent Words and Hierarchical Representation of Mophs

From a theoretical point of view, all words can be split iriteit constituent morphs. For
instance, the English word “suddenly” is logically compasé¢ “sudden+ly”. By recog-
nizing this inner word structure, other words can be formegdrmlogy, e.g., “abrupt+ly,
sudden+ness”. This generalization capacity is crucialnudiealing withsparsedata,
e.g., corpora in which most words are observed in only a fealldfieir possible forms.
Typically, language data aswayssparse.

However, “suddenly” is a very frequent word form. From a miodgperspective it
could be economical to store it as its own entry in the lexicinis would provide faster
access to the word, since it would not have to be composedrts. padditionally, this
would allow “suddenly” to have a meaning that is not entirglg composition of the
meanings of “sudden” and “-ly”. Moreover, word frequenceses to play an important
role in human language processing. Baayen and Schreuda®)(B€fer to numerous
psycholinguistic studies that report that high-frequenoyds are responded to more
quickly and accurately than low-frequency words in variedperimental tasks. This
effect is obtained regardless whether the words have cdtigpas structure or not.

The latest version of Morfessor proposes a solution to tkesmana (Publication 4). The
morph lexicon ishierarchical such that each morph in the lexicon consists either of a
string of letters or of two submorphs, which are themselvesgnt in the lexicon. The
submorphs can in turn recursively consist of shorter suptmor Figure 3.1 shows the
hierarchical representations obtained for the Finnishdwioppositiokansanedustaja”
(“member of parliament of the opposition”) and the Englishrek “straightforward-
ness”. The model utilizes information about word frequentite English word has
been frequent enough in the corpus to be included in thedexas an entry of its own.
The Finnish word has been less frequent and is split into dejip” (“opposition”)
and ‘kansanedustaja’ (“member of parliament”), which ave teparate entries in the
lexicon induced from the Finnish corpus. Frequent wordsvamidi segments can thus
be accessed directly, which is economical and fast. At theedime, the inner struc-
ture of the words is retained in the lexicon, because the hzogpe represented as the
concatenation of other (sub)morphs.

Additionally, every morph is tagged with a category, whishtie most likely category
for that morph in that context: prefi®RE), stem 6TMm), or suffix (SUF). Not all morphs

in the lexicon need to be “morpheme-like” in the sense they tdarry meaning. Some
morphs correspond more closely to syllables and other $tammnents of words. The
existence of thesaon-morphemeéNON) makes it possible to represent some longer
morphs more economically, e.g., the Finnish “oppositiarigists of “op” and “positio”
(position), where “op” has been tagged as a non-morphemég&pasiio” as a stem (see
also Section 3.2.4).

One might draw a parallel from the non-morphemes in the @atestMAP model to
findings within psycholinguistic research. McKinnon et(@003) suggest that morpho-
logical decomposition and representation extend to nodymtive morphemes, such as

INote, however, that these findings may not apply to all lingutasks. When test persons were exposed
to word forms that were ungrammatical in context, high-freqyaegular word forms seemed to be processed
as if they were compositional rather than unanalyzed whaéltsr( et al., 2003).
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oppositio/STM + kansanedustaja/STM straightforwardness/STM
T~ P T
op/NON positio/STM kansanedusta/STM ja/SUF straightforward/STM  ness/SUF
/\ /\
kansan/STM  edusta/STM straight/STM  forward/STM
/\ /\
kansa/STM  n/SUF for/NON ward/STM

(CV (b)

Figure 3.1: The hierarchical segmentations of (a) the Bmnivord “op-
positiokansanedustaja” (“MP of the opposition”) and (k@ tanglish word
“straightforwardness” (obtained by the Categories-MAPdeip see Sec-
tion 3.1.5 for details). Additionally, every morph is taggeith a category,
namely the most likely category for that morph in that cohtex

“-ceive, -mit”, and “-cede” in English words, e.g., “coneej permit, recede”.

The idea of a hierarchical lexicqrer seis not novel. Within the field of unsupervised
natural language acquisition, de Marcken (1996) proposesdagel in which linguistic
units recursively consist of shorter linguistic units (Sexction 2.1.2). Among other
things, de Marcken applies his model in a task of unsupetvigerd segmentation of
a text, where the blanks have been removed. As a result rtlgcal segmentations
are obtained, e.g., for the phrase “for the purpose of "offi[[t[helll[[p[url]l[[po]s]el]l
[ofl]]]. The problem here from a practical point of view isahthere is no way of
determining which level of segmentation corresponds lmeatdonventional word seg-
mentation. On the coarsest level the phrase works as anéndept “word” (“forthep-
urposeof”). On the most detailed level the phrase is steattierto individual letters.

Where de Marcken has no means of knowing which level of segatientis the de-
sired one, the Morfessor model provides a way out. In a taska@pheme segmenta-
tion, the hierarchical representation is expanded tdfitiest resolution that does not
contain non-morphemesin Figure 3.1 this level has been indicated using a bold-
face font. The Finnish word is expanded to “oppositio+kamsa&dusta+ja” (liter-
ally “opposition + people + of + represent + -ative”). The Hsigword is expanded into
“straight+forward+ness”. The morph “forward” is not exjpia into “for+ward” (al-
though this might have been appropriate), because “forddgeéd as a non-morpheme
in the current context.

3.2 Development Steps of the Morfessor Model

Among the primary concerns in the development of the Modessodel has been to
figure out how to obtain a full morph segmentation while airggcbver-andunderseg-
mentatioras well asmorphotactic violationsFor instance, the correct full segmentation
of the English word “swineherds” is “swine+herd+s”. In asegmentation, or excessive
segmentation, words are split into too many parts (e.gwits+e+her+d+s”). Under-
segmentation, or incomplete segmentation, implies thaesmorpheme boundaries are
missed (e.g., “swine+herds”). Morphotactic violationssarwhen a segment that can
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function as a morph in some context is proposed in the wromgest For example,
“s” is a frequent English morph, but it is a suffix and should lo@ used in word-initial

position. In “s+wine+herd+s”, “swine” has been split inteat morphs that do in fact
exist, but the suggested combination is morphotacticattpirect.

The Morfessor model has undergone four development stdgshwvill be described
briefly in the light of the three demonstrated difficultiesr & more thorough treatment
the reader is referred to the attached publications. ThedddsorBaselinemodel was
originally called the “Recursive MDL” algorithm (Publidgah 1¥. The following steps
consist of MorfessoBaseline-Freg-LengtPublication 2), Morfesso€ategories-ML
(Publication 3), and Morfess@ategories-MARPublication 4). Mathematically, these
four steps can be combined intaiaifying frameworkwhich is presented in Section 3.3
and Publication 5.

3.2.1 Morfessor Baseline

The Morfessor Baseline model (Publication 1) learns a taxiof morphs, which is
concise and which produces a compact representation favahds in the corpus used
as data. The lexicon is flat, that is, morphs are simply sérivfgetters and do not have
substructure. As a matter of fact, this model is very simidathe simple fruit words
example in Section 2.2.3. But unlike the fruit words modebrfdssor Baseline does
not assume a uniform probability distributions for the pregd morphs. Instead, the
probability of a morph is its relative frequency among a# thorphs in the suggested
segmentation of the corpus. For instance, the segmentattitained usind-exicon 2
(Section 2.2.3) consists of 21 morphsipple # orange # lemon # juice # apple

juice # orange juice # apple tree # lemon tree # # ”. The probability of the
morph “apple”, which occurs three times, would thus;he= 1.

The Baseline model was inspired by the MDL criterion (Pudtiizn 1). In later work,

the mathematical formulation has been refined. In Pubtioatj an MDL formulation is

given, which corresponds to two-part-code “crude” MDL aliog to the terminology

of Grinwald et al. (2005) (page 27). Creutz and Lagus (20083emt an equivalent
MAP formulation of the Baseline.

Due to its simplistic nature, Morfessor Baseline is pronentike errors of all the three
kinds mentioned. A frequent string is most concisely codedrie piece, regardless of
its linguistic structure. This sometimes leads to underssgation (e.g., “having, sol-
diers, seemed”). A rare string is, by contrast, best codegthant segments, which can
cause oversegmentation (e.g., “vol+can+o”). The modes ame assign any grammat-
ical categories to the proposed morphs and it does not @mgtre context in which
a morph can occur. This lack of restrictions occasionalbdpces morphotactic viola-
tions (e.g., “s+wing, ed+win”).

In spite of its inadequacies, the Baseline works surprigingll. In all speech recog-
nition experiments, the Baseline model has been used thefehe more sophisticated
versions. In general, as shown in Creutz and Lagus (2005)fdgleor Baseline pro-

2pyblication 1 also introduces a second model, called “Seiudt”. The Sequential ML model has not
been developed further and is not described in the curreseptation.
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duces a better morph segmentation from a morphologicak pbiview, if the data set
used is a word list rather than a full corpus. In a word listrewdistinct word form
occurs only once, which reduces the dominance of the frequerd forms that make
up a considerable part of any corpus of running text. We wtihm to the performance
of the different variants of Morfessor in Chapter 4.

3.2.2 Morfessor Baseline-Freq-Length

The Morfessor Baseline-Freq-Length model (Publicatioex2@nds the Baseline model
by applying Bayesian prior probabilities to threquencyandlength distributionsf the
morphs.

The prior distribution for morph frequency is derived frohetwell-knownZipf's law
(Zipf, 1935). This law addresses a general tendency in #tdlaition oftoken frequen-
ciesfor a set oftypes A set of types is a set of distinct, unique items (e.g., msrph
in the morph lexicon), whereas the same item can occur mamgstin a set of tokens
(e.g., morphs in a corpus, where the words have been sgig atbrpheme boundaries).
According to Zipf's law the frequency of an item is inversg@lsoportional to its rank.
This means that there are a very small number of extremetyuénet items (e.g., the
English morphs “and, of, -ing”) and a large mass of very reems (e.g., “cloot, gallet,
ruckus, Waunugur”). The purpose of the frequency prior e Baseline-Freqg-Length
model is to favor solutions where the frequency distribuidd the proposed morphs is
in accordance with Zipf's law.

A morph length distribution describes the proportion of ptar of a particular length,
measured in letters. Figure 3.2 shows distributions cpaeding to the lengths of the
morphs of alinguistic morpheme segmentation. (The linguistic segmentationas th
of the Hutmegs Gold Standard described in Section 4.1.2 abtidation 8.) Fig. 3.2
further shows that both for Finnish and English the desirggliistic length distribution
can be approximated rather accurately lyjamma distribution This state of affairs is
exploited in the the Baseline-Freg-Length method, whidlizes a gamma distribution
as a prior for morph length.

Due to the priors for morph length and frequency, the Basedfireq-Length method
does outperform the plain Baseline method. The number of avel undersegmented
words is reduced, but the model structure is still insuffitier preventing morphotac-
tic violations. Furthermore, the difference between Mssfe Baseline and Morfessor
Baseline-Freg-Length diminishes with larger amounts téda

According to the experiments performed, the length prionise effective than the fre-
quency prior. This may be due to the fact that the Zipfian feegpy distribution is such
a “natural” phenomenon that it is not necessary to modelgtieily. In fact, randomly
generated texts have been shown to exhibit Zipf's-law-ikguency distributions (Li,
1992). Due to the ineffectiveness of the frequency pridrai been omitted in most ex-

3Note that we model the lengths of the morphs in the lexicon,&.eet of morphypes In order to model
the length distribution of a set ¢dkens one might prefer &oisson distributionas does Nagata (1997) when
dealing with words of Japanese. A Poisson distributionse applied in the so-called Sequential ML method
of Publication 1, where morph tokens are concerned.
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Figure 3.2: Length distributions for the morph types in kshnand English

lexicons (for data sets comprising 250 000 words). The diokdcorresponds
to the empirical distribution of morph lengths in the lingfic gold standard
segmentation of the words, i.e., the desired result. Thieathline represents
a gamma distribution fitted to the linguistic distribution.

periments with Morfessor. The corresponding model conéitjon is called Morfessor
Baseline-Lengthlt is important to note that even if a property is not moddladugh
anexplicit prior, one can always analyze how it is manifesiraglicitly in the model.
A more thorough treatment of explicit and implicit lengthdainequency priors can be
found in Section 3.3.5 and in Appendices A.1-A.3.

3.2.3 Morfessor Categories-ML

The Categories-ML model (Publication 3) introduces a sampbrphotactics that re-
duces errors caused by the context-insensitivity of theelBas models. In Categories-
ML, a segmentation produced by one of the Baseline algostieneanalyzed using
maximum likelihood (ML) optimization in combination witlome heuristics.

Each morph in the segmented corpus is tagged with one of tleevfog categories:
prefix, stem, or suffix. The tendency of a morph to functionraes af these categories is
determined from a few usage-based features of the morpb.§&ation 3.3.5, pages 50—
54, for details.) In cases where none of the three “prope€gmies is likely, morphs
are tagged with an additional “noise” (or non-morphemeggaty. Noise morphs are
short segments, which are not morphemes at all (e.g., “vaf™a” in “vol+can+o”) or
not morphemes in the current context (e.g., “can” in “volt€a’). Consequently, the
presence of noise morphs typically indicates that a wordbas oversegmented or that
it contains morphological violations.

Oversegmentation is reduced by applying a heuristic thas jtogether noise morphs
with their neighbors. This creates longer segments thatlikedy stems (e.g.,
“vol+can+0” becomes “volcano”). The opposite problem, ersggmentation, is al-
leviated by forcing splits of redundant morphs, with certénitations. A morph is
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redundant when it consists of other morphs that are cortaimeéhe lexicon (e.g.,
“seemed = seem+ed”). By removing the redundant morph thedexs made smaller.
In Categories-ML, the size of the lexicon is controlled thgb these heuristics instead
of an overall probability function. Once the lexicon hasme®dified, maximum like-
lihood reestimation is applied in order to resegment arabréte corpus.

A first-order Hidden Markov Model (HMM) is used for assignipgpbabilities to each
possible segmentation and tagging of a word form. That evetlaretransition prob-
abilities between morph categories, e.g., the probability of obegra stem after a
prefix. In addition.emission probabilitiegndicate how likely a morph is to occur when
a category is given (e.g., the probability of suggestingtioeph “ed” as a suffix).

The HMM is intended to model a morphotactics that is captbseithe following regular
expression:
word = ( prefix = stem suffix = )+ (3.1)

This word structure is flexible enough to cope with extensivmpounding and many
consecutive affixes. A word can consist of any number of stemsh optionally pre-
ceded by prefixes and followed by suffixesNo assumptions are made regarding
whether the language is more likely to employ prefixation wffisation. Nonethe-
less, there are important restrictions: A suffix may nottsawvord, or a prefix end it.
Moreover, a prefix should not be followed directly by a suffbherefore, many of the
morphotactic violations observed with the Baseline modetsremoved by Categories-
ML. For instance, no suffixes are suggested word-initiallyswing” and “Edwin”, in
contrast to the Baseline segmentations “s+wing” and “ed*wi

3.2.4 Morfessor Categories-MAP

The Categories-MAP model (Publication 4) has a more sdphtsd formulation than
Categories-ML, in two respects: (1) Categories-MAP opsrah data sets consisting of
word tokens, whereas Categories-ML operates on word typese wants to draw par-
allels to language processing in humans, the former apprieanore desirable, because
knowing the frequency of a word is valuable information; Seetion 3.1.5. (2) Con-
trary to Categories-ML, Categories-MAP is a complete maxima posteriori model,
which means that it does not need to rely on heuristics inrdodéetermine the optimal
size of the lexicon.

The improvements over the Categories-ML model have beererpassible by intro-
ducing ahierarchical lexicon structure The hierarchical lexicon has already been de-
scribed in Section 3.1.5. The hierarchical structure mtesidifferent mechanisms for
preventing over- and undersegmentation than the hewwistied in Categories-ML. In

a morpheme segmentation task, undersegmentation can idedy expanding a lex-
ical item into the submorphs it consists of. In order not ®ate the opposite problem,
oversegmentation, the substructures are only expandezhgsat they do not contain
non-morphemes, i.e., noise morphs.

4Even in a fairly isolating language like English, words camnsist of several morphemes (e.g.,
“un+interrupt+ed+ly”). Although affixes in English gendéyaoccur before the first stem of the word (as
prefixes) or after the last stem (as suffixes), there are exargil affixes locatedetweenstems within a
word, e.g., “coast+guardt+man, cleaning+lady, new+y+wed+s”.
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The morphotactics is essentially the same in both Categaniedels. However, in
Categories-MAP the non-morphemes are not removed from thdemeven though
they do not show on the “surface” in a morpheme segmentaiiba.existence of non-
morphemes sometimes even helps against the oversegrorrghtiare words. When
for instance, a new name must be memorized, it can be cotedrteconomically” from
two shorter familiar fragments without breaking it downanmdividual letters. In this
way, the name can be coded in the lexicon at a lower “cost” eikample, in one of the
English experiments the name “Zubovski” occurred twicehia torpus and was added
to the morph lexicon as consisting of the stem “zubov” fokaiAby the non-morpheme
“ski”.

3.3 Unified Mathematical Formulation

This section presents a unified mathematical formulatioMoffessor (Publication 5),
which incorporates every development step of the model.uHifeed framework rather
closely corresponds to the latest and most sophisticate@iwariant, Morfessor Cate-
gories-MAP, of which the earlier variants can be seen aslgiogtions.

3.3.1 Maximum a posteriori estimate of the overall probabilty

The task is to induce eodel of languagén an unsupervised manner from a corpus
of raw text. The model of language\{) consists of amorph lexicon which is an
inventory of morphs, and grammar which determines how morphs can be combined
into words. We aim to find the optimal model of language forducing a segmentation
of the corpus. This is achieved through maximum a postgiiAP) optimization. The
MAP estimate to be maximized?(M | corpug, consists of two parts: the probability
of the model of languag® (M) and the likelihood of the corpus conditioned on the
given model of language, written & corpus| M):

argmax P(M|corpu§ = argmax P(corpus| M) - P(M), where (3.2)
M M
P(M) = P(lexicon, grammay. (3.3)

The probability of the model of language (Eqg. 3.3) is thetjpirobability of the proba-
bility of the induced lexicon and grammar. Note that in theg@aries-ML variant this
part is replaced by a heuristic procedure (see Publicajion 3

The representation of the lexicon, grammar and corpus willléscribed next, as well
as the components of each.

3.3.2 Lexicon

The lexicon contains one entry for each distinct morph (rhdype) in the segmented
corpus. Suppose that the lexicon consistsibfdistinct morphs. The probability of



3.3. Unified Mathematical Formulation 47

coming up with a particular set dff morphsy; ... ua; making up the lexicon can be
written as:

P(lexicon) = P(siz€lexicon = M) - P(propertiegyi1), - .., propertieguas)) - M.
3.4)

The product contains three factors: (i) the prior probabiihat the lexicon contains
exactly M distinct morphs, (ii) the joint probability that a set df morphs, each with
a particular set of properties, is created, and (iii) thediad/!, which is explained
by the fact that there ar&/! possible orderings of a set @ff items and the lexicon
is the same regardless of the order in which fifemorphs emerged. (It is always
possible to afterwards rearrange the morphs into an unambsgly defined order, such
as alphabetical order.)

The effect of the first factorP(sizglexicon = M), is negligible, since in the com-
putation of a model involving thousands of morphs and thanameters, one single
probability value is of no practical significance. Thus, veednomitted to define a prior
distribution for P(siz€lexicon)).®

The properties of a morph can be grouped into informatioangigg (1) the usage and
(2) the form of the morph:

P(propertiesy;)) = P(usagép;), form(u;)). (3.5)

The exact properties utilized in the Morfessor model arewdasd in Section 3.3.5.

3.3.3 Grammar

The grammar determines how language units can be combimébrfessor, the gram-
mar consists of a simple morphotactics, realized as a Hidltketkov Model (HMM).
The states of the HMM correspond to grammatical categohie€ategories-MAP and
Categories-ML, four categories are used: prefir#), stem 6Tw™), suffix (SUF), and
non-morphemeNoON). In the Baseline model variants, there are no categoryndist
tions, which corresponds to having an HMM with one singléesta

The structure of the grammar is fixed and not estimated fradtdta. However, the
values of some parameters (the transition probabilitighkéerHMM) are not fixed. It is
convenient to use a uniform (non-informative) prior forgbgrobability values. Since
any set of transition probability values is equally likeBfgrammay is a constant (say
k), andP(M) in Equation 3.3 reduces tB(lexicon) - k.

It is possible for a morph to be assigned different categariaifferent contexts. The
tendency of a morply; to be assigned a particular categary, P(C; | 1), (e.g., the

probability that the English morph “ness” functions as digyfis derived from the

usage-related parameters of the morph:

P(C;| i) = P(C; |usagép;)). (3.6)

5If one were to define a proper prior, one possible choice wbal®issanen’s universal prior for positive
integers (see Eq. 3.20).
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The inverse probability, i.e., the probability of a parteaumorph when the category is
known, is needed for expressing the probability of the segati®on of the corpus. This
emission probabilityP(u; | C;) is obtained using Bayes’ formula:

P(Ci|pi) - P(pi) _ P(Ci|pi) - P(pi)
P(Cy) > v, P(Cil pir) - P(pir)

P(pi | Ci) = (3.7

The category-independent probabiliti$..;) are maximum likelihood estimates, i.e.,
they are computed as the frequency of the mqrpn the corpus divided by the total
number of morph tokens. In the Baseline models, where oggestiategory is used, the
whole expression in Eqg. 3.7 reduces to the category-indipemprobabilityP (1;).

3.3.4 Corpus

Every word form in the corpus can be represented as a seqoésoee morphs that
are present in the lexicon. Usually, there are many possigenentations of a word.
In MAP modeling, the one most probable segmentation is e¢ho$ee probability of

the corpus, when a particular model of language (lexicon gnaghmar) and morph
segmentation are given, takes the form:

P(corpus| M) = H[ Ci1 | C50) TT [P(us | Ci) - P(Ciuiny | Cin)]|. - (3.8)

As mentioned in the grammar section above, this is a HidderkdaModel and it is
visualized in Figure 3.3. The product is taken over Wiewords in the corpus (token
count), which are each split into; morphs. Thek™ morph in the;j" word, Wik, 1S
assigned a categorg;;;. The probability that the morph is emitted by the category is
written as P (1. | Cj). There are transition probabilitieB(C 41y | Cjx) between
the categories, wher€;,, denotes the category assigned to Aemorph in the word,
andCj 41 denotes the category assigned to the following,ko#- 1), morph. The
transition probabilities comprise transitions from a spleword boundary category (#)
to the first morph in the word, as well as the transition from ldst morph to a word
boundary.

3.3.5 Features of Usage and Form of Morphs

Each morph in the lexicon consists of a bunch of featureschvban be divided into
properties of usadend form. The usage-based properties of a morph includepiep
of the morph itself and properties of the context it typigappears in. By the form of a
morph we understand the symbolic representation of the iImamp, the string of letters
it consists of.

The usage and form are parameterized and stored in the texi¢bich parameter val-
ues are likely is determined by probability density funoiqpdf:s), which are priors,

6called “meaning” in Publication 4
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Transition probabilities between morph categories
P(Ci1|Cjo) — P(C2|Cir) — P(Ci3|Cp2) P(Cinj+| Ciny)
Categories  (#)

Emission probabilities P(Hin|Cjny)
Morphs Hja Hj2 Hin;
Figure 3.3: The HMM model of a word according to Equation 3.8e word
consists of a sequence of morphs which are emitted fromtlasrgories.
For instance, a possible category sequence for the Engtish‘wnavailable”
would be “prefix + stem + suffix” and the corresponding morplsuld be
“un +avail + able”.

either in the Bayesian sense or in the more coding-orientBdl Bense, that favor lin-
guistically motivated solutions.

Given the distinction between usage and form, we make thexg#fon that they are
statistically independent:

P(propertiegu,), . .., propertieguas)) =
P(usagéyn),. .., usagéun)) - P(form(u), ... form(ua)). (3.9

Form of a Morph

We further make the simplifying assumption that the formghefmorphs in the lexicon
are independent of each other, thus:

M
P(form(p), ..., form(uas)) = [ [ P(form(p,)). (3.10)

i=1

Morphs in the lexicon have hierarchical structure. A morgh either be a flat string
of letters or have substructure. The probability of the fafithe morphu; depends on
whether the morph is represented as a string of letters (EtjaBor as the concatenation
of two submorphs (Eg. 3.11b):

P(form(y;)) =
{ (1 P(sub) - TTS™ ) P(cyy). (3.11a)
P(sub) - P(Ci1 |sub) - P(ui | Cir) - P(Ci2 | Cir) - P(piz | Ci2). (3.11b)

The probability that a morph has substructuRésub), is estimated from the lexicon
by dividing the number of morphs having substructure by thel thnumber of morphs.
P(sub) is non-zero only in the Categories-MAP model version.

In (3.11a),P(c;;) is the probability of thg™ letter in thei™ morph in the lexicon. The
probability distribution to use for the letters in the alpbais estimated from the corpus.

Equation 3.11b resembles Equation 3.8, where the prohabflithe corpus is given.
P(Cy | sub) is the probability that the first morph in the substructurassigned the
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categoryC;;. P(Cy2|Ci1) is the transition probability between the categories of the
first and second submorph®(u;; | Ci1) and P(u,2 | Ci2) are the probabilities of the
submorphs:;; and ;o conditioned on the categori€%; andC;,. The transition and
morph emission probabilities are the same as in the prababilthe corpus (Eq. 3.8).
Examples of concrete substructures were shown in FigurerBghage 41.

Features Related to the Usage of a Morph

The set of features that could be used for describing usageryslarge: The typical
set of morphs that occur in the context of the target morpHdcbe stored. Typical
syntactic relations of the morph with other morphs couldrmduded. The size of the
context could vary from very limited to large and complex. @émplex context might
reveal different aspects of the usage of the morph, fromda@ed syntactic categories
to broader semantic, pragmatic or topical distinctions.

However, currently only a very limited set of features isdjsgnd only based on infor-
mation contained in word lists. As properties of the morphlit we count thérequency
of the morph in the segmented corpus andlémgthin letters of the morph. As “dis-
tilled” properties of the context the morph occurs in, we sidar the intra-wordight
andleft perplexityof the morph. (Perplexity measures how predictable theestmf a
given morph is.)

Using the above features, the probability of the usages efbrphs in the lexicon
becomes:

P(usagé), ... ,usagéua)) =

M

P(freq(1), . .. ,freq(MM)).H [P(length(1;))- P(right-ppl(;))- P(left-ppl(p;))].
- (3.12)

=
—

Due to practical considerations in the current implemeématit is assumed that the
length, right and left perplexity of a morph are independ#ithe corresponding values
of other morphs. In contrast, the frequencies of the morpag&en as a joint proba-
bility, that is, there is one single probability for an eatmorph frequency distribution.
The probability distributions have been chosen due to theimerality and simplicity.

In a more sophisticated model formulation, one could atteimpnodel dependencies
between morphs and their features, such as the generahtgndgfrequent morphs to
be rather short.

Next, we describe the individual features and the prior pbdlity distributions that are

used for the range of possible values of these features. réaertent of morph usage
is concluded by a description of how the usage of a morph lassinto category

membership probabilities in the current grammar.

Frequency. Frequent and infrequent morphs generally have differamasgics. Fre-
guent morphs can be function words and affixes as well as canwoocepts. The
meaning of frequent morphs is often ambiguous as opposeteéamorphs, which are
predominantly content words.
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The knowledge of the frequency of a morph is required for dating the value of
P(u;) in Equation 3.7. The probability that a particular frequedistribution emerges
can be expressed usingian-informativeimplicit, prior:

(3.13)

P(freq(us), . .. freq(uar)) = 1/@4'— 1) _ (M = 1){N = M)!

~1 e

whereN is the total number of morph tokens in the corpus, which eqjtre sum of
the frequencies of thé/ morph types that make up the lexicon. The derivation of the
formula can be found in Appendix A.1. This probability distrtion corresponds to a
non-informative prior in the sense that only the total nunddenorph tokens and types
matter, not the individual morph frequencies.

In the Morfessor Baseline-Freg-Length model, an expliityesian frequency prior is
used instead of the non-informative one. It is then assuimatthe frequency of one
morph is independent of the frequencies of the other morpigs,

M

P(fred(un), ., freq(uar)) = [ ] P(fred(yu))- (3.14)

i=1

An expression forP(freq(u;)) is derived in Publication 2 and it is based on Mandel-
brot's correction of Zipf’s law. However, that derivatios iinnecessarily complicated
and incomplete. A better derivation is given in Appendix A/l the result is:

P(freq(u;)) = freq(u;) =0~ — (freq(u;) + 1)5=(0-".  (3.15)

The parameteh represents the user’s prior belief of the proportiomapax legomena
i.e., morph types that occur only once in the corpus. Typictie proportion of hapax
legomena is about half of all morph types.

In practice, the difference between the two alternativedemncy priors is small. A
mathematical comparison is carried out in Appendix A.3.

Length. In the Morfessor model, it is assumed that the length of a maffects the
probability of whether the morph is likely to be a stem or lbgjdo another morph
category. Stems often carry semantic (as opposed to simtadormation. As the
set of stems is very large in a language, stems are not likehetvery short morphs,
because they need to be distinguishable from each other.

A simple way to assign lengths to the morphs in the lexicoo isse a speciand-of-
morphcharacter, which is part of the alphabet, and which is apped each morph
string in the lexicon (in Eq. 3.11a). This approach was afggiad in the fruit words
example in Section 2.2.3. The probability that a morph ofi@aar lengthlength( ;)
will emerge in this scheme is:

P(lengthip;)) = [1 — P(#)]®"9"0) . P(#), (3.16)

whereP (#) is the probability of the end-of-morph marker. The probapiP(length(s;))
is the result of first choosinigngth(:;) letters other than the end-of-morph marker and
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finally the end-of-morph marker. This is @ponential distributionthat is, the proba-
bility of observing a morph of a particular length decreasgmnentially with the length
of the morph. Such a prior corresponds poorly with real mdepigth distributions, ex-
amples of which were shown in Figure 3.2 on page 44.

Instead of using an end-of-morph marker, one can first eiglidecide the length of

the morph according to a more realistic probability disttibn and then choose the
selected number of letters to form the morph string. In theeBae-Freqg-Length model,
agamma distributions used (see Fig. 3.2):

Pllengify) = prazslengit(n) e~ emsf/, (3.17)

where

I'(a)= /:O 227 le#dz, (3.18)

There are two constants,and that determine the exact shape of the gamma pdf. The
maximum value of the density occurslangth(y;) = (o — 1), which corresponds to
the most common morph length in the lexicon. The valug gbverns the spikiness of
the curve, the highef the flatter and less discriminative is the pdf.

Intra-Word Right and Left Perplexity.  The left and right perplexity give a very con-
densed image of the immediate context a morph typically isctu Perplexity serves
as a measure for the predictability of the preceding or falg morph.

Grammatical affixes mainly carry syntactic information.eyhare likely to be common
“general-purpose” morphs that can be used in connectidm aviarge number of other
morphs. We assume that a morph is likely to be a prefix if it fadilt to predict what
the following morph is going to be. That is, there are manysjiis right contexts of
the morph and the right perplexity is high. Correspondinglyorph is likely to be a
suffix if it is difficult to predict what the preceding morphrche and the left perplexity
is high. The right perplexity of a target morp# is calculated as:

right-ppli) = | TT  POyluo] ™7 (3.19)

v; € right-of(u;)

There ardreq(u;) occurrences of the target morphin the corpus. The morph tokens
v; occur to the right of, immediately following, the occurreswf;. The probability
distribution P(v; | i1;) is calculated over all such;. Left perplexity can be computed
analogously.

It can be noted that the best results are obtained when onlbgxtomorphs/; that are
longer than three letters are included in the perplexitgudation. As becomes clear in
the following section, this means that the right and lefpfexity are estimates of the
predictability of thestemsthat can occur in the context of a target morph. Including
shorter morphs seems to make the estimates less reliallaydee of the existence of
non-morphemes (noise morphs).
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As a reasonable probability distribution over the possilieies of right and left per-
plexity, we useRissanen’s universal pridior positive integers (Rissanen, 1989):

P(n) ~ 2 log, c—log, n—log, log, n—log, log, log, nf.‘.’ (320)

where the sum includes all positive iterates, arsla constant, abo@865. To obtain
P(right-ppl(y;)) and P(left-ppl(u;)), the variablen is substituted by the appropriate
value,right-ppl(p;) or left-ppl(x;). Note that the left and right perplexity play no role
in the Baseline models, but are only used in the Categoriessores.

Category Membership Probabilities

In the grammar of the Morfessor Categories models, the taydef a morph to be
assigned a particular categosRE, STM, SUF, or NON) is determined by the usage of
the morph (Equation 3.6). The exact relationship,

P(C;|usagép;)) = P(C; |freq(u,), length(u;), right-ppl(u;), left-ppl(u;)), (3.21)

could probably be learned purely from the data, but curyemtiixed scheme is used,
involving a few adjustable parameters.

A measure oprefix-likenesss obtained by applying a graded threshold realized as a
sigmoid function to the right perplexity of the morph (segiie 3.4a):

1

prefix-like(r;) = (1 + exp[—a - (right-ppl(;) — b)]) . (3.22)

The parameteb is the perplexity threshold, which indicates the point veharmorph
1; is as likely to be a prefix as a non-prefix. The parametgoverns the steepness of
the sigmoid. The equation for suffix-likeness is identicadept that left perplexity is
applied instead of right perplexity (Fig. 3.4b).

As for stems, thestem-likenessf a morph is assumed to correlate positively with the
lengthin letters of the morph. A sigmoid function is employed as\wehavhich yields:
-1

stem-likéy;) = (1 + exp[—c- (length(p;) — d)]) (3.23)

whered is the length threshold andgoverns the steepness of the curve (Fig. 3.4c).

Prefix-, suffix- and stem-likeness assume values betweererer one, but they are not
probabilities, since they do not usually sum up to one. A prguobability distribution

is obtained by first introducing theon-morphemeategory, which corresponds to cases
wherenoneof the proper morph classes is likely. Non-morphemes aredilp short,
like the affixes, but their right and left perplexity are lomhich indicates that they do
not occur in a sufficient number of different contexts in ertequalify as a pre- or
suffix. The probability that a segment is a hon-morpher@\) is:

P(NON | ;) = [1 — prefix-like(p;)] - [1 — suffix-likg ;)] - [1 — stem-likép;)]. (3.24)

Actually Rissanen defines his universal prior ovenalh-negativéntegers and he would writ®(n — 1)
on the left side of the equation. Since the lowest possilipl@sty is one, zero is not included as a possible
value in our formula.
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Figure 3.4: Sketch of sigmoids, which express our priordfedi how the
right and left perplexity as well as the length of a morph effets tendency
to function as a prefix, suffix, or stem.

Then the remaining probability mass is distributed betwmefix, stem and suffix, e.g.:

prefix-like(1;)9 - [1 — P(NON | ;)]

P ) = :
(PRE| 1) = o fixciikeus)7 T stem-liké, )7 + suffix-like i)

(3.25)

The exponeny affects the normalization. High values @produce spiky distributions
(“winner-take-all effect”), whereas low values producetéadistributions. The values
g = 1 andq = 2 have been tested, agd= 2 turned out to produce better results.

Finally, if the morph consists of submorphs, its categoryniership probabilities are
affected by the category tagging of the submorphs. Thisgmtsvconflicts between
the syntactic role of a morph itself and its substructuretailscan be found in Ap-
pendix A.4.

As mentioned above (page 50), the frequency of a morph coasdilply be used for
distinguishing between “semantic” morphs (stems) andrfgnatical” morphs (affixes).

In the current scheme, the frequeray suchis only used for computing the category-
independent probabilitie®(u;) (Eq. 3.7). Nonetheless, right and left perplexity are
indirect measures of frequency, because a high frequergyiscondition for a high
perplexity.

There is a similar idea of using the features frequency, alumformation and left and
right entropy in the induction of a Chinese dictionary from an untagged texpus
(Chang et al., 1995). There, the features are applied isi§jasy character sequences
as either words or non-words, which resembles the morphetegaries and the non-
morpheme category in the current work. In another work, Fegiad) (2004), a somewhat
simpler feature called accessor variety is used in ordeligooder words in Chinese
text. The use of such features within the field of word segatén dates back to Harris
(1955) and Hafer and Weiss (1974). However, in Morfessaplpeity is not utilized to
discover potential morph boundaries, but to assign pategtammatical categories to
suggested morphs.

8Entropy equals the two-base logarithiag,) of perplexity.
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3.4 Search Algorithms

Morfessor is a generative model: A given observed corpusssiraed to have been
generated from an underlying morph lexicon and grammar. riiatematical formu-
lation provides a means for computing an overall probahitit every possible lexicon
and every possible segmentation of the corpus. The goalfisdahe configuration
that yields the highest probabilitgearch algorithmsor search heuristicsare used for
testing different configurations. Since thearch spac¢the set of different configura-
tions) is extremely large, only a very small proportion dfpassible configurations can
be tested. A good search algorithm “navigates wisely” indbarch space and finds
promising “paths” that lead to a nearly optimal solutiomdingtheoptimal solution is
virtually impossible, due to the size and complexity of tkargh space.

In Morfessor, the most difficult search problem is to come ith & good set of morphs
that will constitute the lexicon. When the set of morphs iswngait is rather straightfor-
ward to refine the necessary probability distributionsn@ition and emission probabil-
ities) and to obtain the most likely segmentation and tagginthe corpus. The proba-
bilities and the segmentation are refined using the Expentdaximization algorithm,
which is used in all versions of the Morfessor model. Theieaisdo, however, differ
with respect to the algorithms they use for optimizing thieasenorphs in the lexicon.
In the following, the search strategies employed will bected upon briefly. Further
details can be found in the original publications.

3.4.1 Optimizing the Lexicon

The morph lexicon is modified througjreedysearch. At each point in time, a particu-
lar morph segmentation of the words in the corpus is assumeble Categories model
variants, each morph is additionally tagged with a categbwyring the search, modi-
fications to the existing segmentation and tagging are sigdeThe greediness of the
search means that the modification that yields the highesatposterior probability
is always selected.

When modifying the segmentation and tagging of the corpus,merphs can emerge
and old morphs disappear. Additionally, the properties ofaph can change (i.e., its
frequency, right and left perplexity). Thus, the explicibdification of the representa-
tion of the corpus implies an implicit and simultaneous Hiodtion of the lexicon.

In the Baseline versions of Morfessor, the search is iital by representing the corpus
as it is, as a set of unsplit words. This corresponds to hazitexicon that includes
each unique word form occurring in the corpus. Next, all wimeins are shuffled at
random, and for each word, every split into two parts is testéne most probable split
location (or no split) is selected and in case of a split, the parts are recursively
split in two. All words are iteratively reprocessed untietprobability of the model
converges. Figure 3.5 illustrates the hypothetical $pijttrees of the two English words
“reopened” and “openminded”. The morphs into which thesedwdave been split are
found in the leaf nodes of the trees (“re+open+ed, open+rad). Note that the
lexicon of Morfessor Baseline does not incorporate hidriaat structures, in contrast
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| reopen+ed | open+mindéc

Figure 3.5. Hypothetical splitting trees for two
English words, as proposed by the recursive

o X ; re+ope
splitting search algorithm used in the Morfessor
Baseline model variants.

to Categories-MAP. Thus, only the leaf nodes correspondaphs that are contained
in the lexicon. The higher levels are used solely in the $earc

The recursive splitting algorithm used in the Morfessor diags is more thoroughly
described in Publications 1 and 7. This algorithm is not amdgd in the Baseline
variants of Morfessor, but it additionally serves as anatitation (or bootstrapping)
phase for the Morfessor Categories models.

In Categories-ML, the segments proposed by the Baseliitérsplare first tagged with
the most likely morph category. Then, heuristics for optimgj the lexicon are applied.
Short morphs tagged as non-morphemes (“noise morphs”gareved by joining them
together with neighboring morphs. Long morphs consistifhigtber existing morphs
are split into their most probable constituents, with thatiation that splitting into noise
morphs is prohibited. For details on these proceduresuttoRablication 3.

In Categories-MAP, the Baseline segmentation is modifieduth alternating phases
of resplitting and rejoining of morphs. When two morphs and i» are joined, the
alternative of concatenating them into a longer morph wittsmbstructure is weighed
against the alternative of adding hierarchical structuee, a higher level morph con-
sisting of u; andus. A more detailed description of the search algorithm is igiire
Publication 4.

In general, it is computationally more demanding to opterazcontext-sensitive model
(such as the Categories models) than a context-insensitige| (such as the Baseline
models). For a context-insensitive model, the optimal sagation of a particular string
is the same for all occurrences of that string in the corpegamdless of context. For
instance, the substring “lily” in the adverb “friendlily’nal the noun “Lily” will obtain
the same segmentation in both cases (“li+ly” or “lil’")ln a context-sensitive model,
due to transition probabilities between segments, ther@btiepresentation of a string
is not universal. Thus, different occurrences of the samegstmay obtain different
segmentations and category taggings. The string “lilyteein two word boundaries
(as in “Lily") may be tagged as a stem, whereas “lily” betweestem and a word
boundary (as in “friendlily”) may be split into two suffixedi+ly”.

In a context-sensitive model, in principle one should testlifications to the represen-
tation of a particular string separately for every contgpetthe string occurs in. How-
ever, this approach has some drawbacks in addition to bengslow. The more fine-
grained the category distinctions, the higher the numbamafue contexts becomes.
This number does not need to be very high before the obsengatf a particular string
is “shattered” onto many contexts, with a low number of obatons of the string in

90f course, this holds only as long as the segment “lily” hasbdentified in the word “friendlily”. The
situation is different if the word has been segmented diffiyen the first stage, e.qg., “friendli+ly”.
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each particular context. A low number of observations mahasthe greedy search
will have great difficulties in finding modifications that tkéo an overall higher prob-
ability, because the “weight” of each tested modificationds high enough to support
the addition or deletion of morphs from the lexicon. In orttereduce the problems of
too fine-grained context distinctions, the contexts canlbstered, or grouped, into a
smaller number of coarser context types, where each closteains contexts that re-
semble each other. Simple grouping schemes have beendijpptie search algorithms
of both Morfessor Categories models.

3.4.2 Optimizing the Segmentation of the Corpus

As described above, the optimization of the lexicon takes@lthrough fairlylocal
modifications of the segmentation of the corpus. In an attémpvoid local maxima
of the overall posterior probability, at timegjbbal resegmentation of the words in the
corpus and a reestimation of the probabilities take platcé¢hd Categories models, the
category tagging of the segments is additionally modified.

The global reestimation is performed using the Expectatiaximization (EM) algo-
rithm (Dempster et al., 1977). During the EM phase, the sehafphs in the lexicon
remains fixed, but the properties of a morph can change ffiegjuency, right and left
perplexity). The set of morphs can change only if some mosphot used at all in
the new segmentation of the corpus, which results in thapmbeing dropped from
the lexicon. In the implementation of the EM algorithm, thiée¥bi approximation has
been applied (Viterbi, 1967). That is, the one most probabigmentation and tagging
has been selected at each point.

3.4.3 Discussion of the Search Algorithms

Admittedly, the focus of the current work does not lie on tleefection of the design
of search algorithms. Yet, the model formulation togethéhwhe search algorithm
determines the quality of the outcome of the learning taskné&directions for possible
sophistication are outlined here:

In the EM optimization of the segmentation of the corpusMiterbi algorithm (Viterbi,
1967; Forney, 1973) can be replaced by the Forward-Backalgatithm (Baum et al.,
1970). In the Forward-Backward algorithm, all possiblehgatrough the states of the
HMM are calculated and weighted according to their proligbinstead of choosing
the single best path as in the Viterbi algorithm. (A path heweesponds to a partic-
ular morph segmentation and category tagging.) Promissglts have already been
obtained with respect to the Categories-ML algorithm (822004).

As far as the lexicon optimization is concerned, a corredpmnmodel averaging tech-
nique could conceivably be applied. Rather than choosirggaptimal lexicon con-
figuration, several alternative configurations could begiviEid according to their prior
probabilities. Such an approach would most likely be ex&lgncomputationally ex-
pensive, since each possible configuration would typiaadiytain tens of thousands of
morphs. A more promising avenue from a practical point ofweeuld be the design of
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less greedy search strategies. For instancsinmulated annealingmodifications that
lower the overall posterior probability are sometimes atee, which may reduce the
risk of the search getting stuck in local optima. Descrigi@f simulated annealing
and other iterative improvement algorithms can be foundeinegal machine learning
literature; see, e.g., Russell and Norvig (1995); Hayk@od).

3.5 Related Work

Unsupervised morphology induction is closely connectetth whe field of automatic
word segmentation, i.e., the segmentation of text withdanks into words (or some-
times morphemes). Many languages, such as Chinese ande3apamploy writing
systems where word boundaries are not explicitly markedxt t The discovery of
word boundaries, i.e., word segmentation, is thus the fe@seéssary step for any natural
language processing task dealing with written text. Forestanguages, e.g., Chinese,
each word corresponds to one morpheme. In this case, wordesggtion and mor-
pheme segmentation amount to the same thing.

In the following, alternative approaches to segmentatimhrmorphology learning will
be discussed. The existing algorithms in these fields irctxdmples from both the su-
pervised and unsupervised machine learning paradigme, thex focus is on unsuper-
vised and minimally supervised methods. For a broader @merwhich includes work
on supervised algorithms, the interested reader is reféaee.g., Goldsmith (2001);
Kit et al. (2002).

3.5.1 Learning a Segmentation

Recent word and morpheme segmentation methods are typladled on statistical
modeling. Alternatively or in addition, they may employ semxtension of Harris’
segmentation method (Section 2.1.4). The induction ofdfistate automata (FSA) con-
stitutes a third approach, and additionally, some reseasdhave explored the use of
artificial neural networks.

In maximum likelihood (ML) modeling, only the accuracy okthepresentation of the
data is considered when choosing a model. In order not tdeare;, some restrictive
model search heuristics or model smoothing is requiredm®atation algorithms based
on ML, where the complexity of the model is controlled heticaly, include work by
Ge et al. (1999), Peng and Schuurmans (2001), and Kneisgldflakow (2001).

Probabilistic maximum a posteriori (MAP) models and eqigimtly models based on
the Minimum Description Length (MDL) principle choose thesb model by simulta-
neously considering model accuracy and model complexitynuber of segmenta-
tion algorithms have been formulated either using MDL or MAR., Redlich (1993);
de Marcken (1996); Brent and Cartwright (1996); Deligne &mbot (1997); Brent

(1999); Kit and Wilks (1999); Yu (2000); Goldsmith (2001 n&er and Brent (2001);
Argamon et al. (2004). In these works, the goal is to find thetriikely lexicon (model)

as well as a likely segmentation of the data.
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The strive for conciseness can also by achieved within fstéige models. There exist
algorithms that try to learn finite state automata that catipanodel the word forms

observed in the training data (Johnson and Martin, 2003d$with and Hu, 2004).

Also Altun and Johnson (2001) induce a stochastic finittestatomaton describing
Turkish morphology, but their method works only in a supsed learning task, that
is, they require a segmented, labeled corpus to begin withotifer supervised FSA
learner, applied on Finnish morphology, is presented bysGar(2005).

Parallels from the automaton approach can be drawn to Hé®isnethods, where
a word or morpheme boundary is suggested at locations whergredictability of
the next letter in a letter sequence is low (e.g., Déjean818&do and Lee, 2000;
Adda-Decker, 2003; Feng et al., 2004). If the letter seqgesffewords or sentences) are
sorted into a suffix tree, these “low-predictability locats” correspond to nodes with a
high branching factor. The suffix tree could be compresseénging nodes that have
identical continuations, thereby producing a more comgata structure, which is an
FSA.

Researchers interested in human language acquisitiorelpglied recurrent neural net-
works to the segmentation of utterances. Like Harris, Elfi890) assumes word
boundaries at locations, where the network cannot easdlgig the next letter in the
sequence. Christiansen et al. (1998) utilize segmentaties obtained from speech,
e.g., stress.

Commonly, algorithms designed for word segmentationadtitiery little prior knowl-
edge or assumptions about the syntax of the language. thsigar knowledge about
typical word length may be applied, and small seed lexicarssametimes used for
bootstrapping. The segmentation algorithms try to idgmtifaracter sequences that are
likely words without consideration of the context in whidtetwords occur.

3.5.2 Learning Morphological Structure

The Morfessor model provides a good means forgbgmentatiorf words into mor-
phemes. Alternatively, the model can be applied to word fgemeration The rather
few restrictions incorporated in the current model makesviery permissive model of
morphology. Such a model predicts a large number of wordsideibf the observed
training corpus. This is desirable behavior, since a swfablearning algorithm should
be able to generalize to unseen data. However, a permissidelralso makes many
mistakes. Many alternative approaches to morphology iegrfocus on the acquisi-
tion of more restrictive morphologies, where much fewerdgooutside of the training
corpus are recognized.

Some works discover pairs of related words or pairs of multilvcollocations.
Jacquemin (1997) discovers morphological variants of imatd collocations, e.g.,
“longitudinal recorihg” vs. “longitudinaly recorced’. The collocations essentially
have the same semantics and can be identified through regflixrpatterns, e.g., {0,
ing), (ly, ed)}. Baroni et al. (2002) and Neuvel and Fulop@2pPpropose algorithms that
learn similarities in the spelling of word pairs. The disenyof patterns is not restricted
to concatenation, but also include, e.g., vowel change asithe German Umlaut: “An-
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schlag” vs. “Anschlage”. Generation takes place by prétianissing word pairs. For
instance, the pair “receive” vs. “reception” yields therpdieceive” vs. “deception” by
analogy (where it is assumed that the word “deception” wasmihe training set).

Other works aim at forming larger groups of related word fer@aussier (1999) learns
derivational morphology from inflectional lexicons. Orgraphically similar words are
clustered into relational families. From the induced waadhilies, derivational rules
can be acquired, such as the following French verb-to-noamersions: “produire™
“production”, “produire”— “producteur”. Schone and Jurafsky (2000, 2001) make use
of a Harris-like algorithm to separate suffixes and prefixemfword stems. Whether
two orthographically similar word forms are morphologlgalated is determined from
their context of neighboring words. A semantic represémafor a word is obtained
from the context using Latent Semantic Analysis (LSA). Temantic properties of a
word are assumed to emerge from a large context window, \&hesyntactic properties
can be determined from a narrow window of the immediate wordext. In addition to
orthographic, semantic, and syntactic similarity, tréwsiclosure is utilized as a fourth
component. That s, if “conductive” is related to “conduatid “conductivity” is related
to “conductive”, then “conductivity” is likely to be relatieto “conduct”. Bordag (2005)
presents a model that functions in a similar way to that oib&ehand Jurafsky, but uses
simpler mathematics.

Yarowsky and Wicentowski (2000), Yarowsky et al. (2001) atentowski (2002)
discover shared root forms for a group of inflected wordsb¥én numerous languages
are studied. In addition to orthographic and contextuailanity, frequency distribu-
tions are included as a clue to whether words are relatedn&ance, the English word
“singed” can be discarded as a past tense candidate of ‘4 berause “singed” is
far too rare. Furthermore, parallel corpora in multiplegaages are utilized, and one
language can function as a “bridge” to another languageekample, the French verb
“croire” can be discovered as the root of “croyaient”, sitlvese two forms are linked
to the English verb “believe” in a parallel text. A missingKifrom the resembling verb
forms “croissant” and “croitre” tells us that these are filaly to be related to “croire”.
Once related words have been proposed, string transdaatembe learned that map
new words to their likely roots. Wicentowski (2004) learnsed of string transductions
from inflection-root pairs and uses these to transform ungeféections to their cor-
responding root forms. In this particular experiment, hesvesupervised training is
used.

A further step consists in inducing complete inflectionabgligms, i.e., discovering sets
of stems that can be combined with a particular set of suffi@ddsmith (2001) for-
mulates his well-known algorithm Linguistica in an MDL framork, whereas Snover
and Brent (2001) and Snover et al. (2002) present a similaloghbilistically formulated,
model. These models do not predict any word forms outsidaetorpus data. If the
following English verb forms have been observed: “talkksaltalking, walk, walked,
walks”, the verbs “talk” and “walk” will go into separate @atigms: “talk” with the
suffix set {7, s, ing} and “walk” with the suffix set g, ed, s}. More general paradigms
can be obtained by “collapsing them” together, i.e. clustethem based on context
similarity (Hu et al., 2005b). This model can, in principjaedict the missing verb
forms “talked” and “walking”.
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Existing models make the learning of higher-level morphaal structure computa-
tionally feasible by assuming that a word consists of maklimavo, or three, mor-
phemes. This is clearly insufficient for a highly-inflectiagd compounding language
like Finnish. In recent work, Goldsmith and Hu (2004) and Hale (2005a) move
towards morphologies with a larger number of morphemes medwA heuristic is
described that is capable of learning 3- and 4-state FSAtsnlodel word forming in
Swahili, a language with rich prefixation.
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Chapter 4

Evaluation

Different morphology learning algorithms focus on diffet@spects of the learning of
morphological structure. Therefore, it is difficult to comne with one single evaluation
method that adequately measures the performance of allhology learning systems.
The ultimate test could be to assess how well word forms attenstood and produced in
a “real setting”, where the morphology learner is integitatean application. However,
when evaluating morphology modeling within, for instanaetomatic speech recogni-
tion applications, there are many factors beyond morphotbgt considerably affect
the result. It is thus valuable also to measure the succetsge déarning task directly
without mediation through an application.

Morfessor has been evaluated in the two manners mentionesttlg, by comparing
to a linguistic gold standard, and indirectly, through seeecognition experiments.
This chapter reports on the experiments carried out and suip@s some alternative
approaches.

4.1 Linguistic Evaluation

This section first presents some common approaches to theidtic evaluation of
morphology learning. Then, the design of tHatmegsmorphology evaluation gold
standard is described, together with experimental resbitsined using Morfessor on
different-sized corpora of Finnish and English.

4.1.1 Different Approaches to Linguistic Evaluation

A morphology learning algorithm can be evaluated by its cdpdo segment words
into morphemes. The morpheme boundaries proposed by thathlg can be com-
pared to a gold standard, where the “correct” linguisticritaries have been marked.
This evaluation method is particularly popular for assegshe performance oford
segmentatioralgorithms, i.e., methods that discover word boundariet®ih with no
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marked delimiters between words.

Word and morpheme segmenters are typically evaluated rimstef the accuracy and
coverage of the proposed word or morphebwmindaries see, e.g., Ando and Lee
(2000); Brent (1999); Cohen et al. (2002); Feng et al. (2064 et al. (1999); John-
son and Martin (2003); Kit and Wilks (1999); Nagata (1997¢n& and Schuurmans
(2001); Yu (2000). Alternatively, one can apply a somewltr@tter criterion and calcu-
late the proportion of correctly discovered words or momés. In order for a word or
morpheme to be correct, ita/o delimiting boundaries must naturally be correct. Here
the accuracy can be assessed either on the corpus (tokeos)tbe lexicon (types).
For instance, Feng et al. (2004) apply token-wise evaloatidiereas Brent (1999) and
Hacioglu et al. (2003) apply type-wise evaluation.

The above approaches to evaluating segmentation perfograae straightforward and
have intuitively interpretable results. However, there some difficulties related to
the design of a good gold standard. The ideal level of segatientis sometimes un-
clear. For instance, one may wonder whether the followinglig&h words borrowed
from Latin consist of one or two morphemes: “assume, cogga&wnsume, presume,
receive, resume, subsume”. A possible way out is to make fusier@rchical segmen-
tations, e.g., the word “conceivable” can be representdfjam][ceiv]][able]]. When
comparing the gold standard segmentation to the outpueddltdorithm, one penalizes
for crossing bracketd.e., proposed brackets that overlap, but are not cordairnthin

a bracket in the gold standard; see e.g., Ando and Lee (20@0Marcken (1996).
For instance, the following segmentations of “conceivakleuld be considered cor-
rect, among others: [con][ceiv][able], [conceivable]. Bgntrast, the segmentations
[con][ceivable] and [conceiva][ble] contain crossingdkets and are incorrect. Despite
its merits, the crossing-bracket rate is a rather crudeuatiah measure; for example,
by splitting any string into its individual characters, @ssing-bracket rate of zero is
obtained. Consequently, complementary evaluation measue necessary.

Another solution to the problem of ambiguous levels of segatén consists in having
not one, but several “gold standards”, each produced byigenspeaker of the target
language. The decisions made by the algorithm can be coohparthose made by
the human experts, especially the tricky cases involvingelaisagreement among the
experts (Baroni, 2003). However, the construction of sughld standard appears to be
a rather time-consuming procedure.

Not only the level of segmentation, but also the exact locatif a transition from one

morpheme to another can be unclear. For example, does theltaig to the stem or the
ending in the English past tense form “typed”? The solutiozppsed in the Hutmegs
gold standard is described in the following section. Therlowever, another direction
one can take, which does not emphasize the exact locatiansnpheme boundaries or
level of segmentation. If the purpose of the induced modetafphology is to provide

a means for producing and “understanding” new word formg cen evaluate how
well the proposed segments (allomorphs) can be mapped adgrlying morphemes
in a gold standard. Such a morpheme-allomorph alignmenbaph is introduced in

Publications 1 and 2. Another alignment technique is desdrby Kontorovich et al.

(2003).

In the evaluation method employed in Publications 1 andjdka is to compute the
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expected probability that the correct morpheme (deep-levieof meaning) can be de-
duced from a suggested surface-level segment (allomoffpdr).instance, if the word
forms “berry” and “berries” are segmented linguisticallipérry, berri+es”) the under-
lying morphemeERRY can be deduced unambiguously from both allomorphs (“berry,
berri”), since neither occurs as an allomorph of any othermpieme. Another possible
segmentation could be “berr+y, berr+ies”, where “berr” Vaiikewise provide strong
evidence for an underlyingerRY. By contrast, leaving only “be” as a stem would be
a bad segmentation, due to the ambiguity of this segmentuuldcsignify the vertBe
and possibly many other morphemes in addition to the int@B@&RY. Unfortunately,
many morphs are inherently ambiguous in language, e.g.Etiggish “-s” used as a
plural marker of nouns as well as a marker for the third pessiogular of present tense
verbs. Also such “rightly” ambiguous morphs are penalizgthiis evaluation measure,
which is an undesirable effect. The method was thereforaddeed in later publica-
tions in favor of the more standard evaluation techniqgueth@a® Hutmegs. However,
the idea behind the morpheme-allomorph mapping approsminseery justified de-
spite the fact that the implementation leaves room for imgneoent.

Morphology learning algorithms that discover inflectiopatadigms are often evaluated
in terms of the correctness of the induced paradigms. THaati@n can take place as a
manual rating of the goodness of a representative sampldg@ah, 2001; Erjavec and
DZeroski, 2004). In automated evaluation, it is common tasnee the accuracy of the
proposedonflation set¢Jacquemin, 1997; Gaussier, 1999; Baroni et al., 2002;18cho
and Jurafsky, 2000, 2001; Snover et al., 2002). That is,itciediven for words that
are grouped together and truly are related word forms (&iggeing” and “singed”).
Accordingly, suggested relationships that are incorreetpenalized (e.g., “sing” and
“singed”). Moving beyond the discovery of just any relateord/forms, Yarowsky and
Wicentowski (2000); Yarowsky et al. (2001) require that doerect root form be de-
tected for every word; for example, the mapping “singeinginge” is correct, whereas
“singeing— singed” is not. Neuvel and Fulop (2002) make use of a sligtifferent
approach, where previously unseen word forms are genebgtéde model, and the
proportion of the generated words that are indeed possilitesilanguage is assessed.

4.1.2 Hutmegs

The major evaluation method applied in this work consistsamparing the proposed
placement of morpheme boundaries to a linguistic gold stahsegmentation. As men-
tioned above, such an evaluation is straightforward andtiné — provided that an ad-

equate gold standard exists. Segmentation gold standadalaable resources, which
require large amounts of work by linguistic experts. Onaytbxist they can be used
for other purposes beyond evaluation of unsupervisedilggaigorithms. An example

is given in Section 4.2, where one of the tested language Im@leased on a linguistic

morpheme segmentation.

The need for publicly available resources is apparent. iWitne Penn Chinese Tree-
bank project (Xue et al., 2004) a 100 000 word corpus of Maindahinese has been
segmented into words, tagged with part-of-speech tags amdded with syntactic

bracketing. In Western languages, there are spaces bethe&vords, and word seg-
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mentation of written text is trivial. However, large amosiof work has gone into the
annotation of corpora, e.g., part-of-speech tagging, hmlggical analysis and syntac-
tic bracketing. For American English, the Penn Treebankr@Ms et al., 1993) is an
example of existing resources.

A more detailed annotation of the morphological structurevords can be found in
the CELEX databases of English, Dutch and German (Baayeh, €t985). Among
other things, the databases provide information on thevatéwnal and compositional
structure as well as inflectional paradigms of tens of thodsaf word forms. Corre-
sponding morphological analyses of word forms, though dietsiled, can be obtained
using software based on the two-level morphology of Koslemin(1983). Such TWOL
analyzers exist for, e.g., Finnish, the Scandinavian laggs (Swedish, Danish, Norwe-
gian), English and Germahn.

What the existing analyzers and databases lack, however,gaggicit morphemeseg-
mentationof the surfaceforms of the words. The information provided by CELEX and
TWOL can be interpreted as a morpheme segmentation of a Wwotdhe morphemes
are not indicated as they are realized on the surface, as segments or allomorphs,
but as deep-level morphemes (or base forms), e.g., thedbnglbrd “bacteriologist”
yields the segmentation “bacterium+ology+ist”.

Publication 8 describes the production of segmentatiorthekurface forms of both
Finnish and English words. These segmentations are prdm@ssa reference, or gold
standard, which can be used freely for research purposesgdld standard is called
Hutmegswhich is an abbreviation for “Helsinki University of Teablogy Morphology
Evaluation Gold Standard”.

The Hutmegs gold standard relies on existing resourcesFithdish TWOL and the
contents of the English CELEX datab&s&he additional work consists in producing
an alignment between the surface, or allomorph, segmentatid the deep-level, or
morpheme, segmentation, as in the following examples:

tieteellisessa tietee:tiede|N llise:DN-LLINEN ss&:INE
bacteriologist bacteri:bacterium|N olog:ology|s ist:is ts

The Finnish Gold Standard contains segmentations for llibmdistinct word forms
(word types). The English Gold Standard contains segnientafor 120 000 word
types. The locations of morpheme boundaries in the surfaoe is not always obvious
and the interpretation chosen relies on Hakulinen (1978)fonish and Quirk et al.
(1985) for English. If a word has many possible segmentatialhof these are supplied,
e.g., “evening” (time of day) vs. “even+ing” (verb).

The segmentation has been performed semi-automaticatytiag help of rulesets and
a number of scripts. For Finnish, some extra processing e@sned for derived word
forms in order to obtain the baseform of the root rather thariaseform of the deriva-

ILicenses can be obtained from Lingsoft, linttp://www.lingsoft.fi

2An alternative source for creating the English gold staddauld have been Englex / PC-KIMMO ver-
sion 2,http://www.sil.org/pckimmo/v2/doc/guide.html

3The Finnish word ‘tieteellisess&’ means ‘in [the] scientifithe segments shown consist of an allomorph
part separated from the morpheme part by a comma. The morpheme pacbntain a part-of-speech tag,
which is preceded by a vertical bar.
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tion (e.g., “tiede” instead of “tieteellinen”; i.e., “saiee” instead of “scientific”). For
English, possessive forms of nouns had to be added (e.qg'8kiqueen’s”). In ad-
dition, so-called “fuzzy morpheme boundaries” have beeroituced as an optional
feature. Fuzzy boundaries can be applied for cases whesantonvenient to define
one exact transition point between two morphemes.

Fuzzy Locations of Morpheme Boundaries

In some cases, the “linguistically correct” location of arplfteme boundary may not
seem the only plausible solution. Historic developmenteflanguage may affect the
way linguists describe the contemporary morphology. H@xkegvom the point of view
of natural language applications, this may not be the optitescription.

In the Hutmegs gold standard, there is a notation for marKimyiness” of morpheme
boundaries. The fuzziness consists in alternative locatfor the same morpheme
boundary, i.e., the boundary does not have an unambigucatida. Fuzziness is al-
lowed as follows: If at the end of a morpheme, there is one phran(or sometimes
more) that may be totally absent in some allomorphs of theohmme, this phoneme is
considered to lie on a fuzzy boundary between two morpheliié® latter morpheme
is always a suffix.) The phoneme is on the fuzzy boundary drityalternates phono-
logically with a “zero phoneme”, not if it is replaced by ahet phoneme. This is a
somewhat arbitrary definition, but our motivation is that fphoneme (or phonemes)
behaves as a seam, or a joint, which is not always needede Ifdmt phoneme” is
present only in combination with some following suffixescduld be considered part
of the suffix as easily as part of the preceding morpheme.

For instance, in English, the stem-final ‘e’ in verbs is dregppn some forms. The
user of the gold standard can choose whether to considetimlyaditional linguistic
segmentation correct, as in:

invite, invite+s, invit+ed and invit+ing ,

or whether also to allow for an alternative interpretatiwhere the ‘e’ is considered part
of the suffix, as in:

invit+e, invit+es, invit+ed and invit+ing ,

In the former case, there are two allomorphs of the stemiféhand “invit”), and one
allomorph for the suffixes. In the latter case, there is omlg allomorph of the stem
(“invit”), whereas there are two allomorphs of the third gam in the present tense (“-s”
and “-es”) and an additional infinitive ending (“-e”). Sintgere are a much greater
number of different stems than suffixes in the English lagguéhe latter interpretation
lends itself to more compact Item and Arrangement modelsasphology?

Corresponding fuzzy cases exist in the Finnish languagejragreater number than
for English. For instance, the proper name “Windsor” hasdhallomorphs in Finnish:

“Note that the possible segmentation “invite+dhist considered correct, due to the fact that there is no in-
dication that the regular past tense ending “-ed” ever ldsés”, whereas the preceding stem unquestionably
does so, e.g., in “inviting”.
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“Windsor” (nominative singular, genitive plural), “Winds” (oblique cases in singu-
lar, nominative plural), and “Windsore” (oblique cases largpl). The following seg-
mentations are linguistically conventional, e.g., “Windswindsori+n, Windsori+lla,
Windsori+t, Windsor+i+en, Windsore+i+lla”. Since the fin@wel of the stem is not
always present, it belongs to a fuzzy boundary, and canftiveralso be attached to
the ending: “Windsor, Windsor+in, Windsor+illa, Windsdt;+Windsor+i+en, Wind-
sor+ei+lla”. Further examples and details can be found iiPation 8.

4.1.3 Experiments

The Hutmegs package contains some evaluation scripts iticadb the morphological
gold standard segmentations of Finnish and English worlshd quantitative evalua-
tion, three measures are usqutecision recall, andF-measureof the proposed place-
ment of morpheme boundaries. These measures assume \etiwesih zero and 100 %,
where high values reflect good performance.

Evaluation Measures

Precision is the proportion of correct boundaries amalhgnorph boundaries suggested
by the algorithm Recall is the proportion of correct boundaries discovérgdhe al-
gorithm in relation toall morpheme boundaries in the gold standarBor example,
suppose that a segmentation algorithm proposes the folipgegmentations for two
English words: “beautiful+ly, flu+s+ter+ed”. The correspling gold standard segmen-
tations are: “beauti+ful+ly, fluster+ed”. For this minimsdmple the total number of
boundaries suggested by the algorithm is four and the tataber of boundaries in the
gold standard is three. Two of the boundaries suggestedatsigforithm are correct ac-
cording to the gold standard. Thus, the resulting preci'rsi(%n: 50 % and the resulting
recall equals = 67 %.

Precision and recall can be combined into a third evaluatieasure, (evenly-weighted)
F-measure, which is the harmonic mean of the two:

1( 1 n 1
2 Precision Recall

F-Measure=1/|

)] (4.1)

In our example, an F-measure valuelgfi (3 + 2)] = 2 = 57 % would be obtained.

The above evaluation is performed on word types, i.e., eanh form is counted only
once, which implies that frequent and rare words have eqeawin the evaluation.
Alternatively, the evaluation can be based on word tokeh&reveach word is counted
as many times as it occurs in the corpus. For instance, ifutiifedly” occurs 100
times and “flustered” two times in our corpus, the total nundfenorpheme boundaries
proposed by the algorithm i€)0 - 1 4+ 2 -3 = 106 and the total number of boundaries in
the gold standard amounts160 -2 + 2 -1 = 202. The number of boundaries proposed
that are correct equal®0-1+2-1 = 102. Thus, the token-wise precisio;}i‘é% =96 %,

token-wise recall ig22 = 50 %, and token-wise F-measurelig[1 (135 + 22 )] = 66 %.

A general tendency across languages is that the most isrefprims occur with high
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frequency, whereas rare words predominantly have reguifl@ction patterns. Conse-
quently, token-wise evaluation stresses the performahtieecalgorithm on frequent,
less regular cases. However, from the point of view of gdizaaility (prediction of
unobserved forms), it is crucial to learn regular morphglag accurately as possible.
This motivates the use of type-wise rather than token-wisasures. In the following,
all reported figures are calculated on word types.

Algorithms and Data Sets

Experiments have been carried out on Finnish and English dBlhe data consist of
plain text with no linguistic annotations. The Finnish date composed of prose and
news texts from the Finnish IT Center for Science (CS&)d the Finnish National
News Agency. The English data consist of the Brown corpuangpte of the Gigaword
corpu$, as well as prose, news and scientific texts from the Guterireject.

Four different versions of Morfessor are tested: Baselaseline-Length, Categories-
ML, and Categories-MAP. In addition, Goldsmith’s algonith.inguistica is included
for comparison (Goldsmith, 2001, 2005).

Evaluations are carried out on data sets containing 10 @008, 250 000 and 16 mil-
lion words for Finnish. The same data set sizes are used fglidan except for the
largest data set, which contains 12 million words. Paranvatees (Equations 3.22 and
3.23) have been set using held-out development sets, wieatioh part of the final test
sets.

Results

The F-measures of the morpheme boundaries proposed bygibritlains are shown in
Figure 4.1. In the comparison against the Hutmegs gold atandfuzzy” morpheme
boundaries have been allowed. (The raw numerical valugseofFtmeasures, together
with the related precision and recall values, can be fourpipendix A.5.1.)

In the results for Finnish, the five assessed algorithmsir&dl three distinct groups
(Fig. 4.1a): (i) The best performing group consists of the tdategories versions of
Morfessor. They increase their lead with increasing date. sCategories-MAP rivals
Categories-ML as the best-performing algorithm. For tha d&es 10 000 and 250 000
words the difference between the two is not even statisficidinificant (T-test level
0.05). (ii) The length prior applied in the Baseline-Lengththod seems slightly bene-
ficial compared to the plain Baseline, but the differencégasstically significant only on
the 50 000 word data set. (iii) Linguistica is the worst-perfing algorithm on Finnish
data.

Some different tendencies can be observed in the Englisiisg&ig. 4.1b): (i) Gen-
erally, in terms of F-measure, the algorithms perform bettan on the corresponding

Shttp:/ivww.csc.filkielipankki/

6The Gigaword sample and the Brown corpus are available atitiguistic Data Consortiumhttp:
/lwww.ldc.upenn.edu/

http://iwww.gutenberg.org/browse/languages/en
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Finnish data sets. This may be a consequence of the lesseofpdlish morphology,
which is easier to model. This may also explain the fact thate is a less evident
advantage of the more sophisticated Categories modeldtowvsimpler Baseline mod-
els. Linguistica is more suited for this type of language padorms second best on
the 50 000 and 250 000 word sets. Note, however, that amorfguhbest-performing
methods the difference in performance is statisticallyiicant only between Catego-
ries-ML and the lowest-scoring algorithm at each data diregliistica at 10 000 words;
Baseline-Length at 50 000 and 250 000 words). (ii) The peréorce degrades some-
what for most algorithms on the largest English data sets Ty be caused by the
multitude of foreign words contained in this set, which @aupatterns to be discov-
ered that do not belong to contemporary English morpholegy, “plex+us, styl+us”.
(iii) The length prior is beneficial; Baseline-Length clgasutperforms the plain Base-
line method, especially on small data sizes. Note that tre=Bee methods are trained
on lists of unique word types rather than corpora of runnag.t In an English and
Finnish corpus of the same size, the number of distinct worth$ is much lower in
the English corpus (see Figure 4.2). On smaller data setanypact of a prior is larger,
which explains why the length prior is more effective for lisig than Finnish.

Out-Of-Vocabulary Words

Unfortunately, gold standard segmentations do not exisatfovord forms in the test
sets. The morphology-learning algorithms suggest a magghmentation for all words

in the data, but those words that are out-of-vocabulary, net contained in the gold
standard, are disregarded in the evaluation. Out-of-wdeap (OOV) words make up
about 3.5—-4.0 % of the woribkensin the Finnish and English test data, regardless of
the size of the subset used.

However, the F-measures reported are based on types The proportion of out-of-
vocabulary wordypesincreases steadily with the size of the set: In the FinnisbQlD
word test set, 4.3% of the word types are OOV, and in the Hnh& million word
set, 15.2%. The corresponding figures for English are 7.330Q0 word set), 16.4 %
(250 000 word set) and 56.0 % (12 million word set). The high o OOV word types
for the largest English test set seems to be due to the fach thege number of names,
both English and foreign, are missing from the gold standard

As mentioned in the “Results” section above, it is difficult the algorithms to learn a
correcteEnglishmorphology from data containing a large mass of rare “aglpforeign
words. Undesired patterns are discovered, which somewfeatathe “typical” English
words, and which is seen as decreased performance for thestar2 million word set
in Figure 4.1b. The negative effect seems to be even morédaasthe foreign words
themselves, as suggested by the following additional etialo:

On the largest English set with the very high OOV rate, a ssathple of 125 OOV’s
were picked by random and correct segmentations for thes#sweere produced manu-
ally. F-measures were then calculated for the five algostbmthis small sample. That
is, the training data remained the same from the previousrérpnt, but the evaluation
was performed on a new subset of words. Here Categories-MABrmed the best with
an F-measure of only 47 %. Categories-ML came second (41 Bieyeas the Baselines
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Figure 4.1: Morpheme segmentation performance of fourimessof Mor-
fessor as well as Goldsmith’s algorithm Linguistica, both(a) Finnish and
(b) English test data. Each data point is an average of 5 nuseparate test
sets, with the exception of the 16 million words for Finnistdlghe 12 million
words for English (1 test set). In these cases the lack ofitestconstrained
the number of runs. The standard deviations of the averageshawn as
intervals around the data points. There is no data point fioguistica on
the largest Finnish test set, because the program is uddoitevery large
amounts of data due to its considerable memory consumption.



72 Chapter 4. Evaluation

Word tokens vs. word types

@ 4 Finnish
I
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running text (tokens) of Finnish 7047
and English. Q™
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and Linguistica achieved around 30 %. If the sample is remtasive enough, the hardly
surprising result suggests that a morphology model shoaitchined on typical words
of the language, after which this model should onlyabeliedon less frequent, atypical
words.

The OOV rate for the largest Finnish set is considerably toeed therefore no corre-
sponding investigation has been performed on the Finnitgh d&e Baselines and Lin-
guistica do, however, display decreasing performance ige lamounts of data, which
may be due to the same reason: atypical words (Fig. 4.1a).

Random Segmentation

When assessing the level of performance of an algorithmirtp®rtant that one under-
stands the difficulty of the task. A useful algorithm mustaibta considerably better
level than what is achievable by very simple means. A comgnoséd “worst bench-
mark” consists in using mndomtechnique, in our casendom segmentation

Suppose that boundaries are placed by random after lettaheiwords in the data.
Here the last letter of each word is excluded, because itdsvkrto be followed by a
boundary. In the Finnish gold standard, eact" non-word-final letter is on average
followed by a morpheme boundary. Regardless of which pritibais used to produce
random boundaries, eveby3™ suggested boundary is expected to be correct, because
the boundaries are expected to be evenly distributed. Tiegponds to an expected

L. = 19%. The corresponding value for English is lower, because mor-
pheme boundaries are less frequegi:= 13 %.

Expected recall is maximized when the probability of sutjggsboundaries is maxi-
mized. This ensures that as few correct boundaries as @ssédomissed. By “guess-
ing” a boundary after each letter with a 100 % probabilityeeadl of 100 % is obtained.
That is, optimal “random” segmentation is achieved by 8ptitthe words in the corpus
into individual letters!

The expected maximal F-measures obtained using randomeségtion are thus
1/[3(19% + 1o55)] = 32% (Finnish), andl/[ (35 + 1555)] = 22% (English).
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All the compared algorithms perform clearly better tharstheery worst benchmarks.

4.1.4 Example Segmentations

The quantitative evaluation has only concerned the acgufihe placement of morph
boundaries. A few examples will now serve to illustrate giraenabeyondmere seg-
mentation. Table 4.1 contains a number of Finnish and Emglizrds, segmented using
the Baseline-Length and Categories-MAP algorithms. Iritanfd the corresponding
gold standard segmentations are supplied.

The examples verify that the introduction of a simple motphtics in the Categories
models reduces the occurrences of under- and oversegnvenitgslas well as misalign-
ments due to the insensitivity of context, which are obsgiivethe Baseline models.
Examples of such cases comprise the Finnish words “epéHgase+inen” (“imbal-
anced”), ‘jani+lle’ (“for Jani”), as well as the English was “photo+graph+er+s” and
“fluster+ed”®

The algorithms produce different amounts of informatidme Baseline and Baseline-
Length methods only produce a segmentation of the wordsresbethe other algo-
rithms (Categories-ML, Categories-MAP and Linguisticispandicate whether a seg-
ment functions as a prefix, stem, or suffix. Tagging of categocan be very useful.
It can be applied in order to identify and separate semaetimgnts (mainly stems)
from syntactic segments (mainly affixes). The stems coathin a word form could

be considered as a canonical (or base) form of the word, \ekahe affixes could be
considered as inflections. Such a canon form for words coelldrbalternative to the
base forms retrieved by hand-made morphological analy@essemming algorithms,

which are used, e.g., in information retrieval.

The lexicon learned by Categories-MAP contains hieraadhiepresentations, which
can be interpreted as the attachment hierarchy of the mamphie With the current
model, the construction of the hierarchy is likely to takagd in the order of most
frequently co-occurring word segments. Sometimes thidss grammatically ele-
gant, e.g., Finnish: “[epé [[tasa paino] inen]]” (“imbatzed”, literally bracketed as
“[un [[even weight] ed]]”), and English: “[[[photo graph]ré s]’, “[[un
[expect ed]] ly]”. But the probability of coming up with gramatically less elegant
solutions is also high, e.g., English “[ micro [ organism’s]]

The Morfessor algorithms can incorrectly “overgenerdliaed, for instance, suggest
a suffix, where there is none, e.g., “maclare+n” (“MacLajerSuch overgeneraliza-
tion should conceivably be less common in Linguistica, WhH&arns paradigms (called
signatures). In general, to propose the segmentation ‘arexh”, other forms of the
proposed stem would be expected to occur in the data, sucmasldre” or “ma-

clare+ssa”. If none of these exist, the segmentation shbeldiscarded. However,

8Note that Categories-MAP produces the correct segmentiatidghe word “epatasapainoinen”, whereas
the corresponding gold standard segmentation is strange bdth gold standard segmentation is due to the
fact that FINTWOL does not mark in any way the boundary betvtberprefix “epa-" and a following stem.
Also the English gold standard contains some debatable :cisesdentification of prefixes in the words
“condiguration, dis-appoint,in-sure” may have a historical motivation, but hardly reflectsabetemporary
semantics of these words.
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Table 4.1: Examples of Finnish and English morpheme segtiens
learned by two versions of Morfessor from the largest tesd. s&he cor-
responding gold standard segmentations are also suppliedosed prefixes
are underlinedstems are rendered bold-face and suffixes areslanted
Square brackets [ ] indicate higher-level stems and paeseth() higher-level
suffixes in the hierarchical lexicon of Categories-MAP.

Baseline-Length

Categories-MAP

Hutmegs Gold Standard

aarre kammioissa
aarre kammioon
bahama laiset
bahama saari en
epa esteettis iksi
epatasapaino inen
haapa koskeen
haapa koskella
janille

jaadytta a kseen
ma clare n

nais autoilija a
paa aiheesta

paa aiheista
paahéan

sano ttiin ko

ty6 tapaaminen
téhri misista

voi mmeko

darre kammio] issa
darre kammio] on
bahamalaiset
bahamal saari en]
efé esteetti ]| s] iksi
" [ephtasapaino] inen]]
Haapa[ koskeen]]
Haapa[ koskella]]
jani lle
jdady ttaa] kseen
maclare n
nai$¢ autoili ja]] a
paa[ aihe estq
[ pégaihe ista]]
[pa&an]
[sanottiin ] ko
tyo [ tapaa minen]
téhri (mis ist§
[[voi mme] ko]

aarre kammio i ssa
aarre kammio on
bahamalaise t
bahama saari en
epéaesteetts i ksi
epatasgainoinen
haapa koskeen
haapa koskella
jani lle

jaady ttd & kse en
nais autoili ja a
paa aiheesta

paa aihei sta

paa hén

sanott i in ko

ty0 tapaa minen
toéhri mis i sta

voi mme ko

accomplish es
accomplish ment
beautiful ly
configu ration
dis appoint
express ive ness
flu s tered

insur e

insur ed

insur es

insur ing

long fellow ’s
master piece s
micro organism s
photograph ers
re side d

re side s
residing

un expect ed ly

dccomplishes]
dccomplish ment]

[beautiful ly ]
fconfigur ation |

disappoint
ekpressivenesq
fluster ed]

insure
insur ed]
insure s]

[insur ing]

[[long fellow] s ]
[Mhaster piecq s]
ficro [ organism s]]
[[photo graph] er] s]

resided

fesides]

[residing]

[[un expected]] ly ]

accomplishes
accomplishment
beauti ful ly
configur ation
disappoint
expressive ness
fluster ed

in sure

in sur ed

in sures

in sur ing

master pieces
micro organism s
photograph er s
resided

resides

resid ing
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especially with large amounts of data Linguistica is oves#téve to common strings that

occur at the end of words and proposes segmentations, staluasle”, “alongsi+de”,
“longitu+de”; “anyh+ow”, “highbr+ow”, “longfell+ow".

4.1.5 Other Languages

After the completion of the work on the publications incldde this thesis, linguis-
tic evaluation data have become available for two addititaraguages: Turkish and
the Egyptian dialect of Arabic. Morpheme segmentation ltesabtained using three
versions of Morfessor on data of these two languages arershtamgside results for
Finnish and English in Table 4.2.

The results reported for Finnish, English, and Turkish egpond to the performance
of Morfessor in the so-called Morpho Challenge competitimganized within the EU
PASCAL Network of Excellence (Kurimo et al., 2006a; Crel2906). The Arabic
results are based on yet unpublished work.

Morfessor did not officially take part in the Morpho Challengsince this challenge
was organized by the developers of Morfessor. However, &ai6r would have outper-
formed all participants in the Finnish and Turkish segmimnatasks and would have
come second in the English task. It is especially encougatirsee that the Turkish
results are so good, since Turkish data were never utilizenhgl the development of
the Morfessor model.

Hutmegs was used as the linguistic gold standard for Finargh English. The re-
ported F-measures are slightly lower than those obtaindtidérearlier experiments,
which is due to the fact that the “fuzzy” morpheme boundaryarpwas not in use, and
thus fewer alternative segmentations were considere@aoriThe Turkish linguistic
segmentations are based on a morphological parser dedeftg®@ogazici University
(Cetinoglu, 2000; Dutagaci, 2002).

The Arabic data set, consisting of transcripts of telephomeversationy is consider-
ably smaller than the data sets of the other languages. Tsigmdard used for Arabic
is based on a lexicon of Egyptian Colloquial AralficAll vowels are marked in the data,
unlike the common practice when writing Arabic. Arabic werbnsist of a stem, possi-
bly preceded by a number of prefixes, and followed by a numbsuffixes. The stems
of many Arabic words are formed through the insertion of aelquattern into a “conso-
nantal skeleton”; for instance, the consonant sequenté"kneans “writing-related”,
and the following stems can be formed, among others: “kitéadok), “kutub” (books),
“kaatib” (writer). However, in the gold standard utilizedthese experiments, the stems
have been treated as unanalyzed wholes; that is, “kita&oitub”, and “kaatib” are
treated as separate morphemes.

By inspecting the results in Table 4.2, some general coimiasan be drawn: The per-
formance of the Morfessor Baseline algorithm varies gyeater the data sets of differ-
ent sizes and languages, whereas Categories-ML and Cae@bhAP seem to perform

9Callhome Egyptian Arabic Transcripts, provided by the Listia Data Consortium (LDC)http://
www.ldc.upenn.edu
103150 available through the LDC
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Table 4.2: F-measures obtained when running three versidvierfessor on
data sets of four different languages. The sizes of the dataused in the
experiments are also shown (token and type count).

Corpus size / Method Finnish English Turkish  Egyptian Acabi
Word tokens 32000000 24000000 17000000 150000
Word types 1600000 170000 580000 17000
Baseline 54.2 66.0 51.3 41.7
Categories-ML 67.0 69.0 69.2 67.9
Categories-MAP 66.4 66.2 70.7 68.1

on an equal level independent of language (with F-meastirasout 70 %). The more
elegantly formulated Categories-MAP outperforms the nmareristic Categories-ML
method on Turkish and Egyptian Arabic data, whereas the Sifgpis true for Finnish
and English.

4.2 Evaluation through Speech Recognition Experiments

As explained in Section 2.3.2, there are potential disaidms associated with large
lexicons in speech recognition. If the lexicon is composkdllodistinct word forms
encountered in a large corpus, the number of entries ig/ltkebe very high: hundreds
of thousands or even millions of words when dealing with dlyignflecting and com-
pounding language, such as Finnish. One way to limit theditlee lexicon is to split
the words into smaller sub-word units.

The aim of the following investigation is to compare diffetdypes of vocabularies
(i.e., lexicons) in Finnish speech recognition: vocahakof words, vocabularies of
morphs, and vocabularies of syllables. Two different expents have been carried out,
originally presented in Publications 6 and 7. In order to pbnwith the terminology
of Publication 7, the units that the vocabulary consistsrefcalled wordragments A
fragment can thus denote a single letter, a syllable, a momdmn entire word.

In the experiments, described nextgram language models based on different word
fragments have been evaluated. The models have been cahiqmihein terms of their
prediction capacity (cross-entropy on test corpora; cttife 2.3.3) and as integrated
components of a large vocabulary speech recognition system

4.2.1 Word Fragment Inventories

A text corpus consisting of 32 million Finnish words has baead as data. The corpus
is composed of books, magazines, and newspapers from thistiiT Center for Sci-
ence (CSC), and of short newswires from the Finnish News g&gephe words in this
corpus have been split, in turn, into: §Yllables (ii) statistical morphsand (iii) gram-
matical morphs Additionally, the words have been left unsplit, as (iv)ientvords
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The term “statistical morphs” denotes morphs produced byMbrfessor Baseline al-
gorithm, whereas the “grammatical morphs” correspond topim® obtained from the
linguistic morpheme segmentation of the Finnish Hutmedd gandard.

Once the desired splitting of the training corpus has be¢airdd, am-gram model is
estimated over the sequence of word fragments. Table 4vsstiierent segmentations
of one particular phrase of the training corpus. The divisito “Experiment I” and
“Experiment 11" reflects the two different experimental gg$ of Publication 6 and 7,
respectively. Syllables were investigated only in Pulbli@@a6, whereas grammatical
morphs were studied only in Publication 7. The size of thgrfrant inventory (lexicon)
of each model is indicated within parentheses after the ladae. For instance, there
are 79000 distinct fragments in the grammatical morph migipé count).

When a text is split into word fragments, the locations of wbodindaries must be
modeled explicitly. This has been solved by introducing dditgonal word boundary
unit (#), which functions as any other fragment in the seqaerNaturally, in case of
the word models, a separate word boundary fragment is supasf| because every word
can implicitly be assumed to end in a word boundary. Alsodfesplicit boundaries”
have been marked explicitly in Table 4.3.

The grammatical morph model and word models cannot covewntiode vocabulary of
the Finnish language. Some words lack a grammatical moogfeal analysis, since
they are not present in the Hutmegs gold standard, i.e.,aleeyot recognized by the
FINTWOL morphological analyzer. Correspondingly, it isgossible to include all
possible word forms in a word model. The treatment of outadfabulary words will
be described below, separately for Experiment | and 1.

4.2.2 Speech Recognition Tasks

The speech recognition performance has been assessedwsidifferent speech data
sets, which are independent of the text corpus used in timértgeof the language mod-
els. For these two sets, acoustic models (i.e., models efcbpgounds) are trained and
evaluated separately. The speech recognitiapéaker-dependerthat is, the acoustic
models are tuned to one particular speaker.

The first data set is a Finnish audio bébkontaining twelve hours of read speech from
one female speaker. The second data set consists of abolibéiveof news broadcasts
read by another female speaker. The major parts of thesesetstdnave been used as
training sets for training acoustic models. Smaller ingefemt sets have been used for
parameter tuning (development set) and final evaluatiah ¢&). In addition to training
acoustic models, the reference transcriptions of theitrgiportions of the book and
news data are utilized for evaluating the cross-entroffitisedanguage models.

11syntymattdmien sukupolvien EuroogpaEero Paloheimo
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Table 4.3: A phrase of the training corpusTuoremehuasema aloitti
maanantaina omenamehun puristamisen Pyynikillédnscribed using dif-
ferent fragment inventories. (An English translation sed®©n Monday a

juice factory started to press apple juice in PyynikkiThe fragments are
separated by space. Word breaks are indicated by a numbef3ign case
of the word models, the word breaks are part of larger fragsyentherwise
they are units of their own.

Experiment |

Model Segmentation

Syllables (37Kk) tuo re me hu a se ma # a loi tti # maa nan tai na # nan
me hun # pu ris ta mi sen # pyy ni ki lla #

Statist. morphs (64k) tuore mehu asema # aloitti # maanantaomena mehu n
# purista misen # pyynikilla #

Words-OQV (64k) OOV# aloitti# maanantaina# OOV# OOV# pyita#

Experiment |l

Model Segmentation

Statist. morphs (26k) tuore mehu asema # al oitti # maanaaté&iomena mehu
n # purista misen # pyy nik illa #

Gramm. morphs (79Kk) tuore mehu asema # aloitt i # maanantaonaena mehu
n#puristamisen#pyynikilla#

Words (410Kk) tuoremehuasem a# aloitti# maanantaina# amena
hun# puristamisen# pyynikilla#

4.2.3 Experiment|

The first experiment was performed only on the audio book, daité three types of
word fragments: syllables, statistical morphs, and worHer each fragment inven-
tory, atrigram language model was estimated over the segmented corpusCMble
Cambridge language modeling toolkit (Clarkson and Rosenf®©97) was used with
Katz backoff (Katz, 1987) and Good-Turing smoothing (Gd#h3). The CMU toolkit
is rather restrictive in terms of the maximal lexicon sizaipports. The lexicon can con-
tain no more than 64 000 entries (in our case word fragments}. is especially to the
disadvantage of the word model.

Syllables

In Finnish, syllabification is based on pronunciation rattien morphological struc-
ture. Each syllable must contain a vowel or a vowel clustétsasucleus. If the nucleus
is followed by a consonant cluster, the last of the conseanartransferred to the next
syllable, e.g., “a+tse+ma” (station), “de+monst+roi+d demonstrate). This simple
scheme may, however, produce the wrong result for compowrdsywhere the syl-
lable boundary should, in fact, be placed according to malggical criteria, at the
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inner boundary of the compound, e.g.;Varuus+asema” (space station) rather than
“a-varuu+sasema”.?

Although mistakes are made with some compounds, syllabidithased on pronunci-

ation has been applied in this work. The simplicity of thipagach is emphasized by
the straightforwardness of Finnish orthography; eacteldeissentially corresponds to
one phoneme, except the “ng”-sound and double letters,haepresent long sounds.
Splitting long sounds in two parts was not considered dekrfor speech recognition.

Therefore, long phonemes have always been kept within tine agment, which can

be seen in the examples in Table 4.3. (In standard syllatidicathe double letters

would be separated from each other, e.g., “Pyy+ni+kilHeteéad of “Pyy+ni+ki+lla".)

Foreign words are problematic in the sense that their praatian is not easily avail-
able. In the current experiment, these words have only re@sdribed very rudimen-
tarily. Letters that are not used in genuine Finnish wordehseen replaced, e.g., “c”
becomes “k”, “x” becomes “ks”, and “z” becomes “ts". The itilél to transcribe for-
eign words explains the surprisingly high number of didtgytlables: 37 000. Consider,
for instance, the following syllabification of non-Finniglords, which adds some very
dubious syllables to the lexicon: “mkknight” (mcknightydrds+vorth” (wordsworth).

Statistical Morphs

The Morfessor Baseline algorithm is applied on the 32 millgord text corpus. Mor-
fessor is here trained on word tokens; that is, frequent ¥ards have more weight than
rare ones. Consequently, frequent words mostly come oylitinghereas rare word
forms are split into smaller parts. The total number of mergtscovered is 300 000,
which exceeds the 64k lexicon size limit. Therefore, thephanventory is pruned to
contain only the 64 000 most frequent morphs, after whichctivpus is resegmented
using only these morphs. The resegmentation is carriedsdog the Viterbi algorithm
(Viterbi, 1967; Forney, 1973). The out-of-vocabulary nemains 0 % regardless of the
pruning of the morph lexicon, because the lexicon contamesfragment for each indi-
vidual phoneme. Thus, in the worst case any word form canwetten as a sequence
of phonemes.

Words-OOV

The text corpus contains 1.6 million distinct word formst ha more than the 64 000
most frequent words can be included in the recognition xicThe remaining words
are replaced by a special out-of-vocabulary (OOV) fragmestllustrated in Table 4.3.
The proportion of OOV’s is high: 20 % (token count). The woreglaced by the OOV
symbol cannot be predicted by the language model, nor caribtheecognized by the
speech recognizer.

12Note also that one letter syllables are customarily avoibedause they may look awkward in written
text. That is, one would not like to see the initial “a” of “asa” at the end of one line and “sema” in the
beginning of the next line. The preferred syllabificationgtbecomes: “ase+ma” (lisa et al., 2002). In the
current speech recognition experiment, this rule has besagiirded.
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Table 4.4: Experiment | (Book data): Prediction ability eétianguage mod-
els (cross-entropy) as well as speech recognition perfocsngword error
rate). The differences between the models are statistisahificant.

Model Cross-entropy| Word-error rate
Statistical morphs 14.8 bits 31.7%
Syllables 16.0 bits 43.9%
Words-O0V 00 56.4%

Results

The three types of word fragment inventories have been caedpan terms of language
modeling as well as speech recognition performance. Tablshbws that the statistical
morphs outperform both the syllable and the word model: tbepinmodel achieves the
lowest cross-entropy as well as the lowest word-error tdtde that all reported figures
refer to words, which allows for a fair comparison across etedregardless of the
different fragment inventories.

The word-error rate is calculated as the sum of the numberstguted words, inserted
words and deleted words divided by the total number of wandbeé correct transcrip-
tion of the speech data. In case of the words-OOV model, a woad rate below the
OOQV rate (20 %) would be impossible to achieve. The preseh@Y'’s also makes
an estimation of cross-entropy meaningless, because wads have zero probability
in the language model.

All tested language models of Experiment | are trigram madeéfowever, the typi-
cal length of a fragment differs from one model to anotheftabjes are the shortest,
and words are the longest, on average. Therefore, the avéigtam spans a differ-
ent number of phonemes in each model: 5 phonemes / syllagtartr, 9 phonemes /
morph trigram, and 19 phonemes / word trigram. Consequestily may suspect that
especially the syllable and morph models could benefit fraghdr-ordem-grams. In
order to evaluate the models more extensively, the optitrgdam level for each frag-
ment set should be determined first, and then the modelsa&hewdompared with each
other.

4.2.4 Experimentll

The second experiment (Publication 7) was performed ondnadio data sets: book and
news data. The CMU-Cambridge language modeling toolkit eptaced by the SRI
toolkit (Stolcke, 2002), which supports larger lexicons &etter smoothing (Modified
Kneser-Ney).n-Gram models of orders 2—7 were estimated and their crasspgnon
the two test sets were evaluated. Speech recognition tesesaarried out om-grams

of orders 3-5. Three types of fragment inventories have begtied: statistical morphs,
grammatical morphs, and words. The text data has been pegsed using software
that produces satisfactory pronunciations for foreign esmand expands numbers and
abbreviations to full written forms (Volk, 2004). The moithgj of speech sound duration
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Figure 4.3: Experiment II: From a text corpus tosagram language model
based on statistical morphs.

has also been improved compared to Experiment | (Pylkkéndrkarimo, 2004; Juang
et al., 1985).

Statistical Morphs

The so-called statistical morphs have been produced usadlbrfessor Baseline al-
gorithm. Morph inventories of different size have been gatezl and compared. The
generation process is depicted in Figure 4.3. Morfessarisdd on word types (dis-
tinct word forms), which occur in the large text corpus. Mwoipventories of different
size can be obtained by setting different frequency thddsh@ut-offs) on the words
that Morfessor is trained on. The resulting morphs (i.e.rdifeagments) are then uti-
lized for the segmentation of the whole corpus, using therlitalgorithm. When word
forms occurring less than three times in the corpus are dgduMorfessor generates a
morph inventory consisting of 26 000 morphs. Interestintiis small fragment set is
not outperformed by larger sets, when appliedigram language modeling.

Grammatical Morphs

The Hutmegs gold standard (see 4.1.2) provides a linguistgrammatical, morph seg-
mentation for the words in the corpus. However, not all wanalfs are available in the
gold standard. Such OOV words make up 4.2% of all the wordlértriaining corpus,
and 0.3% and 3.8% of the words in the two test sets (Book andsMespectively).

In contrast to Experiment I, OOV’s are not excluded in theear experiment (Exper-
iment 11). Instead, OOV words are split into individual pleenes, which makes it pos-
sible to construct any word form by a concatenation of phasenTable 4.3 provides
an example: The place name “Pyynikki” has not been recodnigethe morpholog-
ical analyzer, on which the Hutmegs gold standard relieerdfore, “Pyynikilla” (in
Pyynikki) has been split into individual phonemes in thengnaatical morph model.

The absence of out-of-vocabulary words makes it possibbemaepare language model
entropies across all fragment inventories (unlike the Wad®DV model in Experi-
ment I). Sinceanypossible phoneme string obtains some probability in eaateinone
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could talk aboutinlimited-vocabulangspeech recognition. The utility of such an OOV-
splitting approach naturally requires that it does not grenfworsethan the standard
method of substituting OOV’s with a special OOV symbol. A egle recognition ex-
periment carried out in Publication 7 suggests that thi®ighme case: Both approaches
performed on an equal level.

Words

The SRI toolkit makes it possible to experiment with largeognition lexicons. A

lexicon was constructed, containing each word form ocogrfour times or more in

the text corpus. The number of such words amounts to 410 008.r@mainder of the
words were split into individual phonemes, and the phonemse added to the lexicon
as entries of their own. Note that even if such a large lexisarsed, 5.0 % of all word
tokens in the training corpus are OOV and need to be split. 6% rate of the test
sets Book and News are 7.3 % and 5.0 %, respectiely.

Word breaks of split words have been modeled in such a mahageithere are two

variants of each phoneme, one for occurrences in the bemjrori middle of a word

and one for occurrences at the end of a word. Each unsplit isassumed implicitly

to end in a word break. This is illustrated in Table 4.3, whive rare word form

“tuoremehuasema” (juice factory) has been split by the Widiek model, whereas the
other words are contained in the lexicon.

Results

Cross-entropies and word error rates for the three modelkeotwo test sets are plot-
ted in Figures 4.4 and 4.5. (The corresponding numericalegatan be found in Ap-

pendix A.5.2.) On a whole, the statistical morph model penfothe best, although the
word model does achieve as good or slightly better levelsawbpy. However, the word

model arrives at its lowest entropy level with a considerdddjher memory consump-
tion than the statistical morph model. Moreover, in speedognition the word model

is outperformed by the statistical morph model.

Unfortunately, there are no word error measurements-fgrams of higher order than 5.
Thus, the level that the word model would eventually attainriknown. Nevertheless,
if one allows oneself to extrapolate the entropies of theafrgword models onto word
error rates, in accordance with Goodman’s hypothesizezhtlimelationship between
entropy and word error rate (see Section 2.3.3), the staishorph model would still
outperform the word model by a good margin on both test sets.

The grammatical morphs perform as well as the statisticapimoon the book data,
but they perform worse in the news task. The news text cantailarge number of
names that are unknown to the linguistic gold standard. &3V words need to be
constructed phoneme by phoneme by the speech recogniZeh isla very error-prone
process. The grammatical morph model encounters more OQWswo the news data

13t js desirable that the OOV rate of a large vocabulary speecbgnition system is below 1 % (personal
communication with Andreas Stolcke).



4.2. Evaluation through Speech Recognition Experiments 83

than the book data. For the word model, the opposite is trbés dxplains the speech
recognition performance of these two models on the two &dst s

The error rates of the morph models do not seem to decreass ibher order-
grams are used. This may be explained by the relatively higinadl error rate. If
speech recognition errors are frequent, langram histories are very likely to contain
errors. Predictions based on such erroneous histories mayotse than predictions
based on shorter, less erroneous, histories.

An example of actual output from the speech recognizer isvshia Table 4.5. For
comparison, the recognized text is aligned with the cotraciscription. Most recogni-
tion errors consist in single phonemes being recognizeaglycand compound words
written apart.

4.2.5 Related Work

Different approaches have been proposed for dealing wétpthblem of vocabulary
growth in large vocabulary speech recognition. Geutnel. ¢1898) present a two-pass
recognition approach, where the vocabulary is augmentagteely. In the first pass,
a word lattice is created using on a traditional word vocatyl In the second pass,
inflectional forms of the words in the lattice are added. la thcognition of Serbo-
Croatian, word accuracy improvement from 64.0 % to 69.8 % eperted. McTait and
Adda-Decker (2003) simply advocate the use of large worcbuolaries. In a German
task, the use of a lexicon of 300 000 instead of 60 000 wordsied/the word error rate
from 20.4 % to 18.5 %.

Factored language models (FLM) (Bilmes and Kirchhoff, 20@8/e been proposed for
the incorporation of morphological knowledge in the moalglof inflecting languages.
Rather than conditioning the probability of a word on a fewtlud words preceding
it, the probabilities are conditioned on sets of featuresvofds. Minor word error
rate reductions are reported in the recognition of Arabiesp, when morphological
knowledge was utilized in an FLM (Kirchhoff et al., 2003; ygri et al., 2004).

Several researchers abandon the word as a basic unit oldgaguodeling and speech
recognition. Words are split into sub-word fragments, Whtigpically correspond to
grammatical affixes and stems. Solutions have been progoselifferent languages,
and perplexity reductions have been achieved, but few hgverted clear word error
reductions. Byrne et al. (2000) apply a morphological azetyo Czech in order to split
words into stems and endings. A language model based on aulacaof 9 600 mor-
phemes produces better results than a model based on a lagatiu20 000 words.
However, with larger vocabularies (61 000 words and 25 00@piremes), the word
based models perform better (Byrne et al., 2001). Kwon anl 2903) also use a
morphological analyzer to obtain morphemes in a Koreangeition task. Merging
short morphemes improves the results in their experimestarvas and Furui (2003)
compare a plain morphemegram model to a combination of morphemarams and
a stochastic model of morphotactics, which prevents ungratical stem + ending com-
binations. Relative morpheme error reductions betwee hidd 7.2% were obtained
in their experiments with Hungarian. Arisoy and Arslan (2p@do not achieve im-
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Figure 4.4: Experiment II: Cross-entropies, normalizedratie number of
words in the test set, plotted against language model siteeeTtypes of
language models are compared on two types of data: book arstext. The
six points along each curve represent the orders 2—7 of#peam models
(from left to right). Low entropy values correspond, on ags, to a good
capacity of predicting the following word in a sequence.
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Figure 4.5: Experiment II: Word error rates in speech redagn plotted
against language model size. Three types of language madetssted on
two types of data. There are three points on each curve,spamneling to the
n-gram orders 3-5 (from left to right). Higher ordergrams were not tested,
due to their very high memory requirements.
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Table 4.5: Example output from the speech recognizer: Read text has
been recognized using a 4-gram language model based atistdtinorphs.
Morph boundaries have been marked using small dptbléither capitaliza-
tion nor sentence boundaries are recognized by the cuasgtibge model,
but in order to facilitate the reading, each end of senteasebeen marked
with a slash (/). Recognition errors have been underlinad.two cases
the errors are due to the speaker’s stumbling over her wéydmpsta . .”

on line 9 and kieli” on the last line). An interesting mistake is shown on
line 17: The phrase “ettei Irak ollut” (that Iraq had not) leeen recognized
as the grammatically correct “etté Irak oli” (that Iraq hadjhus, the lan-
guage model has ensured the required grammatical agreeegat . . oli”

vs. “ettei. .. ollut”.

Recognized

Correct

© 00 N O 0o b~ WDN PR
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uu-ossa ei usko-rakiskuun /
amerikkalaisviranomaiset pitavé
hyvin epatodennakisena etta
yhdysvallat hydkkéas asein
iraki-a vastaan lakaikoina /
viranomaiset arviovat perjantana
ettd sandlinen viesti rii-ttda
jairaki-n johto paljagtaa pian
lopu-t-kin ydin-ostalaitteistossa /
y-k_on turvallisuusneuvosten viisi
pysyvaa jasena oli-vat pyytéaneet
it ja paistamaan ydinasélen
valmistamiseen tahtagan
ohjelmassa kokonaisiudessaan
torstaihin mennessa /

valko-inen talo itmoitti kui-t-enkin
torstaina ettéi-rak oli té-yttanyt
vaateita /

amerikkalaisedustajien mukaan
sotilaalliselle hyokkayksdle ei ole
tarvetta riin kau-a-n kun irak
jat-kaa ydinteknologiassa
paljastamista /

erds edustaja teesi ettel
asellisella hyokkayksdla saatéisi
kui-te-nkaan tuhdtua kaikkia
kieli iraki-n ydin-materiaalia /

usa ei usko irak-iskuun /
amerikkalaisviranomaiset pitavat
hyvin epatodennakodisena etta
yhdysvallat hyokkaisi asein
irakia vastaan lahiaikoina /
viranomaiset arvioivat perjantaina
ettd sanallinen viesti riittaa
jairakin johto paljastaa pian
loputkin ydinlaitteistonsa /
yk:n turvallisuusneuvoston viisi
pysyvaa jasenta olivat pyyténeet
irakia paljastamaan ydinaseiden
valmistamiseen tahtédéavan
ohjelmansa kokonaisuudessaan

torstaihin mennessa /

valkoinen talo ilmoitti kuitenkin
torstaina ettei irak ollut tayttéanyt
vaateita /

amerikkalaisedustajien mukaan

sotilaalliselle hyokkaykselle ei ole
tarvetta niin kauan kun irak
jatkaa ydinteknologiansa
paljastamista /
eras edustaja totesi ettei
aseellisella hyokkayksella saataisi
kuitenkaan tuhottua kaikkea
irakin ydinmateriaalia /
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provements when utilizing morphemes instead of words in kiSki news broadcast
recognition task, but a weakness in their experimentalpsetmsists in the use of the
same lown-gram order (bigram) for words and morphemes alike.

In addition to using existing morphological analyzers giydata-driven algorithms for
splitting words into smaller units have been explored inesperecognition. Whittaker
and Woodland (2000) propose an algorithm for segmentingtatepus into fragments
that maximize the bigram likelihood of the segmented car@mall improvements in
error rates (2.2 % relative) were obtained in an Englishgaitimn task when the sub-
word model was interpolated with a traditional word-basggtam model. Ordelman
et al. (2003) present a method for decomposing Dutch compwands automatically,
and reports minor improvements in error rates. Haciogll. ¢2803) use the Morfessor
Baseline algorithm combined with some postprocessing inr&igh recognition task
and achieve a 20 % relative reduction of the word error ratecimparison to word-
based recognition.

There is little previous work on Finnish speech recogniti@sed on sub-word units.
Kneissler and Klakow (2001) segmented a corpus into worghfients that maximize
the unigram likelihood of the corpus. Four different segtaton strategies are com-
pared in a Finnish dictation task. The strategies requir@ws amounts of input from
an expert of the Finnish language. However, no comparisptraditional word models
are performed.

Morpheme-like units have also been discovered when wortheetation algorithms
have been applied to transcribed speech. Deligne and Bifdb8f) derive a model
structure that can be used both for word segmentation argetecting variable-length
acoustic units in speech data. Their data-driven units dohosvever, produce as good
results as conventional word models in recognizing thedpeéFrench weather fore-
casts. Brent (1999) and Venkataraman (2001) are intergstbe acquisition of a lex-
icon in an incremental fashion and apply probabilistic niede the segmentation of
transcripts of child-directed speech.
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Chapter 5

Conclusions and Future
Directions

There are regularities in word forming which can be discedearsing unsupervised ma-
chine learning techniques. This observation is not newthmre has been a lamentable
lack of solutions suitable for highly-inflecting and compding languages, where the
average number of morphemes per word is high. The Morfessalehproposed in
this work can handle words consisting of lengthy sequent@soophemes. The seg-
mentations produced by Morfessor for Finnish and Englisideanatch a linguistic
morphological segmentation well; in this task a widely usetichmark algorithm is
outperformed by Morfessor. Furthermore, the use of Modeas a basis for language
modeling in Finnish large-vocabulary speech recognitiaa turned out beneficial in
comparison to more standard approaches.

As part of the work, Finnish and English linguistic segméntes have been produced
as a basis for a quantitative assessment of the segmendattaracy of Morfessor. In

addition, Turkish and Egyptian Arabic evaluation data haeently become available.
Some experiments have been carried out, and the result®engacable to those ob-
tained for Finnish and English. Morfessor has also beeedest smaller data sets of
Swedish, Russian, Estonian, as well as other languages, fuantitative evaluation

has not been possible. Visual inspection suggests thahalsthe results are on the
same level as for Finnish and English. In future researchrfédeor should be applied
more systematically to a larger collection of languages.

In addition to new languages, Morfessor can be applied in matural language pro-
cessing tasks. Currently, there are results from autoraptiech recognition and infor-
mation retrieval. Hopefully, Morfessor can prove itseléfid in machine translation as
well. Experiments can freely be carried out, since a dowddbée software package is
publicly available (Creutz and Lagus, 2005). However, t{reead of Morfessor would

be promoted if the program code for the Categories models aeilable in addition

to the current package that only supports the Baselineoregsi

The future development of Morfessor could focus on at least important issues:
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non-concatenative phenomena and the utilization of a Hlazgatext, which extends
across word boundaries. Non-concatenative processesm@man in most languages,
e.g., sound changes within stems as in English “siaggsing”, German “Mann,
Mann+er”, and Finnish “kasi, lde+n, k&+td”. Such regular patterns could be learned
in an unsupervised manner from language data, similarlpjedgarning of a segmen-
tation. Modeling sound change is a necessary step towarlimddel of allomorphy,
i.e., a model that identifies complementary distributiohsorphs that are realizations
of the same underlying morpheme.

Currently Morfessor examines words in isolation. If waehuencesvere utilized in-
stead, larger idiomatic segments could be discovered, asichulti-word geographi-
cal names: “San Francisco, New York City, New Zealand”. Aiddilly, the use of
cross-word contexts is necessary, if one wants to discgvgastic processes, such as
the grammatical agreement of number in the phrases “thistrelsows” (singular) vs.
“these results show” (plural).

A larger context window naturally contains more informatiavhich means that a larger
set of usage-based features could be extracted. A finemtasolof the input space
makes it possible to acquire more fine-grained categorjndi&ins. The current sep-
aration of morphs into three broad categories (prefix, sgamd, suffix) is sufficient in
some, but not all situations. Distinguishing between vertlirgs and nominal endings
is an example of one, crude yet possible refinement.

So far, all information about the usage of a morph is basedsarccurrences in text. If
one were to produce richer semantic representations, ané gmund morph meaning
in additional modalities, by usingiultimodal dataas input (e.g., image, sound, tactile
sensations). Moreover, the current model family assungesxistence of distinct (albeit
probabilistic) categories. Continuous latent repredemta would be an alternative,
and one might draw inspiration from the conceptual spacamdwork proposed by
Gardenfors (2000).

Regardless of how far one progresses from the current statogphology learning
toward a more advanced language acquiring system, thene teebe no compelling
reasons to abandon the current modeling methodology. Bilba modeling pro-
vides a means for ranking competing hypotheses in a prediglanner. The Bayesian
framework, as well as the related Minimum Description Léreytd Minimum Message
Length formalisms, additionally incorporate a mechanismcontrolling model com-
plexity. It has been suggested, e.g., by Kit (2003), thatftimetioning of the human
brain is likely to rely on resembling general principles.
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Appendices

A.1 Derivation of a Noninformative Prior for Morph
Frequency

Suppose that there are a total numbeAomorph tokens in the segmented corpus and
that these morphs represewtdifferent morph types. What is the probability of coming
up with a particular frequency distribution, i.e., a setdéffrequencies that sum up to
N?

Further suppose that the probability distribution is a némimative prior, that is, all
frequency distributions are equally likely. It follows tiiae probability of one particular
distribution is one divided by the number of possible way<lebosingM/ positive
integers (theV/ frequencies) that sum up 1g.

Imagine that theV morph tokens are sorted into alphabetical order and eachhmsr
represented by a binary digit. Since some morphs occur rharednce, there will be
sequences of several identical morphs in a row. Now, ifigadll NV bits to zero. Next,
every location, where the morgiangesis switched to a one, whereas every location,
where the morph is identical to the previous morph, is letbunohed. There aréﬁ)
possibilities of choosing/ bits to switch in a string ofV bits. However, as the value of

the first bit is known to be one, it can be omitted, which leavesvith (1, ~}) possible
binary strings. Therefore the probability of the frequedistribution is:
o (N—1\ (M -1IN - M)

P(frequency distribution= 1/ (M 3 1) = 1) . (A1)

A.2 Derivation of a Zipfian Frequency Prior

Zipf has studied the relationship between the frequencywbwl, f, and its rank.

The rank of a word is the position of the word in a list, where thords have been
sorted according to falling frequency. Zipf suggests that frequency of a word is
inversely proportional to its rank (Zipf, 1935). Mandelbhas refined Zipf's formula,
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and suggests a more general relationship; see, e.g., Bé@h):
f=C(z+b)"¢, (A.2)

whereC, a andb are parameters of a text.

Let us derive a probability distribution from Mandelbrotsmula. The rank of a word
as a function of its frequency can be obtained by solvingfistom Eq. A.2:

z=Caf w —b. (A.3)

Suppose that one wants to know the number of words that hageidncyf rather
than the rank of a word with frequendgy We denote thirequency of frequency by
n(f). An estimate fom(f) is obtained as the difference in rank between a word with
frequencyf and a word with frequency + 1:

n(f)=z2(f) —2(f+1) = Ca (f7« — (f+1)77). (A.4)

A probability distribution forf is obtained by dividing:( /) by the total number of word
tokens, which equals the sum of frequencies over all pas§ibfjuencies. The highest
frequency is denoted h¥. Thus,

__on) _ CHUTE-(ADTY) TR (DT
Sroan(f) X CE (= (f+1)7E) 1= (F+l)e
(A5)
When the highest frequendy is assumed to be big, one can make the approximation
F =~ oo without any loss of accuracy that is of practical significanc

P(f)

oy LD
PUY= g, 1—(F+1)a

= f o —(f+1) . (A.6)

Rather than setting a value for the parametaere want to shape the probability distri-
bution according to our prior belief of the proportion fidpax legomen#h), i.e., the
proportion of words occurring only once in the corpus:
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Substitutingz in Eqg. A.6 byh yields:
P(f) = flo8070 — (f 4 1)lost=), (A-8)

The exponentog,(1 — k) is always negative. Therefore the resulting probability- di
tribution follows apower lawand it is represented by a straight line when plotted in a
graph with logarithmic scales on both axes. It can be assuinatdhe derived probabil-
ity distribution applies to morphs as well as to words.

A.3 Probability of the Frequency of Individual Morphs

It is difficult to compare the implications of the Zipfian fnegncy prior in Eq. A.8 to
those of the noninformative prior in Eq. A.1. The Zipfian preeparately assigns a
probability to the frequency of each morph, whereas thenfoninative prior at once
assigns a probability for the whole frequency distributibmthe following, an approx-
imation will be derived for the probability of the frequenofan individual morph in
the noninformative prior scheme. This facilitates a corigoer between the Zipfian and
noninformative prior approaches.

Suppose that there aré morph tokens and/ morph types. Nextf occurrences of a
new morph are added, which increases the number of morphgdkeV + f and the
number of morph types td/ + 1. We compute the conditional probability of adding a
morph with frequency’ when the initial position/, M) is given:

_ P(f,N,M) _ P(freq. distrt(N + f, M + 1))
P(fIN, M) = P(N,M) P(freq. distr(N, M)) (A-9)

According to Eqg. A.1 this equals:

_(N-1 N+f-1y  (N-D)M(N-M+f—-1)!
PN, M) = (M—1>/< M > T (N f-D)(M—-1DY(N - M)
(A.10)
The factorials are rewritten using Stirling’s approxinoatin! ~ (n/e)"v/2mn:
N -1 N—1/2M]\1+1/2 N - M -1 N—-M+f-1/2
PN = D W-M+/—1) e
(N + f — 1)N+F-1/2(M — 1)M-1/2(N — M)N—-M+1/2
The factors that are constant with respecf tare rewritten ag’;:
. _ 1\N—-M+f-1/2
P(f|N7M):Cl'(N M+/-1) (A.12)

(N +f— 1)N+f71/2
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Figure A.1. Probabilities 0.5 — Zipf, power law
of morph frequencies ac- , == Exponential

cording to (1) a pdf derived I\
from Mandelbrot’s correc-
tion of Zipf's law (h = 0.5)

and (2) an approximately
exponential pdf resulting
from applying the non-
informative frequency prior 0

(N = 10000, M = 5000). 1 2 3 4 5 6 7 8 9 10
Morph frequency

For f values that are much smaller thAhand M the following approximately holds
for the basesN — M + f —1~ N — M andN + f — 1~ N. Thus,

(N _ M)N—M—i—f—l/? (N _ M)N_A'{_1/2(N _ M)f

P(fIN,M)=Ci - NN+f-1/2 =Ci- NN-1/2Nf

(A.13)
The factors that are now constant with respect tve combined withC; into Cs:

_ f
P(f|N,M)=Cz-(NN7fm=c2-(7)f. (A.14)

This results in arexponential distributionThat is, the probability decreases exponen-
tially with the value of the frequency. (This only applies fovalues that are small
compared to the total number of tokeNsand types)/.) The exponential distribution
can be directly compared to the power-law distribution tlesults from applying the
Zipfian prior in the previous section. Figure A.1 shows thre turves are different,
but not radically different for small frequency values, alhimay explain why neither
approach performs significantly better than the other.

A.4 Hierarchical Dependencies for Morph Category
Membership Probabilities

In the Categories-MAP model, a morph can have hierarchtcattsire. Section 3.3.5
describes the normal computation of category membershijpghilities, such as
P(PRE| ;), which denotes the probability that the monphfunctions as a prefix.

However, if a morph consists of submorphs, its category negsfitip probabilities are
affected by the category tagging of the submorphs. Thisgmavconflicts between the
syntactic role of a morph itself and its substructure. THiedang rules apply:
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1. If either submorph has been tagged as a non-morpheane,of the following de-
pendencies applypecause non-morphemes are considered as mere soundpatter
without a syntactic (or semantic) function.

2. Stems need to consist of at least one (sub)sk®BE* STM, STM+ STM, Or STM +
SUF. Otherwise the probability of a stem is zero, that is, whethlsnbmorphs
are are either prefixes or suffixes.

3. Suffixes can only consist of other suffixes and have zerbglitity otherwise. A
morphy consisting of two suffixeg, + ps is as likely to be a suffix as the one of
its submorphs with lower suffix probability, i.e?(SUF| 1) = min{P(SUF| 1),
P(SUF| u2)}. The probability ofu being a non-morpheme is then decreased to
1 — P(sUF| ), if it should be higher than this value. (According to theesth
rules, prefixes and stems have zero probability in this fase.

4. Prefixes are treated analogously to the suffixes.

The above rules follow straightforwardly from the “semastiof the morpheme cate-
gories. The second rule might be superfluous, but it seensahdhat a sequence of
morphs, all tagged as prefixes or suffixes, should not funea stem when occurring
together (e.g., English “ingUF+ ly/SUF’, occurring in words, such as “knowingly”).
In this case, “ingly” should most logically be tagged as disuHowever, the left per-
plexity of “ingly” is rather low, because as a whole it occursnuch fewer context than
its submorphs. The third rule gives morph sequences, sutthglg’, a fair chance of
being tagged as suffixes, even if their own left perplexitiois, but their constituents
are good suffix candidates.

A.5 Experimental Results in Numbers

This section contains all numbers related to the experiaheesults presented in graph-
ical form in Chapter 4.

A.5.1 Linguistic Evaluation: Morpheme Segmentation Performance

Tables A.1-A.6 contain the numerical values for the resiltie experiments described
in Section 4.1.3.
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Finnish

Tables A.1-A.3 report the precision, recall, and F-measfithe placement of mor-
pheme boundaries, as evaluated against the Finnish Hutgalgsstandard (see
Sec. 4.1.3). Five algorithms have been tested on Finnighsets of four different

sizes (10000 — 16 million words). The reported figures arenmieand standard de-
viations (std) from runs on five different sets of the same,sidth the exception of the
largest set (one run).

Table A.1: Precision of the placement of morpheme boungafiee algo-
rithms evaluated on Finnish data sets of four differentssize

FINNISH: 10000 50000 250000 16 000 000
PRECISION[%] | mean  std| mean  std| mean  std| mean std
Baseline 59.24 1.79| 64.63 2.04| 71.41 1.59| 85.46 -

Baseline-Length| 66.65 2.04| 70.49 1.80| 75.10 1.28| 84.92 -
Categories-ML | 70.00 1.96| 70.89 1.46| 73.15 1.22| 75.08 -
Categories-MAP| 68.25 2.58| 70.46 1.40| 73.66 0.81| 77.35 -
Linguistica 79.53 0.59| 77.96 0.58| 72.64 0.53 - -

Table A.2: Recall of the placement of morpheme boundaries:aligorithms
evaluated on Finnish data sets of four different sizes.

FINNISH: 10000 50000 250000 16 000 000
RECALL [%] mean  std] mean  stdl mean  std| mean std
Baseline 52.31 1.40| 51.62 1.31| 49.97 1.05| 4182 -

Baseline-Length| 49.85 2.27| 50.44 1.02| 49.06 1.09| 42.95 -
Categories-ML | 51.69 2.66| 59.45 0.51| 61.57 1.02| 67.57 -
Categories-MAP| 52.09 1.92| 57.58 0.83| 60.92 0.49| 62.21 -
Linguistica 25.80 2.88| 38,51 1.66| 37.25 1.43 - -

Table A.3: F-measure of the placement of morpheme bourgddiie algo-
rithms evaluated on Finnish data sets of four differentssize

FINNISH: 10000 50000 250000 16 000000
F-MEASURE[%] | mean  std| mean  std| mean  std| mean std
Baseline 55,54 1.11| 57.36 0.69| 58.77 0.31]| 56.16 —

Baseline-Length| 57.03 2.10| 58.78 0.69| 59.32 0.57| 57.05 -
Categories-ML | 59.46 2.43| 64.66 0.69| 66.85 0.72| 71.13 -
Categories-MAP| 59.05 1.80| 63.36 0.82| 66.68 0.41| 68.96 -
Linguistica 38.88 3.37| 51.54 1.54| 49.23 1.34 - =
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English

Tables A.4—A.6 report the precision, recall, and F-measfithe placement of mor-
pheme boundaries, as evaluated against the English Hutgadsstandard (see
Sec. 4.1.3). Five algorithms have been tested on Engligshséts of four different

sizes (10000 — 12 million words). The reported figures arenmi@and standard de-
viations (std) from runs on five different sets of the same,sidth the exception of the
largest set (one run).

Table A.4: Precision of the placement of morpheme bounsafiee algo-
rithms evaluated on English data sets of four differentssize

ENGLISH: 10000 50000 250000 12000000
PRECISION[%] | mean  std| mean  std] mean  std| mean std
Baseline 4438 4.88| 48,58 2.17| 53.80 0.68| 63.28 -

Baseline-Length| 60.60 3.34| 63.81 2.26| 65.53 0.87| 65.76  —
Categories-ML | 73.70 4.50| 79.41 2.62| 80.28 2.55| 73.42 -
Categories-MAP| 70.24 4.33| 74.22 2.36| 76.30 1.82| 84.00 -
Linguistica 89.49 3.38/ 8291 2.64| 77.85 1.87| 68.32 -

Table A.5: Recall of the placement of morpheme boundaries:aligorithms
evaluated on English data sets of four different sizes.

ENGLISH: 10000 50000 250000 12000000
RECALL [%] mean  std| mean  std] mean  std] mean std
Baseline 71.98 4.68| 75.74 4.17| 75.76 2.22| 71.13 -

Baseline-Length| 67.28 2.97| 71.76 2.81| 74.17 1.72| 69.65 -
Categories-ML | 60.00 2.38| 64.75 2.43| 66.23 1.29| 68.09 -
Categories-MAP| 59.67 1.09| 65.58 2.44| 66.51 1.58| 55.68 -
Linguistica 46.92 2.33| 61.13 2.52| 66.56 2.43| 62.79 -

Table A.6: F-measure of the placement of morpheme bourgddiie algo-
rithms evaluated on English data sets of four differentssize

ENGLISH: 10000 50000 250000 12000000
F-MEASURE[%] | mean  std| mean  std| mean  std| mean std
Baseline 5456 2.98| 59.08 1.12| 62.90 0.62| 66.97 -

Baseline-Length | 63.72 2.77| 67.50 1.71| 69.57 0.86| 67.65 -
Categories-ML | 66.07 2.31| 71.32 2.32| 72.57 1.54| 70.65 -
Categories-MAP| 64.48 2.15| 69.59 1.78| 71.05 1.18| 66.97 —
Linguistica 61.56 2.79| 70.35 2.38| 71.76 2.17| 65.44 -
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A.5.2 Language Modeling and Speech Recognition: Experiment Il

The results from the second speech recognition experirSeatipn 4.2.4) are collected
into Tables A.7 (Book task) and Table A.8 (News task).

Table A.7: Comparison of three different types of languagslets in the
recognition of a Finnish audio book (see Section 4.2.4). dawh order of
then-gram model, the size of the model, together with the crogsspy (H)

as well as the word-error rate (WER) are reported (WER onlylaviai for

n =3,4,5).
Statistical morphs | Grammatical morphs Words
n | size H WER | size H WER | size H WER
[MB]  [bits] [%] [MB]  [bits] [%] [MB]  [bits] [%6]

2 19 16.11 - 14 16.71 —| 241 16.15 -
3 80 1495 2285 53 1510 24.20 285 1559 33.04
4| 190 14.41 21.24 148 1451 21.33 317 15.07 32.11
5| 323 1440 21.76 290 14.36 22.46 349 14.67 29.55
6| 441 1441 —| 445 14.37 —| 385 14.45 -
7| 538 14.43 —| 545 14.42 —| 422 14.39 -

Table A.8: Comparison of three different types of languagslets in the
recognition of Finnish news broadcasts (see Section 4 Rot)each order of
then-gram model, the size of the model, together with the crossepy (H)
as well as the word-error rate (WER) are reported (WER onlylatvia for
n = 3,4,5).

Statistical morphs | Grammatical morphs Words
n | size H WER | size H WER | size H WER

[MB] [bits] [96] [MB]  [bits] [96] [MB] [bits] [96]
2 19 15.63 - 14 16.66 —| 241 13.94 -
3 80 13.75 24.68 53 14.49 29.47 285 13.42 27.94
4| 190 1275 22.71 148 13.46 27.03 317 13.03 27.83
5| 323 12.67 23.77 290 12.97 27.40 349 12.74 27.0§
6| 441 12.67 —-| 445 12.87 —-| 385 12.56 -
7| 538 12.71 —| 545 12.92 —-| 422 1251 -
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