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ABSTRACT 

 

This thesis deals with surface water quality estimation using remote sensing in the 

Gulf of Finland and the Archipelago Sea. Satellite remote sensing of water and 

empirical algorithms for surface water quality variables in coastal waters in the Gulf 

of Finland and the Archipelago Sea are explained and results from the studies in the 

area are presented.  

 

Concurrent in situ surface water measurements, AISA data, Landsat TM data, ERS-2 

SAR data, AVHRR and MODIS data were obtained for selected locations in the Gulf 

of Finland and the Archipelago Sea in August 1997 and from April to May 2000, 

respectively. The AISA, TM, SAR, AVHRR and MODIS data from locations of water 

samples were extracted and digital data were examined. Significant correlations were 

observed between digital data and surface water quality variables. Semi-empirical, 

simple and multivariate regression analyses, and neural network algorithms were 

developed and applied in the study area. Application of neural networks appears to 

yield a superior performance in modelling radiative transfer functions describing the 

relation between satellite observations and surface water characteristics. The results 

show that the estimated accuracy for major characteristics of surface waters using the 

neural network method is much better than retrieval by using regression analysis. 

Since radar observations of water are strongly affected by surface geometry but not by 

water quality, radar data should be useful to eliminate the effects of surface roughness 

from the results when combined with optical observations. However, our results 

suggest that microwave data improve estimation of water quality very little or not at 

all. The technique, however, should be examined with new data sets obtained under 

various weather and water quality conditions in order to estimate its feasibility for 

estimating surface water quality parameters in the Finnish coastal waters. 
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1. INTRODUCTION 
 

This doctoral thesis describes surface water quality estimation using remote sensing in 

the Gulf of Finland and the Finnish Archipelago Sea. The thesis has an introductory 

chapter that provides the general background to satellite remote sensing of water, and 

a second chapter that deals with remote sensing of water including remote sensing 

theory for two cases of active and passive sensing, as well as comments on retrieval of 

water quality variables. The third chapter focuses on data sources, highlighting in situ 

data and remotely sensed data in the study area. The fourth chapter outlines 

methodology, especially in employing semi-empirical, multivariate regression and 

neural network algorithms in the study. The fifth chapter presents results and 

discussion for the study area using AISA, Landsat TM, ERS-2 SAR, AVHRR and 

MODIS data in 1997 and 2000, respectively. The sixth chapter concludes this thesis. 

In addition, the seventh chapter introduces future research and the eighth chapter 

summarizes the six papers appended in the thesis. 

 

1.1 Satellite remote sensing of water 
 

The use of satellite remote sensing for water quality mapping started in the 1970's by 

for example Strong (1974) and Klemas et al. (1974) using ERTS-1 (Earth Resources 

Technology Satellite, later renamed Landsat-1) data. ERTS-1, launched in August 

1972, introduced remote sensing as a potential tool of environmental monitoring. A 

broadband Multi-Spectral Scanner (MSS) was onboard ERTS-1, by which the 

radiation upwelling from the sensed target was recorded within the field-of-view 

(FOV) of the downward-looking MSS sensor. This remotely sensed target is an 

environmental ecosystem including atmospheric, terrestrial, and/or aquatic regimes, 

for example. MSS recorded an integrated spectral signature reflected from the solar 

and sky radiation impinging upon the earth surface. The signal recorded at the satellite 

was optical information, and thus such optical data should be interpreted as optical 

properties of environmental targets.  

    Up to date, the digital evaluation of optical satellite information at visible and near 

infrared (NIR) wavelengths has been used to estimate water quality characteristics of 

surface waters, for example, Alföldi and Munday (1978), Moore (1980), Munday and 
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Zubkoff (1981), Gordon and Morel (1983), Lillesand et al. (1983), Curran and Novo, 

(1988), and Lindell et al. (1985, 1999). Such investigations also suggest that optical 

data such as Landsat TM and AVHRR can provide an alternative means for obtaining 

relatively low-cost, simultaneous information on surface water quality conditions 

from numerous lakes, coastal and oceanic areas, for example, Lathrop and Lillesand 

(1986, 1991), Dwivedi and Narain (1987), Tassan (1987), Doerffer et al. (1989), 

Braga et al. (1993), Dekker and Peters (1993), Lavery et al. (1993) and Woodruff et 

al. (1999). Although optical satellite data can present a synoptic monitoring of surface 

water quality, its quantitative use is still a difficult task. 

    Since oceanic (Case I) waters are optically simple (e.g., Morel and Prieur 1977, 

Gordon and Morel 1983), satellite quantification of light attenuation had focused on 

oceanic regions (e.g., Smith and Baker 1978, Morel 1988, Spinrad 1989, Platt et al. 

1991), e.g. using Coastal Zone Color Scanner (CZCS) data in the past. Light 

attenuation in oceanic waters (e.g., Morel and Prieur 1977, Gordon and Morel 1983) 

is primarily related to phytoplankton pigments and their derivative products (not 

including water) (e.g., Smith and Baker 1978). In coastal (Case II) waters, however, 

light attenuation is greater due to optical complexity in the form of inorganic 

particulates, and due to a greater variety and higher concentration of dissolved and 

particulate organic matter which result from significant quantities of terrigenous 

materials (e.g., Woodruff et al. 1999). In addition, remote sensing of Case II waters is 

more complicated than remote sensing of Case I waters due to atmospheric correction 

problems not only optical complexity of Case II waters. The number of surface water 

quality parameters that can be derived from optical satellite data is limited. As a 

result, some parameters for a given site or, alternatively, some inherent optical 

properties (IOP) must be known (e.g., Lahet et al. 2000). Moreover, cloud cover in 

optical satellite data acquisition seriously affects the usefulness of these data for 

monitoring surface water quality (e.g., Lavery et al. 1993). In contrast, the availability 

of radar remote sensing is almost independent of weather conditions. 

    In principle, radar remote sensing is very different from optical remote sensing, 

since radar signals are not hindered by clouds. Furthermore, a microwave radar signal 

does not significantly penetrate into the water. Instead it reflects from the water 

surface. Synthetic aperture radar (SAR) is well known to observe water surface 

conditions. Since all features visible in SAR imagery of the water are necessarily 

surface phenomena, all structures in SAR images are mainly related to changes in the 
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surface roughness (e.g., Alpers et al. 1981, Shuchman et al. 1981, Vesecky et al. 

1982, Beal et al. 1983, Hasselmann et al. 1985, Monaldo et al. 1986, Bruning et al. 

1988, Nisson et al. 1995, Vogelzang et al. 1994 and 1997). Therefore, the radar 

backscattering signatures can only carry information regarding the characteristics of 

the water surface: (a) the geometry of water surface (waves and ripples); (b) material 

on water surface; and (c) permittivity (dielectric constant) of water (top layer) (e.g., 

Lindell et al. 1999). Nevertheless, water surface material can be related to such 

materials as chlorophyll-a or oil pollution and other wastes on the surface. 

    Optically, the Gulf of Finland and Finnish Archipelago are dominated by scattering 

from suspended sediments, whereas the coastal waters of the Gulf are dominated by 

absorption from yellow substance, phytoplankton and suspended matter. This is 

because the Gulf of Finland is highly affected by the input from the rivers which 

discharge a high concentration of mineral suspended solids and nutrients. The optical 

characteristics of the water have been studied by using space-borne and aircraft borne 

remotely sensed data in the Gulf of Finland and the Finnish Archipelago Sea (e.g., 

Eloheimo et al. 1998, Hallikainen 1999a, Pulliainen et al. 2001, Koponen et al 2001 

and 2002, Erkkila and Kalliola 2004). However, due to the limited number of spectral 

bands available from Landsat satellite sensors, retrieval algorithms still need to be 

refined. Fortunately, SeaWiFS, MERIS and MODIS are able to measure surface water 

leaving radiance in six or more wavelengths at the visible wavelengths (McClain et al. 

1998, O'Reilly et al. 1998, Ruddick et al. 2000, Hu et al. 2000) which will be taken 

into account in our future study. In addition, the ENVISAT satellite enables the 

simultaneous acquisition of SAR and optical data (ASAR and MERIS) to be further 

applied in the study area. So far, remotely sensed data have widely been used to 

estimate major water quality variables such as chlorophyll-a, turbidity, suspended 

sediment concentration, Secchi disk depth, surface water temperature, wave height, 

and sea surface roughness etc. However, literature also suggests that radiometric 

studies show a little usefulness in determining the taxonomic composition of the 

phytoplankton communities in coastal waters (e.g., Cairns et al. 1997).  

    The coastal waters of the Baltic Sea are variable in their optical properties. Despite 

rather low values of attenuation depth in the region, water quality can be estimated 

using remote sensing data (Herlevi 2002). Water quality is the general perception of a 

simple property that tells whether water is polluted or not. However, water quality 
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parameters derived from remotely sensed data in this study included chlorophyll-a, 

suspended sediment, turbidity, Secchi disk depth, and surface water temperature. 

 

1.2 Earlier work in the Baltic Sea 
 

The Baltic Sea has been studied for many years by, for example, the University of 

Helsinki, Tartu University, Uppsala University, Stockholm University, and other 

universities. They provided optical properties and concentrations of optical active 

substances in the Baltic (e.g., Kutser 1997, Kowalczuk 1999, Herlevi 2002, Darecki 

and Stramski 2004). It has been reported that the common blue-to-green ratios of 

ocean reflectance do not provide the best algorithm for chlorophyll-a retrieval in the 

Baltic (Darecki et al. 2003). A comprehensive analysis of the performance of standard 

algorithms should be beneficial for the current use of remote sensing and future 

efforts on algorithm development. However, this study also applied multivariate 

regression and neural network algorithms to estimate water quality parameters 

employing optical, thermal IR and microwave data in the area. 

  

1.3 The objective of this study 

This study is part of the EU project entitled “Satellite Remote Sensing for Lake 

Monitoring (SALMON)” and the Finnish project entitled “Operative Monitoring 

System for Water Areas”. The purpose of this study is to evaluate the capabilities and 

potential of present and future space-borne sensors for monitoring water quality of 

European lakes, especially in Finnish lakes and coastal areas in the Gulf and 

Archipelago of Finland (Hallikainen 1999b). In the study, both optical satellite data 

(e.g., Landsat TM, AVHRR and MODIS) and microwave data (e.g., ERS-2 SAR) 

were used to estimate surface water variables by case studies. In addition, the study 

investigated the possibility of combined use of optical and microwave remote sensing 

data, but also developed and employed empirical algorithms of estimating surface 

water quality variables in the area.  

 
1.4 Research methods 
 

During research of water quality monitoring, optical properties of waters in coastal 

areas and lakes in the southern Finland have been studied using airborne and satellite 
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sensors. This used remote sensing technology operated jointly by the Finnish 

Environment Institute (SYKE) and the Laboratory of Space Technology of Helsinki 

University of Technology (HUT) from 1996 to 1999. The HUT work share 

particularly included (Hallikainen 1999b): 

 

(1) investigation of the applicability of microwave radiometer and SAR data for 

water quality monitoring; 

(2) surface water quality parameters retrieved from microwave data and combined 

optical/microwave data; 

(3) airborne campaigns conducted using the HUT research aircraft. 

 

    Concurrent in situ measurements of surface water quality were conducted by 

SYKE, while the processing of remotely sensed data were finished at HUT. The 

extraction of optical and SAR data, corresponding to in situ observations of surface 

water quality variables, was performed by using ER Mapper 5.5. Empirical algorithms 

were developed and performed using Matlab 6.1 at the HUT Laboratory of Space 

Technology. Semi-empirical, simple and multivariate regression, and neural network 

algorithms were applied to estimate surface water quality variables in the Gulf and 

Archipelago of Finland. In the developed multivariate and neural network empirical 

algorithms, visible/NIR, thermal IR and microwave data were used and compared. 

The results show that the additional use of microwave data (e.g., ERS-2 SAR data) 

improved the estimated accuracy of optical retrievals in a very limited way. However, 

the method still needs to be refined using new optical and microwave data such as 

MERIS and ASAR data in the future under study.  
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2. REMOTE SENSING OF WATER 
 

2.1 Remote sensing theory 
 

In remote sensing, physical phenomena are observed through properties and changes 

in electromagnetic (EM) radiation. This means that EM waves are carriers of 

information, and it is necessary to understand their interaction with matter. On the 

other hand, these EM waves have the following measurable properties: frequency or 

wavelength, polarisation and phase. These different interactions of waves with a 

surface or volume can be defined as: emission, absorption, reflection (scattering), 

refraction and transmission. 

    A fundamental fact is that all natural bodies emit incoherent radiant EM energy. 

Moreover, the energy radiated by the Sun is reflected, absorbed and scattered from 

atmosphere as well as from all natural bodies. A simplified theoretical schema 

involving these radiation mechanisms can be set up. This basic measurement 

configuration is shown in Figure 2.1 (Bukata et al. 1995).  

 
                                          Observer   
 
    
 
 
       
    
  L                La

           
       L          r

 
                         Lw Ls ε µ1 1,  

 
        ε µ2 2,  
 

Figure 2.1: A basic remote sensing configuration. 
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    The field of view (FOV) of the observer is shown as dashed lines. The radiance 

signal ( ) received by the observer from a water body has components 

from the surface ( ), the atmosphere ( ), a reflected component ( ) and a 

refracted and scattered component inside the water ( ). The emitted energy ( ) 

comes from the surface of the water body itself. Depending on the measured 

wavelength, some components are dominant. In the case of active mono-static remote 

sensing, the geometry changes so that  comes from the direction of the observer, 

and the received signal is mainly constituted of a reflected wave ( ), possibly a 

refracted wave ( ), while  and  are not so significant. Therefore, the signal 

( ) received by the observer near the water surface can be expressed as 

112 −−− HzsrWm

Ls La Lr

Lw Ls

L

Lr

Lw Ls La

Lu

 

  (passive case)    (2.1.a) aswru LLLLL +++=

L L Lu r≈ + w

Lz

 (active case)      (2.1.b) 

where  gives the information reflected from the water surface such as the 

undulation characteristics and oil slick pollution, and  gives information scattered 

from inside the water column.  

Lr

Lw

    In the case of passive remote sensing, if the incoming radiation from the zenith 

point ( ) (i.e., directly downwards) is reflected from the nadir point (i.e., directly 

upwards), then the reflected part  can be determined as (Arst et al. 1997) 

Lz

Lr

 

         (2.2) Lr ≈ 0 02.

 

    The reflection coefficient (2% of ) is not dependent on the wavelength at the 

optical wavelengths because refraction indices of the air and water are constants. 

However,  is only valid in the case of calm water surface or low solar altitude (Arst 

and Kutser 1994, Arst et al. 1997). In other cases, the received signal may increase 

due to the sun glitter from the nadir. Therefore, this corresponding error increases 

with the rise of the wind speed and high solar altitude.  

Lz

Lr

    Suppose  is the spectral downwelling irradiance and  is the upwelling 

radiance, and further suppose  and  are known. Therefore, the spectral 

reflectance of water components can be determined by (Kutser 1997) 

Ed Lu

Lr Lw
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E
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E
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( )
( )

( )
( )

( )
( )

λ w

π λ
λ

π λ
λ

π λ
λ

= = + = +    (2.3) 

where  and  are the reflectance from the water surface and from water column 

respectively. 

Rr Rw

    On the other hand, the emitted spectral brightness  ( ) from the 

surface ( ) is defined as, according to Planck's blackbody radiation law (e.g. Ulaby 

1981, Nyfors and Vainikainen 1989) 

B f
112 −−− HzsrWm

Ls

 

 B
hf
c

e
f hf

kT

=
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2 1

1

3

2        (2.4) 

where k is Planck's constant, T is the physical temperature of the water body and f is 

frequency. In practice, the brightness temperature T  is used instead of spectral 

brightness. The brightness temperature  represents the intensity of the observed 

radiation and is defined as 

b

Tb

 

 (Tb ϕ θ, ) = eT (ϕ θ, )        (2.5) 

 

where e is the emissivity of the medium and T is physical temperature. The emissivity 

is a value between 0 and 1 and, theoretically, can be 0 for a perfect conductor and 1 

for a perfect black body. For all natural objects it is less than 1, therefore the 

brightness temperature is always lower than the physical temperature. Moreover, the 

emissivity is a function of frequency and material properties, of which the dielectric 

coefficient of the medium is the most significant when using microwaves. In addition, 

the brightness temperature is dependent on the angle of observation as shown in 

Figure 2.2 (a) and 2.2 (b).  

    The component defined as  in Figure 2.1 represents reflected energy from an 

outside source. In addition to reflection, part of the downwelling energy will be 

absorbed, refracted and eventually scattered upwards ( ). The reflection phenomena 

can be approximated using two parts: specular reflection and scattering from a rough 

surface. These two components are represented in Figure 2.3 (a) and 2.3 (b). In the 

Lr

Lw
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specular case of Figure 2.3 (a), the reflection coefficient  can be determined using 

the elementary Fresnels' formulas. These formulas can be briefly expressed as 

r0

 

  r  = r (p, 0 0 εr ,θ  )        (2.6) 

 

    This means that they are functions of polarisation p, dieletric permittivity εr , and 

incident angle θ . 

 

 
 
 
              
      ϕ   
 
 
     
 
 
    θ  
 
 

Figure 2.2 (a): Coordinate system for Figure 2.2 (b). 
 
 

       Tb ( , )ϕ θ  
 
 
 
 
 

 
Figure 2.2 (b): The angular brightness temperature distribution of a semi-infinite 

isothermal medium. 

 

    However, scattering from a rough surface is more complex and highly dependent 

on observed wavelength. Theoretical, semi-empirical and empirical models can be 

found in the literature (e.g., Ulaby 1981, Nyfors and Vainikainen 1989, Chen 1992, 
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and Broschat 1993). A simple semi-empirical model will be presented here to show an 

overview of the problem. The scattered component S including coherent and 

incoherent contributions can be defined as 

 

 S =          (2.7a) GPr i0

 
dfdda

dPsrL
***cos

)ˆ,(
ωθ

=       (2.7b) 

 

where  is radiance at a point r in a random medium measured in  

(sr = steradiance = unit solid angle) and  is the power measured in watts flowing 

within a solid angle 

)ˆ,( srL 112 −−− HzsrWm

dP

ωd  through an elementary area da  oriented in a direction of unit 

vector  in a frequency interval 0ŝ ),( dfff +  (Ishimaru, 1978). This equation gives 

the relation between radiance (L) and power (P) used in the study. 
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Figure 2.3 (a): Specular reflection and transmission. 
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Figure 2.3 (b): Scattering and transmission from a rough surface. 
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    In Figure 2.3 (b)  is the incoming wave,  is the specular reflection factor and G 

is unknown function. The latter can be expanded in an exponential function with F 

dependent on wavelength, incoming angle, rms. height of surface roughness, and 

polarisation. That is, G could be expressed as (Broschat 1993) 

iL r0

 

        (2.8) [G F h= −exp ( , , , )λ σ θ ]p

 

where λ  is the wavelength, σh  is the rms. deviation of surface roughness, θ  is the 

incident angle and p is a polarisation. Because the roughness is determined by the 

wavelength used to make measurements, a more precise approach would be needed 

for different remote sensing instruments. So far, the components marked  in Figure 

2.1 have been ignored. This means that the emission and scattering by the atmosphere 

will be skipped here. In fact, significant contribution of signal at visible wavelengths 

received by a satellite sensor originates from the atmosphere. This effect should be 

removed before data analysis. It is generally assumed in the atmospheric models that 

water-leaving radiance is zero in the near infrared part of spectrum (e.g., Chavez 

1988). Since the data analysis is made for a single image with a quite small angular 

range and the infrared band is close to zero, the atmospheric correction has no effect 

on correlation analysis in this study. That is, the atmospheric correction for satellite 

optical sensors data could be ignored if only one scene of these data is used in the 

study. However, when multi-temporal data were used for the analysis, it is necessary 

to correct atmospherically. 

La

 

2.2 Retrieval of water quality variables 
 

Colour index, as a quantitative measure of ocean water colour, can be defined as the 

ratio of nadir radiance in the water at the blue wavelength to that at the green 

wavelength (Jerlov 1976). Therefore, on the basis of this definition, the chlorophyll 

concentration in oceanic waters can be estimated with reasonable accuracy from 

remotely sensed data. That is, from ratios of spectral radiance received by satellite or 

aircraft sensors, chlorophyll retrieval algorithms can be developed (e.g., Gordon and 
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Clark 1980, Morel 1980, Gordon et al. 1983, Tassan 1994). The algorithm is 

expressed as 

 

 C x
L
LChl

u

u

x

=
⎡

⎣
⎢

⎤

⎦
⎥1

1

2

2( )
( )
λ
λ

       (2.9) 

 

where  means chlorophyll-a concentration, CChl Lu ( )λ1  and Lu ( )λ2  are the upwelling 

radiances at wavelengths λ1  and λ1  respectively,  and  are empirical constants.  x1 x2

    For surface water quality variables retrieved from remotely sensed data, the 

retrieval algorithm in general can be written as 

 

         (2.10) C aXi = + b

 

where  is a measurement of surface water quality parameters such as chlorophyll-a 

concentration, suspended matter, turbidity, Secchi disk depth, sea surface temperature 

etc., a and b are constants from correlation analyses, and X denotes a channel ratio 

Ci

)(
)(

2

1
λ

λ
u

u
L

L . The success of such algorithms is highly correlated to the optical 

simplicity of open oceanic and some near-coastal waters (Kutser 1997). However, 

those natural waters strongly affected by the land mass have higher orders of optical 

complexity. This is a consequence of an increase of optically active aquatic 

components present in the waters and various concentration ranges of these water 

components. This means that these algorithms for simplistic oceanic chlorophyll 

retrievals cannot be directly applied to those optical properties in coastal, estuarine, 

lake, and river waters (e.g., Bukata et al. 1991, Kutser 1997). In this study, band ratios 

were only employed to examine variables in simple regression analysis. 

    On the other hand, due to the limited number of spectral bands available in satellite 

sensors, these retrieval algorithms still need to be refined. However, advanced satellite 

sensors such as SeaWiFS, MODIS, and MERIS enable to measure surface water 

leaving radiance in six or more wavelengths in the visible spectrum. Therefore, for 

Case I and Case II waters, Tassan (1994) has elaborated algorithms for estimating 

chlorophyll, suspended matter, and yellow substance concentrations on the basis of 

algorithms of estimating chlorophyll concentration in the oceanic waters by Aiken et 
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al. (1995) and Campbell et al. (1995). In this thesis advanced optical sensors data 

from the MODIS sensor was applied in [P2]. 

    However, the ratio of remote observations at two wavelengths is clearly not enough 

to describe optical properties of absorption and backscattering in natural waters. This 

means that such ratios used in the above-mentioned retrievals cannot provide detailed 

information with respect to different affecting optical factors in the natural waters. 

Therefore, it is necessary to employ multi-spectral information using multivariate 

regression and neural network algorithms to estimate major water quality variables. 

This is based on the following reasons: 

(1) there is no single spectral channel onboard remote sensors in which the effect 

of a single absorption (and backscattering) component can be independently 

dominating on the effect of other water components. On the basis of their 

spectral absorption and backscattering spectra, it is possible to distinguish 

some main absorbing and scattering factors such as chlorophyll-a, suspended 

matter, and yellow substance. However, the fact that several absorbers come 

into play does not principally prevent solution to the problem (Morel and 

Prieur 1977); 

(2) neural networks with a hidden layer can simulate any complex functions. This 

means that neural networks are able to model non-linear radiative transfer 

functions with higher accuracy than those algorithms of traditional regression 

analyses, although regression methods are still good for linear functions or 

non-linear transfer functions that are well known (Keiner 1999, Krasnopolsky 

et al. 1995 and 2000). 
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3. DATA 
 

3.1 Study area 
 

The Gulf of Finland and the coastal archipelago are relatively shallow, with a mean 

depth of 38 m and a maximum depth of 123 m. The total water volume is about 1,130 

km3. The surface area (29,600 km2) is small compared with the catchment area 

(421,000 km2). The incoming river discharge is about 110 km3/year. In the 

easternmost part of the Gulf the salinity is very low because of the fresh water of the 

River Neva. The average salinity on the surface is close to 6 00
0  in December and 3-6 

00
0  in June.  The Gulf is also saline stratified and in summer temperature stratified. 

Figure 3.1 shows the map of the study area. 
 

 
 

Figure 3.1: The map of the study area. 
 
    The Gulf of Finland is strongly eutrophicated because of the anthropogenic nutrient 

load. The eutrophication problem of the Gulf has been studied, for example, by 

Tamminen (1990), Astok et al. (1991), Pitkänen et al. (1993), and Kuusisto et al. 

(1998). The Gulf receives annually about 9,000 tons of phosphorus and 160,000 tons 

of nitrogen. Russia, especially the St. Petersburg region, is responsible for most of the 

nutrient loading. Other important, local loading sources are the Helsinki and Kotka 

regions in Finland and the coast of the Eastern Viru province and the Tallinn region in 
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Estonia (Kuusisto et al. 1998). All the coastal areas of Finland are at least slightly 

eutrophicated, but the easternmost part of the Gulf is the most eutrophicated area. In 

the Finnish coastal areas of the eastern Gulf of Finland, the total phytoplankton 

biomass of wet weight in the summer is under 2 mg/l, but during the spring peak 

concentrations can be as much as 30 mg/l (Pitkänen et al. 1990). In the Neva estuary 

the average phytoplankton concentrations are about four to seven times higher than in 

the western Gulf of Finland (Kauppila et al. 1995). Blue-green algae blooms are 

relatively common in the late summer, but nitrogen fixing from the atmosphere is, 

however, not very important in the nitrogen cycle of the Gulf (Kononen 1992). In the 

western Gulf of Finland, nitrogen alone or with phosphorus is the production-limiting 

nutrient (Pitkänen et al. 1990), but the importance of phosphorus grows towards the 

east. Since nutrients, particularly phosphorus coming from the River Neva and St. 

Petersburg, are effectively fixed sediments in the Neva estuary (Pitkänen 1991), the 

estuary is regulating the nutrient conditions in the whole Gulf of Finland. In general, 

most of the Gulf is nitrogen limited, but the inner Neva estuary is phosphorus limited. 

Therefore, the factors causing increased light attenuation (phytoplankton, suspended 

sediment and yellow substance) vary both temporally and spatially. 

 

 

3.2 In situ data 
 

In situ data were collected concurrently with AISA, Landsat TM and ERS-2 SAR data 

in August 1997 and with AVHRR and MODIS from April to May 2000, respectively. 

Water samples at each station (or by ship) were taken from the surface layer of the sea 

(0-0.5 m). Each year 2-4 smaller motor boats were used for the water sampling. The 

following water quality variables were measured using the standard methods. 

Turbidity (FNU-units, EN 27027), Secchi disk depth (transparency), suspended matter 

(filtered by Nuclepore polycarbonate 0.4 mµ ), chlorophyll-a (ISO 10260), and water 

surface temperature, as well as related parameters. All the other laboratory analyses 

were done at the mainland laboratories of Finnish Environment Institute (SYKE). All 

samples from the measurement lines were analysed in SYKE within 4-10 hours from 

sampling (Eloheimo et al. 1998), with a view to relating these parameters with the 

signals in satellite imagery. Ship-borne in situ measurements were conducted from 
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10:00 am to 17:50 pm on 14th August 1997 by SYKE. 53 in situ points data on 14th 

August 1997 were employed in this thesis. Table 3.1 describes water samples used in 

the study (53 points) on 14th August 1997. 

 
Table 3.1: Description of water samples used in the study (53 points) on 14.08.1997. 
 Minimum Maximum Mean Unit 
Chlorophyll-a 2.0 7.7 4.14 gµ /l 
SSC 1.6 11.0 4.03 mg/l 
Turbidity 1.0 7.5 2.59 FNU 
SDD 0.67 4.2 2.60 M 
SWT 19.2 23.0 20.49 C 
Note: SSC means suspended sediment concentration; SDD means Secchi disk depth 
and SWT means surface water temperature. 
 

    During April and May 2000, ship-borne in situ measurements were conducted in 

another way. Water samples were collected from the cooling system of Silja Line 

ferries and analysed after 14 hours, as started from Helsinki in the afternoon through 

the Gulf of Finland and coastal archipelago to Stockholm in the next morning. In each 

ship-borne sampling line, 11 in situ data points were made from 19:00 of the previous 

day to 9:20 of the day. Table 3.2 gives the summary of in situ materials for April and 

May 2000 used in this study. 

 
Table 3.2: The summary of in situ data (11 points each date) for April and May 2000. 
4Apr Min Max Mean 2May Min Max Mean 
Chl-a ( gµ /l) 1.3 12.0 4.23 Chl-a ( gµ /l) 2.8 77.0 24.2 
Turb(FNU) 0.4 1.1 0.53 Turb(FNU) 0.47 2.7 1.15 
WST (C) 0.96 2.83 1.71 WST (C) 3.37 7.26 5.08 
10Apr Min Max Mean 8May Min Max Mean 
Chl-a ( gµ /l) 2.1 18.0 8.18 Chl-a ( gµ /l) 3.8 36.0 18.4 
WST(C) 1.23 3.05 1.73 WST(C) 4.34 9.13 5.17 
18Apr Min Max Mean 16May Min Max Mean 
Chl-a ( gµ /l) 4.3 15.0 8.81 Chl-a ( gµ /l) 3.7 38.0 9.94 
Turb(FNU) 0.7 8.3 2.14 Turb(FNU) 0.75 3.1 1.38 
WST (C) 1.5 4.02 1.92 WST(C) 4.8 11.21 6.0 
    22May Min Max Mean 
    Chl-a ( gµ /l) 4.1 32.0 8.48 
    WST(C) 5.68 10.55 7.04 
    30May Min Max Mean 
    Chl-a ( gµ /l) 3.9 44.0 9.47 
    WST(C) 6.7 10.26 7.53 
Note: 4Apr means from 19:00 pm on 3rd April to 9:20 am on 4th April 2000; Chl-a 
means chlorophyll-a; Turb means turbidity; WST means water surface temperature; 
Turbidity was not available on 10th April, 8th May, 22nd May and 30th May. 
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Figure 3.2: The yearly cycle of phytoplankton as a function of time. 
 

    Typically, the Gulf of Finland and coastal archipelago freeze during the winter. 

This leads to the biology of seawater and the evolution of water quality variables to 

have a roughly repeating yearly cycle (Särkkä 1996, Koponen 2001). Figure 3.2 

shows the cycle of the amount of phytoplankton in graphic form. 

 

3.3 Remotely sensed data 
 

In this study, airborne AISA data on 14th August 1997 and space-borne data such as 

Landsat TM data and ERS-2 SAR data for 16th August 1997 and AVHRR data for 

18th April, 21st April, 2nd May, 16th May, 22nd May and 30th May 2000 and MODIS 

data in April-May 2000 were employed to estimate major water quality variables in 

the study area. Table 3.3 shows the summary of TM, SAR and AVHRR data used in 

the study, while AISA and MODIS data are separately introduced later. 

 
Table 3.3: The summary of remotely sensed data used in the study. 
Wavelengths 1 2 3 4 5 6 7 
TM 0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90 1.55-1.75 10.4-12.5 2.08-2.35 
SAR (cm) 5.3       
NOAA12 0.58-0.68 0.725-1.0 3.55-3.93 10.5-11.5 11.4-12.4   
NOAA14 0.58-0.68 0.725-1.0 3.55-3.93 10.5-11.5 11.4-12.4   
 

3.3.1 AISA Data 
 
Airborne Imaging Sepectrometer for Applications (AISA) (Mäkisara et al. 1993) data 

were employed in the study. The main characteristics of AISA spectrometer are 

shown in Table 3.4. Although the total number of AISA channels is 286, the selected 
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53 channels, for example, covered most of the wavelength range (450-900 nm) were 

employed during the 1997-1998 campaign. 

    The AISA data were radiometrically and geometrically corrected and resampled to 

a pixel size of 2*2 m. To extract 53 channels of AISA data corresponding to those 

ground truth points (water quality sampling stations), the mean and standard deviation 

of AISA digital number values were calculated using the defined boxes of 100 by 100 

m for each ground truth point. 

 
Table 3.4: Main characteristics of the AISA spectrometer (Mäkisara et al. 1993). 
 
Type Pushbroom CCD-matrix sensor 
Number of channels 286 
Channel wavelength range 450-900 nm 
Channel bandwidth 1.6-9.4 nm (sum of one to six channels) 
Number of pixel (across track) 384 
Field of view 21o

Pixel size from 1000-m altitude 1 m 
 

 

3.3.2 Processing of AVHRR data 

 

The Advanced Very-High-Resolution Radiometer (AVHRR) scanning radiometer 

employs four or five channels. The total field of view is 110.8 degrees centered with 

nadir (Cracknell 1997). Two satellites in operation make it possible to receive eight 

images per day at mid-latitudes such as Europe. With a ground resolution of 1.1 km, it 

cannot replace high-resolution remote sensing satellites. On the other hand, it is 

possible to make up for the higher spatial resolution with high imaging temporal 

frequency. The higher temporal frequency makes it possible to get cloud-free imagery 

for applications involving time series. AVHRR has one visible channel, one near 

infrared, one mid infrared, and two thermal infrared channels on satellite such as 

NOAA-12 and -14 (or-15) (see Table 3.3). The benefits from using AVHRR data are 

imaging with high temporal frequency, relatively low cost, large area coverage, and 

three thermal infrared channels with absolute calibration (Sucksdorff et al. 1997). 

    In this study, AVHRR data were received by the Finnish Meteorological Institute 

(FMI) and the AVHRR data from March to August 2000 were checked and pre-

processed using AVHRR processing software developed by the Finnish Environment 

Institute (SYKE). Since in situ measurements of water parameters were available 
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from April to May 2000, a few of them were cloud-free (or partly free) in the Gulf of 

Finland and have been used to detect turbidity change analysis (Zhang et al. 2000). 

These AVHRR data were also atmospherically and geometrically corrected by SYKE. 

For the purpose of surface water quality estimation in the Gulf of Finland and coastal 

archipelago, the digital number (DN) values of AVHRR bands were extracted using 

the X and Y coordinates corresponding to each ground truth point (same day, but few 

or more hours later). The spatial size of each grid is 1.1 km*1.1 km. 

 

3.3.3 Processing of MODIS data 

 

In MODIS instrument, two bands are imaged at a nominal resolution of 250 m at 

nadir, with five bands at 500 m and the remaining 29 bands at 1000 m. A ±55-degree 

scanning pattern at the EOS orbit of 705 km achieves a 2 330-km swath and provides 

global coverage every one to two days (http://modis.gsfc.nasa.gov/about/design.html). 

The two bands of 250-m resolution (620-670 and 841-876 nm), two bands of 500-m 

resolution (459-479 and 545-565 nm) and nine bands (i.e., centred on 412, 443, 488, 

531, 551, 667, 678, 748, 870 nm) of 1000-m resolution at visible and near-infrared 

(VNIR) wavelengths are suitable for monitoring chlorophyll-a and turbidity in coastal 

areas (Koponen et al. 2002, Zhang et al. 2003b). 

    MODIS data were obtained from GES DAAC archive. For chlorophyll-a estimation 

in coastal waters of the Gulf of Finland, the bands of 250-m were used to check 

cloud-covered percentage and nine bands of 1000-m were used to estimate 

chlorophyll-a in the area. Since in situ measurements of chlorophyll-a were available 

in April and May 2000, a few of MODIS images were cloud-free (or partly free) 

during April and May 2000 in the Gulf of Finland. In the similar way with AVHRR 

data extraction, MODIS data were extracted corresponding to those ground truth 

points by the defined boxes of 1000 by 1000 m for each ground truth point. 

 

 

3.3.4 Processing methodology for Landsat TM data 

 

Optical/IR satellite remote sensing observations are affected by the atmosphere and 

radiation from the direct reflectance due to the water surface. These effects should be 

removed with suitable atmospheric correction and bidirectional reflectance models 
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before data analysis. When Landsat TM data, transformed into radiances, are used to 

retrieve quantitative data concerning the water surface, a procedure to correct the 

measured radiance for the atmosperic contribution is required (e.g., Ouaidrari et al. 

1999, Zhang and Carder et al. 1999). The remaining amount of radiance that reaches 

the sensor (target radiance) may range from 50% at 450 nm (blue region of 

electromagnetic spectrum) to 80% at 850 nm (red region)  (e.g., Vermote et al. 1995, 

1997).  

    According to Equation (2.1), with the hypothesis of homogeneous water 

reflectance, the radiance energy observed by the Landsat TM sensor consists of 

several components, and a rough approximation can be expressed as 

 

        (3.1) L T L Lsat r a u= +( )

w

and    

L L Lu r= +        (3.2) 

 

where  is the radiance received by the TM sensor, and  is the atmospheric  

transmittance due to absorption by atmospheric gases such as ozone, water vapor, 

carbon dioxide and oxygen.  is the atmospheric radiance due to light scattering 

from gases and aerosols, and  is the radiance directly leaving from the water.  is 

the radiance refracted from inside the water body while  is the radiance reflected 

from the water surface. So far, the radiance emitted from the surface of water body 

itself ( ) has been ignored.  

Lsat Tr

La

Lu Lw

Lr
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    One approach is to observe a reflectance target such deep clear water as a "dark 

object" (e.g., Chavez 1988, 1996) that should almost completely absorb all light in the 

near IR wavelength region, and hence brightness values should be close to zero (e.g., 

Gilabert et al. 1994). Therefore, subtracting constant values from all pixels (“dark 

pixel” method) does not change statistics of the image. In practice, atmospherically 

uncorrected data can be used, as operational applications typically require nearly 

simultaneous in situ data for the calibration. Moreover, the atmospheric correction for 

case II waters is still a problematic issue and, as a consequence, atmospherically 

corrected images cannot be either used in retrieval algorithms without supporting 

reference data. The “dark pixel” method is interesting for coastal waters in cases 
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where the coastal waters are much more turbid than the clear open sea waters, which 

is typical e.g. for the Finnish coast line in the Gulf of Finland.  

    In this study, one scene of Landsat TM data was acquired on 16 August 1997. The 

resolution of TM data is 30 meters (except band 6 with 120 meters). Since analysis 

was made for a single image with a quite small angular range, the atmospheric 

correction does not have a significant effect on correlation analysis. The TM image 

was geometrically corrected using a land use map (1:25,000) by SYKE, and then the 

land area of the image was masked off. In order to extract the TM bands data 

corresponding to 53 ground truth points (water quality sampling stations), the mean 

and standard deviation of TM digital number values were calculated using 53 defined 

squares of 300 meters by 300 meters for each ground truth point.  

 

3.3.5 Preliminary assessment of ERS-2 SAR data 

 

The ERS-2 SAR image acquired on 16 August 1997 was pre-processed by European 

Space Agency (ESA) to the precision image (PRI) level. This means that the image is 

geometrically correct but orbit-oriented and not registered to any mapping projection 

system (Populus et al. 1995). The pixel size is 12.5 m (but the actual spatial resolution 

is 25 m) and the coverage is approximately 100 km by 100 km. 

    The ERS-2 SAR image was geometrically corrected using a land use map 

(1:25,000) by SYKE, and then the land area of the image was masked off. Similarly to 

Landsat TM image processing, ERS-2 SAR observations corresponding to 53 ground 

truth points were also extracted using the same pre-defined squares of a size of 300 

meters by 300 meters as in the case of Landsat data.  

 

3.3.6 Data fusion of optical and microwave observations 

 

The key characteristics affecting microwave radar observations, in addition to water 

dieletric constant, are the water surface roughness properties. Since water mass below 

the surface does not contribute to the microwave radar backscattering, actual sub-

surface water quality characteristics do not directly influence these radar observations.         

    At optical wavelengths, however, radiation detected by a remote sensing instrument 

includes both the contribution scattered inside the water body and the contribution 

reflected from the water surface (see Eq. (3.2)). Therefore, bi-directional reflection of 
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Sun radiation from the water surface is in the case of optical data merely a factor 

disturbing the actual water quality retrievals (Zhang et al. 1999). 

    In order to eliminate the effect of incidence/reflection angle variation inside the TM 

and SAR image, the spatial range in investigations was limited to 60 km (across track 

range for both images). Moreover, an angular correction was made for SAR 

signatures (normalization to the incidence angle of 19.5o). This was done due to the 

strong dependence of water surface backscattering on the angle of incidence, which is 

evident for ERS-2 SAR data even for as small spatial range as 60 km. The correction 

was performed by applying an exponential model given by Ulaby et al. (1982).  

    Comparison of nearly simultaneous space-borne optical and microwave 

observations of a water area was possible on only one occasion, 16th August 1997. On 

that date, the Landsat TM sensor and the ERS-2 SAR imaged the same coastal region 

at 8.44 UTC and 9.40 UTC, respectively. Since the time difference between the 

imaging was less than one hour, the water surface wave conditions, including wind 

and water temperature, can be assumed to be quite similar for both images (systematic 

spatial differences in wave conditions). During the previous 24 hours, the average 

wind speed was about 5.5 m/s with the minimum of 3 m/s and the maximum of 9 m/s. 

The wind direction was varying from 315o to 360o. The average water surface 

temperature was about 19.5o C degrees and the average wave height was about 0.39 m 

with the minimum of 0.2 m and the maximum of 0.8 m (SYKE). Since in situ 

measurements were made on 14th August 1997 and the satellite data were only 

available on 16th August 1997, we assumed that the water quality conditions were 

representative for the 16th August 1997 even though the time difference was 2-days 

(Zhang et al. 2003a). 

    The TM and SAR images had different spatial resolutions and different dynamic 

ranges of pixel values. The TM imagery had 30 m resolution and 8-bit pixel values 

whereas the SAR image was provided as 16-bit backscatter intensity values sampled 

with 25 m ground resolution (Benediktsson and Kanellopoulos 1999). Therefore, in 

order to use the both images together, it was necessary to co-register and re-sample 

the data to averaged 300 m resolution.  
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4. METHODOLOGY 
 

4.1 A semi-empirical algorithm for Secchi disk depth 
 

Secchi disk depth (m), SDD, for monochromatic light is written (Hojerslev 1986) as 

 

SDD = 6.3/c         (4.1) 

 

where c is the attenuation coefficient (m-1). However, for turbid waters, the 

contribution to the light attenuation mainly comes from scattering, and thus c is 

independent of wavelength (Phillips and Kirk 1984). This means that Eq. (4.1) can be 

considered as a good approximation for the naked eye, without filters (Mulhearn 

1995). 

    Absorption, backscattering and attenuation coefficients (a, bB and c, respectively) 

can be further expressed as follows (e.g., Bukata et al. 1995) 

 

 a = aw + ach + asm + ays      (4.2a) 

 bB = 0.5bw + bB_ch + bB_sm      (4.2b)  

 c = cw + cch + csm + cys      (4.2c) 

 

where the subscripts w, ch, sm, ys and B refer to the contributions from pure sea 

water, phytoplankton, suspended sediment, yellow substance and backscattering, 

respectively. Also, 0.5bw = bB_w, where bw is the scattering coefficient for pure sea 

water (Jerlov 1976).  

    The coastal waters of the Gulf of Finland and the Archipelago Sea is predominantly 

green to blue-green, except in the plumes of rivers after heavy rain. This means that a 

submerged Secchi disk can be viewed in a wavelength band similar to that of Landsat 

TM band 2, i.e., 520-600 nm. Thus, for this band it is reasonable to assume that the 

effects of yellow substance are negligible (Jerlov 1976). In this band there is a 

minimum in absorption by phytoplankton (Shifrin 1988). Let us therefore assume that 

both phytoplankton and suspended sediment are purely scattering centres. That is, 
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their absorption can be also ignored in this band, i.e., both ach and asm are 

considerably smaller than aw. Then we can obtain as follows 

 

 a = aw            (4.3a) 

 bB = 0.5bw + bB_ch + bB_sm      (4.3b) 

 c = cw + cch + csm       (4.3c) 

 

    The reflectivity, R, is given (Gordon and Morel 1983) by 

 

R = 0.33bB/a         (4.4) 

 

where R means the ratio of upwelling to downwelling irradiance just below the sea 

surface, bB is the backscatter coefficient, and a is the absorption coefficient.  

    Now, Eq. (4.4) can be written as 

 

 R = 0.33(0.5bw + bB_ch + bB_sm)/aw     (4.5) 

 

where R means the reflectivity at the green band (e.g., TM2). 

    According to Mulhearn (1995) and Bukata et al. (1995), let us define the relation 

between total scatter and backscatter by setting bB_ch + bB_sm = Bbch + Bbsm = Bcch + 

Bcsm = B(cch + csm), where B means the ratio of backscatter to the total scattering 

coefficient for both phytoplankton and suspended sediment and is assumed to be the 

same for both of them. Therefore, Eq. (4.5) can also be expressed as 

 

 R = 0.33(B(cch+csm)+0.5bw)/aw     (4.6) 

 

    From Eq. (4.1) and (4.3c) (c = cw + cch + csm), we can obtain 

 

 cch + csm = 6.3/SDD - cw      (4.7) 

 

and then 

 R = 0.33(B(6.3/SDD- cw)+0.5bw)/aw     (4.8) 

 

where B is an adjustable constant. 
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Values quoted in the literature for the ratio of backscatter to the total scattering 

coefficient for ocean waters, not just for both phytoplankton and suspended matter, 

i.e., for all particles, range between 0.006 and 0.11 (Mankovskiy 1984, Shifrin 1988). 

The theoretical value for pure water is 0.5. Values for coastal waters appear to range 

between 0.006 and 0.025 (Mulhearn 1995).  The assumptions in Eq. (4.8) imply that 

both cch and csm are much greater than cw and that 6.3B/SDD is also much greater than 

0.5bw. Given a value for B of approximately 0.01 and taking cw = 0.066 m  and b−1
w = 

0.002 m  (Hojerslev 1986) for 520-600 nm, both of these assumptions will be 

satisfied if SDD << 100 m, which is always true in coastal waters. 

−1

    Thus, Eq. (4.8) can be written as 

 

 R = 0.33(6.3B/SDD)/aw      (4.9)  

 

and with aw = 0.064 m −  (Hojerslev 1986), 1

 

 SDD = 32.5B/R       (4.10) 

 
as also obtained by Mulhearn (1995). The semi-empirical algorithm given by Eq. 

(4.9) and (4.10) assumes that absorption both by yellow substance and by 

phytoplankton were negligible in the study material. This may cause inaccuracy in 

SDD retrieval. However, further studies are still needed to refine this semi-empirical 

algorithm [P1]. 

 

4.2 Empirical algorithms for chlorophyll-a 
 

Empirical algorithms in this study include simple regression analysis, multivariate 

empirical regression analysis, and neural network algorithms. In general, there are two 

main methods to estimate surface water quality variables. One is the use of empirical 

algorithms derived from remotely sensed reflectance data. They can provide site-

specific predictions of water quality variables with a reasonable accuracy, but are 

limited in their universal application (e.g., Austin and Petzold 1981, Whitlock et al. 

1981, Khorram and Cheshire 1985, Gould and Arnone 1997). The other approach is 

the use of analytic inversion models that require the solution of radiative transfer 
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equations for deriving absorption and scattering coefficients. The latter approach 

allows remote sensing measurements to be understood in terms of the inherent optical 

properties (IOP), and provides insight into the characteristics of the effectiveness and 

significance of differences in algorithm coefficients in various regions (e.g., Woodruff 

et al. 1999). Although optical properties of the Baltic Sea have been studied (e.g., 

D’Alimonte et al. 2003, Kratzer et al. 2003, Darecki and Stramski 2004), I only use 

empirical methods to retrieve surface water parameters in this study. 

    For chlorophyll-a retrieval using remote optosensors, regression analysis and 

empirical neural network methods are applied to estimate chlorophyll-a from AISA, 

Landsat TM, AVHRR and MODIS data in the study area. The results of chlorophyll-a 

estimation using these optosensors are also compared. In this study, empirical 

algorithms for chlorophyll-a (Chl-a) from optosensors data can be expressed as 

 

Chl-a = A +0 A
OpticB
OpticBk

i

j

k
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟       (4.11) 

and 

Chl-a = A +0 A OpticB A ComBi i j( )∑ j∑+    (4.12) 

 

where  and  can be the digital number (DN) values of optical bands 

data and Com  is the combination of optical bands used in the retrievals (usually 

used as band ratios or differences). , , ,  and k are the derived parameters, 

which can be simulated by using ground truth data [P2]. 

OpticBi OpticB j

B j

A0 Ak Ai Aj

 

4.3 Multivariate regression estimation 
 

At the optical wavelengths, the passive remote sensing observations are affected by 

volume scattering inside the water body and reflection from the water surface. This 

suggests that all the visible and near-infrared bands can contribute to surface water 

observations. Therefore, in this study, multivariate regression estimation for major 

water quality variables (WQV) derived from optical/IR wavelengths is expressed as 
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WQV = A +       (4.13) 0 A Bandi i
i

k

( )
=
∑

1

 

where  is the digital number (DN) values of visible and near-IR channels of 

optical satellite data, k is the band number of the satellite, and  A 0  and  are the 

empirical regression coefficients derived by using the observations from the ground 

truth points. For instance, k is 1 to 7 for Landsat TM data [P1, P3, P5]. 

( )Band i

Ai

    Although the passive remote sensing observations are affected by volume scattering 

inside the water body and reflectance from the water surface, radar signal 

measurements are only affected by water surface properties other than those in the 

case of optical/IR observations. However, the temporal and spatial variations in water 

surface roughness are actually factors that disturb the interpretation of optical data 

(e.g., Lindell et al. 1999). Therefore, it may be possible to develop empirical 

algorithms using both optical data and radar data to estimate surface water quality 

parameters.  

    In this case study, multivariate empirical retrievals for major water quality variables 

(WQV) derived from combined optical data and microwave data can be expressed as 

 

WQV = A + + B(SAR)    (4.14) 0 A Bandi
i

k

(
=
∑

1
i)

 

where  is the digital number (DN) values of visible and near-IR channels of 

optical satellite data, k is the band number of the satellite, SAR is the DN values of 

SAR intensity, and  A 0  ,  and B are the empirical regression coefficients derived 

by using observations from the ground truth points [P1, P3, P5]. 

( )Band i

Ai

 

 

4.4 A neural network algorithm 
 

In this study, a neural network algorithm was applied to estimate surface water quality 

parameters using both optical and microwave data. In coastal waters, the presence of 

suspended sediments and dissolved organic matter creates an optically complex 

situation (Bukata et al. 1991, Keiner and Yan 1998). Therefore, the task of modelling 
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the transfer function seems a natural application for a neural network. The network is 

a combination of neurons designed to solve a certain problem. The network has at 

least three layers: input layer, a hidden layer and output layer (Figure 4.1). This neural 

network is a so-called feed-forward network and is typically used in function 

approximation application. All information moves in one direction during operation, 

from the input layer to the output layer. The first layer distributes the input parameters 

(usually radiance measurements at different wavelengths in case of optical remote 

sensing) to the second layer. The second layer (also called hidden layer) consists of a 

varying number of neurons, where each input parameter is multiplied by its 

connection's weight and all the inputs to the neuron are summed and passed through 

the non-linear sigmoid function. The third layer receives the output of the second 

layer in which it is processed through neurons again (Keiner 1999).  

 
 
 Input        Hidden    Output 
 Layer        Layer    Layer  
 
 TM1         
     1               Chl-a 
 TM2       
 
 TM3    2 
         SSC 
 TM4 
     3 
 TM5     
                  Turb 
 TM6    4 
      
 TM7 
     5    SDD 
 SAR 
 

Figure 4.1: A neural network diagram in this study. 

 

 

    A neural network can model a large number of non-linear behaviors, yet without 

prior knowledge of the nature of non-linearity. Standard linear regression does not 

model non-linear relationships properly, while non-linear regression requires having a 

priori knowledge of the nature of the non-linear behavior. However, a neural network 

does not have such limitations. Therefore, the neural network is most useful when 
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applied in situations where the data is non-linear or chaotic, or if the required signal is 

deeply hidden within noise or other signals (Masters 1993, Krasnopolsky et al. 1995 

and 2000, Keiner 1999). 

    In a neural network, each neuron has two parts: a linear summation function and a 

non-linear activation function. Figure 4.2 presents a neuron with n inputs. The inputs 

to each neuron are firstly routed through the summation function. The output of this 

function inside the neuron at node j is given by 

 

 

        (4.15) y w xj ij i
i

n

j=
=
∑

1
b+

j

 

where  are the inputs,  are the weights related to each input/node connection, 

and  is the bias related to node j, and  is the output of this function inside the 

neuron at node j. The inputs to the neuron are multiplied by their associated weights, 

summed and added to the bias. The weights control which inputs and connections in 

the network are more important than others. The bias controls the activation level of 

neuron, when the resulting sum is passed through a non-linear activation function 

xi wij

bj y j

 

 z g y yj j= =( ) tanh( ) = tanh( )    (4.16) w x bij i
i

n

j
=
∑ +

1

 

where g is a sigmoid activation function and  is the output of hidden layer after the 

non-linear summation. The activation function is what gives the network its ability to 

model non-linear behavior (Krasnopolsky et al. 1995 and 2000, Keiner 1999). 

z j

    In this study, the inputs are the digital values from all channels of TM and one 

channel of ERS-2 SAR. The values from the input layer are distributed to the five 

nodes in the hidden layer, where the summation and activation functions are 

performed. The output values of the hidden layer are then the input values of the 

network's output layer, which also performs the summation and activation functions. 

The output of this layer is the values of the geophysical variables 
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 Y = a w      (4.17) zk k
k

j

tanh +
⎛
⎝
⎜

⎞
⎠
⎟

=
∑

1
b  

 

where Y is the vector of geophysical variables,  is the weight between the hidden 

layer and the output layer, b is the bias related to the output layer, and j is the number 

of nodes in the hidden layer. The output is scaled by the factor a, which is used in the 

training network and it depends on the output range of variables. Before the training 

network, the variables should be scaled into (0, 1). It is proven that a neural network 

with one hidden layer can simulate any complex functions (Keiner 1999). This is 

known as the Kolmogorov representation theorem (Beale and Jackson 1990, Masters 

1993). 

wk

    
                x1 w j1

  
 
     x2 w j2

           function∑            z j

 
     x3 w j3

      node j 
 
    
   
 
 
   wnj

    b  j

   xn
 

Figure 4.2: A neuron at node j. 
 

    The number of hidden layer nodes depends on the complexity of the approximated 

function. Although enough nodes in the network can simulate the function correctly, 

too many nodes will result in increased training time and possible overfitting. The 

overfitting is a case where the network correctly learns not only the correct model, but 

also the noise in the inputs, resulting in a poor application to a real problem 

(Krasnopolsky et al. 1995, Keiner 1999). Based on experimentation, five hidden layer 

nodes were used to model the transfer function correctly from all channels of TM and 
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one channel of SAR to selected parameters of surface water quality in the test region. 

The weights related to each connection were also randomly created before training. 

    In this case study, the network was trained using Matlab Neural Network Toolbox. 

The error minimum for each trial was calculated using the Levenberg-Marquardt line-

minimization method (Beale and Jackson 1990). In order to determine the optimal 

number of hidden nodes, the training was performed with 7 TM bands and 1 SAR 

channel data as input, and the number of hidden nodes varying from 2 to 10 here. The 

output of the network was compared to the in situ measurements of surface water 

quality variables, including chlorophyll-a, suspended sediment concentration, 

turbidity, and Secchi disk depth. However, for the output of water surface 

temperature, the input used only TM band 6 and SAR. The root mean square error 

(RMSE) and regression ( R 2 ) of the comparison were calculated. For each number of 

hidden nodes, the training process was run 2-20 times with random initial weights. 

The weight configuration that returned the smallest error was retained for validation 

[P1, P3, P4, P5].  

    In a similar way, this neural network algorithm was also applied to estimate some 

major surface water quality variables using AVHRR and MODIS data from April to 

May 2000 [P2, P6].  
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5. RESULTS AND DISCUSSION 
 

In this section, the results and comparison of employed algorithms are described using 

AISA, Landsat TM and ERS-2 SAR data for August 1997, as well as AVHRR and 

MODIS data from April to May 2000 to estimate major surface water variables in the 

Gulf and coastal archipelago of Finland. 

 

5.1 Simple regression and correlation analyses 
 

The results from the simple regression analysis of chlorophyll-a (Chl-a), suspended 

sediment concentration (SSC), turbidity (Turb), and Secchi disk depth (SDD), in 

relation to Landsat TM data and ERS-2 SAR data, are presented in Table 5.1 [P4].  

 
Table 5.1: Correlation ( R 2 ) between Chl-a, SSC, ln(SSC), Turb, and SDD with 
ratios, logarithmic transformations and combinations of  TM bands and SAR data. 
 TM1 TM2 TM3 TM4 TM5 TM6 TM7 ERS-2 TM1/2 
Chl-a 0.024 0.003 0.026 0.019 0.020 0.012 0.008 0.357 0.198 
SSC 0.376 0.467 0.533 0.284 0.057 0.007 0.032 0.098 0.226 
ln(SSC) 0.339 0.459 0.503 0.245 0.043 0.003 0.022 0.090 0.284 
Turb 0.476 0.626 0.664 0.391 0.044 0.019 0.023 0.055 0.323 
SDD 0.204 0.383 0.530 0.460 0.164 0.064 0.073 0.368 0.354 
 TM1/3 TM1/4 TM2/1 TM2/3 TM2/4 TM3/1 TM3/2 TM3/4 TM4/1 
Chl-a 0.322 0.129 0.204 0.239 0.005 0.358 0.263 0.017 0.215 
SSC 
ln(SSC) 

0.253 
0.276 

0.067 
0.070 

0.236 
0.299 

0.139 
0.125 

0.231 
0.260 

0.327 
0.359 

0.164 
0.148 

0.406 
0.420 

0.058 
0.050 

Turb 0.292 0.085 0.362 0.121 0.313 0.400 0.136 0.497 0.080 
SDD 0.537 0.007 0.411 0.382 0.071 0.651 0.416 0.291 0.005 
 TM4/2 TM4/3 TM3-4 TM2-4 TM2+3 ln(TM1) ln(TM2) ln(TM3) ln(TM4) 
Chl-a 0.039 0.006 0.025 0.002 0.007 0.071 0.0001 0.021 0.023 
SSC 
ln(SSC) 

0.175 
0.191 

0.345 
0.367 

0.534 
0.506 

0.465 
0.458 

0.493 
0.478 

0.280 
0.255 

0.371 
0.377 

0.464 
0.461 

0.256 
0.224 

Turb 0.258 0.428 0.661 0.622 0.646 0.391 0.528 0.603 0.370 
SDD 0.043 0.245 0.516 0.374 0.429 0.116 0.265 0.460 0.442 
 TM1/(1

+2+3) 
TM2/(1
+2+3) 

TM3/(1
+2+3) 

TM1/(1
+2+4) 

TM2/(1
+2+4) 

TM4/(1
+2+4) 

TM2/(2
+3+4) 

TM3/(2
+3+4) 

TM4/(2
+3+4) 

Chl-a 0.272 0.111 0.363 0.251 0.165 0.119 0.251 0.246 0.018 
SSC 
ln(SSC) 

0.281 
0.337 

0.156 
0.215 

0.292 
0.304 

0.213 
0.273 

0.257 
0.319 

0.117 
0.118 

0.039 
0.029 

0.219 
0.202 

0.224 
0.242 

Turb 0.383 0.263 0.317 0.317 0.380 0.171 0.091 0.199 0.312 
SDD 0.498 0.227 0.616 0.404 0.380 0.006 0.230 0.471 0.079 
Note: Chl-a = Chlorophyll-a, SSC = Suspended sediment concentration, Turb = Turbidity, 
SDD = Secchi disk depth, ERS-2 = ERS-2 SAR, TM1/2 = TM1/TM2, TM3-4 = TM3-TM4, 
TM1/(1+2+3) = TM1/(TM1+TM2+TM3) etc.  
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    Chlorophyll-a is only weakly correlated with all TM bands (less than 0.100). All 

visible and near-IR bands (Bands 1-4) were significantly predictive of turbidity with 

the exception of the TM5, TM6 and TM7. Variations in turbidity were most 

adequately explained by TM3, which explained 66.4% of the variation in a significant 

regression. These same bands were also significantly predictive of variations in SDD 

and SSC, although no single variable explained more than 53.3% of these two 

variations. However, ERS-2 SAR explained 35.7% and 36.8% for chlorophyll-a and 

SDD respectively, while SAR only explained 5.5% of the variation in turbidity and 

9.8% of the variation in SSC. 

    The algorithms developed in this study were also combined with those of band 

ratios, band differences, logarithmic transformations, chromaticity analyses and some 

other possible combinations of visible and near-IR bands (TM 1-4) to find the best 

one for comparison (see Table 5.1). The most successful combination for chlorophyll-

a was a linear equation of together using TM2, TM4, (TM2-TM3)/TM1, and 

TM4/(TM1+TM2+TM4) with the coefficient of determination ( R 2 = 0.677) and the 

error in the dependent parameter estimate (that is, root mean square error RMSE = 

0.958 gµ /l). The best combination for suspended sediment concentration was using 

TM1, TM2, and TM3 together in a linear equation with the coefficient of 

determination ( R 2 = 0.542) and the error in the dependent parameter estimate (RMSE 

= 1.465 mg/l). The most successful combination for turbidity was using TM1, TM3, 

TM1/TM3, and (TM3-TM4)/TM2 together in a linear equation with the coefficient of 

determination ( R 2 = 0.690) and the error in the dependent parameter estimate (RMSE 

= 0.817 FTU). The best combination for Secchi disk depth was using TM1, TM2, and 

TM3 together in a linear equation with the coefficient of determination ( R 2 = 0.724) 

and the error in the dependent parameter estimate (RMSE = 0.454 m) (Zhang et al. 

1999, Zhang et al. 2000a).  

    An examination of the correlation ( R 2 ) between turbidity and chlorophyll-a for 

August 1997 showed values as low as 0.066. This suggested that the turbidity in the 

Gulf of Finland was not dependent on plankton biomass in the used data set (Zhang et 

al. 1998). However, the correlation of turbidity with suspended sediment 

concentration (SSC) is up to 0.815, which implies that turbidity is significantly related 

to suspended sediments in the Gulf. In contrast, SDD has a correlation ( R 2 ) of 0.312 
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with chlorophyll-a and that of 0.493 with SSC. This means that SDD is weakly, but 

significantly correlated to both dissolved and particulate organic matter in the study. 

Material examination of the correlations ( R 2 ) between observed intensities at 

different TM bands ranged from 0.001 to 0.933 (Table 5.2). This difference among 

TM bands implies that they may either change significantly at any site or change 

differently at all sites. This may also have a significant effect on the results of data 

analysis. However, the high relationship between TM bands probably means that 

these bands are measuring similar aquatic properties in the study. 

 
Table 5.2: Correlation ( R 2 ) matrix of Landsat TM bands [P3]. 
 TM1 TM2 TM3 TM4 TM5 TM6 
TM2 0.890      
TM3 0.797 0.933     
TM4 0.356 0.454 0.567    
TM5 0.030 0.047 0.108 0.504   
TM6 0.018 0.052 0.081 0.133 0.088  
TM7 0.034 0.030 0.062 0.264 0.654 0.001 
 
 
    Table 5.3 shows the correlations ( R 2 ) between the ERS-2 SAR derived 

backscattering coefficient and different TM channels. The results indicate that the 

data from visible bands of TM are to a degree correlated with the C-band ERS-2 SAR 

observations. The highest correlation ( R 2 ) of 0.144 is between SAR data and TM 

band 2 (TM2). Since angular corrected SAR observations are only dependent on the 

surface wave conditions (in addition to random speckle, which was mostly averaged 

out in the employed water area signatures), this suggests that systematic variations in 

wave conditions in different parts of TM image caused 14.4% of the total variability 

in TM2 observations (see Figure 5.1) (Zhang et al. 2002a).  

 
Table 5.3: Correlation ( R 2 ) between Landsat TM bands and ERS-2 SAR data at 
coastal regions (archipelago) of Finland on 16 August 1997 (661 points). 
 TM1 

(450-520nm) 
TM2 
(520-600nm)  

TM3 
(630-690nm)

TM4 
(760-900nm)

TM5 
(1550-
1750nm) 

TM6 
(10450-
12500nm) 

TM7 
(2080-
2350nm) 

ERS-2 0.109 0.144 0.129 0.029 0.000 0.012 0.019 
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Figure 5.1: Behavior of observed TM2 intensity as a function of observed C-band 
ERS-2 SAR backscattering coefficient ( R 2 =0.144) (661 points) (Eloheimo et al. 
1997, Zhang et al. 2002a). 
 
    The results from simple regression analysis indicate that these water quality 

variables can be estimated using single-band Landsat TM and ERS-2 SAR data, but 

the estimated accuracy is relatively low that it is not practically sufficient to monitor 

water quality characteristics in the study area. However, this method is useful to find 

good relationships with single bands, band ratios, and their combinations in the area. 

 

5.2 A semi-empirical algorithm for Secchi disk depth 
 

Using Eq. (4.10), SDD derived from TM2 is plotted against the measured SDD in Fig. 

5.2. For this algorithm, the coefficient of determination is R2 = 0.521, the root mean 

square error is RMSE = 0.681 m, and the adjustable constant B = 0.0167.  
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Fig. 5.2: Regression of SDD estimated from TM2 with the measured SDD using the 
semi-empirical algorithm [P1]. 
 
 

    Clearly, this result is not as good as expected to retrieve SDD in the coastal waters 

of the study area. The main reason is that the absorption by yellow substance and by 

phytoplankton was assumed to be negligible in the semi-empirical algorithm [P1]. 

However, this semi-empirical algorithm is not recommended in the area. 

 

5.3 Empirical algorithms for chlorophyll-a 
 

5.3.1 Chlorophyll-a estimation from AISA data 

 

Chlorophyll-a is adequately retrieved from AISA data using only the band ratio. In the 

study, the following relation was used to estimate chlorophyll-a from Eq. (4.11) 

 

 Chl a
L
L

nm

nm
− = − +

⎛

⎝
⎜

⎞

⎠
⎟=

=

72 9973 98 5510 687

674
. . λ

λ
    (5.1) 
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with the regression determination coefficient ( R 2 =0.872) and the root mean square 

error (RMSE = 0.550 µg l/ ). Clearly, AISA data of high spatial and spectral 

resolutions with its narrow bandwidth is adequate to estimate chlorophyll-a in the 

study area with satifactory accuracy. However, the drawback is the high cost and a 

large dataset [P2]. 

 

5.3.2 Chlorophyll-a estimation from MODIS data 

 

MODIS data were available for 21st April and 16th May 2000. Nine channels at the 

central wavelengths of 412 nm, 443 nm, 488 nm, 531 nm, 551 nm, 667 nm, 678 nm, 

748 nm and 870 nm were used to estimate chlorophyll-a. The most successful 

combination in the area for the chlorophyll-a retrieval from MODIS data using 

equation (4.12) was 

 

 
Chl a L L

ComB ComB
nm nm− = − −

− +
= =51372 0 0025 0 0027

130 6416 1361009
488 748

1 2

. . ( ) . (
. ( ) . ( )

λ )λ   (5.2) 

 

where ComB
L
L

nm

nm
1

667

551
= =

=

λ

λ
 and ComB

L
L

nm

nm
2

678

531
= =

=

λ

λ
 with the regression determination 

coefficient ( R 2 =0.761) and the root mean square error (RMSE = 0.855 µg l/ ). This 

retrieval accuracy is satisfactory for estimating chlorophyll-a in the study area [P2]. 

 

5.4 Multivariate regression algorithms using TM and SAR data 
 

5.4.1 Suspended sediment concentrations  

 

Suspended sediment concentration (SSC) was estimated by using various independent 

variables in regression algorithms in this study. Using digital number (DN) values of 

all TM bands and ERS-2 data, SSC can be estimated applying Eq. (4.13) and (4.14) 

 

SSC = 8.6880-0.0221(TM1)-0.0202(TM2)+0.2831(TM3)-0.2822(TM4)  

       +0.3639(TM5)-0.0405(TM6)-0.2579(TM7)   (5.3) 
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with the coefficient of determination R 2 = 0.572 and with the root mean square error 

RMSE = 1.416 mg/l or, as ERS-2 SAR is also employed 

 
SSC = 7.0587-0.0084(TM1)-0.085(TM2)+0.2181(TM3)-0.1592(TM4)  

        -0.2518(TM5)-0.0394(TM6)-0.2416(TM7)+0.0033(SAR) (5.4) 
 

with the coefficient of determination R 2  = 0.578 and RMSE = 1.406 mg/l. The latter 

regression explained 57.8% of the variation in SSC with an RMSE of 1.406 mg/l. 

These results show that SSC derived using all TM 7 bands together with ERS-2 SAR 

data slightly improves the retrieval accuracy. The summary of SSC estimated from 

combined different TM bands and ERS-2 SAR data as well as the comparison with 

those from different TM bands data is presented in Table 5.4.  

 
 
Table 5.4:  The summary of suspended sediment concentration (SSC) derived from 
TM bands and from combined TM/ERS-2 SAR data (53 points). 
 
   SUSPENDED SEDIMENT CONCENTRATION (SSC) 
 
ALGORITHM TM1    TM2    TM3    TM4    TM5    TM6    TM7      SAR            0A 2R      RMSE   
 
 

Eq. (4.1), k=7      -0.0221  -0.0202  0.2831  -0.2822  0.3639  -0.0405  -0.0257    -         8.6880   0.572     1.416 
 
Eq. (4.2), k=7      -0.0084  -0.0085  0.2181  -0.1592  0.2518  -0.0394  -0.2416   0.0033  7.0587   0.578     1.406 
 

Eq. (4.1), k=4      -0.0146  -0.0225  0.2662  -0.3199      -           -           -           -         2.4308   0.545     1.460 
 

Eq. (4.2), k=4      -0.0004  -0.0074  0.1953  -0.3034      -           -           -        0.0035    0.7543   0.552    1.449 
 

Eq. (4.1), k=3      -0.0135  -0.0166  0.2243         -         -           -          -          -           1.7594    0.542    1.465 
 

Eq. (4.2), k=3       0.0009  -0.0015  0.1635         -         -          -           -         0.0035    0.0795   0.549    1.454 
 
 
Note: 2R = Regression, RMSE = Root mean square error      
 

 

    The results indicate that the variation of SSC is more significantly correlated to 

visible bands than to near-IR bands of TM data. This demonstrates that optical 

characteristics in this case study are dominated by absorption from both dissolved and 

particulate organic matter. As a result, the reflectance increases more rapidly at the 

visible region than at near-IR region due to the backscattering by suspended matter. 
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These results also show that the combined SAR data and TM bands data have not 

improved the SSC retrieved accuracy in our case study. This is expected as Table 5.1 

indicates that ERS-2 SAR data has a very low correlation ( R 2 =0.098) with SSC. The 

results suggest that the additional use of SAR only improves SSC estimation slightly 

in this study.  

    Although the algorithms used in other similar studies as well as some other possible 

combinations were tested, none of these algorithms improved the SSC estimation 

accuracy in this case study (see Table 5.1). A probable reason is that the coastal 

waters in the Gulf of Finland and coastal archipelago are optically dominated by 

absorption and backscattering from both dissolved and particulate organic matter 

[P3]. However, this method is not recommended in the area due to a low accuracy. 

 
5.4.2 Chlorophyll-a concentrations  
 

The correlation of TM 7 bands with chlorophyll-a shows weak relationships (see 

Table 5.1). The chlorophyll-a level may change substantially from day to day so that 

the correlations of TM bands with chlorophyll-a were much lower than with other 

parameters such as turbidity.  

    Chlorophyll-a (CHL) was derived using various independent variables in 

multivariate algorithms in this study. Using digital number values of all TM bands 

and SAR data, CHL can be derived applying Eq. (4.13) and (4.14) 

 

CHL = 15.1329-0.1573(TM1)+0.0394(TM2)+0.2671(TM3)-0.5383(TM4)  

       +0.1214(TM5)-0.0606(TM6)+0.1007(TM7)   (5.5) 

 

with the coefficient of determination 2R  = 0.542 and with the root mean square error 

RMSE = 1.144 gµ /l or, as ERS-2 SAR is also employed 

 

CHL = 13.1451-0.1405(TM1)+0.0537(TM2)+0.1878(TM3)-0.3882(TM4)  

        -0.0153(TM5)-0.0593(TM6)+0.1206(TM7)+0.0040(SAR) (5.6) 

with the coefficient of determination 2R  = 0.556 and with the root mean square error 

RMSE = 1.126 gµ /l. 
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The summary of chlorophyll-a retrievals from combined different TM bands and 

ERS-2 SAR data as well as the comparison with those from TM bands data only is 

presented in Table 5.5.  

 
Table 5.5:  The summary of chlorophyll-a (CHL) derived from combined TM/SAR 
data (53 points). 
 
                          Chlorophyll-a (CHL) 
 
ALGORITHM TM1    TM2    TM3    TM4    TM5    TM6    TM7      SAR          0A 2R      RMSE   
 
 

Eq. (4.1), k=7      -0.1573  0.0394  0.2671  -0.5383  0.1214  -0.0606  0.1007        -      15.1329   0.542     1.144 
 
Eq. (4.2), k=7      -0.1405 -0.0537  0.1878  -0.3882  -0.0153  -0.0593  0.1206  0.0040  13.1451   0.556     1.126 
 

Eq. (4.1), k=4      -0.1359  0.0265  0.2455  -0.5702      -           -           -           -          7.6481    0.413     1.295 
 

Eq. (4.2), k=4      -0.1173  0.0463  0.1523  -0.5485      -           -           -        0.0045     5.4427   0.433     1.273 
 

Eq. (4.1), k=3      -0.1341  0.0369  0.1887         -         -           -           -          -            6.4515   0.396    1.314 
 

Eq. (4.2), k=3      -0.1150  0.0570  0.0947         -         -           -           -         0.0035     4.2230   0.417    1.291 
 
 
Note: 2R = Regression, RMSE = Root mean square error      
 

    The results show that the accuracy of chlorophyll-a derived from these multivariate 

retrievals using TM bands combined with SAR data is slightly higher than that from 

TM bands alone in the study. This is expected as Table 5.1 indicated that SAR data 

has a low but significant correlation ( R 2 =0.357) with chlorophyll-a. This may 

suggest that SAR data is helpful for retrieving chlorophyll-a in the area. In other 

words, it may means that either (a) high chlorophyll-a contents cause smoothening of 

the water surface or (b) high chlorophyll-a contents occur in regions where water 

surface is smooth [P5]. However, this small improvement is marginal in the area. 

 

5.4.3 Turbidity and Secchi disk depth 

 

Turbidity and Secchi disk depth (SDD) are both optical measurements of water 

quality and, therefore, differ from suspended sediment concentration for example, 
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which is a measure of the weight of inorganic particulates suspended in the water 

column (e.g., Harrrington and Schiebe 1992).  

    Multivariate regression algorithms for turbidity and SDD showed differences in 

either variable selection or statistical quality. Therefore, using the digital number 

values of 7 TM bands and single-channel ERS-2 data according to Eq. (4.13) and 

(4.14), turbidity (Turb) can be derived by 

 

Turb = 4.1106-0.0346(TM1)+0.0294(TM2)+0.1123(TM3)+0.5137(TM4)  

        -0.2775(TM5)-0.0204(TM6)-0.0324(TM7)   (5.7) 

 

with the coefficient of determination 2R = 0.709 and with the root mean square error 

RMSE = 0.794 FNU. 

    As ERS-2 SAR data is used in addition to TM data we obtain 

 

 Turb = 4.1024-0.0346(TM1)+0.0294(TM2)+0.1120(TM3)+0.5143(TM4)  

        -0.2781(TM5)-0.0204(TM6)-0.0323(TM7)+0.0000(SAR) (5.8) 

 

with the coefficient of determination 2R = 0.709 and with RMSE = 0.794 FNU. Both 

of these regressions explained 70.9% of the variation with a root mean square error 

(RMSE) of 0.794 FNU. The results show that the turbidity algorithm derived using 

combined 7 TM bands together with ERS-2 SAR is same as that using TM data only. 

This suggests that the SAR data does not improve the turbidity retrieval accuracy in 

this case study.  

    The summary of multivariate turbidity algorithms from combined TM/ERS-2 data 

as well as the comparison with those from different TM bands is presented in Table 

5.6. The results indicate that visible bands provide the greatest ability for estimating 

turbidity variations using Landsat TM data. These results also demonstrate that the 

accuracy of turbidity estimation using combined TM bands and ERS-2 SAR data is 

not higher than that using TM bands, or only a marginal contribution to turbidity 

retrievals if using combined visible TM bands and ERS-2 SAR data. This is expected 

as Table 5.1 indicates that the SAR data has a very low correlation ( R 2 =0.055) with 

turbidity. This probably means that turbidity is not significantly affected by the water 
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surface properties in the study [P3]. However, the multivariate regression method 

using optical remote sensing data to estimate turbidity is recommended in the area. 

 
Table 5.6:  The summary of turbidity (Turb) derived from TM bands and from 
combined TM/ERS-2 SAR data (53 points). 
 
    TURBIDITY (Turb) 
 
ALGORITHM        TM1    TM2    TM3    TM4    TM5    TM6    TM7    SAR         0A 2R   RMSE   
 
Eq. (4.1), k=7  -0.0346    0.0294    0.1123    0.5137   -0.2775   -0.0204  -0.0324      -       4.1106     0.709      0.794  
 
Eq. (4.2), k=7 -0.0346   0.0294    0.1120    0.5143   -0.2781   -0.0204  -0.0323    0.0000   4.1024     0.709      0.794 
 

Eq. (4.1), k=4 -0.0305    0.0367    0.0952    0.0636      -        -          -         -          0.6909     0.681     0.830  
 

Eq. (4.2), k=4 -0.0325    0.0345    0.1054    0.0612       -           -             -      -0.0005   0.9338     0.682      0.829 
 

Eq. (4.1), k=3 -0.0307     0.0355   0.1015      -         -           -           -          -       0.8245     0.681     0.830 
  

Eq. (4.2), k=3 -0.0328     0.0333    0.1119      -        -          -          -     -0.0005     1.0699      0.682     0.830 
 

Note: 2R = Regression, RMSE = Root mean square error      
 
    Secchi disk depth (SDD) was estimated using algorithms with various independent 

variables. Therefore, by using Eq. (4.13) and (4.14), SDD can be derived by 

 

SDD = 1.8780+0.0427(TM1)+0.0017(TM2)-0.1419(TM3)-0.2562(TM4)  

  +0.0185(TM5)+0.0085(TM6)+0.0054(TM7)   (5.9) 

 

with the coefficient of determination R 2  = 0.740 and RMSE = 0.441 m or, as ERS-2 

SAR data is also applied  

 

SDD = 3.4515+0.0294(TM1)-0.0097(TM2)-0.0791(TM3)-0.3750(TM4)  

  +0.1268(TM5)+0.0074(TM6)-0.0104(TM7)-0.0031(SAR) (5.10) 

 

with the coefficient of determination 2R = 0.774 and RMSE = 0.412 m. The latter 

regression explained 77.4% of the variation in SDD with a root mean square error 

(RMSE) of 0.412 m. The results show that the accuracy of SDD using combined 

TM/ERS-2 is slightly higher than that of using TM bands (74% of the variation with 
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an RMSE of 0.441 m). This implies that SDD is to some degree correlated to the 

surface water properties in this study.  The summary of SDD derived from combined 

different TM bands and ERS-2 SAR data as well as the comparison with those from 

different TM bands data is presented in Table 5.7.  

 
Table 5.7:  The summary of Secchi disk depth (SDD) derived from TM bands and 
from combined TM/ERS-2 SAR data (53 points). 
 
    SECCHI DISK DEPTH (SDD) 
 
ALGORITHM TM1    TM2    TM3    TM4    TM5    TM6    TM7      SAR         0A 2R    RMSE   
 
 

Eq. (4.1), k=7      0.0427   0.0017  -0.1419  -0.2562  0.0185  0.0085  0.0054       -        1.8780    0.740    0.441 
 
Eq. (4.2), k=7      0.0294  -0.0097  -0.0791  -0.3750  0.1268  0.0074  -0.0104  -0.0031  3.4515    0.774   0.412 
 

Eq. (4.1), k=4      0.0404   0.0017  -0.1374  -0.1898      -           -           -           -        3.0962    0.731   0.449 
 

Eq. (4.2), k=4      0.0283  -0.0112  -0.0768  -0.2039      -           -           -      -0.0030   4.5298   0.763    0.421 
 

Eq. (4.1), k=3      0.0410   0.0052  -0.1563         -         -           -          -          -          2.6979   0.724    0.454 
 

Eq. (4.2), k=3      0.0291  -0.0073  -0.0982         -         -          -          -         -0.0029  4.0762   0.755    0.429 
 
Note: 2R = Regression, RMSE = Root mean square error      
 

    These results indicate that the variation in SDD is more significantly correlated 

with visible bands than with near-IR bands of TM data. Since the Gulf of Finland is 

optically dominated by absorption from both dissolved and particulate organic matter, 

the reflectance increases more rapidly at the visible region than at near-IR region due 

to the backscattering by suspended matters. Although the coefficient to SAR in 

algorithms is quite close to zero (i.e., -0.0031), the retrieved SDD is slightly higher 

than that using the coefficient as zero in the study. The results also show that the 

accuracy of SDD estimated from combined TM/ERS-2 data is slightly better than that 

from TM bands. This is expected as Table 5.1 indicates that ERS-2 SAR data has to 

some extent correlation ( R 2 =0.368) with SDD. The results suggest that SAR data is 

slightly helpful for estimating SDD in this study [P1]. In fact, this small improvement 

is marginal in the study area. The multivariate regression method using optical remote 

sensing data to estimate SDD is recommended in the area. 
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5.4.4 Water surface temperatures 

 

The correlation of TM 7 bands with water surface temperature (WST) shows weak 

relationships as in Table 5.8. Probably, Landsat TM6 (10.4-12.5 mµ ) may be affected 

by the atmospheric water vapour that absorbs radiation in the 8-12 mµ  wavelengths, 

and also the TM6 may include both emitted infrared radiation and reflected solar 

infrared radiation during the daytime.  

    Using the quadratic regression (Baban 1993), the WST was estimated by using the 

digital number values of Landsat TM band 6 

 

 WST = 36.3409-0.2613(TM6)+0.0010(TM6)     (5.11) 2

 

with the coefficient of determination 2R  = 0.157 and RMSE = 0.814 C.  0

 
Table 5.8: Correlation coefficient ( 2R ) between Landsat TM bands and water surface 
temperature (WST) at the coastal archipelago of Finland on 16 August 1997. 
 TM1 TM2 TM3 TM4 TM5 TM6 TM7 SAR 
WST 0.021 0.085 0.165 0.158 0.061 0.131 0.025 0.291 
 

    Water surface temperature (WST) was estimated using various independent 

variables in multivariate algorithms in this study. Using digital number values of all 

TM bands and SAR data, WST can be derived applying Eq. (4.13) and (4.14) 

 

WST = 18.1489-0.0393(TM1)-0.0191(TM2)+0.1486(TM3)+0.1660(TM4)  

       -0.4037(TM5)+0.0172(TM6)+0.2151(TM7)   (5.12) 

 

with the coefficient of determination 2R  = 0.436 and with the root mean square error 

RMSE = 0.666 C or, as ERS-2 SAR is also employed 0

 

WST = 16.6320-0.0265(TM1)-0.0081(TM2)+0.0881(TM3)+0.2805(TM4)  

        -0.5018(TM5)+0.0182(TM6)+0.2303(TM7)+0.0030(SAR) (5.13) 

 

44 



with the coefficient of determination 2R  = 0.466 and RMSE = 0.648 C. The latter 

regression explains 46.6% the variation in water surface temperature with an RMSE 

of 0.648 C.  

0

0

    The result from Equation (5.11) demonstrates that Landsat TM6 (10.4-12.5 mµ ) 

not only includes emitted infrared radiation and reflected solar infrared radiation 

during the daytime, but also is significantly affected by the atmospheric water vapour 

that absorbs radiation in the 8-12 mµ  wavelengths. On the other hand, the results 

using Equations (5.12) and (5.13) of multivariate regression algorithms improved the 

SWT retrieval to some extent from that obtained with Equation (5.11). Although the 

correlation coefficients between SWT and TM1, TM2, TM5 and TM7 are close to 

zero (see Table 5.8), the retrieved SWT using the coefficients of these bands as zero is 

less than that using all TM bands data in the study. The result also shows that the 

WST estimated by using all TM 7 bands combined with SAR data improves the 

retrieval accuracy. This is expected as Table 5.8 indicates that the SAR data has some 

correlation ( 2R = 0.291) with WST. This probably suggests that the SAR data has 

some supplementary values to TM data for the WST retrieval in this study.  

    These results demonstrate that the retrievals of major water quality variables using 

multivariate empirical algorithms are better than those using simple regression 

analyses. This suggests that multi-spectral data may include more information of 

water characteristics in the study. However, the multivariate regression algorithms 

still need to be refined for the practical use in the area.  

 

5.5 Empirical neural network estimation using TM and SAR data 
 

The developed empirical neural network algorithms are quite different in the selected 

bands when compared with those used in other studies (e.g., Lindell et al. 1985, 

Lathrop and Lillesand 1986, Tassan 1987, Lathrop et al. 1991, Lavery et al. 1993, 

Pattiaratchi et al. 1994, Keiner and Yan 1998). This is because the different types of 

phytoplankton and sediments affect the optical properties of the water at different 

geographical sites. In order to indicate the significance of the regression models, the 

coefficient of determination ( R 2 ) and root mean square error (RMSE) have been 

calculated. The results also indicate that SAR has some contribution to the estimation 
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of some major parameters, if these parameters are correlated to water surface 

properties (see Table 5.9).  

 
Table 5.9: Comparison of regression analysis and neural network estimation. 
 
 

 Regression 
analysis 

  Neural 
network 

 

 TM  TM+SAR TM  TM+SAR 
  Chl-a   Chl-a  
R2  0.542  0.556 0.903  0.923 
RMSE 1.144 gµ /l  1.126 gµ /l 0.526 gµ  /l  0.467 gµ /l 
  SSC   SSC  
R2  0.572  0.578 0.888  0.908 
RMSE 1.416 mg/l  1.406 mg/l 0.723 mg/l  0.654 mg/l 
  Turb   Turb  
R2  0.709  0.709 0.942  0.963 
RMSE 0.794 FNU  0.794 FNU 0.351 FNU  0.280 FNU 
  SDD   SDD  
R2  0.740  0.774 0.916  0.951 
RMSE 0.441 m  0.412 m 0.249 m  0.191 m 
  WST   WST  
R2  0.436  0.466 0.858  0.875 
RMSE 0.666 0C   0.648 0C  0.333 0C   0.313 0C  
 
    These statistical results, however, show that regression analysis is poor to 

characterize the relationship between both the digital data of TM and SAR and the 

water quality parameters in this case study. The main reason is the poor ability of 

regression analysis to model the unknown non-linear transfer function (Keiner and 

Yan 1998) in surface waters. Although regression can be used to model well for linear 

or known non-linear transfer functions, a linear regression algorithm cannot estimate 

the relationship adequately between in situ measurements and satellite observations in 

the Gulf and coastal archipelago of Finland. 

    The neural network was trained using one group of sub-datasets (27 points data) for 

surface water quality parameters, including chlorophyll-a (Chl-a), suspended sediment 

concentration (SSC), turbidity (Turb), Secchi disk depth (SDD), and water surface 

temperature (WST) using Landsat TM and ERS-2 SAR data on 16th August 1997. 

Table 5.9 gives the statistics for the comparison between the results using the neural 

network and using linear regression analysis. R 2  and RMSE for the neural network 

were calculated in the same way as in the case of regression analysis. Figure 5.3 

shows an example of turbidity for R 2  and RMSE values of the validation data set 

(i.e., the other group of sub-datasets, 26 points data) as a function of the number of 

hidden layer neurons. It is clear that the estimation accuracy increases with the 
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increasing number of hidden nodes. Using the validation data set, 5 hidden nodes for 

each input are good enough in our study [P4]. 

    The RMSE for estimation results using the neural network algorithms were about 

11.2% for chlorophyll-a, 15.2% for suspended sediment concentration, 11.2% for 

turbidity, 7.3% for Secchi disk depth and 1.6% for water surface temperature, which 

are significantly better than those of regression analysis, 23.1%, 35.9%, 32.8%, 

16.5%, and 3.3% respectively [P4]. The graphical comparisons between the results of 

regression analysis and the neural network are shown in Figure 5.4, Figure 5.5, Figure 

5.6, Figure 5.7 and Figure 5.8 respectively for chlorophyll-a, suspended sediment 

concentration, turbidity, Secchi disk depth and water surface temperatures. These 

results clearly indicate that the performance of the neural network is substantially 

better than the performance of regression algorithms. This is expected because of the 

non-linear nature of the transfer function between the surface water characteristics 

and satellite remote sensing observations. 

    The results of this study also support those of the other previous results (e.g., 

Leivuori and Vallius 1998). The 1-10 mg/l concentration of suspended sediments 

shown in Figure 5.5 for the Gulf of Finland does not really limit the phytoplankton 

growth. However, the small spatial correlation ( R 2 = 0.04) between chlorophyll-a and 

suspended sediment concentration and the presence of high sediment/low chlorophyll-

a concentration (Figure 5.9) suggest that the limiting factor at that time was the 

availability not of nutrients but of light, which can be observed in higher 

concentrations of suspended sediments in the study area (see Fig. 5.9). 

    Although some other studies have used the general correlation between 

chlorophyll-a and suspended sediment concentration in coastal waters to substitute the 

observations of suspended sediments as chlorophyll-a, it seems that the results in this 

study do not support this method. On the other hand, turbidity is always used as a 

proxy for suspended sediment concentration in the Gulf of Finland. Secchi disk depth 

is another major parameter used in the study area because it has a good correlation 

with both chlorophyll-a and suspended sediments. Furthermore, water surface 

temperature is one of other major parameters in surface waters. The neural network 

algorithm, however, appears to estimate these major parameters in surface waters 

independently of the relationship to each other. 
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Figure 5.3 Turbidity RMSE and R 2  for the neural network as a function of the 
number of hidden nodes  
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Figure 5.4 Comparison of results from regression analysis (o) and neural network (*) 
for chlorophyll-a estimation 
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Figure 5.5 Comparison of results from regression analysis (o) and neural network (*) 
for suspended sediment concentration (SSC) estimation 
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Figure 5.6 Comparison of results from regression analysis (o) and neural network (*) 
for turbidity estimation 
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Figure 5.7 Comparison of results from regression analysis (o) and neural network (*) 
for Secchi disk depth (SDD) estimation 
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Figure 5.8 Comparison of results from regression analysis (o) and neural network (*) 
for water surface temperature (WST) estimation 
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Figure 5.9 A relationship plot of chlorophyll-a ( gµ /l) estimated and suspended 

sediment concentration (mg/l) estimated by neural network. 

 

    The methodology presented in this study can be applied to other coastal waters 

where remote sensing of surface water quality information is important. The neural 

network algorithms of surface water quality approximation should also be applied to 

present and near-future sensors such as MODIS and MERIS. Multi-temporal use of 

satellite remote sensing for the estimation of major parameters in surface waters will 

permit to determine seasonal and yearly cycles and trends in coastal waters such as in 

the Gulf of Finland. 

 

5.6 Empirical estimation using AVHRR data 
 

AVHRR data have widely been applied to detect changes in environmental studies. In 

this study, I present empirical algorithms of AVHRR data to estimate major water 

quality variables in the Gulf of Finland and Finnish archipelago. Both AVHRR data 

and in situ measurements are available for April and May 2000. In the study, 

however, AVHRR data for 18th and 21st April employed the same in situ 

measurements on 18th April available in empirical algorithms, while there were no 

AVHRR close to in situ measurements of 4th April, 10th April and 8th May. In each 
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ship-borne line sampled 11 in situ data points from 19:00 pm of the previous day to 

9:20 am of the day. Table 5.10 gives the summary of AVHRR and in situ materials 

used in this study. 

 
Table 5.10: The summary of AVHRR and in situ materials (11 samples) in this study. 
In situ points (11) AVHRR Day-difference 
Chl-a, Turb, WST (18April) 3data (16, 17, 18April) 2daysdiff 
Chl-a, Turb, WST (18April) 1data (21April) 3daysdiff 
Chl-a, Turb, WST (2May) 3data (1May, 2May, 3May) 1daydiff 
Chl-a, Turb, WST (16May) 1data (18May) 2daysdiff 
Chl-a, WST (22May) 3data (21May, 22May, 23May) 1daydiff 
Chl-a, WST (30may) 3data (29May, 30May, 31May) 1daydiff 
  
Note: 18April means 18th April 2000; Chl-a means chlorophyll-a; Turb means 
turbidity; WST means water surface temperature; 2daysdiff means 2-days difference 
between AVHRR data and in situ measurements; 3data means three dates of AVHRR 
data. 
 

5.6.1 Simple regression and correlation analyses 

 

Simple regression analyses for chlorophyll-a (Chl), turbidity (Turb), and water surface 

temperature (WST), in relation to AVHRR in April and in May 2000, are presented in 

Table 5.11 and Table 5.12, respectively. Both chlorophyll and turbidity have better 

correlations using the difference of Band 1 and Band 2 (B1-2) than the single Band 1 

and/or Band 2. The highest correlation is of 2R  = 0.720 between chlorophyll and the 

difference of B1-2, while the highest correlation is of 2R  = 0.702 between turbidity 

and the difference of B1-2 on 2nd May 2000. Therefore, this result strongly supports 

the results from previous studies such as Woodruff et al. (1999) to estimate turbidity 

using AVHRR data. However, the WST has a higher relationship ( 2R  = 0.545) with 

the difference of Band 4 and Band 5 (B4-5) than the single Band 4 and/or Band 5 on 

18th April, while the WSTs of other five data sets have less relationships with the 

difference of B4-5 than the single Band 4 and/or Band 5. This may be caused by the 

different date acquisitions of AVHRR data used in the study. Fig. 5.10 shows an 

example of turbidity detection using the simple empirical algorithm from AVHRR 

data on 21st April 2000. 
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Figure 5.10: Turbidity detection using AVHRR imagery in the Gulf of Finland and 
Gulf of Bothnia. 
 
Table 5.11: Correlations ( 2R ) of water quality variables with AVHRR bands and 
band differences in April 2000. 
 
 Apr 18 Apr 18 Apr 18 Apr 21 Apr 21 Apr 21 
 CHL Turb WST CHL Turb WST 
B1 0.051 0.003 0.000 0.049 0.242 0.000 

B2 0.102 0.002 0.003 0.031 0.140 0.015 

B3 0.219 0.074 0.077 0.005 0.056 0.022 

B4 0.049 0.327 0.079 0.027 0.805 0.531 

B5 0.009 0.072 0.017 0.064 0.806 0.423 

B1-2 0.237 0.295 0.104 0.115 0.595 0.409 

B4-5 0.227 0.421 0.545 0.141 0.154 0.092 

 
Note: CHL=Chlorophyll-a, Turb=turbidity, WST=Water surface temperature, B1=Band1 etc., 
B1-2=Band1-Band2, B4-5=Band4-Band5, Apr18=April 18 etc. 
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Table 5.12: Correlations ( 2R ) of water quality variables with AVHRR different bands 

and band differences in May 2000. 

 
 May 02   May 16   May 22  May 30  
 CHL Turb WST CHL Turb WST CHL WST CHL WST 
B1 0.344 0.410 0.389 0.029 0.009 0.000 0.000 0.011 0.028 0.019 
B2 0.338 0.411 0.403 0.057 0.001 0.008 0.000 0.004 0.030 0.030 
B3 0.254 0.321 0.348 0.080 0.000 0.038 0.049 0.015 0.003 0.005 
B4 0.613 0.641 0.596 0.235 0.321 0.316 0.101 0.214 0.005 0.346 
B5 0.601 0.618 0.537 0.136 0.248 0.259 0.086 0.213 0.003 0.288 
B1-2 0.720 0.702 0.795 0.310 0.041 0.011 0.009 0.121 0.106 0.003 
B4-5 0.016 0.028 0.098 0.185 0.042 0.019 0.115 0.043 0.018 0.157 
Note: CHL=Chlorophyll-a, Turb=turbidity, WST=Water surface temperature, B1=Band1 etc.,  
B1-2=Band1-Band2, B4-5=Band4-Band5, May02= May 02 etc. 
 
    An examination of the correlation ( 2R ) between water quality variables such as 

chlorophyll-a, turbidity and water surface temperature in April and May 2000 is 

presented in Table 5.13. The results indicate that turbidity has higher correlations with 

chlorophyll-a in May ( 2R =0.880 and 2R =0.789) than those in April ( 2R =0.043 and 
2R = 0.008). This may suggest that the turbidity in the study area was significantly 

dependent on plankton biomass in May, whereas it was slightly dependent on 

plankton biomass in April in the used data set [P2, P6].  

 
Table 5.13: Correlations ( 2R ) of water quality variables in April and May 2000 (11 
points for each ship-sampling line). 
 
 Apr 04 Apr 04 Apr 10 Apr 18 Apr 18   
 CHL Turb CHL CHL Turb   
Turb 0.043   0.008    
WST 0.066 0.109 0.345 0.013 0.537   
 May 2 May 2 May 8 May 16 May 16 May 22 May 30 
 CHL Turb CHL CHL Turb CHL CHL 
Turb 0.880   0.789    
WST 0.296 0.568 0.241 0.453 0.279 0.130 0.019 
 
Note: CHL=Chlorophyll-a, Turb=turbidity, and WST=Water surface temperature 
 
    Material examination of the correlations ( 2R ) between observed intensities at 

different AVHRR channels (bands) of April and May 2000 are presented in Table 

5.14 and Table 5.15. Due to cloudy weather AVHRR images were not available for 

all the dates of in situ measurements. Hence, AVHRR data with a max three-days 

difference to the dates of in situ measurements were also checked and employed to 

estimate major water quality variables used in the study (see Table 5.10). Table 5.14 
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shows that the correlations of AVHRR five bands on 18th April ranged from 0.002 to 

0.967 and on 21st April ranged from 0.051 to 0.974. Table 5.15 shows that the 

correlations of AVHRR bands on 2nd May ranged from 0.016 to 0.982, on 16th May 

from 0.151 to 0.992, on 22nd May from 0.051 to 0.991, and on 30th May from 0.002 to 

0.996. These differences among AVHRR bands imply that these bands may either 

change significantly at any site or change differently at all sites. This may also have a 

significant effect on the results of data analysis. 

    The results from a simple regression analysis indicate that these water quality 

variables can be detected using the band difference of Band1 and Band2 of AVHRR 

data, but the estimated accuracy is too low to monitor water quality characteristics in 

the area. However, simple regression method is recommended to find relationships of 

AVHRR bands with water quality parameters in the area. 

 

Table 5.14: Correlations ( 2R ) of AVHRR bands in April 2000 available. 
 Apr 18    Apr 21    
 B1 B2 B3 B4 B1 B2 B3 B4 
B2 0.967    0.965    
B3 0.852 0.889   0.872 0.951   
B4 0.003 0.002 0.013  0.228 0.116 0.051  
B5 0.016 0.004 0.008 0.774 0.289 0.159 0.075 0.974 
Note: B1=Band1, B2=Band2, B3=Band3, etc.,  
 
Table 5.15: Correlations ( 2R ) of AVHRR bands in May 2000 available. 
 May 02    May 16    
 B1 B2 B3 B4 B1 B2 B3 B4 
B2 0.982    0.992    
B3 0.693 0.679   0.860 0.867   
B4 0.028 0.040 0.058  0.151 0.125 0.142  
B5 0.016 0.023 0.053 0.973 0.275 0.247 0.259 0.949 

 May 22    May 30    
 B1 B2 B3 B4 B1 B2 B3 B4 
B2 0.991    0.996    
B3 0.217 0.203   0.683 0.684   
B4 0.281 0.241 0.111  0.029 0.025 0.005  
B5 0.210 0.184 0.051 0.915 0.009 0.007 0.002 0.971 
Note: B1=Band1, B2=Band2, B3=Band3, etc. 
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5.6.2 Multivariate regression algorithms using AVHRR data 

 

Chlorophyll-a (CHL) was derived using various independent variables in multivariate 

algorithms in our study. Using digital number values of AVHRR all 5 bands for April 

18, 2000, for example, CHL can be estimated applying Equations (4.13) 

 

CHL = 43.5979-5.8544(B1)+6.7506(B2)-0.0321(B3) 

+0.1625(B4)-0.2675(B5)     (5.14) 

 

with the coefficient of determination 2R  =  0.624 and with the root mean square error 

RMSE = 2.577 gµ /l. 

    The summary of chlorophyll-a retrievals from AVHRR bands is presented in Table 

5.16. The results show that the accuracy of chlorophyll-a derived from multivariate 

retrievals using AVHRR bands is better than those from simple regression analyses in 

the case study. This suggests that all AVHRR bands provide more information of 

chlorophyll-a concentration than what a single AVHRR band does in the area [P2]. 

 
Table 5.16: The summary of chlorophyll-a retrievals from AVHRR bands.  
CHL B1 B2 B3 B4 B5 0A  R 2  RMSE 
Apr18 -5.8544 6.7506 -0.0321 0.1625 -0.2675 43.5979 0.624 2.577 
Apr21 -6.7658 7.2397 -0.1368 -1.4295 1.4309 31.4208 0.407 6.001 
May02* 0.0013 -0.0008 -0.0010 0.0040 0.0086 -3.1533 0.885 6.237 
May16 -0.5657 0.5458 0.5153 1.6702 -0.3126 -512.522 0.808 2.268 
May22 -0.0330 0.0303 0.0042 0.0386 -0.0182 -62.0479 0.543 1.046 
May30 0.0752 -0.0731 -0.0063 0.3109 -0.3363 91.2915 0.783 0.581 

Note: Chl= chlorophyll-a, B1= Band1 etc., = the coefficient of determination, 
RMSE = root mean square error, *=1.0e+003 

R 2

 
    Multivariate regression algorithms for turbidity (Turb) showed differences in either 

variable selection or statistical quality. Therefore, using the digital number values of 

AVHRR 5 bands for April 18, 2000, for example, according to Eq. (4.13), Turb can 

be derived by 

 

Turb = -71.7451+0.0758(B1)-0.0210(B2)-0.0373(B3) 

+0.1208(B4)-0.0576(B5)     (5.15) 

 

with the coefficient of determination 2R  = 0.778 and with RMSE = 1.387 FNU. 
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    The summary of multivariate turbidity algorithms from AVHRR bands is presented 

in Table 5.17. The results indicate that the estimated accuracy of using multivariate 

turbidity algorithms is much better than that of using simple regression analyses. This 

means that the variation in turbidity is significantly correlated to all AVHRR bands in 

the study materials. 

 
Table 5.17: The summary of turbidity retrievals from AVHRR bands.  
Turb B1 B2 B3 B4 B5 0A  R 2  RMSE 
Apr18 0.0758 -0.0210 -0.0373 0.1208 -0.0576 -71.7451 0.778 1.387 
Apr21 -0.0263 0.0877 -0.0293 0.1150 -0.0079 -212.983 0.851 0.798 
May02 0.1183 -0.0673 -0.0822 0.6345 0.7734 -363.719 0.944 0.524 
May16 -0.0819 0.0768 0.0692 0.2102 0.0240 -82.8665 0.637 0.511 

Note: Turb= turbidity, B1= Band1 etc., = the coefficient of determination, RMSE 
= root mean square error. 

R 2

 

    Water surface temperature (WST) was estimated using various independent 

variables in multivariate algorithms in this study. Using digital number values of 

AVHRR bands for April 18, 2000, for example, WST can be derived applying 

equations (4.13) 

 

WST = 35.4104+0.0062(B1)-0.0009(B2)-0.0032(B3) 

+0.0724(B4)-0.0815(B5)     (5.16) 

 

with the coefficient of determination 2R  = 0.559 and with the RMSE = 0.257 C.  0

    The summary of multivariate WST algorithms from AVHRR bands is presented in 

Table 5.18.  

 
Table 5.18: The summary of WST retrievals from AVHRR bands.  
WST B1 B2 B3 B4 B5 0A  R 2  RMSE 
Apr18 0.0062 -0.0009 -0.0032 0.0724 -0.0815 35.4104 0.559 0.257 
Apr21 0.0018 -0.0199 0.0078 0.0610 -0.0330 -96.3723 0.823 0.189 
May02 0.0301 -0.0187 0.0055 0.8443 -0.4273 -112.933 0.861 0.260 
May16 -0.0521 0.0484 0.0922 -0.3962 0.5923 -74.3391 0.817 0.222 
May22 -0.0089 0.0087 0.0024 0.0278 0.0075 -98.2225 0.738 0.361 
May30 -0.0267 0.0336 -0.0044 0.1150 -0.0938 -40.6105 0.975 0.187 

Note: WST= water surface temperature, B1= Band1 etc., = the coefficient of 
determination, RMSE = root mean square error. 

R 2
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    These results indicate that multivariate WST algorithms using AVHRR bands can 

provide greater ability for estimating WST variations than those using simple 

regression analyses. 

    Although the correlation coefficients between SWT and Band1, Band2 and Band3 

of AVHRR are close to zero (see Table 5.18), the results using Equation (5.14) 

improved the SWT estimated accuracy slightly higher than that of employing the 

coefficients of Band1, Band2, and Band3 as zero in the study. The results also 

demonstrate that the retrievals of major water quality variables using multivariate 

empirical algorithms are better than those using simple regression analyses. This 

suggests that multispectral data includes more information of water characteristics. 

Therefore, the multivariate regression algorithms are recommended to use for surface 

water quality monitoring in the study area. 

 

5.6.3 Neural network algorithms using AVHRR data 

 

Similar empirical neural network algorithms as those employed for Landsat TM and 

SAR data were applied for AVHRR data. The input, on one hand, for chlorophyll-a 

and turbidity is AVHRR Band1 and Band2, while the input, on the other hand, for 

water surface temperature is AVHRR Band3, Band4 and Band5. In the hidden layer, 5 

nodes were also employed to train for the output of surface water quality parameters, 

including chlorophyll-a (Chl-a), turbidity (Turb), and water surface temperature 

(WST). Table 5.19 gives the statistics for the comparison between the results using 

the neural network and using simple regression and multivariate regression analyses. 

R 2  and RMSE  for the neural network were calculated in the same way as in the case 

of  regression analysis.  

 
Table 5.19: Correlation ( 2R ) comparison of simple regression analysis (SRA), 
multiple regression analysis (MRA) and neural network estimation (NNE). 
  SRA   MRA   NNE  
 CHL Turb WST CHL Turb WST CHL Turb WST 
Apr18 0.237 0.295 0.545 0.624 0.778 0.559 0.977 0.980 0.943 
Apr21 0.115 0.595 0.531 0.407 0.851 0.823 0.776 0.809 0.801 
May02 0.720 0.702 0.563 0.885 0.944 0.861 0.943 0.992 0.926 
May16 0.310 0.041 0.516 0.808 0.637 0.817 0.991 0.986 0.901 
May22 0.277 NA 0.707 0.543 NA 0.738 0.866 NA 0.890 
May30 0.388 NA 0.733 0.738 NA 0.975 0.979 NA 0.973 
Note: NA = no turbidity available 
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    Figure 5.11 shows an example of turbidity for R 2  and RMSE values of the 

validation data set as a function of the number of hidden layer neurons on May 02, 

2000. It is clear that the estimation accuracy increases with the increasing number of 

hidden nodes from 2 to 10. Based on experimentation, 5 hidden nodes for each input 

are good enough in this case study (see Fig. 5.11). 

    The graphical comparisons between the results of regression analysis and the neural 

network are shown in Figure 5.12, Figure 5.13, and Figure 5.14 as examples 

respectively for chlorophyll-a, turbidity, and water surface temperatures. These results 

clearly indicate that the performance of the neural network is much better than the 

performance of the regression algorithm. This is expected because of the non-linear 

nature of the transfer function between the surface water characteristics and satellite 

remote sensing observations. 

    These results of this study using AVHRR also support those from previous results 

(Zhang et al. 2000, Koponen 2001). Turbidity has a higher correlation with 

chlorophyll-a in May than in April 2000 (see Table 5.13). The probable reason is that 

the phytoplankton growth in the Gulf and coastal archipelago of Finland was faster in 

May than in April 2000. Moreover, lower correlations ( 2R = 0.043 and 2R = 0.008) 

between chlorophyll-a and turbidity in April 2000 might suggest that the limiting 

factor at that period was the availability of both nutrients and light in the study area.  
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Figure 5.11 An example for R 2  and RMSE values of the turbidity validation data set 
as a function of the number of hidden layer neurons on 2nd May 2000. 
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Figure 5.12: An example of the comparison between the results of regression analysis 
and the neural network for chlorophyll ( gµ /l) on 2nd May 2000. 
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Figure 5.13: An example of the comparison between the results of regression analysis 
and the neural network for turbidity (FNU) on 16th May 2000. 
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Figure 5.14: An example of the comparison between the results of regression analysis 
and the neural network for water surface temperature (WST) on 22nd May 2000. 
 

    More results will be presented using MODIS and MERIS data in the area in our 

near future studies. 

 

5.7 Comparison of chlorophyll-a estimation using optosensors 
 

Table 5.20 gives the comparison of chlorophyll-a estimation from AISA, Landsat TM, 

AVHRR and MODIS optosensors. The results indicate that the estimated accuracy of 

chlorophyll-a from narrow bandwidth data of optosensors (i.e., AISA and MODIS) is 

better than the accuracy from broad bandwidth data of optosensors (i.e., Landsat TM 

and AVHRR) using regression methods. In addition, the accuracy estimated from 

MODIS data using the neural network is slightly higher than the accuracy from 

Landsat TM and AVHRR data, even though the neural network was not yet applied to 

AISA data due to its large band numbers. 

 
 
 
 
 

61 



Table 5.20: Comparison of estimated results from AISA, Landsat TM, AVHRR and 
MODIS sensors. 
R  2 AISA LandsatTM AVHRR MODIS 
Regression 0.872 0.655  0.530  0.761  
NeuralNet Not yet 0.903  0.979  0.987  
 

    These and the previous results (e.g., Pullianen et al. 2001, Koponen et al. 2001 and 

2002) also show that the spectral resolution of remote optosensors is more significant 

than the spatial resolution of optosensors for water quality studies in the study region 

[P2]. 

 

5.8 Discussion 
 

In the international literature, water quality studies have shown results similar with 

those in this thesis. The results for individual scenes are not very consistent and show 

variability from 0.59 to 0.98 in 2R  (Lindell et al. 1999). For example, Dekker and 

Peters (1993) retrieved Secchi disk death (SDD) with 2R = 0.66 using Landsat TM 

data for their Dutch lakes. Lathrop et al. (1991) applied Landsat TM data to estimate 

turbidity for Green Bay and Central Lake Michigan with 2R = 0.84. Lavery et al. 

(1993) got 2R = 0.81 of the SDD retrieval for the Western Australia coast. Tassan 

(1987) estimated total suspended sediment (TSS) from TM data with 2R = 0.92. 

Lindel et al. (1999) produced a 2R  = 0.86 of chlorophyll-a estimation in Sweden 

lakes. Since values of water quality variables in the lakes and coastal areas of these 

countries were different from those in Finland, the results in this study are not same as 

theirs. For example, Koponen et al. (2002) derived SDD, turbidity, and chlorophyll-a 

for Finnish Lakes with 2R = 0.92, 2R = 0.85, and 2R = 0.93, respectively. In this 

thesis, however, the best results of SDD, turbidity, and chlorophyll-a are 2R = 0.95, 
2R = 0.96, and 2R = 0.92, respectively. These previous results show that water quality 

variables can be estimated using remotely sensed data with reasonable accuracy, but 

the limitation is their specific algorithms in different areas.  
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6. CONCLUSIONS 
 

In this study, remote sensing of water as well as basic radiative transfer theory and 

simulation methods on optical properties of natural waters were first reviewed. Semi-

empirical, simple regression and multivariate regression analysis, and neural network 

algorithms of surface water quality estimation were then applied using optical (e.g., 

AISA, Landsat TM, AVHRR and MODIS) data and microwave (e.g., ERS-2 SAR) 

data for the Gulf of Finland and the Finnish Archipelago Sea in August 1997 and 

from April to May 2000, respectively.  

    The focus in this study was on the following subjects:  

• Up to date, the digital evaluation of remotely sensed data has been used to 

estimate water quality parameters in lakes and coastal areas. Most of retrievals 

are employed empirical algorithms. They can provide site-specific predictions 

of water quality parameters with a reasonable accuracy, but are limited in their 

universal application. It is necessary to develop standard algorithms for a 

comprehensive analysis of surface water quality estimation in the Gulf of 

Finland and the Finnish Archipelago Sea.  

• The result of SDD using the semi-empirical algorithm is not very good, 

obviously because the assumptions were adopted when the algorithm was 

deduced. For example, the retrieved R2 for SDD is 0.521, which is smaller 

than that of SDD using the single red band (TM3) (R2 = 0.530) in the simple 

regression analysis. This means that single band or band ratio algorithms can 

be used to estimate SDD instead of the semi-empirical ones in the area. 

• Simple regression analysis was applied to find the relationship between single 

bands (or band ratios and their combinations) and water quality parameters in 

the area. The highest relation (R2 = 0.664) is that of the red band (TM3) and 

turbidity. It has also demonstrated that band ratios (e.g., blue-to-green ratios) 

do not provide the best result for chlorophyll-a retrieval in the area. However, 

their combinations show better results than single bands or band ratios, e.g., 

for chlorophyll-a with (R2 = 0.677), for suspended sediment with (R2 = 0.542), 

for turbidity with (R2 = 0.690), and for SDD with (R2 = 0.724). 

• Multivariate regression analysis was used to estimate water quality parameters 

resulting in higher accuracy than those of using semi-empirical algorithm and 
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simple regression analysis. This is because multi-spectral TM bands can provide 

more information of surface water conditions than single bands or band ratios, for 

example, chlorophyll-a as (R2 = 0.542), suspended sediment as (R2 = 0.572), 

turbidity as (R2 = 0.709), and SDD as (R2 = 0.740). However, the chlorophyll-a 

retrieval (R2 = 0.542) of using multivariate egression is not as good as that of 

using their combinations of single bands and band ratios (R2 = 0.677). In addition, 

band ratios and their combinations of narrow bands (e.g., AISA and MODIS) have 

a better ability than those of broad bands (e.g., TM and AVHRR) to retrieve 

chlorophyll-a, e.g., for band ratios of AISA data as (R2 = 0.872) and for their 

combination of MODIS data as (R2 = 0.761). Therefore, a comprehensive analysis 

of the performance of standard algorithms should be beneficial for the current use 

of remote sensing data and future efforts on algorithm development. 

• The results indicated that the neural network adequately described the non-

linear transfer function between the Landsat TM and ERS-2 SAR observations 

and the major water quality variables of surface waters, e.g., chlorophyll-a 

with (R2 = 0.903), suspended sediment with (R2 = 0.888), turbidity with (R2 = 

0.942), and SDD as (R2 = 0.916). Clearly, these results are much better than 

those of using semi-empirical algorithm, simple and multivariate regression 

analyses. This is because the neural network is able to model the non-linear 

transfer function with a higher accuracy than the algorithms of traditional 

regression analyses.  

• The additional use of SAR data combined with TM data in multivariate 

regression analysis and neural network algorithms can slightly improve the 

approximation for parameters in surface waters at about 3.5%. However, this 

small improvement is only marginal to estimate water quality parameters in 

our case study. 

• AVHRR can be applied to monitor surface water conditions, e.g., chlorophyll-

a and/or turbidity and water surface temperature in the area. But AVHRR data 

are not sensitive to chlorophyll-a changes in our case study.  
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7. FUTURE RESEARCH 
 

Remote sensing of water quality in the Gulf of Finland will be further investigated. 

Future studies will be focused on the following: 

 

1) AISA spectrometer data (430-900 nm) will be further used to develop 

empirical algorithms which can also be applied to more MODIS and new 

MERIS data in the Gulf of Finland; 

2) Thermal infrared (TIR) data and microwave data from new sensors 

onboard the ESA ENVISAT-1 satellite (e.g., MERIS and ASAR data) will 

be further applied to water quality studies in the study area; 

3) Semi-empirical algorithms for surface water quality variables such as 

Secchi disk depth, turbidity and chlorophyll-a will be developed using new 

satellite optical data; 

4) Sea surface temperature (SST) and other factors affecting surface water 

quality retrievals will be further evaluated in future studies. 
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8. SUMMARY OF THE APPENDED PAPERS 
 

[P1] 

 

Empirical algorithms for determining the Secchi disk depth (SDD) are developed and 

employed using optical (e.g., Landsat TM) and microwave (e.g., ERS-2 SAR) 

remotely sensed data from the Gulf of Finland and the Archipelago Sea. The SDD is 

an important optical measure of water quality in the study area, where the coastal 

water considerably attenuates light because of the presence of phytoplankton, 

suspended matter and yellow substance. A semi-empirical algorithm of SDD was 

developed in this study, by which the result of using the semi-empirical algorithm was 

also compared with results of using multivariate regression and neural network 

methods. The obtained results show that the accuracy of SDD estimation using a 

neural network-based method is much higher that of the semi-empirical or 

multivariate approach. On the other hand, the additional use of SAR data only slightly 

improved SDD estimation when compared with the use of TM data only. Although 

the improvement is marginal, the results suggest that there may be some SAR 

backscattering signatures correlated to SDD measurements in the area. However, such 

a small improvement is not very helpful for the practical estimation of SDD. In the 

future, the technique of using combined optical and microwave data still needs to be 

refined using, e.g., MERIS and ASAR data. 

 

[P2] 

 

Chlorophyll-a is one major factor affecting water environment and produces visible 

changes in the surface of water. Such changes in the water surface are measurable 

with remote optosensors. This paper describes an application of neural networks to 

chlorophyll-a estimation in coastal waters in the Gulf of Finland using remote 

optosensors. AISA data was employed to develop empirical algorithms in this study, 

while Landsat TM, AVHRR and MODIS data were applied to estimate chlorophyll-a. 

The comparison of chlorophyll-a estimation from AISA, TM, AVHRR and MODIS 

optosensors was presented in the study. The results indicated that the estimated 

accuracy of chlorophyll-a from narrow bandwidth data of optosensors (i.e., AISA and 

MODIS) is better than the accuracy from broad bandwidth data of optosensors (i.e., 
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TM and AVHRR) using regression methods. In addition, the accuracy estimated from 

MODIS data using the neural network is slightly higher than the accuracy from TM 

and AVHRR data, even though the neural network was not applied to AISA data due 

to its large band numbers. The results also show that the spectral resolution of remote 

optosensors is more significant than the spatial resolution of optosensors for water 

quality studies in the region. 

  

[P3] 

 

Observations of turbidity, Secchi disk depth, and suspended sediment concentration 

provide quantitative information concerning water quality conditions. Additionally, 

these observations can be used in various numerical schemes to help characterize the 

trophic state of an aquatic ecosystem. Currently, the digital evaluation of Landsat TM 

information at visible and near infrared (NIR) wavelengths has been used to estimate 

water quality variables. Although Landsat TM sensor is able to present a synoptic 

monitoring of water quality problems, its quantitative use is a difficult task.  

    On the other hand, radar remote sensing is quite different from optical remote 

sensing in many ways. A radar signal does not significantly penetrate into the water. 

Instead, it reflects from the water surface. Hence, the radar backscattering signatures 

can only carry information on: 1) water surface geometry (waves and ripples); 2) 

materials on water surface; and 3) permittivity (dielectric constant) of water top layer. 

Nevertheless, water surface geometry can be related to such properties as water 

bottom topography, internal waves/currents, and slicks on surface. The obtained 

results indicate that the network is able to model the nonlinear transfer function with 

higher accuracy than algorithms based on traditional regression analyses, although the 

regression analyses are still good methods to apply for transfer functions in which 

linear behaviour or nonlinear transfer functions are well known. In addition, both 

multivariate and neural network approaches using combined TM and SAR data 

improves very little (e.g., less than 5%) the estimation accuracy of these water quality 

variables.  
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[P4] 

 

Four major parameters of surface water quality such as chlorophyll-a, suspended 

sediment concentration, turbidity and Secchi disk depth were estimated using an 

empirical neural network algorithm from the combined optical (i.e., Landsat TM) data 

and microwave (i.e., ERS-2 SAR) data in the Gulf of Finland. The results of using the 

empirical neural network were compared with those of using traditional regression 

analyses. Application of this neural network shows that the estimation accuracy for 

these major characteristics of surface waters is much better than those from regression 

analyses. The results also indicate that microwave data can assist to improve the 

estimation of these characteristics, although the improvement obtained for parameter 

retrieval is limited in the study area. This means that it is possible to develop surface 

water quality algorithms in which microwave data are used as supplementary data to 

optical observations.  

    In addition, thermal data (TM6) from Landsat TM was also taken into account in 

this study, although TM6 is measuring the emitted thermal radiance of the water body 

and not the reflected light. It is true that the thermal data (TM6) has no or very little 

effects on optical measurements such as SDD as they are relatively weakly correlated 

to the sea surface properties. Since water surface temperature is mainly related to the 

emission properties and the physical temperature of water body, the surface roughness 

has an effect on thermal radiance. The results in the study demonstrate that the TM6 

does have some effects on Chl-a, SSC and turbidity retrievals, but it has almost no 

improvement to SDD. Therefore, the relationship between water surface temperature 

and surface water quality still needs to be further investigated in future studies. 

 

[P5] 

 

Optical, thermal infrared (TIR), and microwave remotely sensed data were separately 

applied to chlorophyll-a and turbidity estimation in the study. Although the previous 

studies were also dealing with water quality retrievals in coastal waters of the Gulf of 

Finland using combined optical and microwave data, the contribution of TIR data to 

chlorophyll-a and turbidity estimation was not separately discussed before.  

    TIR and microwave remote sensing are significantly related to the surface 

roughness of water. Both TIR and microwave sensors measure water surface 
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properties, instead of the water mass below the surface. This means that the TIR 

sensor measures the emitted thermal radiance of the water body, but not the reflected 

radiance from the water surface. Since the water surface temperature is mainly related 

to the emission properties and the physical temperature of water body, the surface 

roughness has an effect on thermal radiance. The results indicate that the contribution 

of TIR to chlorophyll-a and turbidity estimation is up to 9.9% and 1.5% using 

multivariate regression analysis, while microwave data only improved 1.9% and 0%, 

respectively. On the other hand, improvements of chlorophyll-a (6.2%) and turbidity 

(6.7%) from TIR data using the neural network are slightly better than those of 3% 

and 3.5% from microwave data, respectively. The reason for such different 

improvements still needs further investigations.    

 

[P6] 

 

Satellite remote sensing provides an adequate synoptic and repetitive overview of 

environmental parameters in oceanography, especially in the coastal areas where sea 

surface temperature (SST) monitoring allows a precise description of upwelling’s 

dynamic. Passive infrared remote sensing such as NOAA AVHRR is one of the 

techniques used for Earth surface observations from space.  

    SST measurement using AVHRR thermal infrared (TIR) band data is now an 

operation reality. However, the error factors in the SST estimation are not limited to 

the atmospheric effects. Sea surface effects (SSE) were surveyed to suggest that it 

should be a mainly error factor. The SSE includes salinity of sea water and wind 

speed, affecting the emission of the sea surface. The results show that there is a 

difference between SST and the water temperature below the sea surface. Such a 

difference is mainly affected by the salinity and wind speed, which will be further 

discussed in future studies. 
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