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Chapter 1

Introduction

Rapid development of electronic circuits has produced new and fast devices, for
example computers with high calculation capacity. This has had a big effect in
computational science so that, for example, the calculations of this thesis have be-
come possible. The major trend of the development of electronic components is to
improve fabrication methods so that the size of the components becomes smaller
and more circuits can be included on a chip. Smaller components also work with
smaller currents and voltages and therefore more efficiently with less energy con-
sumption. However, the diminishing of the size cannot go on forever. In the
nanometer-scale devices the electron wavelength on the Fermi-level is compara-
ble to the feature size and quantum mechanical effects arise. On the other hand,
these effects are not necessarily harmful, as they can also be used to design totally
new types of electronic components. Nano-electronic components can produce
same functions as traditional components, for example amplification or logic-gate
operations. The physics behind their function is, however, different. Besides the
possible use in nano-electronic components, nanostructures also offer a platform
to explore the fundamental physics of interacting electrons.

Different layer structures and single atoms or molecules between two electrodes
are typical nanostructures. Various types of nano-devices have recently been ob-
jects of intensive research. Fabrication and measuring techniques have developed
so that the results are of good quality with low noise and systematic behavior
between samples. At the same time the theoretical interest in explaining the prop-
erties of these structures has increased as well. Many theoretical methods used
previously in modeling bulk materials properties have been transferred to model
the new structures. However, some nanostructures have characteristic proper-
ties that pose problems when old methods are applied directly. One of them is
that nanostructures, in contrast to crystal lattices, do not have repeating structures
which would enable the use of the periodic boundary conditions. If the periodic
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CHAPTER 1. INTRODUCTION 2

boundary conditions are used anyway, spurious finite-size effects can appear.

In this work we have modeled electronic structures and transport properties of
nanostructures. In the main part of the work the Green’s function method is used
combined with the density-functional theory (DFT). Using the Green’s function
method a system can be made effectively infinite with only small remaining finite-
size effects. It is also possible to calculate the electric current through the nanos-
tructure when there is a finite bias voltage over the system. The downside of the
Green’s function method is that it is computationally heavy as compared to the
wave-function methods available for periodic systems.

During this work the Green’s function-DFT scheme was implemented as computer
programs using the finite-element method. There are three different programs,
namely one-, two- and three-dimensional versions, in order to model different
types of nanostructures. Because the development of the methods and implement-
ing the solvers was quite a large part of the work, they occupy a relatively large
part of this summary.

The results of the work are published in articles I-V. In Publication I the modeling
is done using the MIKA code [1]. There the real-space wave-function method is
used and conductances of sodium atom chains are calculated using the Friedel
sum rule. These results are compared later with the Green’s function calculations.
In the other Publications II-V the Green’s function method is used. Publication IV
uses the mathematically one-dimensional version, Publications II and III the two-
dimensional version and Publication V the three-dimensional version. In every
paper the theoretical and numerical schemes to solve these systems are explained.

The organization of this thesis summary is as follows. In Chapter 2 the general
transport properties of nanostructures are introduced. In Chapters 3 and 4 the
theoretical background and the numerical methods are explained, respectively.
Chapter 5 is a summary for the results of the modeled nanostructures.



Chapter 2

Nanostructures between electrodes

In nanostructures physical phenomena depend on features with dimensions of the
order of nanometers. Examples of nanostructures include thin atomic layers, sin-
gle molecules, atomic clusters and chains and structures such as quantum dots and
wires manufactured in to the two-dimensional electron gas at semiconductor inter-
faces. The fabrication and the modeling methods of these various nanostructures
are quite different. In this chapter an introduction to these aspects is given. More
specifically, in this thesis transport properties of nanostructures are modeled. We
concentrate on the nano-scale systems connected to leads used to measure the
current as a function of the bias voltage. The fabrication and modeling of isolated
nanostructures are different subjects and not considered here.

2.1 Fabrication and measuring techniques

Most of the current fabrication and measurements of nano-scale devices concen-
trate on single components, not on complicated circuits. A typical problem is
that even if properties are qualitatively similar, differences appear easily between
different samples. For small nano-devices which consist of only few atoms or
molecules the controlled fabrication is not easy. Even one impurity in a wrong
place can have a huge impact on conductance. However, in many measurements
the purpose is not to build an amplifier or an other functional device, but to in-
vestigate the basic physical properties, for example, the chemical bonds between
atoms. This kind of measurements are done, for example, using a scanning tun-
neling microscope.

A scanning tunneling microscope has a sharp tip which is brought close to the
substrate surface [2]. The tip and the surface are made of conducting material,
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CHAPTER 2. NANOSTRUCTURES BETWEEN ELECTRODES 4

so that a small bias voltage between them causes an electron tunneling current.
It is possible to image the surface by sweeping the tip near the surface so that
the tunneling current is kept constant by varying the height of the tip from the
surface. The recorded height position of the tip gives the structure of the surface
within the atomic resolution. Using this method it is also possible to measure the
conductance of a single molecule. The molecule is located on the surface and the
tip is placed on top of it. By changing the distance between the tip and the surface
it is possible to control the connection between the tip and the molecule. An
example is given Figure 2.1 where a benzene-1,4-dithiolate molecule is placed
between two electrodes. In this molecular electronics the basic characteristics
of devices are mainly determined by the chemical properties of the molecules
involved.

An atomic chain can also be made using the scanning tunneling microscope.
There the tip is brought in contact with the surface and then slowly drawn away so
that a small atomic wire is formed in the contact region. Another option is atomic
wires made by breaking the metallic connection by a piezoelectric sample holder
(mechanically controlled break junction technique) [3].

Figure 2.1: Example of a molecular electronic system, the benzene-1,4-dithiolate
molecule placed between two electrodes. Left: the schematic picture of the biased
system. Right: the calculated electron density on the plane intersecting the atoms.

There are nanostructures which consist of many atoms and the properties of which
can be more artificially varied than those in the molecular electronics [4, 5, 6]. The
idea of these devices is presented schematically in Figure 2.2. These devices are
made, for example, using the semiconductor heterostructure techniques so that
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two different semiconductors (for example, GaAs and GaAlAs) are evaporated
on top of each others. The movement of electrons is strongly restricted in the
interface between the semiconductors so that electrons form a two-dimensional
electron gas.

Two-dimensional nanostructures have interesting properties. The impurities re-
sponsible the doping region are located far away from the interface, reducing
electron scattering from impurities and increasing the mean free path. The Fermi
wavelength is also large as compared to the dimensions of the nanostructure. In
order to make different types of nanostructures, such as quantum dots, quantum
wires and quantum antidots, the electron motion has to be restricted also in direc-
tions along the interface. This is done using metallic gates which are evaporated
on the top of the layer structure. This makes it possible to vary the size and shape
of the device in a controlled way.

i-GaAs

n-AlGaAs

n-AlGaAs i-GaAs

Ec

Ef

Two-dimensional 

electron gas
Metallic gates

Electrons in nanostructure

Figure 2.2: In two-dimensional nanostructures two-dimensional electron gas is
located in the interface between AlGaAs-GaAs. Metallic gates are used to restrict
the electrons so that nanostructures are formed. Left: schematic picture of two-
dimensional nanostructures. Right: band diagrams at the AlGaAs-GaAs interface.

An other group of semiconductor nano-systems are the atomic layer structures.
They are hetero-structures in which thin layers of different semiconductor materi-
als are evaporated on the top of each others. Adjacent semiconductor layers have
different band gaps forming potential barriers for electrons moving in the perpen-
dicular direction. Distances between potential barriers are so small that electron
states are quantized in the direction of the transport. One of the most common de-
vices of this kind is the resonant tunneling diode, which has two potential barriers
and between them a quantum well hosting resonance states for electrons. Other
heterostructures are, for example, thin insulating oxide layers in CMOS transis-
tors.



CHAPTER 2. NANOSTRUCTURES BETWEEN ELECTRODES 6

2.2 Electron transport through nanostructures

When electrons move in a material they scatter from impurities, other lattice de-
fects and from phonons. Usually, the scattering from other electrons is less im-
portant [7]. The scattering causes electrical resistance. In normal-size electronic
components this resistance follows Ohm’s law for the current I and voltage V , so
that the resistance R is proportional to the length L of the device

V = RI = ρR
L

A
I. (2.1)

Above, ρR is the resistivity of the material and A the perpendicular area of the
device. Ohm’s law is understandable, because typically the scatterers are uni-
formly distributed into the material. A longer device has also more scatterers to
destroy the collective electron drift movement. If we make the device smaller the
number of scatterers diminishes. In this Thesis we consider very small devices
where there are no impurity scatterers. In this regime it is not surprising that the
statistical Ohm’s law is not valid and other theories have to be used.

The electron transport properties of devices can be characterized by the de Broglie
wavelength, the mean free path and the phase-relaxation length of electrons. Ohm’s
law is valid for devices which have dimensions much longer than these lengths.
The de Broglie wavelength is here the electron wavelength at the Fermi-level. If
the size of the device is of the same order of magnitude as the de Broglie wave-
length, quantum mechanical phenomena appear. For example, electrons have a
discrete energy spectrum. The mean free path of the electrons tells how long a
distance an electron moves in average before it has lost its original momentum by
scattering. Because in a typical collision an electron loses only a part of the mo-
mentum the mean free path is longer than distances between individual collisions.

The phase-relaxation length is the average length which an electron can move be-
fore collisions destroy its original phase. As in the case of the mean free path
a single collision destroys only a part of the phase. More specifically, in order
to affect the electron phase, collisions have to be inelastic, so that typically the
phase-relaxation length is longer than the mean-free path. If the size of the de-
vice is smaller than the phase-relaxation length, waves of electrons interfere and
quantum mechanical phenomena appear. These phenomena have large effects on
the transport properties of devices. This is the case in a typical nanostructure at
least as a first approximation. In this work we concentrate only on the coherent
transport of electrons and ignore the inelastic effects.

In two-dimensional nanostructures, which are introduced in Chapter 2.3, the phase-
relaxation length is typically large and the de Broglie wavelength of an electron
is comparable to the size of the device. Consider next a two-dimensional wire of
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length L between two large electrodes or electron reservoirs. In the wire electron
states in the perpendicular direction of the wire are quantized. The electron den-
sity per unit length corresponding to a given perpendicular state in the momentum
range between k and k + dk and spin σ is

nσ(k) dk =
1

L

L

2π
fσ(k) dk =

1

2π
fσ(k) dk, (2.2)

where fσ(k) is the Fermi distribution function and k is the projection of the wave
vector along the wire direction. Note that we use the SI units in this chapter for
clarity and not the atomic units as in the remaining chapters of the thesis. For small
bias voltages the electrodes are approximately in the equilibrium and have local
quasi Fermi-levels with distribution functions fRσ(k) and fLσ(k) for the right and
left lead, respectively. In contrasts the wire region does not have a well defined
Fermi-level. The electron current carried by one perpendicular state, the so-called
conducting mode, is

I =
∑

σ

∫ ∞

0

e vσ(k)nσ(k) dk =
∑

σ

∫ ∞

0

e
h̄k

m∗
e

(

fRσ(k)

2π
−
fLσ(k)

2π

)

dk. (2.3)

Above v(k) is the electron velocity along the wire and m∗
e is the electron effective

mass. In the zero temperature limit the Fermi distributions are step functions so
that Equation (2.3) has the form

I =
∑

σ

∫

√
2meµR/h̄

√
2meµL/h̄

e
h̄k

me

1

2π
dk =

∑

σ

e2

h

µR − µL

e
=

∑

σ

e2

h
VB, (2.4)

where µR/L are the chemical potentials of the leads and their relative values de-
pend on the bias voltage VB so that µR − µL = eVB . From Equation (2.4) we see
that the conductance of one conducting mode, the so-called conductance quantum
is

G0 =
2e2

h
. (2.5)

It is the maximum conductance of a single conducting mode with two spin states.
In practice, a mode is not necessarily fully conducting, because electrons can
scatter in the nanodevice and at its connections to the electrodes. The probability
for an electron to pass the device in the conducting mode i is marked by Ti,σ. Now
the total conductance of the wire has the form

G =
∑

σ,i

e2

h
Tσi. (2.6)

This equation is the so-called Landauer formula for the conductance [8]. It tells
that the conductance of a thin wire stays finite even for small values of the length
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L. The conductance increases to infinity, meaning zero resistance, if we have a
large device for which the number of conducting modes is infinite. However, a
very large number of conducting modes means a large device which is no longer
considered to be a nanodevice. The same result of Equation (2.6) can also be de-
rived for three-dimensional systems. This kind of quantization of the electron con-
ductance is seen in many systems, for example, in quantum wires and in atomic
chains which we have modeled in this thesis (see Chapter 5). The Green’s function
method used in this thesis is analogous to this formula.

2.3 Models for nanostructures

Transport properties of nano-structures are modeled using different quantum-mec-
hanical methods approximating different properties of the structure. In some sim-
ulations electron interactions are included carefully so that many-particle effects
are included. These models include, for example, the Kondo model and the Ander-
son impurity model [9]. Nanostructures in these models do not have any specific
geometry, they are just considered as discrete electron states.

Other groups of models consider the specific shape of the nanostructure. The
discrete atomic structure can also be included. This means that it is possible to
get information about the effects of structural changes of the system. Typically,
the electron-electron interactions are then included in a mean-field manner. This
means that some many-particle effects can not be seen.

In this work the density-functional theory (DFT) is used. It is a mean field the-
ory which is successfully used in computational materials physics and chemistry
obtaining results in good quantitative agreement with measurements. In order to
model transport properties the nanostructure is connected to the electrodes. This
means that the size of the system is infinite. In practice, we have to define the
calculation volume Ω to be finite. In Publication I this is done simply by making
the leads large but finite. This system is easy to implement and solve, but the
bad consequence is that the finite-size effects are large. The other possibility is
that periodic boundary conditions are employed, so that the size of the system is
infinite. However, the system can still suffer from finite size effects, due the finite
number of wave functions used in the modeling and the interaction of the system
with its artificial periodic images.

In order to handle the finite-size effects we use the scattering formalism. The
model is depicted in Figure 2.3. The system is divided into three regions: the
calculation volume Ω, the left lead ΩL and the right lead ΩR. At the boundaries
∂ΩP1 and ∂ΩP2 the electron density vanishes or the periodic boundary conditions
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∂ΩL

∂ΩP1

∂ΩP2

∂ΩR

ΩL ΩR

Nanostructure Jellium

Semi infinite leads

Ω

Figure 2.3: Schematic sketch about a nanostructure between two lead of infinite
size.

are applied. Open boundary conditions are applied at the boundaries ∂ΩL and
∂ΩR. The open boundary conditions mean that electrons can travel through the
boundary without any reflection so that there is a continuous flow of electrons
from the leads and at the same time other electrons are leaving the central calcu-
lation volume Ω through the boundaries ∂ΩL and ∂ΩR.

The electron density and the current for an open scattering system can be modeled
in different ways. One possibility is to solve the electron wave functions in the
central region for the open system. The wave functions obey the open boundary
conditions which depend on electron energy, so that there exist an infinite num-
ber of wave functions. This is because for an infinite system the energy spectrum
of electrons is continuous. Because the central quantity is the total electron den-
sity, calculations include integrations over the electron energy so that only a finite
number of wave functions are actually calculated. Typically energy integration
paths include rapid variations, for example sharp resonance peaks, so that a large
amount of wave functions are needed making the calculations heavy.

The scattering problem can also be formulated using the Green’s function ap-
proach. In the continuum limit this gives the same results as the scattering wave
function method. We have used the Green’s function method in the major part
of the present work (Publications II-V). In the Green’s function method many-
body interactions can be in principle fully included [10]. However, in practice,
the calculations are computationally so heavy that the use of the DFT is justi-
fied. There are also many other implementations using the DFT and the Green’s
function method [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
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2.3.1 Units

In all other chapters except Chapter 2.2, we use the atomic units or effective
atomic units in the equations. In the atomistic calculations the atomic units are
used. There the elementary charge e = 1, electron mass me = 1, dielectric con-
stant ε = 1, and the Planck constant h̄ = 1. The unit of distance is the Bohr radius
(a0), and the energy unit hartree (Ha).

The effective atomic units are used in the one- and two-dimensional models. They
are related on the effective-mass approximation, in which an electron in a semi-
conductor lattice is modeled as a free electron with an effective mass. In the
effective atomic units the effective electron mass and the dielectric constant are
set equal to unity, i.e. m∗ = ε∗ = 1. The effective atomic units are transformed to
the usual atomic units and SI units using the relations

Length: 1 a∗0 = 1 ε
m∗
a0 = 0.529 ε

m∗
Å

Energy: 1 Ha∗ = 1m∗

ε2
Ha = 27.2 m∗

ε2
eV

Current: 1 a.u.∗ = 1m∗

ε2
a.u. = 6.62 m∗

ε2
mA



Chapter 3

Theoretical basis

3.1 Density-functional theory

In the nanostructures, there are many electrons in a region where electron states
are quantized in some directions. The stationary properties of the system are
calculated from the many-particle Schrödinger’s equation

ĤMΨ(r1, ..., rN) = EΨ(r1, ..., rN), (3.1)

where E is the energy of the many-particle electron state and the many-particle
Hamiltonian operator is defined as

ĤM =
∑

i

(

−
1

2m
∇2

i

)

+
∑

i

Vext(ri) +
1

2

∑

i6=j

1

ri − rj
. (3.2)

Above, ri are the coordinates of the electrons. Solving these equations is com-
putationally heavy, because the total many-particle wave function Ψ depends on
many variables. In our model it is impossible, because we have an infinite system
with an infinite number of electrons. This is why it is more practical to take the
electron density ρ as the basic variable. It is calculated from Ψ as

ρ(r) = N

∫

dr2...

∫

drN |Ψ(r, r2, ..., rN)|2. (3.3)

According to the Hohenberg-Kohn theorem [23] all of the ground state properties
can also be calculated from the electron density. Because the electron density de-
pends only on one spatial variable, r, the solution of the system is a more realistic
task. In order to do that we use the variational principle

E = 〈Ψ|ĤM |Ψ〉 ≤ 〈Ψ′|ĤM |Ψ′〉, (3.4)

11
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where the particle number of the system is constant and Ψ′ is a approximate so-
lution of the wave function. This means that the correct Ψ minimizes the total
energy. In the DFT the minimizing problem can be written in the form of the
Kohn-Sham equations [24, 25, 26, 27]

Ĥψi(r) = εi ψi(r), (3.5)

Ĥ = −
1

2
∇2

i + Vext(r) + Vc(r) + Vxc(r), (3.6)

ρ(r) =
N

∑

i=1

|ψi(r)|
2, (3.7)

Vc(r) =

∫

ρ(r′)

|r− r′|
dr′, (3.8)

Vxc(r) =
δExc[ρ(r)]

δρ(r)
. (3.9)

Note that above Ĥ is the single-particle Hamiltonian operating on the single-
particle wave functions. These single particle wave functions ψi and eigenener-
gies εi do not have any strict physical meaning. They are just auxiliary functions
in order to calculate the electron density. The Kohn-Sham equations still include
many-particle effects because the effective potential has the terms Vc + Vxc. The
Hartree potential Vc includes the average Coulomb interactions caused by the elec-
tron density ρ. The exchange-correlation part Vxc includes the remaining parts of
the electron-electron interactions. These equations give the correct electron den-
sity and the electron density gives the correct total energy of the system. However
the computational task is much easier because we do not need to solve the many-
particle wave function anymore.

In theory, the Kohn-Sham equations give the correct properties for the many par-
ticle system. In practice, we cannot solve for the exchange-correlation potential
exactly, but some approximations have to be done. The most widely used approx-
imation is the local density approximation (LDA), which we have also used in this
work. It means that the exchange-correlation energy is expanded to a series as a
function of the density gradients and cut after the first term, i.e. the result is

Exc[ρ↑, ρ↓] =

∫

ρ(r)εxc (ρ(r)) dr (3.10)

where εxc(ρ(r)) is the exchange-correlation energy per electron for the uniform
electron gas with the density ρ(r). LDA works for systems with slowly-varying
electron densities. In many cases it works well even in systems where the electron
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density varies remarkably (atoms, molecules, solids). If more accurate results are
needed gradient correction methods can be applied. We have used in our solver
dedicated for the two-dimensional electron gas systems Vxc-potentials calculated
and parameterized by Attaccalite et. al [28, 29]. In the three-dimensional cases
we have used the parameterization by Perdew and Zunger [30, 31].

The DFT is derived for the ground-state equilibrium states. In this work we also
consider non-equilibrium systems in which a finite bias voltage is applied between
the leads. It is not clear how well the DFT describes these systems [32, 33]. It
may be that better exchange-correlation potentials should be used. We assume
in this work that the DFT within the LDA can still give a reasonable approxima-
tion for properties of the nanostructures also in non-equilibrium, current-carrying
situation.

3.2 Green’s function method

In Publications II-V we have combined the Green’s function technique [4, 34]
with the DFT. Instead of the single-particle wave functions, solved from (3.5), we
use the single-particle Green’s functions as the auxiliary functions in the Kohn-
Sham equations. This is done in order to implement open boundary conditions,
to add the finite bias-voltage between the leads and to calculate the current as
explained in Chapter 2.3. Note that for clarity the equations are written for a spin-
compensated system. The generalization to spin-polarized systems is straightfor-
ward.

The calculations start from the retarded Green’s function Gr defined by
(

ω − Ĥ(r)
)

Gr(r, r′;ω) = δ(r − r
′), (3.11)

where ω is the electron energy and Ĥ is the DFT Hamiltonian (3.6) of the sys-
tem. Equation (3.11) gives also the advanced Green’s function, Ga as the other
solution. In practice, the separation of these two solution is done using boundary
conditions. When we know Gr, the so-called lesser Green’s function G< can be
calculated. When there is no bias voltage, the system is in the equilibrium and G<

is calculated as
G<(r, r′;ω) = 2fL/R(ω)Gr(r, r′;ω). (3.12)

Above, fL/R are the Fermi functions of the leads (fL = fR in equilibrium). For a
finite bias voltage a more complicated form has to be used. The system is divided
into three parts Ω, ΩL, and ΩR as explained in the previous section in Figure 2.3.
We then write (3.11) in the form

(

ω − Ĥ0 − Σr
L(ω) − Σr

R(ω)
)

Gr(r, r′;ω) = δ(r − r
′), (3.13)
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where Ĥ0 is the Hamiltonian of the isolated region Ω and Σr
L/R are the so-called

self-energies of the leads. This name comes from an analogy with the many-
body Green’s function theories, where self-energies are calculated for different
interactions, for example, the electron-electron or electron-phonon interactions.
Σr

L/R is the interaction term between the electrons in Ω and the electrons in ΩL/R.
The derivation of these terms is presented in Publication II.

We also define the Γ-functions as

iΓL/R = Σr
L/R − Σa

L/R = 2i Im(Σr
L/R). (3.14)

Now we can solve G< also when the bias voltage is present as

G<(r, r′;ω) =

− ifR(ω)

∫

∂ΩR

∫

∂ΩR

Gr(r, rR;ω) ΓR(rR, r
′
R;ω)Ga(r′R, r

′;ω) drR dr
′
R

− ifL(ω)

∫

∂ΩL

∫

∂ΩL

Gr(r, rL;ω) ΓL(rL, r
′
L;ω)Ga(r′L, r

′;ω) drL dr
′
L.

(3.15)
Note that bias voltage defines the difference between fR and fL. The electron
density is calculated from G< as

ρ(r) =
−1

2π

∫ ∞

−∞
Im[G<(r, r;ω)]dω. (3.16)

When we know the electron density we next calculate the new effective potential
for the self-consistent iteration, and continue the iterations until the density or the
potential do not change anymore.

After the self-consistent calculations, we know the effective potential, and calcu-
late the electric current through the nanostructure. In order to do that we need to
calculate the electron tunneling probability between the two leads. It is obtained
from the function values at the boundaries ∂ΩL/R as

T (ω) =

∫

∂ΩL

∫

∂ΩL

∫

∂ΩR

∫

∂ΩR

ΓL(rL, r
′
L;ω)Gr(r′L, rR;ω)

×ΓR(rR, r
′
R;ω)Ga(r′R, rL;ω) drL dr

′
L drR dr

′
R.

(3.17)

The current is then calculated as

I =
1

π

∫ ∞

−∞
T (ω) (fL(ω) − fR(ω)) dω. (3.18)

Note that the tunneling probability is not the real probability in the sense that it
can be larger than one. It includes the summation over the different conducting
channels where one channel causes the conductance of one conductance quantum.
Information about the local density of states in the leads is included in the ΓL/R-
functions.
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3.3 Pseudopotentials

A typical three-dimensional nano-transport system is composed of a group of
atoms. In a usual problem the positions of the nuclei are given and the task is
to calculate the electron density. The core electrons are strongly localized near
the nuclei, causing the electron density to change rapidly in the ion cores. The
core electrons do not participate in forming the chemical bonds but this impor-
tant phenomenon is due to the delocalized valence electrons. However, the core
electrons cause, due to the orthogonality requirement, the valence electron wave
functions to oscillate rapidly in the ion cores. Because the fast oscillations require
a lot effort in numerical calculations it is practical to replace the ions with the
pseudopotential operators.

In the pseudopotential formalism we write the single-particle wave function for
the valence electrons Ψv(r) in the from

Ψv(r) = φv(r) +
∑

c

αcvΨc(r), (3.19)

where Ψc(r) is a core electron wave function and φv a smoothly behaving func-
tion. The second term on the right hand side takes care of the orthogonalization
of the Ψv regards Ψc. The coefficients αcv can be calculated by multiplying both
sides of the equation by Ψc(r) and integrating over the space

αcv = −

∫

φv(r
′) Ψc(r

′) dr′. (3.20)

Because Ψv(r) is also an eigenfunction of the Hamiltonian Ĥ with eigenenergy
ωv we can write

Ĥφv(r) +
∑

c

∫

(ωv − ωc) Ψc(r
′)φv(r

′) dr′ Ψc(r) = ωvφv(r). (3.21)

In this form we see that the new function φv is the solution of the eigenvalue
equation which has the same eigenvalues as the original equation. Outside the
atom core region φv(r) is equal to Ψv(r). In this way we do not need to calculate
the core electron states because their effects are included in the pseudopotential
operator

(

V̂pse φv

)

(r) =
∑

c

∫

(ωv − ωc) Ψc(r
′)φv(r

′) dr′ Ψc(r). (3.22)

In practice, besides of getting rid of the core electron states we also want our
wavefunction to behave as smoothly as possible, so that the numerical problem is
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easy to solve. This is why the pseudopotential operator is replaced with an op-
erator which gives the same φv as the original one outside the core region (there
φv ≈ Φv), but makes φv smooth inside the core region. The pseudopotentials
should have the same scattering properties as the original atoms. In this way the
choice of the pseudopotentials is not unique and different types of pseudopoten-
tials are suitable for different problems. Even if there are some problems con-
cerning the use of pseudopotentials, the saving of computational time makes them
very useful.

The use of pseudopotentials in the Green’s function formalism is straightforward.
The Green’s functions are calculated using the Hamiltonian

Ĥ(r) = −
1

2
∇2 + Vext(r) + Vc(r) + Vxc(r) + V̂pse(r), (3.23)

where V̂pse(r) is a non-local pseudopotential operator (see equation (3.22)) which
is non-zero only for distances less than rc from the ions cores. rc is the so-called
cut off distance, which depends on the type of the pseudopotential and the type of
the atom.

In this work we use the norm-conserving non-local pseudopotentials generated
with the FHI pseudopotential package [35, 36].

3.4 k-point sampling

Atomic layer structures can be modeled in the simplest form using models in-
variant in the transverse directions and therefore they are computationally one-
dimensional. This we have done in Publication IV in the case of a magnetic
resonant tunneling diode. However if the full atomistic structure is included three-
dimensional models have to be used. The system is infinite not only in the trans-
port direction but also in the perpendicular directions. The periodic boundary
conditions with the k-point sampling [7] is the way how the widening of the sys-
tem is implemented.

The idea behind the k-points is demonstrated in Figure 3.1 using a simple one-
dimensional model. The wave functions and in our case the Green’s functions are
waves whose wavelength depend on the electron energy. In an infinite system the
electron energy is a continuous variable. Now in order to make the simulation
we cut from the system a small piece which is repeated periodically and fills the
whole infinite system. When the periodic boundary conditions are applied (Fig-
ure 3.1) the electrons obtain an artificial discrete energy spectrum. In order to
reduce the effect of this discreteness Green’s functions are calculated using the
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Figure 3.1: One-dimensional demonstration of the meaning of k-points. The
two lowest electron wave function states corresponding to different k-points are
shown.

boundary conditions where a wave has a phase shift on the boundary. As a result
we get a continuous energy spectrum which depends on the phase shift, because
the wavelength can be something else than a multiple of the width of the region.
The phase shifts in different directions are typically visualized as a points in the
φx,φz and φz coordinates. This is why they are called as k-points. In the elec-
tronic structure calculations the number of k-points is then increased until the
convergence is reached.

The periodic boundary conditions have a strong effect on the tunneling probability
profile [37] as demonstrated also in Figure 3.2 using a flat potential. The Green’s
functions now behave like in a one-dimensional wave guide as it is seen in the
profile. Every perpendicular eigenvalue causes a distorted step to the profile. In
order to get a good result the number of k-points has to be so large that the average
of the curves is smooth as the true solution is.

It must be noted that the Green’s function Gr(r, r′) is symmetric and so is the
numerical coefficient matrix. However, when k-points are included the situation
changes. This is seen when we consider Gr at two points on the opposite bound-
ariesGr(rP1, r

′) from ∂ΩP1 andGr(rP2, r
′) from ∂ΩP2 (see Fig. 2.3). These point

have the same x and y coordinates so that when the periodic boundary conditions
are implemented they satisfy

Gr(xP1, yP1, zP1, r
′) = Gr(xP1, yP1, zP1 + Az, r

′) (3.24)

where Az is the width of the region Ω along the z-direction. When the k-point
corresponding to the phase shift φ is applied the equations have the forms

Gr(xP1, yP1, zP1, r
′) = eiφ Gr(xP1, yP1, zP1 + Az, r

′)

Gr(xP1, yP1, zP1 + Az, r
′) = e−iφGr(xP1, yP1, zP1, r

′)
(3.25)
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Figure 3.2: Effect of the number of k-points on the tunneling probability. The
figure demonstrates the worst case in which the potential is totally flat. The cal-
culation volume Ω is a cube with the size 3 a0 × 3 a0 × 3 a0. The tunneling proba-
bility of different k-point channels are marked with broken and dotted lines. As is
shown, one conducting channel produces a staircase tunneling profile. Using four
k-points (φ= {(0,0),(0,π),(π,0)(π,π)}) the shape of the total tunneling curve (thick
solid line) is still poor when compared to the analytic results (thin solid line).

The k-points giving real phase factors are φ = {(0,0), (0,π), (π,0), (π,π)}. They
give symmetric and real boundary conditions, exp(iφ)={-1,1}. If other k-points
are applied this is not true, and the Green’s functions coefficient matrix is no more
symmetric. The boundary conditions give a Hermitian component to the otherwise
complex symmetric problem. This increases the memory and the computational
time requirements of the simulations, because general complex routines have to
be used.



Chapter 4

Numerical implementation

4.1 Finite element method

The numerical implementations of the Green’s function solvers are done using the
finite element method (FEM). This method is widely used in many different fields,
for example, in structural mechanics, fluid dynamics, electromagnetics and heat
transfer calculations. The FEM is a flexible method, because it allows different
geometries and boundary conditions to be implemented in a straightforward way.

Figure 4.1: Shapes of different elements. In the two- and three-dimensional codes
triangles and tetrahedra are used, respectively. Also quadrilateral, hexahedral and
prismatic elements can be used.

In the FEM the calculation domain Ω is divided into small regions called elements.
In this work we have used triangle elements in the two-dimensional solver and
tetrahedra in the three-dimensional solver. These shapes have the advantage that
their size can easily vary inside the domain region. The meshes of the elements
are created using mesh generators. In this work we have used Easymesh [38] in
the two-dimensional calculations and Netgen [39] in the three-dimensional ones.
Both are so-called Delaunay-based generators [40].

19
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The basis functions are constructed conforming to the mesh of the elements so
that they are non-zero only in few neighboring elements. This ensures the local
nature of the basis functions and the resulting matrices become sparse. Small
elements imply many basis functions and so a good numerical accuracy can be
achieved. This is how we can increase the accuracy in the regions where the so-
lution changes fast. We have used the so-called p-elements which are introduced
later in detail. They have a hierarchical high-order polynomial basis, which en-
sures a good convergence for smooth solutions.

4.2 Variational form of the equations

In order to use the FEM we have to first write the equations of the Green’s function
method in the variational form. Gr(r, r′) is a solution of Equation (3.11) in the
calculation volume which is introduced in Figure 2.3. Next we take a nicely-
behaving arbitrary function v(r) and multiply both sides of Equation (3.11) by it.
Then we integrate over the calculation domain Ω. We use the properties of the
open boundary system and make some manipulations [41] which are shown in
detail in Publication II. After this the equation takes the form

∫

Ω

{

−∇v(r) ·
1

2
∇Gr(r, r′;ω) + v(r)

[

ω − Veff(r)
]

Gr(r, r′;ω)
}

dr

− 〈Σ̂LG
r, v〉 − 〈Σ̂RG

r, v〉 = v(r′),

(4.1)

where the so-called self energy-operators have been derived to have the form

〈Σ̂L/RG
r, v〉 =

∫

∂ΩL/R

∫

∂ΩL/R

1

4
Gr(r′L/R, r

′;ω)
∂2ge(rL′/R′ , rL/R;ω)

∂nL/R∂nL′/R′

v(rL/R) drL′/R′drL/R.

(4.2)
The open boundary conditions of the system are included in the self-energy opera-
tors. They are the surface integrals over the open boundaries ∂ΩL/R. The function
ge(rL′/R′ , rL/R;ω) is the Green’s function of the isolated lead ΩL/R with the zero
boundary condition on the boundary ∂ΩL/R [41]. In this equation ge(rL′/R′ , rL/R;ω)
is differentiated with respect to both arguments in the direction of the normal vec-
tor nL/R on the surface ∂ΩL/R.

Next we make the FEM approximation Gr(r, r′;ω) ≈ Gr
h(r, r

′;ω). This means
that we approximate the solution to be formed using a finite set of basis functions
Sh = [φp | p = 1, 2, . . . , N ] (see Equation (4.5) below). This basis does not cover
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the whole functional space. In order to see the properties of the approximation we
first shorten Equation (4.1) below to the form

a(Gr, v) = 〈δ
r
′, v〉 ∀v. (4.3)

Above, a is a functional of Gr and v. 〈〉 marks inner product between functions.
The FEM approximation fulfills Galerkin’s orthogonality so that

a(Gr
h, vh) = 〈δ

r
′, vh〉 ∀vh ∈ Sh

⇒ a(Gr
h − δ

r
′ , vh) = 0 ∀vh ∈ Sh

⇒ a(Gr
h −Gr, vh) = 0 ∀vh ∈ Sh.

(4.4)

This means that the approximation is a projection of the solution to the FEM basis
and the discretation error is orthogonal to the approximation.

In the actual calculation the FEM approximation with the basis Sh is written in
the form

Gr(r, r′;ω) ≈ Gr
n(r, r′;ω) =

N
∑

i,j=1

gij(ω)φi(r)φj(r
′), (4.5)

where gij(ω) are coefficients to be determined. We calculate t heir values for every
electron energy ω by choosing

v(r) = φp(r), (4.6)

and inserting these in to Equation (4.1). The result is

gi,j(ω)
(

∫

Ω

{

−
1

2
∇φp(r) · ∇φi(r) + φp(r)

[

ω − Veff (r)
]

φi(r)
}

dr

− 〈Σ̂L φi(r) , φp〉 − 〈Σ̂R φi(r) , φp〉
)

φj(r
′) = φp(r

′).

(4.7)

Now the integrals can be performed and when j is chosen to be same as p we get
a matrix equation which can be solved.

The solution includes a lot of integrals. In practice, these integrals are calculated
using a reference element. This means that the points in an element in the mesh
are mapped using an affine mapping to the reference element and the integrations
are performed there using Gaussian quadrature rules. Integrals between the basis
functions can be calculated and tabulated so that the constructions of the matrices
are fast operations.
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4.3 P-elements

There are some options how to choose a good finite-element basis [42]. The sim-
plest choice is to use the linear elements so that the basis function is unity in one
of the nodes and declines linearly to zero on the boundaries at the element. The
linear basis is easiest to implement, but in order to achieve a better convergence
high-order elements are used. For a smooth solution the difference in the accura-
cies between the linear and higher-order element calculations is huge. Because in
our physical systems the solutions are typically relatively smooth we have imple-
mented the so-called p-elements up to the fourth order.

The p-elements are hierarchical in the sense that the higher-order basis set includes
also the lower-order basis sets [43]. A basis set has four types of functions, node-
edge-, face-, and element-based functions. The node-based functions, which are
linear, are nonzero only in the volume of the elements which have a common
node. Similarly an edge based function is nonzero in the elements which have
a common edge. The element-based functions have their support only inside one
element. Table 4.1 demonstrates how many different types of basis functions there
are inside a given element for a specific order polynomial.

Table 4.1: Number of different types of basis functions in different dimensions
and for different order polynomials.

1D 2D 3D
1 order 2 node 3 node 4 node
2 order 1 element 3 edge 6 edge
3 order 1 element 3 edge 6 edge

1 element 4 edge
4 order 1 element 3 edge 6 edge

2 element 8 face
1 element

total 5 15 35

The basis function set of the p-elements is derived using the Legendre polynomi-
als. This ensures that their derivatives are a priori orthogonal to each other to the
maximum amount. The orthogonality makes the solutions numerically stable even
when using polynomials of high order. Otherwise the stability of linear systems
can be a problem. The one-dimensional basis functions in the reference element
are shown in Figure 4.2.

Even if the derivatives of the basis functions are as orthogonal as possible, in
practice the overlap between the basis functions is larger than that for just linear
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Figure 4.2: One-dimensional basis functions in the reference element [-1,1] up to
the fourth order. Inside a element there are two node-functions and three element-
functions (see Table 4.1)

0 100 200 300 400 500
10−2

10−1

100

101

102

Number of basis functions

D
is

cr
et

iz
at

io
n 

er
ro

r r
es

id
ue

4.

3.
2.

1.

Figure 4.3: Discretization error as a function of the number of basis functions
for different polynomial orders. The test case is a one-dimensional problem, the
resonant tunneling diode (see Chapter 5.1). The error for the electron tunneling
probability is calculated.

functions. Therefore when the number of the basis functions is reduced the filling
of the coefficient matrix is increases. The filling of the matrices increases the CPU
time and memory requirements when solving the equations. However, a smooth
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solution converges faster for a larger filling. Therefore the critical factor for a
good convergence with high-order polynomials is the smoothness of the solution.
Figure 4.3 demonstrates in a one-dimensional case the convergence of the results
as a function of the number of basis functions for different polynomial orders.
Naturally, for each problem there is an optimal polynomial order.

4.4 Mixing schemes

In the DFT modeling the Kohn Sham equations are solved self-consistently for
the electron density and the effective potential. In this work we combine these
techniques with the Green’s function methods. The problem cannot be solved
directly as in the case of an explicit wave-function scheme [44], but we have
to resort to iterative methods. This means that initially the electron density is
calculated using a guessed effective potential, then a new potential is calculated
from this electron density, and the electron density is calculated again. In order
to obtain a convergent process the new effective potential cannot be used directly,
but it has to be mixed with the old one. The simplest mixing scheme is the linear
one

V in,i+1

eff = (1 − α)V in,i
eff + αV out,i

eff , (4.8)

where the potential V in,i
eff is used to calculate the potential V out,i

eff . α is the mixing
parameter which is typically 0.05 − 0.2 in systems modeled in this work.

Even if the linear mixing scheme is simple it works quite reasonably. The benefit
of it is simple programming and modest use of computer memory. Convergence
is usually reached if α is small enough. This mixing scheme is used in our one-
and two-dimensional calculations.

In our three-dimensional code, besides the linear mixing scheme another one, the
so-called guaranteed-reduction-Pulay (GR-Pulay) mixing scheme, [45] is used.
This scheme considers the L2-residue of the effective potential, i.e.

∂Vi =

√

∫

Ω

[

V in,i
eff (r) − V out,i

eff (r)
]2

dr. (4.9)

For a converged result the residue vanishes. In the GR-Pulay method a linear
approximation is done using the potentials from the N previous iterations so that
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Figure 4.4: Residue of the potential Veff as a function of the self-consistent itera-
tions. The first 21 iterations are done using a linear mixing with a feed-back co-
efficient α = 0.15. The rest of the iterations is done using the GR-Pulay method
[45]. After 35 iterations the solution reaches the convergence. The remaining
residue is due to discretization errors of the solution. The test system here is the
bentzene-1,4-dithiolate molecule between two jellium cones.

Veff is a linear combination of them. Thus,

V i+1
eff ≈

i
∑

j=i−N

κjV
j
eff ,

∑

j

κj = 1.

(4.10)

The residue is also approximated to be the linear combination using same coeffi-
cients κi as

∂V i+1 ≈

i
∑

j=i−N

κj∂V
j. (4.11)

Now, the idea is to choose the coefficients κi so that the residue ∂V i+1 is mini-
mized. This is done using Lagrange multipliers.
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In practice, the linear approximation for the residue does not work accurately
enough so that ∂V i+1 could be used on right hand side of Equation (4.10). There-
fore the residues ∂V j, (j = i− N...i) have to be calculated from Equation (4.9).
If this is not done, the round-off errors accumulate and the calculation does not
show any convergence. Because we still want to use the latest potential in our
calculations we take one step further and use

V in,i+1

eff =

i
∑

j=i−N

κjV
j
eff +

i
∑

j=i−N

κj∂V
j. (4.12)

Note that the latest iteration potential V i
eff is used only in the residue calculations

because we do not know its residue.

The GR-Pulay method does not work if the approximation is too far from the
solution. This is because the linear approximation is not valid at all. But reason-
ably close to the solution the convergence is much faster than that with the linear
mixing scheme as is demonstrated in Figure 4.4.

4.5 Coulomb potential

The electronic Coulomb interaction, the Hartree potential

Vc(r) =

∫

ρ(r′) − ρ+(r′)

|r − r′|
dr′ (4.13)

is included in the effective potential. Above ρ+ is the positive charge density
caused by positive background charge. The calculation of Vc(r) directly from
(4.13) is computationally a heavy operation. Fortunately, we can solve Vc in com-
putationally one- and three-dimensional systems by using the Poisson equation.

In the two-dimensional electron gas systems we want to use a two-dimensional
element mesh and the three-dimensional Poisson equation cannot be solved on
it. The two-dimensional Poisson equation gives the solution of a system which
is translationally invariant along the perpendicular missing direction and gives a
logarithmic behavior for Vc whereas the true three-dimensional behavior is r−1.

In order to increase the stability of the self-consistency iterations, we use the mod-
ified Poisson equation [46]. We add an extra term on both sides of the Poisson
equation, i.e.

(∇2 − k2
P )V i+1

c (r) = −4π[ρ+(r) − ρi(r)] − k2
PV

i
c (r). (4.14)
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Here i marks the iteration number, so that on the left-hand side there is the new
potential and on the right-hand side is the old one. Close to the converged result
the new potential is close to old one, V i+1

c ≈ V i
c , and the extra term disappears

from the equation. The parameter kP has a remarkable effect on the stability and
the convergence rate of the calculations. This is because for a large kP the local
charge differences and not those far away from the given point affect strongly on
the solution. In the terms of physics, the long-range Coulomb interaction becomes
screened. In large systems, where the charge density varies strongly (charge slosh-
ing), this is a useful property.
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Figure 4.5: Effect of the different values of the kP parameter to the iteration pro-
cess of the effective potential. The test system is a resonant tunneling diode, for
which the external potential has two potential barriers. Near the barriers there is
no positive background charge. Close to the leads the charge density is constant.
The effective potentials from the first iterations are shown for two sets of iteration
parameters.

The effect of the kP parameter is demonstrated in Figure. 4.5. For small values of
the kP parameter the potential sees the charge difference from a large volume and
a small feedback parameter α is needed. Too large values of the kP parameters
cause the potential to connect too strongly to the old solution, slowing down the
iteration rate. The final result does not depend on the choice of the kP parameter.

In two-dimensional nanostructures the Poisson equation cannot be used and the
original integral (4.13) has to be computed. Here the question is how to handle
the point where r = r

′ and the nominator vanishes [47]. Otherwise the integral
is straightforward to evaluate. The problem is solved by using two changes of
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Figure 4.6: Coordinate transformations for the Coulomb integral calculation in
two-dimensional electron gas systems.

variables. These changes are demonstrated in Figure 4.6. In the two-dimensional
system we have triangular elements. We start from the situation, where r

′ is in one
node of the triangle. An element where r

′ lies can always be divided into three
smaller triangles so that r

′ is a node. We make the coordinate changes (x, y) →
(x̂, ŷ) to an other element so that the r

′ mapped to the origin. This is given by an
affine transformation

(

x
y

)

= JF

(

x̂
ŷ

)

+ b =

(

a11 a12

a21 a22

) (

x̂
ŷ

)

+

(

b1
b2

)

. (4.15)

After this we make another change (x̂, ŷ) → (x̂, s) so that ŷ = sx̂. Using these
changes we obtain

Vc(x
′, y′) =

∫

T

ρ(x, y) − ρ+(x, y)
√

(x− x′)2 + (y − y′)2
dx dy

=

∫ 1

0

∫ x̂

0

[ρ̂(x̂, ŷ) − ρ̂+(x̂, ŷ)] | detJF |
√

(a11x̂+ a12ŷ)2 + (a21x̂+ a22ŷ)2
dx̂ dŷ

=

∫ 1

0

∫ 1

0

[ρ̂(x̂, sx̂) − ρ̂+(x̂, sx̂)] | detJF | x̂
√

(a11x̂ + a12sx̂)2 + (a21x̂ + a22sx̂)2
dx ds

=

∫ 1

0

∫ 1

0

[ρ̂(x̂, sx̂) − ρ̂+(x̂, sx̂)] | detJF |
√

(a11 + a12s)2 + (a21 + a22s)2
dx ds.

(4.16)

Note that now the pole has disappeared and the integral (4.16) does not have sin-
gularities. It can be evaluated by choosing the standard Gaussian quadrature rules
for the both dimensions x̂ and s.

4.6 Linear algebra

In the Green’s function formalism most of the computational effort is going to the
calculation of the electron density. Typically, in electronic structure simulations
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single-particle electron wave functions and eigenvalues are explicitly solved. The
eigenvalue problems are best to solve using iterative methods. However, in our
method we need to solve linear equations. Typically several sets of equations
have the same coefficient matrix and different right-hand sides, especially when
matrices are inverted.

The best algorithm for solving linear equations with different right-hand sides and
the same coefficient matrix is to use direct methods where the matrix is first fac-
torized. Because our matrices are sparse we use direct sparse solvers which utilize
the so-called multi-frontal method. The method is widely used in the solution of
sparse linear systems [48, 49]. The actual implementation we use is in the Harwell
Subroutine Library (HSL) [50] (see [51, 52] for other similar approaches).

4.7 Parallel implementation

As said above, most of the calculation time is spent in the calculation of the elec-
tron density. The calculation includes the numerical integration over the electron
energy ω and it is easy to parallelize. Two- and three-dimensional versions of the
Green’s function solver are parallelized. In these version the integrals over the
electron energy use a four-point Gaussian quadrature method. This is straight-
forward to parallelize by using two or four processors and the Message Passing
Interface (MPI) library. This parallelization scales almost linearly with the num-
ber of processors.

After the above operations the parallelization can be improved by using two or
more processors to calculate the same electron energy point. In our implemen-
tation this is also done using the MPI library. This means that all the processors
have to make the factorization and save it to their own memory. This paralleliza-
tion still works quite efficiently because most of the calculation time is spent in
solving the equations and not on the factorization. However, it would be better to
make this parallelization using shared-memory routines and the OpenMP library.
This would solve the memory problems because then we could have more mem-
ory for a single factorization. During this work this was not possible, because
there was not a proper shared-memory linear-equation library available.



Chapter 5

Results of nanostructure simulations

In this chapter we give a summary of our results for nanostructure simulations. In
particular, we demonstrate that our solvers based on the density-functional theory
and the non-equilibrium Green’s function scheme can be used to simulate different
types of nanostructures.

5.1 Magnetic resonant-tunneling diode

In addition to the non-equilibrium Green’s function (GF) scheme, the Wigner
function (WF) formalism is an alternative transport formalism. It includes semi-
classical characteristics in contrast to the quantum-mechanical GF formalism. In
Publication III we have compared these two formalisms by using a magnetic res-
onant tunneling diode as a test system. The calculations are done by using one-
dimensional solvers.

The derivation [53, 54] of the WF formalism starts by making a coordinate trans-
formation to the quantum mechanical density matrix

ρ(x, x′) =
∑

i

wi〈x|i〉〈i|x
′〉 , (5.1)

where x and x′ are the one-dimensional spatial coordinates, |i〉 is a complete set
of states, and wi gives the probability of finding a particle in the state |i〉. The new
coordinates, q and r, are given by the relations

q =
1

2
(x+ x′)

r = (x− x′) .
(5.2)

30
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The WF f(q, p) is now defined as the Fourier transform of the density matrix, i.e.

f(p, q) =

∫ ∞

−∞
e−iprρ(q +

1

2
r, q −

1

2
r)dr. (5.3)

The result can be thought to be related to the classical phase-space representation.
Because of the characteristic properties of quantum-mechanical systems f can,
however, have even negative values. The WF formalism gives the same results
as the GF formalism if the density matrixes ρ(x, x′) were calculated in the same
way. However, the idea of the WF scheme is to use a lighter method, the quantum-
mechanical Liouville–von Neumann equation

i
∂ρ

∂t
= [Ĥ, ρ] ≡ Lρ. (5.4)

For this equation, totally open boundary conditions similar to the GF formalism do
not exist. In our work we want to find out how well the WF formalism describes
realistic systems in comparison with the GF scheme.
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Figure 5.1: Simulation of a magnetic resonant tunneling diode consisting of a
layer structure. The electron density and the effective potential for the resonance
tunneling diode are given for the bias voltage of 0.15V. The shadowed areas denote
the rigid positive background charge density, The solid and dashed curves denote
the GF and WF solutions, respectively.

In order to make comparisons to the measurements we have chosen the parameters
of our magnetic resonant-tunneling diode simulations similar to the actual diode
made by Slobodskyy et al. [55]. Their diode works as a electron spin filter in
an external magnetic field. We find that both the formalisms give similar results
for the effective potential and the electron density as seen in Figure 5.1. In the
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conductance there are, however, remarkable differences as seen in Figure 5.2.
The active resonance peak, which is used to produce the spin polarized current,
is the second one. The intensity of the first one is small. The WF has problems
modeling this, because the method includes the Fourier transform for which the
sharp changes are numerically difficult.
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Figure 5.2: Simulation of a magnetic resonant tunneling diode consisting of a
layer structure in the temperature of 4.3K and external magnetic field of 6T. Con-
ductances of spin-up (↑) and spin-down (↓) electrons calculated using the GF and
the WF formalism are given as a function of the bias voltage. The results corre-
spond to a finite magnetic field splitting the spin degeneracy in the ZnMnSe layer
between the potential barriers.

When the calculations are compared to the measurements, we find that the posi-
tions and the shapes of the resonance peaks are reasonable. Also the behaviors as
a function of temperature and magnetic field show good agreement. The absolute
value of the current is, however, about four orders of magnitude too large when
compared to experiments. This is common with the results of other similar mod-
els and may be an artifact of the usage of the DFT, the ballistic transport model
and the effective mass approximation.

5.2 Quantum wires

Two-dimensional nanostructures can fabricated at GaAs/AlGaAs interfaces as ex-
plained in Chapter 2. One of the simplest structures is a quantum wire. It is
a thin nano-scale constriction between two bulk electrodes. If the wire is short
compared to its width it is called as quantum point contact. We have modeled
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quantum wires using the two-dimensional version our Green’s function solver.
The results are given in Publication III of the thesis.
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Figure 5.3: Conductance at zero temperature as a function of the gate voltage for
three wires with the length L=7 a∗0 and widths S=5 a∗0 (A), 6 a0 (B) and 10 a∗0 (C).
The width of the electrodes is 20 a∗0, and the length of the computational area is
47 a∗0

Quantum wires are short so that electron transport through them is ballistic con-
serving the quantum-mechanical phase coherence. The conductance is quantized
showing a staircase pattern with steps of the conductance quantum (G0 = 2e2/h)
when measured as a function of the gate voltage [56, 57]. This is seen in Fig-
ure 5.3 for different widths of the quantum wire. In experiments the width can
be controlled by another gate voltage. The quantum point contacts exhibit also
the so-called 0.7-anomaly, which is a small plateau in the conductance around
0.7-0.5 G0 [58, 59, 60].

x

y

Electron density Spin density

Figure 5.4: Total electron density and the difference between the spin-up and spin
down electron densities at zero temperature for the quantum wire with the width
of 5 a∗0, and the length of 7 a∗0. The positive background charge is reduced in the
wire to describe the effect of a negative gate voltage above the wire.

Several models have been introduced to explain the 0,7-anomaly. Currently, the
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many-body Kondo model based on the electron scattering off a dynamic spin ap-
pears as the most general one, explaining also the zero-bias anomaly observed
[61, 62]. Our work and also other DFT calculations [62, 63] and recent exper-
iments [64, 65] show indeed evidence localized magnetic moments in quantum
point contacts.
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Figure 5.5: Conductance as a function of the gate voltage for quantum wires with
the width of 5 a∗0 and lengths of 6 a∗0, 7 a∗0 and 8 a∗0. Temperatures are 0 K (solid
curve), 2 K (dashed curve) and 4 K (dotted curve).

We make a simple model, in which the quantum wire and the leads are formed
from a uniform positive background charge (see figure 5.4). This ensures the
charge neutrality. In our model a spontaneous spin polarization causes the 0.7-
anomaly. This is seen in Figure 5.5. The spin-polarization resulting in two peaks
in the conductance is due to the spin-splitting of a resonance in the local density
of states near the Fermi-level. It is also seen how the spin polarization increases as
the temperature increases. This causes the descent of the plateau. The calculated
current-gate-voltage curves as a function of the temperature and the wire length
are similar to the measured ones.

5.3 Sodium nanowires

In Publication I we model atomic sodium wires. Lately we have used also the
Green’s function formalism in their modeling. The schemes used in these two
calculations differ remarkably from each other even if the DFT is used in both
of them. These results are a good example of problems the finite-size effects can
cause in simulating nanostructures. The calculations in Publication I are done by
using the cylindrically symmetric version of the MIKA code [1], and the Green’s
function solver calculations are performed by the three-dimensional code. Both
of the codes employ non-local pseudopotentials for the Na atom chain.
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Figure 5.6: Two models used in Na wire calculations. For the Friedel-sum model
(a) have two finite size cones, whereas in the Green’s function calculations (b) we
connect the atom chain to semi-infinite leads.

The schematic picture of these models is shown in Figure 5.6. In the first model
(Figure 5.6a) Na-atoms are located between two ’jellium’ cones with the back-
ground charge density of sodium. The size of the cones is finite. Because the
system has the mirror symmetry we can use the Friedel sum rule [66] for calcu-
lating the conductance. In the case of a sodium wire, there is only one conducting
channel so that the rule results in a simple form for the conductance

G = G0 sin2
[π

2
(Ne −No)

]

, (5.5)

where Ne and N0 are the numbers of electrons in the even and odd states, respec-
tively. G0 is the conductance quantum (Equation (2.5)). In zero temperature Ne

and No are integers. However, in a finite temperature electron states are filled
according of Fermi distribution and this means that some of the states are only
partially filled. The use of this model is inspired the work by by Sim et al. [67].
They have used the same model with finite atomistic conical leads.

The model used in the Green’s function calculations shown in Figure 5.6b is quite
similar. Again Na atoms are between two cones, but now the cones are connected
to semi-infinite leads. In order to make a good comparison the atomic distances
and the cone geometry are chosen to be the same.

The results of these two models for conductance as a function of the number
of Na-atoms in the wire are clearly different as seen Figure 5.7. Both models
give even-odd oscillations as a function of the number of atoms in the wire. Our
present interpretation is that the finite-size effects cause the result of Publication I
the oscillations to change their phase when the cone angle is changed.

In the Green’s function model calculations the conductance shows only small
changes when the cone angle is changed and the phase of the oscillations does not
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Figure 5.7: Conductances of Na-atom wires as function of atoms in the wire. (a)
Results of the Friedel-sum rule model and (b) those of the Green’s function model
are shown.

change remarkably. Figure 5.7b shows the results for the cone angle of 70◦. The
phase of the oscillation is in accord with Lang’s calculations for Na atom chains
between two semi-infinite jellium leads [68]. When we contact the Na atom chain
to four Na atoms attached parallel to the jellium surface the phase of the oscilla-
tions changes so that the an even (odd) number of chain atoms corresponds to a
minimum (maximum) conductance. This result is in accord with the Friedel sum
rule calculations by Sim et al. [67] and the Green’s function calculations by Lee
et al. [69]. We note also that the amplitude of the conductance oscillations is
consistently smaller in the Green’s function calculations in comparison with the
Friedel sum rule model.

5.4 Oxide layers

In MOSFET transistors the gate voltage is used to control the current between
the source and the drain. The device is depicted in Figure 5.8. Between the
gate electrode and the silicon region, where the current is flowing, there is a thin
layer of insulating SiO2. When the size of the transistors becomes smaller the
question arises how thin a layer still works as insulator and further, can SiO2 be
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substituted by an insulator with better insulating properties. HfO2 is seen as a
good candidate for this purpose. This possibility is studied experimentally see,
for example Ref. [70]

Figure 5.8: Structure of a MOSFET transistor. The drain and the source are made
from strongly doped silicon. An insulating layer separates the metallic gate from
the silicon part of the transistor. The gate voltage produces the conducting channel
to the electrons or holes so that the current can flow from the drain to the source.
Because the width of the conducting channel depends on the gate voltage, the gate
voltage controls the size of the current.
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Figure 5.9: Tunneling probability trough HfO2 -Si-layer structures as function of
the electron energy. The structures A-C have different atomic arrangement near
the interface.

Figure 5.9 gives our results for the tunneling probabilities through several differ-
ent model structures consisting of Si and HfO2 layers attached to two semi-infinite
electrodes. The atomic coordinates are calculated using the SIESTA program [71]
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which uses the DFT with an atomic orbital basis set. Model A is a stoichiometric
and model B a non-stoichiometric interface. We find that during the atomic relax-
ation the oxygen atoms move from the HfO2 to the silicon part. This causes silicon
and hafnium to have metallic bonds and to form conducting channels through the
interface and as is seen in Figure 5.9, the interface is not insulating. Model C is
more ideal one. It is based on the calculation of Ref. [72]. There the atoms are
placed close to the ideal lattice sites so that the result is insulating. The insulating
properties are much better, although the tunneling probability is still finite at the
Fermi-level.



Chapter 6

Summary

In this work we have modeled electronic and transport properties of nanostruc-
tures. In the modeling we have used the density-functional theory which is com-
bined with Green’s function methods. This means that instead of explicitly solving
the single-particle wave functions, as it is typically done in the electronic structure
calculations for materials, we have solved for single-particle Green’s functions.

The Green’s function method has many good features. For example, it is pos-
sible to implement so-called open boundary conditions. This means that elec-
trons can travel through boundaries without any reflection or refraction making
the finite-size effects small. The finite-size effects can be harmful in modeling
open nanostructure systems, causing artificial results. Also, by using the Green’s
function method it is possible to calculate the electron tunneling probability and
the current through the system for a finite bias voltage over the structure. An unfa-
vorable feature of the Green’s function-method is that the numerical calculations
are heavier than those in typical wave-function methods.

In the present work we have implemented one-, two- and three-dimensional Green’s
function solvers using the finite element method. The finite element method is a
flexible scheme. Different boundary conditions and shapes of the calculation do-
main are easy to define and implement. The local nature of the basis functions
makes the coefficient matrix sparse. Also, varying the size of the finite-element
mesh and the use of the higher-order polynomial basis reduce the need of the basis
functions in comparison to the finite-difference method.

We have modeled different types of nanostructures. In Publication IV the Green’s
function formalism is compared to the Wigner function formalism by using a mag-
netic resonant tunneling diode as a test case. We find that both the formalisms
give similar results. Numerically the Green’s function method works better than
the Wigner function method, because the latter uses Fourier transforms. Our sys-

39
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tem exhibit sharp peaks in the density of states so that the transforms need many
discretization points.

Quantum wires formed in the two-dimensional electron gas at semiconductor in-
terfaces are modeled in Publication III. There we find in accordance with previous
findings that the density-functional theory predicts a spontaneous spin polarization
in the wire constriction. This causes the so-called 0.7-anomaly in the conductance
as function of the gate voltage. The temperature behavior of the anomaly shows
the correct trend. No traces of the zero-bias anomaly is seen indicating that this
experimental finding is a more complicated many-particle effect.

Atomic Na chains are modeled in Publications I and V. In the former the Green’s
function formalism was not used, but instead the conductance is calculated using
a wave function method and the Friedel-sum rule. We found that the conductance
oscillates as a function of the number of atoms in the chain. The phase of the os-
cillations changes when the angles of the lead cones are varied. We have repeated
these calculations later with the three-dimensional Green’s functions solver. Now,
when the finite-size effects are small, we see that the strong cone angle depen-
dence has disappeared and the even-odd oscillation is much smaller. This is a
good example of problems which can appear when using in the electron transport
calculations wave functions restricted to a finite volume.

Thin HfO2-Si interfaces were modeled in Publication V. There we find that the
conductance properties depend strongly on detailed atomistic structures of the
layers and interfaces. Oxygen atoms tend to move into silicon so that silicon
and hafnium can have metallic bonds producing conducting channels through the
interface. This reduces remarkably the insulating properties of the layers.

According to our work the density-functional theory combined with the Green’s
function formalism describes the coherent electron transport reasonably well in
comparison with experiment. However, some problems are noticed. For exam-
ple in some systems such as the one-dimensional resonant tunneling diode, the
absolute value of the current is really too large, even if the shape of the curve
is correct. The density-functional theory does neither describe all many-particle
phenomena such as the Kondo effect. These phenomena can have a large effect
on the transport properties. Apart from these limitations the density-functional
theory combined with the Green’s function scheme is a useful tool in the nanos-
tructure modeling, because real structures of nanodevices can be included in the
model. The systems can consist of actual atoms and not only of point-like atomic
states.
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