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Chapter 1

Introduction

The last decades have shown a rapid increase of the information processing power
of computers. Progress in manufacturing techniques have enabled sub-micron
semiconductor device sizes and the production of faster computer processors. As
the single device dimension in the semiconductor chips approaches the nanometer
length scale, quantum mechanical effects become relevant to the device function-
ing. This raises challenges for existing technologies but at the same time opportu-
nities for future nanoelectronics. One of the most interesting prospects lies in the
endeavors of building a quantum computer from the nano-sized semiconductor
devices.

Semiconductor quantum dots or “artificial atoms” are man-made devices in which
electrons are confined into a nanoscale volume. Electrons in a quantum dot de-
vice can be controlled with electrodes and magnetic fields. Two-dimensional
semiconductor quantum dots are typically fabricated in the semiconductor het-
erostructures using lithographic techniques. They are manufactured in research
laboratories, and measurements are performed at very low temperatures. The
peculiar quantum behavior of electrons in quantum dots is under investigation in
many laboratories around the world. The tunable size, shape and electron num-
ber, as well as the enhanced electron correlation and magnetic field effects, makes
quantum dots excellent objects for studying fascinating many-electron quantum
physics in a controlled way.

This Thesis deals with the modeling of electron states in coupled quantum dots or
quantum-dot molecules. The properties of a single quantum-mechanical electron
in a quantum dot can be described with a good accuracy, but for many elec-
trons, the interaction between the electrons converts the quantum-mechanical
problem into very complicated. We have chosen to use a very accurate, but
computationally heavy, exact diagonalization method for modeling the electrons
confined in quantum-dot molecules. We describe just a few electrons, mainly
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two, inside the quantum-dot molecules. This is motivated by two aspects: Inter-
acting quantum-mechanical electrons may produce the most peculiar states such
as the ones found in the fractional quantum Hall effect where more approxima-
tive mean-field methods cannot always provide the correct physical picture. Also
many experimental studies have been exploring one- and two-electron states in
coupled quantum dots, motivated by the idea of using electron spins in quan-
tum computing. In this Thesis we analyse the effects of electron correlations and
quantum-dot molecule confinement potential on energy levels, magnetization and
far-infrared magneto-optical absorption spectra, as well as the effects on the wave
function structure of the quantum-dot molecules. The objective of this Thesis is
to characterize and understand the physical phenomena of many-electron states
in quantum-dot molecules.

This Thesis is organized as follows. Chapter 2 represents properties of semicon-
ductor quantum dots and experimental methods, including a brief review of the
current research on the topic. Chapter 3 deals with the theoretical description
of a single quantum-mechanical electron in a semiconductor quantum dot or in
a quantum-dot molecule. In addition, the basic requirements for many-electron
states are discussed. Chapter 4 introduces the exact diagonalization method, the
computational approach used in this Thesis, beginning with the matrix formu-
lation of quantum mechanics, and continuing with the calculation of the matrix
elements of the Hamiltonian matrix for quantum-dot molecules. The diagonal-
ization method is also discussed from the perspective of other computational ap-
proaches. Some of the results of the Thesis are briefly summarized in Chapter 5.
A more detailed discussion can be found in the Publications I-V. In Chapter 5
we first discuss ground state transitions of the spin-singlet and spin-triplet states
as a function of magnetic field, and also the magnetization curves, as well as
the low-lying energy states of the quantum-dot molecules. These experimentally
measurable quantities are followed by the analysis of the wave function struc-
tures of the quantum-dot molecules in a magnetic field. Thereafter, we discuss
far-infrared absorption spectra of quantum-dot molecules, studied in the Pub-
lications II, III and V. Finally, transitions in classical electron configurations
and their quantum-mechanical counterparts are briefly presented, referring to
Publication I for more detailed discussion. A summary of the Thesis is given in
Chapter 6.



Chapter 2

Quantum dots

The progress in semiconductor technology has enabled the production of very
small-scale devices where a controllable number of electrons are confined into a
small volume. These man-made structures are usually called artificial atoms or
quantum dots [1-4]. Quantum dots with different sizes and properties can be
produced, and the number of electrons in the dot can be changed by external
gate electrodes.

The artificial atoms differ from real atoms in two respects: in quantum dots the
electrons are usually confined to a much larger volume than the electrons in a
real atom. In addition, the shape of the confining potential in the quantum dots
is quite different from the one in a real atom. Typically a quantum dot structure
resembles a two-dimensional box with a side length of ~ 100 nm whereas in
the solids the spacing between the atoms is of the order of a few Angstroms
(~ 0.2 — 0.3 nm). A single semiconductor quantum dot consists of the order of
105 atoms. Most of the electrons in the material are bound to atoms but some of
the electrons can be made to move freely in the quantum dot region. The other
difference, besides the huge size difference, between real atoms and quantum dots
is in the form of the potential. In real atoms the strong Coulomb attraction of the
nucleus restricts the electron motion into a small volume in the proximity of the
nucleus. In quantum dots the potential is not a central attractive, but resembles
more a harmonic trap defined by the external electrodes (lateral quantum dot)
or by the physical dimensions (vertical quantum dot). Yet another interesting
feature is that there exists a class of semiconductor quantum dots that can be
considered effectively two-dimensional which gives rise to some fascinating physics
as well.

As the size and the shape of the confinement potential differs from real atoms,
also the energy scales are modified in quantum dots. Even if electrons are free
to move in a quantum dot, the mass of electrons is different from a free electron
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mass due to the surrounding host semiconductor material. Usually the electrons
in the quantum dot devices can be described with an effective-mass approxi-
mation. Because of these differences, the Coulomb and magnetic field effects
are very much enhanced in quantum dots compared to real atoms. This leads
to intriguing many-electron and magnetic field effects that can be studied in a
controlled way by changing the gate electrode voltages and the magnetic field
strength. The semiconductor quantum dots, considered in this Thesis, are effec-
tively two-dimensional and therefore quantum Hall states could be observed at
high magnetic fields [5]. However, quantum dots are tiny objects compared to
the two-dimensional electron gas in the quantum Hall systems. Actually, it is an
interesting question how the quantized energy levels affect the states at high mag-
netic fields [6-8]. In fact, recent experiments suggest that also integer quantum
Hall states might be much more complicated than was believed in the past [9].
Maybe future experiments and theories of large quantum dots at high magnetic
fields are able to shed light on the nature of quantum Hall states [7, 8, 10]. Also
quantum shot noise measurements could reveal some interesting properties of
quantum states inside nanoscale quantum dots [11, 12]. Another interesting re-
search direction in the field of two-dimensional semiconductor quantum dots has
been the coupling of two or more quantum dots together, thus going from single
quantum dots to quantum-dot molecules [13-18].

Coupled quantum dots have also drawn great interest recently in the context
of quantum computing [19]. It has turned out that electron spins in quantum
dots are good candidates for qubits (quantum bits) [20-22]. The last couple of
years have speeded up a number of experimental efforts to fulfill the requirements
for a realizable quantum computer [23] which would require the following steps:
i) isolate single electrons in individual quantum dots, #4) initialize the state in
the beginning of the computation, #4) isolate qubits from the environment, iv)
perform quantum gate operations and v) read out the qubit [24, 25]. While the
number of qubits required for useful quantum computations is around 10°, the ex-
periments have been struggling with initializing, characterizing, and reading the
single- and two-qubit states [26-35]. Remarkably, during this year the coherent
manipulation of two-spin system was realized for the very first time [36, 37]. Even
if the achievements seem rather modest from the point of view of realistic quan-
tum computing, the measurements are great accomplishments in understanding
few-electron quantum physics. Single-electron or single-spin controlling is far
from an easy task. Knowledge of the operations of these entangled few-electron
nanocircuits may also be useful in other applications, not to mention the scientific
interest in understanding the behavior of few-electron quantum states.
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Figure 2.1: Schematic picture of a vertical quantum dot (left) and a lateral
quantum dot (right upper). The lower right panel shows a scanning electron
micrograph of a lateral quantum dot. (Adapted from Ref. [3] by Kouwenhoven
and Marcus).

2.1 Fabrication and properties of quantum dots

A quantum dot is an artificially produced structure where electrons are localized
into a small spatial volume. One way to produce a quantum dot is to isolate a
small piece of metal with insulating material, for example to grow a small island
of metal on an insulating substrate (e.g. Al island on Si). Metallic quantum
dots tend to be rather large and the energy levels lie close to each other, thus
approaching the continuum limit. More commonly studied few-electron quantum
dots are fabricated in the two-dimensional electron gas (2DEG) in a semicon-
ductor heterostructure. High quality 2DEG is typically created in a modulation
doped GaAs-AlGaAs heterostructure which leads to high electron-mobility 2DEG
in the GaAs side near the interface of the two semiconductors. Confinement in
two-dimensions can be alternatively created inside the thin layer of low-band-gap
semiconductor (AlGaAs-InGaAs-AlGaAs). Electrons of the 2DEG can be further
confined, to create quantum dots, in the two-dimensional plane either by reducing
the physical dimensions (vertical quantum dots) or by controlling electrons with
top gates on the surface of the heterostructure (lateral quantum dots). Vertical
quantum dots can be created by etching small pillars out of a larger semicon-
ductor heterostructure. Electrons in a lateral gate-defined quantum-dot device
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Figure 2.2: Scanning electron micrograph of a double quantum dot device and
schematic representation of two electrons inside the device. (Adapted from
Ref. [36] by Petta et al. ).

are confined by applying voltages on metallic top gates which deplete electrons
underneath the gates [2, 3]. Examples of a lateral and a vertical quantum dot
are shown in Fig. 2.1 and a lateral double quantum dot in Fig. 2.2.

There has been remarkable progress in controlling the few-electron single quan-
tum dot devices during the last decade. However, some measurements require
large arrays of (vertical) quantum dots to reach measurable signals. The number
of electrons in the dot arrays is usually controlled by a single large back-gate.
However, as there might be some variation in the sizes and shapes of individual
quantum dots in the array also electron numbers may vary from dot to dot. This
may lead to some undesired fluctuations in the experimental signals.

In this Thesis we consider the modeling of two-dimensional semiconductor quan-
tum dots created in the two-dimensional electron gas where dot size is of the order
of 100 nm. We model single quantum dot devices (or single quantum dot mole-
cules), but corresponding experiments can be performed in single quantum dots
or with quantum dot arrays. In GaAs 2DEG at low temperatures the electron
mean-free path (~ 50 pm) is well above the quantum dot size and the Fermi wave
length (~ 50 nm) is of the order of the device size [38]. Also phase-relaxation
length can be much higher than device dimensions, enabling the observation of
coherent quantum mechanical effects. This type of semiconductor quantum dots
have energies in the range of meV’s. Quantum mechanical properties are resolved
only at low temperatures (T< 4 K) and at low bias voltages excluding their di-
rect use in commercial device applications. In this work we only consider closed,
or isolated, quantum dots where electron wave functions are constricted inside
quantum dot allowing transport experiments solely in the tunneling limit.

There is another type of semiconductor dots where the dot sizes are ultra-small,
around 1 nm, and energies are in the range of eV’s. These self-assembled quan-
tum dots can be grown with molecular beam epitaxy when a lattice mismatched
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strained semiconductor layer is grown on top of another semiconductor. After a
critical thickness of the strained layer, atoms on the surface rearrange themselves
spontaneously to release the stress and create small pyramids. The dot sizes can
be made nearly equal with careful growth control but the arrangement of dots on
the surface is pretty random. These self-assembled quantum dots bind both elec-
trons and holes since the confinement is not created by gates (one can only apply
either negative or positive voltage at a time), but by the small physical size of
the dot. Therefore one can study inter-band optical properties of the dots [4, 39].
Exciton states in the self-assembled quantum dots can also be made lasing [40].
Even if these quantum dot lasers can operate at room temperatures (energies ~
eV), the commercial applications are not directly achievable at present, due to
the low output radiation power.

2.2 Experiments

In this section we briefly explain some experimental techniques relevant to the
results presented in this Thesis. Many experiments on quantum dots have been
concentrating on tunneling transport in the Coulomb blockade regime [41]. A
small bias voltage V4 is applied between source and drain and the current is
measured as a function of gate voltage V;, see the left panel of Fig. 2.3. The
gate voltage tunes the energy levels of a quantum dot, and as the energy reaches
the Coulomb charging energy e?/2C, an electron can enter the dot. (C is the
capacitance of the quantum dot). When an energy level is located inside the
transport window, a current can pass through the dot. As the gate voltage is
increased, the level moves out of the transport window and no electrons can
tunnel inside or outside the dot, resulting in zero current. This is the Coulomb
blockade region. The current is zero until another electron is drawn into the dot.

The energy required to add another electron is E,qq =~ €?/C + Ae where also
the energy separation of quantum mechanical energy levels Ae must be taken
into account. However, addition energies may depend strongly on the electron-
electron interactions and such a simplified model may not be valid. White regions
in the middle panel of Fig. 2.3 show zero current regions which are cut with narrow
lines at the corners of the diamonds in the vertical axis. These show finite current
through the dot.

If the source-drain voltage is tuned, transport is also allowed through the excited
states of a certain charge state (V) and the V-V4 plot shows Coulomb diamonds
where white color means zero current and other colors finite values of current.
The evolution of the current peaks can also be traced as a function of magnetic
field. The right panel of Fig. 2.3 shows the current peak as a function of gate
voltage and magnetic field.
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Figure 2.3: Left: Schematic of a vertical quantum dot (upper panel) and the
transport through the dot (down). Middle: Differential conductance 9I/0Vyq as
a function of gate voltage V;, and bias voltage V4. In the white diamond-shaped
regions 0I/0Vsy ~ 0, as a result of Coulomb blockade. Right: Current I as a
function of magnetic field and gate voltage with the bias voltage of Vi = 0.1
meV. (Adapted from Ref. [41] by Kouwenhoven et al. ).

Similar Coulomb blockade diagrams can be achieved with lateral quantum dots
and lateral double quantum dots, although Coulomb diamonds, or honeycomb
stability diagrams in the case of double dots, tend to be equal in size. This
means that the energy shells, Ae, pay a lesser role in the addition energies [3,
13, 42]. This is a consequence of the large number of electrons in the lateral
devices. Transport through a lateral double dot device has never been measured
in the few-electron regime with one unpublished exception of a silicon double-
dot device [26]. The problem is that the gates that are used to deplete the
dots also strongly influence the tunnel barriers. Reducing electrons to the few-
electron regime results in currents that are too small to be measured. Sensitive
quantum point contact detectors placed nearby quantum dots allow, however,
measurements in the few-electron regime [30, 33]. Another way to study addition
energies and ground state evolution as a function of magnetic field in the few-
electron regime is the single-electron capacitance spectroscopy (SECS) which is
reviewed in Ref. [2].

The idea of far-infrared spectroscopy (FIR) is to use light of a suitable wavelength
to induce excitations between energy levels in the quantum dot and measure the
absorption spectrum of transmitted light through the sample. The evolution
of the resonance peaks is studied as a function of the magnetic field. To get
measurable signals, arrays of dots are needed. Typical FIR absorption peaks are
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Figure 2.4: Left: Typical absorption peaks of far-infrared spectrum. (Adapted
from Ref. [46] by Demel et al. ). Middle: Absorption peaks of far-infrared spec-
trum plotted as a function of magnetic field. (Adapted from Ref. [45] by Meurer
et al. ). Right: Schematic of the magnetization measurement and scanning elec-
tron micrograph of a quantum dot array. (Adapted from Ref. [7] by Schwarz et
al. ).

shown in the left panel of Fig. 2.4 and the energy of the absorbed light is plotted
as a function of magnetic field in the middle panel.

However, FIR spectroscopy is rather insensitive for measuring interactions in the
electron system and the observed transitions lie very close to the allowed exci-
tation energies between single-particle states. FIR measurements tend to excite
only the center-of-mass modes and thus the relative motion of electrons is not
revealed. The reason is that for a circularly symmetric quantum dot confinement
potentials, the center-of-mass and relative motions separate. FIR radiation cou-
ples only to the center-of-mass motion of the electrons in the dot [43]. Therefore
the absorption peaks of FIR spectroscopy correspond to the excitation energies
of the non-interacting system and are (almost) independent of the number of
electrons in the dots [44, 45]. However, it soon became evident that also other
features, not present in the center-of-mass motion of circular quantum dots, ap-
pear in the FIR spectra [46-49]. These require a non-circular confinement po-
tential. How the electron-electron interactions and the shape of potential enter
in the FIR absorption lines is highly non-trivial. The analysis of FIR spectra in
quantum dot molecules is discussed in Publications IT, IIT and V of this Thesis.

Magnetization measurements provide important information about the ground
state properties of the low dimensional systems [50]. Unfortunately, the mag-
netic moment of an electron is tiny and the signals are too small to be mea-
sured directly on isolated quantum dots. However, the magnetizations of isolated
quantum dots have been obtained indirectly by recalculating magnetizations from
magneto-transport data [51]. Using highly sensitive micromechanical cantilevers,
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magnetization of mesoscopic and nanoscale quantum dot arrays have been mea-
sured directly in recent experiments [7, 8]. Schematics of the measurement setup
and the scanning electron micrograph of a quantum dot array is depicted in the
right panel of Fig. 2.4.



Chapter 3

Theoretical basis

In quantum mechanics particles are described with wave functions ¥ which are
solutions of the non-relativistic Schrédinger equation:
- ov
HY = ih— 3.1
8t ) ( )
where H is the Hamiltonian operator. In time-independent systems, as considered
in this Thesis, the Schrodinger equation reduces to the energy eigenvalue problem

HU = EV. (3.2)

All other physical properties can be calculated from the wave function V. For
all many-body quantum systems solving ¥ becomes exponentially more difficult
when the number of particles increases. With the aid of modern computing power,
accurate solutions of ¥ are achievable for few-particle quantum systems but for
larger systems some approximative schemes of solving Eq. (3.2) are necessary.

3.1 Quantum dot Hamiltonian

As explained in Sec. 2.1, only a couple of electrons at time can be made free to
move in the quantum dot region. The only constraint in the two-dimensional
semiconductor interface is created by the external electrodes which define the
shape and size of the quantum dot. Although an electron is effectively free to
move, its motion is affected by the surrounding semiconductor material. One can
rather accurately describe electron motion in a quantum dot by substituting the
mass of a free electron with the effective mass of electrons of the host semicon-
ductor material in the Hamiltonian (m — m™*). This is called the effective-mass
approximation and it has shown to be fairly accurate for GaAs conduction band

11
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electrons in quantum dots. However, for electrons and holes in self-assembled
quantum dots this may not be the case [4, 39]. We use effective mass approxima-
tion throughout this Thesis. We shall also exclude spin-orbit coupling from the
quantum dot model Hamiltonian. This relativistic effect can become important
in small quantum dots [4] but for large quantum dots it is negligible. It is worth
to mention here, that spin-orbit interaction [28, 52, 53] along with fluctuating
nuclear spins of GaAs lattice [31, 34, 36] can have a large effect on the decoher-
ence times of spin states in large quantum dots, which are of great interest in the
future spin-based information processing [20)].

The model quantum dot Hamiltonian of N electrons in a homogeneous external
magnetic field along z axis (B = Bu, = V - A) can be written as

N . 2 N
\ (—ihV; + A(r;)) . . e?
"= Z{ s e 4B+ 3
~ o+ e 33)

The first part in the parenthesis, 7:[0, shows the sum over N electrons in the
quantum dot and the second interaction part, 7:[0, contains the Coulomb repul-
sion between electron pairs. Magnetic field appears in the Hamiltonian in the
kinetic energy term via the vector potential (A(r;)) and also couples directly to
the electron spins (B - S; = BS. ;). The potential Vegi(r;) describes the quantum
dot confinement of electrons. We assume electron motion in the quantum dot
to be strictly restricted in two dimensions (r = zu, + yu,). The semiconductor
host of the quantum dot is taken into account also in effective g-factor ¢g* and
in dielectric constant €, in addition to effective mass of electrons m* discussed
above.

3.2 Single-particle states

The direct solving of Schrodinger equation for the Hamiltonian of Eq. (3.3) is
a tedious task and its discussion is postponed to next chapter. The Schrodinger
equation for the single-particle part, 7:[0, on the other hand, is more straightfor-
ward to solve:

Hogi = idbi. (3.4)

If we drop the interactions between electrons and the Zeeman coupling to the
electron spin, the Hamiltonian for a single electron reduces to

: 2
~ — th + A r;
Ho = (= 2mi (x:)) + Vet (r;). (3.5)
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3.2.1 Parabolic confinement

In many cases the confinement potential of a single quantum dot can be assumed
to be parabolic:

1
Vot = §m*w(2)r2, (3.6)

where wg gives the strength of the confinement. In the case of large quantum
dots (diameter ~ 100 nm) Awyg is typically of the order of a few meV.

Substituting harmonic V,; and A in the symmetric gauge (A = %B(—y,x,()))
we can rewrite Eq. (3.5) as

- n? eB 0 0 e? B2, 1 2 9
_ ik Ytz Z 2y tmt 3.7
Ho 2m*v M omre < You +$8y> o g T (87)

which in a more compact form becomes

R h2

1 1 -
Ho = — + =m*W?r? + Zw.L,, (3.8)

2m* 2 2

where w? = w3 + w?/4 and w, = eB/m*c. L. is the z-component of the angular

momentum operator (L, = xp, — yp, = —ihd/00).

A natural choice is to measure energy in oscillator units, fiw, and length in effec-
tive harmonic oscillator lengths, I, = \/A/m*w. The characteristic energy and
length scales depend on the both confinement strength and magnetic field be-
cause w = \/wj + w2 /4. The Hamiltonian in the oscillator units can be written

as
12

~ 1 2
= —— —L .
Ho 2V 2 + (3.9)

The problem of a harmonic oscillator in a magnetic field of Eq. (3.8) was first
considered by Fock [54] and Darwin [55]. The solutions in polar coordinates can
be written using the associated Laguerre polynomials L (x):

nl

m(n +[I])!

where the Laguerre polynomials are given by the formula

e :Zn: Ti? <”+|Tg) . (3.11)

=0

b (1,0) = Pl L2y em/2 ¢il0, (3.10)




3 THEORETICAL BASIS 14

n=0 n=1 n=2 n=2 n=1 n=0
A \\ ‘\ I’ ’ ’
6 ) [} L ] [ [ [
N s \ ’ ’
\\ \\ \\ l' 'l Il
5 Q L % [) xd )
. ’
—- AY A ’
o S A ‘ ,
e o @ s o
£ A \\ I, ‘
= M N ’
w3 L % ° xd
. J
2 L] [
. ’
[N
A4
1r ()

-6-5-4-3-2-1 01 2 3 456
ITh]

Figure 3.1: Left: Energy levels in the absence of magnetic field. Here n denotes
the radial quantum number and ! the angular quantum number. Right: Radial
part of the wave functions ¢, (r) of Eq. (3.12).

The wavefunctions ¢,,;, called Fock-Darwin states, form a complete orthonormal
basis. Ten lowest eigenstates of Hg are

1 2
= —e€
®00 NG
1 2 .
bop1 = — 71 e /2€i29
NZs
bor2 = 12' r2e T/ 200
2!
Po+3 = 13' per?/2 £
2
(bl[) _ (1—7“2)6 re/2

H%‘Ha

r(2 —1?) e/ il (3.12)

P141 = N

The corresponding energy eigenvalues of the radial quantum number n and the
angular quantum number [ of Hg are given by

1
et = (2n+ 1+ |l|)hw — §lhwc. (3.13)
In the absence of the magnetic field, the solution reduces to a two-dimensional

harmonic oscillator. When B = 0 the last term of Eq. (3.13) vanishes (w. = 0)
and all combinations of (2n + |I|) = constant are degenerate in energy. The
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Figure 3.2: Fock-Darwin energy levels as a function of magnetic field with external
confinement of Awg = 3 meV in the left and hwy = 6 meV in the right panel.

degeneracy becomes larger with higher energies. The energy levels €,; at B =0
T are plotted in the left panel of Fig. 3.1 and the radial parts of wave functions
of Eq. (3.12) are plotted in the right panel of Fig. 3.1.

Application of a magnetic field destroys the degeneracy due to the term linear
in [. The electron levels shift and split, resulting in many level crossings as the
magnetic field strength increases. In the left panel of Fig. 3.2 the evolution of the
five lowest energy levels (n,1) is plotted as a function of magnetic field with the
confinement strength Awg = 3 meV. For a comparison, the single-particle energy
levels of hwy = 6 meV parabolic quantum dot are plotted in the right panel
of Fig. 3.2. When we are in the limit of a very high magnetic field the lowest
energy levels condense into Landau levels. The lowest Landau level is composed
of increasing [-values with n = 0, whose energy rises with increasing B, but the
separation between the energy levels decreases when the magnetic field increases.
In the limit of B — oo the degeneracy in the lowest Landau level becomes very
high.

3.2.2 Quantum-dot molecules

We model quantum-dot molecules (QDMs) with parabolic minima separated by
a finite distance. Then the the confinement potential V,,;; can be written as
1 M
Veat(r) = 5m>*<u;3 min Z(r ~ L)%, (3.14)
J
where L;’s (L; = (Lg, Ly)) give the positions of the minima of QDM potential
and M is the number of minima. When L; = (0,0) (and M = 1) we have a
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Figure 3.3: Left: Confinement potential Vg, of L, = 20 nm double dot (dotted
line) and ground state single-particle density |¢o|? along y = 0 at B = 1 and 8
T. The maximum value of |¢g|? is scaled to unity. Right: Confinement potential

of L, = L, = 5 nm four-minima quantum-dot molecule.

single parabolic quantum dot. With M = 2 and L » = (£L,, 0) we get a double-
dot potential. We also study four-minima QDM (M = 4) with the minima at
four possibilities of (+L,,+£L,). We study both square-symmetric (L, = L)
and rectangular-symmetric (L, # L,) four-minima QDMs. The confinement
potential can also be written using the absolute values of x and y coordinates as

1.
‘/emt(‘ray) = im wg X
[r? = 2La|x| — 2Lyy| + L2 + L2] . (3.15)

For non-zero L, and L,, the perturbation to the parabolic potential comes from
the linear terms of L, or L, that contain also the absolute value of the associated
coordinate. We mainly use hwy = 3 meV in this Thesis.

For this type of quantum dot molecules, no analytic solutions are available, but
with numerical methods one can solve single-particle energies and wave functions:

Hogi = i (3.16)

The left panel of Fig. 3.3 shows ground state single-particle density |¢o|? of a
two-dimensional (L, = 20 nm, L, = 0) double dot along z axis at B =1 and 8
T. The double dot potential profile is plotted with a dotted line. In y direction
the double dot V. is still parabolic. With large L, and strong B the single-
particle density starts to localize near the minima. We use nanometers (nm) and
meV’s instead of oscillator units with quantum-dot molecules. The right panel of
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Figure 3.4: Energy levels as a function of magnetic field of iwg = 3 meV, L, = 15
double dot in the left panel and L, = L, = 10 nm four-minima quantum-dot
molecule in the right panel. Dotted lines show Fock-Darwin energy levels of
hwg = 3 meV parabolic quantum dot.

Fig. 3.3 shows the confinement potential V.,; of square-symmetric four-minima
quantum-dot molecule.

The energy levels as a function of magnetic field of a double dot and a four-minima
quantum-dot molecule are shown in Fig. 3.4. The dotted lines show Fock-Darwin
energy levels of hwg = 3 meV parabolic quantum dot. Compared to parabolic
confinement, in quantum-dot molecules many levels shift and split and there are
gaps or avoided crossings with some energy levels.

3.3 Many-electron states

In the quantum realm of many identical particles, some extra conditions have to
be considered when solving the Schrédinger equation (3.2). The many-body wave
function, that describes N quantum-mechanical particles each having space and
spin coordinates (r;, &;),

U=V [(r,&1), (r2,&2), -, (N, EN)] (3.17)

must obey certain rules before it can describe the real quantum world. First of
all, similar particles are indistinguishable in the quantum theory. Therefore we
cannot state, for example, which of the electron is observed in an experiment,
but we can only say that one of them was observed. Identical particles cannot
be labeled in quantum mechanics. Secondly, electrons are fermions which have
half-integer intrinsic angular moment, spin, that can have the quantum number
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S, = i%h. Fermions obey Fermi statistics and according to the Pauli exclusion
principle, no electrons with the same spin can occupy a same quantum state.
Indistinguishability and Fermi statistics set a requirement for an antisymmetric
many-electron total wave function. The antisymmetric wave function ensures
that if two fermions of same spin have equal coordinates the wave function auto-
matically results zero. In the next two subsections we show in more detail how
to include spin wave functions x;(§) and construct antisymmetric many-electron
wave functions.

3.3.1 Spin

We introduce the spin coordinate ¢ that can take two values =1 and spin wave
functions x1 and x| as

1, ifée=1
a©={ o kel
wo={ 1 el (3.18)

If there are no terms mixing space and spin coordinates in the Hamiltonian, we
can rewrite the single-particle wave function as

bi(z) = ¢i(r)xi(§), (3.19)

where x denotes both r and £. Integration over x means normal integration over
the space coordinate r and summation over the spin coordinate &:

[z =Y [6@amu©u©. (3:20)
f=+1
If the spatial wave functions are normalized we have

/ i )2 = / o) 2dr 3 x3(€) = 1. (3.21)

e=+1

3.3.2 Antisymmetric wave functions

Supposing we have a set of single-particle levels from 1 to N {t., }}¥,, where ¢;
denotes both space and spin quantum numbers, and we want to construct an
antisymmetric many-body wave function for N electrons. We are considering
quantum particles which are indistinguishable. Clearly it should not be possible
to say which particle is in which state ¢;. We can only state that we have a
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collection of particles that occupy levels {Cz}f\il Therefore, the simple product
of single-particle wave functions is not correct. Also, we are considering fermions.
A single-particle level cannot be occupied by two particles having exactly same
quantum numbers (the single-particle level index and spin). This requirement is
satisfied if we make an antisymmetric wave function, which changes sign when
any two coordinates are exchanged. The antisymmetric wave function can be con-
structed by starting from the product v, (1)e,(22) . .. ey (xn) and permuting
the coordinates x; in every possible way. There are N! ways to do this. The
sign of the product is changed every time two coordinates are exchanged. The
antisymmetric wave function is obtained when all possible permutations with the
signs are summed up:

®(x1,...,28) = 1/22 VP Ptpey (1) ey (22) - - . ey (2N). (3.22)

The permutation can be written in compact form as a Slater determinant:

¢c1(3?1) ¢c1($2) wcl(xN>
1 wcz(‘rl) 7!}02(332) T/ch(xN)

= e (3.23)

Gew (1) en (@) - ten (@)

We can see that the Pauli exclusion principle is satisfied since if any two ¢;’s are
same the two lines in the determinant are identical. Identical lines in a determi-
nant result always zero and therefore the wave function vanishes automatically.

The wave function ®(z1,...,2zxN) obeys the rules of many-electron quantum me-
chanics and therefore all wave functions of electrons that are solutions of the
Scrodinger equation must be antisymmetric. However, solving the Shrodinger
equation of a Hamiltonian for more than one electron is very difficult. Analytical
solutions are available for two interacting electrons in some special cases [56] and
numerical solutions are also possible for a very limited number of electrons. Usu-
ally, not more than ten electrons can be described accurately. We will consider
solving the few-particle Shrodinger equation in the next chapter.



Chapter 4

Diagonalization of Hamiltonian
matrix

4.1 Matrix formulation of quantum mechanics

Suppose we have a complete set of orthonormal functions ¢, (z) and we are in-
terested in solving a (single-particle) Schrodinger equation Hy(z) = Ev(z). We
can expand any function of x in terms of a complete orthonormal set ¢, (z):

6(@) = 3 anbn(a). (4.1)
n=0
¥ (x) can be equivalently be determined with the coefficients a,, of the expansion:
a
az
P(r) = {an} = as (4.2)

For a proper normalization we demand Y oo, |a,|> = 1. Now, the Schrodinger
equation Hi = E1 can be written with the set ¢, (z):

H (Z an¢n($)> =F (Z an(ﬁn(m)> . (4.3)
Multiplying Eq. (4.3) on the left by ¢ (z) and integrating over the space we get
/ ot () (Z anqbn(x)) A = / 6" (2)E (Z an¢>n(x)> do

Zn:an<¢m‘H¢n> = E;an (| Pn) - (4.4)

6n,m

20
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We assume a shorthand notation for the matrix element

and now we can write the Schrédinger equation in a matrix form:

Hyy Hys Hiz ... ay ay

H3; Hzp Hzz ... az | =F| a3 |- (4.6)

We have thus formulated our original problem of finding the eigenvalues and
vectors of the Hamiltonian H 1) = E7 in the matrix presentation. The solution of
the Schrodinger equation is equivalent of finding the eigenvalues and eigenvectors
of the matrix. If we had chosen the basis v, to be the solutions of the single-
particle Hamiltonian H ¢n = E,¢, and used those states in the expansion, we
would have

Then our matrix is already diagonal and energy eigenvalues can be read imme-
diately from the diagonal of the matrix:

Ey O 0o ... al ai
0O FEy 0 ... a9 as

0 0 E3 e as =L as ’ (48)

The matrix equation (4.8) can be satisfied only if

- F 0 0

0 Ey—F 0
det(H — EI) = det 0 0 E3 - B ... = 0. (49)

If we do not know the solution of the Schrodinger equation, we can express the
Hamiltonian in the matrix formulation with any complete basis we wish to choose
and the eigenvalues and vectors can be found by diagonalizing the Hamiltonian.
However, the matrix is infinite dimensional, whereas in real calculations we in-
clude only some finite number of states in the expansion and then diagonalize
the matrix in a truncated basis. The convergence can be checked by adding more
states ¢, in the expansion and studying the change in the eigenvalues as the basis
size and the matrix dimensions are increased.
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In the case of interacting electrons, we can expand the many-electron wave func-
tion using a set of basis functions. According to quantum theory, these basis
functions must be antisymmetric. The problem can be formulated in the matrix
form also in the interacting few-particle system. Supposing we have a complete
set of N-particle wave functions ®. (the set of determinants with all possible
combinations of different single-particle states ¢;), we can search the solution for
the interacting few-particle Hamiltonian

HU = (Ho + Ho)¥ = EY (4.10)

by expanding the wave function ¥ in this basis:

U=>" A, (4.11)
(¢

where the summation runs over all possible determinantal wave functions (where
determinantal refers to the antisymmetric many-body wave functions, Eq. (3.23)).
The Schrodinger equation reads

H (Z AC<I>C> =E (Z Ac<I>c> . (4.12)

If we multiply Eq. (4.12) by ®} on left and integrate over all variables x;, we can
write the Hamiltonian in the matrix form with the matrix elements as

Hac = (®alH|Pc). (4.13)

The matrix elements can be calculated and by diagonalizing the matrix we obtain
the eigenvalues and eigenvectors of the Hamiltonian. When calculating the matrix
elements, the ®.’s are now the antisymmetric wave functions of the N-electron
system and H is the interacting Hamiltonian. However, as in the single-particle
case, the matrix is infinite dimensional, but again, by truncating the matrix we
can solve the eigenvalues and the convergence can be checked by increasing the
number of basis states. The matrix is usually diagonalized numerically. In prin-
ciple the approach seems ideal for solving interacting few-body systems, but in
practice only very small number of particles can be calculated with good accuracy

(N < 10).

4.2 Matrix elements for quantum-dot molecules

In this Thesis we consider mainly two quantum mechanical electrons in quantum-
dot molecules. The Hamiltonian for the two interacting electrons can be written
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as

2

o [ (<ihVi+ £A(r))? e
— et ot (T *upBs, ; —. 4.14
H Z{ 2m* + Vear(r:) + g*upBs., t o (4.14)

)

Substituting the quantum-dot molecule confinement potential of Eq. (3.15) in
the Hamiltonian and switching to oscillator units (F = hw,l, = \/hi/m*w), we

can rewrite the Hamiltonian as

2

. , P )
H = Z@:{—V + 5T —|—z2< ylaz—i_wzﬁyi)
(2) 2 2 . A C
oy (L2413 = 2Lelel —2Lyluil ) +7'Sus |+ —
2
= Y Hoi+ He, (4.15)
K3

where w? = W3 + w?/4, w. = eB/m*c and v* = g*upB/hw . Here C is the
Coulomb strength C = 1/% Y m:/me, where Ha is Hartree ~ 27.2 V.

The spin-dependent part of the Hamiltonian is not very complicated and the four
possible spin eigenstates of S and S, are rather straightforward to obtain [57].
For the anti-symmetric spin singlet (S = 0) we have solution

1) = 5 (xi(€)x (&) — xi(€)x1(&)), S=8.=0, (4.16)

and for the symmetric spin triplet (S = 1) we have three possible eigenstates

1T ) = x1(&1)x71(82), S=1,8.=1,
ITo) = 75 (i (@)xi (&) + xi(&2)xi (&), S=1,8:=0, (4.17)
IT-) = x1(§1)x(&2), S=1,8,=-1.

As there is no coupling between the spin and space coordinates in the Hamilto-
nian, we shall write the two-electron wave function as a product of space and spin
wave functions (U = Wg(ry,r2)xs(&1,£2)). Actually, as we already know the spin
eigenstates, it is sufficient to expand the spatial part in symmetric functions for
the spin singlet (S = 0) and antisymmetric functions for the spin triplet (S = 1).
Total wave function must be antisymmetric. The space part of the wave function
is

Ws(ri,ra) = Y i {di(r1);(r2) + (=1)%¢i(r2)¢;(r1)}, (4.18)

1<j
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where «; ;’s are complex coefficients and ¢’s are single-particle states. For these
we choose the two-dimensional Gaussians

) 2
¢z(r) = ¢nx,i7ny,i(x7y) = xnz’zyny’le " /27 (4'19)

where n,; and n,; are integers and ¢ is a shorthand notation for the pair
(Ng,is My,i). For this choice, neither the single-particle functions nor the two-body
functions are orthogonal. Therefore, when constructing the matrix to be diagonal-
ized we need to calculate also matrix elements of overlap integrals S; ; = f 0iP;.
The diagonalization of the Hamiltonian matrix is now a generalized eigenvalue
problem

Ho = ESa, (4.20)

where H is the Hamiltonian matrix, o is the vector of complex coefficients «; ;, S
is the overlap matrix and F is the energy eigenvalue. The reason for this choice
of ¢; is that the matrix elements are rather stable and easy to calculate. By
diagonalizing the matrix we get all energy eigenvalues and all eigenvectors.

We need to calculate all matrix elements of the Hamiltonian and overlap integrals.
For the single-particle part Hp, excluding the Zeeman term, the integrals are of

type
Hijy —/¢iH0¢k/¢j¢l- (4.21)

The integration is over two-dimensional space ( ffooo dzxdy) and i denotes the pair
(ng,i,ny,i) and similarly for the quantum numbers j, k, and [. For the Coulomb
interaction part, we need to calculate terms of the following type

Hiy = /drldr2¢i<r1)¢k(r2)1¢j(r2)¢l(r1). (4.22)

12

We start our calculation of the matrix elements by the definition of the gamma
function

T(z) =2 / e 121y, (4.23)
0

where z is real in our case. We will first consider the overlap integral S; ; = [ ¢;¢;,
which can be separated to two one-dimensional integrals which in the end results
simple gamma function integrals. If ng,; + n,; or ny; + ny,; is odd, S;; = 0.
Otherwise S; ; = I'[1/2+4 (ng,; + ns ) /2|C[1/2 + (ny; +ny ;)/2]. For all even and
odd values of ng; + n, ; and n,; + n, ; this can be written as

1 . . 1 . .
[o0s = e apeee] L apmetn)
X

1 1 1
r [2 + —(nz + n“)} x T [2 + i(ny,i + 1y, j) (4.24)
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For the calculation of Hy 4= = [ ¢iHog; we first write it as
Hoo;
1= [0 70%, (4.25)

which replaces the operator Ho with a function (called local energy in quantum
Monte Carlo)

H0¢j nm(”x - 1) ny(”y - 1) .We X Yy
0%~ g Ze (= —n,2
& + ng +ny + 572 + 22 + Z2w Ty y nwx
2
+ ﬁ <L2 + L2 — 2L, || — 2Ly |y ) . (4.26)

Besides the overlap integral, we need three other types of integrals:

1 1 11 B
/¢ix2¢j = 3 [14 (—=1)r=itnes] x 3 [1+ (—1)mwitnwi]

1 1
x T |:2<—1 + ngi + n;m)] x T’ |:2<1 + My i + nyyj)] , (427)

Y 1 Ny i+Ng. i 1 Ny i TNy 4
Jokos = JIt+ (aymcmas] g L4 (1
1 1
x I §(nx7i+nfv,j) x I 5(2+ny,i+ny,j) ) (4.28)
and
1 Ng,i+tNg,j 1 Ny, ity
Gileld; = 5 [L+ (=) o] s o [L (1)t ]

1 1
x I [2(2 +ngi+ nx])] x I [2(1 + gy + ”yu‘)] . (4.29)

In all these formulas the first rows are delta functions depending on the parity of
the sums of n,’s and ny’s.

The interaction term
HGu = [ dry dry 6:(60)6(e2) o r)on(e) (4.30)

can also be calculated analytically. We start by Fourier transforming the 1/r19

term: 1 1
— dic ~eriz (4.31)

12 27T ki ’
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and arranging terms gives

1 1 2 2, .
Hgkl =5 dk dry dry — a}le Titikers g2 e—yrtikyyn
T

k
X a:g‘*e*x%*ikm yg“e*yg*ikyy? , (4.32)
where k is also two-dimensional and ny = ng; + n,j, and so on. Next we
substitute
n_—x2+ikx : o" —x2+ikz+ax
xz"e = lim —e , (4.33)
a—0 da™

and we can integrate over each Cartesian coordinate as

da:;mexuikwaw = (ffan/ dze~ " Fiketar — c‘iﬂﬁe(ikﬂ)Q/ L (434)

The resulting derivative can be calculated as

o . 2 o . 2 i\" o 2
Y (ik+a)?/4 — n Y (k+a)?/4 [ 2 Y —(k/2)
dar a0 = e la=0 < ) ok

- <—;>ne_(k/2)2Hn(k:/2), (4.35)

where H,, is a Hermite polynomial. Performing this procedure to all terms of
Vijki results

i\ 2 T ;
T 7 _ 2 kcosO ksin6
Hiju = 2/ i <‘z) e H, ( 2 ) Hns (2)
X Hy, <_k;089> H,, <_kzme> : (4.36)

where the k-integral is written in the cylindrical coordinates. This integral can
be calculated by writing each H,, in series form, and each term in this series can
be written as a constant times a product of integrals of the type

1
/dke—k2/2k””+mm = o(nndmm=1)/2p [Q(Tbn +mm + 1) (4.37)
and

T [$(nn+1)]T [$(mm +1)]
r [%(nn +mm +1)]

/d@cos"“(ﬂ)sinmm(e) =2 (4.38)

for both nn and mm even and zero otherwise. The final Vj;z; is a multiple sum
over many terms where each of them contains several gamma functions.
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Figure 4.1: Relative error in the energy of parabolic two-electron quantum dot at
B = 0 as a function of the basis size n = n, = n, from 3 to 8, which corresponds
to around 40-2000 many-body basis functions in the expansion. Different relative
angular momentum states of the two electrons are denoted with m.

4.3 Basis size

The diagonalization technique for solving few-body wave functions and eigenval-
ues does not contain any approximations, in principle. But of course the basis size
is finite. The convergence can be checked by increasing the number of many-body
wave functions in the expansion.

The single-particle basis of the 2D Gaussians of Eq. (4.19) is suitable for closely
coupled quantum dots. At large distances and at high magnetic field we expect
less accurate results. The accuracy may also depend on the symmetry of the state.
For two-electron parabolic quantum dot at zero magnetic field we can obtain very
accurate energy eigenvalues by expanding the basis in relative coordinates. We
can test the accuracy of our diagonalization scheme by comparing the energy
eigenvalues of the diagonalized matrix to the ones obtained by expanding the
wave function in relative coordinates. Fig. 4.1 shows the relative error of energy
eigenvalues as a function of the basis size for four different energy eigenstates of
two-electron parabolic quantum dot. States with m = 0,1,2, 3 refer to different
relative angular momentum states, where even m are spin-singlet states and odd
m spin-triplet states. The relative error is less than one percent for all states



3 DIAGONALIZATION OF HAMILTONIAN MATRIX 28

with the smallest basis size and decreases rapidly with increasing basis size. The
greatest error is found for the m = 0 state. For quantum-dot molecules and finite
magnetic field values we cannot make such comparison. The basis size can be, of
course, increased and the eigenvalues can be compared to the previous ones until
the basis is large enough and the convergence is reached.

Basis size in Fig. 4.1 refers to the number of different exponents n, and n,
considered in the construction of single-particle states. n = n, = n, where n
ranges from 3 to 8. For each values of n, and n, we can construct n,n, different

single-particle states and for two electrons we can construct ("12"1/) = %

different many-body states. For the spin-singlet we can also have ¢; = ¢; or

i = j and therefore we have %
S = 0. For example, with n = 3 we have 9 single-particle states and 36 and 45
two-body states for the singlet and triplet states, respectively. For n = 8 there

are 64 single-particle states and 2016 and 2080 two-body states.

+ ngn, different many-body states for

4.4 Diagonalization and other computational
approaches

In this Thesis we have chosen very accurate exact diagonalization technique as
a computational approach for solving the few-body Schrédinger equation for in-
teracting electrons. In the exact diagonalization technique electron-electron in-
teractions and the resulting correlations are taken into account in a correct way,
provided that the basis size is sufficient. Correlated many-body states, like frac-
tional quantum Hall states, can be described properly with this method. However,
the number of electrons that can be described with a good accuracy with the ex-
act diagonalization technique is very limited as the basis size grows exponentially
with the particle number. Therefore, the method is usually restricted to study-
ing less than ten interacting quantum mechanical particles. The diagonalization
technique is not either very flexible, as the matrix elements are usually calculated
analytically for the system in question. Therefore, when changing something in
the Hamiltonian or in the basis functions the new matrix elements must be cal-
culated. Usually it is not so easy to find analytic solutions for the integrals of
matrix elements.

To grasp the idea of the limitations of the diagonalization we consider, for ex-
ample, five and ten electrons, e.g., confined in a quantum dot. Let us assume
that ns, = 10 and ng, = 20 lowest-energy single-particle states are sufficient for
describing N, = 5 and N, = 10 electrons accurately, respectively. The corre-
sponding number for many-electron configurations in the many-body expansion,
see Eq. (4.11), build from the single-particle states is (Tﬁ:) = ﬁf\i)'l\k” which
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for five electrons is (150) = 252 and for ten electrons (%8) = 184756 and for 20 elec-
trons with 40 single-particle states the many-body basis would include (38) ~ 10!
states! Clearly diagonalization of the matrices of the size of 10! is not reason-
able. The dimensionality can be lowered by the symmetry, but it does not affect

the exponential scaling of the basis size.

Twenty electrons, that is already out of the scope of the diagonalization, is
not very much in physics and clearly some other computational approaches are
needed as well. Due to the basis size limitations and inflexibility of the exact
diagonalization technique, other more approximative methods are widely used in
describing electrons in quantum dots. One very good wave function method is
quantum Monte Carlo, where correlation effects can also be included in a proper
way [58, 59]. A very interesting method is a combination between diagonalization
and quantum Monte Carlo, see Ref. [60].

More approximative methods include widely used density-functional theory [61,
62] and Hartree-Fock method [63]. Both of these are mean-field methods where
electron-electron interactions are taken into account in an averaged way, neglect-
ing the two-body correlations. The original problem of solving Schrédinger equa-
tion of interacting electrons is greatly simplified in the mean-field methods allow-
ing greater particle numbers to be considered. Especially the density-functional
theory has shown a huge success in condensed matter modeling and theory. One
of the founders, Walter Kohn, was awarded with the Nobel Prize in chemistry
in 1998. The density-functional theory has shown to be a powerful tool also in
modeling two-dimensional quantum dots even with a small number of electrons
where the correlation effects are most prominent [64, 65]. However, sometimes
mean-field methods cannot provide the correct physical picture [66, 67].



Chapter 5

Physical phenomena in
quantum-dot molecules

5.1 Quantum-dot molecules in a magnetic field

Singlet-triplet splitting, energy levels, magnetization, and wave function analy-
sis of two-electron quantum-dot molecules in a magnetic field are discussed in
Publications IIT and IV.

A natural step forward from studying individual quantum dots is to couple quan-
tum dots together. Also, in the past, the majority of studies concentrated on indi-
vidual highly symmetric parabolic quantum dots without disorder. Recently cou-
pling more dots together [68-73] and studying lower symmetry quantum dots [74—
78] have gained ground also in the field of quantum dot theory and modeling.

After the Loss and DiVincenzo proposition [20], coupled quantum dots have
gained interest due to possible realization as spin-qubit based quantum gates
in quantum computing [21, 71, 79]. In addition to coherent single-spin opera-
tions, the two-spin operations are sufficient for assembling any quantum compu-
tation. Recent experiments have shown a remarkable success in characterizing the
few-electron eigenlevels [26, 27, 33], approximating relaxation and time-averaged
coherence times and mechanisms [31, 34], and reading single-spin or two-spin
states [28, 35] of the quantum dots whereas the coherent manipulation of spin
systems remained out of reach until very recent measurements on two-spin rota-
tions [36].

5.1.1 Triplet-singlet splitting, energy levels and magnetization

As we have already discussed in the previous chapters, the two-electron wave
function can have spin-triplet or spin-singlet ground state, see Egs. (4.16) and

30
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Figure 5.1: Triplet-singlet energy difference AE = E1T — ETl as a function of
magnetic field in two-minima quantum dot molecule. The energy difference is
plotted as a function of the dot-dot separation and magnetic field.

(4.17). These spin eigenstates alter as a function of the magnetic field both
in a parabolic quantum dot and also in quantum dot molecules [68]. We have
calculated the energy difference between the lowest triplet (S = 1) and singlet
(S = 0) states as a function of the magnetic field and the distance between coupled
quantum dots for three different quantum-dot molecule confinement potentials.
The results are discussed in the Publication IV. An example of these in shown in
Fig. 5.1. In a weak magnetic field the ground state is a spin singlet, then triplet,
and again singlet and triplet. For a finite distance between the dots (d = 2L) the
energy differences become smaller. We also note that all transition points between
singlet and triplet states are shifted to lower B at large distances between the
dots.

Fig 5.2 (a) shows a few lowest two-electron energy levels for double double dot
with the separation of d = 2L = 10 nm between the minima. Dashed lines show
the singlet and solid lines the triplet energy levels as a function of the magnetic
field. Transitions between singlet and triplet states are seen as crossings of the
lowest singlet and triplet energy levels. The excited states show avoided crossings
between two levels of a similar symmetry. One interesting anticrossing of two spin
singlet states is seen between B = 2 and 3 T. We also find anticrossing ground
state levels of the two lowest spin triplet states around B ~ 5 T, but the repulsion
of levels is not so clear at high B.
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Figure 5.2: (a) the three lowest energy levels of singlet (dashed line) and triplet
(solid line) states as a function of magnetic field up to B = 6 T for d = 2L = 10 nm
double dot. Zeeman energy is included in the triplet energies (Ez = —2x12.7BI[T]
ueV in GaAs). (b) magnetization up to B = 8 T for d = 2L = 10 nm double
dot. The smooth curve represents the magnetization of two noninteracting elec-
trons and the other curve shows the magnetization of two interacting electrons.
Magnetization is given in the units of effective Bohr magnetons uj; = eh/2m*c
(1 = 0.87 meV/T for GaAs).

Another experimentally observable quantity, in addition to the energy levels, is
magnetization. The magnetization can be calculated as the derivative of the
total energy with respect to magnetic field. It can be divided into to parts,
paramagnetic and diamagnetic,

8E—\I’ e

2
* € E 2
2m*cLz +9 /’LBSZ |\II> - 8m*c2 <\IJ| i T |\II>Ba (51)

where the former is constant as a function of the magnetic field, for a given angular
momentum and spin state, and the latter depends linearly on the magnetic field.
Fig. 5.2 (b) shows the calculated magnetization for d = 2L, = 10 nm double
dot. The smooth curve shows magnetization for two noninteracting electrons
and the other one for two interacting electrons. The peaks and bumps are only
seen with interacting electrons which corresponds to ground state transitions
and are identified to paramagnetic response. Both curves show also diamagnetic
response to the external magnetic field. This corresponds to increase in the
expectation value of the (¥|>", 72|¥)B term of Eq. (5.1). The first sharp jump
in the magnetization of the interacting electrons corresponds to the increase in
the magnetization as the singlet ground state changes to the triplet. The bump
in the magnetization shows how the symmetry of the triplet ground state changes
at the avoided crossing point of the two lowest triplet states, see Fig. 5.2 (a) at
B~=5T.



4 PHYSICAL PHENOMENA IN QUANTUM-DOT MOLECULES 33

5.1.2 Wave function analysis

There is a lot of informations stored in an accurate few-particle wave function. In
a two-electron wave function, if one electron is pinned, the other electron shows
a probability distribution depending on the position of the pinned electron. This
probability distribution, and also the phase of the conditional wave function, can
show a remarkably complex behavior as a function of the magnetic field. These
properties of the many-electron wave functions are seldom reproduced correctly
by approximative methods. However, recent studies have shown that mean-field
methods can reproduce some of the correlation effects surprisingly well [80].

The two-body wave functions of quantum-dot molecules are analyzed by con-
structing a conditional single-particle wave function:

r) — r)leife(r) — \IJS[(xvy)a(xgay;)}
velr) = ()| Tsl(h 1), (@h 3)]

where one electron is fixed at position (x4, y5) and the density (|i.(r)[?) and the
phase (0.(r)) of the other electron can be studied. The most probable positions
of electrons (rj,r3), are found by maximizing the absolute value of the wave
function:

(5.2)

max |Ug(ry,re)2 — 1}, 1. (5.3)
ri,ra
One should note that .(r) is not normalized to result one when integrated over
the two-dimensional space because it describes the electron at position (z,y)
on the condition that the other electron is fixed at (z%,y5). Instead, t.(r) is
normalized to one when =z = 27,y = y]. Using the conditional single-particle
wave function we can study the conditional density |1.(r)|* and the phase 0.(r).

To illustrate how the properties of the many-body wave function can be examined
with the conditional single-particle wave function, we compare interacting two-
body conditional densities to noninteracting two-body densities in Fig. 5.3. The
non-interacting two-body density equals to the single-particle density (up to a
normalization). We call it one-body density hereafter. We plot one-body density,
two-electron singlet (S = 0), and two-electron triplet (S = 1) conditional single-
particle densities along z-axis. The other electron is fixed at the most probable
position (z*) on the right hand side of the z-axis. Fig. 5.3 (a) and (b) show
conditional densities of the single parabolic quantum dot at B = 1 and 8 T
magnetic fields. One-body density is located at the center since no correlation
effects push it towards the edges of the dot. Peak of the triplet state is found
further at the edge of the dot than the singlet peak since Pauli exclusion principle
ensures that the electrons of the same spin are pushed further apart than the
electrons with the opposite spins. Notice that the conditional density of the
triplet state goes to zero where the other electron is fixed, just before x = 20
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Figure 5.3: One-body density (dotted line), two-body spin-singlet state (dashed
line) and two-body spin-triplet state (solid line) along z axis. One of
the electrons is fixed at the most probable position in the z axis (z*)
and the conditional density is plotted for the other electron (|ib.(r)]?> =
|Us[(x, ), (z*,0)]]?/|¥s[(—2*,0), (z*,0)]|?). (a) and (b) show the densities of
parabolic quantum dot at two different magnetic field values (B = 1 and 8 T),
(c) and (d) represent double dot with d = 2L = 10 nm and (e) and (f) double
dot with d = 2L = 40 nm. The confinement potential, V., is plotted with gray
color on each figure.

nm, whereas in the singlet state there is a finite probability find the electron
around the point of the fixed electron. Fig. 5.3 (c¢) and (d) show the same data
for d = 2L = 10 nm double dot, and (e) and (f) for d = 2L = 40 nm double
dot. At high magnetic fields and large dot-dot separations the difference between
singlet and triplet densities reduces. At large distances between the dots and at
high magnetic field also the one-body density localizes into the individual dots,
see Fig. 5.3 (f).

When the angular momentum increases, the increased rotation induces vortices in
the system. As we have a many-body system, the rotation is a correlated motion
of electrons and can be studied in the relative coordinates of electrons. Vortices
can be found by locating the zeros of the wave function and studying the phase
of the wave function when going around each of the zeros. As the vortices are
seen in the relative coordinates, and are not visible in the density, we examine the
conditional single-particle wave function ¢.(r) (of Eq. (5.2)), where one electron
is fixed in the most probable position. The vortices are seen in the zeros of ..
When the phase part, 6., is integrated around a closed path encircling the zero,
we obtain the winding number m of a vortex (§ 0.(r)dr = m2mn).



4 PHYSICAL PHENOMENA IN QUANTUM-DOT MOLECULES 35

B=1T,S=0 B=1T,8=0

y [nm]

/GI '
s

0

0
y [nm] x [nm] x [nm]

Figure 5.4: d = 2L = 10 nm double dot spin-singlet state at B =1 T. (a) shows
total electron density and (b) contours of conditional density |¢.(r)|> with the
other electron fixed at the most probable position, marked with + sign.

To show how the complex many-electron effects appear in the wave functions
of quantum-dot molecules, we examine also the phase of the conditional wave
function. Fig. 5.4 shows the double dot (with d = 2L = 10) total electron
density in (a) and the contours of conditional density and the phase in gray
background color in (b) for spin-singlet state at B = 1 T. Fig. 5.5 shows the total
electron density in (a), the phase of the conditional wave function and contours
of conditional density in (b) and vortices of the conditional wave function with
the fixed electrons at three different positions in (c) with contours of the total
electron density in the background for spin-triplet state of d = 2L = 10 nm double
dot at B = 7.5 T. The total electron density can be obtained by integrating one
variable out from the two-body wave function n(r1) = [ dra|¥g(r1, ra)|?.

Figs. 5.4 (b) and 5.5 (b) show the ground state contours of the conditional electron
density [t.|? for the same double dot at two different magnetic field values, B = 1
and 7.5 T, respectively. The gray-scale background in Figs. 5.4 (b) and 5.5 (b)
marks the phase of the conditional wave function, 8., where the white color equals
0. = 0 and the darkest gray 6. = 2w. The positions of the vortices are marked
with circles (0), and the other electron is fixed at the most probable position (r})
shown with a plus sign (4). The lines of dark gray and white borders correspond
to a sudden phase change of 27 if the line is crossed. The number of flux quanta
attached to the electron (or the winding number of a vortex) can be determined
by going around the fixed electron position and calculating the total phase change
(or counting the lines crossed in the figure).

For the low-field singlet in Fig. 5.4 (b) the phase is constant and no vortices are
found in the vicinity of the fixed electron. Fig. 5.5 (b), on the other hand, show a
very complex structure of three vortices in the vicinity of the fixed electron. This
type of wave function resembles Laughlin wave function [81], but as there is a
repulsion between the vortices it is even more complicated. These vortices follow
the fixed electron if its position is changed, as can be seen in Fig. 5.5 (c), where
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Figure 5.5: d = 2L = 10 nm double dot spin-triplet state at B = 7.5 T. (a)
shows the total electron density and (b) the contours of the conditional den-
sity |ve(x,y)|? and phase of the conditional wavefunction 6.(z,y) in gray-scale.
(White equals 6. = 0 and darkest gray 6. = 27). The plus sign (+) indicates
the position of the fixed electron and small circles indicate the positions of the
vortices. In (c) contours of the total electron density are plotted in the back-
ground and positions of the vortices are solved when the fixed electron is in three
different positions. Fixed electron is marked with the plus sign and vortices with
circles. The most probable position is marked with a star.

the electron is fixed at three different positions and three vortices are following
aside. This is a signature of composite particles of electrons and vortices [82].

5.2 Far-infrared spectrum

Magneto-optical absorption spectrum in the far-infrared (FIR) range of quantum
dot molecules is discussed in Publications II, III and V.

Far-infrared (FIR) magneto-optical absorption spectroscopy is one of the ex-
perimental techniques to study electrons confined in semiconductor quantum
dots [4, 47]. It was, however, realized at the early stage of quantum dot re-
search that the FIR spectroscopy is unable to reveal interesting many-electron
effects in parabolic-confinement quantum dots. This is because the electromag-
netic waves couple only to the center-of-mass variables of electrons. The resulting
FIR spectrum is rather simple, showing two branches, w4, as a function of mag-
netic field [44, 45]. These branches, one with positive energy dispersion (w4 )
and one with negative energy dispersion (w_) as a function of magnetic field,
are called the Kohn modes. The spectrum does not depend on the number of
electrons nor on the interactions between them. This condition in parabolic quan-
tum dots is called generalized Kohn theorem [43]. The condition can be lifted if
the confinement is not parabolic and many experiments show more complex FIR
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spectra [46-49]. Also calculations [83-88] have shown non-trivial FIR spectra of
non-parabolic quantum dots. It is also possible that spin-orbit interaction [89]
and impurities near quantum dots [90] can have an effect on the FIR spectrum.
In a nonparabolic quantum dot, the internal relative motion of electrons could be
accessible with FIR spectroscopy, but our studies in Publications II, IIT and V
suggest that the additional features in the FIR spectra are still of collective na-
ture. The interpretation of observed FIR spectra of a nonparabolic quantum dot
is usually far from trivial. It is clear that the deviations arise from nonparabolic
confinement, but the detailed cause of the deviations, thus the interpretation of
spectrum, is not always straightforward. It is especially interesting to see how
many-electron interactions appear in the FIR spectra of quantum dots.

5.2.1 Far-infrared spectra of quantum-dot molecules

In the calculation of FIR spectra of two interacting electrons we use exact di-
agonalization technique to obtain two-electron wave functions. Dipole-transition
probabilities are calculated with perturbation theory between the two-body lev-
els. The FIR spectrum is calculated as transition probabilities from ground state
(Ep) to excited states (F;) using the Fermi golden rule within the electric-dipole

approximation:
2
<\I/l €iz¢ Z r; \I/0>
i=1

We assume circular polarization of the electromagnetic field: e r; = 3 (2;+
i1y;) = z+, where plus indicates right-handed polarization and minus left-handed
polarization. The results are presented for non-polarized light as an average of
the two circular polarizations.

2

App (B — Ey — hw). (5.4)

The dipole-allowed magneto-optical excitation spectrum of an isolated harmonic-
confined quantum dot consist of two branches w4 and w_, whose energy dispersion
is well understood and it does not depend on the number of electrons in the

quantum dot:
AE; = hwy = hyJwi + (we/2)? £ hw,/2. (5.5)

wo describes the external confinement, w. = eB/m™* is the cyclotron frequency,
and m* is the effective mass of electron. In the dipole-allowed transitions between
Fock-Darwin states angular momentum must change by unity, Al = £1.

For a two-electron quantum dot the ground state can be either spin singlet (S =
0) or spin triplet (S = 1) depending on the magnetic field strength. Even if
many-body energy levels have more complicated magnetic field dispersion than
the single-particle levels, the dipole-transitions in the many-body case always
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Figure 5.6: (a) and (b): schematic picture of transitions at zero magnetic field for
the spin-singlet and spin-triplet states of a parabolic quantum dot, respectively.
(c) energy levels of a two-electron parabolic quantum dot as function of magnetic
field. (d) far-infrared spectrum of a parabolic quantum dot.

equal to transitions between the single-particle levels, in a parabolic confinement.
A schematic picture of transitions at zero magnetic field is shown in Fig. 5.6
(a) and (b) for spin-singlet and spin-triplet states, respectively. Fig. 5.6 (c)
shows few lowest two-body energy levels as a function of magnetic field for the
singlet and triplet states of a parabolic quantum dot. Gray background marks the
magnetic field region of spin-singlet ground state and white spin-triplet ground
state. Dipole transitions from one spin type to another are forbidden.

Fig. 5.6 (d) shows the calculated FIR spectra for two interacting electrons in a
parabolic quantum dot. The dipole transition probabilities are calculated from
the two-body ground state level to higher two-body energy levels as shown in
Fig. 5.6 (c). The energy of absorbed light is given in meV as a function of magnetic
field. The width of the line is proportional to the transition probability, which
is also plotted below the spectrum (in arbitrary units) for each of the branches
in the spectrum. There are, of course, many more possible transitions with zero
or small probability. Only the lines with transitions probability exceeding one
percent of the maximum transition probability are included in Fig. 5.6 (d). Large
open circles in the spectra represent two Kohn modes, w; and w_, plotted with
one tesla spacings. Vertical lines indicate the singlet-triplet (or triplet-singlet)
transition points.

Fig. 5.7 shows the calculated FIR absorption spectra for two interacting elec-
trons in quantum-dot molecules. Fig. 5.7 (a) shows FIR spectrum for two-minima
quantum-dot molecule (double dot), (b) for square symmetric four-minima quantum-
dot molecule and (c) for rectangular-symmetric four-minima quantum-dot molecule.
Now as the symmetry of the confining potential is lower, we observe some ad-
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Figure 5.7: Far-infrared spectra of quantum-dot molecules. (a) for L, =15, L, =
0 nm double dot, (b) for L, = L, = 10 nm four-minima quantum-dot molecule
and (c) for L, =5, L, = 10 nm rectangular-symmetric four-minima quantum dot
molecule.

ditional features in the FIR spectra. Detailed analysis of the FIR spectra of
quantum-dot molecules is presented in Publications II, IIT and V.

5.3 Classical many-electron states

Classical many-electron states and their quantum-mechanical counterparts are
discussed in Publication I.

In the limit of weak confinement (low density) or a very strong magnetic field
the quantum effects are quenched and the electron correlations start to dominate
the properties of the system. There is a theoretical evidence for the existence
of a limit where the electron system crystallizes to Wigner molecules, which is
seen as the localization of the electron density around positions that minimise the
Coulomb repulsion [91-99]. The ultimate limit is a purely classical system where
only the Coulomb repulsion between the electrons defines the ground state. The
problem reduces to finding the classical positions of electrons that minimise the
total energy of the system. One should also note as pointed out by Harju et al.
[97], based on accurate quantum mechanical calculations, that a correlated many-
electron system in a quantum dot can well be described in terms of independent
electrons oscillating around their classical positions. This picture is energetically
very accurate far beyond the confinement values where the system shows Wigner-
molecule-like behavior.

The classical limit of electrons confined in a quantum dot is achieved by setting A
to zero, thus neglecting the kinetic energy of the electrons. The problem reduces
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to finding the positions of point charges in the parabolic confinement that min-
imise the total energy. The 1/r Coulomb repulsion pushes electrons apart while
the parabolic confinement favours electrons to be as close as possible to the centre
of the harmonic dot. The positions for two, three, and maybe four electrons in
a dot can be predicted from the form of the Hamiltonian quite easily, but for
more particles in the dot the problem is not trivial at all. The classical point
charges in a two-dimensional infinite plane crystallise into a hexagonal lattice at
low temperatures. Parabolic confinement, on the other hand, favours circular
symmetric solutions. In parabolic quantum dots these two effects, the circular
symmetry and the formation of a hexagonal lattice, compete, thus resulting in
non-trivial electron clusters.

The ground state configurations of a single parabolic quantum dot with classical
point charges have been studied previously [100-102]. Large systems (N > 200)
exhibit a clear triangular lattice structure in the inner part of the dot and a shell-
like structure at the outer edge. With the small number of particles in the dot
the shell structure is more pronounced. A vertically coupled parabolic two-dot
system was studied by Partoens et al. [103]. Several structural transitions as a
function of the distance between dots were found. In this Thesis, in Publication
I, we present a study of classical point charges in laterally coupled parabolic dots
and study the ground state and metastable (local minimum) configurations and
structural transitions as a function of the inter-dot distance.

5.3.1 Monte Carlo simulation

The classical electrons in the double dot are modelled with the classical Hamil-
tonian of the following form

N
1 e? 1
H==-m"? Y min[(7, — d/2)2 (F + d/2)*] + . (5.6
5 OZ:: (75 = d/2)%, (7 + d/2)°] 47“06;‘”_”, (5.6)

Each one of the N electrons is described with coordinates 7; = (z;,y;) in the
two-dimensional space. The harmonic confinements are positioned symmetrically
around the origin with distance d = 2L, between the minima of the confinements.
We measure the energy in meV’s and distance in Angstréms. The confinement
strength was set to hwyp = 3 meV and typical GaAs parameters were chosen to
the effective mass and the dielectric constant: m* = 0.067 m, and € = 13.

The minimum energy as a function of the positions of the particles, E;,; =
min E(7,...,7n), is solved with a standard Metropolis Monte Carlo method [104].
Starting from a randomly chosen initial configuration 77, ..., ¥y we start displac-
ing one particle at time. A trial movement is accepted if the total energy of the
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system is reduced. If the energy is increased, the step is accepted with the proba-
bility e=2FP, where AE is the change in energy between the trial and previously
accepted configuration. 3 = 1/kT¢s¢ plays the role of the effective (inverse) tem-
perature. When [ is very small compared to the typical energy change (AFE)
in the simulation, the probability of accepting any step is high and particles are
moving in random directions. A high value of 3, and thus small effective tem-
perature, favors steps that move towards a minimum in the energy surface. The
direction of the trial step is chosen randomly and the two coordinates, x and
y, both between -0.5 and 0.5, are multiplied by the chosen maximum movement
Rynaz- The simulation is started with high effective temperature (small 3) and
large Ryuq.. Particles move in random directions with long steps. During the run
Rz is reduced and 3 increased. At the end particles are nearly frozen around
the minimum energy positions and the energy does not change considerably. Thus
we have obtained the minimum in energy. The Monte Carlo simulation can also
converge to a metastable state. In order to find the absolute minimum, the min-
imization is performed many times. We also gain interesting information of the
metastable configurations.

5.3.2 Transitions in electron configurations

As the distance between the two dots, d, increases, we observe structural transi-
tions in the electron configurations. At d = 0 we have just one dot and when the
dots are infinitely apart, d — oo, the system consist of two independent dots. It is
clear, that when the confining potential changes with increasing d, also the mini-
mum energy positions of the electrons must be modified. We find the changes in
the electron configurations to exhibit surprisingly complex behavior as a function
of the distance between the dots.

We mark electron configurations with (nearly) concentric shells around the po-
tential minimum: (N7, N2), where N; denotes the number of electrons in the
innermost shell and No the electrons in the outermost the shell. The clearest
example of a transition can be seen for six electrons between d = 0 and d = 200
A, see Fig. 5.8. At d = 0 the (1,5) configuration is the ground state and (6) the
metastable state. At d = 200 A it is the other way around: (6) is the ground and
(1,5) a metastable state. The energy as a function of distance for two alternative
configurations is shown in Fig. 5.8(a). The transition point, marked with a small
circle, is at d = 111.6 A. For N = 8, we find that at d = 135.9 A the electron
configuration changes from (1,7) to (2,6), see Fig. 5.8 (b). Notice that the (2,6)
configuration is not stable at d = 0 and it is unstable for d < 17 A.

To show that the classical transitions are relevant even for the quantum case,
we have studied the non-interacting quantum-mechanical N = 6 case. The non-
interacting quantum mechanical problem can be reduced to a one dimensional
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Figure 5.8: Energy per particle as a function of distance for N = 6 and N = 8
classical electrons in lateral double dot. The small circles indicate the discontin-
uous structural transition points.

one as the potential is separable, and the single-particle states of the transverse
motion (y direction) are those of the simple harmonic oscillator with energy
Eny = % + ny, where ny, = 0,1,2,.... The one-dimensional longitudinal part
can easily be solved numerically. Combining the energies of the longitudinal part
with the transverse ones, one obtains the spectra of Fig. 5.9. One can see that
the energies are equal to those of the simple harmonic oscillator for d = 0, and
of two independent oscillators at large d. In the quantum mechanical limit we
measure the length in units of [y = /h/m*w and energy in units of fw. One can
also estimate the coupling between the two dots in Fig. 5.9. At d ~ 1.5ly energy
of the lowest eigen state is at the minimum whereas at d =~ 4ly the lowest bonding
and antibonding states are already very close in energy, which means that dots
rather decoupled. For higher energy states the electron density is relaxed more
outwards and therefore the bonding and antibonding states combine at a greater
distance between the dots. Coupling depends also on the occupied level.

We drop the spin of the quantum mechanical electrons, as it is not relevant in the
classical limit. This corresponds to taking the system to be spin-polarized. We
occupy the six lowest eigen states with spinless electrons. One can see from the
energy levels shown in Fig. 5.9 that there exists one transition for N = 6 electrons.
In this transition point, one electron moves from a bonding n, = 2 state to an
antibonding n, = 0 state. In the classical limit, the electrons avoid each other
due to the Coulomb interaction. In our noninteracting quantum mechanical case,
the electron-electron repulsion results from the Pauli principle.

When the quantum mechanical system approaches the classical limit, the most
probable configuration R*, maximizing the density |¥(R)|? approaches the clas-
sical electron positions. The quantum effects and the transition to the classical
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Figure 5.9: Left: Lowest single-particle energies as a function of the interdot dis-
tance d. The inset shows the quantum number of the transverse motion. Middle
and Right: Conditional probability densities and the most probable electron po-
sitions (marked with plus signs). The middle (right) panel corresponds to small
(large) interdot distance d, correspondingly. The contours are uniformly from
0.01 to 0.91.

limit are most conveniently studied using the single-particle probability distribu-
tion p(r) [97], defined as

2

U(r,rs,...,ry) (5.7)

p(r) =

U(ry,rs, ..., 1)

where the coordinates r} are fixed to the ones from the most probable configu-
ration R*. In approaching the classical limit, the density p(r) is more and more
peaked around the classical position rj, still showing quantum fluctuations, as
seen in the case of a single quantum dot [97].

We now take the quantum model of six electrons to the opposite limit than the
classical one where the information of the classical positions might be stored
in the coordinates of the most probable electron configuration. One can see in
Fig. 5.9, which shows the p(r) for the two ground states that this is really the case.
It is very interesting to see that the most probable electron positions change in
the transition point very similarly to the classical case. We see clearly a similar
transition as with classical electrons. It is highly non-trivial that the electron
triangles for the large-d case are facing the same way as in the classical case.
Our quantum mechanical analysis of the N = 6 case shows that these type of
transitions are very relevant for quantum-dot molecules also beyond the classical
limit.



Chapter 6

Summary

In this Thesis the properties of few-electron laterally coupled quantum dots or
quantum-dot molecules have been modeled. Emphasis has been on describing
electron correlations properly. We have mostly considered two interacting elec-
trons confined in quantum-dot molecules. These two-electron quantum states
show a remarkably complex behavior as a function of magnetic field. We have
analyzed the effects of electron correlations and quantum dot confinement on en-
ergy levels, magnetization, and far-infrared magneto-optical absorption spectra of
quantum-dot molecules. In addition, classical few-electron states in quantum-dot
molecules were also discussed in this Thesis.

In Publication I, we studied classical point charges confined in a lateral double dot
system. Classical electrons show structural transitions in the ground-state and
metastable configurations as a function of the inter-dot distance. We have also
identified a similar structural transition in the wave function of six noninteracting
quantum mechanical electrons.

Publications II, ITI and V discuss far-infrared magneto-optical absorption spec-
tra of quantum-dot molecules. The effects of the confinement potential and the
electron interactions have been analyzed in detail. We conclude that the two-
electron far-infrared spectra directly reflect the symmetry of the confinement
potential, and the interactions cause only small shifts in the spectra. We sug-
gest that these shifts could be tested in experiments by varying the number of
electrons confined in quantum dots.

Publications III and I'V present results for two-electron quantum-dot molecules
in a magnetic field. We have studied ground state transitions as a function of
the distance between the dots and as a function of magnetic field. All quantum-
dot molecule confinements show transitions between spin-singlet and spin-triplet
ground states as a function of the magnetic field. The states in a high magnetic
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field can be identified as composite particles of electrons and vortices. We ob-
serve avoided level crossings in the spectra of the quantum-dot molecules. The
anticrossings can be observed in the low-lying energy states and in the magneti-
zation.

As a general conclusion, few-electron states of lateral quantum dot molecules
show a rich and complex behavior as a function of the tunable system parameters.
Classical electron configurations of a double dot system show complex transitions
as a function of the separation between the dots. We have analyzed the two-
electron quantum states in quantum-dot molecules in a magnetic field and a find
complex spin-phase diagram and composite particles of electrons and vortices.
This type of two-electron states of a double quantum dot device may be building
blocks for spin qubits in future quantum computing. Furthermore, we have shown
that the far-infrared magneto-optical absorption spectra mainly reflect the low
symmetry of the quantum dot confinement potential and interactions cause only
small shifts in the spectra.
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