
Helsinki University of Technology
Information and Computer Systems in Automation

Espoo 2006 Report 11

An Extended Process Automation System: An Approach based
on a Multi-Agent System

Ilkka Seilonen

CV5

S3

S2

S1

CV3
CV4

CV1
CV2

MV3
MV4

MV1
MV2

hot cold
LS1

P1
FL

T11

T12

T21

T22

Process Agent

Pump Agent

Tank Agent

Lower
Part

Agent

Upper
Part

Agent

M1

TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D´HELSINKI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80701668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Helsinki University of Technology
Information and Computer Systems in Automation

Espoo 2006 Report 11

An Extended Process Automation System: An Approach based on a
Multi-Agent System

Ilkka Seilonen

Dissertation for the degree of Doctor of Science in Technology to be presented
with due permission of the Department of Automation and Systems Technology,
for public examination and debate in Auditorium AS1 at Helsinki University of
Technology (Espoo, Finland) on the 10th of February, 2006, at 12 noon.

Helsinki University of Technology
Department of Automation and Systems Technology
Information and Computer Systems in Automation

Distribution:
Helsinki University of Technology
Department of Automation and Systems Technology
Information and Computer Systems in Automation

P.O. Box 5500

FIN-02015 HUT, Finland

Tel. +358-9-451 5462

Fax. +358-9-451 5394

© Ilkka Seilonen

ISBN 951-22-7976-2

ISBN 951-22-7977-0 (PDF)

ISSN 1456-0887

Picaset Oy

Helsinki 2006

AB

HELSINKI UNIVERSITY OF TECHNOLOGY
P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

ABSTRACT OF DOCTORAL DISSERTATION

Author Ilkka Seilonen

Name of the dissertation
An Extended Process Automation System: An Approach based on a Multi-Agent System

Date of manuscript 26.5.2005 Date of the dissertation 10.2.2006

 Monograph Article dissertation (summary + original articles)

Department Automation and Systems Technology
Laboratory Information and Computer Systems in Automation
Field of research Automation technology, information technology
Opponent(s) Professor Duncan McFarlane, Docent Tapio Heikkilä
Supervisor Professor Kari Koskinen
(Instructor)

Abstract
This thesis describes studies on application of multi-agent systems (acronym: MAS) to enhance process automation
systems. A specification of an extended process automation system is presented. According to this specification, MAS
can be used to extend the functionality of ordinary process automation systems at higher levels of control. Anticipated
benefits of the specification include enhanced reconfigurability, responsiveness and flexibility properties of process
automation.
Previous research concerning applications of MAS in process automation has been more limited than in other fields of
automation. There has been more research about this topic for example in the area of discrete manufacturing. As goal-
oriented distributed systems with coordination capabilities MAS have been found applicable to a part of automation
functions, e.g. modification of control logic in abnormal situations. However, when applying MAS to process
automation the particular characteristics of this application domain need to be taken into account. The important role of
continuous control in process automation needs to be considered.
In this thesis, a specification of an agent platform for process automation is presented as a basis for applying MAS in
this application domain. The specification extends a FIPA-compliant agent platform with process automation specific
functionality. It utilises a hierarchical agent organisation, a BDI-agent model and qualitative reasoning. It also presents
a model for programming MAS applications for process automation with techniques of distributed planning and search.
Two applications are specified using the platform. One of these shows how the techniques of distributed planning can
be applied in sequential control. The other provides a design model for supervisory continuous control applications
using the techniques of distributed search. Experiments performed with a laboratory test environment using prototype
implementations of the applications are presented. The experiments are able to demonstrate the feasibility of the
approach in limited test scenarios. They also provide information about in which ways MAS techniques are able
enhance the properties of process automation.
As a result of the work presented in this thesis more knowledge has been gained about application of MAS in process
automation. The specification of the agent platform for process automation and its applications provide a basis for
further studies of this topic.
Keywords process automation, multi-agent system, agent platform, BDI-model, distributed planning, distributed search

ISBN (printed) 951-22-7976-2 ISSN (printed) 1456-0887

ISBN (pdf) 951-22-7977-0 ISSN (pdf)

ISBN (others) Number of pages 91 p.

Publisher Helsinki University of Technology, Information and Computer Systems in Automation

Print distribution Helsinki University of Technology, Information and Computer Systems in Automation

 The dissertation can be read at http://lib.tkk.fi/Diss/2006/isbn9512279770/

Preface
This thesis concerning applications of multi-agent systems in process automation has
been prepared at the Laboratory of Information and Computer Systems in Automation
at the Helsinki University of Technology (HUT). The work was carried out within
two projects, Agent automation (2001-2002) and Mukautuva (2003-2004). These
projects were mainly funded by the National Technology Agency (Tekes), which is
thankfully acknowledged.

I have become acquainted with the themes of this thesis in the course of several years.
I studied planning of control sequences at VTT in the early 90s. Later, I had the
opportunity to familiarise myself with agent technology in the CAIP research
programme also at VTT. Most of my knowledge about process automation I also
gained while working at VTT Automation in 1988-2001. When I joined HUT in 2001
I was able to combine all these themes. However, the experience gained at VTT is
clearly reflected in this thesis.

I am very thankful to my supervisor, Professor Kari Koskinen of the Laboratory of
Information and Computer Systems in Automation, for first employing me and then
supporting me during this work. I also thank Professor Aarne Halme of the
Automation Technology Laboratory for supervising the projects and Dr Pekka
Appelqvist for his efforts as the project leader. Very big thanks are due to my main
co-worker, Mr Teppo Pirttioja. If somebody can find a better co-worker than him
then, according to my opinion, he should never quit his job. Many thanks also to Mr
Antti Pakonen for his valuable efforts in the Mukautuva project. I also appreciate all
my colleagues at the Laboratory of Information and Computer Systems in
Automation. Particularly, I have enjoyed the relaxed atmosphere in our coffee room. I
also want to thank Mrs Leena Arpiainen for checking the language of this thesis.

However, there are some other things in life than research work. Therefore, I would
like to take the opportunity to express my gratitude to my relatives and all of my
many friends.

Finally, I would like to say to Wiwin: Terima kasih untuk cinta dan pengertianya.

 Espoo 30.11.2005

 Ilkka Seilonen

i

Table of Contents
Preface...i
Table of Contents...ii
List of Abbreviations ..iv
1 Introduction..1

1.1 Background ..1
1.2 Research problem...2
1.3 Research objectives..3
1.4 Research methods ..3
1.5 Contributions..4
1.6 Outline of the thesis ...5

2 Multi-agent systems and process automation ..6
2.1 Introduction..6
2.2 Multi-agent systems methodology...6

2.2.1 Multi-agent systems ...6
2.2.2 Agent and multi-agent system architectures ..8
2.2.3 Distributed search ..9
2.2.4 Distributed planning...10

2.3 Multi-agent system applications in process automation11
2.3.1 Overview of multi-agent system applications in automation11
2.3.2 Process automation as an application domain12
2.3.3 Multi-agent system applications in process automation12
2.3.4 Multi-agent system applications in discrete manufacturing14
2.3.5 Multi-agent systems as systems development method15

2.4 Qualitative reasoning ...16
2.5 Discussion ..16

3 Agent platform for process automation ...18
3.1 Introduction..18
3.2 Specification of the agent platform..18

3.2.1 Agent society model ..18
3.2.2 Agent model...23

3.3 Test environment for the agent platform ...29
3.3.1 Test process and automation system..29
3.3.2 Test agent platform and application...31

3.4 Discussion ..33
3.4.1 Design choices in the specification..34
3.4.2 Effects on the properties of automation ...34
3.4.3 Conclusions and open questions ..36

4 Sequential control based on distributed planning ..37
4.1 Introduction..37
4.2 Specification of the sequential control method..37

4.2.1 Planning at the agent society level...37
4.2.2 Planning at the agent level ...40

4.3 Experiments with the sequential control method...43
4.3.1 Specification of the experiments..43
4.3.2 Application design for the experiments ...45
4.3.3 Results from the experiments...48

4.4 Discussion ..52
4.4.1 Design choices in the specification..53

ii

4.4.2 Effects on the properties of automation ...53
4.4.3 Conclusions and open questions ..54

5 Supervisory control based on distributed search ...56
5.1 Introduction..56
5.2 Specification of the supervisory control method ...56

5.2.1 Search at the agent society level ..56
5.2.2 Search at the agent level ..59

5.3 Experiments with the supervisory control method64
5.3.1 Specification of the experiments..64
5.3.2 Application design for the experiments ...65
5.3.3 Results from the experiments...70

5.4 Discussion ..77
5.4.1 Design choices in the specification..77
5.4.2 Effects on the properties of automation ...77
5.4.3 Conclusions and open questions ..79

6 Discussion and conclusions ...80
6.1 Discussion ..80
6.2 Conclusions..81
6.3 Further research ...82

References..84

iii

List of Abbreviations
ACL Agent communication language

AOSE Agent-oriented software engineering

API Application programming interface

BDI Belief-desire-intention model of software agents

CFP Call for proposal

CSP Constraint satisfaction problem

CWS Chilled water system

DAI Distributed artificial intelligence

DCS Distributed control system

DF Directory facilitator

FIPA Foundation of Intelligent, Physical Agents

HMS Holonic Manufacturing Systems

LAN Local area network

MAS Multi-agent system

MIMO Multiple input, multiple output

OPC OLE for Process Control

PLC Programmable logic controller

PEM Plan-execute-monitor model of software agents

WAN Wide area network

XML eXtensible markup language

iv

1 Introduction

1.1 Background
The research effort described in this thesis is motivated by three factors. First, there
are the requirements of the process automation application domain, i.e. an interest to
enhance process automation systems as control systems. Secondly, there is the on-
going development of the technologies used for the design and implementation of
process automation systems. Thirdly, there is the research of multi-agent systems
(acronym: MAS). There is a possibility that MAS might enable enhancement of some
properties of process automation systems while utilizing new technical developments
as indicated by research in related application domains, e.g. discrete manufacturing.
However, there are many open questions concerning the application of MAS to
process automation.

The viewpoint to the requirements of process automation systems in this thesis is
maybe different from tradition. Usually safety, reliability, quality, efficiency and
robustness of control have been regarded as the main requirements in process
automation. In this research, the focus is on the reconfigurability, responsiveness and
flexibility properties of process automation systems. All these properties are related to
adaptation, i.e. management of changes. Reconfigurability means the capability of the
automation system to adapt to system configuration changes, i.e. changes in the
process equipment and instrumentation. Reconfigurability is an important factor in the
maintenance of a production system. The other two properties concern the capability
of the automation system to handle different conditions during its operation.
Responsiveness refers to reasonable handling of unplanned situations. It includes
exception handling and fault tolerance and contributes to the availability of a
production system. Flexibility means the capability of the automation system to
perform a variety of planned control operations, e.g. producing different products.
Process automation systems are rather complex systems which makes it difficult to
handle all these types of changes.

Some developments of the technologies used for the implementation of process
automation systems are particularly relevant to this thesis. These include increasing
distribution of computing power and larger emphasis on software technologies. At the
low end of automation intelligent instrumentation and field buses are being adopted to
wider usage. At the high end automation systems are increasingly connected to
information systems via local area networks. New software technologies e.g. software
components have been taken into use in the implementation of automation systems.
Web services have recently been studied as a possible systems integration technology.
Process automation systems are becoming increasingly distributed, networked and
complex software systems.

Multi-agent systems have been a research topic in computer science already for a long
time. Although there are several interpretations of the concept of MAS, in this thesis a
MAS is considered as one kind of a distributed system consisting of autonomous,
goal-oriented and coordinated software modules called agents. MAS:s have been
regarded as a possible means for making software systems more adaptable and
managing their complexity (Jennings 2001). Agents as autonomous and goal-oriented
software modules have been seen as suitable abstractions for decomposing complex

1

software systems. The autonomy of the agents is to be balanced with appropriate
coordination techniques. This arrangement is expected to enable adaptation of
operations and eventually lead to a sort of self-organisation in the operation of a
MAS. The distribution, complexity management and adaptation properties of MAS
seem to match those requirements of process automation that are of interest in this
thesis.

Application of MAS to automation systems has previously been studied mainly in the
context of discrete part manufacturing. In many cases the motivation of this research
has been the possibility to enhance particularly the adaptation and also the complexity
management properties of automation. Several results from applications of MAS or
similar systems to various control functions of discrete manufacturing have already
been published (Marik at al. 2002b, Deen 2003, Bussmann et al. 2004). Some part of
the results of this research could be applicable also in process automation. However,
because the characteristics of process automation are different from discrete
manufacturing there is a need for especially process automation type MAS
applications. There has been some research also in this area, but it has been more
limited than in discrete manufacturing (Chokshi and McFarlane 2002).

1.2 Research problem
The research problem of this thesis is defined combining the distributed control
systems and automation systems development viewpoints.

From the distributed control systems viewpoint the research problem is to develop
distributed problem-solving methods for selected process automation control
functions assuming that they are implemented with a MAS. This viewpoint
emphasises the distributed nature of process automation systems which causes a need
for distributed problem-solving. Control operations affecting inter-related control
variables but executed by separate controllers need to be coordinated in order to
enable meaningful control. The approach to this problem in this thesis is to use the
distributed problem-solving methods of MAS. The research task is to specify such
MAS-based problem-solving methods that can fulfil the coordination requirements of
control operations in process automation and retain the desired properties relating to
adaptation. The problem-solving methods need to be selected, applied to the chosen
functions and assessed with respect to the requirements.

From the automation systems development viewpoint the research problem is to
specify how at least some of the requirements of process automation can be fulfilled
by using MAS as a design and implementation methodology. In order to do this, one
has to identify some process automation functions first, to which it is both feasible
and useful to apply MAS technology. After this, one has to design a MAS that can
implement the required functionality. The feasibility and usefulness of this design
need to be assessed with respect to the requirements of process automation. The
feasibility may be assessed in terms of the capability of the MAS to produce
acceptable control actions. The usefulness of the MAS is expected to appear in the
adaptation properties of an automation system.

2

1.3 Research objectives
The objective of this research is to study the research problem, i.e. application of
MAS to process automation, from selected viewpoints. The objective is restricted with
respect to the studied control operations, applied MAS techniques and assessed
system properties. The research objective can be divided into the following three sub-
objectives.

- Specification of an agent platform for process automation. This specification
defines the role of MAS in process automation with respect to existing automation
systems and those aspects of the MAS that are not specific to application types. A
design model of a process automation specific MAS is defined in here. This model
specifies the MAS techniques to be used, particularly the basic mechanisms of
problem-solving in the MAS.

- Specification of control applications based on the platform. Two different control
application types are selected for this specification. The application types are
sequential control and supervisory continuous control. These are assumed to be
suitable to be designed as MAS applications. The specification then defines how
the previously specified MAS platform is used in the design of these kinds of
applications. In this context utilisation of the process automation specific MAS
model and its problem-solving methods to the specific application types is
defined.

- Assessment of the platform and the applications. The MAS platform and its
applications are to be assessed with respect to their effect on the properties of
automation. The properties included in this study are operational correctness as a
control system, adaptation-related properties of reconfigurability, responsiveness
and flexibility and application development. The objective of the assessment is to
identify the mechanisms by which the MAS design affects the properties and
recognise the possible limitations of these mechanisms.

1.4 Research methods
This research is conducted as a combination of a literature review, a specification of a
MAS for process automation, experimentation with a prototype implementation of the
specification in a laboratory test environment and discussion of the MAS properties.
The literature review contains surveys of both the research about similar applications
of MAS in automation and the selected parts of MAS methodologies to be applied in
this research. The specification of the agent platform defines its role with relations to
other parts of a process automation system and its own design as a MAS. The
prototype implementation is a limited realisation of the specification aimed for
laboratory experiments. The purpose of the experiments is to demonstrate the
functionality of the MAS applications in restricted test scenarios. The discussion
concerns about the relation of this study to related research and the effect of the
specification on the properties of automation. Finally, conclusions about the
applicability of MAS technology in process automation are drawn based on the
discussion.

3

1.5 Contributions
The contributions of this thesis include the following:

- Specification of a BDI-model-based agent platform for process automation. A
model of a process automation-specific MAS is presented. The model defines the
role of the MAS as an extension to an ordinary process automation system. It also
specifies a hierarchy reflecting the structure of the controlled process as the
organisational model of the MAS and the BDI-model as the model of the agents.
The basic coordination mechanism in the MAS is the FIPA Contract Net Protocol.
The presented specification has many similarities with models published earlier,
particularly the ones developed within the Holonic Manufacturing Systems
consortium. However, the specification also introduces some design decisions that
have not been extensively studied in the area of process automation. The
specification emphasises utilisation of peer-to-peer agent relations in coordination.
It also uses qualitative process modelling as a knowledge representation
mechanism of the agents.

- Specification of a MAS application for sequential control based on the methods of
distributed planning. A model of an application for sequential control designed
with the previously defined agent platform for process automation is presented. In
this model, sequential control is modeled as a distributed planning problem. The
specification is based on research in action planning in general and previous
studies about agent-based sequential control in particular. Compared to the
approaches published earlier, the one in this thesis emphasises decentralisation of
planning with utilisation of peer-to-peer relations.

- Specification of a MAS application for supervisory control based on the methods
of distributed search. A model of an application for supervisory control designed
with the previously defined agent platform for process automation is presented. In
this model supervisory control is modeled as a distributed iterative search
problem. The specification is based on research in distributed search in general
and studies about agent-based continuous control in particular. Compared to the
approaches published earlier, the one in this thesis emphasises design of the
negotiation agents with the BDI-model also in this application.

- Demonstration of the agent platform and the applications. Prototype versions of
the agent platform and both of the applications were implemented. Tests with a
laboratory test process were performed in order to demonstrate the operation of
the platform and the applications and verifying their functionality in simple test
scenarios.

- Discussion of the properties of the agent platform and the applications. The
meaning of the presented specifications and experiments are studied by
discussions. The properties covered in the discussions include performance of the
control operations and the properties related to adaptation of the extended
automation system. The presented specifications are also compared to related
research. Similarities and differences are identified.

The presented contributions were achieved within a research group where the author
has had a central role. The specifications of the agent platform for process automation
and the application for distributed planning of control sequences were made almost

4

exclusively by the author. The specifications of distributed execution of control
sequences and distributed search of supervisory control actions were made in co-
operation with other members of the research group. The experiments with the test
process were done as group work within the research group. Finally, the discussion of
the properties of the specifications was performed by the author.

1.6 Outline of the thesis
This thesis contains six chapters organised as follows:

Chapter 1: Introduction.

Chapter 2: Multi-agent systems and process automation. State-of-the-art of the
research in MAS is presented as a methodology to be applied in this thesis. Related
research in the application of MAS to process automation and related fields is
described. Qualitative reasoning is also shortly described as a particular methodology
to be applied in this thesis.

Chapter 3: Agent platform for process automation. Specification of the agent platform
for process automation is presented both at the agent society and agent levels. An
experimental implementation of the platform is described and the properties of the
specification are discussed.

Chapter 4: Sequential control based on distributed planning. Studies about developing
an application for sequential control with the agent platform are presented. An
approach based on distributed planning and plan execution is specified for this
purpose. The approach is demonstrated with experiments with the test process. The
properties of the approach are discussed.

Chapter 5: Supervisory control based on distributed search. Studies about developing
an application for supervisory control with the agent platform are presented. An
approach based on iterative distributed search is specified for this purpose. The
approach is demonstrated with experiments with the test process. The properties of the
approach are discussed.

Chapter 6: Discussion and conclusions. The results obtained in this thesis as a whole
are discussed. Based on this, conclusions about the application of MAS to process
automation are drawn.

5

2 Multi-agent systems and process automation

2.1 Introduction
This chapter presents a review of the state-of-the-art in the research of the
methodologies and applications to be applied and built upon in subsequent parts of
this thesis. The development of the agent platform for process automation (Chapter 3)
and the applications for sequential (Chapter 4) and supervisory (Chapter 5) control are
based on the methodologies described in this chapter.

The described methodologies and applications include multi-agent systems (acronym:
MAS), qualitative process modelling and their applications in process automation.
The presentation of MAS methodology focuses on the properties, architecture and
selected problem-solving methods of MAS. Problem-solving with distributed search
and distributed planning are presented with more details. The application of MAS
methodology to automation systems is examined both in the context of process
automation and discrete manufacturing. Qualitative reasoning is included in this
presentation as one reasoning method of the agents to be used in this research. The
end of the chapter contains a discussion about the status of the knowledge concerning
MAS applications in process automation.

2.2 Multi-agent systems methodology

2.2.1 Multi-agent systems

In this thesis the concept of an agent is considered from the viewpoint of a MAS.
Although the concept of an agent may still lack a generally agreed definition the
following one is adopted in this thesis: an agent is an autonomous computational
entity capable of flexible and effective operation in order to meet its objectives in its
environment (Jennings 2000). When agents cooperate with other agents they form a
MAS. MAS can be viewed both as a software engineering paradigm and as a
technology. As a paradigm, MAS has its approach for decomposing, abstracting and
organizing software systems (Parunak 1997, Jennings 2001). As a technology, MAS
provides software engineering methods and tools for design and implementation of
systems conforming to its paradigm (Luck at al. 2004). From both viewpoints, the aim
of MAS may be regarded to be to facilitate the design and implementation of complex
and distributed software systems that are manageable and incorporate flexibility in
their behaviour (Jennings 2001). An underlying assumption of MAS is that agents are
particularly useful as building blocks for such complex software systems.

The agents in a MAS can be further characterised by studying some of the important
properties often required of them.

- Autonomy. Agents have control over their computational resources, state and
processes that they encapsulate from other agents (Wooldridge 1999, Jennings
2000). Agents can execute their computational processes independently of other
agents, i.e. each agent has its own thread of control.

- Environment. Agents can perceive their environment and react to events in it.
They also may affect it by actions (Ferber 1999, Wooldridge 1999, Jennings
2000). The environment can be either physical or computational. With regard to

6

their environment, the behaviour of agents may be characterised as reactive
(Jennings 2000).

- Goal-orientedness. The behaviour of agents is targeted at fulfilling a set of goals
(Ferber 1999, Wooldridge 1999, Jennings 2000). The goals for the agents are to be
designed by the system designer in such a way that the MAS fulfils its design
objectives. Agents can take initiative in order to reach their goals. In a MAS
agents can also refuse to fulfil requests of other agents because of their own goals.
With regard to their goals, the behaviour of agents may be characterised as
proactive.

- Communication. In a MAS the agents can interact with other agents when
carrying out their tasks (Ferber 1999, Huhns and Stephens 1999, Jennings 2000).
Communication can take place either directly between agents or via some
medium. The communication between agents is often expected to take place at
knowledge level and relate to the achievement of their goals. With regard to their
interaction with other agents, the behaviour of agents may be characterised as
social.

- Coordination. In a MAS the agents may coordinate their behaviour with other
agents so that a group of agents is able to reach or balance their goals (Huhns and
Stephens 1999). Coordination is needed if fulfilling of the goals of different agents
is interdependent. Coordination is often assumed to be achieved via
communication among the agents and their internal problem-solving.

- Adaptation. Agents are expected to possess some capability to change their
behaviour due to various reasons, e.g. their previous performance in fulfilling their
goals or changes in their environment or agent society. In a MAS the adaptation
may be affected by the interaction between the agents (Sen and Weiss 1999). The
agents may learn from each other and change their behaviour as a member of an
agent society.

The characterisation of agents and MAS adopted in this thesis has its background in
distributed artificial intelligence (acronym: DAI). The agents in DAI are called
cognitive agents, whose behaviour is based on symbolic representations of their
outside world and their intentions to take some action (Ferber 1999). An opposing
approach is based on the purely reactive agents that have minimal or no
representations of their outside world and whose behaviour is based on mappings
from situations to action (Ferber 1999).

Several coordination mechanisms have been developed for multi-agent systems with
different coordination requirements. Coordination among the agents can be based on
cooperation or competition (Huhns and Stephens 1999). In the former situation the
agents are assumed to be non-antagonistic. In both cases communication has often
been considered as a mechanism for enabling coordination. Organisation of agent
societies is another generally used means to facilitate coordination in MAS.
Negotiation and planning are common among particular coordination mechanisms.
Negotiation is particularly suitable for competition situations and planning for
cooperation (Huhns and Stephens 1999). Negotiation may also be needed in
conjunction with cooperation for conflict resolution. Coordination may also be
performed through information sharing, when used to estimate actions of other agents.
Significant data structures in coordination include intentions and contracts. Both of

7

these may be regarded as commitments to act either within one agent or between
them.

In a MAS the agents are usually assumed to communicate with each other according
to an agent communication language, e.g. FIPA ACL (Labrou 1999, FIPA 2002b).
According to this specification, the agents communicate via message passing based on
a standardised set of so-called communicative acts with defined formal semantics.
Other aspects of agent communication defined in the FIPA standard include content
languages and interaction protocols (FIPA 2005). Content languages are used to
represent contents of the ACL messages. Interaction protocols define sequences of
message exchange forming conversations between the agents.

MAS may be regarded as a developing software engineering paradigm (Jennings and
Woolridge 2000, Wooldridge and Ciancarni 1999) that necessitates its own software
engineering methods and tools. Research and development work has been conducted
both in the area of agent-oriented software engineering (acronym: AOSE) and agent
programming tools (Weiss 2002). In the research of AOSE several software
engineering methods for agent-based systems have been developed, e.g. Tropos
(Castro et al. 2002). Essential results from the development of agent programming
tools include several agent platforms, e.g. JADE (JADE 2005) and FIPA-OS (FIPA-
OS 2005). The agent platforms provide both application programming interfaces
(acronym: API) for application development and run-time environments for executing
agent applications. Many of the developed agent platforms are compliant with the
FIPA standard.

2.2.2 Agent and multi-agent system architectures

The architecture of a MAS can be studied in the context of one agent and a society of
several agents. Agent architecture describes how decision-making about actions is
arranged within an agent, i.e. how an agent derives actions from a perceived situation
utilizing its internal structure and operation (Wooldridge 1999). Basic types of agent
architecture include a reactive agent, a BDI-agent and layered architectures. These
models are different e.g. with respect to their complexity, balance between goal-
directed and reactive behaviour and response times in various actions.

In a reactive agent decision-making is based on a relatively direct mapping from the
perceived situation to action (Wooldridge 1999). A reactive agent may have a
representation of a state based on its perceptions. The major advantage of the reactive
agent model is its simplicity. The response time of a reactive agent is also easier to
estimate than that of more complicated agent models. The main disadvantage of the
reactive model is that it may not make the reasoning of the agents explicit.

In a BDI-agent decision-making uses data structures of beliefs, desires and intentions
(Wooldridge 1999, Georgeff et al. 1999, Bratman et al. 1988). These concepts
represent the knowledge of an agent about its environment, the objectives it tries to
achieve and the actions it intends to do in order to achieve the objectives in the
perceived situation. During its operation a BDI-agent first updates its beliefs via
perception and communication processes and then updates its desires and intentions
via option generation and filtering processes. Finally, the agent derives its actions
from the current intentions. Although the processing of beliefs, desires and intentions
can be based on theorem proving most practical BDI-implementations process the
data structures procedurally. Plans containing procedures are a practical method for

8

representing the logic of the generation and filtering processes. The BDI-architecture
enables explicit representation of the reasoning processes of an agent (Singh et al.
1999). However, the BDI-model is more complex than the reactive model. With the
BDI-model the response time of an agent is typically more difficult to foresee than
with the reactive model.

In a layered agent architecture decision-making of an agent is performed at several
layers with different levels of abstraction. The decision-making procedure may also
be dissimilar at different layers. Horizontal and vertical layering are two different
ways to organise the decision-making layers (Wooldridge 1999). In these models
decision-making is organised either in a parallel or sequential fashion. Examples of
layered agent architectures are the subsumption architecture with horizontal layering
(Brooks 1991) and InteRRaP with vertical layering (Fisher et al. 1994). Layered
architectures enable modularisation of different aspects of the decision-making of an
agent with possibly dissimilar decision procedures. However, layering may create
added complexity and possible inflexibility to the architecture.

In the context of several agents the architecture of a MAS can be characterised using
the concept of an agent organisation. It defines different types of agents and their
relationships in an agent society. Agent organisations may be described from several
viewpoints, e.g. which capabilities the agents have, which part of their environment
each agent observes, how information is shared among the agents and how the agents
interact between each other (see e.g. Singh and Huhns 2005, Ferber 1999). There are
several possible ways how to arrange these aspects each resulting in different types of
agent organisations. The agents may have the same capabilities and information or
they can be specialised in both senses. In the interaction between the agents different
coordination mechanisms may be used. The relations between the agents can form a
hierarchical structure with varying numbers of levels. Hierarchical organisations
incorporate some level of centralisation as opposed to flat decentralised organisations.
Finally, an agent organisation can be either static or emergent with a varying extent of
changeable aspects. Depending on their design agent organisations are different with
respect to their efficiency, reliability, flexibility and reconfigurability properties.

2.2.3 Distributed search

Search is a common method of problem-solving in artificial intelligence (Russel and
Norvig 1995) and mathematical programming (Bazaraa et al. 1993). A search problem
may be described with an initial state, a set of operators, a goal test function and a
possible path cost function. The task is to find a path from the initial state to the goal
state. Path finding problems, constraint satisfaction problems (acronym: CSP) and
iterative optimisation are basic types of search problems. Search is one possible
problem-solving method for those agents that are expected to do problem-solving.
Agents may perform search either locally, i.e. as part of their BDI-model based
operation, or as a MAS in the form of a distributed search.

Development of a search application consists of problem formulation and design of a
search strategy. In problem formulation the task is to model a problem in the
application domain as a search space. States of the search space may correspond to
concrete or abstract entities of the application domain. Operators may map e.g. to
actions or assignments of values to variables of the application domain. The goal can
be a certain state or a function to be optimised. A search strategy is a specification in
which order the states of the search space are explored. Domain-specific information

9

in the form of heuristics is usually useful in the design of a search strategy. Heuristics
may estimate distance to the goal state from a given state or just indicate a promising
search direction. Also information about the structure of the search space is useful in
the design of a search strategy, e.g. breath and depth of a search tree or convexity of
the search space. There are several generic search algorithms that can be applied to
different types of search problems (see Russel and Norvig 1995, Bazaraa et al. 1993).

Distributed search is a particular case of search in which the search process is
performed by several agents. A distributed search problem can be described by stating
how the search space is decomposed to different agents. The search space may be
shared, separated or partially shared. The problem in distributed search is to resolve
possible dependencies among the different search agents. For example, in a CSP
constraints may affect the variables in the search spaces of several agents, which
makes their search processes inter-dependent. The possible conflicting decisions of
the search agents need to be observed and resolved. Also, the efficiency of the search
can be affected with coordination.

Development of a distributed search application has an additional task of coordination
mechanism design when compared to the development of a centralised search
application. The coordination mechanism is dependent on the type of communication
available, i.e. shared memory or message passing. The search process may have a
varying level of centralised and decentralised coordination. The centralised
coordination may have a form of a coordinating agent or global data structure, which
is used to guide local search processes of the agents. If the execution order of the local
search processes is not restricted the process is called asynchronous search (Yokoo
and Ishida 1999). The decentralised coordination may take place via negotiations
between the agents. Many distributed search algorithms are extended versions of
centralised search algorithms, e.g. distributed backtracking (Yokoo and Ishida 1999).

2.2.4 Distributed planning

Planning may be characterised as one type of problem-solving, in which the problem
is to create an action plan in order to take a target system from an initial state to a goal
state. Planning can be considered to be one form of path finding search problem. In
planning the operators of the search are actions and the states results of performing
them (Russel and Norvig 1995). Simple actions can be specified with their
preconditions and effects referring to the state of the target system. More complicated
action representations are needed e.g. if the time and resources of actions need to be
modeled. Planning is often associated with plan execution, with which it may be
interleaved. Agents which are expected to act on their environment may use planning
as their problem-solving technique.

Development of a planning application involves issues concerning knowledge
representation, plan creation method and combination of planning with acting. A
central part of knowledge representation in planning is modelling of actions and plans.
Representation of plans with several hierarchical levels of abstraction and modelling
part of the plans as procedures have been proposed as practical methods for planning.
Plans are usually created using search as a problem-solving method. The
representation of plans forms the search space. Hierarchical planning that starts from
an abstract initial plan and fills it with details is a common arrangement of search in
planning. Another often used guideline in planning search is the principle of least-

10

commitment. According to this commitments to decisions should be made only if
necessary. Basic methods for combining planning and acting include conditional
planning and re-planning (Russel and Norvig 1995). According to these, a plan can
either contain alternative actions or the plan is modified when needed.

Distributed planning is a particular case of planning, in which the plan creation, acting
or both are performed by several agents (Durfee 1999, desJardins et al. 1999). A
distributed planning problem can be described by stating how the plan creation and
execution tasks are decomposed to different agents. The capabilities of agents to act
are a common ground for the decomposition of a distributed planning problem. This
can be done a priori or during planning. The problem in distributed planning is to
resolve possible dependencies among the different planning agents. In principle this
can be done either before, after or during local planning inside the agents. During plan
execution the actions of different agents need to be synchronised. If re-planning is
needed its scope needs to be readjusted via cooperation among the agents.

Similarly to distributed search also the development of distributed planning
applications has the additional task of coordination mechanism design when
compared to centralised planning applications. Due to the relationship between
planning and search also coordination in distributed planning is similar to
coordination in distributed search. Similarly to distributed search methods also
centralised planning algorithms have been extended to distributed versions, e.g.
distributed hierarchical planning (Durfee 1999). However, an important difference
between distributed search and distributed planning is that in planning the
coordination may be interleaved with both planning and execution. Coordination
actions can be regarded as actions to be planned like any other actions.

2.3 Multi-agent system applications in process automation

2.3.1 Overview of multi-agent system applications in automation

There has been a substantial amount of research about several different types of
industrial applications of MAS (Parunak 1999). One significant research area of
industrial MAS applications has been production control and automation of discrete
manufacturing. This topic has been studied particularly within the Holonic
Manufacturing Systems (acronym: HMS) consortium (McFarlane and Bussmann
2003). However, research about applications of MAS in process automation has been
less extensive than in discrete manufacturing (Chokshi and McFarlane 2002). A
possible reason for this is that both the suitability and usefulness of MAS in process
automation are maybe not as evident as in discrete manufacturing. Part of the research
concerning the applications of MAS in process automation has been conducted within
the HMS consortium (Tichy et al. 2002, Maturana et al. 2002, 2003, 2005ab, Chiu et
al. 2003), but there has also been other important research efforts (Cockburn and
Jennings 1995, Ygge 1998).

In the following chapters the research about the MAS applications in process
automation is studied from several viewpoints. Firstly, process automation is
characterised as a possible application domain for MAS. The functional requirements,
objectives and some other technical developments of process automation are
considered from MAS viewpoint. Secondly, there is a description of those research
efforts of MAS applications in process automations that may be considered relevant

11

for this thesis. These applications are studied from the viewpoints of their architecture
and functionality. Thirdly, some selected research applications from discrete
manufacturing are studied considering their possible impact on applications in process
automation. Finally, there is a description of research about using MAS as a systems
development method in automation.

2.3.2 Process automation as an application domain

Process automation systems can be characterised as distributed and integrated
monitoring, control and coordination systems with partially cyclic and partially event-
based operation. The control functions of process automation can be divided into
continuous, sequential and batch control (ISA 2000). Particularly the role of
continuous control makes process automation different from the automation of
discrete manufacturing. In addition to control, process automation has also other
functions including performance monitoring, condition monitoring, abnormal
situation handling and reporting. In process automation these functions have partially
different characteristics than in discrete part manufacturing. Process automation
systems are often distributed systems consisting of several controllers running inter-
related control applications. There is a need to integrate these systems and coordinate
their control operations. This need can be regarded higher in process automation than
in discrete manufacturing, because of the significant material flow between the sub-
processes in many process automation applications. In addition to this, there is also an
increasing need to integrate process automation systems to IT systems, e.g. ERP:s.

The important objectives of process automation have usually been considered to be
safety, reliability, quality and efficiency (Rijnsdorp 1991). Flexibility,
reconfigurability and responsiveness in a form of recovery operations have not got
similar attention than in the research of discrete manufacturing. However,
improvement of these properties may be regarded as a feasible research issue also in
process automation (Chokshi and McFarlane 2002). Another recently emphasised
objective in automation systems is complexity management (Jennings and Bussmann
2003). Automation systems may be regarded complex both in the sense of control and
software systems. From this viewpoint facilitation of the engineering of process
automation systems can also be considered as an important objective.

Recent technical developments in process automation include e.g. intelligent
instrumentation and adoption of new networking and software technologies.
Intelligent instruments with their own CPU:s have computing capabilities that could
be utilised more extensively. Networking of process automation systems is developing
with increasing usage of fieldbuses and connections to information systems via LANs.
Object-oriented programming and software component technology has been adopted
in implementation of some parts of process automation systems (Kuikka 1999), e.g. in
user interfaces. Usage of XML (Karhela 2002), web services (Karhela 2002) and
ontologies (Obitko and Marik 2003) has recently been studied as a possible systems
integration technology also in the context of process automation. From the software
technology viewpoint, process automation systems are becoming increasingly
complex, distributed and integrated systems.

2.3.3 Multi-agent system applications in process automation

In the current research of MAS applications in process automation agents have been
proposed as a society of one type of intelligent controllers that are expected to operate

12

at higher, non real-time control levels. Their purpose is to modify the control logic of
lower level automation and coordinate these modifications with agent-based
coordination methods. It has been assumed that with this role MAS could enhance e.g.
the flexibility and responsiveness properties of control functions (Chokshi and
McFarlane 2003). The MAS organisations of the proposed applications have usually
been hierarchies. A typical organisation has consisted of three levels representing the
whole system, subprocesses and equipment (Tichy et al. 2002). Usage of directory
systems and Contract Net Protocol as a cooperation mechanism has been proposed as
a means to enable changes in the MAS organisations and enhance the
reconfigurability of automation systems (Tichy at al. 2002, Chokshi and McFarlane
2003). It has been assumed that suitable hierarchical organisations adequately
combine goal-oriented control with the adaptation properties. The agent architectures
in the studied applications have been various. Maybe the most advanced ones have
been based on the BDI-model (Tichy et al. 2002).

The control functions of process automation to which MAS:s have been proposed to
be applied include continuous, discrete and batch control. Depending on the type of
control and the approach adopted in the research the general model of a society of
intelligent higher-level controllers has appeared in different forms. A common aspect
in many studies has been the aim to encapsulate control intelligence and coordination
of distributed control operations. Another common feature has been that MAS:s have
been considered not only in the normal control state, but also in control during
abnormal and planned change situations. However, there have been differences in the
methods of control intelligence and coordination.

In continuous control, MAS:s have been proposed primarily for two different
purposes. Agents have been proposed to select suitable control algorithms and their
parameters for continuous controllers (van Breemen and de Vries 2000ab, 2001).
According to this approach agents have been expected to have knowledge about the
applicability of different control algorithms. The knowledge is proposed to be
represented with rules that map from a situation description to a control algorithm.
MAS:s have been proposed as means to coordinate several interdependent continuous
controllers. An auction-based negotiation method has been studied as one possible
coordination mechanism for this purpose (Ygge and Akkermans 1999). Constraint
networks have been proposed as a possible method to represent knowledge about
controlled processes (Tyan et al. 1996). They have also been proposed to be used for
coordination of multiple continuous controllers.

In discrete control MAS:s have been proposed for planning and execution of control
sequences during run-time. A significant research application of this kind is a MAS-
based shipboard chilled water control system (acronym: CWS) (Maturana at al. 2002,
2003, 2005ab, Tichy at al. 2002). The purpose of this application is to supervise the
chilled water system and change routing of water in it when needed particularly in a
fault situation. The agents can create and execute control sequences that change the
routing of water though the system. Each agent has planning, plan execution,
diagnostics and equipment model modules. The knowledge needed for planning is
represented as plan templates. During planning the agents cooperate via negotiations
similar to Contract Net. Planning and negotiations together form a search process that
creates shared plans of control sequences combining several agents. The search is
guided by information about the feasibility and cost of control operations.

13

In batch control MAS:s have been proposed for planning batch control operations. In
a research application, Contract Net is utilised as a negotiation mechanism during the
allocation of resources for a batch recipe (Kuikka 1999). In this application, agent-
based communication is combined with software component technology. This is
achieved with software components that have separate interfaces for agent-based and
other type of communication. The decision logic of the agents in this application is
represented as decision rules. In another important study (Chokshi 2004) a holonic
approach for optimisation of discontinuous control operations of a chemical process
was developed. The motivation of this research was to enhance flexibility of
production with respect to product and production volume diversity in order to react
to changing production conditions. A distributed architecture for holonic process
control was presented and argued to be dynamically reconfigurable. Also an
interaction model for the holons was designed based on an analogy between holonic
process plants and dynamic supply chain networks. Finally, experiments with a
distributed algorithm for holonic process optimisation were performed.

MAS applications have been proposed also for other functions of process automation
than control functions. Applications for abnormal situation handling and monitoring
have been studied. In abnormal situation handling MAS:s have been proposed
particularly as a means to modularise a diagnostics system, integrate separate
diagnostics systems and coordinate various diagnostics activities. Examples of this
approach include ARCHON (Cockburn and Jennings 1995) and MAGIC (Wörn et al.
2002). There are several possibilities for representation of diagnostics knowledge in
agents. In the CWS, causal models of process components are used (Chiu et al. 2003).
The planning capabilities of the CWS may be used for restoration after diagnosis.
Monitoring functions have been experimented with a MAS designed using the BDI-
model of agents and the FIPA integration protocols (Pirttioja et al. 2004). In this
application plans represent different monitoring tasks that are expected to be easily
combined through cooperation among the agents.

2.3.4 Multi-agent system applications in discrete manufacturing

The most important related field to process automation with more extensive research
about MAS applications is automation of discrete manufacturing. The current research
of MAS applications in this area has to a large extent been conforming to the concept
of Holonic Manufacturing Systems (HMS) (Deen 2003). According to this concept
manufacturing system control may be designed with so-called holons that form an
organisation called holarchy. MAS has been regarded as one possible implementation
technology for HMS:s (Marik et al. 2002a, 2005). HMS:s have been proposed to
conform to a reference architecture that defines the basic roles of various holon types
(Wyns 1999). HMS applications have been studied at several levels of the
manufacturing control hierarchy including shop, cell and equipment levels. The
concept of HMS does not specify any particular agent architecture. However,
deliberative agent behaviour has been proposed in some studies (Heikkilä et al. 1999).
The expected utility of HMS has typically been enhanced reconfigurability and
adaptation properties (McFarlane and Bussmann 2003).

The control functions of discrete manufacturing to which MAS:s have been applied in
research include e.g. production planning (Pechoucek et al. 2005), scheduling (Walker
et al. 2005) and shop-floor control (Arai et al. 2001, Luder 2005). In these
applications the task of agents has been planning and execution of production plans at

14

various levels of production planning and control. Several approaches for performing
the production planning and shop-floor control functions within HMS or similar
systems have been proposed including negotiation (Parunak 1987, Bussmann and
Schild 2001, Fletcher and Brennan 2002), economic models (Adelsberger and Conen
2000) and physically (Deen and Fletcher 2000) or biologically (Vaario and Ueda
1996) inspired models.

An important part in many MAS-based shop-floor control studies has been the
handling of abnormal situations. The motivation of these studies has been to increase
the responsiveness of manufacturing systems. MAS:s have been proposed for
applications in both fault diagnosis and recovery. One possible approach to diagnosis
is cooperation between possibly several diagnosis agents and monitoring agents (Heck
et al. 1998) Approaches proposed to fault recovery include e.g. re-planning of
production plans (Fletcher et al. 2001) and reconfiguration of control application
(Brennan at al 2002ab). The recovery mechanisms have been considered as a method
to make manufacturing systems more fault tolerant (Duffie et al. 1988, Fletcher and
Deen 2001). This is expected to be achieved with a decentralised control system and
an at least partially redundant manufacturing system. The task of agents is to modify
the production plans in such a way that the faulted parts of the manufacturing system
are not needed.

2.3.5 Multi-agent systems as systems development method

In development of automation systems MAS has been proposed to have a meaning as
a system integration mechanism. Agents have been proposed as modules of an
automation system and MAS communication mechanisms as a means to integrate
these modules (Cockburn and Jennings 1995, Jennings et al. 1996, Sanz 2000, Wang
and Wang 1997). The system integration with MAS is based on a few assumptions.
Agents as autonomous, situated and adaptive modules are assumed to be suitable for
decomposition of some parts of an automation system (Jennings and Bussmann 2003).
The systems to be integrated are expected to be able to be wrapped inside agents. The
agent communications mechanisms are assumed to be versatile enough for at least a
part of the communication between the modules of automation. They are also
proposed to provide higher-level, task-related abstractions for the messages
exchanged in automation systems (Jennings and Bussmann 2003).

In addition to integration of automation systems, MAS has been thought to have a
more general meaning as a systems development method for automation. In addition
to modularisation and versatile communication mechanisms, there are also other
aspects of MAS that have been expected to be useful in development of automation
systems. MAS societies with organisational structures have been proposed for
organizing automation systems (Jennings & Bussmann 2003). Agent architectures
have been studied as possible abstractions for representing part of the application
logic in automation systems (Krebsbach and Musliner 1998, Ingrand at al. 1992). The
coordination mechanisms of MAS has been proposed for building a sort of self-
configuration in automation systems (Vaario and Ueda 1996). With self-configuration
it is meant the capability of the automation system to adapt to a new situation via
reconfiguring parts of itself, e.g. its application logic (Brennan et al. 2001). All the
mentioned aspects together are assumed to help managing the complexity of
automation systems (Jennings & Bussmann 2003).

15

2.4 Qualitative reasoning
Qualitative reasoning is a topic in artificial intelligence that studies qualitative models
of continuous phenomena and inferences enabled by these representations (Forbus
1996). The essential questions of this topic are, what kinds of qualitative models are
useful and which inferences are possible based on them. Qualitative modelling of
physical processes may be regarded as a complementing method of modelling with
different objectives as compared to quantitative methods e.g. differential equations.
Qualitative modelling aims to enable modelling of systems also with incomplete and
imprecise information, when creation of quantitative models is not feasible. This is
expected to lower the threshold of creating useful models. The reasoning based on the
qualitative models is expected to enable easier exploration and interpretation of
possible behaviours of target systems. In this way they could give an overview of the
behaviour of the target system, while quantitative models are needed for more detailed
information.

Several methods for representing various aspects of continuous phenomena have been
studied within the research of qualitative reasoning (Forbus 1996). Essential aspects
of modelling in qualitative reasoning include e.g. quantity, mathematical relations,
time and state. A basic method for representing quantity is so-called sign algebra
(deKleer and Brown 1984, Iwasaki 1997). More advanced methods include e.g. usage
of intervals and order of magnitude representations. In the representation of
mathematical relations qualitative arithmetic has a central role. Applications of
qualitative reasoning are proposed to be constructed via combining parts of so-called
domain theories that model selected aspects of an application domain based on
defined modelling assumptions (Forbus 1996). The results of an application of
qualitative reasoning may contain e.g. description of the target system in terms of its
qualitative states and their changes over time.

Qualitative representations enable inferences about the target processes for various
purposes. Typical usage of qualitative inference include e.g. diagnosis, simulation,
comparative analysis, data interpretation and planning (Forbus 1996). Qualitative
diagnostics reasoning is usually based on modeled causalities which is also expected
to enable explanation of faults. Qualitative simulation and comparative analysis
contains exploration of qualitative state space of the target system which might be
useful e.g. in diagnosis and planning applications. State spaces are proposed to be
used for data interpretation application by interpreting measurements as a sequence of
qualitative states.

2.5 Discussion
The methodology of MAS is discussed in here as a methodology to be applied in
process automation and the presented MAS applications in process automation as the
state-of-the-art in this research topic. The possible benefits and problems of applying
MAS to process automation are characterised. The value and limitations of the
research results already achieved in MAS applications to process automation is
assessed. Finally, essential open questions are outlined.

The methodology of MAS has properties that seem to suggest its applicability to at
least some functions of process automation. The situatedness and goal-orientedness
properties of MAS appear to match with the requirements of process automation

16

relatively directly. Concerning the communication, coordination and adaptation
properties the situation is more complicated. It is not clear to which extent FIPA-type
of communication and MAS-based coordination mechanisms can fulfil the
requirements of process automation. The MAS architectures are likely to be
applicable in process automation, but with the problem-solving methods the situation
is more unclear. It is not clear to which extent the distributed versions of search and
planning methods are able to satisfy the requirements of process automation. Finally,
whereas agents with autonomy are argued to be useful abstractions for managing
complexity of software systems, it is not self-evident if they are similarly applicable
to management of complexity in process automation.

The results in the research of MAS applications in process automation provide some
insight about feasible and useful ways of applying MAS in process automation. The
utilisation of MAS at higher, supervisory control levels and hierarchical organisations
of MAS applications may be argued to be reasonable matches between the properties
of MAS and the requirements of process automation. In the current research MAS:s
have already been applied to several relevant control types of process automation
(Tichy at al. 2002, Ygge and Akkermans 1999, Kuikka 1999, Chokshi 2004) and also
to other functions (Wörn et al. 2002). The MAS-based problem-solving methods
proposed for different functions appear adequate for their purposes at least in the
scope of the presented studies. The expected positive effect on the adaptation
properties of automation, particularly reconfigurability, seems justified, but its
significance has not been evaluated comprehensively. There have also been other
important limitations in the reported research. The designs of MAS:s for different
functions have been different. Research results concerning the performance of the
presented methods in control operations have been limited. Validation of the MAS-
based control systems have been found difficult (Hall et al. 2005).

The state-of-the art in the research about MAS applications in process automation
leaves some essential open questions. The research has focused more on control
functions concerning the functional role of MAS in process automation. Other
functions, e.g. monitoring and information access have got less attention (Pirttioja et
al. 2004). There are also open questions relating to the architecture of MAS
applications in process automation. One such question is if there could be a common
programming model for MAS applications in various functions of process automation
including different types of control. A particular question in this context is if both
sequential and continuous control functions could be programmed with the same
model (Seilonen et al. 2004). There are also important open questions concerning the
MAS-based problem-solving methods (Seilonen et al. 2003b). To a large extent it is
an open question under which conditions the MAS-based problem-solving methods
enable implementation of reliable control operations. Finally, the effect of MAS
applications on the properties of process automation is still unclear.

17

3 Agent platform for process automation

3.1 Introduction
This chapter presents the development of the agent platform for process automation.
This development is based on the related research and methodologies described in
Chapter 2. It is also a basis for the applications specified in the subsequent chapters.
The target of the development is an agent platform for the process automation
application domain. This platform enables implementation of working applications
and can be argued to enhance some properties of process automation systems. The
platform is particularly required to support design of applications for both sequential
and supervisory continuous control.

The development work described in this chapter contains a specification of a suitable
architecture for the agent platform and an experimental implementation of it in a
laboratory test environment. The specification contains models of the agent platform
both at agent society and agent levels. The purpose of the experimental
implementation is to verify the feasibility of the specification of the agent platform.
The implementation contains a simple laboratory test process, an automation system,
an agent platform and a test application. The end of the chapter presents a discussion
about the properties of the developed agent platform for process automation and its
relations to the previously published approaches.

3.2 Specification of the agent platform

3.2.1 Agent society model

The society model of the agent platform for process automation describes the role of
the agents as a part of an extended process automation system, principles of the agent
organisation and non application specific aspects of its operation. These aspects
include the basic principles of communication and coordination among the agents. An
agent model complementing the agent society model is depicted in the following
chapter (Chapter 3.2.2). Application-specific features of the agents are described later
in chapters 4 and 5.

The agent platform for process automation together with the applications built with it
operate as a higher-level automation layer on top of an ordinary process automation
system as illustrated in Figure 3.1. The functional role of the agent platform is to run
supervisory control applications that make decisions about higher-level control
operations and execute them by changing the control parameters of the lower-level
automation system. The higher-level control operations of the agent applications may
relate to continuous control, e.g. changing the set-points of lower level controllers, or
they can be control sequences consisting of actions of lower level automation, e.g. in
batch control applications. Real-time cyclic control and other time critical control
operations are run in the lower-level automation system. Both the agent-based layer
and the ordinary automation system may be distributed systems. The agents may also
provide services for external clients and can be connected to neighbouring automation
systems, e.g. in other process areas.

18

Process
automation

agent

Process
automation

agent

Process
automation

agent

Directory
facilitator

Process
controller

Process
controller

External clients,
e.g. operator desktops

Higher-level control commands

Agent-based
automation

layer

Supervisory control service requests

Process
automation

system

Goal
decomposition

Coordination

Service
queries

Figure 3.1 Relationships of the agent-based automation layer with other systems.

The agent platform consists of process automation agents which conform to the rules
of the agent society. All process automation agents are functionally similar. They can
be characterised as semi-autonomous, i.e. they can carry out their activities
independently but they also cooperate with other agents. They communicate
according to the FIPA-standard (FIPA 2005) using predefined communicative acts
and interaction protocols. The agent society has a hierarchical organisation based on
authority relations (see Figure 3.2). Agents at the lower-levels of the organisation
typically supervise parts of the controlled process and its automation system as their
areas of responsibility (see Figure 3.1). Only these agents control the lower level
automation system directly. The areas of responsibility may map e.g. to the physical
or functional division of the process. The higher-level agents supervise larger areas of
the controlled process indirectly via their subordinates. In addition to the process
automation agents, the agent society contains a directory facilitator agent (acronym:
DF). This agent maintains a registry about other agents and their services. Except for
the directory facilitator, the agent society does not have any centralised data storage.
Each agent manages its data locally. They can also access data sources outside the
agent platform, e.g. in the lower level automation.

19

Process
Agent

Subprocess
Agent 1

Subprocess
Agent 2

Control
Goal 1

Control
Goal 2

Control
Goal 1.1

Control
Goal 2.1

Figure 3.2 Organisation of process automation agents represented as Tropos actor
diagram.

The process automation agents share a common ontology that specifies the concepts
that the agents need in their communication. The agents conform to the agent
management ontology as defined in the FIPA standard (FIPA 2004). The concepts of
this ontology are needed when accessing information about agent services registered
to the directory facilitator. The agents also share another ontology that specifies the
concepts they need when cooperatively performing process automation operations.
This ontology is illustrated in Figure 3.3. The main concepts in this ontology are agent
relation, goal, contract and process variable. Agent relations are used to express the
organisational supervisor vs. subordinate relations between the agents. Information
about goals and contracts is exchanged between the agents during cooperative
planning and execution of automation operations. Goals may refer to process
variables that are partially shared knowledge among the agents.

Goal

Contract

ProcessVariable

ProcessAutomationAgentAgentRelation

AgentService

1 0..*
1

0..*

0..*

1

0..*

0..1

0..* 0..1

1 0..*

0..* 1

0..* 1

Contractor

Client

Subordinate

Supervisor

Figure 3.3 Shared ontology of process automation agents represented as an UML class
diagram.

The operation of the process automation agent society as a higher-level supervisory
automation layer can be decomposed into a set of activities among the agents. The

20

main activities of the agents include monitoring the lower-level automation system,
processing of information queries, registration and search of agent services, planning
of control operations and execution of planned operations. The agents perform these
activities in a distributed and parallel fashion. While monitoring is an ongoing
activity, query processing, planning and plan execution are performed when needed.
The initiative for planning and plan execution can originate either from monitoring or
from an external client. The monitoring and query processing activities are not studied
any further in this thesis. They are a part of another research effort (Pirttioja at al.
2004). Details of the other activities are explained below.

During agent service registration and search the process control agents utilise a
directory facilitator as defined in the FIPA agent management specification (FIPA
2004). The interaction between process automation agents and a directory facilitator is
illustrated in Figure 3.4. During start-up the process automation agents register their
services and organisational position to the directory facilitator according to the
concepts of the shared ontology. During planning they can then identify other agents
based on this information. They can for example search for agents providing services
relating to a particular goal, an agent that can affect a certain process variable or an
agent in a particular position in the agent organisation.

request-registration: request

query-agents: query

inform-result: inform

inform-done: inform

Provider RequesterDF

Figure 3.4 Interaction between process automation agents and a directory facilitator
during service registration and search represented as an AUML sequence diagram
(Odell et al. 2001).

During the planning of control operations the process automation agents utilise the
FIPA Contract Net interaction protocol (FIPA 2002d). The agents use this protocol in
order to make contracts about fulfilment of process control goals. The negotiation
protocol is illustrated in Figure 3.5. The call-for-proposal message specifies a goal
that the initiator wishes to be fulfilled. The proposal message depicts to which extent a
participant is willing to commit to the goal. When the initiator receives a proposal
from a partner a tentative contract is created between the partners. The initiator can
send an accept-proposal message to one or more participants depending on the type of
the goal under negotiation. It may contain full or partial acceptance of the proposal.
The accept-proposal message may also specify if the participant should execute the
actions associated to the contract immediately or only after a further request message.

21

The negotiation process may be carried out through both the vertical and horizontal
cooperation channels. On one hand, supervisor agents can assign sub-goals of their
own goals to their subordinates. On the other hand, peer agents can negotiate with
their peers in order to handle interrelations between their goals. The negotiations may
be chained, i.e. one negotiation is started because of another one. In chained
negotiations accept-proposal messages are sent only after the agent who started the
entire negotiation process observes that it can fulfil all of its goals. After that all
involved agents receive accept messages via the chain of related negotiations.

request-goal: cfp

propose-action: proposal

accept-action: accept-proposal

Initiator Participant

Figure 3.5 Interaction between two process automation agents during planning of
control operations represented as an AUML sequence diagram.

During the execution of control plans the process automation agents utilise the FIPA
Request interaction protocol (FIPA 2002e). The agents use this protocol for
requesting execution of the plans associated with previously made contracts. As in
planning, also this protocol can be used through both the vertical and horizontal
cooperation channels. The interaction protocol is illustrated in Figure 3.6. A request
message specifies a contract to be fulfilled. An inform message describes the result of
the plan execution.

22

request-contract-execution: request

inform-done: inform

Initiator Participant

Figure 3.6 Interaction between two process automation agents during control plan
execution represented as an AUML sequence diagram.

3.2.2 Agent model

The agent model of a process automation agent specifies the internal modules of an
agent and their operation. The specification in here only covers those aspects that are
not specific to any particular application. Specifications for two different experimental
applications are presented in Chapters 4 and 5. The agent model is designed using the
BDI (Georgeff at al. 1999) and PEM (Heikkilä at al. 1999) models as references. The
type of the BDI-model applied is the one utilising procedural plans. The mentioned
agent models are goal-oriented and fit to the specified society model of the process
automation agents. The specification shows how a similar goal-oriented agent model
can be applied to the internal design of these agents.

In addition to the goal-oriented agent model, the process automation agents need to
conform to the agent model of some FIPA-compliant generic agent platform. For the
agent model of the process automation agents the compatibility with FIPA means that
the process automation agents conform to the FIPA specifications of abstract
architecture (FIPA 2002a), agent management (FIPA 2004) and communication
(FIPA 2002c). For the internal architecture of the process automation agents there are
several options depending on the underlying generic agent platform. It is expected that
the following agent model can be designed on top of several different internal agent
architectures e.g. task-model of FIPA-OS (FIPA-OS 2005), behaviour-model of
JADE (JADE 2005) and BDI-model of Jadex (Jadex 2005).

A process automation agent consists of modules that can be categorised as operational
and modelling modules and run-time data structures. The internal structure of a
process automation agent is illustrated in Figure 3.7. The operational modules take
care of the activities of a process automation agent. They use the models and update
the run-time data structures. The modules relating to the BDI-model are the Planner,
Executor, plan library, goals, plans and actions. They implement agent architecture
similar to JAM (Huber 2000). Agent relations and contracts are used for enabling
cooperation among the agents. The process model is required for control operations.
The various parts of a process automation agent are described in more detail below.

23

ProcessAutomationAgent

+createPlan()

Planner

+runPlan()

Executor

+load()

ProcessModel

Goal

Plan

Contract

AgentRelation

ProcessVariableVariableRelation PlanTemplate

+load()

PlanLibrary

Action

1

1

1

1

1

1

1

1

0..*

2
2

0..*

0..* 0..*

1

0..*

1

0..*

1

0..*

1

0..*

0..*

1

1

0..*

1..*1..*

0..* 1 1

0..*

0..* 1

Assertion

0..*

1

AffectingVariable

AffcetedVariable

Figure 3.7 Modules of a process automation agent represented as an UML class
diagram.

The Planner module contains data structures and functions needed for planning
activities of a process automation agent. Because planning in a process automation
agent is an activity both at the agent society and agent levels, the planner is designed
to take into account both of them (see Figure 3.5 and Figure 3.9). The planner module
integrates local planning of an agent with Contract Net type of negotiation. The main
functions of the planner include a planning algorithm and decision-making functions
needed during negotiation. The planning algorithm takes the goals, the process model
and the plan library as input and creates the plans. Decision-making functions for
creating bid, proposal and answer messages of the Contract Net are needed during
negotiation. The result of negotiation is a contract. The interplay between the planning
algorithm and negotiation can bidirectional. The planning algorithm initiates
negotiation if it needs to request goals from other agents. The opposite situation
occurs when negotiation initiates planning because of a requested goal.

The Executor module contains data structures and functions needed for execution of
the control plans. Because also the plan execution in a process automation agent is
done combining both the agent society and agent levels, the executor is designed for
both of them (see Figure 3.6 and Figure 3.10). It integrates local plan execution of an
agent with coordination via FIPA Request interaction protocol. The local plan
execution takes run-time plans as input and executes control actions via the process
model. Coordination is based on contracts. Likewise in planning the interaction
between the local plan execution and coordination may be bidirectional. An agent can
execute a run-time plan as part of its own plan execution process or because of a
request from another agent.

The agent organisation model describes the knowledge of a process automation agent
about its relations to the other members of the agent society. The model is needed to

24

express the hierarchical agent organisation. Each process automation agent knows its
direct supervisor and subordinates. This information is configured during agent
application development and registered to the directory facilitator during agent
startup.

The process model describes the knowledge of a process automation agent about the
controlled process. A process automation agent can have knowledge about the
existence of process variables, their measured values and relations between the
variables. Each process automation agent can be configured with zero or more process
variables that it can either only measure or also control. A control variable may be
controlled only by one agent whereas measurements can be shared among several
agents. In addition to the existence and value information of variables a process
automation agent can also be configured with knowledge about the relations between
the variables. At least qualitative knowledge about the relations between the process
variables is needed for facilitating coordination among the process control agents. An
agent may make inferences by the qualitative process model about which process
variables controlled by other agents affect its variables, and initiate a negotiation with
them. Also the process model is configured during agent application development.
Some of the variables of an agent can be registered to the directory facilitator as
public variables. In this case also other agents can know about their existence and
initiate negotiations about their control.

The plan library contains plans that a process automation agent can use during
planning in order to create run-time plans. Each process automation agent is
configured during agent application development with a set of plans that it needs in
order to be able to plan its control operations. The plans are expressed with a
predefined plan language. The plans are based on the principles of procedural
reasoning (Ingrand at al. 1992). A plan associates a goal with sub-goals, a procedure
and preconditions. The procedure can contain both process control and negotiation
actions. A process control agent can register process control services relating to the
goals of its plans to the directory facilitator and thus make them available also to other
agents.

The important run-time data structures of a process automation agent include goals,
run-time plans and contracts. The purpose of these data structures is to hold
information about which goals an agent is trying to fulfil, and which plans and
contracts it has made in order to do so. Goals and contracts are modelled according to
the shared ontology of the process automation agent society. Run-time plans are
internal data structures of each agent. An agent creates them based on its goals and the
plan library with its planner module. Assertions are another important set of run-time
data structures. Their purpose is to store necessary information between separate
planning sessions of an agent. Assertions are useful e.g. in cyclic control operations
for storing past values of control parameters.

The main activities of a process automation agent are the agent level counterparts of
the activities of the agent society, i.e. monitoring the lower-level automation system,
service request intake from external clients, processing of information queries,
registration and location of agent services, planning of control operations and
execution of planned operations. The role of the agent modules in the implementation
of these activities is illustrated in Figure 3.8. The planning and plan execution

25

activities are described with more detail below. At the agent level these activities are a
combination of local activities of an agent and coordination of them with other agents.

 : Agent : Planner : ProcessModel : Executor

createPlan()

getAffectingVars(var)

variables

plan

runPlan(plan)

plan_result

Figure 3.8 Interaction between operational modules of a process automation agent
represented as an UML sequence diagram.

The purpose of the planning activity is to create plans and associated contracts that
can fulfil the current goals of an agent if possible. The planning activity is illustrated
in Figure 3.9. The starting point of planning is a new goal request and the set of
current plans and contracts. The planner selects a suitable set of plans from the plan
library and the planning algorithm checks if the new set of goals can be fulfilled with
these. The planning process contains decomposition of goals, definition of local action
plans and negotiation with other agents about contracting goals as specified in the
agent society model. During planning the process model is used to access values of
process variables and make inferences about qualitative relations between them. An
agent can observe interrelations to variables of other agents and initiate negotiations.
The agent organisation model can also be used for locating suitable partners to
negotiate with. In the end a new set of plans and contracts is created or a failure to
fulfil the goals is signalled. The planning activity can appear in different forms
depending on the complexity of the planning task and the need to coordinate it with
other agents. It may require planning of a sequence of plans or it might be a simple,
reactive choice of one plan. Both planned sequences of actions and reactive actions
may need to be coordinated with other agents depending on their effect on the target
process.

26

Negotiate remote goalPlan local goal

Check goal stack

Decompose goal Plan action

(Remote goal next)(Local goal next)

(Decomposable goal) (Non-decomposable goal) (Negotiation succeeds)

(Negotiation fails)

(No more
goals)

(No applicable
plan)

Figure 3.9 Planning activity of a process automation agent represented as an UML
activity diagram.

The purpose of the plan execution activity is to execute control operations of plans
and communicate information about this to other agents when needed. The plan
execution activity is illustrated in Figure 3.10. The starting point of plan execution is a
request to execute a previously planned control plan. After this the agent starts
executing the actions defined in the requested plan step by step. Process control
actions are executed locally within each agent. Coordination actions are executed as
requests to other agents to fulfil the contracts made during planning.

27

Execute local action Initiate remote action

Check execution state

Communicate action status

(Remote action next)(Local action next)

(No more
actions)

Figure 3.10 Plan execution activity of a process automation agent represented as an
UML activity diagram.

The internal structure of a process automation agent is organised according to a
layered architecture illustrated in Table 3.1. The lowest layer in this architecture is a
generic agent platform that provides a run-time environment and general agent
functions. The middle layer is the process automation agent platform. This layer
consists of the operational modules, run-time data structures and models of a process
automation agent. The highest layer of the architecture is an application implemented
with the process automation agent architecture. At this layer the models are
configured for a specific process and application.

28

Table 3.1 Layer model of process automation agents.

Agent application

- Plans

- Configuration of the process model

- Configuration of the agent organisation

Agent platform for process automation

- Operational modules Planner and Executor

- Run-time data structures of planning, execution and cooperation

- Process model and agent organisation model

Generic agent platform

- Agent management

- Agent communication

- Agent tasks

3.3 Test environment for the agent platform

3.3.1 Test process and automation system

A laboratory test environment has been used as a test bed for an experimental
implementation of the agent platform for process automation (Pirttioja 2002,
Chakraborty 2003, Fajt 2003, Seilonen 2002ab, 2003abc, 2005). The purpose of the
test environment in this research is to verify the feasibility of the implementation of
the agent platform and enable experimentation with its applications. The test
environment consists of several parts including a test process, instrumentation, an
automation system, a control application, an operator user interface, an agent platform
and two agent applications. The experimental agent applications are described more
closely in chapters 4 and 5. The other parts of the test environment are depicted
below.

The test process is a small-scale water temperature control process illustrated in
Figure 3.11. The main components of the process include a tank, a pump and pipes
connecting these. Water level and temperature in the tank are controlled with five
control valves (see Figure 3.12). Process flow is imitated by circulating water with the
help of the pump. The instrumentation of the process also includes several
temperature sensors and a pressure sensor, a flow sensor and four magnetic valves.

The control system of the test process runs three control loops. One is a water level
control loop for stabilising the water level in the tank. The purpose of the other two
control loops is to control the water temperature at the upper and the lower parts of
the tank. The objective of the water temperature control is to keep the temperature at
given values in both parts of the tank. These values might be different which creates a
simple temperature profile. The temperature is calculated as the average of two
separate measurements at the both parts. Separate PID controllers are used in all three
control loops (Pirttioja 2002). However, the temperature control loops are interrelated
trough the water flow in the process. The water temperature at the upper part of the
tank has a strong effect on the temperature at the lower part through the water flow in

29

the tank. A weaker reverse effect is caused by the water flow through the pipes. The
temperature control as a whole can be regarded as a MIMO control problem, in which
the inputs of the controller are the temperature setpoints and the outputs of the
controlled system are the temperature measurements. The setpoints of the pump and
the valves are the control variables.

Figure 3.11 Physical layout of the test process.

M1

CV5

S3

S2

S1

CV3
CV4

CV1
CV2

MV3
MV4

MV1
MV2

hot
LS1

P1
FL

T11

T12

T21

T22

Figure 3.12 PI-diagram of the test process.

The automation system in the test environment consists of a Smar DFi 302 process
controller (Smar 2002), a control application and an operator user interface as
illustrated in Figure 3.13. The instrumentation is partly connected to the process
controller by a Foundation Fieldbus technology-based fieldbus and partly by a
distributed I/O system. The control application implementing the control loops is
partly run at the controller and partly at the control valves. The operator user interface
was built as an application with iFix (GE Fanuc Automation 2005) for monitoring the

30

process and controlling its instrumentation (see Figure 3.14). It is connected to the
controller via an OPC server.

Smar
controller

 Fieldbus Distributed I/O

 FIPA-OS

 JOPCClient

Smar
OPC

server

 IFix

Figure 3.13 Automation system of the test process.

Figure 3.14 Screenshot of the operator user interface of the test automation system
(Pirttioja 2002).

3.3.2 Test agent platform and application

An experimental implementation of the process automation agent platform specified
in Chapters 3.2 and 3.3 was built as a part of the test environment. Two experimental
agent applications were developed with it. The platform is designed to be generic
within the process automation application domain whereas the applications are
configured to the specific test environment.

31

The process automation agent platform was implemented with several software tools
based on Java programming language. The most important ones of them were FIPA-
OS (FIPA-OS 2005) and JAM (Huber 2000). FIPA-OS is a FIPA-standard compliant
agent platform. FIPA-OS was used as a generic agent platform providing FIPA-
compliant agent communication and agent management services including a directory
facilitator. FIPA-OS also provided a task-model-based internal agent architecture for
the process automation agents. JAM is a hybrid agent architecture built upon the ideas
of procedural reasoning (Ingrand at al. 1992) and BDI agent model (Georgeff at al.
1999). JAM was used to implement the planning capabilities of the process
automation agents. The agent models of FIPA-OS and JAM were integrated in the
implementation. This enabled application development for the process automation
agents with JAM. According to JAM, applications are defined using a special plan
representation language (Huber 1999) and interpreted by an agent interpreter during
run-time. Pseudocodes of some JAM plans developed as applications of the test agent
platform are presented in subsequent chapters (Chapter 4 and Chapter 5). Other
software tools used in the implementation include Jess (Jess 2005) and JOPCClient
(OPI 2005). Jess was used for implementation of a simple process monitoring module
for helping in the testing of the experimental applications. JOPCClient was used for
implementation of a connection to the automation system from the agent platform via
an OPC server (Pirttioja 2002).

The agent society in the test applications has five process automation agents and a
directory facilitator as illustrated in Figure 3.15. The agents follow the rules of a
process automation agent society as defined in Chapter 3.2. The topmost agent is
Process Agent which supervises the whole test process indirectly via its subordinates.
Tank Agent and Pump Agent supervise their physical sub-processes respectively.
Upper Part Agent and Lower Part Agent have the temperature control loops as their
areas of responsibility. All the above-mentioned agents register their capabilities to
one Directory Facilitator Agent present in the test system. The qualitative process
model of the test process used by the agents is illustrated in Equations 3.1, 3.2 and
3.3. This model captures the effect of temperature T1 and water flow to temperature
T2. The reverse effect from T2 to T1 is ignored. The configuration of the agents is
presented in Table 3.1.

 M+(T2, T1) [3.1]
 T1 > T2: M+(T2, V) [3.2]
 T1 < T2: M-(T2, V) [3.3]

 T1: Water temperature at upper part of the tank,
 average of T11 and T12
 T2: Water temperature at lower part of the tank,
 average of T21 and T22
 V: Water flow through the tank
 M+(y, x): y is monotonically increasing function of x
 M-(y, x): y is monotonically decreasing function of x

32

CV5

S3

S2

S1

CV3
CV4

CV1
CV2

MV3
MV4

MV1
MV2

hot cold
LS1

P1
FL

T11

T12

T21

T22

Process Agent

Pump Agent

Tank Agent

Lower
Part

Agent

Upper
Part

Agent

M1

Figure 3.15 Agents in the test applications.

Table 3.2 Configuration of the agents in the test applications.

Name Parent Measurements Controls Registered goal names

Process
Agent

none none none startup,
shutdown

Tank
Agent

Process
Agent

LS1 CV5 startup,
filled,
shutdown

Pump
Agent

Process
Agent

none M1 startup,
flow,
shutdown,
recovery _help

Upper Part
Agent

Tank Agent T11, T12 CV1, CV2,
MV1, MV2

temperature_control,
fault_recovery,
recovery_help

Lower Part
Agent

Tank Agent T21, T22 CV3, CV4,
MV3, MV4

temperature_control,
filling,
fault_recovery,
recovery_help

3.4 Discussion
The specification of the process automation agent platform is assessed here by
comparing it to the related research of agent-based process automation systems and
discussing its possible effect on the properties of process automation. Similarities and
differences to the references are pointed out. Justifications are presented for the
essential design decisions taken in the specification. The effect of these choices to the
automation system properties is discussed. Finally, conclusions are drawn based on
this study and open questions concerning the research topic are outlined.

33

3.4.1 Design choices in the specification

The society model of the agent platform for process automation has many similarities
with the HMS-based approaches in automation, particularly the CWS (Tichy at al.
2002, Maturana 2002, 2003) The similarities include the role of agents as a
supervisory control system, a hierarchical organisation similar to a holarchy, goal-
oriented operation of the agent society, usage of a directory facilitator and
conformance to the FIPA-standard. These features were assessed to be suitable based
on the earlier research results of MAS applications in automation. However, there are
also a few particular aspects in the agent society model of this study. These are aimed
either for noting the specific characteristics of process automation or facilitating the
requirements relating to the adaptation properties. The agent society model has only
one agent type. This design is motivated by its similarity to the architectures of
process automation systems. Agents are considered as generic automation system
modules analogous to process controllers. In this aspect the presented specification is
similar to the CWS but different from many other HMS studies (Wyns 1999, Chokshi
2004). Another important difference to the references is that the agent society model
of this research allows coordination via both vertical and horizontal coordination
channels. This design results in a system architecture, which is expected to further
facilitate the adaptation properties.

The agent model of the agent platform for process automation is quite similar to those
HMS models that are also based on BDI-agents or similar approaches (Heikkilä at al.
1999, Tichy at al. 2002, Maturana at al. 2002, 2003). However, there are some aspects
also in the agent model of this study that are needed for facilitating the process
automation specific requirements of control operations and which make this
specification different to the references. Firstly, the BDI-model is applied to both
discrete and continuous control operations. The BDI-model is proposed as the
common programming model for MAS-based control applications in process
automation. For this purpose the model was extended with the possibility for cyclic
operation. The applications in the later chapters (chapters 4 and 5) will show how this
model may be applied to both sequential and supervisory continuous control
operations. Secondly, the qualitative process models are proposed to be used for
identifying coordination needs between the agents. This design is needed for
modelling the inter-relations between the process variables of continuous processes.

3.4.2 Effects on the properties of automation

The specification of the process automation agent platform affects the performance of
the control applications through the mechanisms it offers for them. The mechanisms
are required to enable both sequential and supervisory continuous control operations.
The BDI-agent model with its extension for cyclic operation is designed for this
requirement. The completeness, response time and synchronisation properties of the
mechanisms of the platform also affect the performance of the platform. The
completeness property concerns particularly the planning activity of agents and is
dependent on the exact planning algorithm used. Also from the response time
viewpoint the planning activity is possibly the problematic part of the platform,
because for most planners it is not possible to give guaranteed response times.
Another feature of the agent platform that affects the response time is the waiting time
of the coordinator in the FIPA Contract Net protocol. Considering synchronisation of
the control actions the important mechanisms of the platform are the execution

34

activity and the FIPA Request interaction protocol. The presented specification does
not contain mechanisms for synchronisation of the control actions.

The specification of the agent platform for process automation is expected to enable
enhancement of some properties of a process automation system. The property which
is expected to be affected most directly is the reconfigurability of the automation
system. The specification allows changes in the existence and capabilities of the
agents as a means to adapt to configuration changes. The mechanisms of the platform
for this purpose are similar to the earlier studies, i.e. the directory facilitator, the
Contract Net based negotiation and the internal planning activity of the agents. There
is a difference to the references, however; the agent society model adopted in this
research allows reconfiguration among peers, which is expected to further facilitate
the reconfigurability property. However, the usefulness of the approach for
reconfigurability is dependent on the underlying automation system and the control
applications implemented with the platform. The capability for reconfiguration is
useful only if the automation system has some alternative configurations, e.g. through
redundant equipment. The applications need to be designed for handling configuration
changes in the scope of individual agents and coordinating the effects with other
agents. Designs of such applications are studied in the following chapters (chapters 4
and 5). Enhanced system reconfigurability may also be assumed to reduce the
complexity of automation systems engineering tasks, e.g. during maintenance
operations.

The effect of the agent platform specification on the flexibility and responsiveness
properties of process automation is less direct and is expected to be realised through
the applications. However, process automation agents are proposed as a suitable
means for designing applications for handling planned and unplanned operational
changes and thus enhancing the flexibility and responsiveness properties. Designs of
such applications are studied in the following chapters (chapters 4 and 5). The
directory facilitator, negotiation and planning mechanisms of the platform are
intended to be useful also in this context as already proposed in earlier studies.
However, the remarks about the dependence on the characteristics of the underlying
automation and adequately designed applications are valid also in this case. An
important advantage of the platform in this research as compared to the references is
that it allows usage of both discrete and continuous control operations when reacting
to planned or unplanned events. Another advantage is that in some situations also
operations related to flexibility and responsiveness can be performed among peer
agents as allowed by the agent society model.

The specification of the process automation agent platform defines a model for
designing applications. The principles of this model include agents as suitable system
decomposition, goals as the major concept in an agent operation, planning as a
suitable problem-solving method and negotiation as a suitable coordination
mechanism. The applications are designed by configuring agents to the agent platform
and programming applications in the form of plans of the agents. Although this kind
of a MAS-based model of application design in automation has already been proposed
in earlier studies (Tichy at al. 2002, Ingrand et al. 1992) there is not much experience
on how this model affects the work of the application developers. However, an
assumption that the MAS-based application design model might help reduce the
complexity of automation systems has been presented (Jennings and Bussmann 2003).
It should also be noted that all HMS-based applications in automation are not based

35

on MAS. An important different approach is to extend the function block
programming model with mechanisms for agent-like cooperation (Neligwa and
Fletcher 2003). The function block and MAS-based approaches can be regarded as
alternatives.

3.4.3 Conclusions and open questions

The presented specification of the agent platform for process automation may be
regarded as a prototype. However, it allows outlining some possible advantages and
limitations of the approach. The most important expected benefit of the platform is the
enhanced reconfigurability of the automation system, but this advantage is limited.
The capability for reconfiguration is useful only to the extent that there is functional
redundancy in the automation system, i.e. alternative ways to perform control
operations. Another benefit is the possibility to utilise the mechanisms of the platform
for enhanced flexibility and responsiveness through the applications implemented
with the platform. The new application design model can be regarded as both an
advantage and a limitation. On the one hand, the new model offers a new way to
design distributed control applications. On the other hand, the application developers
need to learn another quite different way of thinking about control applications.
Another limitation of the platform is the response time of the planning activity, which
is dependent on the planning task.

The presented form of the specification of the agent platform for process automation
leaves some important open questions concerning its usage. One of the main open
questions is how well the platform supports the design of useful applications. This
question will be studied in the following chapters (chapters 4 and 5) with the
description of two different experimental applications. Another open question
concerns the extent of the effect of the agent-based approach on the properties of the
automation system. Whereas this effect is assumed to be dependent on the
applications, this question will be discussed again in conjunction with the
applications. The third set of open questions concerns the possible ways to enhance
and extend the specification of the agent platform. The known limitations of the
platform could obviously be studied. In its present form the specification is also
restricted because it is designed only for control functions. Other possible application
functions for a MAS in process automation include e.g. monitoring. For monitoring
applications other interaction protocols than the specified ones will be needed. Also a
shared ontology of the agents would be needed to be extended for such applications.
These questions have already been studied in other research efforts (Pirttioja et al.
2004). Other possible ways to extend the specification include e.g. inclusion of
several directory facilitators, which has already been proposed in the references
(Tichy at al. 2002).

36

4 Sequential control based on distributed planning

4.1 Introduction
This chapter presents the studies about distributed planning of sequential control
actions. In these studies an application for sequential control (hereafter referred to as
sequential control application) is developed using the agent platform for process
automation described in Chapter 3. The application utilises the distributed planning
methods discussed in Chapter 2.2.4. The target of the studies is an agent-based
sequential control method that enables implementation of working sequential control
functionality and can be argued to enhance some properties of process automation
systems.

The studies described in this chapter consist of a specification of a distributed
planning method for sequential control, experimentation with the method within a
laboratory test environment and discussion of its properties. The specification
contains models of the planning and plan execution methods both at agent society and
agent levels. The specification defines how the agent platform for process automation
can be used to build an application for sequential control. Experiments with a
prototype application in the laboratory test environment are used for testing the
feasibility of the method in simple scenarios. At the end of the chapter there is a
discussion about the properties of the specified sequential control method and its
relations to the previously published approaches.

4.2 Specification of the sequential control method

4.2.1 Planning at the agent society level

The society model of the sequential control application specifies how the process
automation agents cooperate together in order to carry out sequential control actions
on the target process. They follow the principles of the society model of the agent
platform for process automation and utilise its cooperation mechanisms. However, the
model of control goals and the cooperative problem-solving process formed by the
actions of the agents is specific to this type of an application. An agent model
complementing the agent society model is depicted in the following chapter (Chapter
4.2.2).

The sequential control application is a part of a higher-level automation layer that
operates on top of an ordinary process automation system. It is one application
running on the agent platform for process automation. The functional role of this
application is to coordinate several control sequences of the lower level automation
system. The lower level control sequences are preprogrammed control procedures
whose purpose is to run the controlled process or a part of it into a particular end state.
The lower-level control sequences are assumed to be distributed but inter-related. This
means that they affect separate parts of the target process, but these separate control
actions need to be coordinated in order to take the whole process into the desired goal
state. The lower-level control sequences could also be executed on different units of
hardware, e.g. process control stations. The type of operation expected from the
sequential control application is deliberative. This means that the agents are required
to verify the feasibility of the combination of distributed control sequences before the

37

execution of any part of the operation. Feasibility means that the combined sequence
will not only end with the desired goal state, but will also satisfy other operational
constraints attached to the sequential control operations.

The agent society model of the process automation agents is used as a means to
organise the planning and execution of control sequences. According to the functional
similarity of the agents each of them is obligated to plan and execute control
sequences within its area of responsibility. Due to the semi-autonomy of the agents
they can initiate planning and execution either because of their own goals, e.g. a goal
invoked by monitoring activity, or because of negotiations with other agents. In the
hierarchical agent organisation each agent is allowed to initiate a negotiation with its
subordinates or its peers. In this way the supervisor agents can plan and execute
control sequences indirectly via their subordinates and each agent is able to use the
services of their peers as parts of their control sequences. The agents make queries to
the directory facilitator of the agent society in order to identify those agents who can
fulfil the needed goals.

The process automation agents utilise the concepts defined in the shared ontology of
the agent society during the planning and execution of control sequences. The
concepts of agent relations and services are used in order to identify suitable
negotiation partners. Agent relations can be used to identify proper partners according
to the rules of the agent society. Services can be used to identify agents that can fulfil
the goals needed in the planning. During the planning the agents negotiate about the
goals. Contracts are created at the final stage of planning and used during plan
execution. The goals in control sequence planning describe the state that the
controlled process should reach with a sequence. The goals may be represented with a
name and a set of optional parameters. The parameters can be used to further specify
the goal, e.g. with respect to goal status, the reference variables and their desired
values (see Equations 4.1 and 4.2).

 status_goal ::= goal_name { parameter } [4.1]
 value_goal ::= goal_name variable value
 { variable value } [4.2]

Sequential control application follows the model of operation of the process
automation agent society. The planning and execution of control sequences may be
initiated either with an external request to some agent or through the monitoring
activity among the agents. The actual planning and execution is then performed in two
phases, both of which may be distributed and parallel processes among the agents.
The planning process has some characteristics that are specific to this type of an
application. The purpose of this process is to look for a shared plan for the agents that
would take the controlled process to the requested goal state. The process can be
characterised as a distributed planning process. It ends either with a shared plan for
the requested control sequence or an indication of a failure to create one. After a
successful planning process the created control sequence can be executed according to
the general model of plan execution in the process automation agent society.

The planning of sequential control actions can be characterised as a distributed
planning task (see Chapter 2.2.4). The actions of the possible control sequences and
the precedence relations between them form a search space that the agents explore
cooperatively. The agents are searching for an action plan that would take the target

38

process from the start state to the requested end state. In the following the distributed
planning task is specified by describing the shared search space and the distributed
search process.

The search space in the planning of sequential control actions is organised with the
concepts of goals and plans as used in the agent platform for process automation. The
search space is a directed graph, in which the nodes are goals and the arcs are subgoal
relations. The search starts from the requested goal representing the end state of the
whole sequence. During the search the goals are handled with plans. A plan is
applicable to a goal if it can fulfil the goal and its preconditions are met. If the
applicable plan contains subgoals new nodes and arcs are added to the search tree. If
there are no subgoals in the plan the goal is marked as fulfilled. The search ends
successfully when all goals are fulfilled, otherwise it fails. The search space contains
alternative search paths if there is more than one plan applicable to any goal. The
search space of the distributed planning of sequential control actions is illustrated in
Figure 4.1.

Process:
startup

Tank:
startup

Pump:
startup

Lower Part:
temperature_control

”on”

Tank:
filled
”yes”

Upper Part:
temperature_control

”on”

Lower Part:
filling
”start”

Lower Part:
filling
”stop”

Figure 4.1 An example search space of the sequential control application represented
as Tropos goal diagram.

The process automation agents perform the search for the shared control sequence
following the rules of the process automation agent society and utilizing the internal
planning and negotiation mechanisms of the individual agents. The search space is
decomposed to different agents according to their capabilities. Each goal node is
handled by an agent that has a plan applicable to the goal. The agent applies its own
plans to the created subgoals, if possible, or it passes them to another agent via
negotiation. In this way the internal search processes of agents are tied together into a
cooperative search. The hierarchical organisation of the process automation agent
society is used to organise the search process. The role of supervisor agents is to
decompose the goals relating to their areas of responsibility into subgoals concerning
smaller parts of the target process. They pass these subgoals to the subordinate agents
supervising the respective process areas. Peer agents may pass goals to their peers in

39

order to get the preconditions of their plans fulfilled. The cooperative search process
of the process automation agents for the shared control sequence is illustrated in
Figure 4.2.

21

36

8 7 4 5

Process Agent Pump Agent

Tank Agent

Upper Part Agent

Lower Part Agent

startup
filled
”yes”

startup startup

temperature_control
”on”

filling
”start”

filling
”stop”

temperature_control
”on”

Figure 4.2 An example search process of the sequential control application. The
numbers indicate the order of exploring the nodes in the search space.

The execution of the shared control sequence is based on the plans and contracts
created in the planning phase. It is performed according to the plan execution model
of the agent platform for process automation (see Chapter 3.2.1). Thus, plan execution
is not specific to this kind of an application.

4.2.2 Planning at the agent level

The agent model of the sequential control application specifies how the process
automation agents use their internal mechanisms in order to perform this particular
application. They utilise the generic planning, plan execution and process modelling
capabilities of a process automation agent (see Chapter 3.2). The application-specific
part of agent behaviour is specified with plans in the agent plan library. These plans
are used to implement the decision-making needed in each agent during the
cooperative planning process specific to this type of an application.

The purpose of plans in the sequential control application is to encapsulate control
sequences so that they can be combined during the planning process. According to the
plan representation used in the plan library of a process automation agent the plans are
a combination of a goal, a context and a body (see Chapter 3.2.2). In this application
the goal is used to represent the state of the controlled process to which this sequence
will lead when executed. The context describes the logical conditions of the state in
which the sequence can be used. The body contains the definition of the actual
sequence that implements the state change to the goal state from the initial state with
the given conditions. The plan body is represented as a procedure containing control
actions, local and negotiated subgoals and control logic combining these. Local
subgoals are goals for other sequences within the same agent. Negotiated subgoals

40

identify state changes that are required for the sequence but are not controllable by the
agent owning it. An agent can get these subgoals fulfilled via negotiations with other
agents. The plans of all agents follow this same model regardless of their role in a
search. A skeleton of a plan in the sequential control application is presented in Figure
4.3.

// Pseudocode of a plan for the sequential control application
Plan: {
 GOAL: ACHIEVE control_goal_name $param;
 CONTEXT:
 // Parameters are meanigful
 (== $param "value");
 // Situation is suitable
 FACT var $var;
 (== $var value);
 BODY:
 // Local control action
 EXECUTE PlanControlAction "var" "value";
 // Local subgoal
 ACHIEVE local_subgoal;
 // Negotiated control goal
 EXECUTE Negotiate "negotiated_subgoal" "param_x";
}

Figure 4.3 Pseudocode of an example plan in the sequential control application
represented with the plan language of JAM.

The internal planning activity of a process automation agent in the sequential control
application utilises the generic planning capabilities of the agent in order to fulfil its
role in the distributed search process of the society level. The responsibility of a single
process automation agent in this search process is to perform the search within its area
of responsibility and connect it to the search processes of other agents when needed.
For this purpose the agent has to manage its run-time data structures associated to the
planning processes, perform its local planning task and take part in the necessary
negotiations with other agents. Although these activities are mostly implemented by
the agent platform for process automation (see Chapter 3), they are used in a way
particular to this application.

In the sequential control application the run-time data structures of a process
automation agent are needed particularly for storing the state of the distributed
planning process. The state is stored in a distributed way in all agents that are
involved in the planning process. The run-time data includes goals, plans and
contracts of the agents that form a shared plan of the agents. Due to the deliberative
nature of this application the run-time data needs to be stored until the entire planning
process of the agent society level has ended and the plans are executed (see Chapter
4.2.1).

In the sequential control application the local planning process of a process
automation agent is used in a deliberative way as part of the distributed planning
process. The local planning processes of all the agents are similar. The input to the
local planning process of an agent consists of the requested goal, other goals of the
agent and the current measurement values. The outcome from the planning activity is
an updated set of plans and contracts.

41

The purpose of the negotiation activity in the sequential control application is to
extend the distributed search space from one agent to another one. The negotiation is
performed according to the Contract Net protocol implemented in the agent platform.
The decision-making required at each step of the negotiation protocol and the exact
content of the messages exchanged during the negotiation are specific to this type of
an application. The decision-making and messages are characterised by their role as a
part of a distributed planning process. The negotiation activity as it appears in this
application is illustrated in Figure 4.4 and explained in more detail below.

request-state: cfp

propose-ok: proposal

accept-ok: accept-proposal

Initiator Participant

Figure 4.4 Negotiation between two process automation agents in the sequential
control application represented as an AUML sequence diagram.

At the CFP creation stage, the decision making task of the initiator agent is to select
partners for negotiation. The partners are identified according to their services and
organisational role. The initiator selects those peer or subordinate agents that provide
a service with the needed goal. The CFP message contains only the description of the
goal, i.e. its name and optional parameters. At this stage the agents can mark the
potential contract as called-for.

At the proposal creation stage, the decision making task of the participant agent is to
determine if it can fulfil the goal specified in the CFP message. The participant
performs this by initiating a local planning task for the goal in the CFP and other
goals it has. If the planning task ends successfully a proposal message is sent to the
initiator. The proposal message may contain only a positive answer to the CFP or it
may also contain additional information concerning the proposal, e.g. cost of the
proposed contract. At this stage the agents can mark the potential contract as
proposed.

At the answer creation stage, the decision-making task of the initiator is to select one
of the proposals. It can select the proposal with minimum cost if this information is
included or based on some application-specific decision rule implemented in a plan. If
there are no proposals a failure to fulfil the goal is passed to the local planning
activity. An accept-proposal message is sent to the author of the chosen proposal and
reject-proposal messages to other participants. At this stage the agents can mark the
contract as confirmed.

42

The participant does not have any real decision making to do at the answer handling
state. It just needs to pass the acceptance further to other agents contracting subgoals
to this one.

4.3 Experiments with the sequential control method

4.3.1 Specification of the experiments

The laboratory test environment with its experimental implementation of the process
automation agent platform has been used to test the sequential control application.
Two different application sequences, process startup and shutdown, were designed,
implemented and tested. The purpose of these experiments was to demonstrate the
operation of the application and test its feasibility in simple scenarios. Due to the
simplicity and small number of the test scenarios it is not possible to make any
thorough assessment of the properties of the control method based on these
experiments. The properties of the method are discussed more in Chapter 4.4.

The objective of the process startup scenario is to run the test process (see Chapter
3.3) from a shutdown state into a normal operation state. In the shutdown state the
control loops of the automation application are not in operation, the water circulation
is off and the tank is not necessarily full. The normal operation state is opposite to the
shutdown state. The tank is full of water, the water level control loop and the two
water temperature control loops at different parts of the tank are operational and the
water circulation is on. The state change is carried out with execution of a partially
ordered sequence of control actions (see Figure 4.5). Some control actions need to be
executed in sequence whereas some others may be executed in parallel. The control
actions are those available for the devices in the automation system. Also the pre-
conditions of the control actions have to be taken into account in the control sequence.
In this scenario the pre-conditions refer to the status of devices, i.e. they have to be in
usable condition, and to the status of the process, e.g. a full tank does not need to be
filled.

43

Fill tank

Start pump

Start water level control

Start temperature control 1 Start temperature control 2

Figure 4.5 Startup sequence of the test process represented as an UML activity
diagram.

The process shutdown scenario is opposite to the process startup scenario. The
purpose of this scenario is to run the process from the normal operation state to the
shutdown state. This scenario is maybe somewhat simpler than the startup scenario. It
is included in the experiments as an additional example (see Figure 4.6).

44

Empty tank

Stop pump

Stop water level control

Stop temperature control 1 Stop temperature control 2

Figure 4.6 Shutdown sequence of the test process represented as an UML activity
diagram.

4.3.2 Application design for the experiments

The applications for the test process startup and shutdown scenarios were defined as
plans that were configured into the plan libraries of the agents in the test environment.
For the experiments, the plans needed for the startup and shutdown sequences were
defined for all five agents of the test agent application (see Chapter 3.3.2).

The Process Agent has a special role in the startup and shutdown applications as the
topmost agent of the agent society. It provides the process startup and process
shutdown goals as services that can be used to initiate planning and execution of these
sequences. The plans for fulfilling these goals decompose the top-level goals into
subgoals for subordinate agents. The startup and shutdown plans of the Process Agent
are illustrated in Figure 4.7. These plans are rather similar and simple. Their purpose
is to decompose the top level goal into subgoals and pass them to the subordinate
agents.

45

// Startup sequence of the whole process
Plan: {
 GOAL: ACHIEVE startup;
 BODY:
 // Request startup of subprocesses
 EXECUTE Negotiate "startup" "pump" "non-blocking";
 EXECUTE Negotiate "startup" "tank";
}

// Shutdown sequence of the whole process
Plan: {
 GOAL: ACHIEVE shutdown;
 BODY:
 // Request shutdown of subprocesses
 EXECUTE Negotiate "shutdown" "pump" "non-blocking";
 EXECUTE Negotiate "shutdown" "tank";
}

Figure 4.7 Pseudocode of the startup and shutdown plans of the Process Agent
represented with the plan language of JAM.

The Pump Agent and the Tank Agent are subordinates of the Process Agent. They
also provide startup and shutdown goals as services. In addition to this, they have
other goals as services, e.g. fill tank by Tank Agent. Other agents can negotiate about
these goals when planning their control sequences. The startup and tank filling plans
of the Tank Agent are illustrated in Figure 4.8. The startup plan utilises the planning
method in a versatile way. It contains a local action, a local subgoal and two
negotiated goals. Tank filling is designed as a separate plan, so that it can be provided
also as a separate service and be used also in other situations than startup.

46

// Startup sequence of the tank subprocess
Plan: {
 GOAL: ACHIEVE startup;
 BODY:
 // Local subgoal for filling the tank
 ACHIEVE filled "yes";
 // Start water level control
 EXECUTE PlanControlAction "evsp" "1650";
 // Request starting of temperature controls
 EXECUTE Negotiate "temperature_control on" "upper_part" "non-
bloking";
 EXECUTE Negotiate "temperature_control on" "lower_part";
}

// Sequence for filling the tank
Plan: {
 GOAL: ACHIEVE filled $status;
 CONTEXT:
 // Goal is to fill the tank
 (== $status "yes");
 // Tank is not filled yet
 FACT lm $lm;
 (< $lm 1600);
 BODY:
 // Request start of filling
 // Keep filling until tank filled and stop
 EXECUTE Negotiate "filling" "start" "blocking";
 EXECUTE PlanConditionalAction "lm" "1600" "greater";
 EXECUTE Negotiate "filling" "stop";
}

Figure 4.8 Pseudocode of the startup and tank filling plans of the Tank Agent
represented with the plan language of JAM.

The Upper Part Agent and the Lower Part Agent are subordinates of the Tank Agent.
They provide services for starting and stopping their control loops. The Lower Part
Agent also has services for filling the tank. The plans of the Upper Part Agent for
starting its water temperature control loop are illustrated in Figure 4.9. This kind of a
plan is typical for the lowest level agents in the hierarchical agent society. They
contain only local control actions.

47

// Sequence for puting the water temperature control on
// at the upper part of the tank"
Plan: {
 GOAL: ACHIEVE temperature_control $status;
 CONTEXT:
 // Goal is to start the control
 (== $status "on");
 // Control is not on yet
 FACT cvm11 8;
 FACT cvm12 8;
 BODY:
 // Check that equipment is ok
 RETRIEVE cvs11 $status11;
 RETRIEVE cvs12 $status12;
 WHEN : TEST (|| (== $status11 1) (== $status12 1)) { FAIL; };
 // Plan the actual sequence
 EXECUTE PlanControlAction "mvsp11" "0";
 EXECUTE PlanControlAction "mvsp12" "0";
 EXECUTE PlanControlAction "tsp1" "31.0";
 EXECUTE PlanControlAction "cvm11" "12";
 EXECUTE PlanControlAction "cvm12" "12";
}

Figure 4.9 Pseudocode of the plan needed for starting the water temperature control
loop of the Upper Part Agent represented with the plan language of JAM.

4.3.3 Results from the experiments

The sequential control application was tested with three different variations of the
process startup scenario and one variation of the process shutdown scenario. The
variations demonstrate the basic capabilities of the cooperative planning process to
adapt to different states of the controlled process and the status of the control devices.

The first variation of the process startup scenario is a basic one. The start state of the
process is a proper shutdown state and all the equipment is usable. The cooperation
among the agents during the distributed planning process of the startup sequence is
illustrated in Table 4.1. The planning process proceeds downwards in the agent
society. There is also one peer-to-peer negotiation between the Pump Agent and the
Tank Agent. The cooperation during the execution of the startup sequence is
illustrated in Table 4.2. The process follows the contracts created during the planning
stage. The functions of the control system are started in the proper order.

48

Table 4.1 Message exchange among the agents during the planning of the process
startup sequence in the first variation of the test scenario.

No Sender Receiver Message type Message content

1 Process Pump cfp goal: startup

2 Pump Tank cfp goal: filled

3 Tank Lower Part cfp goal: filling start

4 Lower Part Tank proposal

5 Tank Lower Part cfp goal: filling stop

6 Lower Part Tank proposal

7 Tank Pump proposal

8 Pump Process proposal

9 Process Tank cfp goal: startup

10 Tank Upper Part cfp goal: temperature_control on

11 Upper Part Tank proposal

12 Tank Lower Part cfp goal: temperature_control on

13 Lower Part Tank proposal

14 Tank Process proposal

15 Process Pump accept_proposal

16 Process Tank accept_proposal

17 Pump Tank accept_proposal

18 Tank Lower Part accept_proposal

19 Tank Lower Part accept_proposal

20 Tank Upper Part accept_proposal

21 Tank Lower Part accept_proposal

49

Table 4.2 Message exchange among the agents during the execution of the process
startup sequence in the first variation of the test scenario.

No Sender Receiver Message type Message content

1 Process Pump request goal: startup

2 Pump Tank request goal: filled

3 Tank Lower Part request goal: filling start

4 Process Tank request goal: startup

5 Lower Part Tank inform

6 Tank Lower Part request goal: filling stop

7 Lower Part Tank inform

8 Tank Pump inform

9 Tank Upper Part request goal: temperature_control on

10 Tank Lower Part request goal: temperature_control on

11 Pump Process inform

12 Upper Part Tank inform

13 Lower Part Tank inform

14 Tank Process inform

The second variation of the process startup scenario is similar to the basic scenario,
but the process start state is different. In this variation the tank is already full in the
beginning of the scenario. The cooperation among the agents during both planning
and plan execution processes is quite similar to the basic variation. Only the
negotiation between the Tank Agent and the Upper Level Agent about tank filling is
unnecessary as illustrated in Table 4.3. This change is not visible to other agents, e.g.
the Pump Agent does not need to notice it.

50

Table 4.3 Message exchange during the planning process of the startup sequence in
the second variation of the test scenario. In this variation the tank is already full in the
beginning of the scenario.

No Sender Receiver Message type Message content

1 Process Pump cfp goal: startup

2 Pump Tank cfp goal: filled

7 Tank Pump proposal

8 Pump Process proposal

9 Process Tank cfp goal: startup

10 Tank Upper Part cfp goal: temperature_control on

11 Upper Part Tank proposal

12 Tank Lower Part cfp goal: temperature_control on

13 Lower Part Tank proposal

14 Tank Process proposal

15 Process Pump accept_proposal

16 Process Tank accept_proposal

17 Pump Tank accept_proposal

20 Tank Upper Part accept_proposal

21 Tank Lower Part accept_proposal

The third variation of the process startup scenario is similar to the basic scenario, but
the equipment status is different. In this variation one of the valves is not operational.
It is not possible to create a feasible startup sequence, because one of the irreplaceable
resources is not operational. This situation is detected during the planning process
among the agents that end with an indication of the unfeasibility of the planning task.
For example, if one of the valves needed for filling the tank is faulted then the
planning process will stop after Message number 3 in Table 4.1.

The process shut down scenario was tested with only one variation. The cooperation
among the agents during the planning process of the shutdown sequence is illustrated
in Table 4.4 and the cooperation during the execution of the sequence in Table 4.5.
The planning process proceeds downwards in the agent society. There is no need for
peer-to-peer negotiation in this scenario.

51

Table 4.4 Message exchange among the agents during the planning of the process
shutdown sequence.

No Sender Receiver Message type Message content

1 Process Pump cfp goal: shutdown

2 Pump Process proposal

3 Process Tank cfp goal: shutdown

4 Tank Upper Part cfp goal: temperature_control off

5 Upper Part Tank proposal

6 Tank Lower Part cfp goal: temperature_control off

7 Lower Part Tank proposal

8 Tank Process proposal

9 Process Pump accept_proposal

10 Process Tank accept_proposal

11 Tank Upper Part accept_proposal

12 Tank Lower Part accept_proposal

Table 4.5 Message exchange among the agents during the execution of the process
shutdown sequence.

No Sender Receiver Message type Message content

1 Process Pump request goal: shutdown

2 Process Tank request goal: shutdown

3 Tank Upper Part request goal: temperature_control off

4 Pump Process inform

5 Tank Lower Part request goal: temperature_control off

6 Upper Part Tank inform

7 Lower Part Tank inform

8 Tank Process inform

4.4 Discussion
The specification of the sequential control application is assessed in here by
comparing it to related sequence planning approaches and discussing its properties.
Similarities and differences to the references are characterised and justifications to the
adopted design choices are presented. The effect of these choices to the automation
system properties is discussed and compared to the references. Finally, conclusions
are drawn based on this study and open questions concerning the research topic are
outlined.

52

4.4.1 Design choices in the specification

The society model of the sequential control application shares many features with
previously reported research (see Chapter 2.3). Maybe the most noteworthy reference
to this application is the CWS study (Maturana at al. 2002, 2003, Tichy at al. 2002).
The similarities include deliberative operation, spatial decomposition of the search
space, usage of a directory facilitator and negotiation based on Contract Net.
However, the specified agent society model also has some features that are different
from the references. One difference is the utilisation of both the vertical and
horizontal cooperation channels of the agent platform. This design separates goal-
decomposing, vertical coordination from synchronizing, horizontal coordination. In
this way a supervisor agent does not need to plan the order in which its subordinates
to perform actions for its goals. Another difference is the central role of goals in the
shared ontology. In the presented specification the concept of goals is used as a
combining element both in the internal planning of the agents and the coordination
between them. According to this design the internal planning of an agent and the
coordination in the agent society are both parts of a goal-oriented search processes.

The agent model of the sequential control application is quite similar to some
previously reported research (see Chapter 2.3). Important related research efforts in
this context include CWS (Tichy at al. 2002, Maturana at al. 2002, 2003), PRS
(Ingrand at al. 1992), manAge (Heikkilä at al. 1999) and CASA (Flake at al. 2001).
The similarities include BDI or PEM as agent model, planning as a problem solving
method and usage of procedural plans. The most important difference of the specified
agent model to the references is that it is designed to co-exist in the same agents with
another type of an application for continuous control (see Chapter 5), which is a
particular requirement in process automation.

4.4.2 Effects on the properties of automation

The performance of the sequential control application depends on both its properties
as a distributed planning method and its properties as a control application. The
distributed planning method needs to solve the coordination problem of distributed
planning (see Chapter 2.2.4) in such a way that it fulfils the requirements of the
control application. The important properties of the method in this sense are
completeness and time complexity of the distributed search algorithm. An important
aspect of the algorithm that affects these properties is how many agents are allowed to
be planning at the same time and whether the possible parallel planning activities are
synchronised. In parallel, asynchronous planning the agents could e.g. initiate several
negotiations without waiting for the results from the previous ones. This kind of
planning is quite complicated and would require more advanced coordination
mechanisms than defined in the specification. However, it could result in better
scalability. The startup and shutdown test applications define a simple search strategy
as a demonstration. In these experimental applications the search strategy is best-first
search, in which only one agent is allowed to plan at any one time.

The specification of the sequential control application is expected to facilitate the
reconfigurability property of process automation systems. The effect on the
reconfigurability property is assumed to originate from the combination of the
mechanisms of the agent platform and the applications. The sequential control
application is based on the distributed planning process that utilises the directory

53

facilitator, the Contract Net based negotiation and the internal planning activity
provided by the platform. With the combination of these mechanisms it is possible to
re-plan sequential control operations in the case of changes in the existence and
capabilities of the agents. These changes may reflect modifications of the underlying
automation system, e.g. device replacement and maintenance operations. The
presented mechanism works if the reconfiguration can be done through re-planning
the combination of the sequences wrapped in the plans. Even though the design of this
application is slightly different from the CWS the expected effect on the
reconfigurability property is quite analogous. The main difference is the possibility to
include continuous controllers in the reconfiguration process through other
applications of the platform (see Chapter 5).

The specification of the sequential control application is also expected to enable
enhancement of the flexibility and responsiveness properties of process automation
systems. The intended means for this is to design sequential control applications that
can handle planned or unplanned operational change situations and conform to the
presented model of distributed planning. The distributed planning process is able to
create new sequences as a combination of the sequences wrapped in the plans. If
operational change situations can be handled with these new sequences then the
specification can facilitate flexibility and responsiveness. The situations intended to
be handled in this way are process state changes, e.g. in batch processes, product or
raw material changes and device malfunctions. Plans for handling situations like these
are needed in order to the approach to be feasible. Also in this case this application is
similar to the CWS.

The specification of the sequential control application shows how the application
design model of the agent platform can be used for developing sequential control
applications. The applications are designed by wrapping sequences of lower-level
automation system inside plans and attaching information about their end state and
preconditions to the plans. This kind of an approach for designing sequential control
applications in automation is quite new, although similar approaches have already
been proposed in earlier studies, e.g. CWS and PRS. This model of application
development is dependent on a few assumptions. It is assumed that goal and
precondition information is enough to determine the situations when a plan and its
sequence are applicable. It is also expected that the application developers are able to
trust the distributed planning process and are able to verify their applications in a
sufficient manner. Possible errors in plans, e.g. logically contradicting preconditions,
lead to a failure to reach the given goal during a planning process.

4.4.3 Conclusions and open questions

The specification of the sequential control application may be characterised as an
aggregate design and the experimental startup and shutdown applications as
demonstrating prototypes. However, it is possible to recognise the basic advantages
and limitations of the application. The main advantage of the application is the
enabled positive effect on the adaptation properties of automation. Another advantage
is that the application can be implemented using a platform which is designed to be
able to run also continuous control functions of process automation. The main
limitation of the application concerns the distributed planning process used in it.
There is not enough knowledge about the performance of different distributed search
strategies that could be used in this application. Also the characteristics of the

54

underlying automation system and the controlled process affect the usefulness of the
sequential control application. Particularly the possible lack of redundancy in them,
i.e. alternative sequences to reach a goal state, restricts the adaptation properties. The
meaning of the experiments described in this study is that they are able to demonstrate
the characteristics of the distributed planning process and the design of plans for it in
simple test scenarios.

The presented form of the specification leaves important open questions concerning
the utilisation of MAS in sequential control applications in process automation.
Maybe the most important open questions are if the presented aggregate specification
of distributed planning is feasible in a more general case and how to make it more
detailed so it could be better evaluated. These questions could be answered by
studying the possible distributed search strategies more closely. More advanced
search strategies could be studied with this application, e.g. asynchronous and parallel
search. The important properties of the search strategies to be studied are
completeness and time complexity. Another property to test is the scalability of the
search with respect to the number of agents. Test scenarios with larger search spaces
and larger numbers of agents could be useful, e.g. in the form of simulations. Finally,
interleaving of planning with plan execution would also need to be developed.

55

5 Supervisory control based on distributed search

5.1 Introduction
This chapter presents the studies about supervisory control based on distributed
search. In these studies an application for supervisory continuous control (hereafter
referred to as supervisory control application) is developed using the agent platform
for process automation described in Chapter 3. The application utilises the distributed
search methods discussed in Chapter 2.2.3. The target of the studies is an agent-based
supervisory control method that enables implementation of working supervisory
control functionality and can be argued to enhance some properties of process
automation systems.

The studies described in this chapter consist of a specification of a distributed search
method for supervisory control, experimentation with the method within a laboratory
test environment and discussion of its properties. The specification contains models of
the search method both at agent society and agent levels. The specification defines
how the agent platform for process automation can be used to build an application for
supervisory control. Experiments with a prototype application in the laboratory test
environment are used for testing the feasibility of the method in simple scenarios. At
the end of the chapter there is a discussion about the properties of the specified
supervisory control method and its relations to previously published approaches.

5.2 Specification of the supervisory control method

5.2.1 Search at the agent society level

The society model of the supervisory control application specifies how the process
automation agents cooperate in order to carry out supervisory control actions on the
target process. They follow the principles of the society model of the agent platform
for process automation and utilise its planning and negotiation mechanisms. However,
the model of control goals and the cooperative problem-solving process formed by the
actions of the agents is specific to this type of an application. An agent model
complementing the agent society model is depicted in the following chapter (Chapter
5.2.2).

The supervisory control application is a part of a higher-level automation layer that
operates on top of an ordinary process automation system. It is one application
running on the agent platform for process automation. The functional role of this
application is to coordinate the operation of several continuous controllers of the
lower level automation system. These lower level controllers are regulatory
controllers whose purpose is to keep their control variables at their set-points. The
lower level controllers are assumed to be distributed but inter-related. This means that
they control separate parts of the target process, but their control operations need to be
coordinated because they affect each other through the dynamics of the target process.
The lower-level controllers may also be running on different units of hardware, e.g.
process control stations or intelligent instruments. The type of operation expected
from the supervisory control application is reactive and cyclic. This means that the
agents only plan a limited set of control actions and then execute them immediately.

56

The effect of the control actions is evaluated via feedback from the target process.
This information is then utilised at the following control cycles.

The agent society model of the process automation agents is used as a means to
organise the supervisory control application. According to the functional similarity of
the agents each of them is obligated to supervise the lower level controllers within its
area of responsibility. Due to the semi-autonomy property of the agents they can
initiate supervisory control actions either because of their own goals, e.g. a goal
invoked by monitoring activity, or because of negotiations with other agents. In the
hierarchical agent organisation each agent is allowed to initiate negotiation with its
subordinates or peers. Supervisor agents can coordinate their subordinates by
initiating negotiations or they can let their subordinates do the coordination among
themselves and just set limits to their operation. In the latter case one of the
subordinates becomes a coordinator. However, this role is not predefined among the
subordinates and depends on the situation and capabilities of the agents. The agents
make queries to the directory facilitator of the agent society in order to identify those
agents who can affect the needed control variables.

The process automation agents utilise the concepts defined in the shared ontology of
the agent society during the search of supervisory control actions. The concepts of
agent relations and services are used in order to identify suitable negotiation partners
together with the qualitative process model. The process model can be used to make
inferences about which other control variables can affect a particular control variable.
Services can then be used to identify agents that control these control variables. Agent
relations can be used to check the acceptability of partner agents according to the
rules of the agent society. The negotiations between agents in this application concern
about goals that describe changes in the process variables due to supervisory control
actions. The goals may be represented with a name, a process variable name and the
desired value of change as illustrated in Equation 5.1. In this application the concept
of contract is not necessary, because contracted actions are performed immediately
after negotiation.

 change_goal ::= goal_name variable change
 { variable change } [5.1]

The supervisory control application follows the general model of operation in process
automation agent society. The application may be initiated either with an external
request to some agent or via the monitoring activity among the agents. The actual
search is then performed in distributed and iterative fashion. The search process has
some characteristics that are specific to this type of an application. The purpose of this
process is to enhance the control of the process by looking for better values for a set
of supervisory control variables distributed among some of the agents. The process
can be characterised as distributed and iterative optimisation. It ends either with new
values for the set of distributed control variables or an indication of a failure to control
the process acceptably. During iterations decision-making through negotiation and
control action execution is interleaved. After each iteration step the decided control
actions are executed before the next one.

The supervisory control activity can be characterised as an iterative search task (see
Chapter 2.2.3). The possible values of supervisory control variables and their
constraints form a search space that the agents explore iteratively. The agents are

57

searching for values of control variables that would optimise a given objective
function, e.g. a square sum of control errors, or at least produce a good enough result.
The objective function is a function of some of the measured variables of the target
process. These variables are affected directly or indirectly by the control variables. In
the following the iterative search task is specified by describing the search process as
a whole and the operation at each iteration step.

The search process in the supervisory control activity is organised as iterative
refinement of the values of a set of control variables. A group of process automation
agents are iteratively changing a set of inter-related supervisory control variables in
order to find better values for them in a particular situation. The group is formed at the
first iteration step via negotiation initiated by one of the agents. When an agent
observes a need for changing its control variables it can use its qualitative process
model in order to find other control variables affecting its control objective. After this
it can identify agents supervising these variables via the directory facilitator. This
agent then becomes the coordinator of the distributed search process. The task of the
coordinator is to make sure that the actions of all agents in the group, including itself,
form a meaningful search. It does this via bilateral negotiations with each of the other
agents in the group. The search process of the supervisory control application is
illustrated in Figure 5.2.

0,00

0,25

0,50

0,75

1,00

0,00 0,25 0,50 0,75 1,00 1,25

Temperature setpoint change [°C]

Fl
ow

 s
et

po
in

t c
ha

ng
e

[u
ni

t]

9,3

4,2

5,3 2,6 0,1

10,7

Figure 5.1 An example search space of the supervisory control application. The
numbers inside the figure indicate the values of the objective function at each iteration
step.

At each iteration step decision-making takes place via negotiation between a set of
process automation agents. The agents perform the decision-making required in the
negotiation based on their plans. At each negotiation step the agents can measure
feedback from the controlled process and utilise this information in their decision-
making (see Figure 5.2). At some stage the coordinator agent is expected to terminate
the search process. The negotiation protocol of the agents is the FIPA Contract Net

58

Protocol. The agent coordinating the search has the role of initiator while other agents
are participants. The messages exchanged during the negotiation have a somewhat
different meaning than in the original Contract Net. The exact form of negotiation
among the agents including the form of messages and internal decision procedures of
the agents is described in more detail in Chapter 5.2.2.

Get process measurements

Plan local actions

Negotiate remote actions

(Recovery succeeds or fails)(More iterations needed)

Figure 5.2 Iterative search process of the supervisory control application represented
as an UML activity diagram.

The execution of the shared control actions is based on the plans created during the
negotiation. They are executed immediately after the negotiation at each iterative
search step. The execution is performed according to the plan execution model of the
agent platform for process automation (see Chapter 3.2.1). Thus, plan execution is not
specific to this kind of an application.

5.2.2 Search at the agent level

The agent model of supervisory control application specifies how the process
automation agents use their internal mechanisms in order to perform this particular
application. They utilise the generic planning, plan execution and process modelling
capabilities of a process automation agent (see Chapter 3). The application-specific
part of agent behaviour is specified with plans in the agent plan library. These plans
are used to implement the decision-making needed in each agent during the iterative
search process specific to this type of an application.

The purpose of plans in the supervisory control application is to encapsulate decision
logic for setting the values of control variables. The generic plan representation of the

59

plan library of a process automation agent is used, i.e. the plans are a combination of a
goal, a context and a body. In this application the goal is used to represent an intended
action of an agent in a cooperative supervisory control operation, i.e. an intention to
change the values of some control variables. The context describes the logical
conditions for the negotiation situation and the state of the target process when this
plan is feasible. The body contains the decision logic of how to change the values of
the control variables. There are two different types of plans: those referring to local
changes and those referring to negotiated changes. The plans representing local
changes are similar to the plans in the sequential control application. They encapsulate
a sequence of supervisory control actions and associate it with a local subgoal. The
plans representing the negotiated changes define the decision logic of an agent during
a negotiation. They are tied to the role of the agent in the negotiation, i.e. an initiator
or a participant. The former has a plan to make a call for proposal and a decision in a
negotiation. The latter has a plan to make a proposal. Skeletons of plans in the
supervisory control application are presented in Figure 5.4 and Figure 5.4.

60

// Pseudocode of a plan for an initiator in the supervisory
// control application
Plan: {
 GOAL: ACHIEVE situation_goal $var $param;
 CONTEXT:
 // This plan applies only for control of a particular variable
 (== $var "var");
 BODY:
 // Retrieve decision variables
 RETRIEVE iter_num $iter_num;
 RETRIEVE iter_max $iter_max;
 RETRIEVE error_min $error_min;
 RETRIEVE error_max $error_max;
 RETRIEVE var1 $var1;
 RETRIEVE var2 $var2;
 ...
 ASSIGN $error ...;
 WHEN : TEST (...)
 {
 // Perform needed local actions, if any
 };
 // Too large error.
 WHEN : TEST (>= (abs $error) $error_max) { FAIL; };
 OR
 {
 // Error ok.
 TEST (<= (abs $error) $error_min);
 SUCCEED;
 }
 {
 // Stop if maximum number of iterations reached
 TEST (>= $iter_num $iter_max);
 SUCCEED;
 }
 {
 // Request help from other agents
 // First, set proposal acceptance rules for the negotiation
 EXECUTE SetDecisionParameter "accept" ...;
 EXECUTE SetDecisionParameter "criterium" ...;
 EXECUTE SetDecisionParameter "amount" ...;
 // Calculate local price
 ASSIGN $price ...;
 EXECUTE SetDecisionParameter "price" $price
 // Perform the actual negotiation
 EXECUTE Negotiate "negotiation_goal_name" $var $error;
 // Increment iteration counter and wait for the next iteration
 EXECUTE Assert "iter_num" (+ $iter_num 1);
 EXECUTE WaitForNextIteration "situation_goal" $var $param;
 };
}

Figure 5.3 Pseudocode for an example plan of an initiator in the supervisory control
application represented with the plan language of JAM.

61

// Pseudodoce of a plan for a participant in the supervisory
// control application
Plan: {
 GOAL: ACHIEVE negotiation_goal $remote_var $error;
 CONTEXT:
 // This plan applies only for control of a particular variable
 (== $remote_var "remote_var");
 BODY:
 // Get decision variables
 RETRIEVE var1 $var1;
 RETRIEVE var2 $var2;
 ...
 // Calculate new proposal
 ASSIGN $proposed_change ...;
 ASSIGN $price ...;
 // Create a proposal message
 EXECUTE MakeProposalMessage "local_var" $proposed_change $price;
}

Figure 5.4 Pseudocode for an example plan of a participant in the supervisory control
application represented with the plan language of JAM.

The internal decision-making activity of a process automation agent in the supervisory
control application utilises the generic planning capabilities of the agent in order to
fulfil its role in the society level search process. The responsibility of a single process
automation agent in this search process is to take part in a negotiation at each iteration
step during the search if the values of some control variables in its area of
responsibility need to be changed. The agent who initiated the search has also the
responsibility to decide about its termination. In addition to this the agents also have
to manage their run-time data structures and perform their local planning tasks
associated to the negotiation process. Although a large part of these activities are
mostly implemented by the agent platform for process automation (see Chapter 3),
they are used in a way particular to this application.

In the supervisory control application the run-time data structures of process
automation agents are needed particularly for storing the state of the iterative search
process. The agents need to store necessary data from the previous iteration steps if
they need it in the subsequent steps. The run-time data of an initiator includes the
initial goal and the number of the iteration step. This data is represented with the goals
and assertions run-time data structures of the agent platform (see Chapter 3.2.2). The
run-time data of a participant depends on its decision-making rules. Due to the
reactive nature of this application the plans and contracts relating to each iteration step
are needed to be stored only during that particular step of the iterative search process
of the agent society (see Chapter 5.2.1).

In the supervisory control application the local planning activity of a process
automation agent is mainly used in a reactive way as a part of the negotiation at one
iteration step. The local planning processes of an initiator and a participant agent are
different. The input to the local planning activity of an initiator consists of the original
goal, the current values of the measurements, the qualitative process model and the
number of the iteration step. The outcome from the planning activity is an updated set
of values to the control parameters. The input to the local planning activity of a
participant consists of the goal received from the initiator, the current values of the
measurements and the qualitative process model. The outcome from the planning

62

activity is a proposal specifying the price of possible control actions. In addition to
this reactive negotiation-oriented planning activity there may also be an additional
deliberative part in the local planning activities of both the initiator and the
participant. These might be needed for sequential local control actions.

The purpose of the negotiation activity in the supervisory control application is to find
new values for a set of control variables at each step of the iterative search process.
The negotiation is performed according to the Contract Net protocol implemented in
the agent platform. The decision-making required at each step of the negotiation
protocol and the exact content of the messages exchanged during the negotiation are
specific to this type of an application. The decision-making and messages are
characterised by their role as a part of an iterative search process. The negotiation
activity as it appears in this application is illustrated in Figure 5.5 and explained in
more detail below.

request-state-change: cfp

propose-price: proposal

accept-partly: accept-proposal

Initiator Participant

Figure 5.5 Negotiation between two process automation agents in the supervisory
control application represented as an AUML sequence diagram.

At the CFP creation stage the decision making task of the initiator agent is to select
partners for negotiation and create a goal for changing control variables. The partners
are identified using the qualitative process model and the descriptions of agent
services and organisational roles at the directory facilitator. The qualitative process
model is used to make inferences about which control variables affect the target
variable, whereas the agent services are used to determine which agents provide
services for controlling these variables. The organisational role is used to find either
subordinates or peers of the initiator depending on the application logic. The CFP
message contains the description of the control change goal. The goal contains the
variable identification and the desired change to it from the viewpoint of the initiator.

At the proposal creation stage the decision making task of the participant is to
determine its conditions to affect the control variable in the CFP message. First, the
participant identifies which of its control variables can affect the control variable in
the CFP. It does this using its qualitative process model or plans. Secondly, the
participant estimates its possible effect to the variable in the CFP and determines a
cost function for this operation, e.g. in the form of unit price. It does this using some

63

application specific algorithm specified in a plan. The proposal message contains the
maximum value of estimated effect to the variable in the CFP and cost information.

At the answer creation stage the decision-making task of the initiator is to select one
or more proposals and decide to which extent to accept the proposed actions. This
decision-making logic is meant to be represented as application-specific decision-
making rules in the plans. The decision-making logic should balance the changes of
control variables in all involved agents. If there are no proposals the initiator
concludes that partners are not going to change their control variables at this time and
passes this information to its local planning activity. Otherwise accept-proposal
messages with specifications of the accepted amounts of proposed changes are sent to
the selected participants. Reject-proposal messages are sent to those participants
whose proposals are not accepted at all.

At the answer handling stage the participant does not have any real decision making
to do. It just needs to calculate the accepted part of its proposed action and execute it.

5.3 Experiments with the supervisory control method

5.3.1 Specification of the experiments

The laboratory test environment with its experimental implementation of the process
automation agent platform has been used to test the supervisory control application. A
fault recovery application was designed, implemented and tested. The purpose of this
experiment was to demonstrate the operation of the application and test its feasibility
in simple scenarios. Due to the simplicity and small number of the test scenarios it is
not possible to make any thorough assessment of the properties of the control method
based on these experiments. The properties of the method are discussed more in
Chapter 5.4.

The objective of the fault recovery scenario is to compensate the effects of a fault with
respect to the control goals of the test process (see Chapter 3.3) as far as possible. The
fault situation is a simulation of a failure of a control valve at the lower part of the
tank. Before the fault there is a temperature difference between different parts of the
tank. Both of the temperature control loops are operational with distinct setpoints. The
objective of process control in this scenario is to minimise the error of water
temperature control as expressed in Equation 5.2. Because of the failure of the control
valve the temperature control of the lower part of the tank becomes non-functional.
Without any compensating control actions the temperature starts deviating from its
setpoint and approaches the temperature of the upper part of the tank.

 et = w1e12 + w2e22 [5.2]

 et : Total error
 ei : Error at upper or lower part
 wi : Weight of the error at upper or lower part

The fault situation can be compensated with both local recovery actions at the lower
part of the tank and remote actions at other parts of the process (see Figure 5.6). At
the lower part of the tank the magnetic valves can be used to compensate the water
flow of control valves. However, they cannot be used for control due to their

64

operational limitations. The strength of the water flow through them is not
controllable. The temperature control loop at the upper part of the tank can to some
extent be used to control the water temperature also at the lower part by the water
flow between the parts. The setpoint at the upper part is attempted to be set so that the
control errors at both control loops are balanced. This is expected to lead to a better
value of the control goal than with only the local recovery actions. The inter-
connection between the control loops can also to some extent be affected by adjusting
the strength of the water circulation by changing the setpoint of the pump.

Detect fault

Compensate with magnetic valves

Adjust water flow Adjust other temperature control

(Recovery succeeds or fails)

(More iterations needed)

Figure 5.6 Fault recovery scenario in the laboratory test environment represented as
an UML activity diagram. One of the control valves is faulty.

5.3.2 Application design for the experiments

The application for the fault recovery scenario was defined as plans that were
configured into the plan libraries of the selected agents in the test agent application.
For the experiments the plans needed for the initiator role in the fault recovery
scenario were defined for the Lower Part Agent. The plans needed for the participant
role were defined for the Upper Part Agent and the Pump Agent (see Chapter 3.3.2).

The plans for local recovery actions in the case of control valve failure were defined
for the Lower Part Agent. These plans specify a sequence for shutting down non-
usable devices and starting compensating water flow with the magnetic valves. The
most important one of the local recovery plans is illustrated in Figure 5.7. This plan is
fairly similar to the plans representing local actions in the sequential control
application (see Chapter 4).

65

// Perform local recovery operations
Plan: {
 GOAL: ACHIEVE local_fault_recovery $var $device;
 CONTEXT:
 // This plan applies only for control of tm2
 (== $var "tm2");
 BODY:
 // Make sure faulted device is shut down
 ACHIEVE shutdown_faulted_device $device;
 // Use the reserve magetic valve
 EXECUTE PlanControlAction "mvsp21" "1";
}

Figure 5.7 Pseudocode of the local fault recovery plan of the Lower Part Agent
represented with the plan language of JAM.

The Lower Part Agent has a plan for acting as an initiator in a fault recovery search in
the case of a control valve failure within its area of responsibility. The plan contains
starting the local recovery actions at the first iteration step, decision logic for the
negotiations at each step and rules for ending the iterations. The decision logic during
the negotiations is to accept help if its price is less than the square of the local error.
The iterations are ended after a maximum number of iterations or if the error gets
below a minimum value or exceeds a maximum value. The cooperative fault recovery
plan of the Lower Part Agent is illustrated in Figure 5.8. The decision parameters used
in this plan are explained in Table 5.1.

66

// Perform fault recovery in the case of a device fault at tm2
Plan: {
 GOAL: ACHIEVE fault_recovery $var $device;
 CONTEXT:
 // This plan applies only for control of tm2
 (== $var "tm2");
 BODY:
 // Retrieve decision variables and parameters
 RETRIEVE iter_num $iter_num;
 RETRIEVE iter_max $iter_max;
 RETRIEVE tsp2_weight $tsp2_weight;
 RETRIEVE tm2 $tm2;
 RETRIEVE tsp2 $tsp2;
 ASSIGN $error (- $tsp2 $tm2);
 WHEN : TEST (== $iter_num 0)
 {
 ACHIEVE local_fault_recovery $var $device;
 };
 // Too large error. Recovery fails
 WHEN : TEST (>= (abs $error) $error_max) { FAIL; };
 // At first iteration perform local recovery operations
 OR
 {
 // Error ok. Recovery done
 TEST (<= (abs $error) $error_min);
 SUCCEED;
 }
 {
 // Stop if maximum number of iterations reached
 TEST (>= $iter_num $iter_max);
 SUCCEED;
 }
 {
 // Request help from other agents
 // First, set proposal acceptance rules for the negotiation
 // * accept multiple proposals
 // * accept proposals with lower price than the local price
 // * accept proposals as such
 EXECUTE SetDecisionParameter "accept" "multiple"
 EXECUTE SetDecisionParameter "criterium" "price-min"
 EXECUTE SetDecisionParameter "amount" "all"
 // Calculate local price
 ASSIGN $price (* $tsp2_weight $error);
 ASSIGN $price (* $price $price);
 EXECUTE SetDecisionParameter "price" $price
 // Perform the actual negotiation
 EXECUTE Negotiate "recovery_help" $var $error;
 // Increment iteration counter and wait for the next iteration
 EXECUTE Assert "iter_num" (+ $iter_num 1);
 EXECUTE WaitForNextIteration "fault_revovery" $var $devive;
 };
}

Figure 5.8 Pseudocode of the fault recovery search plan of the Lower Part Agent
represented with the plan language of JAM.

67

Table 5.1 Decision parameters of the Lower Part Agent in the fault recovery
negotiations.

Parameter Explanation

tsp2_weight Weight of control error at the lower part of the tank

error_min Minimum error. Success if went below

error_max Maximum error. Failure if exceeded

negotiation_wait Time between negotiations

iteration_max Maximum number of iterations

The Pump Agent and the Upper Part Agent have plans for helping recovery actions in
the case of a fault at the Lower Part Agent. These plans are quite similar. The help
they offer is a constant change of their setpoint. The price for the help is the square of
the deviation of the new setpoint from the original one. The fault recovery plans of the
Pump Agent and the Upper Part Agent are illustrated in Figure 5.9. The decision
parameters used in these plans are explained in Table 5.2.

68

// Perform remote help in case of fault recovery
Plan: {
 GOAL: ACHIEVE recovery_help $remote_var $error;
 CONTEXT:
 // This plan applies only for control of tm2
 (== $remote_var "tm2");
 BODY:
 // Get decision variables and parameters
 RETRIEVE tsp1 $tsp1_current;
 RETRIEVE tsp1_original $tsp1_original;
 RETRIEVE tsp1_change $tsp1_change;
 RETRIEVE tsp1_weight $tsp1_weight;
 // Calculate new proposed setpoint and price of the change
 ASSIGN $tsp1_new (- $tsp1_current $tsp1_change);
 ASSIGN $price (* $tsp1_weight (- $tsp1_current $tsp1_new));
 ASSIGN $price (* $price $price);
 // Create a proposal message
 EXECUTE MakeProposalMessage "tm1" $tsp1_change $price;
}

// Perform remote help in case of fault recovery
Plan: {
 GOAL: ACHIEVE recovery_help $remote_var $error;
 CONTEXT:
 // This plan applies only for control of tm2
 (== $remote_var "tm2");
 BODY:
 // Get decision variables and parameters
 RETRIEVE psp $psp_current;
 RETRIEVE psp_original $psp_original;
 RETRIEVE psp_change $psp_change;
 RETRIEVE psp_weight $psp_weight;
 // Calculate new proposed setpoint and price of the change
 ASSIGN $psp_new (- $psp_current $psp_change);
 ASSIGN $price (* $psp_weight (- $psp_original $psp_new));
 ASSIGN $price (* $price $price);
 // Create a proposal message
 EXECUTE MakeProposalMessage "psp" $psp_change $price;
}

Figure 5.9 Pseudocode of the fault recovery search plans of the Upper Part Agent and
the Pump Agent represented with the plan language of JAM.

Table 5.2 Decision parameters of the Upper Part Agent and the Pump Agent in the
fault recovery negotiations.

Parameter Explanation

tsp1_change Constant change of setpoint at the upper part of the tank

tsp1_weight Weight of setpoint change at the upper part of the tank

psp_change Constant change to pump setpoint

psp_weight Weight of setpoint change for the pump

69

5.3.3 Results from the experiments

The supervisory control application was tested with three different variations of the
fault recovery scenario. The variations demonstrate how local actions of the process
automation agents and different negotiation schemes among them affect the fault
recovery performance.

In the first variation of the fault recovery scenario the Lower Part agent applies its
local recovery plans while other agents remain idle. This variation is presented in
order to demonstrate to which extent the local recovery actions alone can compensate
the fault. The local recovery actions, i.e. starting a compensating constant water flow
from the magnetic valves, are performed in one step after fault detection. There is no
search in this scenario. The behaviour of the test process during the first variation of
the fault recovery scenario is illustrated in Figure 5.10. Temperature T2 approaches
Temperature T1, but a permanent difference remains between them because of the
compensating water flow from the magnetic valves. The control errors are illustrated
in Figure 5.11.

23

24

25

26

27

28

29

30

31

32

33

0 60 120 180 240 300 360

Time [s]

Te
m

pe
ra

tu
re

 [C
º]

12

13

14

15

16

17

18

Fl
ow

 s
et

po
in

t [
un

it]

Figure 5.10 Selected process variables during the first variation of the fault recovery
scenario. In this variation, Lower Part Agent applies its local recovery actions. The
solid lines represent the temperature measurements T1 (above) and T2 (below). The
dotted lines represent setpoints of the temperatures (above and middle) and the water
flow (below).

70

0

1

2

3

4

5

6

7

8

9

10

11

12

0 60 120 180 240 300 360

Time [s]

E
rr

or

Figure 5.11 Control errors during the first variation of the fault recovery scenario. The
solid lines represent the control errors at the upper and the lower parts of the tank. The
dotted line represents the total error.

The second variation of the fault recovery scenario introduces a one-to-one
negotiation between the Lower Part agent and the Upper Part agent in addition to the
local actions of the previous one. The cooperation between the two negotiating agents
during the iterative search process of the fault recovery is illustrated in Table 5.3.
During the negotiations the Upper Part Agent gradually changes its setpoint until the
control error is distributed evenly between it and the Lower Part Agent. The
behaviour of the test process during the second variation of the fault recovery scenario
is illustrated in Figure 5.12. Also in this variation the Temperature T2 is diverging
from its setpoint and approaches T1. However, it does not diverge from its setpoint as
much as in the previous variation. The control errors are illustrated in Figure 5.13.
The performance of the fault recovery is clearly better than in the first variation of the
scenario.

71

Table 5.3 Message exchange between the two negotiating agents during the iterative
search process in the second variation of the fault recovery scenario.

No Sender Receiver Message type Message content

1 Lower Part Upper Part cfp goal: recovery_help tm2 -0,64

2 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 0.06

3 Lower Part Upper Part accept_proposal

4 Lower Part Upper Part cfp goal: recovery_help tm2 -1,64

5 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 0.25

6 Lower Part Upper Part accept_proposal

7 Lower Part Upper Part cfp goal: recovery_help tm2 -2,14

8 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 0.56

9 Lower Part Upper Part accept_proposal

10 Lower Part Upper Part cfp goal: recovery_help tm2 -2,18

11 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 1.0

12 Lower Part Upper Part accept_proposal

13 Lower Part Upper Part cfp goal: recovery_help tm2 -2,08

14 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 1.56

15 Lower Part Upper Part accept_proposal

16 Lower Part Upper Part cfp goal: recovery_help tm2 -2,10

17 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 2.25

18 Lower Part Upper Part accept_proposal

19 Lower Part Upper Part cfp goal: recovery_help tm2 -2,08

20 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 3.06

21 Lower Part Upper Part accept_proposal

22 Lower Part Upper Part cfp goal: recovery_help tm2 -1,95

23 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 4.0

24 Lower Part Upper Part reject_proposal

25 Lower Part Upper Part cfp goal: recovery_help tm2 -1,71

26 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 4.0

27 Lower Part Upper Part reject_proposal

28 Lower Part Upper Part cfp goal: recovery_help tm2 -1,59

29 Upper Part Lower Part proposal measure: tm1, amount: 0.25, price: 4.0

30 Lower Part Upper Part reject_proposal

72

23

24

25

26

27

28

29

30

31

32

33

0 60 120 180 240 300 360

Time [s]

Te
m

pe
ra

tu
re

 [C
º]

12

13

14

15

16

17

18

Fl
ow

 s
et

po
in

t [
un

it]

Figure 5.12 Selected process variables during the second variation of the fault
recovery scenario. In this variation, Lower Part Agent applies its local recovery
actions and cooperates with Upper Part Agent. The solid lines represent the
temperature measurements T1 (above) and T2 (below). The dotted lines represent
setpoints of the temperatures (above and middle) and the water flow (below).

0

1

2

3

4

5

6

7

8

9

10

11

12

0 60 120 180 240 300 360

Time [s]

E
rr

or

Figure 5.13 Control errors during the second variation of the fault recovery scenario.
The solid lines represent the control errors at the upper and the lower parts of the tank.
The dotted line represents the total error.

The third variation of the fault recovery scenario adds a further negotiation
relationship between the Lower Part Agent and the Pump Agent in addition to the
second variation. The cooperation among the three negotiating agents during the

73

iterative search process of the fault recovery is illustrated in Table 5.4. Both the Upper
Part Agent and the Pump Agent negotiate with the Lower Part Agent in quite a similar
way. The behaviour of the test process during the third variation of the fault recovery
scenario is illustrated in Figure 5.14. The development of the temperatures in this
variation is quite similar to the previous variation without the pump. In these tests the
effect of the strength of the water flow on the temperatures is quite weak. The control
errors are illustrated in Figure 5.15. The performance of the fault recovery is roughly
the same than in the second variation of the scenario.

74

Table 5.4 Part of the message exchange among the three negotiating agents during the
iterative search process in the third variation of the fault recovery scenario (thirty first
messages).

No Sender Receiver Message type Message content

1 Lower Part Upper Part cfp goal: recovery_help tm2 -0,05

2 Lower Part Pump cfp goal: recovery_help tm2 -0,05

3 Upper Part Lower Part proposal measure: tm1 amount: 0.25 price: 0.06

4 Pump Lower Part proposal measure: psp amount: 0.25 price: 0.25

5 Lower Part Upper Part reject_proposal

6 Lower Part Pump reject_proposal

7 Lower Part Upper Part cfp goal: recovery_help tm2 -1,51

8 Lower Part Pump cfp goal: recovery_help tm2 -1,51

9 Pump Lower Part proposal measure: psp amount: 0.25 price: 0.25

10 Upper Part Lower Part proposal measure: tm1 amount: 0.25 price: 0.06

11 Lower Part Upper Part accept_proposal

12 Lower Part Pump accept_proposal

13 Lower Part Upper Part cfp goal: recovery_help tm2 -1,82

14 Lower Part Pump cfp goal: recovery_help tm2 -1,82

15 Pump Lower Part proposal measure: psp amount: 0.25 price: 1.0

16 Upper Part Lower Part proposal measure: tm1 amount: 0.25 price: 0.25

17 Lower Part Upper Part accept_proposal

18 Lower Part Pump accept_proposal

19 Lower Part Upper Part cfp goal: recovery_help tm2 -1,84

20 Lower Part Pump cfp goal: recovery_help tm2 -1,84

21 Pump Lower Part proposal measure: psp amount: 0.25 price: 2.25

22 Upper Part Lower Part proposal measure: tm1 amount: 0.25 price: 0.56

23 Lower Part Upper Part accept_proposal

24 Lower Part Pump accept_proposal

25 Lower Part Upper Part cfp goal: recovery_help tm2 -1,64

26 Lower Part Pump cfp goal: recovery_help tm2 -1,64

27 Pump Lower Part proposal measure: psp amount: 0.25 price: 4.0

28 Upper Part Lower Part proposal measure: tm1 amount: 0.25 price: 1.0

29 Lower Part Upper Part accept_proposal

30 Lower Part Pump reject_proposal

31 …

75

23

24

25

26

27

28

29

30

31

32

33

0 60 120 180 240 300 360

Time [s]

Te
m

pe
ra

tu
re

 [C
º]

12

13

14

15

16

17

18

Fl
ow

 s
et

po
in

t [
un

it]

Figure 5.14 Selected process variables during the third variation of the fault recovery
scenario. In this variation, Lower Part Agent applies its local recovery actions and
cooperates with both Upper Part Agent and Pump Agent. The solid lines represent the
temperature measurements T1 (above) and T2 (below). The dotted lines represent
setpoints of the temperatures (above and middle) and the water flow (below).

0

1

2

3

4

5

6

7

8

9

10

11

12

0 60 120 180 240 300 360

Time [s]

E
rr

or

Figure 5.15 Control errors during the third variation of the fault recovery scenario.
The solid lines represent the control errors at the upper and the lower parts of the tank
and the pump. The dotted line represents the total error.

76

5.4 Discussion
The specification of the supervisory control application is assessed in here by
comparing it to related reported supervisory control approaches and discussing its
properties. Similarities and differences to the references are characterised and
justifications to the adopted design choices are presented. The effect of these choices
on the automation system properties is discussed and compared to the references.
Finally, conclusions are drawn based on this study and open questions concerning the
research topic are outlined.

5.4.1 Design choices in the specification

The society model of the supervisory control application has important common
features with previously reported research (see Chapter 2.3). Important related
research efforts in this context include the studies by Ygge (Ygge 1998, Ygge and
Akkermans 1999), van Breemen (van Breemen and de Vries 2001, van Breemen
2001). The main similarity of the presented agent society model with the references is
the existence of one coordinator that has the responsibility to coordinate the operation
of other controllers. This idea of a coordinator is not a new one and has been
presented earlier e.g. in the studies of so-called hierarchical multi-level systems
(Mesarovics at al. 1970). However, the specified agent society model also has some
differences from the references. One difference is that the role of coordinator is not
fixed and is allowed to change depending on the situation. This is assumed to enhance
system responsiveness. Other differences include the Contract Net-based negotiation
mechanism and the goal-centered ontology. In the presented specification these are
provided by the agent platform and shared with other applications as general models
of cooperation.

The agent model of the supervisory control application does not have many references
in the previously reported research (see Chapter 2.3). MACIF (van Breemen 2001) is
one of the few reported respective models. The specified agent model and MACIF are
quite different. The main difference is that the presented specification follows the
BDI-model of internal agent architecture whereas the agents of MACIF may be
characterised as wrappers of controllers containing inputs, outputs, control algorithm
and an interface for activation of the agent. In the presented specification the BDI-
model is provided by the agent platform and shared with other applications as a
general model of agent operation.

5.4.2 Effects on the properties of automation

The performance of the supervisory control application depends on both its properties
as a distributed search method and its properties as a control application. The
distributed search method needs to solve the coordination problem of distributed
search (see Chapter 2.2.3) in such a way that it fulfils the requirements of the control
application. The important property of the method in this sense is optimality of the
distributed search algorithm. This algorithm is partially defined in the presented
specification of the application and partially in the plans. The plans contain the actual
decision logic of how to calculate new values for the control variables at each
iteration of the search. The performance of the application can be analysed only when
this decision logic is known. The fault recovery test application defines a simple
search strategy as a demonstration. In this experimental application the search is based

77

on process-specific heuristics whose parameters are tuned based on experiments with
the process. Feedback from the process measurements is utilised only as the search
termination criterion.

The specification of the supervisory control application is expected to facilitate the
reconfigurability property of process automation systems. Similarly to the sequential
control case (Chapter 4) also with this application the effect on the reconfigurability
property is assumed to originate from the combination of the mechanisms of the agent
platform and the application. The used mechanisms of the platform include the
qualitative process model, the directory facilitator, the Contract Net based negotiation
and the internal planning activity of the agents with its modification for cyclic
operation. The supervisory control application adds the distributed iterative search
process on top of them. With the combination of these mechanisms it is possible to
modify the values of supervisory control variables if the configuration changes require
it. The mechanism can react to changes in the existence and capabilities of the agents.
These changes reflect changes in the underlying automation system, e.g. device
replacement and maintenance operations. The agents can e.g. balance the values of
set-points in various controllers or apply different control policies. The possibility of
reconfiguration is limited by the capability of the lower-level automation to provide
alternative means to gain the required control operations, e.g. some control variables
are controllable only by one particular device. The references do not include any
approaches that would have all the same mechanisms for reconfiguration. Maybe the
most significant difference to the references is the possibility to include also
sequential control operations in the reconfiguration process together with negotiation
about the control variables.

The specification of the supervisory control application is also expected to facilitate
enhancement of the flexibility and responsiveness properties of process automation
systems. Similarly to the sequential control case (Chapter 4) also with this application
the intended means for this purpose is to design control applications that can handle
planned or unplanned operational change situations and conform to the presented
model of distributed search. The distributed iterative search process can be used to
find new values for a set of control variables. If operational change situations can be
handled through this iterative search process then the specification can facilitate
flexibility and responsiveness. The situations intended to be handled have the
characteristic that values of several inter-dependent supervisory control variables have
to be balanced, e.g. when changing the set-points of inter-related PID-controllers after
a significant change in the process conditions. The references utilise different methods
but they share a similar objective with respect to flexibility and responsiveness.

The specification of the supervisory control application shows how the application
design model of the agent platform can be used for developing supervisory control
applications. The applications are designed by defining the decision logic for
changing values of some supervisory control variables after a negotiation between a
coordinator and a set of other agents. This kind of an approach for designing
supervisory control applications in automation is different from the more traditional
command-based coordination, although the idea about negotiation as a coordination
method in continuous control has been proposed also in earlier studies (Ygge and
Akkermans 1999). The presented model of application development proposes plans as
a method for representing negotiation logic and goal and precondition information as
mechanisms for determining their applicability. This model is fairly general and

78

allows design of various different negotiation decision logics. It does not define how
to calculate values for the control variables.

5.4.3 Conclusions and open questions

The specification of the supervisory control application may be characterised as an
aggregate design and the experimental fault recovery application as a demonstrating
prototype. However, it is possible to recognise the basic advantages and limitations of
the application. Analogously to the sequential control application the main advantage
of this application is the enabled positive effect on the adaptation properties of
automation. Another advantage is the possibility to implement the application using a
platform which is designed to be able to run also sequential control functions of
process automation. The main limitation of the application concerns the distributed
search process used in it. The performance of the search process depends on the
decision logic of the agents. Designing such decision logic for various situations is not
an easy task. Another limitation is the response time of the negotiation at each
iteration, which restricts the control cycle of this application. Also the characteristics
of the underlying automation system and the controlled process affect the usefulness
of the supervisory control application. The possible lack of redundancy in them, i.e.
alternative ways to affect objective control variables, restricts the adaptation
properties also in this application. The significance of the experiments described in
this study is that they are able to demonstrate the characteristics of distributed search
process and the design of plans for it in simple test scenarios.

The presented form of the specification leaves important open questions concerning
the utilisation of MAS in supervisory control applications in process automation.
Maybe the most important open question is if the presented aggregate specification of
distributed search is feasible in a more general case and how to make it more detailed
so it could be better evaluated. These questions could be answered by studying the
decision logic of the agents during the distributed iterative search process more
closely. Particularly the decision logic of the coordinator with its need to handle
possible inter-dependencies between the actions of separate agents is an important
one. It would also be worthwhile to study other control properties of this application
than optimality, e.g. stability and robustness. Test scenarios with more challenging
control tasks could be useful, e.g. in the form of simulations.

79

6 Discussion and conclusions
6.1 Discussion
The specifications of the agent platform for process automation and the experimental
control applications presented in this thesis are discussed here by comparing them to
similar reported approaches and assessing their effect on the properties of automation.
This discussion summarises the most important issues of earlier discussions in
Chapters 3, 4 and 5. Differences to the references are characterised and justifications
for the adopted design choices presented. Also the knowledge obtained about the
effect of the approach to the properties of automation is discussed.

The specifications presented in this thesis share many similarities with earlier studies,
particularly the ones developed within the HMS consortium. The main similarities
include the role of agents as a supervisory control system, hierarchical and goal-
oriented agent organisation similar to a holarchy, Contract Net as a negotiation
mechanism, BDI-agent model, usage of a directory facilitator and conformance to the
FIPA standard. However, the presented specifications contain also some important
differences to the earlier research. Whereas the main part of the previous research has
focused on discrete manufacturing, the application domain in this thesis is process
automation. When compared to other research in process automation, a major
contribution in this thesis is a common BDI-based model for both sequential and
continuous control. For this purpose the BDI-model is extended with a possibility for
cyclic operation. Goals are used as the main data structure and distributed search and
planning processes as the main problem-solving methods in the coordination among
the agents. Another important new feature in the presented specifications is the usage
of qualitative reasoning for identification of the coordination needs. A further
difference to the references is a system architecture utilizing both vertical and
horizontal coordination channels.

The performance of the control applications specified in this thesis depends on both
their properties as distributed problem-solving methods and their properties as control
applications. The distributed problem-solving methods are required to solve the
coordination problem of the distributed applications in such a way that they can fulfil
their requirements as control applications. The applications specified in this thesis are
either based on distributed planning or distributed iterative search. However, the
specifications contain only aggregate designs for general cases. Detailed designs are
presented for the experimental test applications. Because of this, it is not possible to
make a general performance assessment of the control applications. Also in the related
research the performance assessment of this kind of applications has been limited. The
performance of the applications depends particularly on the applied distributed search
strategy in the sequential control application, and the decision logic of the agents in
the supervisory continuous control application. In the latter application also the
response time of the negotiation may limit its applicability.

The specifications in this thesis describe a platform with mechanisms for enhanced
reconfigurability of process automation systems and applications designed to utilise
these mechanisms. The autonomy property of the agents, utilisation of a directory
facilitator, distributed search and planning as problem-solving methods and Contract
Net as a negotiation mechanism are expected to enable process automation agents to
operate semi-independently and coordinate configuration to changes with other

80

agents. These mechanisms are assumed to be able to handle changes in the existence
and capabilities of agents and in the lower-level automation system that the agents are
supervising. However, in order these mechanisms to be useful they have to be used
adequately in applications. The applications need to contain logic for changing the
control parameters of the lower level automation and coordinating these changes with
other agents. However, the benefit of the reconfiguration capability is limited if there
is lack of redundancy in the lower-level automation system and the controlled process.
The effect on reconfigurability in this study is quite similar to some references (Tichy
at al. 2002). The main difference is the possibility to include both sequential and
continuous control operations in the reconfiguration process.

The applications specified in this thesis demonstrate the capabilities of MAS-based
problem-solving methods in the design of applications which are expected to enhance
the flexibility and responsiveness properties of process automation systems.
Applications designed as distributed planning of control sequences and distributed
iterative search of values for supervisory control variables are proposed as means to
handle both planned and unplanned operational change situations. A contribution in
this thesis is that both sequential and continuous control operations are combined in
the MAS in order to facilitate the flexibility and responsiveness properties. The
distributed planning process is able to create new sequences as a combination of the
sequences wrapped in the plans. The distributed iterative search process can be used
to find new values for a set of control variables. If operational change situations can
be handled with these methods then the applications can facilitate flexibility and
responsiveness. Concerning the sequential case the effect on the flexibility and
responsiveness properties is similar to some references (Tichy at al. 2002).

The specifications presented in this thesis also define a model for developing
applications. According to this model, higher-level control applications operating on
top of an ordinary process automation system are designed as distributed planning and
search applications. The applications are programmed as plans that are used during
the planning and search processes. This model of designing applications for process
automation is quite new although similar approaches have been proposed in
references (Tichy at al. 2002, Ingrand et al. 1992). There is not much experience
about how well this works. A particular aspect in this research is that the same MAS-
based application development model is applied both to sequential and supervisory
continuous control operations.

6.2 Conclusions
The specifications, experiments and discussions presented in this thesis allow
outlining some conclusions about the applicability of MAS in process automation.
The conclusions are divided here according to the research objectives of this thesis
(see Chapter 1.3) into four parts concerning the specifications of the agent platform
and the two applications and the assessment of their properties.

The first research objective of this thesis was to make a specification of an agent
platform for process automation. The specification outlines the BDI-agent model with
cyclic operation, qualitative process models, agent organisation with just one agent
type and utilisation of coordination among peers as particular requirements or useful
features of an agent platform, which otherwise is quite similar to referenced HMS
(Tichy at al. 2002, Maturana at al. 2002, 2003, Heikkilä at al. 1999). The experimental
applications developed in this thesis demonstrate the feasibility of the platform as an

81

application development tool. Mechanisms supporting useful adaptation properties
can be identified in the specification. Based on this study it seems reasonable to state
that when applying MAS to process automation it is useful for an agent platform to
contain at least the features specified in this study.

The specification of the sequential control application using the agent platform for
process automation is a contribution to the second research objective of this thesis.
The specification outlines an application with distributed planning as a problem-
solving method. The experimental applications indicate the feasibility of the design in
the presented test scenarios. The possible benefit of distributed planning for the
adaptation properties can be identified. Some other studies have also developed quite
similar applications for sequential control (Tichy at al. 2002, Maturana at al. 2002,
2003). However, there are important limitations in the presented approach. The
essential limitation of the approach is the lack of knowledge about the performance of
the distributed planning algorithms in more complicated test cases. As a conclusion
about this application it seems reasonable to state that if a proper search strategy can
be defined for an application then the specified mechanisms are applicable and useful.

The specification of the supervisory control application using the agent platform for
process automation is another contribution to the second research objective of this
thesis. The specification outlines an application with distributed iterative search as a
problem-solving method. Also in this case the experimental applications can indicate
the feasibility of the design in the presented test scenarios. Again, the possible benefit
of distributed iterative search for the adaptation properties can be identified. Although
some other studies have also utilised similar mechanisms a direct counterpart of this
application could not be identified. However, there are important limitations also in
this application. The essential limitation of this application is the difficulty to design a
decision logic that would guarantee adequate performance of the distributed search
process also in more complicated test cases. As a conclusion about this application it
seems reasonable to state that if a proper decision logic can be defined for the various
agents in an application and the required response time is not too short then the
specified mechanisms are applicable and useful.

The third research objective of this thesis was to assess the specifications of the agent
platform and the control applications. This has already been done in several parts this
thesis describing the experiments (chapters 4.3, 5.3) and discussions (chapters 3.4,
4.4, 5.4 and 6.1). The performance of the applications for control purposes cannot be
assessed in a general case because of the aggregate nature of the specifications. The
specifications contain mechanisms that can be argued to enhance the adaptation
properties of process automation. However, this benefit is limited by the properties of
the underlying automation system and the possible difficulty of the application design.
There is not much experience from the plan-based application design model. As a
conclusion about the assessment one could state that the specifications contain
promising features particularly concerning the adaptation properties but otherwise the
knowledge about the assessed properties is limited.

6.3 Further research
The results of this thesis allow proposing topics for further research for the application
of MAS in process automation. The topics concern the open questions that have not
found their answers in this thesis or in related research. The topics relate to the
specification of the agent platform, the applications and evaluation of their properties.

82

The first topic for further research is to consider the specification of the agent
platform from the viewpoint of other functions of process automation than control.
The objective of such research is proposed to be a more general agent platform for
process automation, which is able to run also other types of applications, e.g. process
monitoring, condition monitoring and diagnostics, in addition to control applications.
The proposed method for this research is to extend and possibly redesign the agent
platform based on the requirements of new applications. Research concerning this
topic has already started (Pirttioja et al. 2004).

The second topic for further research is the development of more advanced distributed
planning and search methods for the applications studied in this thesis. The objective
of this research would be to find out how the different features of the distributed
planning and iterative search methods affect the properties of MAS-based process
automation. This question could be studied both with simulation studies and analysis
of the search strategies and decision logic from the viewpoints of computer science
(Yokoo and Ishida 1999), optimisation (Bazaraa et al. 1993) and systems theory
(Findeisen 1980).

The third topic for further research is a more thorough assessment of the platform and
the applications. The properties to be evaluated are the same ones as already studied
in this research, in other words the properties relating to adaptation, i.e.
reconfigurability, flexibility and responsiveness, the properties relating to
performance as a distributed control system, i.e. stability, robustness and scalability,
and the properties as an application design model. Simulation studies are proposed as
a suitable method for studying the first two sets of properties. With simulations it
would be possible to study larger and more complicated control problems and more
diverse test scenarios than what was possible to do within this work. Some research
has already been initiated in this area (Maturana et al. 2005b). Development of
prototype applications and their evaluation by process automation application
programmers are proposed as suitable methods for assessing the application
development model.

83

References
Adelsberger, H. H., Conen, W. 2000. Economic Coordination Mechanisms for
Holonic Multi Agent Systems, Proceedings of the 11th International Conference on
Database and Expert Systems Applications (DEXA 2000), London, UK.

Arai, T., Aiyama, Y., Sugi, M., Ota, J. 2001. Holonic Assembly System with Plug and
Produce. Computers in Industry, Elsevier, Vol. 46, pp. 289-299.

Bratman, M. E., Israel, D. J., Pollack, M. E. 1988. Plans and Resource Bounded
Practical Reasoning. Computational Intelligence, Vol. 4, pp. 349-355.

Bazaraa, M. S., Hanif, D. S., Shetty, C. M. 1993. Nonlinear Programming, Theory
and Algorithms, 2nd ed., John Wiley & Sons, Inc.

Brennan, R. W., Fletcher, M., Norrie, D. H. 2002a. A Holonic approach to
reconfiguring real-time distributed control systems. In: Marik, V., Stepankova, O.,
Krautwurmova, H., Luck, M. (eds.) Multi-Agent Systems and Applications II,
Springer, Germany, pp. 323 – 335.

Brennan, R. W., Fletcher, M., Norrie, D. H. 2002b. An Agent-Based Approach to
Reconfiguration of Real-Time Distributed Control Systems, IEEE Transactions on
Robotics and Automation, Vol. 18, No. 4, pp. 444-451.

Brooks, R, A. 1991. Intelligence without Reason, Proceedings of the 12th International
Joint Conference on Artificial Intelligence, pages 569–595, Sydney, Australia, pp. 569
– 595.

Bussmann, S., Jennings, N. R., Wooldridge, M. 2004. Multiagent Systems for
Manufacturing Control: A Design Methodology, Springer.

Bussmann, S., Schild, K. 2001. An Agent-based Approach to the Control of Flexible
Production Systems, Proceedings of the 8th IEEE International Conference on
Emergent Technologies and Factory Automation (ETFA 2001), Vol. 2, Antibes Juan-
les-pins, France, pp. 481-488.

Castro, J., Kolp, M., Mylopoulos, J. 2002. Towards Requirements-Driven Information
Systems Engineering: The Tropos Project, Université catholique de Louvain, Institut
d’administration et de gestion, Working paper 31/02.

Chakraborty, S. 2003. Agent-Based Approach to Fault Recovery in a Process
Automation System, Master’s Thesis, Helsinki University of Technology and
Technische Universität Darmstadt.

Chiu, S., Chen, Y.-L., Provan, G., Maturana, F., Staron, R., Hall, K. 2003. Distributed
Diagnostics & Reconfiguration for Shipboard Chilled Water System, 13th
International Ship Control Systems Symposium (SCSS), Orlando, FL.

Chokshi, N. N., McFarlane, D. C. 2002. Rationales for Holonic Applications in
Chemical Process Industry. In: Marik, V., Stepankova, O., Krautwurmova, H., Luck,
M. (eds.). Multi-Agent Systems and Applications II, Springer, Germany, pp. 323-335.

84

Chokshi, N. N. 2004. Holonic Process Control: A Distributed, Collaborative
Approach to the Control of Chemical Process Operations, Doctorate thesis, University
of Cambridge, Churchill College.

Cockburn, D., Jennings, N. R. 1995. ARCHON: A Distributed Artificial Intelligence
System for Industrial Applications, In: O'Hare, G. M. P., Jennings, N. R. (eds.)
Foundations of Distributed Artificial Intelligence. Wiley & Sons.

Deen, S. (ed.) 2003. Agent-Based Manufacturing, Advances in the Holonic Approach.
Springer.

Deen, S. M., Fletcher, M. 2000. Temperature equilibrium in multi-agent systems,
Proceedings of the 11th International Conference on Database and Expert Systems
Applications (DEXA 2000), London, UK.

de Kleer, J., Braun, J. 1984. A Qualitative Physics Based on Confluences, Artificial
Intelligence, Vol. 24, pp. 7-84.

desJardins, M., Durfee, E., Ortiz, C., Wolverton, M. 1999. A Survey of Research in
Distributed Continual Planning, AI Magazine, Winter, pp. 13-22.

Duffie, N. A., Chitturi, R., Mou, J. 1987. Fault-tolerant heterarchical control of
heterogeneous manufacturing system entities, Journal of Manufacturing Systems, Vol.
7, pp. 315-327, 1987.

Durfee, E. H. 1999. Distributed Problem Solving and Planning, In: Weiss, G. (ed.)
Multiagent Systems. MIT Press, pp. 121-164.

Fajt, M. 2003. Information agents in process automation, Master’s Thesis, Helsinki
University of Technology, Automation Technology Laboratory.

Ferber, J. 1999. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Pub. Co.

FIPA. 2002a. FIPA Abstract Architecture Specification, FIPA Standard SC00001.

FIPA 2002b. FIPA ACL Message Structure Specification, FIPA Standard SC00061.

FIPA. 2002c. FIPA Communicative Act Library Specification, FIPA Standard
SC00037.

FIPA. 2002d. FIPA Contract Net Interaction Protocol Specification, FIPA Standard
SC00029.

FIPA. 2002e. FIPA Request Interaction Protocol Specification, FIPA Standard
SC00026.

FIPA. 2004. FIPA Agent Management Specification, FIPA Standard SC00023.

FIPA. 2005. FIPA homepage, http://www.fipa.org [referenced 31.10.2005]

FIPA-OS. 2005. http://sourceforge.net/projects/fipa-os [referenced 31.10.2005]

Fisher, K., Muller, J. P., Pischel, M. 1994. Unifying Control in a Layerred Agent
Architecture, Tchnical Report TM-94-05, DFKI GmbH.

85

Flake, S., Geiger, C., Kustler, J. M. 2001. Towards UML-based Analysis and Design
of Multi-Agent Systems, Proceedings of the International NAISO Symposium on
Information Science Innovations in Engineering of Natural and Artificial Intelligent
Systems (ENAIS 2001), Dubai.

Fletcher, M., Brennan, R. W. 2002. Designing an Integrated Holonic Scheduler with
JACK. Proceedings of the 13th International Workshop on Database and Expert
Systems Applications, (DEXA 2002).

Fletcher, M., Brennan, R. W., Norrie, D. H., Fleetwood, M. 2001. Reconfiguration
Processes in a Holonic Sawmill, Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, Tucson, USA, pp. 158-163.

Fletcher, M., Deen, S.M. 2001. Fault-Tolerant Holonic Manufacturing Systems,
Concurrency and Computation Practice & Experience, Vol.13, No.1, pp.43-70.

Forbus, K. D. 1996. Qualitative reasoning, In: Tucker (ed.), The Computer Science
and Engineering Handbook, CRC Press.

GE Fanuc Automation. 2005. GE Fanuc Automation homepage. http://www.gefanuc.
com [referenced 31.10.2005]

Georgeff, M., Pell, B., Pollack, M., Tarnbe, M., Wooldridge, M. 1999. The Belief-
Desire-Intention Model of Agency, In: Muller, J. P., Singh, M., Rao, A. (eds.)
Intelligent Agents V, Lecture Notes in AI, Vol. 1365, Springer-Verlag.

Hall, K, H., Staron, R. J., Vrba, P. 2005. Experience with Holonic and Agent-Based
Control systems and Their Adoption by Industry, Proceedings of the 2nd International
Conference on Applications of Holonic and Multi-Agent Systems (HoloMAS 2005),
Copenhagen, Denmark.

Heck, F., Laengle, T., Wörn, H. 1998. A Multi-Agent Based Monitoring and
Diagnostics System for Industrial Components, Proceedings of the DX´98, pp. 63-69.

Heikkilä, T., Kollingbaum, M., Valckenaers, P., Bluemink, G.-J. 1999. manAge: An
Agent Architecture for Manufacturing Control, Computers in Industry, Vol. 46,
pp. 315-331.

Huber, M. J. 1999. JAM Agents in a Nutshell, Version 0.61+0.79i, Intelligent
Reasoning systems.

Huber, M. J. 2000. JAM: A BDI-theoretic Mobile Agent Architecture, AgentLink
News, No. 5, pp. 3-6.

Huhns, M. N., Stephens, L. M. 1999. Multiagent Systems and Societies of Agents, In:
Weiss, G. (ed.) Multiagent Systems. MIT Press, pp. 79-120.

Ingrand, F., Georgeff, M., Rao, A. 1992. An Architecture for Real-Time Reasoning
and System Control, IEEE Expert, Vol. 7, No. 6, pp. 34-44.

ISA. 2000. Enterprise - control system integration, Part 3: Models of manufacturing
operations. Draft 3.

Iwasaki, Y. 1997. Real World Applications of Qualitative Reasoning, IEEE Expert,
Vol. 12, No. 3, pp. 16-21.

86

JADE. 2005. JADE homepage. http://jade.tilab.com [referenced 31.10.2005]

Jadex. 2005. Jadex homepage. http://vsis-www.informatik.uni-hamburg.de/projects/
jadex [referenced 31.10.2005]

Jennings, N. R. 2000. On Agent-Based Software Engineering, Artificial Intelligence,
No. 117, pp. 277-296.

Jennings, N. R. 2001. An agent-based approach for building complex software
systems. Communications of the ACM, Vol. 44, No. 4, pp. 35-41.

Jennings, N. R., Bussmann, S. 2003. Agent-Based Control Systems, IEEE Control
Systems Magazine, pp. 61-73.

Jennings, N.R., Mamdani, E. H., Corera, J. M., Laresgoiti, I., Perriollat, F., Skarek, P.,
Varga, L. Z. 1996. Using Archon to Develop Real-World DAI Applications, Part 1,
IEEE Expert: Intelligent Systems and Their Applications, Vol. 11, No. 6, pp. 64-70.

Jennings, N. R., Wooldridge, M. 2000. Agent-Oriented Software Engineering,
Proceedings of the 9th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World: Multi-Agent System Engineering (MAAMAW-99).

Jess. 2005. Jess homepage. http://herzberg.ca.sandia.gov/jess [referenced 31.10.2005]

Karhela, T. 2002. A Software Architecture for Configuration and Usage of Process
Simulation Models, Software Component Technology and XML-based Approach,
VTT Publications No. 479, Espoo, Finland.

Krebsbach, K., D., Musliner, D. J. 1998. Applying a Procedural and Reactive
Approach to Abnormal Situations in Refinery Control. Proceedings of the Conference
on Foundations of Computer-Aided Process Operations (FOCAPO).

Kuikka, S. 1999. A batch process management framework, Domain-specific, design
pattern and software component based approach. VTT Publications No. 398, Espoo,
Finland.

Labrou, Y., T. Finin, T., Peng, Y. 1999. Agent Communication Languages: The
Current Landscape, IEEE Intelligent Systems, Vol. 14, No. 2, pp. 45-52.

Luck, M., Ashri, R., D'Iverno, M. 2004. Agent-Based Software Development, Artech
House, Inc.

Luder, A., Klostermeyer, A., Peschke, J., Bratoukhine, A., Sauter, T. 2005.
Distributed Automation: PABADIS versus HMS, IEEE Transactions on Industrial
Informatics, Vol. 1, No. 1, pp. 31-38.

Marik, V., Fletcher, M., Pechoucek, M. 2002a. Holons & Agents: Recent
Developments and Mutual Impacts, In: V. Marik, V., Stepankova, O., Krautwurmova,
H., Luck, M. (eds.) Multi-Agent Systems and Applications II, Springer, Germany, pp.
233-267.

Marik, V., Stepankova, O., Krautwurmova, H., Luck, M. (eds.). 2002b. Multi-Agent
Systems and Applications II, Springer, Germany.

Marik, V., McFarlane, D. 2005. Industrial Adoption of Agent-Based Technologies,
IEEE Intelligent Systems, Vol. 20, No. 1, pp. 27-35.

87

Maturana, F., Tichy, P., Staron, R., Slechta, P. 2002. Using Dynamically Created
Decision-Making Organizations (Holarchies) to Plan, Commit and Execute Control
Tasks in a Chilled Water System, Proceedings of the 13th International Workshop on
Database and Expert Systems Applications (DEXA 2002).

Maturana, F., Tichy, P., Slechta, P., Staron, R., Discenzo, F., Hall, K., Marik, V.
2003. Cost-Based Dynamic Reconfiguration System for Evolving Holarchies,
Proceedings of the 1st International Conference on Industrial Applications of Holonic
and Multi-Agent Systems, HoloMAS 2003, Prague, Czech Republic, pp. 310-320.

Maturana, F. P., Staron, R.J, Hall, K. H. 2005a. Methodologies and Tools for
Intelligent Agents in Distributed Control, IEEE Intelligent Systems, Vol. 20, No. 1,
pp. 42-49.

Maturana, F., Staron, R., Tichy, P., Slechta, P. Vrba, P. 2005b. A Strategy to
Implement and Validate Industrial Applications of Holonic Systems, Proceedings of
the 2nd International Conference on Applications of Holonic and Multi-Agent
Systems (HoloMAS 2005), Copenhagen, Denmark.

McFarlane, D., Bussmann, S. 2003. Holonic Manufacturing Control: Rationales,
Developments, and Open Issues. In: Deen, S. (ed.) Agent-Based Manufacturing,
Advances in the Holonic Approach, pp. 303-326.

Measarovic, M. D., Macko, D. & Takahara, Y. Theory of Hierarchical, Multilevel
Systems, Academic Press, New York, USA, 1970.

Neligwa, T., Fletcher, M. 2003. An HMS operational model, In: Deen, S. M. (ed.)
Agent Based Manufacturing: Advances in the Holonic Approach, Springer-Verlag,
pp. 163-191.

Odell, J., Parunak, H. V. D., Bauer, B. 2001. Representing Agent Interaction
Protocols in UML, In: In: Ciancarini, P., Wooldridge, M. (eds.) Agent-Oriented
Software Engineering, Springer-Verlag.

Obitko, M., Marik, V. 2003. Adding OWL Semantics to Ontologies, Proceedings of
the 1st International Conference on Applications of Holonic and Multi-Agent Systems
(HoloMAS 2003), Prague, Czech Republic.

OPI. 2005. Odense Production Information homepage, http://www.opi.dk [referenced
31.10.2005]

Parunak, H. V. D. 1987. Manufacturing experience with the Contract Net. In: Huhns,
M. N. (ed.), Distributed artificial intelligence, Pitman, London, UK, pp. 285–310.

Parunak, H. V. D. 1997. “Go to the Ant”: Engineering Principles from Natural Multi-
Agent Systems, Annals of Operations Research, Vol. 75, pp. 69-101.

Parunak, H. V. D. 1999. Industrial and Practical Applications of DAI, In: Weiss, G.
(ed.) Multiagent Systems. MIT Press, pp. 377-421.

Pechoucek, M., Vokrinek, J., Becvar, P. 2005. ExPlanTech: Multiagent Support for
Manufacturing Decision Making, IEEE Intelligent Systems, Vol. 20, No. 1, pp. 67-74.

Pirttioja, T. 2002. Agent-Augmented Process Automation System, Master's Thesis,
Helsinki University of Technology, Automation Technology Laboratory.

88

Pirttioja, T, Seilonen, I., Appelqvist, P., Halme, A., Koskinen, K. 2004. Agent-based
Architecture for Information Handling in Process Automation, Proceedings of the 6th
IFIP International Conference on Information Technology for Balanced Automation
Systems in Manufacturing and Services (BASYS 2004), Vienna, Austria.

Rijnsdorp, J. E. 1991. Integrated Process Control and Automation. Process
Measurement and Control, 2. Elsevier Science Publishers B.V.

Russell, S., Norvig, P. 1995. Artificial Intelligence, A Modern Approach. Prentice
Hall.

Sanz, R. 2000. Agents for Complex Control Systems, In: Samad, T., Weyrauch, J.
(eds.) Automation, Control and Complexity. Wiley & Sons, England, pp. 171-190.

Seilonen, I., Appelqvist, P., Halme, A., Koskinen, K. 2002a. Agent-Based Approach
to Fault-Tolerance in Process Automation Systems, 3rd International Symposium on
Robotics and Automation (ISRA 2002), Toluca, Mexico.

Seilonen, I., Appelqvist, P., Vainio, M., Halme, A., Koskinen, K. 2002b. A Concept
of an Agent-Augmented Process Automation System, 17th IEEE International
Symposium on Intelligent Control (ISIC 2002), Vancouver, Canada.

Seilonen, I., Koskinen, K., Pirttioja, T., Appelqvist, P., Halme, A. 2003a. Agent-
Based Approach to Enhanced Flexibility in Process Automation Systems, Proceedings
of the 3rd International Symposium on Open Control Systems 2003 (SoftSympo
2003), Helsinki, Finland.

Seilonen, I., Pirttioja, T., Appelqvist, P., Halme, A. Koskinen, K. 2003b. Distributed
Planning Agents for Intelligent Process Automation, Proceedings of the 5th IEEE
International Symposium on Computational Intelligence in Robotics and Automation
(CIRA 2003), Kobe, Japan.

Seilonen, I., Pirttioja, T., Appelqvist, P., Halme, A. Koskinen, K. 2003c. Cooperating
Subprocess Agents in Process Automation, Proceedings of the 1st International
Conference on Applications of Holonic and Multi-Agent Systems (HoloMAS 2003),
Prague, Czech Republic.

Seilonen, I., Pirttioja, T., Appelqvist, P., Halme, A., Koskinen, K. 2004. Modelling
Cooperative Control in Process Automation with Multi-Agent Systems, Proceedings
of the 2nd IEEE International Conference on Industrial Informatics (INDIN 2004),
Berlin, Germany.

Seilonen, I., Koskinen, K., Pirttioja, T., Appelqvist, P., Halme, A. 2005. Reactive and
Deliberative Control and Cooperation in Multi-Agent System Based Process
Automation, 6th IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA 2005), Espoo, Finland.

Sen, S, Weiss, G. 1999. Learning in Multiagent Systems, In: Weiss, G. (ed.)
Multiagent Systems. MIT Press, pp. 259-298.

Singh, M. P., Huhns, M. N. 2005. Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, Ltd.

89

Singh, M. P., Rao, A. S., Georgeff, M. P. 1999. Formal Methods in DAI: Logic-Based
Representation and Reasoning, In: Weiss, G. (ed.) Multiagent Systems. MIT Press,
pp. 331-376.

Smar. 2002. DFI 302 – User’s Manual, Smar International Corporation.

Tichy, P., Slechta, P., Maturana, F., Balasubramanian, S. 2002. Industrial MAS for
planning and control. In: Marik, V., Stepankova, O., Krautwurmova, H., Luck, M.
(eds.) Multi-Agent Systems and Applications II, Springer, Germany, pp. 280-295.

Tyan, C.-Y., Wang, P. P., Bahler, D. R. 1995. The Design of an Adaptive Multiple
Agent Constraint-Based Controller for a Complex Hydraulic System, Proceedings of
the International Joint Conference of CFSA/IFIS/SOFT'95 on Fuzzy Theory and
Applications, Taipei, Taiwan, pp. 15-21.

Vaario, J., Ueda, K. 1996. Self-organization in manufacturing systems, Japan-USA
Symposium on Flexible Automation, Vol. 2, ASME, Boston, pp. 1481-1484.

van Breemen, A. J. N. 2001. Agent-Based Multi-Controller Systems, Doctorate thesis,
University of Twente.

van Breemen, A., de Vries, T. 2000. An Agent-Based Framework for Designing
Multi-Controller Systems. Proceedings of the Fith International Conference on the
Practical Applications of Intelligent Agents and Multi-Agent Technology,
Manchester, UK, 10-12.4. pp. 219-235.

van Breemen, A. J. N., de Vries, T. J. A. 2001. Desing and Implementation of a Room
Thermostat Using an Agent-Based Approach, Control Engineering Practice, Vol. 9,
pp. 233-248.

van Breemen, A. J. N., de Vries, T. J. A., Striper, J. B. 2000. An Agent-Based
Framework for Local Model Approaches. 16th IMACS World Congress.

Walker, S. S., Brennan, R. W., Norrie, D. H. 2005. Holonic Job Shop Scheduling
Using a Multiagent System, IEEE Intelligent Systems, Vol. 20, No. 1, pp. 50-57.

Wang, H., Wang, C. 1997. Intelligent Agents in the Nuclear Industry, IEEE
Computer, Vol. 30, No. 11, pp. 28-34.

Weiss, G. (ed.) 1999. Multiagent Systems. MIT Press.

Weiss, G. 2002. Agent Orientation in Software Engineering. Knowledge Engineering
Review, Vol. 16, No. 4, pp. 349-373.

Wooldridge, M. 1999. Intelligent Agents, In: Weiss, G. (ed.) Multiagent Systems.
MIT Press, pp. 27-77.

Wooldridge, M., Ciancarini, P. 2001. Agent-Oriented Software Engineering: The state
of the Art, In: Ciancarini, P., Wooldridge, M. (eds.) Agent-Oriented Software
Engineering, Springer-Verlag.

Wörn, H., Längle T., Albert M. 2002. Multi-Agent Architecture for Monitoring and
Diagnosing Complex Systems, Proceedings of the 4th International Workshop on
Computer Science and Information Technologies.

90

91

Wyns, J. 1999. Reference Architecture for Holonic Manufacturing Systems – The
Key to Support Reconfiguration and Evolution, Doctorate thesis, Catholic University
of Leuven.

Ygge, F. 1998. Market-Oriented Programming and its Application to Power Load
Management, Doctorate thesis, Lund University, Department of Computer Science,
Sweden, 224 p.

Ygge, F., 1999. Akkermans, H. Decentralised Markets versus Central Control: A
Comparative Study, Journal of Artificial Intelligence Research, Vol. 11, pp. 301-333.

Yokoo, M., Ishida, T. 1999. Search Algorithms for Agents, In: Weiss, G. (ed.)
Multiagent Systems. MIT Press, pp. 165-199.

HELSINKI UNIVERSITY OF TECHNOLOGY
INFORMATION AND COMPUTER SYSTEMS IN AUTOMATION

Report 1 Koskinen, K., Aarnio, P. (eds.),
 Internet-, Intranet- and Multimedia Applications in Automation. June 1998.

Report 2 Koskinen, K., Aarnio, P. (eds.),
 PC-based Automation Systems and Applications. June 1999.

Report 3 Mattila, M.,
 Prosessilaitteen etätukijärjestelmä – ohjelmistoarkitehtuuri ja ohjelmistotekniset ratkaisut. March 2000.

Report 4 Strömman, M.,

Ohjelmoitavan logiikan ohjelmointi ohjelmistotuotantoprosessina. March 2002.

Report 5 Aarnio, P.,

Simulation of a Hybrid Locomotion Robot Vehicle. June 2002.

Report 6 Peltola, J.,

Uudet automaatiojärjestelmät - komponenttipohjaisen automaatiosovelluksen suoritusympäristö. September
2002.

Report 7 Fortu, T.,

Enterprise Resource Planning - Integration with Automation Systems. September 2002.

Report 8 Mattila, M.,

Condition Monitoring of an X-ray Analyzer. February 2003.

Report 9 Sierla, S.,

Middleware Solutions for Automation Applications - Case RTPS. June 2003.

Report 10 Honkanen. T.,

Modelling Industrial Maintenance Systems and the Effects of Automatic Condition Monitoring, February
2004.

Report 11 Seilonen, I.,

An Extended Process Automation System: An Approach based on a Multi-Agent System, February 2006.

ISBN 951-22-7976-2

ISBN 951-22-7977-0 (PDF)

ISSN 1456-0887
Picaset Oy, Helsinki 2006

	
	Preface
	 Table of Contents
	 List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Research problem
	1.3 Research objectives
	1.4 Research methods
	1.5 Contributions
	1.6 Outline of the thesis

	2 Multi-agent systems and process automation
	2.1 Introduction
	2.2 Multi-agent systems methodology
	2.2.1 Multi-agent systems
	2.2.2 Agent and multi-agent system architectures
	2.2.3 Distributed search
	2.2.4 Distributed planning

	2.3 Multi-agent system applications in process automation
	2.3.1 Overview of multi-agent system applications in automation
	2.3.2 Process automation as an application domain
	2.3.3 Multi-agent system applications in process automation
	2.3.4 Multi-agent system applications in discrete manufacturing
	2.3.5 Multi-agent systems as systems development method

	2.4 Qualitative reasoning
	2.5 Discussion

	3 Agent platform for process automation
	3.1 Introduction
	3.2 Specification of the agent platform
	3.2.1 Agent society model
	3.2.2 Agent model

	3.3 Test environment for the agent platform
	3.3.1 Test process and automation system
	3.3.2 Test agent platform and application

	3.4 Discussion
	3.4.1 Design choices in the specification
	3.4.2 Effects on the properties of automation
	3.4.3 Conclusions and open questions

	4 Sequential control based on distributed planning
	4.1 Introduction
	4.2 Specification of the sequential control method
	4.2.1 Planning at the agent society level
	4.2.2 Planning at the agent level

	4.3 Experiments with the sequential control method
	4.3.1 Specification of the experiments
	4.3.2 Application design for the experiments
	4.3.3 Results from the experiments

	4.4 Discussion
	4.4.1 Design choices in the specification
	4.4.2 Effects on the properties of automation
	4.4.3 Conclusions and open questions

	5 Supervisory control based on distributed search
	5.1 Introduction
	5.2 Specification of the supervisory control method
	5.2.1 Search at the agent society level
	5.2.2 Search at the agent level

	5.3 Experiments with the supervisory control method
	5.3.1 Specification of the experiments
	5.3.2 Application design for the experiments
	5.3.3 Results from the experiments

	5.4 Discussion
	5.4.1 Design choices in the specification
	5.4.2 Effects on the properties of automation
	5.4.3 Conclusions and open questions

	6 Discussion and conclusions
	6.1 Discussion
	6.2 Conclusions
	6.3 Further research

	 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

