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Abstract 
The research work, described in this thesis, has been carried out at the Metrology 

Research Institute of Helsinki University of Technology between 2000 and 2005. The 

research focused on the development of new detectors, calibration methods and their 

applications in optical radiometry. 

A new photodetector, which is based on three GaAsP Schottky-barrier 

photodiodes, has been introduced. The spectral properties of the GaAsP trap detector 

have been studied in the wavelength range between 200 nm and 600 nm. Spectral 

reflectance of a single windowless GaAsP photodiode, measured with high-accuracy 

gonioreflectometer, has been presented. Based on these measurements, the internal 

quantum efficiencies for both the single photodiode and the trap detector have been 

calculated. 

A novel scanning method for characterization of filter radiometers, which uses a 

wavelength tuneable Ti:Sapphire laser source, has been described. High accuracy 

calibration of filter radiometers at 900 nm has been conducted. The results have been 

compared to the spectral irradiance responsivities measured with the more conventional 

monochromator-based method. 

Both the laser-based method and the monochromator-based method have been 

used for characterization of the detectors for radiometric measurements of the 

thermodynamic temperatures of several blackbodies in irradiance mode. Four filter 

radiometers with central wavelengths between 600 nm and 900 nm have been used. The 

measured temperatures include the freezing temperature of silver and copper, which are 

defined by the International Temperature Scale of 1990.  
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List of abbreviations 
FWHM full-width at half-maximum 
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A area of an aperture 
c speed of light (=2.99792458×108 m s-1) 
c1 first radiation constant in Planck’s law (≈3.7418 10-16 W m2) 
c2 second radiation constant in Planck’s law (≈1.4388 10-2 m K) 
E(λ) spectral irradiance 
i photocurrent 
k coverage factor 
R(λ) spectral power responsivity 
S(λ) spectral irradiance responsivity 
T absolute temperature 

α(λ) spectral absorption coefficient 
ε(λ,T) emissivity of blackbody cavity 
η(λ) internal quantum efficiency 
λ wavelength of radiation 
ρ(λ) spectral reflectance 
τ(λ) spectral transmittance 
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Si silicon 
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1. Introduction 

1.1. Background 
 

Historically, the realization of the units of optical quantities has been based on 

blackbody radiation, first described by Kirchhoff in 1860 [1]. From the known 

thermodynamic temperature of a blackbody radiator it is possible to derive the spectrum 

of the output radiation by Planck’s radiation law if the emissivity of the source is known 

[2]. Thus the Planck’s law establishes a link between the temperature and spectral 

radiance scales [3]. The accurate temperature determination of the blackbody sources can 

be used for the realizations of the spectral radiance and irradiance scales [4, 5, 6, 7]. 

During the last decades, detector-based realization of units of optical quantities 

has undergone significant development. The first major landmark in the reduction of the 

uncertainty of the optical power realization was the development of an electrical 

substitution radiometer operated at liquid helium temperature, introduced by Martin et al. 

[8] in the middle of the eighties. The method is based on comparison of the optical-

radiation-induced temperature rise of an absorbing cavity with the corresponding 

temperature rise that is due to electrical heating. Since then, the cryogenic radiometer has 

been accepted by many national standard laboratories as a device to establish the primary 

standards for absolute spectral responsivity [9, 10, 11, 12, 13]. 

The second major landmark of the detector based realizations was the 

introduction of a specific configuration of photodiodes, called trap detectors [14, 15, 16, 

17]. Today, these detectors are widely used as reference standards of optical power 

responsivity in ultraviolet, visible and near-infrared wavelength regions. Originally, only 

silicon photodiodes were used in the trap detectors. The spectral properties of silicon trap 

detectors can be modelled with low uncertainty within the VIS-NIR wavelength range, 

which allows the measurements of absolute responsivity and reflectance to be made only 

at a few visible wavelengths [11]. However, the responsivity of a silicon detector is 

limited towards infrared wavelengths, and while very stable in VIS wavelength range 

[18], it becomes unstable under extensive ultraviolet radiation below 250 nm [19, 20, 21, 

22]. Alternative photodiodes, like GaAsP, PtSi, Ge and InGaAs, which possess higher 
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stability or extended range of responsivity, have been tested in trap detector configuration 

for UV and IR applications [Publ. I, 23, 24, 25]. 

Filter radiometers, which incorporate a trap detector, are used for the detector-

based realizations of the unit of the spectral irradiance [26, 27, 28]. High accuracy 

calibration of the filter radiometers can be based on the separate measurements of the 

properties of the components of the device [26, 27, 29, 30]. Alternative characterization 

methods are based on the direct calibration of the spectral irradiance responsivity of a 

filter radiometer as a whole [23, 31, 32 33, 34, 35, Publ. II]. The high accuracy of the 

wavelength scale of the methods, which take advantage of wavelength tuneable laser 

sources [33, 34, Publ. II], is especially advantageous if the calibrated filter radiometer is 

to be used for radiometric temperature determination [36, Publ. IV]. 

Due to the improvements in the accuracy of the detector-based spectral irradiance 

and radiance scales, described earlier, the uncertainty of the radiometric determination of 

the thermodynamic temperature of a blackbody source from the measured spectral 

radiance or irradiance has reduced significantly [36, 37, 38, 39, 40, 41]. Thus it becomes 

more attractive to realize the scale of radiometric temperature via optical units. In such a 

way, the measured temperatures are traceable to the electrical and dimensional quantities 

instead of the defined temperatures of the freezing temperatures of some metals [3, 

Publ. III, Publ. IV]. 

1.2. Progress in this work 
 

We have studied the properties of GaAsP Schottky barrier photodetectors in order 

to extend the scales of spectral responsivity and spectral irradiance down to 200 nm. We 

have constructed and characterized a trap detector, which utilizes GaAsP photodiodes 

[Publ. I]. The spectral reflectance of the trap detector was calculated from a theoretical 

model using the measured reflectances of single photodiodes and compared to the 

measured reflectances of the trap detector. Based on the measurements of the spectral 

responsivity and reflectance of the trap detector and of a single photodiode, we have 

demonstrated an apparent decrease in the internal quantum efficiency of GaAsP trap 

detector relative to a single photodiode. In addition, we tested the ageing of the GaAsP 

photodiodes under modest UV radiation. As a result, we have demonstrated that GaAsP 
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trap detector can be used as a reliable reference standard detector in ultraviolet 

wavelength range with some restrictions on the level of irradiance of the incident 

radiation [Publ. I]. 

A novel characterization technique, which is based on Ti:Sapphire wavelength-

tunable laser source, has been used to calibrate the spectral irradiance responsivity of 

filter radiometers in the wavelength range between 750 nm and 950 nm [Publ. II]. We 

have studied the effect of interference, present in the laser-based calibration of filter 

radiometers. The amplitude of the interference fluctuations in the measured spectral 

irradiance responsivity has been reduced by antireflection coatings on both surfaces of 

the band-pass filter of the filter radiometer. This special design has led to a significant 

increase of the accuracy of this calibration method.  

The Ti:Sapphire laser, which has been used as the radiation source in this method, 

has bandwidth as narrow as 3 pm. The wavelength of the laser has been measured on-line 

during the calibration. Thus the uncertainty component, arising from the wavelength 

scale, is of an order of magnitude lower than in the case of monochromator-based 

calibrations [Publ. II]. As a result, we have reduced the uncertainty of the radiometric 

determination of blackbody temperatures at TKK [Publ. IV]. 

We have demonstrated the radiometric temperature measurements of several 

blackbody sources in a straightforward irradiance mode, where the measurement 

geometry is defined by two apertures [Publ. III, Publ. IV]. The freezing temperatures of 

copper [Publ. III] and silver [Publ. III, Publ. IV] have been measured and compared to 

the defined values of the ITS-90 [3], 1084.62 °C and 961.78 °C, respectively. We have 

shown that the straightforward irradiance mode of the measurements can be applied on 

the measurements of the thermodynamic temperatures of the fixed point cells, which 

traditionally have small output apertures. Furthermore, the thermodynamic temperatures 

of a variable temperature blackbody have been measured in the temperature range 

between 1200 °C and 1500 °C [Publ. IV]. The measurement results with different filter 

radiometers, which have effective wavelengths between 600 nm and 900 nm, have 

demonstrated good agreement between different characterization techniques of the filter 

radiometers [Publ. IV]. 
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2. GaAsP photodetectors 
 

Gallium arsenide phosphide Schottky-barrier photodiodes, which have cut-off 

wavelength around 610 nm, are used as working standard detectors in the UV wavelength 

region [42, 43] and their properties have been studied by several research groups [44, 45, 

46, 47, 48, 49, 50]. The photodiodes are commercially available with large area, 

10×10 mm2, and with satisfactory spatial uniformity [42, 51]. While the responsivity of 

GaAsP photodiodes is typically 2–3 times lower as compared to silicon photodiodes, its 

spectral shape is smoother in the range of 250 nm to 350 nm [42] and it does not degrade 

under UV radiation so rapidly [52]. 

The trap detector is a configuration of three or more photodiodes in such a way 

that the reflected light from one diode hits the next, and so on (Fig. 1) [14, 16, 15]. After 

several reflections, most of the incident light has contributed to generation of the 

photocurrent, in contrast to a typical single photodiode detector, where more than 50 % of 

the incident light is reflected. As a result, the responsivity of a trap detector can be 

approximately two times higher as compared to a single photodiode (Fig. 2). At the same 

time, the total reflectance of a trap detector is an order of magnitude lower as compared 

to the reflectance of a single photodiode at normal incidence.  

  
Figure 1. The lay-out of the photodiodes in a three-element trap detector. The 

hatched areas indicate the active surfaces of the photodiodes [53]. 
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Figure 2. Measured responsivities of GaAsP trap detector and of a windowless 

GaAsP photodiode at normal incidence. 

 

2.1. Spectral reflectance 
 

The spectral reflectances of GaAsP photodiodes have been studied with 

synchrotron radiation sources in UV and VUV wavelength ranges [45, 47]. The results 

however have been published only for a few selected angles of incidence and polarization 

planes of the incident light [45, 47]. The spectral reflectance of a windowless GaAsP 

photodiode has also been measured with a high-accuracy gonioreflectometer [54] in the 

wavelength range between 240 nm and 600 nm [Publ. I]. The measurements have been 

conducted at the angles of incidence of 45°, 30° and 10° with monochromatic light 

polarized linearly sequentially in s- and p-planes (Fig. 3). 
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Figure 3. Measured reflectances of GaAsP single photodiode at different angles of 
incidence with light polarization in both s- and p-planes. 

 

The reflectance of a trap detector, ρtrap, can be calculated from the known 

reflectances of the single photodiodes used in the trap detector. The calculation takes into 

account the configuration of the trap detector and the reflectances of the photodiodes at 

the angles of 0° and 45° for both polarization planes, ρ(0°), ρs(45°) and ρp(45°), 

respectively. The reflectance can be calculated as 

).45()45()0( 22 °⋅°⋅°= pstrap ρρρρ     (1) 

The reflectance of GaAsP trap detector has been calculated from the data using 

Eq. 1 (Fig. 3) and compared to the measured reflectances at three laser wavelengths, 

325 nm, 442 nm, and 457 nm (Fig. 4). The reflectance at the normal incidence ρ(0°), 

which has not been directly measured, has been calculated by extrapolation of the 

measured reflectances at 45°, 30° and 10°. 
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Figure 4. Reflectance of GaAsP trap detector. Measured trap reflectances with 
uncertainty bars are compared to the values calculated from the measured 
reflectances of a single photodiode. 

 

2.2. Spectral responsivity and IQE 
 

The spectral responsivity of a semiconductor photodetector R(λ) can be calculated 

by equation 

( )[ ] ( )
K

R λληλρλ −= 1)( ,                                                            (2) 

where λ is the vacuum wavelength of incident light, ρ(λ) is the spectral reflectance of the 

detector, η (λ) is the spectral internal quantum efficiency of the photodetector, and 

K ≡ hc/e = 1239.84 nm W A-1 is determined in terms of fundamental constants.  

The absolute spectral responsivity of GaAsP Schottky-barrier photodiodes has 

been measured with different methods [43, 44, 45, 47, Publ. I]. At TKK, the absolute 

spectral responsivity of GaAsP trap detector has been measured with a monochromator-

based spectrophotometer [55] using a spectrally flat pyroelectric detector as a reference 

(Fig. 2) [Publ. I]. 
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The internal quantum efficiencies η(λ) of GaAsP trap detector and of a single 

GaAsP photodiode under normal incidence have been calculated from the measured 

spectral responsivities and reflectances using Eq. 2 (Fig. 5) [Publ I]. The comparison 

reveals a modest reduction of the IQE for the trap detector. This systematic difference 

varies between 3 % at 400 nm and 14 % at 250 nm (Fig. 5). The probable reason for this 

effect is the increased absorption in the Schottky contact layer of the photodiodes in the 

trap detector configuration, where two of the photodiodes are at 45° with respect to the 

incident light and thus the path length of the light through the contact layer is longer. 

The spectral responsivity of GaAsP trap detector is a smooth function of 

wavelength in the range between 250 nm and 370 nm. On the contrary, the spectral 

responsivity of a typical silicon detector has a complicated structure around 275 nm, 

which makes its responsivity difficult to interpolate in this wavelength range. The 

physical explanation is that while silicon has the peaks of its dielectric functions, 

corresponding to the direct electron transitions in the energy-band structure, at around 

275 nm and 370 nm, the corresponding peaks for the GaAsP compound used appear 

around 250 nm and 390 nm. Reduced reflectance of the trap detector also contributes to 

the spectral smoothness, as the peaks, appearing in the spectral reflectance at the same 

wavelengths, are around one decade lower. 
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Figure 5. Relative difference in IQE between GaAsP trap detector and a single 

windowless GaAsP photodiode. 
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In practice, the spectral density of the calibration points, and thus the required 

number of the calibrations at different wavelengths, depends on the accuracy of the 

interpolation between the measured values. Accordingly the smoothness of the 

responsivity reduces the effort needed, especially if the calibration is performed with a 

cryogenic radiometer.  

2.3. Spatial uniformity of GaAsP detectors 
Spatial uniformity of GaAsP photodiodes is modest as compared to high-quality 

silicon photodiodes [42] (Fig. 6). However, as the total uncertainty of spectral 

responsivity in the UV wavelength range is significantly higher as compared to VIS 

wavelength range [56], the uncertainty component arising from the spatial uniformity is 

not a limiting one [Publ I]. 
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Figure 6. Spatial uniformity of GaAsP trap detector, measured with HeCd laser at 
325 nm using a 2 mm beam. The values in percents are given relative to the central 
measurement point. 
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3. Characterization of filter radiometers 

3.1. Characterization of filter radiometer components 
 

Spectral irradiance of a radiation source can be measured with a spectrally filtered 

detector. Typically, a filter radiometer consists of a detector with spectral responsivity 

R(λ), a band-pass filter with spectral transmittance τ(λ), and an aperture with area A. The 

spectral irradiance responsivity of such a detector, S(λ), can be calculated from the 

equation: 

)()()( λτλλ ⋅⋅= RAS                                                (3) 

 

Thus the spectral irradiance responsivity of the filter radiometer can be calculated as a 

product of separately measured parameters A, R(λ), and τ(λ). In addition, corrections 

arising from the interreflections between the filter, detector, and aperture have to be 

applied. Furthermore, the diffraction from the edges of the aperture has to be taken into 

account. 

Typically, diamond-turned circular apertures, made of brass or black anodized 

aluminium, are used in the filter radiometers [26, 27]. The area of the aperture, A, can be 

calculated from the diameters measured with contact methods [57] or with non-contact 

methods [58, 59, 60]. An advantage of a non-contact method is that the risk of damaging 

of the sharp edges of the aperture is reduced. The area can also be measured directly with 

optical non-contact methods [61, 30, 62]. 

A common detector, used in the filter radiometers for measurements in VIS 

wavelength range, is silicon photodiode. As discussed in the previous chapters, the 

responsivity of silicon photodiode can be calibrated at a few wavelengths for example 

with an absolute cryogenic radiometer, and be extrapolated numerically using physical 

models over all VIS wavelength range with high accuracy [63, 64, 65]. There are also 

improved models for UV and NIR spectral ranges, but the uncertainty of these 

extrapolations increases significantly. On the other hand, a single Si photodiode has high 

reflectance, which is complicated to account for in the filter radiometer configuration if 

the components of the filter radiometer are characterized separately. In such a case, a trap 
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detector, whose reflectance is much lower as compared to a single photodiode, is more 

suitable [26, 27]. 

The filters used in filter radiometers are normally narrow-band interference filters. 

The spectral transmittance of such a bandpass filter, τ(λ),  can be measured with 

spectrophotometers, which use monochromatic tuneable light sources [29]. In the 

transmittance measurements, it is important to use beam geometries, which are close to 

the actual measurement configurations where the calibrated filter radiometer is to be used 

as the transmittance of the interference filters is sensitive to the angle of incidence. The 

transmittance of the interference filters is also a function of temperature [66] and the 

central wavelengths of the interference filters may shift due to temperature variations 

[67]. For high-accuracy measurements, the filters have to be temperature-controlled. 

 

3.2. Characterization of filter radiometer as a unit 
 

A stable light source consisting of a lamp and a monochromator is traditionally 

used to calibrate the spectral responsivity of a filter radiometer. During the calibration the 

filter radiometer and a reference detector with known spectral responsivity are 

illuminated alternately by radiation from the monochromator. Usually the aperture of the 

filter radiometer is removed which permits the use of different sizes and positions of the 

beam. In this approach, additional uncertainty arises from the spatial nonuniformity of the 

filter radiometer. The spectral resolution of the calibration is also limited by the 

bandwidth of the monochromator.  

A wavelength-tuneable laser can be used instead of the monochromator. The laser 

beam directed to an integrating sphere can be used as a uniform monochromatic source 

[33, 34]. The laser-based methods have excellent wavelength resolution and repeatability 

as compared to the monochromator-based methods. However, the wavelength ranges, 

which can be covered with wavelength-tuneable lasers, are limited. Furthermore, a 

significant uncertainty component arising from the interference of the monochromatic 

laser light inside the bandpass filter of the filter radiometer has to be taken into account 

[Publ. II]. 
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3.3. The scanning method 
 

The scanning method is based on a known, uniform irradiance produced by 

combining several identical laser beams [30, 35]. In practice, only one laser beam is used 

and the position of the filter radiometer is moved by small steps in relation to the laser 

beam. To produce a uniform irradiance distribution, the beam profile does not need to be 

either Gaussian or symmetric. 

There is a group of identical beams forming a rectangular grid. The beams are 

placed regularly with spacings between each other ∆x and ∆y in x and y directions, 

respectively (Fig. 7). The number of columns is denoted by nx and number of rows by ny. 

Each beam on the grid can be identified by the number of it’s column and row (j,k).  

The irradiance related to the beam can be described by a general distribution 

 

),( ykyxjxGL ∆−∆−Φ ,                                              (4) 

where ΦL is the radiant flux of the beam and G is the shape function. The shape function 

is normalised in such a way that 

∫ ∫
+∞

∞−

+∞

∞−

=∆−∆− 1),( dxdyykyxjxG .                                       (5) 

 It is assumed that the spacings ∆x and ∆y are much smaller than the distances over 

which there occur significant changes in the shape function G. When nx∆x and ny∆y are 

much larger than the beam widths in the x and y directions, the irradiance at a point x = x0 

and y = y0, close to the centre of the grid, is given by 
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where j’ = -j, k’ = -k, and Eq. 5 has been used to approximate the double summation in 

the second row of Eq. 6 to be 1. Equation 6 shows that the generated irradiance close to 
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the centre of the grid depends only on the radiant flux of the beam and distance between 

beams. 

 

 
Figure 7. Uniform effective irradiance generated by the sum of identical beams. 

Figure (a) shows the number and location of the beams. Calculated irradiance 

profile as a function of ratio between the beam diameter and distance between the 

beams: (a) ∆x=∆y=w and (b) ∆x=∆y= 0.63w where w is equal to the radius of the 

beam at 1/e2 irradiance level from maximum [35]. 
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If a filter radiometer is exposed to the monochromatic uniform irradiance E and 

the output photocurrent I is measured, the spectral irradiance responsivity S(λ) can be 

calculated from the equation 

E
IS =)(λ .                                                           (7) 

By measuring the photocurrent of the filter radiometer, Ij,k, at each beam position (j,k), 

one can calculate the total photocurrent which corresponds to E 

∑ ∑−= −=
= x

x

y

y

n

nj

n

nk kjII , .                                                  (8) 

The spectral irradiance responsivity of the filter radiometer is obtained by combining 

Equations (6) – (8) as 
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3.4. Comparison of calibration methods 
 

The measurements of spectral irradiance responsivities of filter radiometers using 

laser- and monochromator-based sources have shown some significant differences. First, 

the narrow bandwidth of the laser allows achievement of high wavelength resolution in 

the measured irradiance responsivities. However, this is not always the case, as the 

interreflections occur between different surfaces of the bandpass filters causing unwanted 

interference of the monochromatic coherent light. As a result, wavelength-dependent 

semi-periodic fluctuations in the transmittance of the filter occur. The period of these 

fluctuations has been measured to be from 0.05 nm to 0.5 nm [Publ. II]. In order to 

correctly estimate the irradiance responsivity of filter radiometers incorporating such 

filters, an average over at least one full period of these fluctuations has to be calculated. 

Thus the spectral resolution of laser-based methods is mainly determined by the 

properties of the calibrated artifact. Nevertheless, with suitable selection of bandpass 

filters, spectral resolution as high as 0.05 nm can be achieved with the laser-based 

method [Publ. II]. 
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Laser sources have typically much higher output power as compared to a 

monochromator with a lamp source. In addition, the out-of-band radiation of a laser can 

be extremely low. These properties give the laser-based method a significant advantage 

for out-of-band spectral irradiance measurements of filter radiometers. 

 

4. Radiometric temperature measurements 

4.1. Relative temperature scale 
 

In 1989, the International Temperature Scale of 1990 (ITS-90) was adopted by the 

International Committee of Weights and Measures [3]. The ITS-90 extends upwards from 

0.65 K to the highest temperature practicably measurable. Above the freezing 

temperature of silver, 961.780 ºC, the temperature is defined in terms of the Planck 

radiation law using monochromatic radiation by the equation: 
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where T90(X) refers to any one of the silver {T90(Ag) = 1234.93 K}, the gold {T90(Au) = 

1337.33 K} or the copper {T90(Cu) = 1357.77 K} freezing points and in which Lλ(T90) 

and Lλ[T90(X)] are the spectral concentrations of the radiance of a blackbody at the 

wavelength (in vacuum) λ at T90 and at T90(X) respectively, and c2 = 0.014388 m·K [3]. In 

this approach, the T90 values of the freezing points of silver, gold and copper are believed 

to be self consistent to such a degree that the substitution of any one of them in place of 

one of the other two as reference temperature T90(X) would not result in significant 

differences in the measured values of T90 [68]. However, later measurements have 

revealed possible discrepancies between the ratios of the fixed point temperatures of the 

ITS-90 [36]. 

Measurements of higher or lower temperatures relative to a fixed point suffer 

from the possible errors related to the extrapolation, as the defined temperatures of the 

ITS-90 are limited [69, 70]. During the last decade, intensive research has been carried 

out to develop new high-temperature fixed points at several national metrology institutes 

[71, 72, 73, 74, 75, 76]. These blackbodies are based on metal-carbon eutectics. Some of 

them, namely Ir-C, Re-C, TiC, Os-C, ZrC-C, and HfC-C, have melting temperatures 
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higher than 2500 K [71], and M-C and MC-C even above 2700 K [76]. The uncertainty, 

related to the extrapolation, can be significantly reduced if fixed points close to the 

measured temperature are used as the reference. However, the reproducibility of the new 

metal-carbon eutectics needs further improvement [77]. 

 

4.2. Radiometric temperature measurements below 961.780 °C 
 

Radiometric measurements of temperatures below the freezing temperature of 

silver are very important for different industrial and military applications. According to 

the ITS-90, the temperature scale between the triple point of equilibrium hydrogen 

(13.8033 K) and the freezing point of silver (961.78 °C) is defined by means of a 

platinum resistance thermometer calibrated at specified sets of defining fixed points, and 

using specified reference and deviation functions for interpolation at intervening 

temperatures [3]. For radiometric temperature measurements, blackbodies equipped with 

a calibrated PRT, and with known emissivity can be used as reference standards. 

However, the spectral emissivities of blackbodies are complicated to estimate and 

therefore can introduce significant errors for radiometric calibrations [78].  

Another approach is to extend the extrapolation methods described in the ITS-90 

for the temperature above 961.780 °C also below the freezing temperature of silver. For 

the temperature range between 200 °C and 961.780 °C, the set of available fixed points 

includes the freezing temperatures of tin (231.928 °C), zinc (419.527 °C), and aluminum 

(660.323 °C). At lower temperatures, the measurement wavelength of the pyrometers 

used has to increase. Pyrometers with silicon detectors and bandpass filters close to 

900 nm can typically be used down to 600 °C. Alternative detectors like indium gallium 

arsenide, germanium, indium antimonide, or thermal detectors have to be used for 

measurements at lower temperatures. 

 

4.3. Absolute radiometric temperature measurements 
 

Absolute radiometric measurements of blackbody temperature, traceable to 

electrical and dimensional units, are free of extrapolation errors, and there is no need for 
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the realization of any fixed points. Thermodynamic temperature of a blackbody cavity, T, 

can be calculated from the measured spectral radiance L(λ,Τ) using Planck’s radiation 

law [2]: 

( ) ( )[ ]L T
c
c T

λ
λ λ
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1
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where λ is the wavelength in vacuum, c1=3,741 774 9 · 10-16 W·m2 and 

c2=1,438 8 · 10-2 m·K are the first and second radiation constants defined by the CIE [79]. 

Filter radiometers equipped with bandpass filters and a lens system can be used 

for the direct measurement of the spectral radiance in so called radiance mode of 

measurements [36, 40, 42]. An alternative method uses two apertures in the irradiance 

mode of measurements, where the radiance of the source is calculated from the measured 

irradiance at known distance [40, 42, Publ. III, Publ. IV]. 

If the spectral irradiance responsivity of a filter radiometer, S(λ), is known, the 

thermodynamic temperature of a blackbody can be determined from the measured 

spectral irradiance at a distance d from the blackbody by equation: 

∫
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which relates the photocurrent i and the radiance of a blackbody L(,T), given by the 

Planck’s radiation law (Eq. 11). The temperature of the blackbody is found by matching 

the calculated photocurrent with the measured one. In equation 12, the parameter ABB is 

the area of the blackbody aperture, ε(λ,T) is the emissivity of the blackbody cavity, rFR is 

the radius of the filter radiometer aperture, and rBB is the radius of the blackbody aperture. 

The geometric factor D2 is calculated as: 
2222

FRBB rrdD ++= .     (13) 

The emissivity of a blackbody cavity, ε(λ,T), depends on the material properties 

and dimensions of the cavity. Furthermore, it is a function of wavelength and temperature 

of the cavity [80]. For the radiometric measurements of thermodynamic temperature of a 

blackbody, the emissivity of the cavity is typically calculated using measured emissivities 

of the material samples and Monte Carlo analysis [81]. According to the Kirchhoff’s law, 
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the emissivity equals the absorbance. Thus the emissivity can be estimated also by the 

measurements of spectral diffuse reflectance of the cavity [82, 80]. 

Measurements of the spectral irradiance of a blackbody with small cavity 

diameter are demanding due to multiple factors [Publ. III, Publ IV]. First, the effect of 

diffraction from the aperture of the cavity is more significant for smaller cavity 

diameters. The calculations of the diffraction corrections typically use Fresnel integrals 

[83] or simplified Lommel functions [84]. Different methods for the calculation have 

been proposed [85, 86, 87, 88, 89]. Next, the level of irradiance from a source with small 

area at the temperatures close to the fixed point temperatures of the ITS-90 can be very 

low [Publ. III, Publ IV]. However, the linearity of silicon photodiodes, which are 

typically used in filter radiometers, is good [90, 91] and the measurement of optical 

power at the level of 50 pW with high accuracy is possible [Publ. III, Publ IV]. 

 

4.4. Measurements at multiple wavelengths 
 

While radiance temperature of a high-emissivity blackbody source can be 

calculated from the measured radiance at a single wavelength, it can be advantageous to 

conduct the measurements at multiple wavelengths. The possible discrepancies between 

the results obtained at different wavelengths may reveal possible systematic errors arising 

for example from the out-of-band leakages, diffraction, and size-of-source effects. The 

best estimate for the radiance temperature in the case of measurements at multiple 

wavelengths is the weighted average T  of the temperatures obtained at different 

wavelengths using weighting factors cj calculated from the standard uncertainties of the 

measurements at different wavelengths u(Tj). However, the total uncertainty of such an 

estimate depends on the correlation coefficients r(Tj,Tk) between the measurement results 

Tj and Tk at different wavelengths as: 
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where u(T ) is the standard uncertainty of T  and n is the number of wavelengths used 

[92]. During recent years, the effects of correlations in spectral measurements have been 

actively studied [93, 94, 95]. 
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 Another motivation for temperature measurements at multiple wavelengths is to 

optimally cover wider temperature range. From the Planck’s radiation law, the radiance 

measurements at lower wavelengths will result in higher accuracy of temperature 

determination. However, measurements at lower wavelengths are limited by low radiance 

levels. While bandpass filters at 650 nm are typically used for high temperature 

measurements, higher measurement wavelengths can be preferable below the freezing 

temperature of silver. In this temperature range, the improvements achieved in filter 

radiometer calibration with the laser-based calibration method at 900 nm, are especially 

useful. 

 

5. Conclusions 
In this thesis, properties of radiometric detectors and their calibration have been 

studied. The GaAsP photodetectors have been characterized in the wavelength range 

between 200 nm and 600 nm. Spectral reflectances of a single windowless GaAsP 

photodiode, measured with high-accuracy gonioreflectometer, have been presented. A 

GaAsP trap detector which is suitable to be used as a working standard detector for the 

optical power measurements in the ultraviolet wavelength range has been constructed and 

characterized. The reduction of the internal quantum efficiency of the trap detector as 

compared to a single photodiode at normal incidence has been shown. This effect arises 

probably from the increased absorption in the Schottky contact layer, made of gold, on 

the top of the photodiodes. Nevertheless, the constructed GaAsP trap detector seems to be 

a suitable detector for spectral responsivity scale realization in the UV wavelength range. 

While ideal trap detectors are polarization independent, small errors in alignment 

or the presence of absorbing metal layer on GaAsP photodiodes can cause polarization 

dependence of the responsivity [96]. The effect still needs further investigation.  

The GaAsP trap detector has been preliminarily tested also in the filter radiometer 

configuration for spectral irradiance measurements. In the future, the spectral irradiance 

scale realization at TKK in the UV wavelength range between 200 and 290 nm could be 

based on the filter radiometers utilizing GaAsP trap detectors. However, the long-term 

stability of the detector has to be further investigated. 
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A novel method for characterization of filter radiometers, which uses a 

wavelength tuneable Ti:Sapphire laser source, has been described. The scanning method 

has lower uncertainty as well as higher wavelength accuracy as compared to more 

conventional monochromator-based methods. The tuning range of the Ti:Sapphire laser is 

suitable for characterization of filter radiometers around 800 nm and 900 nm, which are 

comfortable wavelengths for radiometric measurements of blackbody temperatures 

1000 °C and below. With a doubled frequency of the laser, the method can be used in 

future for accurate calibrations in the UV wavelength range. 

Radiometric measurements of the thermodynamic temperatures of several 

blackbodies in the irradiance mode have been described. The measured temperatures 

include the freezing temperature of silver and copper, which are defined by the ITS-90. 

While we show that the irradiance mode can be used for measurements of small sources, 

the uncertainty achieved is still somewhat higher as compared to the measurements of the 

other groups in radiance mode [36]. However, the uncertainty can be further reduced by 

improving the spectral responsivity calibration of the reference detectors in the NIR 

wavelength range. Furthermore, the effect of diffraction could be measured directly 

instead of calculation by a specially designed measurement system, currently under 

development at NIST. 

Comparison measurements with different filter radiometers, characterized with 

both monochromator-based and laser based methods, have demonstrated good agreement 

between the methods. In the future, the filter radiometers at 800 nm and 900 nm, 

calibrated with the laser-based method, can be used to extend the TKK measurement 

capabilities to lower temperatures. Furthermore, filter radiometers utilizing germanium 

detectors, are currently studied at the TKK for radiometric measurement of temperatures 

below 1000 °C [97]. 
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laser wavelengths. The absolute spectral responsivity of the trap detector was measured. 

The internal quantum efficiencies (IQE) of the trap detector and a single photodiode were 

calculated in the wavelength region between 250 and 400 nm from the spectral 

reflectances and responsivities. The comparison revealed reduction of the apparent IQE 

of the trap detector as compared to the single photodiode at the level of 10 %. The spatial 

uniformity of the responsivity of the trap detector was measured, and the corresponding 

uncertainty component at 325 nm was calculated to be 4×10-4. The effect of moderate 

ultraviolet exposure at the level of 50 mJ/cm2 on the stability of the responsivity of 

GaAsP photodiode was studied and found to be below 2×10-3 at all used wavelengths. 
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Results of filter radiometer characterisation with wavelength-tuneable Ti:Sapphire laser 

in the wavelength band around 900 nm are presented. The effect of interference between 

the reflections from filter surfaces in the case of coherent laser light was studied and 

reduced with special filter design with anti-reflection coatings. Measuring the 

responsivity as a function of wavelength over a very narrow band was used to reveal 

remaining interference effects. Uncertainty analysis and test results indicate that filter 

radiometers can be characterised with a relative standard uncertainty of 9×10-4 using the 

scanning method. The results agree well with more conventional monochromator-based 

measurements. 
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publication in Proceedings of TEMPMEKO 2004. 

A high accuracy filter radiometer with an absolute calibration is used to measure the 

thermodynamic temperature of a blackbody in irradiance mode. A copper fixed point cell 

is used as the blackbody source and the measurement results are compared with the 

defined freezing-point temperature of copper, 1084.62 °C. We show that the 

straightforward two-aperture configuration is practical for the measurements of a 

blackbody with small opening area even at relatively low temperatures. The standard 

uncertainty of the measurements is between 0.17 K and 0.20 K. 

 

IV.  “Radiometric temperature measurements with absolutely characterized filter 

radiometers in irradiance mode,” Metrology Research Institute Report 24/2005. 

The absolute characterization of filter radiometers for radiometric determination of the 

thermodynamic temperatures of blackbody sources in irradiance mode is described. Two 

different methods are used to calibrate four filter radiometers at different wavelengths 

between 600 and 900 nm. The freezing temperatures of silver and copper are measured 

and compared with the defined values of the International Temperature scale of 1990 

(ITS-90). The deviations of the measured temperatures from the defined values of the 

ITS-90 are 122 mK and 120 mK for silver and copper, respectively. The standard 

uncertainties of the comparison are 110 mK and 123 mK, respectively. The agreement 

between the temperature measurements at different wavelengths is further investigated at 

the temperatures up to 1500 °C with a variable temperature blackbody. The results 

obtained at different wavelengths are mostly within the standard uncertainty limits, which 
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