
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 94

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 94

Espoo 2005 HUT-TCS-A94

ALGORITHMS FOR CLASSIFICATION OF

COMBINATORIAL OBJECTS

Petteri Kaski

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80701587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 94

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 94

Espoo 2005 HUT-TCS-A94

ALGORITHMS FOR CLASSIFICATION OF

COMBINATORIAL OBJECTS

Petteri Kaski

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of

the Department of Computer Science and Engineering, for public examination and debate in Auditorium

T2 at Helsinki University of Technology (Espoo, Finland) on the 15th of June, 2005, at 12 o’clock noon.

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FI-02015 TKK

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Petteri Kaski

ISBN 951-22-7711-5

ISSN 1457-7615

Multiprint Oy

Helsinki 2005

ABSTRACT: A recurrently occurring problem in combinatorics is the need
to completely characterize a finite set of finite objects implicitly defined by a
set of constraints. For example, one could ask for a list of all possible ways to
schedule a football tournament for twelve teams: every team is to play against
every other team during an eleven-round tournament, such that every team
plays exactly one game in every round. Such a characterization is called a
classification for the objects of interest. Classification is typically conducted
up to a notion of structural equivalence (isomorphism) between the objects.
For example, one can view two tournament schedules as having the same
structure if one can be obtained from the other by renaming the teams and
reordering the rounds.

This thesis examines algorithms for classification of combinatorial objects
up to isomorphism. The thesis consists of five articles—each devoted to a spe-
cific family of objects—together with a summary surveying related research
and emphasizing the underlying common concepts and techniques, such
as backtrack search, isomorphism (viewed through group actions), symme-
try, isomorph rejection, and computing isomorphism. From an algorithmic
viewpoint the focus of the thesis is practical, with interest on algorithms that
perform well in practice and yield new classification results; theoretical prop-
erties such as the asymptotic resource usage of the algorithms are not consid-
ered.

The main result of this thesis is a classification of the Steiner triple systems
of order 19. The other results obtained include the nonexistence of a resolv-
able 2-(15, 5, 4) design, a classification of the one-factorizations of k-regular
graphs of order 12 for k ≤ 6 and k = 10, 11, a classification of the near-
resolutions of 2-(13, 4, 3) designs together with the associated thirteen-player
whist tournaments, and a classification of the Steiner triple systems of order
21 with a nontrivial automorphism group.

KEYWORDS: classification algorithm, isomorphism, isomorph rejection,
near-resolvable design, one-factorization, orderly algorithm, regular graph,
resolvable design, Steiner triple system

CONTENTS

1 Introduction 1

2 Structure of the Thesis 5
2.1 Summary of the Articles in the Thesis 5
2.2 Contributions of the Author 6

3 Classification Algorithms 7
3.1 Classification Problems . 7
3.2 Exhaustive Generation . 8

3.2.1 Backtrack Search . 8
3.2.2 Search Trees . 10

3.3 Isomorphism and Symmetry 12
3.3.1 Group Actions and Isomorphism 12
3.3.2 Types of Isomorphism Problems 13
3.3.3 Computing Isomorphism 14

3.4 Techniques for Isomorph Rejection 15
3.4.1 Recorded Objects 16
3.4.2 Generation by Canonical Representatives 18
3.4.3 Generation by Canonical Augmentation 21
3.4.4 Homomorphisms of Group Actions and Localization . 24

3.5 Correctness . 26

4 Algorithms for Classification of Designs and Codes 27
4.1 Designs and Error-Correcting Codes 27

4.1.1 Designs . 27
4.1.2 Codes and Resolutions of Designs 28

4.2 Algorithms for Designs . 29
4.2.1 Point-by-Point Classification 29
4.2.2 Block-by-Block Classification 30
4.2.3 Other Approaches 32

4.3 Algorithms for Designs with Prescribed Automorphisms . . . 33
4.3.1 The Kramer-Mesner Method 33
4.3.2 Tactical Decompositions 34
4.3.3 Other Approaches 35

4.4 Algorithms for Codes . 36
4.4.1 Codeword-by-Codeword Classification 37
4.4.2 Coordinate-by-Coordinate Classification 38
4.4.3 Other Approaches 39

5 Conclusions 41

Bibliography 43

CONTENTS v

vi CONTENTS

PREFACE

This thesis is the result of studies and research carried out at the Labora-
tory for Theoretical Computer Science of Helsinki University of Technology
(TKK) from 2001 to 2005.

A number of people have contributed to this thesis, either directly or in-
directly. First, I would like to thank Professor Patric Östergård, my thesis in-
structor, for guiding me into the intricacies of combinatorial classification—
and the world of science in general—through extensive collaboration and
advice, not to mention our joint monograph project on classification algo-
rithms. I am grateful to Professor Ilkka Niemelä, the laboratory head, for
the opportunity to work at the Laboratory for Theoretical Computer Science
and for creating the encouraging environment at the laboratory. To Profes-
sor Pekka Orponen I am much obliged for his acting as my thesis supervi-
sor and for collaboration in the NAPS Algorithmics project, not to mention
granting a more than occasional peek into an extensive personal library. I
also would like to thank everyone at the laboratory for the congenial working
atmosphere; in the context of this thesis I am especially indebted to Harri
Haanpää for our collaboration and to Tommi Junttila for contributing to my
understanding of isomorphism algorithms.

This research has been funded by the Helsinki Graduate School in Com-
puter Science and Engineering (HeCSE) and by the Academy of Finland.
Further financial support in the form of personal grants from the Founda-
tion of Technology (Tekniikan Edistämissäätiö) and the Nokia Foundation is
gratefully acknowledged.

Finally, I would like to thank my parents and friends for their support and
encouragement along the years.

Otaniemi, June 2005

Petteri Kaski

PREFACE vii

1 INTRODUCTION

Combinatorics [24, 151] is commonly defined as the branch of mathemat-
ics studying finite arrangements of certain basic objects—such as elements
or subsets of a given finite set—where an arrangement is required to meet
certain constraints. This is obviously a rather imprecise definition, but it ac-
curately reflects the variety in the types of objects studied. For the skeptical, a
browse through the Handbook of Combinatorics [77] or the CRC Handbook
of Combinatorial Designs [34] provides ample evidence of this variety.

Depending on the difficulty of satisfying the given constraints, combi-
natorial objects range from elementary objects—such as permutations and
partitions—to objects with more elaborate structure such as graphs with var-
ious regularity properties [12, 18, 71], designs [8, 34], and codes [30, 157,
201].

For elementary objects, the main interest is typically to enumerate the
objects; this is the goal of enumerative combinatorics [227]. Also of interest
is to sample the objects uniformly at random [97] and to develop ranking and
unranking functions for the objects relative to some prescribed order relation
[127].

For objects with more elaborate structure, the primary problem is that of
existence; that is, determining whether the constraints can be satisfied, and
if so, providing explicit constructions for objects meeting the constraints. A
more ambitious goal is to completely characterize all the objects specified
by the constraints. Typically such a characterization assumes the form of a
classification that partitions the objects into a collection of classes such that:

the structure of the objects in each class is evident; for exam-
ple, an explicit construction is provided for one object from each
class; and

(1.1)

the objects within a class are identical in structure—or isomor-
phic—with respect to the properties under study; for example, it
is common to view two objects as isomorphic if one can be ob-
tained from the other by appropriately renaming and/or reorder-
ing the basic objects that make up an object.

(1.2)

For the purpose of this introduction, combinatorial objects and combina-
torial classification are perhaps best briefly illustrated by the following practi-
cal example. Indeed, many combinatorial objects arise as solutions to every-
day problems.

Eight football teams are to play a tournament where every team
plays once against every other team. The task is to produce a
tournament schedule consisting of (seven) rounds, such that ev-
ery team plays one game in each round.

To characterize all such tournament schedules, it is convenient to view any
two tournament schedules as identical in structure (isomorphic) if one can be
obtained from the other by renaming the teams and reordering the rounds.
Relative to this notion of isomorphism, the possible tournament schedules
are partitioned into six isomorphism classes. Representatives from the classes

1. INTRODUCTION 1

Figure 1.1: The six possible tournament schedules for eight teams

are depicted in Fig. 1.1, where the vertices represent the teams and the
edges represent the games; each row gives one tournament schedule of seven
rounds.

The tournament schedules in Fig. 1.1 immediately provoke a number of
questions. Namely, it is straightforward to check that each tournament sched-
ule meets the constraints, but how can we be certain that the classification is
complete; that is, that it contains all possible isomorphism classes? Further-
more, even if the classification is complete, are the six tournament schedules
really pairwise nonisomorphic? There are lots of possibilities to rename the
teams and to reorder the rounds, so this is surely not obvious. How was the
classification obtained in the first place?

Combinatorial classification is laborious. Except in rare cases where non-
existence or uniqueness up to isomorphism can be established by a clever ar-
gument, there appears to be no other way to obtain a classification of combi-
natorial objects with nontrivial structure than to systematically try out all the
possibilities of meeting the constraints. Thus, combinatorial classification is
fundamentally connected with algorithms and computation. Unlike a tra-
ditional mathematical proof, which can—at least in principle—be checked
without much effort by an expert, a classification usually requires significant
computational effort to produce and to verify.

This thesis examines algorithms for classification of combinatorial objects
up to isomorphism, or classification algorithms. Motivation for research into
classification algorithms is twofold.

First, the classification results obtained are in themselves of mathemati-
cal interest. A classification can be used to test conjectures and to gain fur-

2 1. INTRODUCTION

ther insight into the structure of the objects being studied. For example, the
classification of the Steiner triple systems of order 19 [P2]—the main result
of this thesis—resulted in the discovery of nonisomorphic Steiner triple sys-
tems with equivalent point codes [105]. In addition, the objects often have
direct practical applications (see for example [36, 39])—such as in schedul-
ing a tournament. Classification techniques and exhaustive search can also
sometimes be used to settle the nonexistence of an object when a traditional
nonexistence proof is lacking. Perhaps the most notable such result to date is
the nonexistence of a projective plane of order 10 [135].

Second, from a computer science point of view, the relevance of research
into classification algorithms lies in the design of exhaustive search algo-
rithms for hard combinatorial problems involving symmetry. Typically con-
structing the objects to be classified involves finding all solutions to an in-
stance of a hard combinatorial problem, such as the maximum clique prob-
lem or the exact cover problem. In addition, techniques for computing iso-
morphism are required to eliminate symmetry from the search space and to
remove isomorphic objects from the output of the algorithm.

The viewpoint adopted in this thesis is practical, as opposed to theoret-
ical in the sense of complexity theory [66, 92, 196]. The present focus is
on developing classification algorithms with good enough practical perfor-
mance to yield new classification results for objects of combinatorial interest,
whereas theoretical properties such as asymptotic resource usage of the algo-
rithms in relation to the size of the objects being classified (cf. [99]) are not
investigated. Theoretical investigations in this direction can be found in [72]
and the references therein. A closely related theoretical line of study is that
of counting, approximate counting, and random sampling of combinatorial
objects [73, 97].

In practice, the available finite computing resources place an upper bound
on what can be achieved with algorithmic tools. There are two main obsta-
cles in this respect.

An intrinsic obstacle is the often occurring explosive growth in the num-
ber of nonisomorphic objects as a function of the object size—if there are
more nonisomorphic objects than the total number of instructions all the pro-
cessors allocated for the study can together execute in a hundred years, then a
classification is hardly practical. Returning to the example, the classification
for tournament schedules for eight teams (or equivalently, one-factorizations
[236] of the complete graph K8) was obtained in the days of hand calcula-
tion [52] (as cited in [54]); a full exposition appears in [237]. For ten teams
(396 nonisomorphic schedules [67]) and twelve teams (526915620 noniso-
morphic schedules [54]), the use of a computer is required for a complete
classification. For fourteen teams and beyond, a complete classification ap-
pears to be already out of reach for contemporary computers. In [54] the
number of distinct one-factorizations of K14 is estimated to be approximately
9.876 · 1028, which gives the estimate 1.133 · 1018 for the number of iso-
morphism classes, assuming that most one-factorizations have a trivial au-
tomorphism group; asymptotic lower and upper bounds for the number of
isomorphism classes appear in [23, Theorem 4.2] and [236].

Another obstacle to classification occurs essentially due to lack of under-
standing of the structure of the objects, which forces one to search for the

1. INTRODUCTION 3

objects of interest within an often considerably larger class of objects. For
example, the properties required from a tournament schedule do not directly
suggest how to proceed at generating all possible schedules. An obvious pos-
sibility is to proceed by augmenting a partial schedule one round of games at
a time; unfortunately, with such an approach it can—and does—occur that
a partial schedule cannot be extended to a full schedule (cf. [31]). A fur-
ther case in point occurs when the goal is to establish the nonexistence of an
object by “considering all possible ways” to construct it, whereby inevitably
some searching must be done.

In essence, this thesis is about how to proceed at classification without
doing too much searching and redundant computation, so that occasionally
a practical algorithm and thereby a classification result is obtained.

4 1. INTRODUCTION

2 STRUCTURE OF THE THESIS

This thesis consists of five articles and this five-chapter summary. Together
with the summary, the following five articles constitute this thesis.

[P1] P. Kaski and P. R. J. Östergård, There exists no (15,5,4) RBIBD, Journal
of Combinatorial Designs 9 (2001) 357–362.

[P2] P. Kaski and P. R. J. Östergård, The Steiner triple systems of order 19,
Mathematics of Computation 73 (2004) 2075–2092.

[P3] P. Kaski and P. R. J. Östergård, One-factorizations of regular graphs of
order 12, Electronic Journal of Combinatorics 12(1) (2005) #R2, 25pp.

[P4] H. Haanpää and P. Kaski, The near resolvable 2-(13, 4, 3) designs and
thirteen-player whist tournaments, Designs, Codes and Cryptography
35 (2005) 271–285.

[P5] P. Kaski, Isomorph-free exhaustive generation of designs with pre-
scribed groups of automorphisms, SIAM Journal on Discrete Mathe-
matics, to appear.

The present chapter contains a brief description of the contents of this the-
sis and the role of the author in articles with more than one author. Chapter
3 surveys general techniques employed in classification algorithms. Chapter
4 reviews classification techniques employed in the classification of designs
and codes. Chapter 5 presents some conclusions and topics for future work.

2.1 SUMMARY OF THE ARTICLES IN THE THESIS

The contents of the articles in this thesis are summarized briefly in what
follows. In Chapters 3 and 4 each of the articles is placed in context with
respect to related research.

[P1]: An orderly algorithm [61, 205] relying on a correspondence between
resolutions of 2-designs and certain error-correcting codes [219] is used
to establish the nonexistence of a resolvable 2-(15, 5, 4) design; or,
equivalently, the nonexistence of a (14, 15, 10)3 error-correcting code.

[P2]: The Steiner triple systems of order 19 are classified up to isomorphism
by employing a combination of an algorithm for the exact cover prob-
lem [116] and generation by canonical augmentation [170].

[P3]: Three techniques for classifying one-factorizations of regular graphs
are developed. The first two techniques are based on viewing a one-
factorization of a k-regular graph of order 2n as an equireplicate (k, 2n,
k − 1)n code. The first technique uses an orderly algorithm analo-
gous to the one in [P1] to construct the codes. The second technique
relies on coordinate-by-coordinate construction; isomorph rejection is
achieved by a combination of generation by canonical augmentation

2. STRUCTURE OF THE THESIS 5

and orderly generation. The third algorithm is based on viewing a
one-factorization of the complete graph K2n as a certain triple sys-
tem on 4n − 1 points, and then employing techniques analogous to
those used in [P2] to arrive at a classification algorithm. The developed
techniques are then used to classify the one-factorizations of k-regular
graphs of order 12 for k ≤ 6 and k = 10, 11. For k = 11, the results
obtained corroborate the results in [54].

[P4]: A correspondence between near resolutions of 2-designs and certain
types of codes is introduced. An orderly algorithm utilizing this cor-
respondence is then developed to classify up to isomorphism the near
resolutions of 2-(13, 4, 3) designs. Based on the classification of near
resolutions, the thirteen-player whist tournaments are classified. As
a consequence of the classification, the nonexistence of a triplewhist
tournament for thirteen players is established.

[P5]: The classification of designs with prescribed groups of automorphisms
is studied in the case where a prescribed group H has a large index in
its normalizer NG(H), where G is the isomorphism-inducing group.
A technique based on generation by canonical augmentation analo-
gous to the seed-based approach in [P2, P3] is developed for coping
with normalizer-induced symmetry in the search space and for per-
forming isomorph rejection without the need to keep a record of the
isomorphism class representatives encountered. As an application, a
classification of the Steiner triple systems of order 21 with a nontrivial
automorphism group is produced.

2.2 CONTRIBUTIONS OF THE AUTHOR

This section summarizes the contributions of the author to the articles con-
stituting this thesis.

The author of this thesis is the sole author of [P5], and has significantly
contributed to writing the articles [P1, P2, P3, P4].

In [P1, P2, P3] the algorithm designs are joint work of the author of this
thesis and the coauthor. The author of this thesis is responsible for imple-
menting the algorithms and carrying out the searches.

In [P4] the algorithm used to classify the near resolutions of 2-(13, 4, 3)
designs and its implementation are due to the author of this thesis. The
algorithms used to produce the classification of thirteen-player whist tourna-
ments from the near resolutions and the subsequent analysis of the classified
tournaments are due to the coauthor.

6 2. STRUCTURE OF THE THESIS

3 CLASSIFICATION ALGORITHMS

This chapter reviews the general techniques and mathematical concepts used
in the design of classification algorithms; the motivation is to provide a com-
mon framework for the algorithms in [P1, P2, P3, P4, P5]. Except for the
somewhat modified treatment of generation by canonical augmentation [170]
in Sect. 3.4.3, none of the material in the present chapter is new. The mate-
rial has been either compiled from the cited references, or can be considered
“folklore”.

3.1 CLASSIFICATION PROBLEMS

In an abstract setting, combinatorial classification is concerned with an im-
plicitly given finite set Γ equipped with an equivalence relation ∼= called
isomorphism. The classification problem associated with (Γ,∼=) is to out-
put exactly one element from every equivalence class defined by ∼= on Γ, or
conclude that Γ is empty. Here it is assumed that all elements of Γ admit
a natural finite representation; for example, as finite binary strings. A clas-
sification algorithm for (Γ,∼=) is an algorithm that solves the classification
problem for (Γ,∼=) and then halts. Alternatively to classification, one often
speaks of isomorph-free exhaustive generation.

From a practical viewpoint, classification problems exhibit varying char-
acteristics depending on the required structure of the objects and the isomor-
phism relation; cf. [16, 170]. In terms of structure, classification problems
range roughly between two extreme types. On one hand, there exist objects
with a recursive structure that enables exhaustive generation of the objects.
For example, a permutation of 1, 2, . . . , n (viewed as a list) reduces to a per-
mutation of 1, 2, . . . , n−1 if we delete n from the list. Reversing this process,
we obtain a method for listing permutations. Similarly, a tree on n vertices
reduces to a tree on n−1 vertices if we delete a leaf node. With such “elemen-
tary” objects, it is customary to use the term listing instead of classification.
Listing algorithms have been extensively studied; see [127, 212, 241]. On the
other hand, there exist objects for which a recursive structure characterizing
all the objects is lacking, or is not known. In the extreme, not a single object
is known. For example, it is currently an open problem whether a 2-(22, 8, 4)
design exists [7, 83, 174, 192, 207]. In between these extremes there exist
many intermediate cases. For example, it may be the case that numerous
recursive and/or direct constructions for the objects are known, but these do
not characterize all the objects. Steiner triple systems are an example of such
objects; a comprehensive reference is [40]. Similarly, it may be possible to
enumerate the distinct objects with reasonable effort (cf. [6, 54, 175]), but
producing a classification up to isomorphism—or even enumerating the iso-
morphism classes (cf. [171])—appears to be much more difficult.

Another rough division into types can be made on basis of the isomor-
phism relation, which ranges from trivial (no two distinct objects are isomor-
phic) to computationally demanding. A canonical example of a computa-
tionally demanding isomorphism relation is graph isomorphism, for which

3. CLASSIFICATION ALGORITHMS 7

currently no polynomial-time algorithm is known despite extensive effort;
cf. Sect. 3.3.3.

With respect to this rough division into types, the classification problems
studied in this thesis can be considered as lacking a recursive structure and
having a computationally demanding isomorphism relation.

For the purpose of illustrating the techniques surveyed, the following tiny
example (cf. [133]) will be considered throughout this chapter.

Example 1 The task is to classify up to isomorphism all 4× 4 matrices with
entries from {0, 1} such that every row and every column contains exactly
two 1s. Two matrices are regarded as isomorphic if one can be obtained from
the other by an independent permutation of the rows and the columns.

3.2 EXHAUSTIVE GENERATION

A classification algorithm consists of two principal ingredients. One is a
method for generating the objects of interest so that at least one object is gen-
erated from every isomorphism class; another is an accompanying method for
removing isomorphic objects from consideration so as to achieve isomorph-
free generation.

From the point of view of algorithm design, the main difficulty is usually
in coming up with a computationally feasible way to generate the objects
of interest. Once there is a way to generate at least one object from every
isomorphism class, then it is often relatively straightforward—at least with the
help of appropriate isomorphism invariants—to filter out isomorphic objects
so that isomorph-free generation is achieved; cf. [16].

A practical exhaustive generation strategy in most cases requires at least
some insight specific to the objects of interest in identifying a sequence of in-
termediate objects (typically, subobjects of some kind) along which exhaus-
tive generation may be carried out. Obviously, in this respect classification
algorithms are more or less specific to the objects of interest, and relatively
few general techniques can be found. Techniques specific to the types of
objects studied in articles [P1, P2, P3, P4, P5] are surveyed in Chapter 4.

To provide a general discussion, we require a formal model for studying
exhaustive generation and search. Such a model is provided by backtrack
search (Sect. 3.2.1) and search trees (Sect. 3.2.2). Once this model is avail-
able, we proceed to discuss isomorphism (Sect. 3.3) and techniques for iso-
morph rejection (Sect. 3.4) in a general setting.

3.2.1 Backtrack Search

Backtrack search or backtracking [76, 235] is an algorithmic principle that
corresponds to the intuitive “step by step, try out all the possibilities”-approach
to solving a finite problem. Textbooks that discuss backtrack search include
[127, 204, 208].

A partial solution in a backtrack search is an ordered tuple (a1, a2, . . . , a`),
where the ai are elements of a finite set U . It is assumed that every possible
solution to the problem at hand can be represented by such a finite tuple. A

8 3. CLASSIFICATION ALGORITHMS

partial solution that constitutes a solution to the problem at hand is called a
feasible solution.

Backtrack search operates by recursively extending a partial solution one
element at a time as dictated by the constraints of the problem at hand. More
formally, given a partial solution (a1, a2, . . . , a`) as input, a backtrack search
procedure computes a choice set A`+1 ⊆ U , and recursively invokes itself
with each possible input (a1, a2, . . . , a`, a`+1), where a`+1 ∈ A`+1. After
all choices have been considered, the procedure returns control—or back-
tracks—to the invoking procedure. The initial invocation is made with the
empty tuple “()”, and feasible solutions are processed as they are discovered.
To generate all feasible solutions, it is required that the choice sets satisfy
the following completeness property: if (a1, a2, . . . , an) is a feasible solution,
then a`+1 must belong to the choice set A`+1 associated with (a1, a2, . . . , a`)
for all 0 ≤ ` ≤ n− 1. A pseudocode description of backtrack search is given
as Algorithm 1.

procedure BTRK(`: integer, (a1, a2, . . . , a`): partial solution)
1: if (a1, a2, . . . , a`) is a feasible solution then
2: process (a1, a2, . . . , a`)
3: end if
4: compute A`+1 based on (a1, a2, . . . , a`) and the constraints imposed by

the problem at hand
5: for all a`+1 ∈ A`+1 do
6: BTRK(` + 1, (a1, a2, . . . , a`+1))
7: end for

end procedure
procedure BACKTRACK

8: BTRK(0, ())
end procedure

Algorithm 1: Backtrack search

Example 2 One possible backtrack solution to the running example is to
construct the 4 × 4 matrices row by row so that U consists of all possible
rows with two 1s; that is, U = {1100, 1010, 1001, 0110, 0101, 0011}. Given
a partial solution with ` rows, the choice set A`+1 consists of those rows in
U whose addition does not violate the constraint that every column must
contain at most two 1s. A partial solution is feasible if it has four rows.

Backtrack search is obviously a general principle rather than a complete
solution to a problem requiring exhaustive search. The practicality of a back-
track algorithm is determined by the algorithm design choices made when
transforming the abstract problem into the backtrack search framework.

In general, it is advisable to look at the constraints required from the feasi-
ble solutions, and attempt to relax these only as little as possible for purposes
of generation. Furthermore, any structural properties implied by the con-
straints should be employed in restricting the partial solutions that need to
be traversed. Often this requires mathematical insight into the objects be-
ing classified as well as experience and experimentation as to what properties

3. CLASSIFICATION ALGORITHMS 9

can be efficiently exploited from a computational viewpoint. Further de-
sign principles for fast backtracking algorithms together with examples can
be found in [172, 208]. Techniques for estimating the resource requirements
of backtrack algorithms appear in [114, 170, 203, 204].

Existing backtrack algorithms for well-known combinatorial optimization
problems can often be employed in solving an exhaustive generation prob-
lem or a related subproblem. Recurrently encountered optimization prob-
lems in this respect include the maximum clique problem [27, 191] (see also
[15, 98, 186]), the exact cover problem [116, 127], graph coloring [98, 127,
197] (see also [96]), and the problem of solving a system of Diophantine lin-
ear equations with lower and upper bounds on the variables [1, 121, 126, 127,
155, 215, 238, 239] (see also [216, 243]). Depending on the extent of sym-
metry in the problem instance being solved, such an algorithm may require
isomorph rejection on partial solutions to eliminate redundant computation;
cf. Sects. 3.3 and 3.4.

3.2.2 Search Trees

In studying a search strategy, it is convenient to work with a static object cap-
turing the essential structure of the search. Search trees (alternatively, state
space trees [127]) constitute such a device. In essence, a search tree contains
all the objects encountered in a search, with edges connecting objects related
by a single search step.

Example 3 Figure 3.1 shows a search tree for the row-by-row backtrack search
strategy in Example 2. Parts of the search tree have been truncated due to
space limitations; the truncated subtrees are marked with three dots “. . .”.

1100
1010
0110

1100
1010
0101

1100
1010
0011

1100
1010
0011
0101

1100
1100

1100
1010

1100
1001

1100
0110

1100
0101

1100
0011

1100
0101
1010

1100
0101
1001

1100
0101
0011

1100
1010
0101
0011

1100
1100
0011

1100
1100
0011
0011

1100
0101
1010
0011

1100
0101
0011
1010

1100 1010 1001 0110 0101 0011

()

.

.

Figure 3.1: A search tree (truncated in part)

10 3. CLASSIFICATION ALGORITHMS

We follow [53] in graph-theoretic definitions and notation. Formally, a
search tree is a rooted tree T , where the nodes (vertices) in the tree T are
objects occurring in the search. We write V (T) for the set of all nodes in
T , and r(T) for the root node of T . For a nonroot node X ∈ V (T), the
parent p(X) is the node immediately following X on the path from X to the
root r(T). Conversely, a nonroot node Y ∈ V (T) is a child of a node X
if p(Y) = X . We write C(X) for the set of all children of X . Two nodes
Y ,Z ∈ V (T) are siblings if p(Y) = p(Z). A node is a leaf if it has no
children. The level of a node X in T is the length of the path connecting
X to the root r(T). For nodes X ,Y ∈ V (T), X is an ancestor (respectively,
descendant) of Y if X (Y) occurs on the path from Y (X) to the root r(T).
For a node X ∈ V (T), the subtree of T rooted at X is the rooted tree with
root X induced by all the descendants of X in T .

In the context of classification algorithms, we adopt the convention that
a search tree contains two types of objects: objects of interest (objects to be
classified) and intermediate objects.

For purposes of description and analysis it is often convenient to work with
a tree that is larger than the tree actually traversed by the search algorithm.
For example, the algorithm can disregard (prune) a subtree rooted at a node
because a bounding function evaluated at the node indicates that the subtree
contains no objects of interest. Alternatively, an isomorphism computation
can indicate that a subtree rooted at a node contains only objects that are
isomorphic to objects encountered earlier, so the subtree can be pruned. In
such cases working with the unpruned tree is considerably easier and often
suffices to establish the properties required from the search algorithm. We
adopt the convention that the term “search tree” refers to a rooted tree that
contains as a subtree the tree actually traversed by the algorithm.

The execution of a search algorithm can typically be modeled by a depth-
first traversal of an associated search tree; that is, starting from the root node,
the algorithm recursively traverses the children of a node before returning
from the node. Pseudocode for a generic depth-first traversal with pruning is
given in Algorithm 2; cf. Algorithm 1. Note that we do not prescribe any or-
der in which the children of a node are traversed—unless explicitly indicated
otherwise, the structure of the algorithms is such that any order will do.

procedure D-F-TRAV(X : object)
1: if pruning condition is true at X then
2: return
3: end if
4: process X
5: for all Y ∈ C(X) do
6: D-F-TRAV(Y)
7: end for

end procedure
procedure DEPTH-FIRST-TRAVERSE(T : search tree)

8: D-F-TRAV(r(T))
end procedure

Algorithm 2: Depth-first traversal of a search tree

3. CLASSIFICATION ALGORITHMS 11

3.3 ISOMORPHISM AND SYMMETRY

The isomorphism relations associated with essentially every family of com-
binatorial objects encountered in practice—including all types of objects in
this thesis—can be captured in a general setting either using category the-
ory [156] or, what can be seen as a special case of the former, group actions
[75, 107, 108, 139]. Of these two, category theory is perhaps more suitable for
the mathematical study of transformations between different families of com-
binatorial objects via categories (groupoids), functors, and reconstructibility
(cf. [4]), whereas group actions provide a more fixed finite framework that is
more applicable for algorithms and computation (cf. [21, 130, 133, 140, 168,
170]).

Here we will base the exposition on group actions.

3.3.1 Group Actions and Isomorphism

Let G be a finite group and let Ω be a finite nonempty set. A group action of
G on Ω is a group homomorphism γ : G → Sym(Ω), where Sym(Ω) is the
symmetric group on Ω. For brevity, we write Sn for Sym(Ω) when |Ω| = n
and Ω is clear from the context. For g ∈ G and X ∈ Ω, we write simply gX
for the image ofX under γg ∈ Sym(Ω) if the action γ is arbitrary or otherwise
clear from the context. As is apparent from the notation, we assume that a
group acts from the left; that is, (g1g2)X = g1(g2X) for all g1, g2 ∈ G and
X ∈ Ω. Accordingly, permutations compose from right to left; for example,
(1 2)(2 3) = (1 2 3) in cycle notation. A general introduction to group theory
can be found in [209]. Permutation groups and group actions are discussed
in [25, 55, 107, 139, 240].

For X ,Y ∈ Ω, we write X ∼=G Y to indicate the existence of a g ∈ G
such that gX = Y . In this case we say that X and Y are isomorphic and
that g is an isomorphism of X onto Y . Equivalently, X ∼=G Y if and only
if X and Y are in the same orbit of G on Ω, where the orbit of an object X
under the action of G is the set GX = {gX : g ∈ G}. An automorphism of
X is an isomorphism of X onto itself. The automorphism group Aut(X) is
the subgroup of G consisting of all the automorphisms of X . Equivalently,
Aut(X) is the stabilizer StabG(X) = {g ∈ G : gX = X} of X in G.
An (isomorphism) invariant is a function I of Ω such that I(X) = I(Y)
whenever X ∼=G Y .

Let (Γ,∼=) be the classification problem studied. We say that (Γ,∼=) is
represented by the action of G on Ω if Γ ⊆ Ω and the equivalence relations
“∼=” and “∼=G” coincide on Γ; that is, for all X ,Y ∈ Γ it holds that X ∼= Y if
and only if X ∼=G Y . In what follows we assume that the classification prob-
lem studied can be represented by a group action. Accordingly, we drop the
subscript G from “∼=G” for notational convenience, whereby it is understood
that in what follows “∼=” always refers to the equivalence relation induced
by the action of G on Ω. We allow the domain Ω to be strictly larger than Γ
for the purpose of accommodating the intermediate objects occurring during
generation.

Example 4 Let Γ be the set of all 4 × 4 matrices with entries from {0, 1}

12 3. CLASSIFICATION ALGORITHMS

and row and column sums equal to two. Index the rows and columns of the
matrices in Γ by {1, 2, 3, 4} and {1′, 2′, 3′, 4′}, respectively. Then, the clas-
sification problem in Example 1 is represented by the action of the direct
product G = Sym({1, 2, 3, 4}) × Sym({1′, 2′, 3′, 4′}) on Γ by row and col-
umn permutation. Formally, for X ∈ Γ and (g, g′) ∈ G, the matrix (g, g′)X
is defined by the following rule: for all i ∈ {1, 2, 3, 4} and j′ ∈ {1′, 2′, 3′, 4′},
the entry at row i, column j′ of the matrix X becomes the entry at row g(i),
column g′(j′) in the matrix (g, g′)X.

3.3.2 Types of Isomorphism Problems

Isomorphism problems have been extensively studied both in the context of
specific types of objects and actions—a canonical example being the graph
isomorphism problem [4, 74, 88, 117, 206]—and in a more general context
with arbitrary permutation groups [21, 145, 146, 147, 154] and even arbitrary
equivalence relations [13].

From the viewpoint of classification and group actions, an “isomorphism
problem” is usually one of the following four types of problems associated
with a finite permutation group G acting on a finite set Ω of combinatorial
objects; cf. [21, 130, 145, 146, 147].

the isomorphism problem Given X ,Y ∈ Ω, decide whether X ∼= Y .

automorphism group (generators) Given X ∈ Ω, compute a set of genera-
tors for Aut(X).

canonical representative Given X ∈ Ω, compute an object ρ(X) ∈ Ω such
that ρ(X) ∼= X and for all X ,Y ∈ Ω it holds that X ∼= Y implies
ρ(X) = ρ(Y). The object ρ(X) is the canonical representative of its
orbit and the canonical form (alternatively, normal form) of X . The
map X 7→ ρ(X) is a canonical representative map. A variant of the
canonical representative problem is the problem of testing canonicity;
that is, for a given X ∈ Ω deciding whether X = ρ(X) relative to some
canonical representative map ρ.

canonical labeling Given X ∈ Ω, compute a κ(X) ∈ G such that for all
g ∈ G and X ∈ Ω it holds that κ(gX)gX = κ(X)X . The map
X 7→ κ(X) is a canonical labeling map. The map X 7→ κ(X)X is the
associated canonical representative map.

In addition to these problems, it is often necessary to work with permuta-
tion groups given by a set of generators; this is usually either because permu-
tation groups are employed internally by an isomorphism algorithm or be-
cause the classification approach requires a solution to a problem involving
permutation groups; say, computing the automorphism orbits of blocks in a
design, where the automorphism group is represented as a permutation group
on the points. A recent comprehensive treatment of permutation group algo-
rithms is [220]; other recommended references include [20, 62, 63, 88, 100].

3. CLASSIFICATION ALGORITHMS 13

3.3.3 Computing Isomorphism

A long-standing open problem in the theory of computing is whether the
isomorphism problem for graphs admits an algorithm that has a worst case
running time bounded from above by a polynomial in the size of the in-
put graphs; surveys and key results can be found in [3, 4, 5, 74, 88, 117,
153, 154]. For many central families of combinatorial objects—including
2-designs [42], unrestricted codes, and linear codes (given by a generator
matrix) [199]—the isomorphism problem is at least as difficult as the graph
isomorphism problem in the sense that a polynomial-time algorithm exists
only if there exists a polynomial-time algorithm for the graph isomorphism
problem. Thus, in the absence of a polynomial-time algorithm for graph
isomorphism, the asymptotic worst case performance of general-purpose iso-
morphism algorithms remains inherently bad.

Fortunately, backtrack algorithms based on refinement of ordered parti-
tions via invariants exhibit good practical performance on many instances.
The software package nauty [169] is probably the fastest software implemen-
tation for practical isomorphism computations on graphs; a closely related
implementation is the package Groups & Graphs [118]. The algorithm used
by nauty is described in detail in [168]; a good exposition is given also in
[181]. Similar algorithms are discussed in [119] and [127, Ch. 7]; the main
differences between these algorithms are in how node invariants (indicator
functions [168]) and discovered automorphisms are used to prune the search
tree induced by individualization and refinement. All of the algorithms ac-
cept as input a vertex-colored graph ; that is, a graph with an accompanying
ordered partition of the vertices into “color classes”. The algorithms out-
put a canonical labeling and automorphism group generators for the vertex-
colored graph, where the acting group is the symmetric group on the vertices.
Although in practice these algorithms perform quite well, instances requiring
exponential time in the size of the input graph are known [22, 181].

There are two standard approaches for computing isomorphism on ob-
jects other than graphs: either transform the object into a graph and use an
algorithm for graphs, or use an algorithm specifically tailored for the objects
(cf. [21]).

Most types of combinatorial objects can be transformed into a graph for
purposes of computing isomorphism [86, 180]. Formally, the isomorphism-
respecting properties of such transformations into graphs can be analyzed in
the setting of (strongly) reconstructible functors; see [4]. The existence of
such transformations is often due to the fact that the acting group inducing
isomorphism for the objects in question can be concisely encoded as the au-
tomorphism group of a graph, after which the relevant structure in the objects
can usually be encoded in a straightforward manner by adding edges and ver-
tices. In practice, it is customary to employ vertex-colored graphs because
this results in a more compact encoding. Examples of transformations into
vertex-colored graphs can be found in [69, 167, 171, 190, 193]. Often the use
of vertex invariants (see [169]) more suited for the objects at hand than the
standard color-degree invariant is required for good practical performance.
Invariants applicable for designs are discussed in [41, 68, 69, 70].

Objects for which tailored isomorphism algorithms have been developed

14 3. CLASSIFICATION ALGORITHMS

include Steiner triple systems [179] (see also [32, 38, 228]), one-factorizations
of connected graphs and complete multigraphs [32], Hadamard matrices
[143], Latin squares [19], groups given by Cayley tables (algorithm attributed
to Tarjan in [179]), and affine and projective planes [179]. Each of these al-
gorithms is based on the existence of small distinguishing sets of subobjects
(say, points of a design or rows of a Hadamard matrix), whose individualiza-
tion followed by refinement with appropriate invariants produces a unique
labeling for the object. Selecting the minimum object (over all labelings
induced by small distinguishing sets) gives a canonical representative map.
Combined with group-theoretic tools, this approach is generalized in [5] for
tournaments, 2-(v, k, λ) designs with small k, λ, and symmetric designs with
small λ. As a general technique, individualization and refinement of ordered
partitions via invariants [168] is usually straightforward to adapt to a family of
objects for which the acting group is a symmetric group or a direct product
of symmetric groups; in [173] such an adaptation for designs is reported to
produce an order of magnitude performance improvement compared with
transforming a design into a graph. See [226] for an analysis of individual-
ization and refinement on strongly regular graphs. An algorithm for linear
codes appears in [144].

Techniques for computing isomorphism in the situation where the acting
group is an arbitrary permutation group (given by a base and a strong gen-
erating set) are developed in [5, 21, 145, 146, 147]. Of these, the methods
in [21, 145] are based on “traditional” backtrack search on cosets of a point
stabilizer chain (see [20, 220]); the group generated by the automorphisms
discovered so far is used to prune the search tree. The partition method
developed in [146, 147] introduces partition refinement techniques moti-
vated by [168] to further focus the search. A brief exposition of the partition
method occurs also in [220]. The algorithm in [5] (see also [154]) applies
a divide-and-conquer strategy based on orbits and systems of imprimitivity in
the acting group and its subgroups.

3.4 TECHNIQUES FOR ISOMORPH REJECTION

Isomorph rejection [230] techniques serve two purposes in a classification
algorithm. On one hand, to achieve isomorph-free generation for the objects
of interest, isomorphic objects must be eliminated from the output of the
algorithm. On the other hand, isomorph rejection is employed to eliminate
redundant work caused by traversing regions of the search space that are
identical for purposes of generation.

Example 5 To provide an example of redundancy, consider the search tree
in Example 3. The subtrees rooted at

(3.1)
[

1 1 0 0
1 0 1 0

]

and
[

1 1 0 0
0 1 0 1

]

contain up to isomorphism the same objects of interest. Furthermore, the
subtrees are identical in the stronger sense that one can be obtained from
the other by permuting the columns of every matrix occurring in a subtree

3. CLASSIFICATION ALGORITHMS 15

with (1′ 2′)(3′ 4′); cf. Example 4. Thus, it suffices to traverse only one of the
subtrees defined by (3.1).

In a general setting, we have an implicit search tree T containing at least
one object from every isomorphism class of interest. The goal is to traverse
a subtree with as few redundant nodes as can be efficiently detected and
eliminated (compared with the cost of a redundant traversal), relative to the
constraint that exactly one object from every isomorphism class of interest is
output. Other design goals for isomorph rejection include parallelizability—
that is, the ability to traverse disjoint subtrees independently of each other—
and space-efficiency in terms of objects that need to be stored in memory
during a traversal (cf. [61, 172, 170, 205]).

Redundancy is usually detected via isomorphism computations on search
tree nodes. For this purpose, we will assume that the action of G on Ω applies
to all objects in V (T); that is, V (T) ⊆ Ω. Furthermore, we assume that
isomorphism is defined by the action of G on Ω. In practice, this situation is
usually not difficult to achieve in a natural way.

Example 6 Consider the group action in Example 4 and the search tree in
Example 3. Let Ω consist of all the 4×4 matrices with entries from {0, 1, ?},
where G acts by permuting the rows and columns as in Example 4. A matrix
with k < 4 rows in the search tree can now be viewed as the 4 × 4 matrix
where the entries on the last 4 − k rows are equal to “?”. This extends in a
natural way the notion of isomorphism from the objects of interest onto the
entire search tree. For example, the nodes in (3.1) are isomorphic, and any
isomorphism fixing rows 3 and 4 maps the subtree rooted at one node onto
the subtree rooted at the other.

Isomorph rejection techniques now make certain assumptions about the
structure of the search tree T in relation to the action of G on Ω. If these
assumptions are satisfied, then redundant subtrees can be detected and elim-
inated via isomorphism computations. The precise form of the isomorphism
computations and what is considered redundant depend on the technique.
In general, the best isomorph rejection techniques avoid expensive isomor-
phism computations by taking advantage of the way in which the objects are
constructed, whereby expensive computations (such as canonical labeling)
are either traded for group-theoretic techniques relying on prescribed groups
of automorphisms (cf. [140, 141]) or replaced with lighter computation by
means of invariants in the majority of cases (cf. [17, 170, 171]).

The subsequent treatment roughly follows [16, 170] in the division of the
techniques into different types.

3.4.1 Recorded Objects

Among the “folklore” techniques for isomorphism rejection is the approach
of keeping a record of the isomorphism classes of objects seen so far during
traversal of the search tree. If an object is isomorphic to a recorded object,
then the subtree rooted at the object is pruned.

The underlying assumption with this isomorph rejection strategy is that

16 3. CLASSIFICATION ALGORITHMS

the search tree T satisfies the following property:

(3.2) for all X ,Y ∈ V (T) and Z ∈ C(X) it holds that X ∼= Y implies
there exists aW ∈ C(Y) with Z ∼=W .

In essence (3.2) states that isomorphic objects have isomorphic children.

Example 7 The search tree in Example 3 satisfies (3.2).

With this assumption, isomorph-free exhaustive generation can be ob-
tained by keeping a record of the objects encountered so far. Whenever
an object X is encountered, it is tested for isomorphism against the recorded
objects. If X is isomorphic to a recorded object, the subtree rooted at X is
pruned. This approach is presented in Algorithm 3.

procedure REC-TRAV(X : object)
1: if there exists a Z ∈ R such that X ∼= Z then
2: return
3: end if
4: if X is an object of interest then
5: output X
6: end if
7: for all Y ∈ C(X) do
8: REC-TRAV(Y)
9: end for

10: R ← R ∪ {X}
end procedure
procedure RECORD-TRAVERSE(T : search tree)
11: R ← ∅
12: REC-TRAV(r(T))
end procedure

Algorithm 3: Isomorph rejection via recorded objects

Theorem 8 Let T be a search tree that satisfies (3.2). If Algorithm 3 is in-
voked with input T , then a unique object is output from every isomorphism
class of interest in V (T).

In practice Algorithm 3 is often implemented using a canonical repre-
sentative map and a hash table (or some other data structure that allows fast
searching from a large collection of objects; see [44, 115]).

Example 9 Figure 3.2 shows a subtree of the search tree in Example 3 tra-
versed using isomorph rejection via recorded objects. Nodes indicated with
“×” are isomorphic to objects encountered earlier. Note that here the sub-
tree traversed depends on the order of traversal for the children of a node.

Isomorph rejection via recorded objects is sufficient for generating many
families of combinatorial objects. Indeed, because a canonical representative
map for the objects occurring in the search is often easily obtainable via
transformation into graphs and isomorphism computations on graphs, this

3. CLASSIFICATION ALGORITHMS 17

1100
1100

1100
1010

1100
1001

1100
0110

1100
0101

1100
0011

1100
1100
0011

1100
1100
0011
0011

1100
1010
0110

1100
1010
0101

1100
1010
0011

1100
0011
1100

1100
0011
1010

1100
0011
1001

1100
0011
0110

1100
0011
0101

1100
0011
0011

1100
1010
0101
0011

1100 1010 1001 0110 0101 0011

()

× ×× ×

×× ×

×

× × × × × × ×

Figure 3.2: A search tree with isomorph rejection

approach is fast to implement and arguably less error-prone compared with
the more advanced techniques.

There are at least three difficulties with isomorph rejection via recorded
objects. Perhaps the most fundamental difficulty is the need to store the
objects encountered. Especially when the number of nonisomorphic inter-
mediate objects is large, the available storage space can quickly run out. The
second difficulty is that the search cannot be easily parallelized because a
search process must somehow communicate with the other search processes
to find out whether an object has been already encountered. The third diffi-
culty is that computing the canonical representative of every object encoun-
tered can be very expensive compared with the use of invariants in the more
advanced techniques.

3.4.2 Generation by Canonical Representatives

Another possibility to perform isomorph rejection is to select a canonical
representative for every isomorphism class, and then generate precisely these
representatives, whereby it is required that the canonical representatives form
a rooted subtree Tc of the search tree T with r(T) = r(Tc). This is of course
somewhat difficult to achieve for a nontrivial group action inducing isomor-
phism; in practice, the canonical representatives are extremal elements of
orbits relative to a (lexicographic) order on Ω. Thus, generation by canoni-
cal representatives is often called orderly generation (cf. [205]), although the
term is occasionally used for a larger family of algorithms (cf. [170, 210]).
Generation by canonical representatives was introduced independently by
Faradžev [61] and Read [205].

Formally, let ρ : Ω→ Ω be a canonical representative map for the action

18 3. CLASSIFICATION ALGORITHMS

of G on Ω. For completeness, it is assumed that:

(3.3) the canonical representative of every isomorphism class of inter-
est occurs in the search tree.

Furthermore:

(3.4) the parent of every nonroot canonical representative occurring in
the search tree is a canonical representative.

It follows immediately from (3.3) and (3.4) that it suffices to traverse only
the canonical representatives to achieve isomorph-free exhaustive genera-
tion. This approach is formulated in Algorithm 4.

procedure CR-TRAV(X : object)
1: if X 6= ρ(X) then
2: return
3: end if
4: if X is an object of interest then
5: output X
6: end if
7: for all Y ∈ C(X) do
8: CR-TRAV(Y)
9: end for

end procedure
procedure CANREP-TRAVERSE(T : search tree)
10: CR-TRAV(r(T))
end procedure

Algorithm 4: Generation by canonical representatives

The following example illustrates generation by canonical representatives
based on a lexicographic order. A general framework for group actions and
lexicographic order appears in [61]; a more axiomatic framework is given in
[205].

We first introduce an appropriate canonical representative map ρ for the
action inducing isomorphism.

Example 10 Recall the situation in Example 6. Let X be a 4 × 4 matrix
with entries from {0, 1, ?}. Associate with X the word w(X) obtained by
concatenating the rows of X in order from first to last. For example,

X =

1 1 0 0
1 0 1 0
? ? ? ?
? ? ? ?

, w(X) = 11001010????????.

Let the words w(X) be ordered lexicographically, where the alphabet is or-
dered by ? < 0 < 1. Define an order for the matrices by X < Y if and
only if w(X) < w(Y). With respect to this order, let ρ(X) be the maximum
matrix obtainable from X by permuting the rows and columns.

3. CLASSIFICATION ALGORITHMS 19

Example 11 With some straightforward effort it can be checked that the
search tree in Example 3 satisfies (3.3) and (3.4) with respect to the canonical
representative map defined in Example 10. Here a matrix with k < 4 rows
should be viewed as the 4× 4 matrix where the entries on the last 4− k rows
are equal to “?”. To show that X is canonical only if p(X) is canonical, ob-
serve that a permutation of the rows and columns establishing noncanonicity
of p(X) also suffices to establish noncanonicity of X due to the lexicographic
order employed.

With respect to this choice of canonical representatives, the subtree tra-
versed by Algorithm 4 is identical to the tree depicted in Fig. 3.2, where “×”
now marks nodes that are not canonical.

Algorithms based on generation by canonical representatives have the
convenient property that no isomorphism tests between different nodes of
the search tree are required. The decision whether to accept or reject a node
can be made locally, based on a canonicity test procedure that determines
whether X = ρ(X) for the current node X . Thus, the search can be effi-
ciently parallelized because disjoint subtrees can be searched independently
of each other. Furthermore, no objects need to be stored in memory for
purposes of isomorph rejection.

A basic advantage with orderly generation is that it is often possible to
exploit the properties of order-extremal objects of interest in pruning subtrees
that cannot contain such an object.

Example 12 Let X be a 4 × 4 matrix with entries from {0, 1} and row and
column sums equal to two. Furthermore, suppose that X is the lexicographic
maximum relative to permutation of the rows and the columns; in other
words, ρ(X) = X in Example 10. It follows from the properties of lexico-
graphic order that the matrix X must have the form

1 1 0 0
1 a b c
0 d e f
0 g h i

.

Namely, a matrix not of this form can be transformed by permutation of the
rows and columns to a lexicographically greater matrix of this form. This
observation can now be applied to prune the search tree in Example 3. For
example, no descendant of the canonical matrix

1 1 0 0
0 0 1 1
? ? ? ?
? ? ? ?

is a canonical matrix of interest. Thus, the subtree can be pruned.

Further examples can be found in [51, 54, 171, 177, 178, 217, 218, 225] and
[P1, P4]. It should be noted that this type of order-based constraints on partial
solutions can to some extent be implemented through the use of invariants
in the other isomorph rejection techniques, but this is rather more tedious.

20 3. CLASSIFICATION ALGORITHMS

The main drawback with generation by canonical representatives is that
testing canonicity relative to a lexicographic order is often computationally
expensive. The typical approach for testing canonicity is to employ backtrack
search on cosets of a point stabilizer chain in G to verify that gX ≤ X for
all g ∈ G. Lexicographic order and discovered automorphisms can be em-
ployed to prune the associated search tree on cosets. Also the canonicity of
p(X) can be exploited to restrict the search. In many cases a useful heuris-
tic observation is that a g ∈ G with gX > X is likely to establish gY > Y
for a sibling Y of X as well (cf. [171])—in [49, 50] this observation is devel-
oped into a back-jumping strategy for the backtrack search that generates the
children of a node.

3.4.3 Generation by Canonical Augmentation

Introduced by McKay [170], generation by canonical augmentation requires
that an object is generated “in a canonical way”, as opposed to generation by
canonical representatives, which requires the object itself be canonical. The
presentation that follows differs somewhat from the presentation in [170], but
the central ideas are the same.

In terms of a search tree T , every nonroot object Y has a parent object
p(Y) from which it has been generated; consider for example the search tree
in Example 3. Thus, in an abstract setting, the ordered pair (Y , p(Y)) can be
viewed as capturing the augmentation by which Y is generated from p(Y).

Formally, an augmentation is an ordered pair (X ,Z) ∈ Ω × Ω. For
X ,Y ,Z,W ∈ Ω we write (X ,Z) ∼= (Y ,W) to indicate that there exists a
g ∈ G such that gX = Y and gZ = W . In particular, (X ,Z) ∼= (Y ,W)
implies both X ∼= Y and Z ∼= W , but the converse need not necessarily
hold.

Generation by canonical augmentation requires that we associate with
every isomorphism class of objects an augmentation by which objects in that
class must be generated. Let m : Ω→ Ω be a function that satisfies:

(3.5) for all X ,Y ∈ Ω it holds that X ∼= Y implies (X , m(X)) ∼=
(Y , m(Y)).

The ordered pair (X , m(X)) is the canonical augmentation associated with
X . Requirement (3.5) guarantees that the canonical augmentation is inde-
pendent of the isomorphism class representative X . We say that a nonroot
object Y ∈ V (T) in the search tree is generated by canonical augmentation
if

(3.6) (Y , m(Y)) ∼= (Y , p(Y)).

The canonical parent object m(X) associated with an objectX is typically
obtained by individualizing a subobject of X . This can be performed so
that (3.5) holds with the help of a canonical labeling map κ for the action
of G on Ω. Namely, given X , first compute the canonical representative
ρ(X) = κ(X)X . Then, select any subobject Z ∈ Ω occurring in ρ(X) so
that the selection depends only on ρ(X). Finally, put m(X) = κ(X)−1Z .
By definition of a canonical labeling map, κ(Y)−1κ(X) is an isomorphism
establishing (3.5) for any two isomorphic objects X ∼= Y .

3. CLASSIFICATION ALGORITHMS 21

Example 13 Recall the canonical representative map ρ from Example 10.
Form a canonical labeling map κ by associating with every matrix X an iso-
morphism κ(X) taking X to ρ(X). For a given matrix X, let the subobject Z
associated with ρ(X) be the matrix obtained by transforming the last non-“?”
row in ρ(X) into a “?”-row. (If all rows contain “?”, then let Z = ρ(X).) Put
m(X) = κ−1(X)Z.

The function m can be viewed as associating with every object X a se-
quence of subobjects

X , m(X), m(m(X)), m(m(m(X))), . . .

from which X must be generated. Because of (3.5), this sequence is indepen-
dent of the isomorphism class representatives chosen. Thus, the sequence
defines a “canonical construction path” for the object X on the level of iso-
morphism classes. Traversing the search tree T can now be viewed as pro-
ceeding along the sequence in the reverse direction, where each step from
subobject to object must satisfy (3.6).

Obviously, certain structure must be assumed for the search tree T to
achieve exhaustive generation. The following axioms are not the weakest
possible, but rather have been chosen to achieve a succinct exposition with-
out sacrificing too much generality. For a different axiomatization, see [170].

First, for every isomorphism class occurring in T , there exists a node that
is accepted in the test (3.6):

(3.7) for all nonroot X ∈ V (T), there exists a Y ∈ V (T) such that
X ∼= Y and (Y , m(Y)) ∼= (Y , p(Y)).

Second, isomorphic nodes in T must have isomorphic children such that an
isomorphism applies also to the parent nodes:

(3.8) for all X ,Y ∈ V (T) and Z ∈ C(X) it holds that X ∼= Y implies
there exists aW ∈ C(Y) with (Z,X) ∼= (W,Y).

Third, isomorphic nodes must occur at the same level of T :

(3.9) for all X ,Y ∈ V (T) it holds that X ∼= Y implies X and Y occur
at the same level in T .

Example 14 With some straightforward effort it can be checked that the
search tree in Example 3, the group action in Example 6, and the function
m in Example 13 satisfy (3.7), (3.8), and (3.9).

Isomorph rejection using the test (3.6) is now based on the following ob-
servations. By (3.5), two isomorphic objects Y1,Y2 are both accepted in the
test (3.6) only if

(3.10) (Y1, p(Y1)) ∼= (Y2, p(Y2));

in particular, p(Y1) ∼= p(Y2). If complete isomorph rejection has been per-
formed for all proper ancestors of Y1,Y2, then p(Y1) = p(Y2) = X . Conse-
quently, by (3.10) there exists an a ∈ Aut(X) such that aY1 = Y2. Thus, to

22 3. CLASSIFICATION ALGORITHMS

procedure CA-TRAV(X : object)
1: if X is an object of interest then
2: output X
3: end if
4: for all Y ∈ {C(X) ∩ {aY : a ∈ Aut(X)} : Y ∈ C(X)} do
5: select any Y ∈ Y

6: if (Y , p(Y)) ∼= (Y , m(Y)) then
7: CA-TRAV(Y)
8: end if
9: end for

end procedure
procedure CANAUG-TRAVERSE(T : search tree)
10: CA-TRAV(r(T))
end procedure

Algorithm 5: Generation by canonical augmentation

achieve complete isomorph rejection, it suffices to reject Aut(X)-isomorphs
among the children C(X).

Algorithm 5 is a traversal algorithm based on generation by canonical aug-
mentation with automorphism pruning.

The following theorem is analogous to [170, Theorem 1].

Theorem 15 Let T be a search tree that satisfies (3.7), (3.8), and (3.9). If
Algorithm 5 is invoked with input T , then every isomorphism class of objects
occurring in V (T) contains a unique object Y such that the procedure CA-
TRAV is invoked with input Y .

Proof. To establish uniqueness, we proceed by induction on the levels of
T . The base case holds by (3.9). For the inductive step, suppose the claim
(uniqueness) holds at level ` ≥ 0 in T . By (3.9), any two isomorphic objects
in T must lie at the same level. Let Y1,Y2 ∈ V (T) be objects at level ` + 1
such that Y1

∼= Y2 and CA-TRAV is invoked with input Y1,Y2. Thus, we
must have (Yi, p(Yi)) ∼= (Yi, m(Yi)) for i ∈ {1, 2}. Consequently, Y1

∼=
Y2 and (3.5) imply (Y1, p(Y1)) ∼= (Y2, p(Y2)). Because p(Y1), p(Y2) are at
level `, we must have p(Y1) = p(Y2) = X by the inductive hypothesis. By
(Y1, p(Y1)) ∼= (Y2, p(Y2)) there exists an automorphism a ∈ Aut(X) such
that aY1 = Y2. Thus, Y1 = Y2 by the structure of the algorithm.

It remains to establish existence. LetZ ∈ V (T). We show that there exists
a Y ∈ V (T) such that Y ∼= Z and CA-TRAV is invoked with input Y . We
proceed by induction on the level of Z . The base case follows from (3.9) and
the initial invocation CA-TRAV(r(T)). For the inductive step, suppose that
the claim (existence) holds at level ` ≥ 0 in T . Let Z occur on level ` + 1.
By (3.7), there exists a node W ∼= Z such that (W, m(W)) ∼= (W, p(W)).
By (3.9), p(W) occurs at level ` because Z and hence W occur at level
` + 1. Thus, by the inductive hypothesis, the procedure CA-TRAV is invoked
at least once with input X such that X ∼= p(W). It follows from (3.8) that
there exists a Y ∈ C(X) such that (Y ,X) ∼= (W, p(W)). Let a ∈ Aut(X)
such that aY ∈ C(X). Clearly, p(aY) = X = p(Y) and (aY ,X) ∼= (Y ,X).
Furthermore, (3.5) implies (aY , m(aY)) ∼= (Y , m(Y)) ∼= (W, m(W)) ∼=

3. CLASSIFICATION ALGORITHMS 23

(W, p(W)) ∼= (Y , p(Y)) ∼= (aY , p(aY)). Thus, aY passes the test (3.6) for
all applicable choices of a ∈ Aut(X). It follows that CA-TRAV is invoked
with an input isomorphic to Y ∼=W ∼= Z . �

Example 16 Consider the search tree in Example 3 and Algorithm 5. Sup-
pose the function m from Example 13 is used. If on line 5 of the algorithm
the lexicographic maximum object is selected from every Aut(X)-orbit on
C(X), then the subtree traversed by the algorithm is identical to the earlier
tree depicted in Fig. 3.2, where “×” now marks nodes that fail the test (3.6)
or are not maximal in their respective Aut(X)-orbits.

Since Aut(X)-isomorphs are also G-isomorphs, the Aut(X)-isomorph re-
jection performed on lines 4 and 5 of Algorithm 5 can be replaced with
traditional isomorph rejection among those children that are accepted in the
test (3.6); cf. Procedure scan2 in [170].

A fundamental advantage in an algorithm based on canonical augmen-
tation is that it is often possible to use cheap invariants to reject or accept
an object Y in the test (3.6). An expensive isomorphism computation is re-
quired only when the invariants fail. Examples on the use of invariants appear
in [17, 170, 171, 210] and [P2, P3, P5].

Generation by canonical augmentation can be efficiently parallelized be-
cause the test (3.6) depends only on the current object Y and its parent p(Y).
Furthermore, the rejection of Aut(X)-isomorphs is restricted to the children
C(X), so knowledge of objects encountered at other search tree nodes is not
required. The memory-efficiency depends in general on the strategy cho-
sen to reject the Aut(X)-isomorphs. Often rejection via recorded objects
suffices. Another possibility is to use a canonical representative map for the
induced action of Aut(X) on Ω to reject children that are not canonical;
here it is assumed that for all Y ∈ C(X) it holds that ρAut(X)(Y) ∈ C(X).

The main drawback with generation by canonical augmentation is that it
is usually more laborious to implement than the previous techniques.

3.4.4 Homomorphisms of Group Actions and Localization

Kerber and Laue together with collaborators have extensively studied the use
of homomorphisms of group actions and group-theoretic localization in clas-
sification [107, 108, 139, 140, 141]. This line of research has been partic-
ularly successful in the construction and classification of t-designs admit-
ting a large prescribed group of automorphisms [9, 10, 11, 140, 215] via the
Kramer-Mesner method (Sect. 4.3.1). Other successful applications include
classification of chemical isomers [80] (see also [16]) and graphs with pre-
scribed degree sequences [81].

Let G be a finite group that acts on two finite sets Ω and Π. A homomor-
phism of group actions is a map ϕ : Ω→ Π such that ϕ(gX) = gϕ(X) for all
g ∈ G and X ∈ Ω. Provided that suitable homomorphisms are available, a
classification problem (viewed as the problem of constructing representatives
of orbits for a group action) can be solved step by step along a sequence of ho-
momorphisms, where each step either lifts a set of orbit representatives from
the image Π to the domain Ω, or (surjectively) projects from the domain Ω
to the image Π; cf. [139, 140].

24 3. CLASSIFICATION ALGORITHMS

Basic homomorphisms of group actions are the map X 7→ StabG(X) tak-
ing an objectX ∈ Ω to its stabilizer (G acts on its subgroups by conjugation),
the bijection gX 7→ gStabG(X) taking an orbit element gX ∈ GX to a left
coset of the stabilizer (G acts on left cosets of its subgroups by left multipli-
cation), and the map gH 7→ gK taking a left coset onto a (larger) left coset,
H ≤ K ≤ G. Also important are projection homomorphisms of the form
π1 : (Y ,X) 7→ Y and π2 : (Y ,X) 7→ X (G acts elementwise on objects in
an ordered pair).

In many cases these homomorphisms can be used to transform a problem
involving an “external” action of a group G on a set Ω into a problem in-
volving a “local” action of G on subgroups or cosets of subgroups of a related
group. A good example in this respect is the algorithm Leiterspiel [213, 215]
for computing orbit representatives for the elementwise action of a permu-
tation group G ≤ Sym(Σ) on the set of all k-subsets of a finite set Σ. The
algorithm is based on the observation that an equivalent “local” problem in
terms of the group Sym(Σ) is to compute representatives of orbits for the
action of G on the left cosets Sym(Σ)/StabSym(Σ)(E) by left multiplication,
where E ⊆ Σ is an arbitrary k-subset. This representative problem is then
solved via homomorphisms by varying the right-hand side group along a se-
quence of subgroups Sym(Σ) = H0, H1, . . . , Hm−1, Hm = StabSym(Σ)(E)
such that for all 1 ≤ i ≤ m either Hi−1 ≤ Hi (projection is applied) or
Hi−1 ≥ Hi (lifting to preimage is applied).

Group-theoretic techniques can also be used to solve isomorphism prob-
lems for designs that are too large to handle with algorithms based on back-
tracking, but are known to admit a select group of automorphisms (such as
a projective or affine linear group) [141]; see also [82, 140, 215]. A trivial
example in this respect is a group of automorphisms H ≤ G that is equal to
its normalizer NG(H) = {g ∈ G : gHg−1 = H} in G—it is easy to check
that any two objects with Aut(X) = Aut(Y) = H = NG(H) satisfy either
X = Y or X 6∼= Y .

Finally, we remark that generation by canonical augmentation is closely
related with techniques based on homomorphisms of group actions (cf. [140]).
One step of generation by canonical augmentation can be viewed as a se-
quence of two projection homomorphisms Φ

π2← Λ
π1→ Ψ, where Λ ⊆ Ψ× Φ

and π1 is surjective. The homomorphism π2 : (Y ,X) 7→ X induces a lifting
step from objects in Φ to the augmentations in Λ, and π1 : (Y ,X) 7→ Y
induces a projection step from Λ to the objects in Ψ. From this perspective
the key idea in generation by canonical augmentation lies in the implemen-
tation of the projection step, where each object Y ∈ Ψ is associated with
an Aut(Y)-orbit of augmentations from which Y is required to originate.
In more precise terms, let µ associate with every Y ∈ Ψ an Aut(Y)-orbit
µ(Y) ⊆ π−1

1 (Y) such that µ(gY) = {(gY , gX) : (Y ,X) ∈ µ(Y)} for all
g ∈ G. When projecting from Λ to Ψ, a projection π1(Y ,X) = Y is accepted
if and only if (Y ,X) ∈ µ(Y). Equivalently, π1(Y ,X) = Y is accepted if and
only if (Y , m(Y)) ∼= (Y ,X) for any (Y , m(Y)) ∈ µ(Y); cf. (3.6).

3. CLASSIFICATION ALGORITHMS 25

3.5 CORRECTNESS

Compared with conventional mathematical arguments, computational re-
sults are arguably more prone to errors. Namely, even if the classification
algorithm is correct, it may be that the computed result is incorrect due to
hardware or software errors, where the latter includes errors not only in the
algorithm implementation itself, but also errors in the system programs such
as the compiler, the standard libraries, and the operating system kernel. With
such sources of error, it is obvious that a computed result cannot be trusted
with absolute certainty. However, confidence in a computed result can be
increased by employing techniques for detecting errors. An extensive dis-
cussion of errors and remedies appears in [128]. Examples of classification
results in which meticulous attention has been paid to correctness include
[54, 171, 173].

Arguably the two main tools for detecting errors are double checking the
result and consistency checking.

Double checking the result amounts to obtaining the same classification
in two independent ways, preferably with different algorithmic approaches
and with different software development tools and/or computer architectures.
Double checking the result was employed in the context of [P1] (partial so-
lutions with five rows), [P2] (the seeds and the STS(19)s with a nontrivial
automorphism group; cf. [P5]), [P3] (one-factorizations with k ≤ 6), and
[P4] (2-(13, 4, 3) near resolutions).

Consistency checking amounts to identifying certain properties satisfied
by a correct algorithm implementation and/or classification, and then veri-
fying that these properties hold. A common approach is to employ double
counting, whereby a quantity of interest is computed in two (essentially) in-
dependent ways, and the results are tested for equality. The orbit-stabilizer
theorem (|GX | · |StabG(X)| = |G|) can often be used to obtain double
counting consistency checks on a backtrack algorithm with isomorph rejec-
tion; see [133] for a detailed discussion. Another possibility for consistency
checking isomorph rejection is to employ hash accumulators that record the
structures encountered before and after isomorph rejection tests; see [P5].

Consistency checking was employed in the context of [P2] (double count-
ing check for complete classification), [P3] (double counting check for k =
10, 11), and [P5] (double counting check for complete classification, hash
accumulator -based check for seed generation).

26 3. CLASSIFICATION ALGORITHMS

4 ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES

This chapter surveys the literature on classification algorithms for designs
and codes. The focus is on techniques that produce a complete classification
for given parameters, but also classification subject to a prescribed group of
automorphisms is discussed to place the results in [P5] into context.

4.1 DESIGNS AND ERROR-CORRECTING CODES

This section briefly reviews the standard definitions for t-(v, k, λ) designs and
unrestricted error-correcting codes. In what follows also other types of designs
and codes are discussed to some extent; in this case the relevant standard defi-
nitions can be found in the articles surveyed or from the following references.
Textbooks on designs and codes include [24, 26, 90, 150, 151, 201]. More
extensive treatments can be found in [8, 30, 34, 77, 157, 202].

4.1.1 Designs

An incidence structure is a triple (P,B, I), where P and B are finite sets and
I ⊆ P ×B. The elements of P are called points, the elements of B are called
blocks, and I is the incidence relation. A point x ∈ P is incident to a block
B ∈ B if (x, B) ∈ I . Similarly, a subset W ⊆ P is incident to a block B
if (x, B) ∈ I for all x ∈ W . An incidence structure is simple if the set of
incident points {p ∈ P : (p, B) ∈ I} is unique to every block B; otherwise
the incidence structure is said to have repeated blocks.

Two incidence structures, X and Y , are isomorphic if there exist bijec-
tions fP : P (X) → P (Y) and fB : B(X) → B(Y) such that for all
x ∈ P (X) and B ∈ B(X) it holds that (x, B) ∈ I(X) if and only if
(fP (x), fB(B)) ∈ I(Y). Such a pair of bijections f = (fP , fB) is an iso-
morphism of X onto Y . An automorphism of X is an isomorphism of X
onto itself. The automorphism group Aut(X) is the group formed by all
automorphisms of X with composition of mappings as the group operation.

An incidence matrix of an incidence structure X is an integer matrix N =
(nxB) with rows and columns indexed by the points and blocks, respectively,
such that for all x ∈ P (X) and B ∈ B(X),

nxB =

{

1 if (x, B) ∈ I(X); and
0 if (x, B) /∈ I(X).

A resolution of an incidence structure X is an ordered pair (X ,R), where
R is a partition of B(X) into parallel classes such that every point x ∈ P (X)
is incident to exactly one block from every parallel class. An incidence struc-
ture is resolvable if it admits a resolution. Two resolutions are isomorphic if
there exists an isomorphism f = (fP , fB) of the incidence structures such
that fB maps one partition into parallel classes onto the other.

Let t, v, k, and λ be positive integers with v ≥ k ≥ t. A t-(v, k, λ) design
is an incidence structure over v points such that every block is incident to
exactly k points and every t-subset of points is incident to exactly λ blocks.

4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES 27

A design with t = 2 is called a (balanced incomplete) block design with
parameters (v, k, λ). A standard double counting argument shows that every
point of a block design is incident to r blocks and that the number of blocks
is b, where

(4.1) λ(v − 1) = r(k − 1), vr = bk.

Some special families of designs are as follows. A design with λ = 1
is called a Steiner system S(t, k, v). A Steiner triple system—briefly, an
STS(v)—is an S(2, 3, v). A 2-(n2 + n + 1, n + 1, 1) design is a projective
plane of order n. A 2-(n2, n, 1) design is an affine plane of order n.

4.1.2 Codes and Resolutions of Designs

Let Zq = {0, 1, . . . , q − 1} and denote by Z
n
q the set of all words of length

n over the alphabet Zq. A q-ary code of length n is a subset C ⊆ Z
n
q . The

cardinality |C| of a code is the number of words in it.
For a word x = x1x2 · · ·xn ∈ Z

n
q and 1 ≤ j ≤ n, we say that xj is

the symbol at coordinate (alternatively, position) j. The distance d(x, y)
between two words x, y ∈ Z

n
q is the number of positions in which they differ;

that is, d(x, y) = |{j : xj 6= yj}|. The minimum distance of a code C with
|C| ≥ 2 is d(C) = min {d(x, y) : x, y ∈ C, x 6= y}. An (n, M, d)q code
is a q-ary code of length n, cardinality M , and minimum distance d. A code
is equidistant if d(C) = d(x, y) for all distinct x, y ∈ C. A q-ary code is
equireplicate if q divides |C| and every symbol occurs exactly |C|/q times in
every coordinate of the code.

Two codes, C1 ⊆ Z
n
q and C2 ⊆ Z

n
q , are equivalent if C1 can be trans-

formed into C2 by a permutation of the coordinates and by an independent
permutation of the symbols Zq in each coordinate. In terms of a group action,
two codes are equivalent if they are on the same orbit of the product action
(see for example [25, 55]) of the wreath product Sym(Zq)oSym({1, 2, . . . , n})
on Z

n
q ; in what follows we use the abbreviated notation Sq o Sn. The auto-

morphism group of a code is the stabilizer of the code with respect to this
action.

The following correspondence between codes and resolutions of 2-(v, k, λ)
designs, k < v, discovered by Semakov and Zinov’ev [219] is of particular im-
portance in the context of this thesis. Let r and b be determined from v, k, λ
by (4.1), and let (X ,R) be a resolution of a 2-(v, k, λ) design. Label the
parallel classes in R as 1, 2, . . . , r and the blocks within every parallel class
as 0, 1, . . . , v/k − 1. With respect to this labeling, define an equireplicate
equidistant (r, v, r − λ)v/k code as follows. Every point p ∈ P (X) defines
a word x(p) = x1(p)x2(p) · · ·xr(p) ∈ Z

r
v/k, where xj(p) is the label of the

block incident to p in parallel class j, 1 ≤ j ≤ r. The claimed properties
of the code C = {x(p) : p ∈ P (X)} are easy to verify from the defining
properties of the resolution (X ,R).

Conversely, it follows from the generalized Plotkin bound [14, Theorem
3] and (4.1) that every (r, v, r− λ)v/k code is both equireplicate and equidis-
tant, and thus defines a resolution of a 2-(v, k, λ) design. Furthermore, it
can be checked that the equivalence classes of such codes and isomorphism

28 4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES

classes of resolutions are in a one-to-one correspondence. This correspon-
dence is applied in [P1]. Analogous correspondences for one-factorizations
of graphs and near resolutions of designs and are applied in [P3] and [P4],
respectively.

Example 17 A labeled resolution of an STS(9) and the associated (4, 9, 3)3

code appear below.

Block 0 Block 1 Block 2
Parallel class 1: 123 456 789
Parallel class 2: 159 267 348
Parallel class 3: 147 258 369
Parallel class 4: 168 249 357

C = {0000, 0111, 0222, 1201, 1012, 1120, 2102, 2210, 2021}

4.2 ALGORITHMS FOR DESIGNS

Most existing techniques for classification of designs can roughly be divided
into two types. Either one proceeds point by point, or block by block. Fol-
lowing a discussion of these two somewhat “myopic” approaches, other clas-
sification techniques are surveyed.

Survey articles on computer construction and classification of designs in-
clude [69, 70, 162, 224]. Classification results for block designs are surveyed
in [164, 165, 166].

4.2.1 Point-by-Point Classification

Point by point classification is perhaps easiest to discuss in terms of incidence
matrices. Let N be an incidence matrix of a 2-(v, k, λ) design. Equivalently,
if r and b are determined by (4.1), then N is a v×b integer matrix with entries
from {0, 1} such that

every row contains exactly r 1s; and(4.2)
every column contains exactly k 1s; and(4.3)
the inner product (in Z) of every pair of distinct rows is λ.(4.4)

An immediate approach to constructing such matrices is via backtrack
search, where every search step adds one row (that is, point of a design) to
a partial w × b incidence matrix Nw with 0 ≤ w ≤ v. Denoting by j a col-
umn vector of all 1s, the candidate rows that can augment Nw correspond to
the solutions x of the Diophantine linear equation system

(4.5) jTx = r, Nwx = λj, x ∈ {0, 1}b×1.

A further constraint is that every column of Nw that contains k 1s must con-
tain a 0 in the corresponding position of x by (4.3). Two matrices are re-
garded as isomorphic if one can be obtained from the other by permuting
the rows and columns.

4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES 29

Starting with Gibbons [68, 70] and Ivanov [94], this basic approach has
been successfully employed in a number of studies, including [49, 50, 51,
104, 188, 189, 195, 221, 225]. Isomorph rejection in these studies is based
on orderly generation. The order employed is a lexicographic order obtained
by concatenating the rows of a matrix from least recently to most recently
added (cf. Example 10). The extent of isomorph rejection varies from par-
tial to complete, where complete isomorph rejection amounts to a lexico-
graphic maximality test relative to permutation of the rows and columns of
a matrix (see for example [51]). A partial isomorph rejection strategy based
on testing the maximality of a newly constructed row relative to recorded
automorphism groups of the submatrices N1,N2, . . . ,Nw (acting on the
columns) is developed in [68, 70] and improved in [49, 50]. A somewhat dif-
ferent automorphism-based partial isomorph rejection strategy is employed
in [225].

In addition to basic isomorph rejection, the search space may be further
restricted by (4.3) and properties of lexicographic order. Namely, the lexico-
graphically most significant column of Nw not satisfying (4.3) must be aug-
mented with a 1; otherwise no augmentation of the resulting matrix is a lexi-
cographic maximum incidence matrix (cf. Example 12 and [51, 221, 225]).

The strategies for solving the system (4.5) include column-by-column back-
tracking with pruning heuristics [68, 70, 162] and using general techniques
for Diophantine linear equation systems; cf. Sect. 3.2.1. In the latter case
it is advisable to replace each set {xi1 , . . . , xis} of {0, 1}-variables corre-
sponding to a maximal set of identical columns in Nw with a single variable
xi ∈ {0, 1, . . . , s} to reduce symmetry in the system. In some cases a more
specialized algorithm can be used. For example, if λ = 1, then (4.5) is an
instance of the exact cover problem. A recursive strategy for solving the sys-
tem on Nw based on the solutions obtained for Nw−1 is described in [94].
An automorphism-based pruning strategy for column-by-column backtrack is
described in [49, 50].

Clique search can be employed to locate completions of the partial ma-
trix Nw to a full incidence matrix [104, 221, 225]. Namely, if Xw is the
graph with the solutions of (4.5) as vertices, and two solutions are connected
by an edge in Xw if and only if their inner product is equal to λ, then the
(v − w)-cliques in Xw correspond (up to ordering of the rows) to the com-
pletions of Nw. Whether clique search is practical depends on the structure
of the graph Xw, in particular on its order and the symmetry induced by the
automorphism group of Nw acting on the columns. A somewhat more so-
phisticated clique search strategy tailored for the Steiner systems S(2, 4, 25)
is employed in [225].

The orderly point-by-point construction approach has been employed also
for t-designs with t > 2 [50, 51], for group divisible designs (GDDs) [200],
and for balanced ternary designs [103]. A point-by-point construction ap-
proach based on generation by canonical augmentation is used in [173].

4.2.2 Block-by-Block Classification

The obvious alternative to point-by-point construction is to proceed block by
block. In this case it is convenient to view the construction of t-(v, k, λ) de-

30 4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES

signs over a fixed point set P as solving the following system of Diophantine
linear equations. Let A = (aTK) be an integer matrix with rows and columns
indexed by t-subsets T ⊆ P and k-subsets K ⊆ P , respectively, such that

(4.6) aTK =

{

1 if T ⊆ K; and
0 otherwise.

The solutions x of the system of Diophantine linear equations

(4.7) Ax = λj, x ∈ {0, 1, . . . , λ}(
v

k)×1

correspond—up to labeling of the blocks—to the t-(v, k, λ) designs over the
point set P (cf. [79, 242]). Constructing the designs block by block can thus
be viewed as setting the values of the variables xK one at a time. Two vectors,
x and x′, are regarded isomorphic if there exists a g ∈ Sym(P) such that
x′

g(K) = xK for all k-subsets K ⊆ P .
Isomorph rejection must be employed to eliminate symmetry from the

system (4.7). Furthermore, in many cases the system (4.7) is too large to
be explicitly constructed in practice, let alone solved (cf. [85, 132]). The
standard remedy to these difficulties is to classify up to isomorphism a set of
partial solutions—called seeds—such that every isomorphism class of designs
can be encountered as an extension of a seed. In more precise terms, a seed
is a vector s ∈ {0, 1, . . . , λ}(

v

k)×1 with As ≤ λj. (Here “≤” indicates that
inequality holds in all positions of the vector.) It is required that for every
solution x′ to (4.7), there exists an isomorphic solution x and a seed s such
that s ≤ x. Assuming that this property holds for the seeds, a complete
classification of the designs can be obtained by determining, for each seed s

in turn, all solutions y of the residual system

(4.8) Ay = λj−As, y ∈ {0, 1, . . . , λ}(
v

k)×1,

and rejecting isomorphs among the generated designs x = s + y. With an
appropriate choice of seeds, the residual system is considerably smaller than
the original system (4.7) because many of the variables can be ignored due
to the fact that they are constrained to 0.

Often a good collection of seeds is obtained by selecting a small set of
points U ⊆ P and considering only those blocks in a design that are incident
to at least one point (or all the points) in U . The properties of a design typi-
cally induce certain structure to such sets of blocks; these structural proper-
ties can then be exploited in classifying the sets of blocks up to isomorphism.

Certainly one of the earliest applications of this approach is the manual
classification of the STS(15)s [43] based on seeds consisting of all blocks in-
cident to at least one point from a pair of points. The subsequent computer
verification of this result [84] employs an analogous strategy. In [P2] the seeds
induced by a block B together with all blocks incident to at least one point
of B are used to classify the STS(19)s. In this case the seeds correspond up
to isomorphism to sets of three pairwise edge-disjoint one-factors of the com-
plete graph K16. The projective planes of orders 8 ≤ n ≤ 9 were classified
using a set of seeds induced by a set of three points not incident to a common

4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES 31

block [85, 132]. Such seeds correspond up to isomorphism to main classes
of Latin squares of order n − 1, which were classified in [120, 185, 211] for
8 ≤ n ≤ 9. The classifications in [33, 64, 163] employ seeds consisting of
all blocks incident to a given point. In [176] the derived STS(13)s (blocks
incident to a given point) are used as seeds to classify the Steiner systems
S(3, 4, 14).

The typical approach for isomorph rejection on generated designs is to
keep a record of the isomorphism classes encountered, provided that the iso-
morphism class representatives can be accommodated in memory. Other-
wise, generation by canonical augmentation can be employed, whereby the
parent object associated with a generated design is the seed from which it is
generated. The papers [P2, P3] can be considered as detailed examples of
such an approach.

4.2.3 Other Approaches

Compared with “myopic” generation one point or block at a time, often a
more efficient approach can be obtained by resorting to a more detailed
combinatorial analysis of the designs in question and/or by alternating the
two basic generation strategies.

In [173] three independent approaches are used to establish the nonexis-
tence of 4-(12, 6, 6) designs. Common to these approaches is the extensive
application of a combinatorial analysis of the 4-(12, 6, 6) designs and related
(v − 7)-(v, v − 6, 3) designs for 8 ≤ v ≤ 12 [124]. The first approach at-
tempts to construct the 4-(12, 6, 6) designs point by point via generation by
canonical augmentation. The second and third approach prove nonexistence
based on the property that a 4-(12, 6, 6) design and its complement form a
5-(12, 6, 3) design [124]. Thus, it suffices to check that no 5-(12, 6, 3) design
is resolvable. The second approach constructs the 5-(12, 6, 3) designs point
by point via generation by canonical augmentation. The third approach pro-
ceeds by extension along the sequence of derived (v − 7)-(v, v − 6, 3) de-
signs, 8 ≤ v ≤ 12.

In [221] a classification of the 2-(31, 10, 3) designs employs first an or-
derly row-by-row strategy up to 17 rows (containing two full blocks), followed
by a column-by-column strategy to complete the remaining 14 rows of the
incidence matrix.

In [89] the nonexistence of a 2-(46, 6, 1) design is shown by first locating
two subconfigurations, “c4” and “c5”, where a “c4” must occur and a “c5”
may or may not occur. Then, the search is divided into two cases based on
whether a “c5” or only a “c4” occurs, which in both cases enables the in-
cidence matrix of a putative design to be partitioned into submatrices with
certain structure. It is then established by exhaustive search that these sub-
matrices cannot be completed, from which nonexistence follows. Analogous
studies that assume the existence of a subconfiguration and then produce a
complete classification subject to this assumption include [106, 192, 229].

Arguably the most important algorithmic classification result to date is
the nonexistence of a projective plane of order 10, announced in [135]. The
nonexistence result is based on ruling out the existence of words of weights
12 [136], 15 [158] ([48]), 16 [134], and 19 [135] in the binary linear code

32 4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES

generated by the columns (or equivalently, rows) of an incidence matrix of
a putative plane of order 10. Each word weight w is excluded by first clas-
sifying up to isomorphism all the possible configurations inducing a word
of weight w, and then attempting—in vain—to extend each subconfigura-
tion to a complete plane. These nonexistence results together with results on
the weight enumerator polynomial of the code of a putative plane [2, 158]
show that a plane of order 10 does not exist. An exposition is given in
[129]. Analogous coding-theoretic techniques have been employed to ob-
tain progress towards settling the nonexistence of a 2-(22, 8, 4) design (see
[207] and [7, 83, 174, 192]).

In many cases it is possible to employ a known correspondence between
a family of designs and another family of combinatorial objects. Examples
of useful correspondences between different families can be found in [35].
First, the objects in the corresponding family are classified up to the associ-
ated notion isomorphism, after which the designs of interest are determined
up to isomorphism from these. For example, a classification of Hadamard
matrices of order 4n (see [93, 112, 113, 223]) can be used to obtain a classifi-
cation of the 3-(4n, 2n, n− 1) and the 2-(4n− 1, 2n− 1, n− 1) Hadamard
designs. Similarly, the affine planes of order n correspond up to isomorphism
to the block automorphism orbits in projective planes of order n.

4.3 ALGORITHMS FOR DESIGNS WITH PRESCRIBED AUTOMORPHISMS

An extensive literature exists on the automorphisms of designs of various
types; see [8, 29, 40, 77, 90, 138] and the references therein. To employ
prescribed automorphisms in classification, it is typically necessary to first
conduct a combinatorial analysis of the types of automorphisms admitted by
a design with given parameters (see for example [38, 171]). A putative group
(or groups) of automorphisms can then be located using the necessary con-
ditions for automorphisms resulting from such an analysis.

Let G be the group whose action induces isomorphism, and let H ≤ G
be a prescribed group of automorphisms. From an algorithmic point of view
there are essentially two extreme cases; namely, either H is a “small” group
(such as a cyclic group of prime order) or a “large” group (such as a maximal
or near maximal subgroup of G). As a rule of thumb, the larger the group
H , the smaller the search space for classification. Symmetry in the search
space under prescribed H can in most cases be captured by restricting the
action of G to the normalizer NG(H) = {g ∈ G : gHg−1 = H} of H in G;
cf. [28, 37, 38, 111, 155, 171, 218] and [P5].

4.3.1 The Kramer-Mesner Method

Kramer and Mesner [123] observed that t-designs with a prescribed group H
of automorphisms (acting on the points) can be constructed by adapting the
the equation system (4.7) to this setting.

More formally, let parameters t-(v, k, λ) be fixed, let P be a fixed finite
set of v points, and let H ≤ G = Sym(P). For notational convenience, we
write Ē for the H -orbit of a subset E ⊆ P . Let AH = (aT̄ K̄) be an integer

4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES 33

matrix with rows and columns indexed by H -orbits of t-subsets and k-subsets
of P , respectively, such that aT̄ K̄ = |{hK : T ⊆ hK, h ∈ H}|. The solutions
x of the system of Diophantine linear equations

(4.9) AHx = λj, x ∈ {0, 1, . . . , λ}|{K̄:K⊆P, |K|=k}|×1

correspond (up to labeling of the blocks) to the t-(v, k, λ) designs over the
point set P admitting H as a group of automorphisms.

The Kramer-Mesner method has been employed to construct and classify
simple t-designs with small parameters; see [9, 10, 11, 121, 125, 140, 159,
215] for classic results and state of the art. In particular, the software pack-
age DISCRETA developed at Universität Bayreuth appears to be the main
tool utilized in most recent construction/classification results for large groups
(typically, projective and affine linear groups) and t > 6; see [140, 141].

The main algorithmic phases of a classification approach employing the
Kramer-Mesner method are: constructing the equation system (4.9), solving
the equations, and rejecting isomorphs.

For small groups (and small parameters t, v, k, λ), constructing the matrix
AH and associated orbits is straightforward. For large groups and large param-
eters, more sophisticated techniques are required; see [121, 213, 214, 215].

A number of techniques exist for solving the system (4.9). Typically the in-
terest is on obtaining {0, 1}-solutions; that is, simple designs. Currently the
most powerful techniques appear to be based on lattice basis reduction [1,
126, 127, 142, 238, 239], other techniques include [111, 121, 155, 214, 215];
see also [69] for a brief description of the algorithm SYNTH used by Magliv-
eras and Mathon. Depending on the normalizer NG(H), initial isomorph
rejection analogous to (4.8) may be required to eliminate symmetry from the
search space; cf. [37, 111, 155]. For t-designs with t > 2, one possibility is
to employ the derived 2-designs as seeds; cf. [111, 173]. For 2-designs, sets of
blocks incident to at least one point from a given small set of points can be
employed as seeds; cf. [P5].

Group-theoretic techniques for isomorph rejection among generated de-
signs are developed in [82, 140, 141, 215]. Such techniques have their main
applicability for large groups and large parameters, where the designs are
too large for traditional isomorphism computations. For small groups and
small parameters, the typical approach is to employ isomorph rejection via
recorded representatives. An approach based on generation by canonical
augmentation relative to seeds classified up to NG(H)-isomorphism is devel-
oped in [P5] to attack instances where there are too many representatives to
be stored in memory.

4.3.2 Tactical Decompositions

Tactical decompositions were introduced by Dembowski [46, 47]. Here we
focus on the application of tactical decompositions in classification under
prescribed automorphisms; a more general treatment appears in [8].

Let X = (P,B, I) be a 2-(v, k, λ) design, and let H ≤ Aut(X) ≤ G =
Sym(P)× Sym(B). Let P1, P2, . . . , Pm ⊆ P and B1,B2, . . . ,Bn ⊆ B be the
H -orbits on the points and blocks, respectively. Select an arbitrary block Bj

from every orbit Bj , 1 ≤ j ≤ n. Let T = (tij) be the m × n integer matrix

34 4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES

with tij = |{p ∈ Pi : (p, Bj) ∈ I}| for all 1 ≤ i ≤ m and 1 ≤ j ≤ n;
it is easy to check that the number tij is independent of the block Bj ∈ Bj

selected. An analogous m × n matrix U = (uij) is obtained by selecting a
point pi from every orbit Pi and setting uij = |{B ∈ Bj : (pi, B) ∈ I}|.

In general, a tactical decomposition of X is a partition of the points and
blocks such that the matrices T and U are independent of the point and
block representatives selected. However, in the context of classification un-
der prescribed automorphisms it is a common abuse of terminology (cf. [38,
122])—which we will follow here—to call an m×n nonnegative integer ma-
trix T = (tij) a tactical decomposition with respect to the prescribed group
H ≤ G if it satisfies the following equations (cf. Equations (4.2)–(4.4)):

n
∑

j=1

tij |Bj | = r|Pi| for all 1 ≤ i ≤ m,(4.10)

m
∑

i=1

tij = k for all 1 ≤ j ≤ n,(4.11)

n
∑

j=1

ti1jti2j|Bj | = λ|Pi1||Pi2| for all 1 ≤ i1 < i2 ≤ m,(4.12)

n
∑

j=1

(

tij
2

)

|Bj | = λ

(

|Pi|

2

)

for all 1 ≤ i ≤ m.(4.13)

Tactical decompositions have been employed in numerous studies aimed
at constructing and classifying 2-designs with prescribed automorphisms, in-
cluding [28, 38, 45, 87, 95, 122, 161, 198, 222, 231, 232, 233, 234].

The algorithmic phases of a classification approach employing tactical de-
compositions are: classifying the tactical decompositions (up to isomorphism
induced by the action of NG(H) on the H -orbits of points and blocks), ex-
panding the tactical decompositions into incidence matrices of designs in all
possible ways, and rejecting isomorphs among the generated designs.

Classification of tactical decompositions amounts essentially to solving
the system (4.10)–(4.13) up to NG(H)-isomorphism. One possibility is to
proceed using row-by-row backtrack; cf. Sect. 4.2.1. An orderly algorithm is
employed in [38]. The expansion of a tactical decomposition can be car-
ried out using a backtrack search, where each step replaces one entry tij of
T with a H -invariant |Pi| × |Bj | partial incidence matrix with exactly tij 1s
in every column, and a complete incidence matrix N must satisfy Equations
(4.2)–(4.4). Strategies for expanding tactical decompositions are discussed in
at least [28, 38]; the extent of isomorph rejection required during expansion
depends on the normalizer NG(H). Possibilities for final isomorph rejection
include using recorded representatives or generation by canonical augmen-
tation relative to the classified tactical decompositions.

4.3.3 Other Approaches

In a sequence of papers [56, 57, 58, 59, 60], Eslami, Khosrovshahi, and
Tayfeh-Rezaie employ trades in classifying halvings of complete (v − 8)-
(v, v − 7, 8) designs with prescribed automorphisms, 9 ≤ v ≤ 14. Let

4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES 35

t ≤ k ≤ v be positive integers and let P be a fixed set of v points. An
unordered pair {T+, T−} consisting of two disjoint collections of k-subsets of
P is a t-(v, k) trade if every t-subset of P is occurs in the same number of
k-subsets in T+ as in T−. The volume of a trade is the number of blocks in
T+ (T−). Isomorphism of trades is induced by the action of Sym(P). Up to
sign, a trade corresponds to an integer vector t satisfying At = 0, where A

is the inclusion matrix (4.6). The set of all such vectors form a Z-module,
whose structure and bases are analyzed in [78, 79, 91, 109, 110]. A halving of
the complete t-(v, k,

(

v−t
k−t

)

) design corresponds to a t-(v, k) trade of volume
(

v
k

)

/2. To classify such trades up to isomorphism, Eslami, Khosrovshahi, and
Tayfeh-Rezaie proceed by extending a classification of (t− 1)-(v − 1, k − 1)
trades of volume

(

v−1
k−1

)

/2, and rejecting isomorphs. To carry out the exten-
sion, the standard basis of trades (see [110]) is employed; this basis has the
convenient property that trades of volume

(

v
k

)

/2 can be expressed as {−1, 1}
linear combinations of the basis vectors. Analogously to the Kramer-Mesner
method, prescribed automorphisms enable the restriction of the search to
automorphism orbits.

Seah and Stinson [218] (see also [217]) employ an orderly algorithm to
classify one-factorizations of complete graphs K12 and K14 with prescribed
automorphisms. The algorithm proceeds by extending a partial factorization
by one factor orbit at a time. Intermediate isomorph rejection is based on
testing whether a partial factorization is the lexicographic minimum of its
orbit under the action of the normalizer.

To obtain an enumeration of the main classes and isotopy classes of Latin
squares up to order 10, McKay, Meynert, and Myrvold [171] develop a clas-
sification approach for Latin squares with a nontrivial automorphism group
(with respect to the action of Sn o S3 capturing the main classes of order n).
First, a combinatorial analysis is conducted to determine a minimal set Σ of
prime-order elements of Sn o S3 such that every square with a nontrivial au-
tomorphism group admits at least one automorphism conjugate to a σ ∈ Σ.
Then, for each σ ∈ Σ in turn, the main classes admitting σ as an automor-
phism are constructed by employing two independent techniques based on
either orderly generation or generation by canonical augmentation; the act-
ing groups used in isomorph rejection are subgroups of Sn oS3 normalizing σ.
This achieves (almost) complete isomorph rejection among the Latin squares
L with Aut(L) = 〈σ〉 because Aut(L) = Aut(L′) = 〈σ〉 and L ∼=SnoS3

L′

immediately imply L ∼=NSnoS3
(σ) L′. Final isomorph rejection for the stored

Latin squares L with Aut(L) 6= 〈σ〉 for all σ ∈ Σ is carried out using a
canonical representative map based on transformation into a vertex-colored
graph.

4.4 ALGORITHMS FOR CODES

This section surveys classification techniques for codes. The emphasis is on
unrestricted error-correcting codes, (n, M, d)q codes, and in particular on
codes that correspond to resolutions of designs and one-factorizations of reg-
ular graphs (cf. [P1, P3, P4]). The classification of codes with more restricted
algebraic structure—in particular, linear codes—and other types of codes—

36 4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES

such as covering codes—is not considered.
Analogously to classification techniques for designs in Sect. 4.2, there are

essentially two ways to proceed in classifying (n, M, d)q codes up to equiva-
lence. Either one proceeds codeword by codeword; that is, from (n, M −
1, d)q codes to (n, M, d)q codes, or coordinate by coordinate; that is, from
(n− 1, M, d− 1)q codes to (n, M, d)q codes.

4.4.1 Codeword-by-Codeword Classification

For integers q ≥ 2 and n ≥ d ≥ 1, one possibility to study codeword-by-
codeword classification of (n, M, d)q codes is via Hamming graphs. The
Hamming graph Hq(n, d) has the set Z

n
q of words as vertices, and two ver-

tices (words) x, y are connected by an edge if and only if d(x, y) ≥ d. (If
equidistant codes are considered, it is required that d(x, y) = d.) Clearly,
the (n, M, d)q codes are in a one-to-one correspondence with the M -cliques
in Hq(n, d). Thus, codeword-by-codeword classification essentially amounts
to clique search on Hq(n, d). Additional constraints—such as a code being
equireplicate—can also be relatively easily included if necessary.

Except possibly for the smallest parameter values, isomorph rejection on
partial solutions is again a prerequisite for a practical algorithm. The group
action inducing equivalence for unrestricted codes is the product action of
the wreath product Sq o Sn on Z

n
q ; equivalence computations can be carried

out conveniently by transforming a code into a graph (see [193]).
A number of ways to structure a codeword-by-codeword search occur in

the literature. In [193] the (10, 72, 3)2 and (11, 144, 3)2 codes are classi-
fied using a strategy based on extending subcodes. Let C be an (n, M, d)2

code, and let C0 (C1) be the subcode obtained by taking all the codewords
with a 0 (a 1) in the first coordinate. Up to equivalence we can assume
|C0| ≥ |C1|. If we remove the first coordinate from the words in C0, the
result is an (n − 1, M ′, d)2 code with M ′ ≥ M/2. Provided that we have a
classification of all such codes up to equivalence, the (n, M, d)2 codes can
be constructed by locating—for every applicable code C0—all (M − |C0|)-
cliques in the subgraph of H2(n, d) induced by words having a 1 in the first
coordinate and having distance at least d to every word in C0. (Note that
[193] does not explicitly mention clique search, but the approach described
is equivalent to applying the clique algorithm in [191] with the vertices ap-
pearing in lexicographic order.) After rejecting equivalent codes via trans-
formation into graphs, a classification is obtained. This approach is general-
ized to mixed binary/ternary codes in [187]; also generalization to codes with
q > 3 is possible. A similar approach is employed in [148, 149].

In [P1] an orderly codeword-by-codeword strategy combined with clique
searching is used to establish the nonexistence of a (14, 15, 10)3 code; that
is, a resolution of a 2-(15, 5, 4) design. Since such a code is necessarily both
equireplicate and equidistant, these properties can be exploited to restrict
the search together with properties of lexicographic minimum equireplicate
codes (cf. Example 12). The canonicity test in [P1] was developed based on
an idea for testing code equivalence in [101]. An orderly approach similar to
[P1] is employed in [P3] and [102]. This orderly approach is generalized to
“gap codes” corresponding to near resolutions of designs in [P4].

4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES 37

It appears that generation by canonical augmentation has not been used as
an isomorph rejection strategy in published studies pertaining to codeword-
by-codeword generation, although the possibility of such an approach is men-
tioned for example in [187]. Implemented with appropriate invariants, an
approach based on generation by canonical augmentation is likely to im-
prove considerably the efficiency of isomorph rejection compared with the
use of recorded representatives. The present author (unpublished) has im-
plemented an algorithm employing generation by canonical augmentation
to double check the classification of “gap codes” corresponding to 2-(13, 4, 3)
near resolutions reported in [P4]. The invariant used to structure the search
in this case is as follows. A “gap code” C of cardinality 1 ≤M ≤ 13 is said to
have the replication property if there exists a coordinate such that bM/4c val-
ues occur exactly 4 times in the coordinate, and the remaining M −4bM/4c
words contain the same value in the coordinate; the latter value is allowed to
be the “gap” only if M = 13. Given a “gap code” C, the subcode m(C) ⊆ C
is selected—via a canonical labeling map as in Example 13—so that if C has
the replication property, then also m(C) has the replication property with
|m(C)| = |C| − 1. Accordingly, the search for words that extend a given
code may be restricted to those words whose addition produces a code with
the replication property; cf. Example 12 and [P4].

4.4.2 Coordinate-by-Coordinate Classification

The basic problem associated with coordinate-by-coordinate classification is
that of extending an (n − 1, M, d − 1)q code C in all possible ways to an
(n, M, d)q code by adding a new coordinate. This is equivalent to the prob-
lem of finding all vertex q-colorings of the graph G defined by V (G) = C
and E(G) = {{x, y} : x, y ∈ C, d(x, y) = d − 1}, where the “colors”
{0, 1, . . . , q − 1} indicate the symbol to be appended to each word in C; for
the binary case, cf. the proof of [152, Theorem 5] and [193]. Up to equiva-
lence, it suffices to consider only one coloring from each Sq × Aut(C)-orbit
of q-colorings, where Sq acts by permuting the colors and Aut(C) ≤ Sq oSn−1

acts on C = V (G).
Coordinate-by-coordinate classification has been used in comparatively

few studies, most of which concern the classification of codes correspond-
ing to resolutions of designs, whereby coordinate-by-coordinate classification
corresponds to classification one parallel class of the resolution at a time.

An orderly algorithm is used in [54, 217] to classify one-factorizations of
the complete graph K2n (equivalently, resolutions of a 2-(2n, 2, 1) design; or,
(2n− 1, 2n, 2n− 2)n codes) for 2n = 10, 12.

In [182, 183] a backtrack algorithm that proceeds one parallel class at a
time is used to classify resolutions of the 2-(12, 4, 3) and 2-(10, 5, 16) designs;
that is, the (11, 12, 8)3 and (36, 10, 20)2 codes. The efficiency of both clas-
sifications is based on a careful combinatorial analysis of the possible block
intersection patterns between parallel classes, which produces a set of starting
configurations and enables to restrict the search. The algorithm in [183] also
applies intermediate isomorph rejection based on recorded representatives
and an ordering heuristic for the parallel classes.

In [P3] a combination of generation by canonical augmentation and or-

38 4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES

derly generation is applied to classify one-factorizations of k-regular graphs of
order 12; that is, equireplicate (k, 12, k−1)6 codes. Generation by canonical
augmentation is used to perform isomorph rejection among the generated
codes, whereas orderly generation is used to reject S6 × Aut(C)-isomorphic
6-colorings that extend C.

4.4.3 Other Approaches

Other techniques used to classify (n, M, d)q codes corresponding to resolu-
tions of designs include the following. An obvious possibility is to first classify
the underlying designs, then resolve these in all possible ways, and reject iso-
morphs (see for example [194]); however, this is not very efficient if there
are far more designs than there are resolvable designs. In [P3] an approach
derived from [P2] and based on viewing a one-factorization of K2n (that is,
resolutions of the 2-(2n, 2, 1) design) as a particular triple system on 4n − 1
points is used to verify the classification of one-factorizations of K12 obtained
in [54]. In [137] a classification of the affine resolvable 2-(27, 9, 4) designs is
obtained by using the 2-(13, 4, 2) designs as seeds.

4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES 39

40 4. ALGORITHMS FOR CLASSIFICATION OF DESIGNS AND CODES

5 CONCLUSIONS

This chapter briefly sums up the results in this thesis and presents some points
for future work together with some general remarks.

The main result of this thesis is a classification of the Steiner triple systems
of order 19 [P2]. The other results obtained include the nonexistence of a
resolvable 2-(15, 5, 4) design [P1], a classification of the one-factorizations
of k-regular graphs of order 12 for k ≤ 6 and k = 10, 11 [P3], a classifica-
tion of the near-resolutions of 2-(13, 4, 3) designs together with the associated
thirteen-player whist tournaments [P4], and a classification of the Steiner
triple systems of order 21 with a nontrivial automorphism group [P5].

Classification work to be conducted in the near future includes perform-
ing the classification of the one-factorizations of K14 with a nontrivial au-
tomorphism group, discussed in [P5]. Furthermore, a preliminary estimate
indicates that a classification of the Steiner quadruple systems of order 16
(3-(16, 4, 1) designs) is feasible by employing the 80 nonisomorphic STS(15)s
as seeds in a block-by-block approach analogous to [P2]; cf. [176].

In general, with improvements in algorithms and computer performance,
it is to be expected that computers are going to be employed in an increasing
number of studies. As Gibbons [69] puts it:

“Over the past 25 years the computer has become an indispens-
able ally in the search for combinatorial designs of many types.
The use of clever computational techniques has not only en-
abled many existence and enumeration questions to be settled,
but also allowed larger classes of designs to be analyzed, often
leading to the formulation of conjectures which have been proved
for infinite families of designs.”

This paragraph is certainly as true today as it was in 1996. Especially the de-
velopment of fast versatile techniques for isomorph rejection with low storage
requirements—most notably, the ingenious canonical augmentation tech-
nique of McKay [170]—now enables classification on instances with isomor-
phism classes numbering in the billions. Also advances in exact algorithms
for a number of standard combinatorial optimization problems can be ex-
ploited in classification. A general technique that warrants further investiga-
tion in a classification context is the use of linear programming relaxations in
pruning parts of a search tree associated with solving a system of Diophantine
linear equations; cf. [160].

As can be concluded from the preceding chapters, an algorithm design
in most cases applies both combinatorial knowledge specific to the objects of
interest, as well as general principles and techniques, such as backtrack search
and isomorph rejection. A further characteristic in most cases associated with
the design of classification algorithms is experimentation; that is, the need to
assess whether a putative classification approach is practical. In this sense
computer investigations into combinatorial classification can be seen as an
experimental science: an experimental setup can fail, and errors can occur.
Indeed, it is all too frequently the case that a consistency check reveals a

5. CONCLUSIONS 41

subtle error in an algorithm implementation. Thus, consistency checking
and double checking the result are highly recommended.

Given the experimental nature of the area, it is important to have avail-
able reliable general-purpose tools that enable rapid feasibility studies to be
carried out, and, furthermore, that can be relatively easily tailored for perfor-
mance. The graph isomorphism package nauty [169] is an excellent example
of such a software tool; another example is the package Cliquer [184] for solv-
ing clique problems on graphs. More tools of this nature are in constant de-
mand. Also important is the integration of tools with a convenient high-level
programming interface—for example, the GAP system [65]—with low-level
tools for computing isomorphism and solvers for combinatorial optimization
problems. Such integration can be carried out either through external ex-
ecutables invoked by the high-level system, or through integration into the
kernel of the high-level system for improved latency. Not only does such a
tool decrease time required by experimentation, it also arguably reduces the
probability of error in less performance-critical tasks by enabling them to be
carried out in a high-level environment. Examples of successful high-level
tools include the DISCRETA system developed at Universität Bayreuth and
the BDX system [131] developed at Concordia University. Again, further
tools are in demand.

However, it certainly appears that no amount of general-purpose tool en-
gineering can provide the performance gain obtainable by a combinatorial
insight into the structure of the objects of interest. An excellent example is
the celebrated nonexistence result for projective planes of order 10 [135],
which fundamentally relies on a combinatorial analysis of the weight enu-
merator of the code of a putative plane. Developing and applying analogous
structural analysis techniques specific to the objects of interest is arguably the
most rewarding topic of research associated with classification.

42 5. CONCLUSIONS

BIBLIOGRAPHY

[1] K. Aardal, C. A. J. Hurkens, and A. K. Lenstra, Solving a system of linear
Diophantine equations with lower and upper bounds on the variables, Math.
Oper. Res. 25 (2000), 427–442.

[2] E. F. Assmus, Jr. and H. F. Mattson, Jr., On the possibility of a projective
plane of order 10, Algebraic Theory of Codes II, Air Force Cambridge Re-
search Laboratories Report AFCRL-71-0013, Sylvania Electronic Systems,
Needham Heights, Mass., 1970.

[3] L. Babai, Moderately exponential bound for graph isomorphism, Fundamen-
tals of Computation Theory (F. Gécseg, Ed.), Springer-Verlag, Berlin, 1981,
pp. 34–50.

[4] L. Babai, Automorphism groups, isomorphism, reconstruction, Handbook of
Combinatorics (R. L. Graham, M. Grötschel, and L. Lovász, Eds.), Vol. II,
North-Holland, Amsterdam, 1995, pp. 1447–1540.

[5] L. Babai and E. M. Luks, Canonical labeling of graphs, Proc. Fifteenth
Annual ACM Symposium on Theory of Computing, (Boston, April 25–27,
1983), ACM Press, New York, 1983, pp. 171–183.

[6] S. E. Bammel and J. Rothstein, The number of 9× 9 Latin squares, Discrete
Math. 11 (1975), 93–95.

[7] J. A. Bate, M. Hall, Jr., and G. H. J. van Rees, Structures within
(22, 33, 12, 8, 4)-designs, J. Combin. Math. Combin. Comput. 4 (1988),
115–122.

[8] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, 2nd ed., 2 vols., Cam-
bridge University Press, Cambridge, 1999.

[9] A. Betten, A. Kerber, A. Kohnert, R. Laue, and A. Wassermann, The discovery
of simple 7-designs with automorphism group PΓL(2, 32), Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes (G. Cohen, M. Giusti, and
T. Mora, Eds.), Springer-Verlag, Berlin, 1995, pp. 131–145.

[10] A. Betten, A. Kerber, R. Laue, and A. Wassermann, Simple 8-designs with
small parameters, Des. Codes Cryptogr. 15 (1998), 5–27.

[11] A. Betten, R. Laue, and A. Wassermann, Simple 7-designs with small param-
eters, J. Combin. Des. 7 (1999), 79–94.

[12] N. Biggs, Algebraic Graph Theory, 2nd ed., Cambridge University Press,
Cambridge, 1993.

[13] A. Blass and Y. Gurevich, Equivalence relations, invariants, and normal
forms, SIAM J. Comput. 13 (1984), 682–689.

[14] G. T. Bogdanova, A. E. Brouwer, S. N. Kapralov, and P. R. J. Östergård, Error-
correcting codes over an alphabet of four elements, Des. Codes Cryptogr. 23
(2001), 333–342.

BIBLIOGRAPHY 43

[15] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, The maximum
clique problem, Handbook of Combinatorial Optimization (D.-Z. Du and
P. M. Pardalos, Eds.), Vol. A (supplement), Kluwer, Dordrecht, the Nether-
lands, 1999, pp. 1–74.

[16] G. Brinkmann, Isomorphism rejection in structure generation programs, Dis-
crete Mathematical Chemistry (P. Hansen, P. Fowler, and M. Zheng, Eds.),
Amer. Math. Soc., Providence, R.I., 2000, pp. 25–38.

[17] G. Brinkmann and B. D. McKay, Posets on up to 16 points, Order 19 (2002),
147–179.

[18] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs,
Springer-Verlag, Berlin, 1989.

[19] J. W. Brown, Enumeration of Latin squares with application to order 8, J.
Combin. Theory 5 (1968), 177–184.

[20] G. Butler, Fundamental Algorithms for Permutation Groups, Springer-
Verlag, Berlin, 1991.

[21] G. Butler and C. W. H. Lam, A general backtrack algorithm for the isomor-
phism problem of combinatorial objects, J. Symbolic Comput. 1 (1985), 363–
381.

[22] J.-Y. Cai, M. Fürer, and N. Immerman, An optimal lower bound on the num-
ber of variables for graph identification, Combinatorica 12 (1992), 389–410.

[23] P. J. Cameron, Parallelisms of Complete Designs, Cambridge University
Press, Cambridge, 1976.

[24] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge
University Press, Cambridge, 1994.

[25] P. J. Cameron, Permutation Groups, Cambridge University Press, Cam-
bridge, 1999.

[26] P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and Their Links,
Cambridge University Press, Cambridge, 1991.

[27] R. Carraghan and P. M. Pardalos, An exact algorithm for the maximum clique
problem, Oper. Res. Lett. 9 (1990), 375–382.

[28] V. Ćepulić, On symmetric block designs (40, 13, 4) with automorphisms of
order 5, Discrete Math. 128 (1994), 45–60.

[29] L. G. Chouinard II, R. Jajcay, and S. S. Magliveras, Finite groups and designs,
The CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H.
Dinitz, Eds.), CRC Press, Boca Raton, Fla., 1996, pp. 587–615.

[30] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, Elsevier,
Amsterdam, 1997.

[31] C. J. Colbourn, Embedding partial Steiner triple systems is NP-complete, J.
Combin. Theory Ser. A 35 (1983), 100–105.

[32] C. J. Colbourn and M. J. Colbourn, Combinatorial isomorphism problems
involving 1-factorizations, Ars. Combin. 9 (1980), 191–200.

44 BIBLIOGRAPHY

[33] C. J. Colbourn, M. J. Colbourn, J. J. Harms, and A. Rosa, A complete census
of (10, 3, 2) block designs and of Mendelsohn triple systems of order ten. III.
(10, 3, 2) block designs without repeated blocks, Congr. Numer. 37 (1983),
211–234.

[34] C. J. Colbourn and J. H. Dinitz, Eds., The CRC Handbook of Combinatorial
Designs, CRC Press, Boca Raton, Fla., 1996.

[35] C. J. Colbourn and J. H. Dinitz, Latin squares, The CRC Handbook of Com-
binatorial Designs (C. J. Colbourn and J. H. Dinitz, Eds.), CRC Press, Boca
Raton, Fla., 1996, pp. 97–110.

[36] C. J. Colbourn and J. H. Dinitz, Applications of combinatorial designs to
communications, cryptography, and networking, Surveys in Combinatorics,
1999 (J. D. Lamb and D. A. Preece, Eds.), Cambridge University Press, Cam-
bridge, 1999, pp. 37–100.

[37] C. J. Colbourn, S. S. Magliveras, and R. A. Mathon, Transitive Steiner and
Kirkman triple systems of order 27, Math. Comp. 58 (1992), 441–449.

[38] C. J. Colbourn, S. S. Magliveras, and D. R. Stinson, Steiner triple systems
of order 19 with nontrivial automorphism group, Math. Comp. 59 (1992),
283–295.

[39] C. J. Colbourn and P. C. van Oorschot, Applications of combinatorial designs
in computer science, ACM Computing Surv. 21 (1989), 223–249.

[40] C. J. Colbourn and A. Rosa, Triple Systems, Clarendon Press, Oxford, 1999.

[41] M. J. Colbourn, Algorithmic aspects of combinatorial designs: A survey, Ann.
Discrete Math. 26 (1985), 67–136.

[42] M. J. Colbourn and C. J. Colbourn, Concerning the complexity of deciding
isomorphism of block designs, Discrete Appl. Math. 3 (1981), 155–162.

[43] F. N. Cole, L. D. Cummings, and H. S. White, The complete enumeration
of triad systems in 15 elements, Proceedings of the National Academy of Sci-
ences of the United States of America 3 (1917), 197–199.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed., MIT Press, Cambridge, 2001.

[45] D. Crnković, Symmetric (70, 24, 8) designs having Frob21 × Z2 as an auto-
morphism group, Glas. Mat. Ser. III 34(54) (1999), 109–121.

[46] P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher pro-
jektiver Ebenen, Math. Z. 69 (1958), 59–89.

[47] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1997. Reprint of
the 1968 edition.

[48] R. H. F. Denniston, Non-existence of a certain projective plane, J. Austral.
Math. Soc. 10 (1969), 214–218.

[49] P. C. Denny, Search and enumeration techniques for incidence structures,
Research Report CDMTCS-085, Centre for Discrete Mathematics and The-
oretical Computer Science, University of Auckland, 1998.

BIBLIOGRAPHY 45

[50] P. C. Denny and P. B. Gibbons, Case studies and new results in combinatorial
enumeration, J. Combin. Des. 8 (2000), 239–260.

[51] P. C. Denny and R. Mathon, A census of t-(t + 8, t + 2, 4) designs, 2 ≤ t ≤
4, J. Statist. Plann. Inference 106 (2002), 5–19.

[52] L. E. Dickson and F. H. Safford, Solution to problem 8 (group theory), The
American Mathematical Monthly 13 (1906), 150–151.

[53] R. Diestel, Graph Theory, 2nd ed., Springer-Verlag, New York, 2000.

[54] J. H. Dinitz, D. K. Garnick, and B. D. McKay, There are 526,915,620 noni-
somorphic one-factorizations of K12, J. Combin. Des. 2 (1994), 273–285.

[55] J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New
York, 1996.

[56] Z. Eslami and G. B. Khosrovshahi, Classification of some large sets of designs,
J. Geom. 67 (2000), 105–110.

[57] Z. Eslami and G. B. Khosrovshahi, A complete classification of 3-(11, 4, 4)
designs with nontrivial automorphism group, J. Combin. Des. 8 (2000), 419–
425.

[58] Z. Eslami and G. B. Khosrovshahi, Some new 6-(14, 7, 4) designs, J. Combin.
Theory Ser. A 93 (2001), 141–152.

[59] Z. Eslami, G. B. Khosrovshahi, and B. Tayfeh-Rezaie, On halvings of the
2-(10, 3, 8) design, J. Statist. Plann. Inference 86 (2000), 411–419.

[60] Z. Eslami, G. B. Khosrovshahi, and B. Tayfeh-Rezaie, On classification of
2-(8, 3) and 2-(9, 3) trades, J. Combin. Math. Combin. Comput. 38 (2001),
231–242.

[61] I. A. Faradžev, Constructive enumeration of combinatorial objects, Prob-
lèmes Combinatoires et Théorie des Graphes, (Université d’Orsay, July 9–13,
1977), CNRS, Paris, 1978, pp. 131–135.

[62] L. M. Finkelstein and W. M. Kantor, Eds., Groups and Computation, Amer.
Math. Soc., Providence, R.I., 1993.

[63] L. M. Finkelstein and W. M. Kantor, Eds., Groups and Computation, II,
Amer. Math. Soc., Providence, R.I., 1997.

[64] B. Ganter, R. Mathon, and A. Rosa, A complete census of (10, 3, 2)-block
designs and of Mendelsohn triple systems of order ten. II. Mendelsohn triple
systems with repeated blocks, Congr. Numer. 22 (1978), 181–204.

[65] The GAP Group, Aachen, St Andrews. GAP – Groups, Algorithms,
and Programming, Version 4.2, 2000. Available electronically at 〈URL:
http://www-gap.dcs.st-and.ac.uk/∼gap〉.

[66] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, San Fransisco, 1979.

[67] E. N. Gelling and R. E. Odeh, On 1-factorizations of the complete graph and
the relationship to round-robin schedules, Congr. Numer. 9 (1974), 213–221.

46 BIBLIOGRAPHY

[68] P. B. Gibbons, Computing Techniques for the Construction and Analysis of
Block Designs, PhD Thesis, University of Toronto, 1976.

[69] P. B. Gibbons, Computational methods in design theory, The CRC Hand-
book of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, Eds.), CRC
Press, Boca Raton, Fla., 1996, pp. 718–740.

[70] P. B. Gibbons, R. A. Mathon, and D. G. Corneil, Computing techniques for
the construction and analysis of block designs, Util. Math. 11 (1977), 161–
192.

[71] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York,
2001.

[72] L. A. Goldberg, Efficient Algorithms for Listing Combinatorial Structures,
Cambridge University Press, Cambridge, 1993.

[73] L. A. Goldberg, Computation in permutation groups: Counting and ran-
domly sampling orbits, Surveys in Combinatorics, 2001 (J. W. P. Hirschfeld,
Ed.), Cambridge University Press, Cambridge, 2001, pp. 109–143.

[74] M. Goldberg, The graph isomorphism problem, Handbook of Graph Theory
(J. L. Gross and J. Yellen, Eds.), CRC Press, Boca Raton, Fla., 2004, pp.
68–78.

[75] S. W. Golomb, A mathematical theory of discrete classification, Information
Theory (C. Cherry, Ed.), Butterworths, Washington, D.C., 1961, pp. 404–
425.

[76] S. W. Golomb and L. D. Baumert, Backtrack programming, J. Assoc. Com-
put. Mach. 12 (1965), 516–524.

[77] R. L. Graham, M. Grötschel, and L. Lovász, Eds., Handbook of Combina-
torics, 2 vols., North-Holland, Amsterdam, 1995.

[78] R. L. Graham, S.-Y. R. Li, and W.-C. W. Li, On the structure of t-designs,
SIAM J. Algebraic Discrete Methods 1 (1980), 8–14.

[79] J. E. Graver and W. B. Jurkat, The module structure of integral designs, J.
Combin. Theory Ser. A 15 (1973), 75–90.

[80] R. Grund, A. Kerber, and R. Laue, MOLGEN, ein Computeralgebra-System
für die Konstruktion molekularer Graphen, Match 27 (1992), 87–131.

[81] T. Grüner, R. Laue, and M. Meringer, Algorithms for group actions applied
to graph generation, Groups and Computation, II (L. Finkelstein and W. M.
Kantor, Eds.) Amer. Math. Soc., Providence, R.I., 1997, pp. 113–122.

[82] E. Haberberger, A. Betten, and R. Laue, Isomorphism classification of t-
designs with group theoretical localisation techniques applied to some Steiner
quadruple systems on 20 points, Congr. Numer. 142 (2000), 75–96.

[83] M. Hall, Jr., R. Roth, G. H. J. van Rees, and S. A. Vanstone, On designs
(22, 33, 12, 8, 4), J. Combin. Theory Ser. A 47 (1988), 157–175.

[84] M. Hall, Jr. and J. D. Swift, Determination of Steiner triple systems of order
15, Math. Tables Aids Comput. 9 (1955), 146–152.

BIBLIOGRAPHY 47

[85] M. Hall, Jr., J. D. Swift, and R. J. Walker, Uniqueness of the projective plane
of order eight, Math. Tables Aids Comput. 10 (1956), 186–194.

[86] Z. Hedrlín and A. Pultr, On full embeddings of categories of algebras, Illinois
J. Math. 10 (1966), 392–406.

[87] D. Held and M.-O. Pavčević, Symmetric (79, 27, 9)-designs admitting a faith-
ful action of a Frobenius group of order 39, European J. Combin. 18 (1997),
409–416.

[88] C. M. Hoffmann, Group-Theoretic Algorithms and Graph Isomorphism,
Springer-Verlag, Berlin, 1982.

[89] S. K. Houghten, L. H. Thiel, J. Janssen, and C. W. H. Lam, There is no
(46, 6, 1) block design, J. Combin. Des. 9 (2001), 60–71.

[90] D. R. Hughes and F. C. Piper, Design Theory, Cambridge University Press,
Cambridge, 1985.

[91] H. L. Hwang, On the structure of (v, k, t) trades, J. Statist. Plann. Inference
13 (1986), 179–191.

[92] N. Immerman, Descriptive Complexity, Springer-Verlag, New York, 1999.

[93] N. Ito, J. S. Leon, and J. Q. Longyear, Classification of 3-(24, 12, 5) designs
and 24-dimensional Hadamard matrices, J. Combin. Theory Ser. A 31 (1981),
66–93.

[94] A. V. Ivanov, Constructive enumeration of incidence systems, Ann. Discrete
Math. 26 (1985), 227–246.

[95] Z. Janko and T. van Trung, Construction of a new symmetric block design for
(78, 22, 6) with the help of tactical decompositions, J. Combin. Theory Ser.
A 40 (1985), 451–455.

[96] T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York, 1995.

[97] M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complex-
ity, Birkhäuser, Basel, 2003.

[98] D. S. Johnson and M. A. Trick, Eds., Cliques, Coloring, and Satisfiability,
Amer. Math. Soc., Providence, R.I., 1996.

[99] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On generating all
maximal independent sets, Inform. Process. Lett. 27 (1988), 119–123.

[100] W. M. Kantor and Á. Seress, Eds., Groups and Computation, III, Walter de
Gruyter, Berlin, 2001.

[101] K. S. Kapralov, The nonexistence of ternary (10, 15, 7) codes, Proc. 7th
International Workshop on Algebraic and Combinatorial Coding Theory
(ACCT’2000), (Bansko, Bulgaria, June 18–24, 2000), 2000, pp. 189–192.

[102] P. Kaski, L. B. Morales, P. R. J. Östergård, D. A. Rosenblueth, and C. Velarde,
Classification of resolvable 2-(14, 7, 12) and 3-(14, 7, 5) designs, J. Combin.
Math. Combin. Comput. 47 (2003), 65–74.

[103] P. Kaski and P. R. J. Östergård, Enumeration of balanced ternary designs,
Discrete Appl. Math. 138 (2004), 133–141.

48 BIBLIOGRAPHY

[104] P. Kaski and P. R. J. Östergård, Miscellaneous classification results for 2-
designs, Discrete Math. 280 (2004), 65–75.

[105] P. Kaski and P. R. J. Östergård, There exist nonisomorphic STS(19) with
equivalent point codes, J. Combin. Des. 12 (2004), 443–448.

[106] P. Kaski, P. R. J. Östergård, S. Topalova, and R. Zlatarski, Steiner triple sys-
tems of order 19 and 21 with subsystems of order 7, Discrete Math., to appear.

[107] A. Kerber, Applied Finite Group Actions, 2nd ed., Springer-Verlag, Berlin,
1999.

[108] A. Kerber and R. Laue, Group actions, double cosets, and homomorphisms:
Unifying concepts for the constructive theory of discrete structures, Acta Appl.
Math. 52 (1998), 63–90.

[109] G. B. Khosrovshahi and S. Ajoodani-Namini, A new basis for trades, SIAM J.
Discrete Math. 3 (1990), 364–372.

[110] G. B. Khosrovshahi and C. Maysoori, On the bases for trades, Linear Algebra
Appl. 226/228 (1995), 731–748.

[111] G. B. Khosrovshahi, M. Mohammad-Noori, and B. Tayfeh-Rezaie, Classifica-
tion of 6-(14, 7, 4) designs with nontrivial automorphism groups, J. Combin.
Des. 10 (2002), 180–194.

[112] H. Kimura, New Hadamard matrix of order 24, Graphs Combin. 5 (1989),
235–242.

[113] H. Kimura, Classification of Hadamard matrices of order 28, Discrete Math.
133 (1994), 171–180.

[114] D. E. Knuth, Estimating the efficiency of backtrack programs, Math. Comp.
29 (1975), 121–136.

[115] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching, 2nd ed., Addison-Wesley, Reading, Mass., 1998.

[116] D. E. Knuth, Dancing links, Millennial Perspectives in Computer Science
(J. Davies, B. Roscoe, and J. Woodcock, Eds.), Palgrave, Basingstoke, Eng-
land, 2000, pp. 187–214.

[117] J. Köbler, U. Schöning, and J. Torán, The Graph Isomorphism Problem: Its
Structural Complexity, Birkhäuser, Boston, 1993.

[118] W. Kocay, Groups & Graphs, a Macintosh application for graph theory, J.
Combin. Math. Combin. Comput. 3 (1988), 195–206.

[119] W. Kocay, On writing isomorphism programs, Computational and Construc-
tive Design Theory (W. D. Wallis, Ed.), Kluwer, Dordrecht, the Netherlands,
1996, pp. 135–175.

[120] G. Kolesova, C. W. H. Lam, and L. Thiel, On the number of 8 × 8 Latin
squares, J. Combin. Theory Ser. A 54 (1990), 143–148.

[121] E. S. Kramer, D. W. Leavitt, and S. S. Magliveras, Construction procedures
for t-designs and the existence of new simple 6-designs, Ann. Discrete Math.
26 (1985), 247–273.

BIBLIOGRAPHY 49

[122] E. S. Kramer, S. S. Magliveras, and R. Mathon, The Steiner systems
S(2, 4, 25) with nontrivial automorphism group, Discrete Math. 77 (1989),
137–157.

[123] E. S. Kramer and D. M. Mesner, t-designs on hypergraphs, Discrete Math.
15 (1976), 263–296.

[124] D. L. Kreher, D. de Caen, S. A. Hobart, E. S. Kramer, and S. P. Radzis-
zowski, The parameters 4-(12, 6, 6) and related t-designs, Australas. J. Com-
bin. 7 (1993), 3–20.

[125] D. L. Kreher and S. P. Radziszowski, The existence of simple 6-(14, 7, 4)
designs, J. Combin. Theory Ser. A 43 (1986), 237–243.

[126] D. L. Kreher and S. P. Radziszowski, Finding simple t-designs by using basis
reduction, Congr. Numer. 55 (1986), 235–244.

[127] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms: Generation,
Enumeration and Search, CRC Press, Boca Raton, Fla., 1999.

[128] C. W. H. Lam, How reliable is a computer-based proof? Math. Intelligencer
12 (1990) no. 1, 8–12.

[129] C. W. H. Lam, The search for a finite projective plane of order 10, Amer.
Math. Monthly 98 (1991), 305–318.

[130] C. W. H. Lam, Application of group theory to combinatorial searches, Groups
and Computation (L. Finkelstein and W. M. Kantor, Eds.), Amer. Math.
Soc., Providence, R.I., 1993, pp. 133–138.

[131] C. Lam, Computer construction of block designs, Surveys in Combinatorics,
1997 (R. A. Bailey, Ed.), Cambridge University Press, Cambridge, 1997, pp.
49–64.

[132] C. W. H. Lam, G. Kolesova, and L. Thiel, A computer search for finite pro-
jective planes of order 9, Discrete Math. 92 (1991), 187–195.

[133] C. W. H. Lam and L. Thiel, Backtrack search with isomorph rejection and
consistency check, J. Symbolic Comput. 7 (1989), 473–485.

[134] C. W. H. Lam, L. Thiel, and S. Swiercz, The nonexistence of code words
of weight 16 in a projective plane of order 10, J. Combin. Theory Ser. A 42
(1986), 207–214.

[135] C. W. H. Lam, L. Thiel, and S. Swiercz, The nonexistence of finite projective
planes of order 10, Canad. J. Math. 41 (1989), 1117–1123.

[136] C. W. H. Lam, L. Thiel, S. Swiercz, and J. McKay, The nonexistence of ovals
in a projective plane of order 10, Discrete Math. 45 (1983), 319–321.

[137] C. Lam and V. D. Tonchev, Classification of affine resolvable 2-(27, 9, 4) de-
signs, J. Statist. Plann. Inference 56 (1996), 187–202. Corrigendum appears
in [J. Statist. Plann. Inference 86 (2000), 277–278].

[138] E. S. Lander, Symmetric Designs: An Algebraic Approach, Cambridge Uni-
versity Press, Cambridge, 1983.

[139] R. Laue, Construction of combinatorial objects – a tutorial, Bayreuth. Math.
Schr. 43 (1993), 53–96.

50 BIBLIOGRAPHY

[140] R. Laue, Constructing objects up to isomorphism, simple 9-designs with small
parameters, Algebraic Combinatorics and Applications (A. Betten, A. Kohn-
ert, R. Laue, and A. Wassermann, Eds.), Springer-Verlag, Berlin, 2001, pp.
232–260.

[141] R. Laue, Solving isomorphism problems for t-designs, Designs 2002: Fur-
ther Computational and Constructive Design Theory (W. D. Wallis, Ed.),
Kluwer, Boston, 2003, pp. 277–300.

[142] A. K. Lenstra, J. H. W. Lenstra, and L. Lovász, Factoring polynomials with
rational coefficients, Math. Ann. 261 (1982), 515–534.

[143] J. S. Leon, An algorithm for computing the automorphism group of a
Hadamard matrix, J. Combin. Theory Ser. A 27 (1979), 289–306.

[144] J. S. Leon, Computing automorphism groups of error-correcting codes, IEEE
Trans. Inform. Theory 28 (1982), 496–511.

[145] J. S. Leon, Computing automorphism groups of combinatorial objects, Com-
putational Group Theory (M. D. Atkinson, Ed.), Academic Press, London,
1984, pp. 321–335.

[146] J. S. Leon, Permutation group algorithms based on partitions, I: Theory and
algorithms, J. Symbolic Comput. 12 (1991), 533–583.

[147] J. S. Leon, Partitions, refinements, and permutation group computation,
Groups and Computation, II (L. Finkelstein and W. M. Kantor, Eds.) Amer.
Math. Soc., Providence, R.I., 1997, pp. 123–158.

[148] M. J. Letourneau and S. K. Houghten, Optimal ternary (10, 7) error-
correcting codes, Congr. Numer. 155 (2002), 71–80.

[149] M. J. Letourneau and S. K. Houghten, Optimal ternary (11, 7) and (14, 10)
error-correcting codes, J. Combin. Math. Combin. Comput. 51 (2004), 159–
164.

[150] J. H. van Lint, Introduction to Coding Theory, 3rd ed., Springer-Verlag,
Berlin, 1999.

[151] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed., Cam-
bridge University Press, Cambridge, 2001.

[152] S. Litsyn and A. Vardy, The uniqueness of the Best code, IEEE Trans. Inform.
Theory 40 (1994), 1693–1698.

[153] E. M. Luks, Isomorphism of graphs of bounded valence can be tested in poly-
nomial time, J. Comput. System Sci. 25 (1982), 42–65.

[154] E. M. Luks, Permutation groups and polynomial-time computation, Groups
and Computation (L. Finkelstein and W. M. Kantor, Eds.), Amer. Math.
Soc., Providence, R.I., 1993, pp. 139–175.

[155] M. M-Noori and B. Tayfeh-Rezaie, Backtracking algorithm for finding t-
designs, J. Combin. Des. 11 (2003), 240–248.

[156] S. MacLane, Categories for the Working Mathematician, 2nd ed., Springer-
Verlag, New York, 1998.

BIBLIOGRAPHY 51

[157] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977.

[158] F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, On the existence of
a projective plane of order 10, J. Combin. Theory Ser. A 14 (1973), 66–78.

[159] S. S. Magliveras and D. W. Leavitt, Simple 6-(33, 8, 36) designs from
PΓL2(32), Computational Group Theory (M. D. Atkinson, Ed.), Academic
Press, London, 1984, pp. 337–352.

[160] F. Margot, Small covering designs by branch-and-cut, Math. Program. 94B
(2003), 207–220.

[161] R. Mathon, Symmetric (31, 10, 3) designs with nontrivial automorphism
group, Ars. Combin. 25 (1988), 171–183.

[162] R. Mathon, Computational methods in design theory, Surveys in Combina-
torics, 1991 (A. D. Keedwell, Ed.), Cambridge University Press, Cambridge,
1991, pp. 101–117. Reprinted in [Computational and Constructive Design
Theory (W. D. Wallis, Ed.), Kluwer, Dordrecht, the Netherlands, 1996, pp.
29–48].

[163] R. Mathon and D. Lomas, A census of 2-(9, 3, 3) designs, Australas. J. Com-
bin. 5 (1992), 145–158.

[164] R. Mathon and A. Rosa, Some results on the existence and enumeration
of BIBD’s, Mathematics Report 125-Dec-1985, Department of Mathematics
and Statistics, McMaster University, Hamilton, 1985.

[165] R. Mathon and A. Rosa, Tables of parameters of BIBDs with r ≤ 41 includ-
ing existence, enumeration, and resolvability results, Ann. Discrete Math. 26
(1985), 275–307.

[166] R. Mathon and A. Rosa, 2-(v, k, λ) designs of small order, The CRC Hand-
book of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, Eds.), CRC
Press, Boca Raton, Fla., 1996, pp. 3–41.

[167] B. D. McKay, Hadamard equivalence via graph isomorphism, Discrete Math.
27 (1979), 213–214.

[168] B. D. McKay, Practical graph isomorphism, Congr. Numer. 30 (1981), 45–
87.

[169] B. D. McKay, nauty user’s guide (version 1.5), Technical Report TR-CS-
90-02, Computer Science Department, Australian National University, Can-
berra, 1990.

[170] B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998),
306–324.

[171] B. D. McKay, A. Meynert, and W. Myrvold, Small Latin squares, quasigroups,
and loops, preprint.

[172] B. McKay, W. Myrvold, and J. Nadon, Fast backtracking principles applied
to find new cages, Proc. Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, (San Francisco, Jan. 25–27, 1998), ACM Press, New York, 1998,
pp. 188–191.

52 BIBLIOGRAPHY

[173] B. D. McKay and S. P. Radziszowski, The nonexistence of 4-(12, 6, 6) de-
signs, Computational and Constructive Design Theory (W. D. Wallis, Ed.),
Kluwer, Dordrecht, the Netherlands, 1996, pp. 177–188.

[174] B. D. McKay and S. P. Radziszowski, Towards deciding the existence of
2-(22, 8, 4) designs, J. Combin. Math. Combin. Comput. 22 (1996), 211–
222.

[175] B. D. McKay and E. Rogoyski, Latin squares of order 10, Electron. J. Combin.
2 (1995), #N3, 4pp.

[176] N. S. Mendelsohn and S. H. Y. Hung, On the Steiner systems S(3, 4, 14) and
S(4, 5, 15), Util. Math. 1 (1972), 5–95.

[177] M. Meringer, Erzeugung regulärer Graphen, MSc Thesis, Universität
Bayreuth, 1996.

[178] M. Meringer, Fast generation of regular graphs and construction of cages, J.
Graph Theory 30 (1999), 137–146.

[179] G. L. Miller, On the nlog n isomorphism technique (a preliminary report),
Proc. 10th ACM Symposium on Theory of Computing, (San Diego, May 1–
3, 1978), ACM Press, New York, 1978, pp. 51–58.

[180] G. L. Miller, Graph isomorphism, general remarks, J. Comput. System Sci.
18 (1979), 128–142.

[181] T. Miyazaki, The complexity of McKay’s canonical labeling algorithm,
Groups and Computation, II (L. Finkelstein and W. M. Kantor, Eds.) Amer.
Math. Soc., Providence, R.I., 1997, pp. 239–256.

[182] L. B. Morales and C. Velarde, A complete classification of (12, 4, 3)-RBIBDs,
J. Combin. Des. 9 (2001), 385–400.

[183] L. B. Morales and C. Velarde, Enumeration of resolvable 2-(10, 5, 16) and
3-(10, 5, 6) designs, 13 (2005), 108–119.

[184] S. Niskanen and P. R. J. Östergård, Cliquer user’s guide, Version 1.0, Tech-
nical Report T48, Communications Laboratory, Helsinki University of Tech-
nology, Espoo, 2003.

[185] H. W. Norton, The 7× 7 squares, Annals of Eugenics 9 (1939), 269–307.

[186] P. R. J. Östergård, Constructing combinatorial objects via cliques, Surveys
in Combinatorics, 2005 (B. Webb, Ed.), Cambridge University Press, Cam-
bridge, to appear.

[187] P. R. J. Östergård, Classification of binary/ternary one-error-correcting codes,
Discrete Math. 223 (2000), 253–262.

[188] P. R. J. Östergård, Enumeration of 2-(12, 3, 2) designs, Australas. J. Combin.
22 (2000), 227–231.

[189] P. R. J. Östergård, There are 270,474,142 nonisomorphic 2-(9, 4, 6) designs,
J. Combin. Math. Combin. Comput. 37 (2001), 173–176.

[190] P. R. J. Östergård, Classifying subspaces of Hamming spaces, Des. Codes
Cryptogr. 27 (2002), 297–305.

BIBLIOGRAPHY 53

[191] P. R. J. Östergård, A fast algorithm for the maximum clique problem, Discrete
Appl. Math. 120 (2002), 195–205.

[192] P. R. J. Östergård, A 2-(22, 8, 4) design cannot have a 2-(10, 4, 4) subdesign,
Des. Codes Cryptogr. 27 (2002), 257–260.

[193] P. R. J. Östergård, T. Baicheva, and E. Kolev, Optimal binary one-error-
correcting codes of length 10 have 72 codewords, IEEE Trans. Inform. The-
ory 45 (1999), 1229–1231.

[194] P. R. J. Östergård and P. Kaski, Enumeration of 2-(9, 3, λ) designs and their
resolutions, 27 (2002), 131–137.

[195] P. R. J. Östergård and P. Kaski, Enumeration of 2-(9, 3, λ) designs and their
resolutions, Des. Codes Cryptogr. 27 (2002), 131–137.

[196] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading,
Mass., 1994.

[197] P. M. Pardalos, T. Mavridou, and J. Xue, The graph coloring problem: A
bibliographical survey, Handbook of Combinatorial Optimization (D.-Z. Du
and P. M. Pardalos, Eds.), Vol. 2, Kluwer, Dordrecht, the Netherlands, 1998,
pp. 331–395.

[198] M.-O. Pavčević, Symmetric designs of Menon series admitting an action of
Frobenius groups, Glas. Mat. Ser. III 31(51) (1996), 209–223.

[199] E. Petrank and R. M. Roth, Is code equivalence easy to decide? IEEE Trans.
Inform. Theory 43 (1997), 1602–1604.

[200] C. Pietsch, Über die Enumeration von Inzidenzstrukturen, PhD Thesis, Uni-
versität Rostock, 1993.

[201] V. Pless, Introduction to the Theory of Error-Correcting Codes, 3rd ed., Wi-
ley, New York, 1998.

[202] V. S. Pless and W. C. Huffman, Eds., Handbook of Coding Theory, 2 vols.,
Elsevier, Amsterdam, 1998.

[203] P. W. Purdom, Tree size by partial backtracking, SIAM J. Comput. 7 (1978),
481–491.

[204] P. W. Purdom, Jr. and C. A. Brown, The Analysis of Algorithms, Holt, Rine-
hart & Winston, New York, 1985.

[205] R. C. Read, Every one a winner; or, How to avoid isomorphism search when
cataloguing combinatorial configurations, Ann. Discrete Math. 2 (1978),
107–120.

[206] R. C. Read and D. G. Corneil, The graph isomorphism disease, J. Graph
Theory 1 (1977), 339–363.

[207] G. H. J. van Rees, (22, 33, 12, 8, 4)-BIBD, an update, Computational and
Constructive Design Theory (W. D. Wallis, Ed.), Kluwer, Dordrecht, the
Netherlands, 1996, pp. 337–357.

[208] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: The-
ory and Practice, Prentice Hall, Englewood Cliffs, N.J., 1977.

54 BIBLIOGRAPHY

[209] J. J. Rotman, An Introduction to the Theory of Groups, 4th ed., Springer-
Verlag, New York, 1995.

[210] G. F. Royle, An orderly algorithm and some applications in finite geometry,
Discrete Math. 185 (1998), 105–115.

[211] A. Sade, An omission in Norton’s list of 7 × 7 squares, Ann. Math. Statistics
22 (1951), 306–307.

[212] C. Savage, A survey of combinatorial Gray codes, SIAM Rev. 39 (1997), 605–
629.

[213] B. Schmalz, Verwendung von Untergruppenleitern zur Bestimmung von
Doppelnebenklassen, Bayreuth. Math. Schr. 31 (1990), 109–143.

[214] B. Schmalz, t-Designs zu vorgegebener Automorphismengruppe, Bayreuth.
Math. Schr. 41 (1992), 1–164.

[215] B. Schmalz, The t-designs with prescribed automorphism group, new simple
6-designs, J. Combin. Des. 1 (1993), 125–170.

[216] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester,
England, 1986.

[217] E. Seah and D. R. Stinson, An enumeration of nonisomorphic one-
factorizations and Howell designs for the graph K10 minus a one-factor, Ars.
Combin. 21 (1986), 145–161.

[218] E. Seah and D. R. Stinson, On the enumeration of one-factorizations of com-
plete graphs containing prescribed automorphism groups, Math. Comp. 50
(1988), 607–618.

[219] N. V. Semakov and V. A. Zinov’ev, Equidistant q-ary codes with maximal dis-
tance and resolvable balanced incomplete block designs, Problemy Peredachi
Informatsii 4 (1968) no. 2, 3–10. Translated from Russian in [Problems In-
form. Transmission 4 (1968) no. 2, 1–7].

[220] Á. Seress, Permutation Group Algorithms, Cambridge University Press, Cam-
bridge, 2003.

[221] E. Spence, A complete classification of symmetric (31, 10, 3) designs, Des.
Codes Cryptogr. 2 (1992), 127–136.

[222] E. Spence, Symmetric (41, 16, 6)-designs with a nontrivial automorphism of
odd order, J. Combin. Des. 1 (1993), 193–211.

[223] E. Spence, Classification of Hadamard matrices of order 24 and 28, Discrete
Math. 140 (1995), 185–243.

[224] E. Spence, Construction and classification of combinatorial designs, Surveys
in Combinatorics, 1995 (P. Rowlinson, Ed.), Cambridge University Press,
Cambridge, 1995, pp. 191–213.

[225] E. Spence, The complete classification of Steiner systems S(2, 4, 25), J. Com-
bin. Des. 4 (1996), 295–300.

[226] D. Spielman, Faster isomorphism testing of strongly regular graphs, Proc.
28th ACM Symposium on Theory of Computing, (Philadelphia, May 22–
24, 1996), ACM Press, New York, 1996, pp. 576–584.

BIBLIOGRAPHY 55

[227] R. P. Stanley, Enumerative Combinatorics, Cambridge University Press,
Cambridge, 1997/1999.

[228] D. R. Stinson, Isomorphism testing of Steiner triple systems: Canonical
forms, Ars. Combin. 19 (1985), 213–218.

[229] D. R. Stinson and E. Seah, 284 457 Steiner triple systems of order 19 contain
a subsystem of order 9, Math. Comp. 46 (1986), 717–729.

[230] J. D. Swift, Isomorph rejection in exhaustive search techniques, Combinato-
rial Analysis (R. Bellman and M. Hall, Jr., Eds.), Amer. Math. Soc., Provi-
dence, R.I., 1960, pp. 195–200.

[231] V. D. Tonchev, Hadamard matrices of order 28 with automorphisms of order
13, J. Combin. Theory Ser. A 35 (1983), 43–57.

[232] V. D. Tonchev, Hadamard matrices of order 28 with automorphisms of order
7, J. Combin. Theory Ser. A 40 (1985), 62–81.

[233] S. Topalova, Symmetric 2-(69, 17, 4) designs with automorphisms of order 13,
J. Statist. Plann. Inference 95 (2001), 335–339.

[234] S. Topalova, Classification of Hadamard matrices of order 44 with automor-
phisms of order 7, Discrete Math. 260 (2003), 275–283.

[235] R. J. Walker, An enumerative technique for a class of combinatorial problems,
Combinatorial Analysis (R. Bellman and M. Hall, Jr., Eds.), Amer. Math.
Soc., Providence, R.I., 1960, pp. 91–94.

[236] W. D. Wallis, One-Factorizations, Kluwer, Dordrecht, the Netherlands, 1997.

[237] W. D. Wallis, A. P. Street, and J. Seberry, Combinatorics: Room Squares,
Sum-Free Sets, Hadamard Matrices, Springer-Verlag, Berlin, 1972.

[238] A. Wassermann, Finding simple t-designs with enumeration techniques, J.
Combin. Des. 6 (1998), 79–90.

[239] A. Wassermann, Attacking the market split problem with lattice basis reduc-
tion, J. Comb. Optim. 6 (2002), 5–16.

[240] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.

[241] H. S. Wilf, Combinatorial Algorithms: An Update, SIAM, Philadelphia,
1989.

[242] R. M. Wilson, The necessary conditions for t-designs are sufficient for some-
thing, Util. Math. 4 (1973), 207–215.

[243] L. A. Wolsey, Integer Programming, Wiley, New York, 1998.

56 BIBLIOGRAPHY

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A81 Marko Mäkelä

Efficient Computer-Aided Verification of Parallel and Distributed Software Systems.

November 2003.

HUT-TCS-A82 Tomi Janhunen

Translatability and Intranslatability Results for Certain Classes of Logic Programs.

November 2003.

HUT-TCS-A83 Heikki Tauriainen

On Translating Linear Temporal Logic into Alternating and Nondeterministic Automata.

December 2003.

HUT-TCS-A84 Johan Wallén

On the Differential and Linear Properties of Addition. December 2003.

HUT-TCS-A85 Emilia Oikarinen

Testing the Equivalence of Disjunctive Logic Programs. December 2003.

HUT-TCS-A86 Tommi Syrjänen

Logic Programming with Cardinality Constraints. December 2003.

HUT-TCS-A87 Harri Haanpää, Patric R. J. Östergård

Sets in Abelian Groups with Distinct Sums of Pairs. February 2004.

HUT-TCS-A88 Harri Haanpää

Minimum Sum and Difference Covers of Abelian Groups. February 2004.

HUT-TCS-A89 Harri Haanpää

Constructing Certain Combinatorial Structures by Computational Methods. February 2004.

HUT-TCS-A90 Matti Järvisalo

Proof Complexity of Cut-Based Tableaux for Boolean Circuit Satisfiability Checking.

March 2004.

HUT-TCS-A91 Mikko Särelä

Measuring the Effects of Mobility on Reactive Ad Hoc Routing Protocols. May 2004.

HUT-TCS-A92 Timo Latvala, Armin Biere, Keijo Heljanko, Tommi Junttila

Simple Bounded LTL Model Checking. July 2004.

HUT-TCS-A93 Tuomo Pyhälä

Specification-Based Test Selection in Formal Conformance Testing. August 2004.

HUT-TCS-A94 Petteri Kaski

Algorithms for Classification of Combinatorial Objects. June 2005.

ISBN 951-22-7711-5

ISSN 1457-7615

