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Chapter 1 
 
Introduction 
 
 
 
 
 
 
1.1 Motivations and background 
 
Natural gas pipeline networks, or pipeline systems, are used to transport gas from sources to 
consumers over long distances. The consumption of natural gas has grown steadily over the past 
few decades as it is a clean and easy-to-use fuel in energy production and an important raw 
material for the chemical industry. Consumption has increased partly because old, existing gas 
reserves are being exhausted within a foreseeable time frame and partly because new 
geographical regions (with few or no own reserves) are increasing their usage of natural gas. 
This increase also implies an increase in the transport of gas. 
 
The pipeline network owners and operators have always been faced with the challenge of 
obtaining sufficient information to support their operations and it has always been their 
responsibility to transport the gas in a safe and secure manner, fulfilling what has been agreed 
with gas consumers directly or with external parties providing gas trading services. In the early 
days, long-term contracts were used and the pipeline system operation remained quite 
stationary.  Seasonal variations in natural gas consumption could, in many cases, be 
approximated by constant consumption over months or weeks, yielding approximate numbers 
still enabling an adequate analysis based on steady-state calculations. Steady-state optimisation 
was also used (and still is) to calculate optimal settings for operating the compressor stations in 
the pipeline system. Operating a wide pipeline system with large gas throughput requires a lot of 
compression and consequently, a large amount of energy, which accounts for a significant 
portion of operating costs. 
 
Over time, customers became increasingly demanding in that they discovered the benefit of 
short-term contracts and spot markets. This development was supported by government actions: 
the authorities in both the US and the European Union passed legislation stipulating a free 
market in natural gas. The free market allows both owners of gas resources and gas customers to 
select a pipeline system for today’s or tomorrow’s gas transport. Also the electricity market has 
been opened up. Short-term electricity trading has led to the use of high-power natural gas fired 
gas turbine power plants, which may be switched on or off very quickly without prior notice. 
Based on these factors, we might conclude that the good old days of almost steady-state 
operation are gone forever, to be replaced with dynamic and rapidly changing pipeline system 
operations. 
 
One aspect of the challenge facing pipeline system operators in this new dynamic context is to 
fully utilise their system transportation capacity today, tomorrow, next month and further into 
the future. They must try to sell any “holes” in their pipeline systems’ utilisation profile to avoid 
operating under capacity. In the new market context, operators need a dynamic simulator of the 
pipeline system for that purpose. Whereas, in the early days, the pipeline system owner used 
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steady-state optimisation to calculate optimal compressor station settings, this is now more or 
less outdated and must be replaced by dynamic optimisation tools. 
 
The literature on dynamic simulation, steady-state optimisation and dynamic optimisation 
(transient optimisation is frequently used for the latter term) uses the conservation and energy 
equations of a pipeline system, which are partial differential equations with respect to time and 
one space co-ordinate, as a basis. Especially dynamic models become very complex if a large 
and complex pipeline system is considered. If those models are used within an optimisation 
algorithm, where optimal profiles (functions of time) of important variables concerning 
compressor station operations are to be calculated, there is very little possibility for convergence 
to an optimal solution, not to mention in real time. 
 
Very few authors have considered the practical point of view of an industrial control engineer: 
look at the pipeline system as any process (“we have done this before”), make the necessary 
approximations, utilise the special structure of the target system, develop and test the method 
and finally implement it, although some theoretical considerations suggest that “this will 
probably not work”. 
 
The term “pipeline system” will in this work frequently be used instead of  “pipeline network” 
to underline the fact that a system may contain more components, such as control systems, than 
a network. Also, the word “system” offers a higher degree of abstraction that some parts of this 
work may need. 
 
 
 
1.2 Outline of the thesis 
 
The thesis describes the development of a simplified real-time, receding horizon optimiser for 
natural gas pipeline systems. It has been run in a simulation environment test bench using the 
Finnish natural gas pipeline system as the target system. The method developed is based on 
using linear system models to calculate the optimal values of the decision variables, while the 
contribution of past values of decision variables as well as past, present and future values of 
known and predicted disturbances are obtained using a simulation model of the pipeline system. 
The decision variables are discharge pressures of the compressor stations and the method was 
extended to allow discrete decision variables, which are the shutdown/start-up command 
switches of the compressor stations. 
 
Chapter 2 gives a general description of natural gas pipeline systems and some system 
components. The Finnish natural gas pipeline system is also described. 
 
Chapter 3 contains a brief description of dynamic as well as steady-state models used for 
pipelines and compressors. These models, or parts of them, are necessary for the optimisation 
method developed in later chapters.  This chapter also includes the results of searching the 
available literature on the subject of optimum operation of natural gas pipeline systems. The 
tradition of operations based on modelling knowledge can be said to have started in 1961. 
Simplified, ad-hoc, rule-based operations support tools have been used and full-blown expert 
systems have also been developed. Whereas steady-state optimisation is rather extensively 
studied in the literature, dynamic optimisation studies are rare. Advanced (model-based) control 
is reported for a few cases, which are actually not natural gas pipeline systems. 
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Chapter 4 presents the different pressure and gas flow rate responses when compressor stations 
are operated under discharge pressure control. In a separate appendix (Appendix A), the 
simulated step responses in three different operating points of the Finnish natural gas pipeline 
system are presented. From those responses, linear transfer function models are identified, part 
of which are presented in Appendix B. A simple formula for the gain of a linear transfer 
function for a pipeline segment is presented. Data from the Finnish pipeline system is presented 
together with simulated data in the same conditions showing that the simulator reproduces the 
actual system very well. The “linearity assumption” of the pipeline system is further 
strengthened by showing that the shut down transient of a compressor station may be 
constructed using a linear model. 
 
Chapter 5 starts with a definition of a general, non-linear receding horizon optimisation 
problem, followed by a short review of the literature on receding horizon optimisation problems 
and a review of linear optimal predictors. The chapter presents the prediction equation, which 
consists of two parts. The part independent of optimal decision variables, the free response 
prediction, is obtained from a simulation cycle of the pipeline system simulator and is of 
particular interest. The energy consumption of the compressor stations, which is a non-linear 
expression, is approximated by quadratic functions, which, combined with linear system models 
and linear constraints, gives a quadratic programming (QP) problem to be solved at each cycle 
of the optimiser. The accuracy of the quadratic cost function approximations is tested by 
performing a series of steady-state optimisation runs. Results of several test runs of the receding 
horizon optimiser in a simulator test bench are presented at the end of the chapter. 
 
Appendix C describes the software programs required to combine the commercial pipeline 
simulator with the receding horizon optimiser. Appendix D lists the details and parameters of 
the Finnish natural gas pipeline system needed by the optimiser. 
 
Chapter 6 starts with a derivation of the “equation constraint” required in the optimiser to 
describe compressor stations in shut down mode. Then, the problem of using only one single 
free response prediction, disregarding the possibility that compressor station shutdowns or start-
ups may occur, is discussed. The receding horizon optimisation problem containing discrete 
decision variables is formulated as a Mixed Logical Dynamical (MLD) problem, but the final 
optimiser is presented as a procedure executing a defined series of QP optimisations, instead of 
one large Mixed Integer Quadratic Programming (MIQP) problem. Step response models are 
used in the QP-based optimiser, but step response models as a basis for MLD systems are also 
discussed. Results of several test runs using the simulator test bench are presented. 
 
Chapter 7 contains the conclusions and subjects for further research. 
 
 
 
1.3 Contributions of the thesis 
 
The approach taken towards solving the problem of minimising the energy used by the 
compressor stations of a pipeline system while varying gas consumption acts on the system, is a 
practical one. The target has been to show that linearity assumptions lead to a simple and 
comprehensive solution, with good prospects for practical application. 
 
On a case basis, a linearity assumption, or at least a mild non-linearity assumption, regarding 
natural gas pipeline systems holds, which is shown in Chapter 4. This is true even for the 
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“drastic” event of shutting down a compressor station from high discharge pressure. The mild 
non-linearity of the shutdown event has not been presented in the literature. 
 
A very simple gain formula for the pressure of a pipeline segment is derived in Chapter 4.  
 
In this work, the free response prediction necessary in the prediction equation is obtained from a 
dynamic simulator of the pipeline system. The idea is not new and unique, but large-scale 
industrial applications like the one presented in this thesis have seemingly not been reported. 
 
The approximate quadratic cost function, linear system models and linearised compressor 
envelope constraints enable a QP solver to be used within the receding horizon optimiser. The 
approximate quadratic cost function contains some error, as shown in Chapter 5, but while the 
optimal solutions are usually heavily constrained, the degree of sub-optimality is not large. 
When compared with the actual pipeline system operating data, the optimiser results reveal that 
energy consumption savings of 5 to 8% can be achieved. 
 
In order to further verify the capability of the developed optimiser, an energy maximisation case 
was also simulated, where the energy consumption was 17.5% greater than in the corresponding 
minimum energy case. Conclusively, the optimiser is capable of providing solutions over a large 
part of the solution space. 
 
Mixed Linear Dynamical (MLD) systems are based on discrete-time, linear state-space models. 
Step response matrix models in model predictive control and optimisation can be expressed 
through a non-minimal discrete-time, linear state-space model. If this non-minimal state-space 
model is used as a basis for an MLD system, then model changes implemented in the prediction 
horizon do not produce results equivalent with MLD systems based on (minimal) state-space 
models. This result, and the use of step response models with MLD systems have not been 
reported in the literature. If the mixed dynamics, which the non-minimal state-space model does 
not provide, is necessary, then this can be approximately implemented with an ad-hoc model 
change method. 
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Chapter 2 
 
Natural gas pipeline systems 
 
 
 
 
 
 
 
Pipelines are used to transport fluids in large quantities over long distances. In addition, small-
scale local pipelines designed for specific purposes exist, for example dedicated pipelines 
serving an industrial area. Pipelines are used mainly to transport crude oil and natural gas; 
however, different oil products are also transported. Gas pipelines are also used for nitrogen, 
oxygen, pressurised air and gases used by the petrochemical industry such as ethane, propane 
and others. Multiphase pipelines are used increasingly, where liquid and gas phases co-exist in 
the same pipeline. 
 
A pipeline system consists of pipelines and other components, such as liquid and gas storages, 
pump and compressor stations, as well as equipment needed for the operations. 
 
 
 
2.1 Natural gas  
 
According to the BP Statistical Review of World Energy (2004), the proved reserves of natural 
gas world-wide totalled 175.78 trillion cubic metres at the end of 2003. The global reserves-to-
production ratio, which is equal to how many years the reserves would cover production, is 67.1 
years. Of the proved reserves, 40.8% are located in the Middle East, 35.4% in Europe and 
Eurasia and 4.2% in North America. The North American reserves-to-production ratio in 
particular, which stands at 9.5, indicates that imports of natural gas must increase in order not to 
exhaust own reserves within a short time. 
 
The individual area with the second largest reserves-to-production ratio, 81.2 years is the 
Russian Federation. Russia supplies 30% of the European total natural gas demand. 
 
On a world-wide and annual basis, consumption of natural gas equals production, while storage 
facilities play a minor role compared to the volumes discussed. 
 
Global consumption of natural gas grew by 2 % in 2003, which is less than the annual growth 
experienced in previous years. In the US, which is the largest natural gas market, consumption 
fell by 5 %, while imports of natural gas to the US increased to 16% of total consumption 
(Imam et al., 2004). 
 
Total consumption of natural gas world-wide was 2618 billion cubic metres (bcm). Of this 
amount 454.9 bcm were trade movements over national borders through pipelines and 168.8 
bcm were through liquefied natural gas (LNG) transports, usually using dedicated LNG tanker 
ships. 
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Natural gas consists mostly of methane (CH4), which makes it a clean fuel. Table 2.1 gives the 
composition of some selected natural gases (Finnish Natural Gas Association, 2004). 
 
 
 Russia, 

Urengoi 
Germany, 
Goldenstedt 

USA, 
Kansas 

The Netherlands, 
Groningen 

Norway, 
Troll 

Methane, CH4 98 % 88 % 84.1 % 81.3 % 93.2 % 
Ethane, C2H6 0.8 % 1.0 % 6.7 % 2.8 % 3.7 % 
Propane, C3H8 0.2 % 0.2 % 0.3 % 0.4 % 0.4 % 
Butane, C4H10 0.02 % - - 0.4 % 0.5 % 
Nitrogen, N2 0.9 % 10.0 % 8.4 % 14.3 % 1.6 % 
Carbon dioxide, 
CO2 

0.1 % 0.8 % 0.8 % 0.9 % 0.6 % 

 
Table 2.1 Examples of composition (in mol-%) of some types of natural gas. 
 
 
 
2.2 Pipeline system overview 
 
A natural gas pipeline system transports natural gas from sources (or supplies) to users through a 
system of interconnected pipes or pipeline segments. The distance from a source to a user may 
be thousands of kilometres. The gas in the pipeline is pressurised in order to maintain a pressure 
difference necessary for moving the gas. Compressors are used to pressurise the gas.  These are 
needed at regular intervals along the pipeline– usually every 50 to 150 kilometres, since the gas 
pressure decreases rapidly due to frictional losses. The most elementary components of a 
pipeline system are the pipeline segments and the compressors. In many cases one compressor is 
not sufficient to increase the pressure in the pipeline. In this case several compressors (or 
compressor units) are grouped to form compressor stations. Other pipeline system components 
are valves (discrete or continuously operating) and gas storages. Long-distance transmission 
pipelines operate under high pressures and gas users at the off-takes use pressure reduction 
stations to adapt the gas pressure to their needs. Blending stations are used for mixing gas from 
different sources having different characteristics. A typical task for a blending station is to 
regulate the heating value to a desired level. In some cases nitrogen is added at blending stations 
to dilute the gas (Hoeven and Fournier, 1995). 
 
In many cases, a pipeline system may be very complicated having multiple gas sources and 
multiple off-takes as well as a complex looped or nested loop structure. An example of a 
principal diagram of a pipeline system is shown in figure 2.1. Pipeline systems are usually 
classified as transmission systems or distribution systems. Transmission systems move gas in 
large quantities over long distances with few or no major supplies or off-takes between the end 
points of the pipeline. Often this kind of system is referred to as a gunbarrel system. 
Distribution systems have a large number of off-takes and may be significantly branched. 
However, many pipeline systems are combinations of transmission and distribution systems. 
The Finnish gas pipeline system is a typical representative of a combined system. 
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 S1 CS1     S2    CS2   CS3 
 
 
 
   O1             O2     O3 
 
 
     CS4      O4                      O5 
 
Figure 2.1 Pipeline system with 4 compressor stations (CS1,…,CS4), two gas sources (S1,S2), 
5 off-takes (O1,…,O5) and one loop. 
 
 
Compressor stations with multiple compressors can be arranged in different ways. Figure 2.2 
shows alternatives for arranging three units. 
 
 
 
 
 
 
 
 
 
Figure 2.2 Compressor station with 3 parallel units (left) and a series-parallel configuration 
(right) 
 
 
Discrete (or “on/off”) valves are used to block sections of pipelines and to select paths for the 
gas to flow through. An example is shown in figure 2.3, where discrete valves (on the left) are 
used to connect or disconnect pipes belonging to the same parallel pipeline system. The multiple 
valves at the compressor station to the right are used to select which units are used for the 
compression and how to distribute the gas between the four outgoing parallel pipes. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 An example of a pipeline system with parallel pipes. The number of parallel pipes 
changes from 3 to 4 at the compressor station. 
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Two main types of compressor units are reciprocating compressors and centrifugal 
compressors, of which the latter is more popular. The compressors are usually driven by gas 
turbines taking their fuel directly from the pipeline; however, electrical drives are increasingly 
common. Compressor stations usually have local control systems accepting external set points 
for either discharge pressure, suction pressure or gas throughput flow and commands for 
selecting the running units (start-up and shutdown commands). Such set points and commands 
may be received from higher-level control or optimisation systems. The local control systems 
include co-ordinating control of the individual compressor units within the station, such as load 
balancing and total efficiency maximisation. The local control system also takes care of 
equipment safety, of which the most important is surge avoidance. A compressor surges when 
the gas flow through it becomes too small. Surge is avoided by circulating gas from the 
discharge to the suction side by opening a bypass valve in a circulation line. Gas coolers are 
usually installed downstream each compressor unit, because of gas temperature increase in the 
compression. The circulation line starts after the gas cooler, otherwise gas circulation would 
elevate the gas temperature and possibly lead to compressor damage. 
 
Continuously operating control valves may be important components of the pipeline system 
depending on how the system is operated. A local pressure controller may control either the 
discharge or the suction pressure. See figure 2.4 for an example of control options. 
 
 
  set point      start-up/shutdown  
            
 
 
            set point 
 
 
 
 
 
 
 
 
Figure 2.4 Pressure controllers (PC) control the discharge pressure of a compressor station and 
the discharge pressure of a control valve. Unit selection, or start-up/shut down commands, are 
received by the local station control system. Dashed arrows indicate external set points and 
commands. 
 
 
 
2.3 Operating a pipeline system: an increasing challenge 
 
From Monitor and Control to Advanced Business Operations 
 
The gas pipeline system is monitored and controlled through a Supervisory Control and Data 
Acquisition System (SCADA) by human operators. If operators are given increased 
responsibility for managing the gas flow, they can be called dispatchers or gas controllers. The 
main part of their job is to keep the pipeline system within physical and contractual limits, in 
order words, to ensure feasible operation, which is not a trivial task. If there is additional time 
and motivation, they may try to optimise the operation of the system in some sense. According 

PC 

PC 

Local control 
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to the literature, minimisation of energy used at the compressor stations is one of the most 
important optimisation objectives.  
 
Revell and Thorne (1998) describe the liberalisation of the natural gas market in the UK. The 
owner of the national gas transmission system is obliged to provide third-party access to the 
system. This means that any natural gas trader may sell gas directly to customers, buying the gas 
transport service from the system owner, who is responsible for ensuring safe and secure 
operation of the system, as well as fair and consistent treatment of all system users. Moreover, 
the system must be balanced so, that the total amount of supplied gas is equal to the total 
amount of consumed gas over a given time interval, which is usually one day. 
 
Market deregulation in the US has also resulted in an open-access natural gas transportation 
market allowing customers to choose the lowest cost pipeline services, which in turn forces 
pipeline owners to reduce their operational costs (Brown and Chui, 1996). 
 
Schoder and Brandt (1999) list new natural gas market requirements such as the increasing 
number of short-term and spot market deliveries as well as increased trading as motives for 
improving the tools needed for pipeline system information management. These requirements 
on a complex pipeline system with a large number of supplies and a number of storage facilities 
make overall management a challenging task. Communication technology, both data 
communication within the pipeline owner’s organisation as well as data interchange with gas 
suppliers and customers, is stated to be the most important area to develop and maintain. Once 
successful communications systems have been implemented, further development of advanced 
tools like simulation and optimisation can be undertaken. 
 
Flexibility requirements have led to increasingly non-steady-state operation. The newer, high-
power gas turbine driven power plants cause large gas consumption variations. The increasing 
use of electrical drives for compressors connects the natural gas and electrical energy markets. 
“Park and Ride” services are developed where customers may leave purchased gas un-consumed 
and consume it later or vice versa. It is not possible to manage such services efficiently without 
dynamic modelling and simulation tools (Bryant and Varo'n, 2002). 
 
 
Natural Gas Consumption Forecasts 
 
Reliable and accurate natural gas consumption forecasts for shorter (such as 24 hours) or longer 
(such as 6 months) periods form the basis for any advance planning or predictive optimal 
operations. Typically, historical consumption data is used together with other inputs, which are 
also forecasts: for example, the weather (temperature, rainfall, cloud cover etc.) and the price of 
energy (natural gas, electricity, coal). Regression, time series or neural network models can be 
used to process the forecaster inputs to produce the gas consumption forecasts (Piggott, 2003). 
The various models may also operate on the same input data in parallel and a combined forecast 
can be formed as a weighted sum of the outputs of the individual models. If there is a danger of 
too much input data, which may cause over-modelling and consequently performance 
degradation, genetic algorithms (GA) may be used to create an optimum selection of input data 
(Piggott et al., 2000). In general, generating good forecasts for natural gas consumption is far 
from easy, either in the short- or long-term. Most probably, this task will become even more 
difficult with the global increase in  unforeseeable, short-term "spot market" activity in natural 
gas pipeline systems. It is even more difficult to obtain good forecasts for supply flows and also 
the achievable off-take flow forecast accuracy falls in the range of 5 to 10% relative error  
(Shaw et al., 1997). 
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2.4 The Finnish natural gas pipeline system 
 
The Finnish natural gas pipeline system consists of 1000 km of transmission pipeline and 1440 
km of distribution pipelines. There is a single supply point on the border between Russia and 
Finland. Three compressor stations are installed. The gas entering the Finnish system originates 
from the largest single natural gas fields in the world, the Urengoi and Jamburg fields in Siberia, 
3500 km east of Finland. The gas is very clean, with a methane content of 98% (See table 2.1) 
and a nitrogen content of only 0.9%. The first 30 km of pipeline became operational in 1974 to 
service the industry in Eastern Finland. Since then there has been a steady increase in the 
pipeline system and the number of gas customers. In the period 1974 to end-2003, the total 
cumulated natural gas consumption stood at 65.1 bcm. 
 
The total number of off-takes in the pipeline system currently stands at 194 while the total 
number of customers is 35780, including the smallest ones, which are domestic users. The total 
gas consumption in 2003 was 4.7 bcm. 
 
The distribution of natural gas consumption in Finland for 2003 is shown in table 2.2 (Finnish 
Natural Gas Association, 2004): 
 
 

Type of consumption  Share 
Heating: residential, commercial greenhouses  1.7 % 
District heating  5.7 % 
Combined district heat and power  39.5 % 
Condensing power  8.8 % 
Industrial co-generation  29.0 % 
   Steam boilers 2.5 %  
   Direct processes 10.8 %  
   Non-energy use 1.1 %  
   Space heating 0.8 %  
Industrial other use 15.2 % → 15.2 % 
Natural gas vehicles  0.1 % 
Total  100 % 

 
Table 2.2 Natural gas consumption in Finland 2003 
 
 
The Finnish natural gas pipeline system is supplied by a parallel pipeline (see figure 2.5) at the 
Finnish – Russian border. From the border, the pipeline continues as a parallel line (700 and 900 
mm pipe diameter) for a distance of approximately 100 km. The pipeline system is very 
branched and it has a “passive” (no compressor stations involved) loop in the northern part in 
the Tampere area. The system has three compressor stations located at Imatra, Valkeala and 
Mäntsälä with a total installed compression power of 63 MW and the total number of 
compressor units is 9. The stations are usually run under discharge pressure control (see figure 
2.4). The whole pipeline system, including the compressor stations, is equipped with modern 
instrumentation and the pipeline data needed for operating and decision making is collected by 
the SCADA system located in the main control centre in Valkeala. 
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The pipeline system is owned and operated by Gasum Oy, of which the Finnish state has a 24% 
share. While the Finnish pipeline system has only one supply point, Finland may derogate from 
the EU directive concerning open natural gas markets until the Finnish pipeline system is 
connected to some other EU country’s system. However, the Gas Exchange (“Kaasupörssi Oy”) 
providing Internet-based second-hand gas trading services has been in operation since 2001. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5 The Finnish natural gas pipeline transmission system. 
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Chapter 3 
 
Modelling, control and optimisation of natural gas pipeline 
systems 
 
 
 
 
 
 
 
3.1 Dynamic and steady-state pipeline models 
 
Non-stationary, isothermal gas flow in a pipeline segment may be modelled by a system of 
partial differential and algebraic equations as follows  (Osiadacz, 1996; Osiadacz and 
Chaczykowski, 2001): 
   

 
2 2P f w ( w ) ( w)gsin(θ) 0

x D x t
∂ 2 ρ ∂ ρ ∂ ρ

+ + ρ + + =
∂ ∂ ∂

 (3.1) 

 

 
P P ( w) 0
t x2

∂ ∂ ρ
+ =

∂ ρ ∂
 (3.2) 

   

 
w

zRTP
M

= ρ  (3.3) 

 
 zz f (P,T)=  (3.4) 

where 
 
x is the length along the pipeline segment 
t is the time 
P is the pressure 
g is the acceleration of gravity 
ρ is the density of the gas 
θ is the angle between the pipeline segment and the horizontal direction (x) 
f is the Fanning friction factor 
D is the inside diameter of the pipe 
A is the cross-sectional area of the pipe 
q is the mass flow rate 
w is the gas velocity 
z is the gas compressibility 
R is the universal gas constant 
T is the temperature of the gas 
Mw is the molecular weight of the gas 
fz is the compressibility as a function of pressure and temperature. 
 
The first equation above describes conservation of momentum and the second one is the mass 
balance equation or continuity equation. The third equation is the state equation for natural gas 
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and the last one is the expression for gas compressibility, for which a common choice is 

z1 z2
Pz 1 k P+k
T

= + , where kz1 and kz2 are constants (Kra'lik et al., 1984 A). 

 
The mass flow rate in the pipe can be calculated from the expression: 
 
 q wA= ρ  (3.5) 
 
Using this expression, the equations can also be written for pressure and mass flow, instead of 
pressure and density. 
 
For non-isothermal flow in a pipeline segment, the energy equation has to be added to the 
system of equations. Osiadacz and Chaczykowski (2001) use the following basic form: 
 

 
2 2

v v
w P wQρAdx ρAdx c T gh ρwAdx c T gh      

t 2 x ρ 2
      ∂ ∂

= + + + + + +      ∂ ∂      
(3.6) 

 
where 
Q is the heat addition to the gas per unit time and per unit mass of gas 
cv is the specific heat of the gas at constant volume 
h is the elevation of the pipe  
 
It is not usually possible to use this basic form as such. A simpler, more practical form of the 
energy equation is obtained for horizontal pipes (h=0) and neglecting the term 

( )
2wwAdx

x 2
 ∂

ρ ∂  
from the right hand side of (3.6). 

  
A pipeline system typically contains multiple segments. Each segment requires its own set of 
equations. A new segment has to be defined each time a compressor station (hereafter 
abbreviated CS), off-take, junction or branch disturbs the gas flow or when the angle θ, friction 
factor f or pipe diameter D changes. The value of the friction factor depends on the smoothness 
of the inside surface of the pipe and on the assumptions on the gas flow conditions (laminar or 
turbulent), (Schroeder, 2001). 
 
The set of pipeline system equations may be solved numerically for pressure P(x,t) and gas flow 
q(x,t) given suitable initial and boundary values. Typical boundary values are a given initial 
pressure profile P(x, t0) at the initial time t=t0 for all points x of the pipeline system and given 
mass flows q(xi,t), where the xi’s are the co-ordinates for supplies and off-takes. From a 
modelling perspective each CS is a “supply” for the next downstream pipeline segment. 
 
Each pipeline segment has it’s own pressure profile P(x,t) and flow profile q(x,t). Segment 
profiles can be combined to form pipeline system profiles. Figure 3.1 illustrates  an example 
pressure profile for a serial pipeline system with three CSs. 
 
 
 
 
 
 



   

 15 

 
  P(x, t0)  
     
  
 
 
 
 
 
         x 
                 
Figure 3.1 Pressure profile for a serial pipeline system with three CSs, which generate positive 
steps in the profile 
 
 
The basic dynamic pipeline segment model (3.1 to 3.4) may be adapted for different purposes. 
The full model presented above is valid for a broad range of gas flow conditions, including high-
velocity situations such as pipe rupture. If the gas velocity w can be assumed to be small, then 

the term ( )2w
x
∂

ρ
∂

 may be neglected. Other simplification possibilities are to assume horizontal 

pipelines only or to simplify the model down to a diffusion equation model (Osiadacz, 1998) 
only. It is rather common to assume isothermal conditions, in which case the energy equation 
(3.6) may be neglected. 
 
In steady state, for a horizontal isothermal pipeline segment with the pressures at the beginning 
and at the end of the segment, P1 and P2 respectively, and gas mass flow q12 are related through 
the equation (Furey, 1993): 
 
 

0.85392 2
1 2 12 12 12 12P P k z q q− =  (3.7) 

 
where k12 is a constant and z12 is the average compressibility of the gas in the segment. The 
exponent 0.8539 can be approximated by the value of 1 (Schroeder, 2001). If the elevation of 
the pipeline segment is essential, then the following expression yields: 
 

 
' 2

0.85392 2 12 2 1 12
1 2 12 12 12 12

12 12

k g(h h )PP P k z q q
z T

−
− − =  (3.8) 

where 
'
12k  is a constant 

h2 is the elevation of the end of the pipeline segment above some basic level 
h1 is the elevation of the beginning of the segment above some basic level 
T12 is the average gas temperature of the segment 
 
The average pressure P12 in the segment is calculated using the expression: 
 

 1 2
12 1 2

1 2

P P2P P P
3 P P

 
= + − + 

 (3.9) 
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In case of non-isothermal steady-state flow, the right hand side of (3.7) or (3.8) is modified so, 
that k12 is actually a function of ambient (or soil) temperature and segment start and end 
temperatures (Osiadacz and Chaczykowski, 2001). 
 
The properties of natural gas depend on the gas source; consequently, the molecular weight and 
compressibility of the gas vary with the source. If a pipeline system involves multiple gas 
sources, mixing rules for molecular weight and compressibility have to be applied, while these 
influence the flow distribution in the pipeline system. It may also be important to include 
property propagation equations for properties, which do not influence the flow distribution, 
such as heating value, ownership of gas and gas price. These properties may be calculated by 
weighted average formulas once the gas flows of the system have been solved (Hoeven and 
Fournier, 1995; Graham et al., 1996). 
 
The gas content in mass units of a given pipeline segment is defined as the line pack. This is 
considered to be a very important variable in gas pipeline system operations (Rachford and 
Carter, 2000; Pietsch et al. 2001; Bryant and Varo’n, 2002, among others). Assuming a constant 
average temperature, T12, and a constant average compressibility, z12, along the segment, the 
following general expression for line pack applies when the equation of state (3.3) is applied for 
each infinitesimal volume element Adx of the segment: 
 

 
2

1

x
w

12 12 x

Mm(t) A P(x, t)dx
RT z

= ∫  (3.10) 

 
 
 
3.2 Compressor models 
 
The active components of a pipeline system are the compressors, which add potential energy to 
the gas flow by increasing the pressure. The adiabatic head Ha is the energy content increase 
(kJ/kg) of the gas when it flows through a compressor (Sandler and Luckiewicz, 1987; Coker, 
1994): 
 

 s s d
a

w s

z RT PH 1
M P

γ  
 = − γ    

 (3.11) 

where 
Pd is the discharge (outlet) pressure of the compressor 
Ps is the suction (inlet) pressure of the compressor 
zs is the compressibility at compressor suction conditions 
Ts is the gas temperature at the suction point 
γ is defined as: 
 

 a

a

k 1
k

−
γ =  (3.12) 

 
where ka is the molar specific heat ratio of the gas assuming adiabatic compression. In an 
adiabatic compression process no heat is transferred into or out from the compressor. Strictly 
speaking, this assumption does not hold for practical compressors, even though adiabatic 
compression is assumed in many cases. If polytropic compression is assumed, the expression for 
polytropic head is the same as (3.11) but with γ defined as: 
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 n

n

k 1
k

−
γ =  (3.13) 

 
where kn is the exponent of the polytropic process having some value between 1 and ka. 
Adiabatic and polytropic compression processes are related through the polytropic efficiency ηp: 
 

 

a

a
p

n

n

k 1
k

k 1
k

−

η =
−

 (3.14) 

 
Theoretically, the power needed to pressurise the gas is obtained by multiplying the head by the 
mass flow of the gas through the compressor. Practical compressors have losses, which are 
taken into account by dividing the theoretical power by the overall efficiency of the compressor, 
which is a function of discharge pressure, suction pressure and gas flow, to obtain the power to 
be supplied by the compressor drive: 
 

 a
p

o d s

qHP
(P , P ,q)

=
η

 (3.15) 

 
Despite the rigid thermodynamic basics of the compressor modelling, the fact that practical 
compressors differ from ideal theoretical compressors and that the commonly used gas turbine 
drive makes modelling more complicated has led to the use of experimental models in many 
compressor modelling cases. The rotational speed, n, of the common shaft of the compressor 
assembly and the gas turbine drive parameterises the model equations for compressor adiabatic 
head Ha, compressor efficiency ηo, power consumption of the gas turbine Pf and power output of 
the gas turbine Pp as follows (Kra'lik, 1993): 
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 (3.16) 

 
where Ta is the ambient temperature and a1,a2,...,a9; b1,b2,...,b9; c1,c2,c3 and d1,d2,...,d9 are 
constants. The power consumption of the gas turbine (third expression of 3.16) can be 
considered to be linear in many cases (c3=0) (Goslinga et al., 1994; Osiadacz, 1998; Rachford 
and Carter, 2000 among others). 
 
The energy needed over a given time interval t0...t1 to pressurise the gas is obtained by 
integrating the gas turbine power over that time interval. Assuming c3=0 yields:  
 

 
1
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and 
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 f 1 1 0 2 pW c (t t ) c W= − +  (3.18) 

 
As mentioned earlier, CSs may contain multiple compressors (compressor units). The 
expressions above are valid for each compressor. The gas flow distribution between parallel 
compressors or pressures between serial compressors are not arbitrary: they are determined by 
the fine structure, such as pipe-work properties of the CS or, by how a local control system 
(Chapter 2, figure 2.4 ) controls the individual compressors. A complete mathematical model 
must obviously contain sub-models of the fine structure as well as local control algorithms. 
 
CSs, which are integrated into a pipeline system model, allow one of three variables: gas flow 
through the station, discharge pressure or suction pressure to be freely selected while the values 
of the two others are determined by the pipeline system characteristics. Usually the internal 
dynamics of CSs is neglected as it is much faster than the surrounding pipeline system 
dynamics.  
 
Centrifugal compressors are constrained to operate within typical “envelopes” (Wu et al., 2000; 
Osiadacz, 1998; Marque's and Morari, 1988), which are limited by four functions of compressor 
head and gas flow. The functions are typically non-linear, compressor-specific and must be 
obtained experimentally. Typically, volume flow in suction conditions is used with the 
envelopes. An example of a compressor envelope is presented in figure 3.2. The four functions, 
which apply for each compressor i, i=1,…, NC, where NC is the number of CSs in the system, 
are: 
• Minimum speed line 1,i VOLg (H,q ) 0≤ , 
• Choke line 2,i VOLg (H,q ) 0,≤  
• Surge line 3,i VOLg (H,q ) 0≤ and 
• Maximum speed line 4,i VOLg (H,q ) 0≤  
 
 
     Head (H) 
     Max. speed 
 
 
          Surge 
 
 
         Choke 
 

Min. speed  
           Flow (qVOL)     
Figure 3.2 A typical compressor envelope 
 
 
The rotational speed of the compressor shaft parameterises the curves shown in figure 3.2, 
where constant rotational speed lines are drawn with dashed lines. The working point of a 
compressor travels around the inside of the envelope without being allowed to violate the 
envelope limits.  
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3.3 Improving the performance of natural gas pipeline systems using modelling knowledge 
 
Batey et al. (1961) were one of the first to analyse the dynamics of a gas pipeline system using a 
partial differential equation model. They obtained an analytical solution to the system of 
equations in an implicit form. They derived three well-known rules of thumb for minimising 
energy loss of a pipeline system: 
1. Operate the pipeline system at the highest pressure possible 
2. Filter the transients as near the load as possible 
3. Deliver gas to off-takes at contract pressure and no higher 
 
The rules were further motivated by an elementary analysis of the pipeline:  
 
1. Frictional energy loss in a pipeline segment is proportional to the velocity of the gas, which 
can be calculated by the expression: 

 2
w

qw
k D

=
ρ

 (3.19) 

 
where kw is a constant. As the gas density ρ increases, the velocity w decreases and so will the 
frictional energy loss do. The conclusion is, that gas density is to be maximised (in all pipeline 
segments, if possible), which is true when the pressure in the segment is as large as possible. 
 
2.  A simple calculation shows that the average frictional energy loss with fluctuating gas 
velocity is greater than with small velocity fluctuations, the conclusion being that the gas 
velocity (or equivalently, flow) should be as stable as possible. Stable flow cannot be achieved 
for pipeline segments with off-takes; however, the varying off-take flows of a long-range 
transmission pipeline system with off-takes only at the other end of the pipeline can be 
compensated by the CSs near the off-takes, which stabilises the upstream gas flow. 
 
3 . The potential energy of the gas is proportional to the pressure. If the pressure at the off-takes 
is greater than needed (the minimum delivery pressure is specified by a delivery contract made 
between the pipeline operator and the customer), then extra potential energy is given to he 
customer. Avoiding excess pressure saves energy at the CSs, since they do not have to 
pressurise the gas more than is necessary. 
 
Broadbent and Williams (1990) developed a simplified steady-state optimisation scheme for a 
pipeline system with two CSs, which essentially builds on steady-state pipe flow (3.7) and 
adiabatic compressor models (3.11). The optimisation scheme simply calculates a large number 
of energy consumption values for different combinations of CS discharge pressures and 
compressor unit selections (two units available per station) and finally lists the 20 most 
profitable alternatives.  
 
Brown and Chui (1996) discuss a very simple approach to pipeline optimisation for a pipeline 
system with 5 CSs. The target was to develop a steady-state model “in closed form” without any 
iterative loops. For each pipeline segment, approximate equations for downstream pressure 
given the upstream pressure, pipeline flow and temperature were derived based on steady-state 
simulations and true operational data. The equations are highly accurate despite the fact  that the 
pipeline crosses a mountain-rich area with significant changes in elevation. The optimisation 
takes place by straightforward search within a large number of feasible operational strategies, 
the decision variables being CS discharge pressures and compressor unit selections. The 
strategies with the lowest energy costs are displayed to the operators. Energy savings in excess 
of US$ 340 000 have been achieved over the first half-year period of use. 
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Graham et al. (1996) use a dynamic model for a complicated and looped pipeline system, 8000 
miles in length and containing 28 CSs. The two main objectives for using the model are state 
estimation and predictive calculations. The state estimation verifies the correctness of SCADA 
measurements and calculates values for non-measured process variables. The predictive 
calculations are performed on an off-line basis, starting from the present state of the pipeline 
using predicted values of decision variables and off-take flows. The state estimation in particular 
has proved very beneficial. Instead of investing in expensive flow and pressure metering 
devices, the calculated values provided by the model can be used.  
 
Shaw et al. (1997) study on-line simulation tools applied to a large pipeline system with more 
than 9000 miles of pipeline, 74 CSs and a number of gas storages. Pipeline operators cannot 
apply on-line dynamic simulation as such as everyday working tools, since simulation is very 
expert intensive. Simulators must be extended with well designed user interfaces for quick and 
reliable data input, as well as protection against bad data, otherwise they are deemed to be 
“garbage generators”, while small errors in input values may accumulate and lead to disastrous 
errors in simulation results. Predictive on-line simulation is defined as calculating all relevant 
pipeline system variables (pressures, flows, temperatures, etc.) from the present moment of time 
up to a given moment of time in the future, given complete information on present system status 
and predicted values (forecasts) of off-take and supply flows, as well as decision variables. 
Decision variable predictions are made based on experience and entered into the simulator by 
the operators, after which simulation results for up to 5 following days are obtained. 
 
Revell and Thorne (1998) discuss the natural gas transmission system in the UK, which spans a 
length of 6000 kilometres and contains 21 CSs. On-line simulation is in active and regular use, 
while steady-state optimisation is used only if constraint conflicts are detected in the on-line 
simulation runs. The objective of the optimisation is to maximise pressures in the pipeline 
system. 
 
Wheeler and Whaley (2001) expand the on-line simulation tools of Shaw et al. (1997) to include 
“Automated Predictive Model Runs”. The main objectives of on-line simulation are to decrease 
compression energy costs, identify unused pipeline system capacity and provide more 
information to customers. A typical “within day” requirement is set for the operation, this 
means, that at the end of the day the pipeline system must be restored to a state which enables 
all operations planned for the next day to be done. Values for the discharge pressures of CSs and 
compressor unit selections in the predictive simulations are solved using simple rules derived 
from practical experience, for example: “if all running compressor units at a CS run at more than 
90% of maximum power, then start a new compressor unit at this station”. 
 
Bryant and Varo’n (2002) use a full dynamic model like Wheeler and Whaley (2001) above for 
a pipeline system with a total length of 5000 miles and including 22 CSs. The behaviour of the 
pipeline system is predicted by simulation, given the predicted gas flows at the off-takes. A 
manual trial-and-error method  is used to determine the optimal values for the CS variables and 
the unit selection. The pipeline operator was able to reduce energy consumption by 12% while 
increasing the capacity of the pipeline system by 4 %.  
 
 
3.4 Expert systems 
 
Sandercock (1994) uses an expert system to advise operators of an 800-mile long pipeline 
system with four CSs on how to operate in order to save energy. This application uses only a 
knowledge base and an inference engine and does not use dynamic or steady-state pipeline 
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system models. The content of the knowledge base is built from human experience of operating 
the pipeline system. Energy savings of 0.5% are reported. 
 
Johnson et al. (2000) apply an expert system together with a dynamic simulator on a pipeline 
system extending over 15000 miles and including 70 CSs. The expert system performs data 
validation for the initial and boundary values for the system simulator, which in turn provides 
simulation results for the expert system for post-processing and preparation of the final 
operating recommendations. The dynamic simulator was in use long before the expert system, 
and the routine use of that simulator was seen as a success factor in implementing the integrated 
solution. The objectives for the combined expert system/dynamic simulator were to reduce 
energy consumption and to increase gas transportation revenues. Managing line pack was 
considered important as well. The expert system may operate in an alternative mode making 
repeated calls to an optimiser which is based on a steady-state model and linear programming 
(LP). The repeated calls are made to compensate for non-linearities while a linearisation in the 
current working point is being made at each call. 
 
Uraikul et al. (2000) report a feasibility study on applying an expert system on a pipeline system 
containing two CSs. The main tasks of the expert system application are to manage line pack, to 
recommend power input for compressor units and to recommend which units should be running. 
The expert system uses over 70 rules to conclude whether line pack is high, low or “normal” 
with respect to the present situation in the pipeline. Conclusions are made based on the same 
kind of rules used by human operators, i.e. looking at pressure values, rates of changes of 
pressures and off-take flow values. The predicted line pack behaviour together with pressure and 
flow conditions in the pipeline generate additional rule-based recommendations on how to run 
the compressor units.  
 
 
 
3.5 Steady-state optimisation 
  
Grelli and Gilmour (1986) use a steady-state pipeline system model together with a dynamic 
programming (DP) algorithm to obtain optimal discharge pressure set points and optimal 
compressor unit selections for a pipeline system with a length of 719 miles and with 15 CSs. DP 
is considered to be very well suited to this type of optimisation problem, where compressor unit 
selections introduce discontinuities in the cost function. Energy saving potential is reported to be 
8 to 12%. The steady-state optimisation is manually invoked a few times per day and the 
optimal discharge pressure and unit selection recommendations are entered manually into the 
SCADA system. The optimal discharge pressures attain high values at high gas flow rates in the 
winter, meaning that the results are well in line with the rules of thumb given by Batey et al. 
(1961). At low gas flow rates in the summertime, optimal discharge pressures are lower. 
 
Luongo et al. (1991) build a hierarchical optimisation method, illustrated in figure 3.3, to 
perform steady-state optimisation for the physical pipeline system simultaneously with 
optimising delivery contracts. According to the users’ choice, the physical optimisation part can 
minimise energy, maximise gas throughput or maximise operational profit. At the top of the 
hierarchy, pipeline system off-take and supply flows are optimised using a dedicated search 
method. Then, the physical optimisation part at the lower hierarchical level calculates optimal 
CS pressures (discharge or suction) and compressor unit selections using DP. The delivery 
contract optimisation, which is based on linear programming (LP), optimally allocates gas flows 
optimised by the higher level between full delivery contracts and trading contracts. A simple 
pipeline system optimisation example is demonstrated, but a commercial optimisation 
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installation is mentioned, expected to deliver energy savings of 19% and an operating profit 
increase of 15%. 
 
Goslinga et al. (1994) use a repetitive steady-state optimisation method, where non-linear cost 
function and constraints are linearised in a particular operating point, then an LP-based 
optimiser provides a feasible and optimal solution for the decision variables. These are then 
passed to a steady-state pipeline system model, which calculates values for dependent values, 
after which a linearisation is performed at the new operating point and the LP optimisation is 
repeated and so on until convergence is obtained. The pipeline system to which the method is 
applied extends over 12000 miles in length and includes 44 CSs with 102 compressor units as 
well as 12 control valves. The latter are considered as important elements of the system. It is 
possible to select energy minimisation, line pack maximisation or throughput maximisation as 
an objective function for the optimisation.  
 
Optimisation is typically not performed for the whole pipeline system, which is partitioned into 
smaller sub-systems. Decision variables are discharge or suction pressures of compressor units 
and pressure ratios of control valves. Compressor unit selection is not a part of the optimisation, 
but compressor units are shut down during the optimisation cycle in case the heads of the 
compressor units fall below prescribed minimum limits. Energy savings of up to 18% are 
reported for a demonstration example of a sub-system containing 17 CSs and 4 control valves. 
 
 
 
 
 
 
          Optimal off-take and supply flows 
 
 
 
 
 

Optimal compressor operation Optimal allocation of flows to contracts 
 
Figure 3.3 Hierarchical steady-state optimisation of a gas pipeline system 
 
 
Hoeven and Fournier (1995) discuss steady-state planning problems, where the most important 
problem to be solved is the feasibility of the solution followed by maximising the pipeline 
system throughput. The cost function is set up by piecewise linear penalty functions of flow and 
pressure, where “good” or “preferred” values generate low penalties and non-preferred values 
generate large ones. An LP problem is set up by linearising a non-linear steady-state model of 
the pipeline system. The solution of the LP (locally optimal flows and pressures) is sent to the 
non-linear model, which calculates a new set of variable values to be used iteratively at a new 
linearisation.  
 
Sekirnjak (1996) describes the development of steady-state optimisation methods applied on the 
Austrian natural gas pipeline system over many years. The main objective of optimisation is to 
minimise energy consumption. The steady-state optimisation method of choice is a Sequential 
Linear Programming (SLP) method. At a given initial solution, linearised expressions for cost 
function, pipeline pressures and compressor envelopes are obtained, after which an LP is solved. 
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The optimal solution, such as optimal CS discharge pressures, is supplied to a rigorous steady-
state simulator. A new linearisation of the output of the simulator is performed, then a new LP 
run is performed and so on, until there is a sufficiently small difference between the LP solution 
and the simulator output (see figure 3.4). The LP can be extended with a mixed integer 
programming (MIP) part for discrete decision variables like compressor unit selections and 
pipeline route selections. The linearisation errors of the cost function and compressor envelopes 
are observed to be very small, which makes convergence of the method easier. Filtering, i.e. 
weighting of the linearised result with the linearised result from the previous cycle is used to 
avoid the typical oscillations of LP-based methods. 
 
 
 
 
 
 
 
 
     Convergence? 
     

No 
               Yes 
     
Figure 3.4 A schematic diagram of the iterative SLP method (this figure is adapted from figure 
5 in Sekirnjak (1996)) 
 
 
Carter (1996) concentrates on steady-state optimisation inside CSs only. CS energy 
consumption is minimised by optimising the gas flow distribution through compressor units and 
by optimally selecting the running units within the station. Four alternative optimisation 
methods are tested: Mixed Integer Linear Programming (MILP), Mixed Integer Quadratic 
Programming (MIQP), a heuristic method, where the running unit selection is made by forcing 
running units to approach their maximum capacity (approximately equal to maximum 
efficiency) and Mixed Integer Non-linear Programming (MINLP). MINLP and the heuristic 
method yield better performance than MILP and MIQP because the latter use linear and 
quadratic approximations of the compressor models. 
 
Carter (1998) discusses DP as a steady-state optimisation tool. From a historical perspective, DP 
has been successfully applied to gunbarrel pipeline systems, but for branched and/or looped 
systems, classical DP suffers from long computation times. Therefore, alternative DP 
formulations, such as different hierarchical approaches, have been developed. The objective of 
the optimisation has usually been the energy consumption of the compressors in the pipeline 
system, but alternative objective functions are needed as pipeline systems operations become 
more complicated. DP- and Genetic Algorithm- (GA) based optimisation are tested on  a looped 
and branched pipeline system with 66 CSs. DP found an optimal solution providing energy 
consumption savings of 38% relative to the system’s known operating strategy. GA required 
several months to fine tune the different internal parameters of the algorithm, yet it was capable 
of providing only 28% energy consumption savings. 
 
Wright et al. (1998) extend the analysis performed by Carter (1996) on CS optimisation. GA and 
Simulated Annealing (SA) are discussed as possibly replacing MINLP. Both GA and SA solve 
the continuous (selecting the gas flows through compressor units) and combinatorial (selecting 
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running units) optimisation problems within the same algorithm, whereas MINLP uses a 
separate algorithm, usually a branch-and-bound method to solve the combinatorial problem. 
This two-algorithm property of MINLP is seen as a drawback. After a comparison of GA and 
SA, the SA is selected as the method of choice for large CS optimisation problems as its 
statistical properties are more attractive. Moreover, SA provides a guaranteed global optimal 
solution, if  the “cooling rate” of the SA algorithm is slow enough. A large number of 
optimisation cases were run on a test pipeline system with 10 CSs, each containing 25 
compressor units. SA was capable of solving all those cases with small variations in the solution 
times, while MINLP exceeded the defined maximal solution time in almost half of the cases. 
Also, the solution time variations of MINLP were much larger than for SA. 
 
Ostromuhov (1998) uses a commercial steady-state modelling and optimisation application to 
demonstrate a test example of a looped pipeline system with 14 CSs and one gas storage. The 
application, which is based on MINLP with an improved branch-and-bound algorithm providing 
better local optimum avoidance and lower risk for excessively long solution times, can be used 
for optimal investment planning, such as optimal pipeline routing and location of equipment, 
supplies and off-takes as well as optimisation of the pipe diameters. Operational optimisation 
includes maximising pipeline throughput, minimising energy and maximising profit. The 
optimisation application provides optimal values for compressor unit selections and pressure 
settings (discharge to suction pressure ratio, discharge pressure or suction pressure, according to 
the user’s choice). For the test example, energy savings of 11.2% were obtained. 
 
Poe et al. (1999) use a detailed steady-state pipeline system and CS model as the basis for 
steady-state optimisation of a 250-mile long pipeline system with six CSs. The steady-state 
optimisation algorithm calculates optimal compressor unit selections and discharge pressure 
values for the CSs, which, however, are run under suction pressure control. A multivariable 
predictive control algorithm (MPC, see figure 3.5) is used to convert discharge pressure values 
to suction pressure values. The cost function options are: energy consumption, pipeline 
throughput or operating margin. Optimisation is activated manually, typically a few times per 
day, and the optimal discharge pressure set points are also entered manually into the MPC. The 
MPC adapts to changing gas demand as well as to CS start-ups and shutdowns, which are  done 
manually by the operators. At decreasing gas flow, up to 10% energy savings are reported. 
Average or long-term savings are not reported.  
 
 
 
 
 
              Discharge pressures  
 

Pipeline system measured data and 
disturbances 

Suction pressures  
     

   
 
 
Figure 3.5 An MPC is used to convert optimised discharge pressure values to suction pressure 
values. 
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Wu et al. (2000) calculate lower bounds for the cost function values for complex steady-state CS 
optimisation problems by relaxing the compressor envelope constraints to become convex and 
partially linear. They also derive linear underestimators for the compressor cost functions. A 
demonstration example of a complex, looped pipeline system is given, where the steady-state 
solution was not found at all, but the lower bound was easily obtained. The inability of steady-
state optimisers to find an optimal or feasible solution due to problem complexity and non-
convexity is seen as the main motivation for developing the lower bound calculation scheme. 
The authors also report only very modest success to date in dynamic (or “transient”) 
optimisation of gas pipeline systems.  
 
 
 
3.6 Advanced process control approaches 
 
Smeulers et al. (1999) discuss MPC of CSs using a simulated case of two parallel compressor 
units. The pipeline is replaced by a gas header with one or several output flows. Both units have 
their own throttle valves in the suction line and a bypass valve. A station bypass valve is situated 
in a line with a cooler from the header to the suction side of the compressors. For each 
compressor unit, manipulated variables (MV) of the MPC are: the throttle valve position, the 
bypass valve position and the power input to the compressor. An additional common MV for the 
whole station is the station bypass valve position (see figure 3.6). 
 
 
  Bypass 
  valve 
   Compressor 
 
 
 
            Header 
 Throttle 
 valve 
 
 
 
 
 
 
 
          Station by- 
  Cooler        pass valve 
 
Figure 3.6 CS with two parallel compressor units. Dashed arrows are used to show the 
manipulated variables of the MPC 
 
 
The control objectives are to: avoid surge conditions, avoid exceeding the maximum 
temperature at the compressor discharge sides, keep header pressure within minimum and 
maximum limits, keep header pressure close to a set point value (optional) and finally, minimise 
energy consumption of the compressor units.  
 
The controlled variables (CV) are derived as follows:  
For surge avoidance, the distance to the surge line for each unit i=1,2 is defined as (see figure 
3.7): 



   

 26 

 a ,i i
i

s,i i

q (n )
DS

q (n )
=  (3.20) 

 
where 
qa,i(ni)  is the actual mass flow through unit i at rotational speed ni 
qs,i(ni)  is the mass flow at surge line through unit i at rotational speed ni 
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Figure 3.7 Calculation of the distance to the surge line, DS1, for unit 1 
 
 
If 1 2DS DS−  is a CV with a set point value of zero, then the MPC strives to keep the 
compressor units at equal distances from the respective surge lines. 
 
The deviation from the minimum required power for the whole station is defined as the ratio 
between actual power and minimum power: 
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where 
Ei is the actual power consumption of compressor unit i 
qtot is the total mass flow through the station 
cp is the average heat capacity of the gas at constant pressure 
Ts is the temperature of the gas at the station suction point 
Pd is the header pressure 
Ps is the station suction pressure 

γ0 = a

a m

k
k

−1
η

where ka is the adiabatic exponent and ηm is the ideal (or maximum) efficiency 

of the compressor. 
 
When the quantity DP is used as a CV with a set point value of 1, the controller  minimises the 
power consumption of the CS.  
 
A Kalman filter is used to update the internal state of the controller using measured process 
values. The internal linear model of the MPC is updated at each control cycle by linearising the 
non-linear compressor unit models. The MPC is capable of avoiding surge and minimising 
power consumption in various simulated situations and it is also shown to be robust against 
model mismatch errors. 
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Zhu et al. (2001) study an oxygen pipeline network, 50 miles in length and with 15 customers 
(off-takes), supplied by 5 cryogenic process plants. Contractual limits are applied on pressures at 
given points in the pipeline. 
 
Instead of a partial differential equation model for calculating pressure distributions P(x,t), they 
use a first-principles model for the pressures at given nodes of the pipeline network assuming 
constant gas temperature and using molar mass balances and the Virial equation of state. This 
results in a system of ordinary differential equations for the pressures Pi at the 30 nodes of the 
pipeline: 
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where 
ρsc is the molar density of the gas in normal conditions 
Bi is the second Virial coefficient at node i, i=1,…,30 
Vi is the volume of node i 
Pj is the pressure of node j adjacent to node i 
kp is a constant, while gas compressibility is assumed to be independent of pressure 
qVOL,i,k are the volumetric flow rates of gas to and from the node i 
 
For Linear Model Predictive Control (LMPC) design, the model is further simplified by 
combining nodes to produce a final model with 10 nodes. The simplified model is shown to 
provide responses very close to the original 30-node model. The simplified model is linearised 
for the LMPC design. 
 
The LMPC has 6 MVs: the gas production rate (flow) of 5 cryogenic plants and the pressure set 
point of a control valve, which separates the pipeline into high-pressure and low-pressure 
sections. The LMPC is required to control the pressures at 3 selected nodes to given set points 
and to keep pressures of the 7 remaining nodes between prescribed minimum and maximum 
limits. All off-take flows are treated as measurable disturbances. Model states are updated from 
the measurements using a dead-beat estimator. Since 5 of the 6 MVs are gas flows, the pressure 
responses are integrating, i.e. unstable in a strict sense. This calls for the LMPC design with an 
infinite control horizon formulation by Muske and Rawlings (1993). 
 
The final LMPC obtained has a quadratic programming (QP) problem formulation from which 
the optimal MV values are solved at each control interval. Since some CVs are subject to hard 
constraints (the pressure limits), a relaxation technique is applied to avoid unfeasible QP 
solutions. In simulation studies, the LMPC is shown to provide fast and accurate control of the 
pipeline pressures, even in the case of modelling errors. The authors emphasise, that advanced 
control is currently not practised in gas pipeline systems and that the literature on control and 
optimisation is sparse. 
 
 
 
3.7 Dynamic optimisation 
 
Marque’s and Morari (1988) present a moving (receding) horizon optimisation method as 
follows where the optimisation spans the prediction horizon from the present moment of time t0 
to a moment of time t1 in the future. The steps of the basic form of the method are: 
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1. Obtain measured values such as pressures and flows from the pipeline system 
2. Obtain updated consumption forecasts for all off-take flows for the time t0 to t1 
3. Perform a state estimation step, which corrects the values of the system state variables based 

on measured values. The state estimator is augmented with expressions for correcting the 
consumption forecasts based on the difference between measured (P(t)) and estimated 
( µ(t)P ) pressure values near the respective off-takes: 

 
 µ(t 1) (t) ( (t) (t))+ = + −e e K P P$ $  (3.23) 
 

where K is a gain matrix 
  e$   is a vector of correction values for the consumption forecasts 

 
4. Enter an optimisation loop, where the value of the cost function to be minimised, the 

constraints and other system variables are calculated using a rigorous dynamic pipeline 
model. The optimisation calculates optimal discharge pressure profile values u(t0), 
u(t0+∆T),…u(t1-∆T) for the CSs from time t0 to t1. 

5. Implement the first optimal profile values u(t0) and wait ∆T time units  
6. Define t0= t0+∆T and t1= t1+∆T and go to step 1 
 
Step 6 defines the receding horizon concept, in which the procedure is forced to start all over 
again and to leave optimal discharge pressure values u(t0+∆T), u(t0+2∆T),… unused at the next 
cycle. 
 
The optimisation is based on successive quadratic programming (SQP). Gradient values of the 
cost function are calculated numerically within the optimisation loop. One optimisation cycle 
typically needs a large number of cost function and constraint evaluations, which sets hard 
requirements on the computational speed of solving the dynamic model equations. The cost 
function is the energy consumption of the CSs, see expression (3.18). The compressor unit 
envelope constraints are approximated with straight lines as illustrated in figure 3.8. Note, that 
the vertical axis is the discharge to suction pressure ratio and not the compression head value. 
 
The optimisation is built up of two hierarchical layers. The upper layer performs optimisation 
once a day (control step ∆T=24 h). The lower layer performs optimisation several times per day 
for the discharge pressures of only those CSs with off-takes downstream. The other CSs use the 
discharge pressures provided by the upper optimisation layer. 
 
 
 
 
           Pd/Ps 
 
 
 
 
 
 
 
 
                 q 
 
Figure 3.8 Simplified compressor envelope (solid lines) and original envelope (dashed lines) 
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In order to reduce computational load, the lower level optimisation uses uneven blocking, i.e. the 
control sequence is u(t0), u(t0+∆T1), u(t0+∆T2), u(t0+∆T3),… instead of u(t0),u(t0+∆T), 
u(t0+2∆T), u(t0+3∆T),…, each ∆Ti > ∆T (see section 5.10). 
 
The optimisation method includes feedback, since measured values from the pipeline system 
enter the optimisation through the estimator (3.23). The feedback compensates for erroneous 
consumption forecasts, because simulated case examples on pipeline systems with 2, 3 and 7 
CSs show that the optimisation method gives energy savings of 20% even in cases of 10% 
consumption forecast error. 
 
The length of the prediction horizon is dependent on the size of the pipeline system and should 
be chosen carefully (see Chapter 5, section 5.10). Values between 6 and 24 hours are considered 
in the simulation examples presented. 
  
Furey (1993) developed an algorithm for dynamic optimal control of complex gas networks. 
The algorithm calculates optimal compressor MV profiles over a fixed, given time horizon into 
the future. The cost function is the energy consumption of the compressors plus a terminal cost, 
which prevents the algorithm from making decisions that are not favourable for the future 
beyond the time horizon. The compressor envelope constraints are not used as such; they are 
replaced by minimum and maximum constant limits on suction pressure, discharge pressure and 
gas flow. A locally linearised, discrete time model is used as the pipeline system model. A two-
level algorithm for optimisation is used: at the upper level, a sequential augmented Lagrangian 
method is used to satisfy the inequality constraints. At the lower level, an SQP problem, with 
only equality and simple bound constraints, is solved. The algorithm is demonstrated using a 
large network containing 32 compressor units in 20 CSs using an optimisation horizon of 8 
hours. The CPU time required to reach a solution is 1839 seconds. The energy savings potential 
is not reported. 
 
Vostry et al. (1994) developed a method for transient optimisation. The optimisation method 
finds optimal CS control profiles, which may be discharge pressure, suction pressure, gas flow 
or discharge to suction pressure ratio. The cost function used is energy consumption augmented 
with quadratic penalty functions for the pressure limits used in the pipeline system. A method of 
feasible directions is used as the optimisation algorithm. The dynamic pipeline system model 
embedded in the optimisation algorithm is a linearised discrete time state equation. A few 
demonstration examples are presented, where transient optimisation over 3 days is performed 
for simple pipeline systems with varying off-take and supply flows. The energy savings 
potential is not reported. 
 
The approach presented by Osiadacz (1998) has much in common with the one in Furey (1993) 
the main difference being that Osiadacz uses spatial decomposition of the gas pipeline system. 
The interconnections of subsystems to each other are described as pressure and flow constraints 
(pressure or flow out from a subsystem must be equal to pressure or flow into a neighbouring 
subsystem), which are represented by multipliers in the cost function of the overall optimisation 
problem. The higher level of this goal co-ordination problem takes care of fulfilling the 
interconnecting constraints at the solution. At a local level, subsystems are optimised over a 
fixed-time horizon using gradient-based minimisation of an augmented Lagrangian function, 
where inequality constraints are treated as penalties in the cost function. Compressor envelope 
constraints are replaced by simple pressure and pressure ratio constraints. The cost function is 
the energy consumption of the CSs. Simulation tests reveal that the method needs a large 
computational capacity and parallel computation is recommended especially when solving 
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larger pipeline system optimisation problems. The achievable energy saving potential is not 
reported. 
 
The objectives for an optimisation method presented by  Rachford and Carter (2000) are to 
minimise energy, to find unused capacity and to assess spot market capability on a short-term 
basis. Additional objectives are: 

• The pipeline system must always be left in a predefined final state at the end of the 
optimisation horizon, which is expressed as target profiles for some important pipeline 
pressures Pi(x,t1), at the final time t1 of the optimisation horizon. 

• Line pack must be managed effectively, meaning that target or minimum/maximum line 
pack values for sections of the pipeline system must be defined and followed 

• Gas inventory depletion must be avoided in all circumstances. Inventory depletion 
occurs if the potential energy of the gas in the pipeline is allowed to decrease near the 
end of the horizon, which certainly saves energy in the interval t0… t1 but is an inferior 
policy for future times beyond t1. 

 
The optimisation method is based on a rigorous isothermal dynamic simulation model and a full 
nonlinear optimisation algorithm for finding optimal CS discharge pressure profiles over the 
optimisation horizon. The constraints of the optimisation problem are CS maximum discharge 
pressure, minimum suction pressure and maximum CS power, instead of the usual compressor 
envelopes. The predefined final state at time t1 is obtained by separate steady-state optimisation. 
The typical value of the optimisation horizon is 8 hours, which is divided into 15-minute control 
intervals during which the discharge pressures are constant.  
 
Optimisation with simulated cases show energy savings of up to 17% compared to a “manual” 
operating strategy, which is over-pessimistic as it assumes that human operators apply large, 
energy-consuming changes to the CS discharge pressures. Shortening the optimisation horizon 
to 6 hours is possible, i.e. the final state can be reached in that time without constraint violations, 
but substantial energy savings cannot be obtained. If the length of the optimisation horizon is 
increased to 24 hours, the optimisation method can optimally allocate extra spot gas deliveries 
of given quantities and still reach the final state without violating constraints. 
 
Kelling et al. (2000) develop a method of transient optimisation based on, that once a steady-
state optimisation method is successfully implemented for a given case, then the extension to a 
transient optimiser is straightforward under the assumption that the pipeline system considered 
does not deviate too much from steady-state. The most important objectives of optimisation are 
energy consumption, maximal gas flow and maximal profit. They use a “large space and time 
element” approach to approximate the partial differential equations of the pipeline system. Only 
one pressure value P12 is calculated for a pipeline segment between two nodes (such as CSs) 
using the average pressure expression (3.9). Using an additional assumption -that the system is 
only mildly non-linear- they apply the SLP method presented by Sekirnjak (1996), where the 
steady-state model is replaced by the simplified dynamic model. The optimisation is performed 
for a time period (horizon) of 24 hours with given initial and final pipeline system states. A 
simulated case example on a looped pipeline system with 8 CSs shows that the assumption on 
mild non-linearity holds. Benefit estimates, such as energy saving potential, are not reported.  
The method is expandable with an MIP part for discrete decision variables. Initial experiments 
indicate, that LP/MIP is a very attractive and robust optimisation method; however, a large 
number of discrete decision variables rapidly increases the computation time to non-tolerable 
values. 
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Pietsch et al. (2001) apply the optimisation method developed by Rachford and Carter (2000) on 
a pipeline system with two CSs in a simulation test bench. The objectives for optimisation are 
the same, but expanded with the ability to manage curtailment and other abnormal operating 
conditions. 
 
An optimal initial state, which is defined as a pressure profile given the supply and off-take 
flows, is calculated by a steady-state optimiser. The optimisation method assumes that the 
pipeline system is in this initial state each day at midnight and that, whatever happens, the final 
state of the pipeline system 24 hours later must be the same as the initial state. The optimisation 
solves optimal discharge pressure profiles over the 24-hour optimisation horizon. The 
isothermal, rigorous dynamic pipeline system model includes the typical, non-linear compressor 
envelope constraints. A number of optimisation cases are simulated, where the pipeline system 
dynamics is taken advantage of in a way not possible with steady-state optimisation. The 
optimisation method is capable of allocating sudden, short-term spot deliveries to any customer 
and vice versa, and of optimising situations where planned deliveries and spot deliveries are 
allocated, but limitations on gas supplies apply. Finally, optimisation of curtailment is also 
tested, where an unplanned gas supply limitation is compensated for by decreasing some 
selected off-take flows. For example, figure 3.9 shows a supply limitation for 5 hours, which is 
compensated by curtailment starting after the supply has returned to normal. 
 
The results are not very encouraging from the point of view of energy minimisation, since no 
energy savings of practical value were achieved. However, in all optimisation cases studied, the 
optimiser was capable of avoiding constraint violations while the pipeline system reached the 
required final state.  
 
 
 
           Gas flow 
 
 
 
 
 
 
 
 
         00:00         24:00    time 
 
Figure 3.9 Example of curtailment: temporary loss of inlet supply (bold line) is compensated by 
decreasing off-take flow (thin line) at the other end of the pipeline 
 
 
 
3.8 Summary and discussion 
 
Support tools for natural gas pipeline operators not using rigorous optimisation methods are 
reported. Some of these are built on expert systems, which produce only modest benefits, if only 
heuristic rule bases are used. Expert systems with integrated steady-state or dynamic simulators 
seem to produce better results. Dynamic simulators must be protected against bad input data, 
otherwise they may behave as  “garbage generators”. 
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Many publishers refer to the pioneer work on efficient pipeline operations performed by Batey 
et al. (1961) and the majority of these agree with their three rules of thumb. Revell and Thorne 
(1998) use maximisation of pressures in the pipeline as an explicit optimisation target.  
 
Both steady-state and dynamic optimisation are seen as demanding; the more complex the 
network, the more difficult is the optimisation problem to solve. The main issue is non-
convexity of the problem in general. Faced with solving for optimal compressor unit selections 
or other discrete optimal decisions, the task of the optimiser is even more challenging. 
Simplifications are frequently used: compressor envelopes are approximated by linear 
expressions and sequential linear approximations and/or SLP optimisation have been used. One 
important conclusion is that both steady-state and dynamic behaviour of a pipeline system is 
only mildly non-linear. 
 
Some authors touch on a broader issue than just the development of a good optimiser, namely 
the task of building a whole optimisation system including user interfaces, data storage, 
consumption forecast systems, input data conditioning and so on. This task should be executed 
in successive steps rather than as one big effort. For example, Johnson et al. (2000) observed 
that the routine use of a dynamic pipeline simulator before introducing an expert system was a 
key success factor. 
 
Almost all rigorous optimisation schemes were tested in a simulation environment or test bench 
only. Poe et al. (1999) report that the steady-state optimisation with MPC was installed in an 
actual environment, for which the benefits (10% energy savings at decreasing gas throughputs) 
were obtained. Many authors did not clearly express the intention of the developed optimisers, 
but some optimisers seem to be applicable at least as off-line decision support tools.  
 
State estimation of a pipeline system is essential if optimisation results with relevance are to be 
obtained. Very little has been published on this subject, but authors do emphasise its 
importance. The state estimation challenge is often tackled by carefully tuning the pipeline 
system model to fit the true, measured pipeline data rather than designing optimal estimators. 
 
There has been very little publication activity in the area of real-time optimisation of natural gas 
pipeline systems. Remarkably, perhaps the most serious contribution to the subject is provided 
by Marque’s and Morari (1988). Transient optimisers for optimally moving the pipeline system 
from an initial state to a final one, have been developed. Some details of these methods can be 
questioned. Rachford and Carter (2000) and Pietsch et al. (2001) define a prescribed final state 
(pressure profile) of the pipeline system and constraints on line pack. These requirements are 
redundant, since pressure profile and line pack are related to each other through (3.10). The use 
of a final pressure profile obtained by steady-state optimisation may also be questioned, while 
placing artificial limits between optimisation periods (days) could, intuitively, be replaced by a 
receding horizon optimisation strategy, where the next period’s consumption forecasts will 
influence the optimal solutions in a natural way as the receding horizon slides over the period 
limit. 
 
The authors referenced in section 3.7 have used prediction horizons from 6 to 24 hours, the 
latter being popular when commercial aspects are considered. Rachford and Carter (2000) use 
the prediction horizon as a tuning parameter, which should be chosen carefully; however, it 
remains unclear how the user should select correct values from case to case. Real-time, 
repetitive operation and state estimation was thoroughly discussed only by Marque's and Morari 
(1988). Optimisation including discrete decision variables (compressor unit selections) was, in 
turn, discussed only by Kelling et al. (2000). 
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Chapter 4 
 
Dynamics of Natural Gas Pipeline Systems 
 
 
 
 
 
 
 
 
4.1 Introduction 
 
In this chapter, the dynamics of natural gas pipeline systems will be studied from the point of 
view of applicability of linear control and real time optimisation methods. 
 
In the sequel, the compressor station (CS) discharge pressures are defined as control variables, 
or manipulated variables, or decision variables of some higher-level control and real-time 
optimisation algorithms (see Chapter 2, figure 2.4). From a modelling perspective, the discharge 
pressures are the inputs of the dynamic models needed by those algorithms. 
 
The controlled variables (CVs) or variables needed to calculate cost function values within the 
control and optimisation algorithms are selected from among the set of pressure and gas flow 
variables in the pipeline system. These are the outputs of the dynamic models mentioned above. 
A control task can be either to keep CVs as close as possible to given target values (“control-to-
target”) or to keep controlled variables above or below given limits. A typical and important 
control task is to keep pressures along pipeline segments above physical and contractual 
minimum limits. 
 
A large number of disturbance variables acts on the natural gas pipeline system. Every single 
gas off-take is a disturbance, since variations in off-take flow will change the pressure at the off-
take and the pressure change propagates throughout the pipeline system. Off-take flow rates are 
usually measured, which gives an opportunity to utilise the information in control and 
optimisation algorithms. Control valves and block valves along the pipeline system represent 
disturbance variables as well, but mostly, the valve positions are measured. In this work it will 
be assumed that off-take flows do not depend on pressures in the pipeline, a realistic 
assumption, while in real pipeline systems gas consumers control their gas flow rates with their 
own control valves. 
 
Figure 4.1 schematically illustrates the Finnish natural gas pipeline system. The CS discharge 
pressure set points are named u1, u2 and u3, respectively. The three particularly interesting 
pressure “check points” are named Px1, Px2 and Px3 in figure 4.1. The pipeline system consists 
of three main segments. Important pipeline distances are shown in the figure. 
 
The supply pressure and gas flow rate at the border are measured, the latter with very good 
accuracy because this is the basis for commercial transactions. 
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For obvious reasons, only one CV in the control-to-target case may be defined for any pipeline 
segment between two running CSs, since pressure or flow values in one such segment are 
related to each other in steady state. However, several pressure and flow variables may be 
defined for limit-keeping control in one segment, provided, that contradictory limit values are 
not applied. 
 
 
 
          u1              u2        u3 
 
 
          1   122        91              178  
                         Px3 
                    
             Tampere 
             117        52 
             Px1           Px2    
 
Border             Helsinki 
    Kotka 
 
Figure 4.1 The Finnish natural gas pipeline system. Distances are in kilometres.  
 
 
In discharge pressure control mode, step-wise changes of CS discharge pressure are frequently 
needed. These steps will generate quite large changes in the gas throughput flow within physical 
CS equipment limits (see for example figure A.3 in Appendix A). 
 
The physical units used are for pressure bar (absolute pressure) and for flow Nm3/h (volume 
flow in normal conditions, 1 atm (1.01325 bar) absolute pressure and 0 °C temperature). In 
compressor-related analysis, volume flow, m3/s, in compressor suction conditions is usually 
used. 
 
 
 
4.2 Pipeline system dynamics 
 
In order to investigate the dynamic behaviour of the Finnish natural gas pipeline system, a series 
of step response tests were executed using a dynamic simulation model. The model is built on 
the “Simone” pipeline system simulator (Jeni´cek et al., 1991; Kra’lik et al., 1984B). For the 
control response, steps of 1 bar in the discharge pressures were made and for the disturbance 
response, steps of 10 000 Nm3/h in the flow rate of gas off-takes were made. All step tests were 
executed with the pipeline initially at steady state in three operating points: high, medium and 
low gas throughput. The operating point data are presented in tables A.1 to A.3 in Appendix A. 
With respect to CS status, we distinguish between three different cases: all three stations 
running, CS2 shut down and CS3 shut down. Step responses are presented graphically in 
Appendix A. 
 
In "Simone", the suction pressure of CS1 is kept at a constant value of 40 bar by an artificial 
pressure controller, because there is insufficient information on the Russian side of the pipeline 
system to predict important variables such as CS1 suction pressure. 
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Eventually, it may be necessary to operate CSs outside their envelopes. This can be achieved in 
"Simone" by switching off envelope handling (see Appendix C). For example, to switch off a 
CS at operating point no. 1, where the total gas flow through the pipeline system is high, is not 
possible (feasible) with the envelopes being active. However, the main interest at this point is to 
investigate pipeline dynamics without carrying concerns over envelope violations. 
 
 
 
4.2.1 Control response 
 
With control response we mean the responses of pressure and flow variables to changes in 
discharge pressures of CSs. The following observations may be made based on data presented in 
Appendix A: 
 
In a CS’s discharge pressure, a step change: 
• Generates a pulse in that station’s gas flow rate. The dynamics of CS local control systems 

together with the pipeline characteristics downstream the station determine the shape of the 
flow pulse. 

• Generates a fast change in the station’s suction pressure with approximately the same 
magnitude as the discharge pressure change but with opposite sign, and with time, the 
suction pressure will return to it’s original value. 

• Initiates a transient in any pressure value in the pipeline segment downstream the CS. The 
larger the distance from the CS, the slower the response. Having reached a new steady state, 
the value of the downstream pressure has experienced a larger change than the change in the 
station’s discharge pressure, provided all gas flows into and out of the pipeline segment are 
controlled and constant. Using process control terminology, the steady-state gain is larger 
than one. 

• Does not generate any responses on pressure and flow variables downstream the next 
downstream CS (for example, CS2 discharge pressure has no influence on Px3 when CS3 is 
in operation). In other words, running CSs “isolate” pipeline segments in the downstream 
direction. 

• Generates a pressure change with a slow return to original value in all pressure variables 
upstream the CS. The pressure change is slower the larger the distance is from the CS in the 
upstream direction. The isolating effect is not experienced in the upstream direction. 

• Generates a flow pulse in all upstream CSs so that the pulse is “smoothing out” and 
decreasing in amplitude in proportion to the distance from the CS. 

 
The step response graphs in Appendix A illustrate that at larger gas throughput, the pressure 
changes downstream are larger and the responses are slower. 
 
If a CS is shut down, then the dynamics becomes considerably slower and steady-state gains 
increase. Logically, shutting down a CS is equivalent to merging its upstream and downstream 
pipeline segments into one long segment.  Specifically, when making, again, a step change in 
the discharge pressure of a CS, who’s next downstream or upstream station is shut down: 
• The gas flow rate pulse looks very much the same as with the downstream station running 

(compare Appendix A, figures A.6 b with A.25 b for CS2 flow rate when CS3 is shut down 
and figures A.9 c with A.17 c for CS3 flow rate when CS2 is shut down). 

• The recovery of suction pressure is slower (compare figures A.4 b with A.23 b for CS2 
suction pressure when CS3 is shut down). In addition, when an upstream station is shut 
down, the change in the suction pressure is larger (compare figures A.7 c with A.15 c for 
CS3 suction pressure when CS2 is shut down) 
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• The CS shut down does not isolate any more. Pressure and flow transients will proceed 
through the bypass pipe of the station. For example, CS3 suction pressure has a response to 
CS1 discharge pressure when CS2 is shut down (figure A.12 c) and Px3 pressure has 
response to CS2 when CS3 is shut down (figure A.24 c). 

 
As can be seen in Appendix A, different gas throughput flow levels (operating points no. 1, 2 
and 3) have some influence on gas pipeline system dynamics and shutting down CSs have a 
considerable influence on the dynamics. Adjusting the CSs to operate on different discharge 
pressure levels has very little influence on the dynamics (see Appendix A, figures A.28 to A.31). 
 
An observation for later use is that the gas flow has the fastest dynamics of all variables 
considered and that the dynamics is not very dependent on the operating point, the CS status or 
the discharge pressure levels. 
 
Note1: The isolation property of a CS does not hold if there is a tendency to violate compressor 
envelope limits. For example, if a compressor’s maximum speed line is threatened, the local 
control system will override the discharge pressure set point by decreasing its value. The reason 
for this threat may be that the discharge pressure of the next upstream CS has decreased, leading 
to decreased suction pressure at the station in question and, in turn, to increased adiabatic head. 
The overall effect here will be the propagation of the decreased discharge pressure at the 
upstream CS through this station and the downstream pipeline segment. 
 
Note 2: As the pressure and flow responses in the downstream direction from a CS’s discharge 
pressure is limited (isolated) to the next downstream segment only, it is a good system property 
from the point of view of control design. The designer does not have to worry about what 
happens downstream the next CS. Also as upstream responses are temporary by nature – a 
process variable returning to it’s original value is often said to have a “zero gain” response – this 
would suggest that pipeline system variables should not be controlled by downstream CSs. The 
control structure is “diagonal”, if zero gain responses are not taken into account at all and 
“triangular” with the zero gain responses in place. 
 
Good control system design practice suggests adjusting the control (sampling) interval to match 
the dynamics of the target system. In Appendix A, we may see very slow dynamics, which 
would suggest a larger control interval, but also very fast phenomena, which then would require 
a small control interval. Let us take a 10-minute control interval as a fair compromise at this 
point. Throughout this work, we will use a constant 10-minute control and real-time 
optimisation interval. 
 
 
 
4.2.2 Disturbance response 
 
To analyse disturbance response, we selected an off-take near checkpoint no. 3 because of its 
significance: checkpoint no. 3 is used as one of the critical pressure limits in the pipeline 
operations. Moreover, moderate changes in gas flow at this point give large local pressure 
swings, since it is situated far from CS3 (178 km) at the other end of a long pipeline with a 
gradually decreasing diameter. 
 
A positive step change of 10 000 Nm3/h at checkpoint no. 3: 
• Generates a fast initial pressure decrease in Px3 followed by a slower decrease down to the 

new steady-state value (Appendix A, Figure A.11 c). The large initial decrease is due to the 
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fact that the flow change is high compared to the capability of the “narrow pipe” to deliver 
gas. In the slower part of the response, the actual dynamic characteristics of the whole 
pipeline segment are seen. 

• Generates only a small pressure decrease upstream CS3, because pressure decrease along the 
pipeline is caused by increased gas flow, but the pipeline diameter and the capacity is larger 
in the upstream parts of the system. 

 
 
 
4.3 Comparing simulator and true pipeline system dynamics 
 
The operations department of Gasum Oy, responsible for operating the Finnish natural gas 
pipeline system, has for many years successfully used the “Simone” dynamic simulator.  
Continuous development and model updating has been required in order to keep the simulator 
up to date. 
 
Operative data from the Finnish pipeline system was collected over the period 1.3. to 31.3.2003. 
Hourly average values for all off-take flows and 30 pipeline pressures, including CS discharge 
and suction pressures, were collected. The measured values of each CS’s natural gas 
consumption were also collected. Measured values of CS throughput flow rate were available, 
but they were not collected, since they are considered inaccurate by the operating personnel.  
 
All test and comparison runs using “Simone” were performed using a sampling time interval of 
10 minutes. All collected data was re-sampled from a 60-minute to a 10-minute interval; in 
addition for discharge pressures, filtering was used to smooth out sharp changes from one hourly 
value to another.  
 
The re-sampled off-take flows were inserted into Simone’s boundary condition file. The CS 
discharge pressure values were applied to “Simone” through the run command file (see 
Appendix C for details). A simulation run over the time period 1.3.2003 to 31.3.2003 was 
performed using true off-take flow rates and station discharge pressures. The simulated pipeline 
pressures are compared to the true operating data values. In the graphs below, the true suction 
and checkpoint pressures are not smoothed after re-sampling. 
 
The simulation is based on assumed isothermal conditions throughout the pipeline system. A 
constant gas temperature of 5ºC is assumed. 
 
The first comparison run between “Simone” and the true pipeline uses the values obtained for 
the period 1.3.2003 00:00 to 4.3.2003 24:00. Throughout this period, all three CSs were in 
operation, although a very short  shutdown attempt of CS2 is observed near time 300 (Figure 
4.3). Station discharge pressures are operated at rather high values. 
 
Pipeline pressure (suction and checkpoint pressures) variations stay within 6 bar during the 
period. Px3 shows the largest variations, since this point is situated at the other end of a long, 
decreasing-diameter pipeline segment. Operators are obliged to keep this pressure above 29 bar, 
in which they have succeeded quite well. 
 
A systematic difference, usually less than 1 bar, may be seen between simulated and true values. 
However, dynamic changes are very well reproduced by “Simone”. 
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In figure 4.7, the simulated gas throughput flows of the CSs are shown. The figure gives an idea 
of typical gas flow variations in the pipeline system. The figure also shows, that the majority of 
gas is consumed downstream CS3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 CS1 discharge pressure (bar) from operating data, re-sampled and filtered as a 
function of 10-minute time intervals from 1.3.2003 00:00 to 4.3.2003 24:00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 CS2 discharge pressure (dotted line), measured suction pressure (dashed line) and 
simulated suction pressure (solid line) 1.3.2003 00:00 to 4.3.2003 24:00. 
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Figure 4.4 Checkpoint Px2 measured pressure (dotted line), and simulated (solid line) 1.3.2003 
00:00 to 4.3.2003 24:00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 CS3 discharge pressure (dotted line), measured suction pressure (dashed line) and 
simulated suction pressure (solid line) 1.3.2003 00:00 to 4.3.2003 24:00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6 Checkpoint Px3 measured pressure (dotted line), and simulated (solid line) 1.3.2003 
00:00 to 4.3.2003 24:00. Pressure minimum limit 29 bar not severely violated, except for a 
temporary violation at time 130. 
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Figure 4.7 Simulated CS gas throughput flows in Nm3/h 1.3.2003 00:00 to 4.3.2003 24:00. 
Solid line = CS1, dashed line = CS2 and dotted line = CS3. 
 
 
Figure 4.8 illustrates a shutdown event of CS2 at time point 200. The time axes of the graphs are 
7.3.2003 00:00 to 12.3.2003 15:00 in 10-minute intervals. The re-sampled and filtered CS2 
discharge pressure is displayed together with the simulated CS2 discharge pressure. There is a 
small difference between true and simulated CS2 discharge pressure over the period CS2 is shut 
down, because when “Simone” receives a CS shutdown command, it starts to internally 
calculate the discharge pressure instead of receiving set point values. The calculated values are 
not exactly the same as the values in the operating data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8 CS2 discharge pressure from operating data (dashed line) and simulated discharge 
pressure (solid line) as functions of 10-minute time intervals from 7.3.2003 00:00 to 12.3.2003 
15:00. 
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Figure 4.9 CS2 suction pressure from operating data (dashed line) and simulated (solid line) 
from 7.3.2003 00:00 to 12.3.2003 15:00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10  Simulated CS2 gas throughput flow, Nm3/h from 7.3.2003 00:00 to 12.3.2003 
15:00. Shutting down CS2 generates a large negative change for a short time period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11 CS3 suction pressure from operating data (dashed line) and simulated (solid line) 
from 7.3.2003 00:00 to 12.3.2003 15:00. Pressure decreases by approximately 9 bar after time 
200 due to the shutdown of CS2. 
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4.4 Linear dynamics of natural gas pipeline systems 
 
4.4.1 Linear transfer function models 
 
In the following, we shall identify linear dynamic models for the pressure and flow variables of 
the Finnish pipeline system from simulated data encouraged by the observation that “Simone” 
offers  good correspondence with the true system. 
 
We will limit the study to control response only, as linear disturbance models are not needed in 
the receding-horizon optimiser development described below. We obtain responses by applying 
one or a few discharge pressure steps to “Simone” for one CS at a time. Simulated responses are 
free from noise, unless non-linearity is seen as one variant of noise. Thus, rigorous identification 
experiment design may be omitted and just a low number of steps is used.  
 
An experimental identification procedure will be used, where the user manually enters 
continuous transfer function parameters into a simple identification tool. The transfer function 
takes the general form: 
 

 n1 n 2 nM

d1 d 2 dN

K (T s 1)(T s 1)...(T s 1).
G (s )

(T s 1)(T s 1) (T s 1).
+ + +

=
+ + +L  (4.1) 

where: 
 K is the gain 
 Tn1, Tn2 , … are real-valued numerator time constants 
 Td1, Td2, … are real-valued denominator time constants 
 
The tool converts the continuous transfer function into a discrete one using a selected 
discretisation interval (10 minutes in this case) and calculates the response using the same input 
signal (discharge pressure) as “Simone”. The output from “Simone” and the output from the 
identification tool are graphed together and the user may repeatedly adjust the transfer function 
parameters until the graphs show a satisfactory coincidence. The sum of squared differences of 
the “Simone” output and the linear model output is also displayed. See figure 4.12 for an 
illustration. 
 
Discharge pressure step tests for all three CSs were performed in order to identify the transfer 
functions for CS1, CS2 and CS3 suction pressures, Px1, Px2 and Px3 checkpoint pressures and 
CS1,CS2 and CS3 gas flows for three operating points (see Appendix A) and three running 
status alternatives of the CSs. Discharge pressure steps of maximum 1 bar were used.  
 
Discharge pressure step changes are applied to the pipeline system in steady state. 
 
Appendix B shows selected transfer functions together with comparison graphs. 
 
It is fairly easy to obtain linear models offering a good fit, especially for downstream pressure 
variables. Upstream pressures and flows, which all have a “zero gain” response property, are 
more challenging, even if the general transfer function structure (4.1) is broken down into a 
more intuitive form.  
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          Model        output 
Input signal 
(CS     
discharge pressure) 
 
 
 
 
 
 
    Parameter input from user 
 
Figure 4.12 An experimental identification procedure 
 
 
For upstream pressures (for upstream flows, -1 and +1 change places): 
 

 
1 2 3

1 1G(s) K
T s 1 (T s 1)(T s 1)

 −
= + + + + 

 (4.2) 

 
Here T1, which is much smaller than T2 and T3, represents the fast decreasing pressure (or fast 
increasing flow) characteristics for a positive discharge pressure change and T2 and T3 the slow 
recovering response. The delay-free structure means that the gain K influences the linear model 
response in a non-intuitive way. Standard identification methods would most probably 
encounter the usual difficulty with identifying numerator dynamics, which is relevant in zero 
gain transfer functions. 
 
The data in Appendix A reveals that pipeline system dynamics changes with changing operating 
point and with changing CS status. Using “Simone”, a set of models valid for different 
operating regimes (Murray-Smith and Johansen, 1997) of the pipeline system has been 
obtained. One question may be asked: is it possible to calculate the values of linear model 
parameters from pipeline system geometry and/or measured data? 
 
 
4.4.2 A simple gain formula 
  
Let us look at a pipeline segment with the starting point at a CS's outlet and the end point 
anywhere downstream the station. The end point does not need to be at an off-take. The pipeline 
segment may have many off-takes. Let us further assume that all gas flows into and out from the 
pipeline segment are flow controlled, which means that no inflow or outflow of gas is directly 

Discretised transfer 
function model 

Continuous transfer 
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“Simone” 
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Comparison graph 
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dependent on the pressure in the segment. Let us also assume a steady-state condition, where all 
inflows, outflows and pressures are constant. Then, the steady-state flow and pressure equation 
(see chapter 3, expression 3.7) between the pressures at the starting point of the segment, P1, the 
end point, P2, and the gas flow through the segment q12, holds: 
 
 

2 2
1 2 q 12P P f (q )− =  (4.3) 

 
where fq is a function, which is approximately independent of the pipeline segment pressures. 
 
The steady-state gain between a system input and a system output may be calculated as the 
derivative of the output with respect to the input at a given steady-state operating point. Solving 
P2 from (4.3) yields 2

2 1 q 12P P f (q )= −  and taking the derivative: 
 

 
2 1 1

21 21 q 12

dP P P
dP PP f (q )

= =
−

 (4.4) 

 
This value for the gain of the transfer function from P1 to P2 can be used when the pipeline 
segment operates not too far away from steady state. 
 
P1 must be greater than P2 for gas to flow down the segment. This means, that the gain for any 
pipeline segment must be greater than 1. 
 
Expression (4.4) applies also to pipeline segments with branches and changing pipe diameter. If 
new sub-segments with own functions fq1, fq2, ..., fqN and own gas flows are defined, we obtain: 
 

 

2 2
1 x1 q1 x1

2 2
x1 x2 q2 x2

2 2
xN 1 2 qN xN

P P f (q )

P P f (q )

P P f (q )−

− =

− =

− =

L  

 
Adding these N equations eliminates all intermediate pressures Pxk, k=1,...,N-1, leaving: 
 

 

N
2 2

1 2 qk xk
k 1

P P f (q )
=

− = ∑  (4.5) 

 
enabling (4.4) to be applied, since the right hand side of (4.5) is still dependent on steady-state 
gas flows only. 
 
 
4.4.3 Time constant formulas 
 
For the time constants of the linear continuous-time transfer function models, it is not easy to 
find simple calculation rules. (Kra’lik et. al., 1984, A) divided a pipeline segment into elements 
(see figure 4.13), for which linear transfer functions for pressure and mass flow deviations in the 
element apply: 
 



 

 

 

45 

 

 

( )

1
12

1

21
1

2
11

1

2 3
22

1

K
F (s)

T s 1
1F (s)

T s 1
T s

F (s)
T s 1

K T s 1
F (s)

T s 1

=
+

=
+

=
+

+
=

+

 (4.6) 

 
The transfer function parameters K1, K2, T1, T2 and T3  depend on the geometry of the pipe 
element, friction and average gas speed. No rules on how to select the length of the element for 
the model to be accurate, were given, but in their examples, they used element lengths of 10 
kilometres. For three or more pipe elements in series, analytical overall pipeline segment 
transfer function calculation becomes tedious.  
 
 
 
 
 ∆Pin        ∆Pout    
 
 
 
 
 
 
∆qout         ∆qin 
 
 
Figure 4.13  Linear transfer function model for small pressure deviations ∆P and gas mass flow 
deviations  ∆q for a pipe element. 
 
 
While time constant formulas seem to be difficult to find, we may think of minimising the 
number of transfer functions necessary for a particular control or optimisation application. Zero 
gain responses are not the best ones to use in control and optimisation, since no sustaining 
(steady-state) change is achieved. Would it be possible to leave aside a part of the zero gain 
models? In a natural gas pipeline system, the CS envelopes impose constraints on the 
control/optimisation problem. Even small or short lasting responses must be accounted for when 
handling constraints. For example, a positive change is made in CS2 discharge pressure (see 
figure 4.1), which generates a positive gas flow pulse through CS2 and a smoothed positive flow 
pulse through the upstream CS1. If the latter operates near the maximum speed limit or choke 
line, the local control system in CS1 adjusts its discharge pressure downward (constrained by 
the maximum speed limit) or upward (constrained by the choke line) to make a positive flow 
change possible (see figure 4.14). Consequently, zero gain pressure and flow responses cannot 
be left out of the problem directly.  
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        Adiabatic   Maximum volume flow change of CS1 caused by CS2 
        Head      discharge pressure change 
        (kJ/kg) 
       A 
 
 
        B 
 
 
 
 
      Volume flow (m3/s) 
 
Figure 4.14 CS1 flow response in the envelope co-ordinate system after a CS2 discharge 
pressure change. “A” and “B” are alternative operating points of CS1 prior to the CS2 discharge 
pressure change. In both cases, the increase in volume flow is constrained by the envelope 
limits. 
 
 
 
4.5 Discrete events in natural gas pipeline systems 
 
Discrete events are, among others, opening/closing a block valve, starting/stopping a 
compressor unit in a CS and starting up/shutting down a whole CS. 
 
Let us assume that the block valve “V” in figure 4.15 has only two distinct positions: fully open 
or fully closed. Opening or closing the block valve initiates a transient in the pipeline system, 
which depends on the gas flow through the valve at the time of closing or the pressure difference 
over the valve at opening. Pipeline operators should minimise the transient by trying to 
minimise the gas flow or pressure difference prior to opening or closing.  
 
 
 
 
 
 
        V 
 
 
Figure 4.15 A block valve “V” in a pipeline system. 
 
 
Let us assume a CS with three parallel compressor units running. The envelopes of the 
individual units may be drawn in the volume flow – adiabatic head co-ordinate system as usual, 
but the volume flow now means the total flow through the station. The envelopes are partially 
overlapping in figure 4.16, this means that at an increase in gas flow, a new unit is started before 
the envelope limits (maximum speed or choke line) are reached by an already running unit. 
Suppose that the compressor unit with the rightmost envelope is shut down when operating at 
point “A”. The remaining two units cannot maintain the volume flow of gas and the operating 
point is immediately shifted to the choke line of the middlemost unit although in practice, the 
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local station control system will ensure optimum distribution of the load between the remaining 
units. The net effect is a fast gas flow decrease and consequently the pressures in the pipeline 
downstream the CS start to decrease.  
 
Another case for this CS would be a start up of a third unit, although there is no need for that. 
The consequence would be that gas flow through the station is forced by unit envelope surge or 
minimum speed lines to increase rapidly, which in turn increases pressures downstream the 
station and decreases pressures upstream. 
 
 
 
      Adiabatic 
      head 
 
 
 
        A 
 
 
       Volume flow 
 
 
Figure 4.16 Compressor unit envelopes of three units in parallel. Original operating point is “A” 
with three units running. 
 
 
Fast changes of gas flow through a CS are part of the everyday life when they are operated in 
discharge pressure mode. Consequently, the events to start or stop a unit described above are not 
very challenging  to deal with in terms of pipeline dynamics and control.  
 
If we consider a CS with three compressor units in series, the unit envelopes in 4.16 would be 
stacked on top of each other in the adiabatic head direction. In an analogy with the case above, if 
a unit is shut down, the discharge pressure of the CS decreases quickly constrained by the 
envelopes of the remaining two units. The station’s gas flow will experience the typical pulse 
response. If a unit is started prematurely, then the discharge pressure is forced to increase and a 
positive gas flow pulse is seen. In this case, we have a little more challenging transients to deal 
with than in the previous case, especially if the discharge pressure is forced to make large 
changes. 
 
It may be worth pointing out that starting and stopping units as described in the above cases 
would be more or less mistakes. In most cases, smooth operations should be possible. 
 
As a next case we will consider starting up and shutting down a whole CS, no matter how many 
units are running (or how many units will be started) or how the units are configured within the 
station. Schematically, a CS may be presented as surrounded by valves as in figure 4.17 a. Prior 
to shutting down, the bypass valve (“BP”), which is a control valve, is opened gradually and the 
discharge pressure is decreased. Typically, shutting down is considered at low gas flow rates, so 
the opening of the bypass valve circulates more gas through the station and the operating point 
may move from “A” to “B” in the envelope diagram in figure 4.17.b, where the head and 
consequently discharge to suction pressure ratio is at a minimum. Shutting down the station at 
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this point (turn the CS machinery off, close valves “V1” and “V2” and set “BP” fully open) 
minimises the dynamic transient caused by shutdown. 
 
 
      Head 
 
        V1  V2 
 
 
              A 
 
  BP         B 
            Volume flow 
            
Figure 4.17 a) (left) Schematic CS with valves and b) (right) operating point movement in the 
CS envelope using the bypass valve. Note: the envelope is for one running unit in the station. 
Multiple running units must be presented as multiple (partially overlapping) envelopes together. 
 
 
As may be seen from figure 4.17 b), the adiabatic head is not zero at point “B”. The discharge to 
suction pressure ratio at this point may be solved from the equation: 
 

 ( )s s d
1 VOL

w s

z RT P
1 H q

M Pγ

γ   − = 
   

 (4.7) 

 
(see equation 3.11, Chapter 3), where H1(qVOL) is the minimum speed line expressed as head as 
a function of volume flow qVOL. Typically, a pressure ratio greater than one remains at the point 
where the CS is going to be shut down. This minimum pressure ratio is compressor specific. For 
example, if the minimum pressure ratio is 1.1, then a suction pressure of 40 bar determines the 
minimum discharge pressure as 44 bar. Shutting down at this pressure ratio generates a transient 
in the pipeline system.The reverse operation of starting up a CS is carried out by starting the 
compressor unit(s) with the bypass valve open. The target is to start at the minimum pressure 
ratio point “B” in figure 4.17 b, but, similar to shutting down, a transient (or “jump”) when 
moving to point “B” is generated. 
 
In this study, we will not discuss the dynamic events inside CSs related to starting up or shutting 
down separately. Typically, these dynamic phenomena are very fast and are assumed to fit 
within the 10-minute control interval. Botros et al. (1996) discuss CS dynamics: for example, 
the time to achieve the maximum speed from a minimum speed situation is generally less than 3 
minutes. 
 
 
4.6  Constructing the shutdown transient using a linear model 
 
Encouraged by the fact that it is possible to build realistic dynamic simulation models and that 
the natural gas pipeline system is not severely non-linear, we will construct the shutdown 
transient of a CS using linear models. 
 
We will limit the discussion to “fast” shutdown events, where the decrease of the discharge 
pressure and movement to a favourable operating point within the envelope (see figure 4.17), as 



 

 

 

49 

well as the final shutdown all take place within the 10-minute basic sampling interval used in 
this study.  
 
We may write a simple linear, discrete time state-space model for the CS suction pressure as the 
model output (y) and the discharge pressure as the input (u). The model matrices A, B and C can 
be calculated from the discretised transfer function: 
 

 
(k 1) (k) u(k),

y(k) (k)
+ = +
=

x Ax B
Cx  (4.8) 

 
Let us assume that the system is in a steady state before the discrete time k=0 and that the CS is 
running, so that u(k) > y(k) when k<0. If, at k=0, the CS shuts down, the discharge pressure set 
point u(0),u(1),… cannot be freely determined by operators (or a controller or optimiser), as it 
must equal the suction pressure. From (4.8), we obtain an expression for y(k), k>0: 
 

 
k 1

k k 1 i

i 0
y(k) (0) u(i)

−
− −

=

= + ∑CA x CA B  (4.9) 

 
Equating discharge and suction pressures, y(k)=u(k-1) yields a recursive formula, or 
alternatively, a linear system of equations for computing u(0),u(1),u(2),… If a linear, discrete-
time model exists, with model matrices A2, B2, C2 and state vector x2 for another pipeline 
variable y2, which depends on the discharge pressure of the CS shutting down, we may 
substitute the computed sequence u(0),u(1),u(2),…. into the expression: 
 

 
k 1

k k 1 i
2 2 2 2 2 2

i 0
y (k) (0) u(i)

−
− −

=

= + ∑2C A x C A B  (4.10) 

 
The calculation of the shutdown transient is discussed in more detail in Chapter 6. 
 
Next, we will use “Simone” to demonstrate how the shutdown transient construction procedure 
works. 
 
Figure 4.18 shows the simulated discharge pressure (dashed line) and suction pressure (solid 
line) when CS2 in the Finnish gas pipeline is shutting down in a steady-state situation. The 
discharge pressure is 51 bar and the suction pressure about 40 bar prior to shut down, which is a 
quite large pressure ratio, chosen on purpose in order to demonstrate a large transient. 
Immediately after shutdown, the suction pressure exceeds the discharge pressure for a short time 
period. There is no physical reason for this; obviously “Simone” does have some difficulties 
with accurately simulating this type of event. 
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Figure 4.18 Responses to CS2 shut down at time point 20. Time axis in 10-minute intervals. 
 
 
Figure 4.19 shows the CS2 suction pressure calculated by “Simone” (solid line) from figure 4.18 
and the suction pressure constructed with a linear model (dashed line) as explained above.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.19 Comparison between the CS2 suction pressure from “Simone” and a linear model. 
 
 
Figure 4.20 shows the suction pressure response of the downstream CS3 to the CS2 shutdown 
event, calculated using the discharge pressure sequence obtained from the linear model as the 
input to the discrete, linear model for CS3 suction pressure (compare (4.10)). At the end of the 
period, a difference of 2 bar can be observed. The reason is that the non-linearity of the pipeline 
becomes visible when a pressure change of this order occurs. The suction pressure of CS3 
decreases as much as 15 bar. The steady-state value of CS2 discharge pressure is 51 bar and 
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CS3 suction pressure is 38.5 bar before shutdown, suggesting a linear model for CS3 suction 
pressure to have a gain of 51/38.5 = 1.325. After the shutdown, corresponding steady-state 
values are 40 and 24 bar, respectively, which yields a gain of 1.667.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.20 CS3 suction pressure when CS2 is shut down. Solid line = “Simone”, dashed line = 
linear model. 
 
 
The CS2 shutdown was simulated with the CSs in “free mode”, which means that the CS 
envelopes are disabled. The simulation starts at the steady-state conditions of operating point no. 
1 (see Table A.1, Appendix A), where the discharge pressure of CS3 is 48.6 bar. Inserting this 
and the new value 22.5 bar (almost a steady-state value, see table A.2, Appendix A) into the 
adiabatic head expression gives 101.6 kJ/kg; however the maximum adiabatic head on the 
maximum speed limit of CS3 configured into “Simone” yields 57.7 kJ/kg. In other words, the 
CS3 envelope would be violated. Decreasing the CS3 discharge pressure from 48.6 to 36.2 bar 
yields an adiabatic head of 57.7 kJ/kg, the Px3 pressure will decrease far below the minimum 
limit of 29 bar, which means that it is not feasible to shut down CS2 when the pipeline system is 
in operating point no. 1.  
 
 
 
4.7 Comments and discussion 
 
As can be seen in Appendix A, the dynamics of the pipeline changes when the gas consumption 
changes and when CSs are shut down and started up. For a moderate number of CSs in a 
pipeline system, it is not too difficult to identify linear models for different combinations of CSs 
running and shut down. The simple formula (4.4) is available for a pipeline segment gain, 
which, in an "adaptive control" setting can be applied by using measured long-term average 
values for P1 and P2.  
 
A simulator  may be used to evaluate the pipeline system time constants. As was shown in 
section 4.3, "Simone" models the Finnish pipeline system with a good level of accuracy. With a 
reliable simulator, a bank of models for different off-take flow scenarios can be built up. The 
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logic is simple: if the simulator matches reality and if the linear models match the simulator, 
then the linear models match the reality. This logic is not foolproof and must be used with care 
and judgement. 
 
Kra'lik et.al. (1984, B) present a universal dynamic simulation model for pipelines based on 
linearised transfer function models for pipeline elements as shown in section 4.4.3. This 
universal model is the basis for "Simone" and matches the dynamics of real pipelines very well. 
 
 The temporary "spikes" in the simulated discharge and suction pressures of a CS shutting down 
from relatively high pressure (see figure 4.18) are probably due to some internal numerical 
difficulties within the "Simone" differential equation solver. Unfortunately, the version of 
"Simone" used in this study does not offer any means to adjust integration parameters, such as 
tolerances and stepping characteristics. 
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Chapter 5 
 
Real-time receding horizon optimisation  
 
 
 
 
 
 
 
In this chapter, we start with presenting a general, non-linear receding horizon optimisation and 
control problem. The development of receding horizon, predictive control in the 1970's was 
initiated by linear methods, since control problems based on linear models are so much easier to 
solve than non-linear problems. A number of authors have used mixed linear and non-linear 
approaches. 
 
 
5.1 Optimisation and control 
 
A discrete-time receding horizon real-time optimisation problem can be defined as finding an 
optimal sequence of inputs u(k), u(k+1),…,u(k+M-1) at the discrete moment of time “k” based 
on historical values of measured system outputs y(-∞),…,y(k-1), y(k) and inputs u(-∞), …, 
u(k-2), u(k-1) as well as predicted values of the system output $ $ $(k 1),  (k 2),  ... (k P)+ + +y y y  
over the prediction horizon P. The optimal inputs are obtained by solving the optimisation 
problem: 
 

 $
P

i
(k), (k 1),..., (k M 1) i 1

J(k) c [ (k i)), (k i 1)]Min
+ + − =

     = + + −∑
u u u

y u  (5.1) 

 
where ci is a suitable cost function. The optimisation problem is subject to the constraints: 
 
 2(k 1) ( (k), (k), (k), (k)) + (k)+ = 1x F x u d v v  (5.2) 
 (k) ( (k), (k)) + (k)= 3 4y G x v v  (5.3) 
 ( (k), (k), (k)) 0≤h x y u  (5.4) 
 (k M i) (k M 1),i 0,1,..., P M 1+ + = + − = − −u u  (5.5) 
 
where the dimensions of the vectors u, y and x are, respectively, m, n and r. d(k) is a known 
disturbance acting on the system (at least up to and including time “k”, but possibly also over 
the whole prediction horizon). v1(k) to v4(k) are unknown disturbances, all of which do not need 
to be present in the problem. The non-linear discrete-time system model (5.2) and (5.3) is 
usually not as such available, rather it must be seen as a "short hand notation" for integrating a 
system of non-linear, continuous time differential equations over the sampling interval ΔT. (5.4) 
is a set of non-linear inequality constraints for the optimisation problem and (5.5) sets input 
signals beyond the control horizon M, M<P, equal. For a non-linear receding horizon model 
predictive control (MPC) problem, we define 
 
 



 

 

 

54 

 

$ $R T y R
i i i i

R T u R
i i i

T
i

c ( (k i)) ( (k i))

( (k i 1)) ( (k i 1))
( (k i 1) (k i 2)) ( (k i 1) (k i 2))

= − + − + +

− + − − + − +

+ − − + − + − − + −

y y W y y
u u W u u
u u R u u

 (5.6) 

 
where R

iy are reference value (set point) n-vectors for the outputs, R
iu are reference (or target) 

value m-vectors for the inputs and y u
i i,  and iW W R are, respectively, nxn, mxm and mxm 

weighting matrices for the control error, input target deviation and control move penalty. If the 
system model (5.2) and (5.3) as well as the inequality constraints (5.4) are linear, then we have 
the linear model predictive control (LMPC) problem. 
 
The term “receding horizon” is used, because after solving the optimisation or control problem, 
u(k) is implemented and the rest of the optimal input sequence is deleted, while, at the next 
control interval “k+1” the whole procedure is repeated. In order to achieve closed loop 
optimisation or control, the measured system output must be accounted for through some 
estimation mechanism at each sample time "k". 
 
Generally, it is very demanding to solve the general, non-linear MPC problem. Therefore, non-
linear systems are frequently approximated by linear ones, so that LMPC can be applied instead. 
There are different options within LMPC for obtaining optimal output predictions 
$ $ $(k 1),  (k 2),  ... (k P)+ + +y y y , as will be seen below. 

 
There is a vast amount published on the subject of MPC (Morari and Lee, 1999). LMPC is more 
popular in industrial applications, because of its longer history and proven performance 
capability. Non-linear MPC is developing and is to some extent applied in industry, but there are 
still some challenges to be solved. Discrete (or integer) decision variables introduced as a part of 
the MPC problem will further extend industrial applicability. In recent years, receding horizon 
optimisation, where a cost function describing the economic performance of the target system is 
used, has been the subject of research.  
 
One of the early publications on receding horizon optimisation is Marque’s and Morari (1988) 
discussed in Chapter 3. 
 
Abou-Jeyab et al. (2001) combine LMPC of a distillation column with the economic objective 
to maximise the column’s reflux flow rate. The control error objective function is linear and the 
problem is solved by Linear Programming (LP). The objective function is augmented by 
subtracting the reflux flow times a weighting factor from the original control error. The reflux 
flow rate is itself a manipulated variable, i.e. it is a component of the control variable vector u . 
 
Ferrari-Trecate et al. (2002) use MPC to minimise the impact of lifetime changes of power plant 
components on a plant’s asset value. A dynamical lifetime model is derived, including discrete 
variables (plant component status: “running”, “starting up” or “shutting down”), which 
introduces discrete decision variables into the optimisation problem. Since the dynamic models 
and cost functions are linear, Linear Mixed Integer Programming (LPMIP) is used. The 
accuracy of linearised plant and cost models may be increased at will by using piecewise affine 
model sets, from among which individual models are selected during the optimisation by 
dedicated discrete decision variables. 
 
Perea-Lo´pez et al. (2003) and Seferlis and Giannelos (2003) use MPC for optimisation of 
supply chains. The supply chain is a network of raw material suppliers, manufacturers of goods, 
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warehouses, distribution centres, retailers and end consumers. The flow of goods and 
information in the supply chain is modelled. Dynamics are introduced by the storage facilities at 
warehouses, distribution centres and retailers. Transportation delay is also present. The objective 
is to maximise profit of the complete chain using commands on how much to produce and 
transport in each part of the network. The problem contains discrete decision variables, but 
otherwise models are linear whereby it can be solved as an LPMIP problem. 
 
Bemporad and Morari (1999) present an example of MPC of a gas supply system, which 
actually is a hybrid system. Hybrid systems are linear dynamic systems containing both 
continuous and discrete input, state and output variables. Intensive research has been conducted 
on this subject during the past few years. A conventional, quadratic control error criterion is 
used as the cost function of the optimal control problem, to which a linear “non-profit” function 
is added, which is the difference between the maximum achievable profit and the predicted 
profit of the supply system. 
 
Gallestey et al. (2003) present a two-level optimisation scheme for the scheduling of industrial 
processes using MPC and hybrid systems. At the higher level, a general, non-linear cost 
function, defined as the operating costs of the process subtracted by the revenues, is minimised 
by finding optimal command sequences of the decision variables, which are given as reference 
values to be followed by the lower level optimiser, which minimises a quadratic error function 
like (5.6) above. The optimisation scheme allows a non-linear cost function at the higher level 
and non-linear process models, but the example presented consists of a combined cycle power 
plant described by linear models and a linear higher-level cost function.  
 
The receding horizon optimisation or control problem can be illustrated as in Figure 5.1. The 
past input and output values before the present time "k" are used to calculate the predicted 
outputs for time steps k+i, i=1,2,...,P in the future under the assumption, that there is no change 
in future input values from the latest implemented input value u(k-1). This is often referred to as 
the "free response". The final output response is a combination of the free response and the 
response to optimal future input variables u(k), u(k+1),..., u(k+M-1) to be determined by the 
optimiser or controller at time "k". If the system model (5.2) and (5.3) is linear, then the 
combination is a simple addition, otherwise not. 
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                disturbance 
 
                input 
 
 
                output 
 
  History     k          future          time 
  
 
          disturbance 
 
 
          input 
 
           output 
 
        k                     k+M-1                   k+P 
 
Figure 5.1 The two steps involved with receding horizon optimisation and control. Upper 
figure: determine free output response assuming no change in input and assumed or known 
disturbance behaviour. Lower figure: determine future inputs so, that a desired predicted output 
behaviour is obtained. 
 
 
The literature dealing with MPC thoroughly discusses unknown and measured disturbances (see 
(5.2) and (5.3)) and their impact on the system to be controlled or optimised. However, known 
and predicted disturbances d(k+1), d(k+2),…, d(k+P) are rarely dealt with. In this work, both 
unknown and predicted disturbances are present, the latter being the gas consumption forecasts 
over the prediction horizon at each off-take. It is fairly straightforward to implement predicted 
disturbances into MPC or receding horizon optimisation, while, algorithm-wise, they constitute 
a known feed-forward path. 
 
 
 
5.2 Linear optimal predictors 
 
The optimal, stochastic minimum variance predictor (Åström, 1970) was originally derived for a 
single-input single-output (SISO) system and for one step ahead only (one specific moment of 
time in then future). De Keyser and van Cauwenberghe (1981) extended the one-step prediction 
to multi-step self-adaptive prediction for the SISO system: 
 
 -1 -1 -1A(q )y(k)=B(q )u(k)+C(q )e(k)  (5.7) 
 
where A, B and C are, respectively,  na-, nb- and nc-degree polynomials in the shift operator q-1, 
q-1y(k)=y(k-1). The prediction error in the future, P≥ j>0, is: 
 
 $v(k+j)=y(k+j)-y( k+j k)  (5.8) 
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The optimal prediction problem is defined as finding a value of $y( k+j k) to minimise the 

variance of v(k+j). In the sequel, writing $y( k+j k) for the predicted output emphasises, that it is 
calculated at discrete time “k”. The parameters, i.e. coefficients of the polynomials Hj, Fj and Gj 
of the following j=1,2,...,P prediction models are estimated from process data: 
 
 $-1 -1 -1

j j jv(k)=H (q )v(k-j)+F (q )y( k k-j)+G (q )u(k)+ε(k)  (5.9) 

 
where ε(k) is a residual error term. The predictions are then calculated from (note, that fj0=-1 in 
all -1 -1 -2

j j0 j1 j2F (q ) f +f q +f q +...= ): 
 
 $ $-1 -1 -1

j j jy( k j k)=(1+F (q ))y( k+j k)+G (q )u(k+j)+H (q )v(k)+  (5.10) 

 
For the first predictor, j=1, the following holds, if the parameter estimates converge: 

-1 -1 -1 -1 -1 -1
1 1 1 1 10F (q )=-A(q ) , G (q )=B(q ) , qH (q )=F (q )-f . 

 
If the system model (5.7) is known, no parameter estimation is needed, but the coefficients of 
the polynomials in (5.10) must be calculated from a set of Diophantine equations. 
 
Separate prediction models for $y( k+j k) ,j=1,2,...,P together with parameter estimation when the 
system model is unknown requires a large computational capacity when P is large. It can be 
shown that only the prediction models for $ $ $

ay( k+1 k),y( k+2 k),...,y( k+n k)  are needed and the 
remaining P-na predictions can be calculated by propagating the original system model (5.7). De 
Keyser et al. (1988) further simplify the issue by using a predictor only for $y(k 1 k)+ and 
propagating the system model for the remaining 2,…,P predictions. 
 
Clarke et al. (1987 A) introduced Generalised Predictive Control (GPC) for SISO systems based 
on linear optimal stochastic prediction. Kinnaert (1989) extended GPC for MIMO systems 
described by the system model:  
 
 -1 -1 -1(q ) (k)= (q ) (k)+ (q ) (k)∆ ∆A y B u C e  (5.11) 
 
where A, B and C are matrix polynomials in the shift operator q-1: 
 

 

-1 -1 -2 -na
1 2 na

-1 -1 -2 -nb
1 2 nb

-1 -1 -2 -nc
1 2 nc

(q ) + q q ... q

(q ) q q ... q
(q ) + q q ... q

= + +

= + +

= + +

A I A A A
B B B B
C I C C C

 (5.12) 

 
and the operator ∆ is defined as ∆ =1 - q-1, for example, ∆u(k)=u(k)-u(k-1). Ai and Ci are n x n 
matrices and Bi are n x m matrices. I is an n x n identity matrix. e(k) is a white noise disturbance 
vector. In the sequel, q-1 is left out from the matrix polynomials. 
 
The j-step ahead predictor for (5.11) is: 
 
 $(k+j k)= (k)+ (k+j)+ (k) j=1,...,P∆   ,  j j jy G y F B u V e  (5.13) 
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where y(k) is the vector of measured outputs and the matrix polynomials Gj and Fj , where Fj  is 
of degree j-1, are solved from Diophantine equations: 
 
 -jq= ∆ +j jI F A G  (5.14) 

 
and Vj consists of the last nc-j+1 terms of jq jF C . Recursion formulas using initial values 

=1F I and [ ]q Δ= −1G I A for computing Fj and  Gj can be derived. 
 
Henttonen (1996) uses no linear optimal predictor at all in his simplified version of GPC for 
MIMO systems, because all predicted output values $ $ $(k 1 k), (k 2 k),..., (k P k),+ + +y y y are 
obtained by propagating the system model equation (5.11). 
 
 
 
5.3 Linear state-space model-based  predictors 
 
In LMPC, the predicted system output µ(k)Y is written as a sum of the predicted free response at 

moment “k”, µ(k 1)−Y and the contribution of the future inputs using either  a step response 
matrix S or an impulse response matrix H: 
 
 µ µ(k) (k) (k 1)= + −Y SΔu Y%  (5.15) 
 
 µ µ(k) (k) (k 1)= + −Y Hu Y%  (5.16) 
 
where: 
µ $ $ µ $ $ $

$ $ $
1 1 1 2 2 2

T
n n n

(k) [y (k 1 k)  y (k 2 k)... y (k P k)   y (k 1 k)  y (k 2 k)...y (k P k) ...

            y (k 1 k) y (k 2 k)...y (k P k) ]

= + + + + + +

+ + +

Y
 

1 1 1 2 2(k) [ u (k) u (k 1) u (k M 1) u (k) u (k M 1) ∆ ∆ ∆ + ∆ + − | ∆ ∆ + − |u% A L L L
T

m m   u (k) u (k M 1) ]∆ ∆ + −L  
T

1 1 1 2 2 m m(k) [u (k) u (k 1) u (k M 1) u (k) u (k M 1)  u (k) u (k M 1) ]+ + − | + − | + −u% A L L L L  
The prediction expressions (5.15) and (5.16) can be derived based on quite simple intuitive 
arguments (Cutler and Ramaker, 1980; Martin, 1981). 
 
The nP x mM system step response matrix S has the structure: 
 

 

 
 =  
 
 

11 1m

n1 nm

S S
S

S S

L
M O M

L
 (5.17) 

 
where each P x M matrix Sij contains the step response coefficients for input uj to output yi : 
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ij

ij ij

ij ij ij

ij
ij

ij ij

ij ij ij ij ij

s (1) 0 0 0 0
s (2) s (1) 0 0 0
s (3) s (2) s (1) 0 0

s (1) 0
s (2) s (1)

s (P) s (P 1) s (P 2) s (P M 2) s (P M 1)

 
 
 
 
 
 =  
 
 
 
 
 − − − + − + 

S
M M

M L

M M

 (5.18) 

 
 
The free response prediction ˆ (k 1)−Y must, at moment "k", be updated with the latest measured 
system output values. A non-minimal state-space model can be used as a basis for the estimator 
design required (Li et al., 1989), among others: 
 
 (k) (k 1) (k 1)= − + −ss 1X M X S Δu  (5.19) 

where 
$ $ $ $ $

$ $
1 1 1 2 2

T
n n

(k) [y (k k-1)  y (k 1 k-1)...y (k P k-1)  y (k k-1)...y (k P k-1)  ...

             y (k k-1)...y (k P k-1) ]

= + + +

+

X
 

$ $ $ $ $

$ $
1 1 1 2 2

T
n n

(k 1) [y (k 1 k-2)  y (k k-2)...y (k P 1 k-2)  y (k 1 k-2)...y (k P 1 k-2)  ...

             y (k 1 k-2)...y (k P 1 k-2) ]

− = − + − − + −

− + −

X
 

The length of the state vector X is n x (P+1) to include, for each output, the current output value 
at time “k” and P predicted values. 
 
Mss is a block diagonal matrix with n shift matrices Ms, diag(Ms, Ms,. .., Ms ), each of 
dimension (P+1) x (P+1): 
 

 

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
0 0 0 0 1

 
 
 
 =
 
 
 
 

sM

L
L

M M M O M M
L
L

 (5.20) 

 
S1 is a n(P+1) x m dimensional matrix used to account for the last implemented incremental 
input and is obtained by expanding the step response matrix S by one sample interval to a 
n(P+1) x mM matrix and then, in each sub-matrix Sij, delete all columns except the left-most 
ones: 
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11 12 1m

11 12 1m

21 22 2m

21 22 2m

n1 n2 nm

n1 n2 nm

s (1) s (1) s (1)

s (P 1) s (P 1) s (P 1)
s (1) s (1) s (1)

s (P 1) s (P 1) s (P 1)

s (1) s (1) s (1)

s (P 1) s (P 1) s (P 1)

 
 
 
 + + +
 
 
 
 =

+ + + 
 
 
 
 
 
 + + + 

1S

M M M
L

M M M

M

M M M

 (5.21) 

 
A final state update model for the free response prediction is obtained by using a Kalman filter: 
 

 

µ

(k) (k 1) (k 1)

(k) (k) ( (k) (k))

(k 1) (k)

= − + −

= + −

− =

ss 1

M

X M X S Δu

X X K y TX

Y HX

 (5.22) 

 
where K is a n(P+1) x n dimensional Kalman filter gain matrix. T is an n x n(P+1) “output” 
matrix used to pick the predicted output values corresponding to the measured values yM(k) : for 
i=1,2,…,n, Tij=1 if j=i(P+1)-P, otherwise Tij=0. H is an nP x n(P+1) shift matrix modified from 
Mss so, that the last row of each Ms is left away. 
 
The predictor based on the non-minimal state-space model does not perform well, when system 
outputs have integrating characteristics (Lee et al., 1994).  Adding one extra state per output to 
account for the residual dynamics past P and extra states for an improved disturbance model 
improves LMPC performance. 
 
Lundström et al. (1995) showed how slow system responses, which are stable but do not reach 
steady state within P, can severely degrade the performance of MPC. They also showed that the 
state-space interpretation of Lee et al. (1994) for integrating responses works well in cases with 
slow responses. 
 
The prediction equations may also be derived based on a (minimal) linear, discrete time state-
space representation of the system (Ricker, 1990), with a known and predicted disturbance d(k) 
acting on the system: 
 

 
(k 1) (k) (k) (k)
(k) (k)

+ = + +
=

x Ax Bu Ed
y Cx

 (5.23) 

 
The predicted and corrected (with measured outputs) state estimates are: 
 

 $ ( )
ˆ(k k 1) (k 1 k 2) (k 1) (k 1)

(k k 1) (k k 1) (k) (k k 1)

− = − − + − + −

− = − + − −M

x Ax Bu Ed

x x K y Cx
 (5.24) 

 
and the prediction equation becomes:  



 

 

 

61 

 

2
2

P
P-1 P-2

P 1

0 0 0
(k) (k)

0 0
(k 1) (k 1)ˆ ˆ(k) (k k 1) ...

(k P 1) (k P 1)

     

...−

 
      
      + +      = + − + +
      
           + − + −      

 

+
+

+ +

CE
u CA d

CAE CE
u CA d

Y H x CA E CAE

u CA d
CA E CA E CAE CE

CK
CAK CK

CA K C

L
L
L M M

M M M
M M O M M

L

M
( (k) (k k 1))

 
 
  − −
 
  + 

My Cx

AK CK
 (5.25) 
 
 
where H is the nP x mP impulse response matrix: 
 

 2

P-1 P-2 P-3

0 0 0 0
0 0 0

 
 
 
 =
 
 
 
 

CB
CAB CB

H CA B CAB CB

CA B CA B CA B CAB CB

L
L
L M M

M M M O M M
L

 (5.26) 

 
The output prediction vector is now organised in a different way as 
µ $ $ $ $ $ $

$ $ $
1 2 n 1 2 n

T
1 2 n

(k) [y (k 1 k) y (k 1 k) y (k 1 k)  y (k 2 k) y (k 2 k) y (k 2 k) ...

y (k P k) y (k P k) y (k P k)]

= +  +  ... +  +  +  ... +

         ...  +  +  ... +

Y
 

 
 
 
5.4 Non-linear and linearised  predictors 
 
For non-linear systems, the state estimators and predictors are, by nature, non-linear. Because 
very computation-intensive algorithms result, different simplifications have been proposed. For 
the state estimation at moment “k”, Gattu and Zafiriou (1992) use a Kalman filter, whose gain 
matrix Kk is calculated at each moment based on the linearised system state equation in 
$(k k-1), (k-1)x u . (k)e$ is the difference between measured and model output, which is assumed 
to be constant over the whole prediction horizon, while no information regarding the future 
evolution of that difference is available: 
 
 ˆ(k) (k) ( (k k 1))= − −Me y G x$  (5.27) 

 
where ˆ (k k 1)−x is the current state estimate. The prediction equations for i=1,2,…,P are now: 
 

 
$
ˆ ˆ(k i k 1) ( (k i 1 k 1) , (k i 1), (k i 1)) (k)

ˆ(k i k) ( (k i k 1)) (k)

+ − = + − − + − + − +

+ = + − +

kx F x u d K e

y G x e

$

$
 (5.28) 
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To avoid a non-linear optimisation problem for calculating the optimal input sequence u(k), 
u(k+1),…, u(k+P-1), they choose to set u(k+i-1)=u(k-1) in (5.28) which is equivalent to, that 
the output predictions $(k i k)+y constitute the free response of the system. They assume, that 
the response to future inputs u(k), u(k+1),…, u(k+P-1) is approximately linear and use the 
linearised system model to obtain an impulse response matrix. The final result is a prediction 
equation like (5.16). 
 
Lee and Ricker (1994) improved the disturbance model of Gattu and Zafiriou (1992) to allow 
the method to be applied with unstable systems and to avoid the high risk of obtaining erroneous 
state estimates. Inadequate state estimation may be disastrous from an overall performance point 
of view, since the linearisation performed at each sample interval may fail. The non-linear 
difference equation model (5.2) and (5.3) is augmented with a linear disturbance model: 
 

 
(k 1) (k) (k)

(k) (k)

+ = +

=
v v v v

v v

x A x B v

e C x$  (5.29) 

 

The state of the augmented system, $ $ T
T T(k)  (k)    vx x is estimated at each control interval using 

an extended Kalman filter (EKF). Without showing the detailed equations, the main difference 
compared to the free response prediction in Gattu and Zafiriou (1992) is that all the output error 

(k i 1)+ −e$ ,i=1,2,…,P is not constant over the prediction horizon and consequently, each 
predicted state and output value at all points in the prediction horizon is updated in a distinct 
way.  
 
Gattu and Zafiriou (1995) further extend the disturbance models in order to obtain good state 
estimates for step-like disturbances at the system input or output. They also discussed the use of 
input/output models, such as neural networks, as the non-linear system model: 
 
 y u(k) ( (k 1), (k 2),..., (k n ), (k 1), (k 2),..., (k n ))= − − − − − −y f y y y u u u  (5.30) 

 
where f is a vector-valued function with dimension n. This is linearised in order to obtain the 
model with constant matrices A1, A2,… B1, B2…: 
 
 -1 -2 -ny -1 -2 -nu

1 2 ny 1 2 nu[ + q q ... q ] (k)=[ q q ... q ] (k)+ + + +I A A A y B B B u  (5.31) 

 
This input-output model is used instead of a state-space model. 
 
 
 
5.5 Selecting the type of predictor and value of the prediction horizon 
 
Early predictor development was based on systems with low complexity, SISO systems initially, 
and only one future system output value was predicted (Åström, 1970). P in this case was set to 
Td+1, where Td is the discrete dead time of the system, to ensure good closed loop control. Later 
it became evident that for long-range prediction with large P, several values in the future had to 
be predicted (de Keyser, et al., 1988). The optimal predictors derived originally for small P and 
few predicted values became too computation intensive, which suggested different types of 
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approximations, as was shown in section 5.2. GPC was criticized as not being very suitable for 
industrial-scale MIMO systems with constraints on the system variables (Morari and Lee, 1999). 
 
The predictor equations obtained by direct application of linear step or impulse response models 
are simple to understand and do not require much computational load, even if adequate 
disturbance models and state estimation schemes are applied. Hence, this class of predictors is 
well suited for large P. As a matter of fact, a large P is a default for these methods, because for 
good LMPC performance, P should be selected in most cases so that the system responses 
almost reach steady state within P (Cutler and Ramaker, 1980). 
 
The linear state-space model (5.19) is truly non-minimal, especially for a long prediction 
horizon P, the number of states being n(P+1). The state-space model (5.23) has a much lower 
number of states but it increases for higher order dynamics, especially if the system has long 
dead times. The non-minimal state-space model is most of all needed for an adequate estimator 
synthesis, but in the early days it was necessary to replace floating-point operations with simple 
shift operations in order to decrease computer load. 
 
LMPC applications based on a minimal state-space model or input-output polynomial models 
(5.11) are usually implemented with a smaller value for P. De Keyser and Cauwenberghe 
(1981), Clarke et al. (1987 B),  Ricker (1990) and Gattu and Zafiriou (1992) all use a value of P 
in the range 5 to 10 sample intervals. If the predictor is used for operator guidance in addition to 
closed loop control, a very large P may be necessary (De Keyser and Cauwenberghe, 1981). 
 
It is open for discussion, whether linear optimal predictors are better than simplified or 
approximate predictors. A linear optimal predictor, however optimal it may be, is in industrial 
applications always based on a linear model, which in any case is only an approximation of the 
true system. 
 
Whatever predictor mechanism is used for (L)MPC, the final goal is a predictor equation (5.15) 
or (5.16) in all cases, where the contribution of future inputs is approximated by a linear model. 
 
 
 
5.6 Free response predictions using simulators 
 
One variant of input/output model is a commercial, dynamic process simulator. Henson (1998) 
mentions that use of commercial simulators within MPC schemes has not been reported. Most 
often, the model equations (or values of the state variables) are not available to the MPC 
designer or user in an appropriate way. Gattu and Zafiriou (1995) address the input/output 
model, but their approach seems still to require too much information if a simulator is 
considered for providing predicted free responses.  
 
The simulator may be seen as solving the system equations (5.2) and (5.3) and can be used for 
calculating the free response prediction µ(k 1)−Y . As has been seen in section 5.4, there may be 
a need to adjust the value of each state and output value at each time point in the prediction 
horizon. Simulators may or may not provide options to adjust states and outputs, but do they 
satisfy all possible needs of MPC or optimisation? For example, how do we design the Kalman 
filter and determine the value of the gain matrix Kk? We will leave this issue outside the scope 
of this discussion.  
 



 

 

 

64 

The case we are studying more closely, namely the Finnish natural gas pipeline system, has been 
successfully modelled using the “Simone” simulator, as has been demonstrated in Chapter 4. 
“Simone” provides an option for so-called state reconstruction, which is “suboptimal” to more 
rigorous state estimation approaches (Jeni´cek et al. 1991). The gas flow through a pipeline 
element, which has a gas supply or a gas off-take and a pressure measurement, may be adjusted 
as follows: 
 
 ( )F MF(k) k P(k) P (k)∆ = −  (5.32) 
 
where ∆F(k) is the adjusted gas flow, which is added to the supply or off-take flow forecast, kF 
is a tuning coefficient, P(k) is the pressure of the pipeline element calculated by “Simone” and 
PM(k) is the measured pressure. This simple ad-hoc approach is the same as the one used by 
Marque’s and Morari (1988). The maximum number of kf –parameters is equal to the number of 
measured pressures in the pipeline system. Although the method is intuitive, it can be difficult to 
tune the parameter values, because no systematic procedure like the calculation of a Kalman 
filter gain matrix seems to be available. Also, one might ask, whether the states of the simulator 
model can be adequately adjusted using this “local way” fixed to supplies and off-takes only. On 
the other hand, a simple state estimation scheme may be enough, since the better the system 
model, the smaller the need for state estimation (the smaller the values of the elements of the 
estimator gain matrix, K). For a perfect model, no state estimation is needed.  
 
The prediction equation to be used for the receding horizon real-time optimisation of natural gas 
pipeline systems is formed as follows: 
 
At sample interval “k”: 
For the past input u(k-1) and known values of present and future disturbances (off-take flow 
forecasts) d(k), d(k+1),..., d(k+P-1), let the dynamic pipeline system simulator “Simone” 
calculate the free response prediction vector µ(k 1)−Y  for all variables involved, i.e. suction and 
check point pressures and CS gas flows. Using the linear models from Chapter 4, define a step 
response matrix S, which has the general structure of (5.17). The final predicted system output 
vector µ(k)Y  is calculated using (5.15), but in the sequel, we will call the free response 

prediction vector µ
0 0(k) (k) (k 1) , −Z Z YA , which is organised as follows and has a length of 

P(2Nc+Nx): 
 
 T T T T T T T

, 2 2 2(k) [ (k) ... (k) (k) ... (k) (k) ... (k) ]       + + +=0 0 1 0,Nc 0,Nc 1 0, Nc 0, Nc 1 0, Nc NxZ Z Z Z Z Z Z (5.33) 
 
where Nc is the number of CSs, 
 Nx is the number of checkpoint pressures 

T
0,i 0,i 0,i(k) [z (k 1) z (k 2) ... z (k P)]     + + +0,iZ A are variable specific free response 

prediction vectors, each of length P: i=1,2,…, Nc are the CS suction pressures, i= Nc+1, 
Nc+2,…, 2Nc are the station gas throughput flows and i= 2Nc+1, 2Nc+2,…, 2Nc + Nx are 
the checkpoint pressures. 

 
The final predictions corresponding to (5.15) of individual variables for j=1,2,…, Nc (j=1,2,..., 
Nx for Pxj) are: 
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P P P
j1 j2 jNc

F F F
j1 j2 jNc

X X X
j1 j2 jNc 2

(k) [ (k) (k)

(k) [ (k) (k)

(k) [ (k) (k)

=   ... ] ∆  +  

=   ... ] ∆  +  

=   ... ] ∆  +  

S, j 0,j

j 0,Nc+j

X, j 0, Nc+j

P S S S u Ζ

F S S S u Ζ

P S S S u Ζ

%

%

%

 (5.34) 

 
where Fj are the throughput flow rate prediction P-vectors for CS “j”,  
     j j j(k) [F (k 1) F (k 2) F (k P) Τ= +  +  ... + ]jF  
 Psj are the suction pressure prediction P-vectors for CS “j”,  
     S, j S, j S, j(k) [P (k 1) P (k 2) P (k P) Τ= +  +  ... +  ]S,jP  
 PXj are the checkpoint pressure prediction P-vectors, and 

 and P F
ij ijS S  are P times M matrices of type (5.18) with step responses for i=1,…, Nc , 

j=1,.., Nc . 
X
ijS  are P times M matrices of type (5.18) with step responses for i=1,…, Nx , j=1,.., Nc 

 
The matrices ,  and   F P XS S S  are structured like (5.17) and are the step response matrices of the 
natural gas pipeline system under consideration. 
 
 
 
5.7 A quadratic cost function 
 
As the non-linear cost function of the real-time optimisation problem at hand we will choose the 
energy consumption of the CSs over the prediction horizon P:  
 

 
P Nc

d, j
j j j

i 1 j 1 s, j

P (k i)
J a F (k i) 1 b

P (k i)

γ

= =

   +  = + − +    +   
∑ ∑  (5.35) 

 
where Pd,j A  uj is the discharge pressure of CS j. The values for the parameters aj and bj are 
obtained as described in Appendix D.  
 
In terms of the incremental input vector for CS j, we may write: 
 

 
T

d, j d, j 0 jP (k 1),..., P (k P) (k) u (k 1) = + + = + − d,j j PP S Δu I  (5.36) 

 
where S0 is a P x M matrix with the upper M x M part being a lower triangular matrix filled with 
ones and the lower (P-M) x M part is filled with ones: 
 

 

1 0 0 0
1 1 0 0
1 1 1 0

0
1 1 1 1

1 1 1 1

 
 
 
 
 

=  
 
 
 
 
 

0S

L
L
L

M M M L
L

L
L

 (5.37) 
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since, by definition of input increment, 
i

j 0

u(k i) u(k j) u(k 1)
=

+ = ∆ + + −∑ . 

Ip is a vector of length P filled with ones: Ip=[1 1 1 ... 1]T. Δuj(k) is defined as: 
T

j j j(k) [Δu (k) Δu (k+1) ... Δu (k+M-1) ]jΔu A . 
 
We shall use the following two alternatives for arriving at a quadratic approximation 

T TJ 1
   + 

2
Δu QΔu b Δu% % %; of the cost function (5.35): 

1. The CS head expression d
H

s

PK 1
P

γ  
 −    

 is approximated by a quadratic polynomial in Pd 

and Ps and F is assumed to be independent of discharge pressures Pd(k+i) over the prediction 
horizon 

2. The head expression is approximated by a linear expression in Pd and Ps and F depends 
linearly on the discharge pressures over the prediction horizon. 

 
In Chapter 4 and Appendices A and B we saw that CS gas flow rates do indeed respond to the 
discharge pressures, but for a short time compared to pressure variables. In other words, after a 
(step-wise) change in a CS’s discharge pressure, the gas flow rate of that station and the 
upstream CSs rapidly return to their original values. This observation motivates the 
independence of gas flow on discharge pressure in the prediction horizon. 
 
As Goslinga et al. (1994) point out, an assumption of independent flow through the CSs in a 
looped network (see Chapter 3, Figure 1) is not valid as the optimiser will loose the opportunity 
to redistribute the gas flow between parallel flow paths. Thus  alternative 2 must be used with 
looped networks, whereas either alternative 1 or alternative 2 could be selected for gunbarrel 
systems. 
 
For the quadratic cost function, alternative 1, we have: 
 

 2 2d
d s d s d s

s

P 1 aP bP cP P dP eP f
P

γ  
 − ≈ + + + + +    

 (5.38) 

 
As the throughput flows are independent of %(k)Δu , we will, however, use the newest 
information on gas flows available in the free response prediction vector Z0(k) to update the 
matrix DF: 
 
 2(a b( ) c )= + +T P T P T P

00 F 00 F 00 FQ S D S S D S S D S  (5.39) 

and 
 

T T
1 1

2 2 2 2

Nc Nc Nc Nc

2a u (k 1) c (k) d 2b (k) c u (k 1) e
2a u (k 1) c (k) d 2b (k) c u (k 1) e

  

2a u (k 1) c (k) d 2b (k) c u (k 1) e

− + + + − +   
   − + + + − +   = +   
      − + + + − +   

p 0,1 p 0,1 p p

p 0, p 0, p p P
F 00 F

p 0, p 0, p p

I Z I Z I I
I Z I Z I I

b D S D S

I Z I Z I I
L L

 (5.40) 
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where 1 2 Ncdiag(a  a (k) a (k)=    )F 0,Nc+1 0,Nc+2 0,2NcD Ζ (k) Z ZL  and S00 is a PNc x MNc-matrix with 
Nc S0-matrices on the main diagonal: 
 

 

 
 
 =
 
  
 

0

0
00

0

S 0
S

S

0 S
O

 (5.41) 

 
For the quadratic cost function, alternative 2, we use the first terms of a Taylor series expansion 
for a function of two variables: 
 

 0 0
0 0

f (x, y) f (x, y)f (x, y) f (x , y ) x y
x y

∂ ∂
≈ + ∆ + ∆

∂ ∂
 (5.42) 

or: 

 d
L d L s L

s

P 1 a P b P c
P

γ  
 − ≈ ∆ + ∆ +    

 (5.43) 

 
where ∆Pd and ∆Ps are small deviations from the nominal values Pd0 and Ps0 for the discharge 
and suction pressures, respectively, and: 
 

 

1 1

d0 d0 d0 d0
L L L2

s0 s0 s0 s0 s0

P P P Pa  ,  b  , c 1
P P P P P

γ γ γ
γγ

− −
     

= = − = −     
     

 (5.44) 

 
The linear approximation is illustrated in figure 5.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 The expression 
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d

s

P 1
P

 
− 

 
 (solid line) and its linear approximation (dashed line). 

Note, that both are drawn as a function of pressure ratio, which makes also the linear 
approximation curved. Pd0 = 48.5 bar and Ps0= 33.3 bar. 
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The matrices of the QP-problem are as follows, remembering that in this case, we use the linear 
∆u-dependent expression (see (5.34)) of the CS gas throughput flows instead of ∆u-independent 
flows: 
 

 ( ) ( )T T

1 00 2= +F F PQ S D S S D S  (5.45) 

 
where D1 and D2 are diagonal matrices: 
 
 T T T

1 1 L p 2 L p Nc L pdiag[a a a a a a ]=    D I I IL  (5.46) 

 
 T T T

2 1 L p 2 L p Nc L pdiag[a b a b a b ]=    D I I IL  (5.47) 

 
and 

 

T
1 L p 1 L L P

T
Nc L p Nc L L P

T T
1 L Nc L 00
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a (a u (k 1) b (k) c )

a a (k) a a (k)

a b (k) a b (k)

[
]

[ ]
[ ]

+

+

= − + +

− + + +

+

0,1

F
0,Nc

0,Nc 1 0,2Nc

P
0,Nc 1 0,2Nc

b I Z I

I Z I S

Z Z S

Z Z S

L

L

L

 (5.48) 

 
 
 
5.8 Linear constraints 
 
The non-linear compressor constraints (compressor envelopes) will be approximated by linear 
constraints as follows (for details on the Finnish natural gas pipeline system, see Appendix D). 
 
The compressor envelope in the Head – Volumetric flow rate co-ordinate system consists of 
four inequalities with respect to head (H) and flow (qVOL) of the type g(H,qVOL)≤0, which may 
be linearised as aeH+beqVOL+ce ≤0. Volumetric flow rate in compressor suction conditions qVOL, 
(m3/s) and normalised flow F, (Nm3/h), are related as s VOLF 3600P q=  where Ps is the suction 

pressure of the compressor. The approximation d d

s s

P P1 c d
P P

γ
 

−   ≈  − 
 

 in the expression for head 

is used, because it eliminates Ps from the denominator in the expression for qvol. The linear 
approximation for the CS envelopes becomes: 
 

 s s s s e
e d e e s

w w

z RT z RT ba cP (c a d)P F 0
M M 3600γ γ

+ − + ≤  (5.49) 

   
The general linear envelope constraint expressions for individual CSs are written: 
 
 ij d,i ij s,i ij ia P b P c F 0+ + ≤  (5.50) 

where i=1,2,..,Nc and j=1,..,4 
 
While the optimiser must apply the CS constraints over the whole prediction horizon in a 
component-wise fashion, the following vector inequalities can be written: 
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ij i ij ija ( (k) u (k 1)) b ( (k) (k)) c ( (k) (k)) 0      + − + + + + ≤P F
0 i p i 0,i i 0,Nc+iS Δu I S Δu Z S Δu Z% % (5.51) 

 
The total number of scalar inequalities is 4 Nc P. 
 
For each pressure check point i=1,2,…,Nx in  the system, linear inequalities apply: 
 
 (k) (k)+ ≥X

i 0,2Nc+i x,i,minS Δu Z P%  (5.52) 
 
For the discharge pressure, maximum and minimum limits over the prediction horizon may be 
set by the inequalities: 
 

 
i

i

(k) u (k 1)
(k) u (k 1)

+ − ≤

+ − ≥
u i M d,i,max

u i M d,i,min

I Δu I P
I Δu I P

 (5.53) 

 
i=1,2,…,Nc where IM is a vector with ones of length M and Iu is an M x M lower triangular 
matrix filled with ones (the upper M x M part of S0), see equation (5.37). 
 
Bounds on the decision variables yield (k) and (k)≤   ≥i i,max i i,minΔu Du Δu Du . 
 
 
 
5.9 Steady-state optimisation 
 
In this section we will define a steady-state optimisation problem in which we will use three 
alternative cost functions: the original and the two quadratic approximations. 
 
The steady state optimisation problem, using the original cost function, is: 
 

 d1 d2 d3
1 1 1 2 2 2 3 3 3

Pd1,Pd2,Pd3 s1 s2 s3

P P Pa F 1 b a F 1 b a F 1 b       
P P PMin.

γ γ γ          
       − + + − + + − +     
               

(5.54) 

 
under the following equality constraints, which are the steady-state pressure-flow relationships 
of the pipeline segments involved, assuming isothermal conditions and that gas flows Fi  are 
independent of pressures (see equation 3.7, Chapter 3): 
 

 

2 2 1.8539 1.8539
d1 s2 1 1 2 2
2 2 1.8539 1.8539
d2 s3 3 2 4 3
2 2 1.8539 1.8539
d3 x3 5 3 6 3 0

P P k F k F

P P k F k F

P P k F k (F F )

− = +

− = +

− = + −

 (5.55) 

 
and the following inequality constraints: 
 

 
di

x3

ij di si i

P 53 ,i 1...3
P 29
g (P , P , F ) 0 ,i 1...3, j 1..4

≤   =

≥
≤  = =

 (5.56) 

 
where (see also figure 5.3): 
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a1,b1, a2,b2  , a3,and b3 are CS cost parameters defined in Appendix D, F1, F2 and F3 are gas flow 
rates through the CSs (Nm3/h), Pd1, Pd2 and Pd3 are the discharge pressures of the CSs (bar) and 
the decision variables of the optimisation problem, Ps1, Ps2 and Ps3 are the suction pressures of 
the CSs (bar) and Px3 is the pressure at check point no. 3 (bar). The functions gij are the four 
envelope curves for CS “i” expressed as quadratic functions (see Appendix D).  
 
 
 
 
                  Pd1           Pd2      Pd3 
 
 
         Ps1  P12 Ps2         P23      Ps3   P33 Px3 
 
 
      F1           F2      F3 
   F1-F2        F2-F3   F0 
 
Figure 5.3  The gas pipeline system used for the steady-state optimisation problem. Compare 
with figure 4.1 in Chapter 4.  
 
 
The constants k1 to k6 are obtained by assuming, that all off-take flows can be lumped into one 
fictive point somewhere in each segment, where the pressure is the average value of the 
pressures at the segment ends, i.e. 12 d1 s2 23 d2 s3 33 d3 x3P (P P ) / 2,  P (P P ) / 2 , P (P P ) / 2 = + = + = + . At 
operating point no. 1 (Appendix A), where the pressures and flows F1, F2 and F3 are given, we 
have, for example, for the first segment two equations 2 2 1.8539

d1 12 1 1P P k F ,− = and 
2 2 1.8539

12 s2 2 2P P k F− = which added together give the first of the three equations (5.55). F0 is a 
constant flow 250000 Nm3/h. The values of the constants k1 to k6 as calculated from the pressure 
and flow data for operating point no. 1 are, respectively: -7 -70.0793 10 , 0.1224 10 ,i i  

-7 -7 -7 -70.1301 10 ,  0.1370 10 ,  0.2223 10  and 0.6434 10i i i i . 
 
The lumping of the off-takes in each segment means, that we are not using an exact model of the 
Finnish natural gas pipeline system. The essential thing in this study is to compare the quadratic 
cost functions with the original one. This task is not very much dependent on which kind of 
pressure loss formulas we use for the segments or what is the error introduced by the 
assumptions and simplifications used. 
 
According to the operating personnel of the Finnish natural gas pipeline system, the operating 
ranges for the compressor stations CS1, CS2 and CS3 in 2003 were, respectively: 

5 5 5 33.0 8.9 10 6.2 10 and 5.5 10 Nm h⋅  , 2.5 ⋅   2.5 ⋅  /   … … … . This broad range of gas flows is caused 
by gas consumption variations at the off-takes. The given flow ranges are used to create a table 
of flow rate triplets (F1,F2,F3) for the CSs using even flow rate steps of 59000, 53000 and 
50000 Nm3/h, respectively, giving 616 triplet values. When triplets containing values F1<F2 or 
F2<F3 are deleted, because such flow conditions are not possible (no gas supplies in the three 
segments involved), this decreases to 256. The flow rate triplets are graphically depicted in 
figure 5.4. 
 
For each flow rate triplet, the steady-state optimisation problem (5.54 … 56) is solved using the 
Optimisation Toolbox “fmincon” function (Matlab Optimisation Toolbox User's Guide, 2000). 
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The optimal discharge pressures using the original cost function for the flow rate values in 
figure 5.4 are graphed in figure 5.5 a, b and c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4  The values of the 256 flow rate triplets in Nm3/h of CSs used for steady- state 
optimisation. The horizontal axis is the index in the table of the flow rate triplets. 
Solid line: F1; dashed line: F2; dotted (short dashed) line: F3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5 a) Optimal CS1 discharge pressures (bar) as function of the flow rate triple index 
when the original cost function is used.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5 b) Optimal CS2 discharge pressures (bar) as function of the flow rate triple index 
when the original cost function is used.  
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Figure 5.5 c) Optimal CS3 discharge pressures (bar) as function of the flow rate triple index 
when the original cost function is used.  
 
 
Next, we will solve the optimisation problem (5.54…56) but with the cost function in (5.54) 
replaced by the quadratic cost function approximation no.1 (5.38) with the parameter values 
presented in Appendix D. As expected, some differences are seen in the 256 solutions compared 
to those obtained using the original cost function, see figure 5.6 below. The maximum 
difference for CS1 discharge pressure is 1.9 bar and for CS2 discharge pressure 0.1 bar. For CS3 
discharge pressure, there is no difference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6 a) (Top) Optimal CS1 discharge pressure with original cost function minus optimal 
CS1 discharge pressure with approximation no.1 b) (Bottom) same for CS2 
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Next, cost function approximation no. 2 with linear pressure and linear flow is used in (5.54). 
Figure 5.7 shows that, in this case, the maximum difference for CS1 discharge pressure is 5.9 
bar, for CS2 discharge pressure 5.9 bar and for CS3 discharge pressure 9.3 bar. 
 
The steady-state optimisation problem is heavily constrained in the sense that the optimal 
solution for every flow rate triplet (F1, F2, F3) must satisfy four CS envelope constraints, the 
minimum Px3 limit as well as minimum and maximum limits of the discharge pressures, all of 
which adds up to 19 constraints. In this case, the optimal solution is always constrained by one 
(mostly two) to three constraints from among the 19 possible ones. In figure 5.8 the number of 
active constraints in each of the 256 optimal solutions is shown using the three cost function 
variants as discussed. There is one key observation: the differences in the optimal discharge 
pressures occur when the number of active constraints is less than three. This is not surprising, 
as three active constraints mean, that the optimum point is completely determined by the 
constraints and less than three active constraints means, that the shape of the cost function 
influences the solution. Additionally, we may observe that the discharge pressure differences 
occur when there is a large off-take in the first two segments (F1-F2 and/or F2-F3 are large). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7 a) (Top) Optimal CS1 discharge pressure with original cost function minus optimal 
CS1 discharge pressure with approximation no.2  b) (Middle) same for CS2 c) (Bottom) same 
for CS3. 
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Figure 5.8 a) Number of active constraints as a function of flow rate triplet index, original cost 
function, b) (Middle) same for cost function approximation no.1 and c) (Bottom) same for cost 
function approximation no.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9 Optimal cost function values in kW using original cost function. 
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Figure 5.10 a) (Top) Difference in cost function values: original minus approximation no. 1 
(kW) b) (Bottom) Difference in cost function values: original minus approximation no. 2 (kW). 
 
 
Figure 5.9 shows the optimal cost values when solving the 256 steady-state optimisation 
problems using the original cost function. The values fall in the range 35000 to 75000 kW. The 
cost difference in figure 5.10 a) is calculated as the original cost in figure 5.9 minus the original 
cost as a function of the optimal discharge pressures (and suction pressures), obtained using cost 
function approximation no. 1 and the same for cost function approximation no. 2 in figure 5.10 
b). The error in cost is maximum 85 kW (0.18 % ) for approximation no.1 and maximum 1750 
kW (3.85  %) for approximation no. 2. These results reveal that the cost function is flat near the 
solutions considered, giving such low cost function differences for maximum discharge pressure 
differences of 1.9 and 9.3 bar, respectively. 
 
If additional limitations on the flow rate triplets (F1,F2,F3) are imposed as follows: F1-F2 < 
200000 Nm3/h and F2-F3 < 200000 Nm3/h, we obtain 90 flow rate triplets instead of  256. 
Steady-state optimisation in this case gives equal optimal discharge pressures for all three cost 
functions and in all cases the number of active constraints is equal to 3 i.e. the optimal solutions 
are heavily constrained which means that the shape of the cost function and the approximation 
error play a smaller role. Obviously, when a gunbarrel pipeline system approaches a pure 
transmission system, the optimal steady-state solutions become more actively constrained, and 
the approximate cost functions do not disturb the solutions. 
 
A final exercise will be to investigate the steady-state optimisation potential of the pipeline 
system at operating point no. 1 (Appendix A, Table A.1). The optimal solution to optimisation 
problem (5.54…56) yields optimal discharge pressures of 53, 53 and 48.61 bar for CS1, CS2 
and CS3, respectively. The optimal cost is 58920 kW and Pd1 maximum limit, Pd2 maximum 
limit and Px3 minimum limit constraints are active. Changing the sign of the cost function 
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(5.54) yields a maximisation problem, for which the optimal discharge pressures are 44.73, 
49.67 and 53 bar for CS1, CS2 and CS3, respectively. The optimal cost is 69 394 kW and the 
CS1 choke limit, CS3 maximum speed limit and Pd3 maximum limit constraints are active. The 
relative difference of the cost function values is 15.1% and represents the maximum steady- 
state optimisation potential, i.e. the difference between the most inferior operation strategy and 
the best one.  
 
 
 
5.10 Implementation issues 
 
Blocking of the input variable  
 
Before implementing and using the receding horizon optimisation method described so far, 
some practical and theoretical issues must be addressed. First, the length of the input vector, 
which is cN M , may have to be further decreased in order to reduce computational load, 
especially if large pipeline systems with large Nc are considered. In MPC applications, input 
variable blocking is sometimes used (Ricker, 1985). Select an integer parameter Nb for even 
blocking and define, for a general case: 
 

 

b

b b b

b b b b

u(k 1) u(k 2) ... u(k N 1) 0,
u(k N 1) u(k N 2) ... u(k 2N 1) 0

...
u(k ( j 2)N 1) u(k ( j 2)N 2) ... u(k M 2) 0

∆ + = ∆ + = ∆ + − =

∆ + + = ∆ + + = ∆ + − =

∆ + − + = ∆ + − + = ∆ + − =

 (5.57) 

 
which reduces the length of the input variable vector to jb, jb<M so that b b( j 1)N M 1− = − : 

T
b b[ u(k) u(k N ) u(k 2N )... u(k M 1)]= ∆  ∆ +  ∆ + ∆ + −Δu . See figure 5.11 for an illustration. 

Uneven blocking means that we use different blocking interval lengths which gives: 
T

b1 b1 b2[ u(k) u(k N ) u(k N N )... u(k M 1)]= ∆  ∆ +  ∆ + + ∆ + −Δu  and 
jb-1

bi
i=1

N M 1= −∑  

 
     P 
 
    M 
           Nb4           u(k+P-1) 
   Nb2     Nb3     ∆u(k+M-1) 
  Nb1 
 
 
                   ∆u(k) 
u(k-1)          
 
Figure 5.11 Example of even blocking of an input variable. Nb1=Nb2=Nb3=Nb4 = Nb,  
4Nb = M-1, jb =5. 
 
 
The modification of step response matrices from (5.18) is straightforward, and in general, a 
modified step response matrix from input j to output i is: 
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ij

ij b ij

ij b ij b ijij

ij

ij ij b ij b ij b b

s (1) 0 0 0

s (N 1) s (1) 0 0

s (2N 1) s (N 1) s (1)   

s (1)

s (P) s (P N ) s (P 2N ) s (P ( j 1)N )

 
 
 
 +
 
 
 + +=
 
 
 
 
 
  − − − − 

S

M M M M

M M M M
L

M M M

M

 (5.58) 

 
 
All step response matrices of the natural gas pipeline system, , , and     P F X

00S S S S , have to be 
modified in the same way. 
 
The blocking parameter Nb is considered to be one of the MPC tuning parameters as are the 
prediction horizon P and the number of input steps jb. 
 
Numerical considerations 
 
QP solvers assume a positive semi-definite and symmetric Q-matrix in the cost function 

T T1J(x)
2

= +x Qx b x . In LMPC, these properties are guaranteed, because of the definition of the 

problem, but in the case at hand (see (5.39) and (5.45)) there is no guarantee; however, it is 

possible to use symmetrisation where Q is replaced by ( )T1
2

+Q Q .   

Let us substitute the numerical values known for the Finnish natural gas pipeline system from 
Appendices B and D and calculate Q1 using (5.39) and Q2 using (5.45). For pressures and flows 
we will use constant values over the whole prediction horizon using the steady-state values at 
operating point no.1 (see Appendix A, table A.1). In table 5.1 below, the minimum and 
maximum eigenvalues for matrices Q1 and Q2 are shown for selected values of jb, Nb and P. The 
eigenvalues are calculated using the "eig"-function of Matlab. As can be seen, none of the 
selected parameter sets produce a positive semi-definite Q1, while Q2 is positive semi-definite 
except for small values of Nb. The latter is an interesting observation because according to the 
literature, small values of Nb should be used to avoid control performance degradation. 
 
Q1 and Q2 are not positive semi-definite and consequently non-convexity, which may cause the 
solution to converge to a local optimum, and numerical problems may occur with a regular QP 
solver. The Matlab Optimisation Toolbox  “fmincon” function is used on recommendation 
(Matlab Optimisation Toolbox User's Guide, 2000), instead of the standard “quadprog” QP 
solver, since it is a general-purpose solver, which can cope with non-convex QP problems but it 
is still not a global solver. 
  
The first approximation, with quadratic head approximation and decision variable independent 
gas flow assumption is a better approximation for gunbarrel pipeline systems than the second 
one, with linear head and gas flow. An interesting question arises: is it better to choose the 
second approximation, because it produces a convex optimisation problem with the correct 
choice of tuning parameter values even though it is known to be less accurate?  
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jb Nb M P λ(Q1) min. λ(Q1) 
max. 

λ(Q2) min λ(Q2)  
max 

8 4 29 100 -5213 15598 165.2 12003 
16 4 61 100 -8954 23411 163.1 19039 
22 4 85 136 -16766 42857 149.5 23962 
10 4 37 64 -3721 9859 164.15 13237 
7 16 97 100 -2838 7090 247.7 6220 
4 25 76 100 -1944 4943 354.7 4268 
49 2 97 100 -20046 49635 -5.93 45104 
97 1 97 100 -39699 98300 -86.75 89720 
50 1 50 100 -29791 81692 66.11 64852 

 
Table 5.1  Minimum and maximum eigenvalues of Q1 and Q2 for selected parameters.  
 
 
The matrices Ri are used as tuning parameters in MPC, see (5.6), to damp aggressive inputs and 
shift the eigenvalues of the Q- matrix of the QP problem in the positive direction. It is easy to 
see, that eigenvalue correction for Q1 would require large (diagonal) elements in Ri, which 
would over-damp and thus disturb the optimal solution. For Q2, the eigenvalues are only slightly 
negative (see table 5.1) which enables eigenvalue correction without too much over-damping. 
For damping, a constant matrix over the prediction horizon, Ri = R , is sufficient. 
  
A scope limitation  
 
As mentioned in Chapter 4, the suction pressure of CS1 is set to a constant value of 40 bar 
because there is not enough information for “Simone” to produce adequate predictions. The 
information required would be the discharge pressure (or gas flow) of the next upstream CS on 
the Russian side of the border and gas consumption forecasts for all or at least the major gas off-
takes in the pipeline segment upstream CS1, all these off-takes being on the Russian side as 
well. From an overall perspective, this is somewhat harmful, since CS1 is the station with the 
largest throughput and the largest energy consumption. Of course, optimal discharge pressure 
can and will be calculated for CS1, but some special events, for example a disturbance in the 
pipeline system causing a decrease of CS1 suction pressure, may hinder it from running a 
typical high discharge pressure strategy. 
 
The length of the prediction horizon 
 
In MPC, the length of the prediction horizon (P) is determined based on stability and control 
performance criteria (see section 5.5). The (usually linear) disturbance models used to estimate 
disturbance behaviour over the prediction horizon do not dictate particularly small or large P. 
The situation is different when there is predicted disturbance information available, i.e. the off-
take flow forecasts in our case: There is unique information available over P, something real and 
physical is predicted to be happening in the future. In order not to overlook significant predicted 
off-take flow changes, it would be advisable to choose a large enough P. Ratchford and Carter  
(2000), amongst others, chose a value for P of 24 hours, based on more or less operational and 
commercial arguments. Marque's and Morari (1988) suggested an empirical formula, P ≥ 2NS 
hours, where NS is the number of major pipeline segments. In one of the examples they 
discussed, they used P=13 hours for a gunbarrel pipeline system with NS =4 and NC (number of 
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CSs) =3. The formula is based on the need to balance the behaviour of the optimiser: a small P 
leads to minimising the energy content of the system at the end of the horizon, while for larger P 
the optimiser puts more weight on minimising energy consumption due to frictional losses. 
 
In the simulation studies below in section 5.11 and further on in Chapter 6, we will use P=100 
(16 hours 40 minutes, as ΔT=10 minutes) as the basic length of the horizon. P=64 (10 hours 40 
minutes) is also used for comparison. P=136 (22 hours 40 minutes) is the largest possible with 
the version of "Simone" used in the studies. 
 
In-feasibility protection 
 
In-feasibility problems may occur in cases where hard constraints are applied on system output 
variables. In the case at hand, for example the Px3 checkpoint pressure, it is quite possible that 
either its current simulated value or a few values in the beginning of the prediction horizon 
could drop below the minimum limit, without the optimiser being capable of avoiding the 
situation because of the slow response from CS3 discharge pressure to Px3. To avoid the whole 
problem being flagged as in-feasible, a constraint relaxation technique resembling the one used 
by Muske and Rawlings (1993) is implemented: if the current Px3 value or a predicted Px3 
value is less than the minimum limit, re-shape the minimum to “follow” the temporary in-
feasibility, as shown in figure 5.12. 
 
 
Px3 pressure 
  Pb 
min. limit 
 
      
      Pa 
         Time in prediction 
         horizon 
 
Figure 5.12 Original, constant minimum limit for Px3 (thin line) and re-shaped minimum limit 
(bold line). “o” is the locally infeasible value of Px3 (or the minimum of several values). Pa and 
Pb are tuning parameters. 
 
 
 
5.11 Simulation results 
 
This section presents the receding horizon optimisation results. The receding horizon 
optimisation is built using Matlab 6.5 scripts which call the non-linear optimisation problem 
solver "fmincon" of the Matlab Optimisation toolbox.  Appendix C explains the details of the 
simulation test bench used. The objectives of the real-time optimisation are to minimise energy 
consumption of CS1, CS2 and CS3 as well as to obey the Px3 minimum limit and all CS 
envelope constraints. 
 
No state estimation or state reconstruction schemes are used. In other words, the pressure and 
flow "measurements" and predictions provided by "Simone" are assumed to be perfect. 
 
All CSs are running in all simulation runs in this section, although the operators shut down CS2, 
as is seen in the true operational data. The intention is to test the optimiser with all CSs running, 
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because the problem becomes more challenging due to more active constraints after the first 
week of March 2003. The energy consumption of the various simulation runs are compared, 
however, comparisons with operational data are only made for the first days of March 2003. 
Actually, shutting down CS2 saves energy and it is not correct to compare optimiser and 
operational results if the optimiser is not allowed to shut down CSs. 
 
Throughout all the test runs in this study, in both Chapter 5 and Chapter 6, the following limits 
are used for the CS discharge pressures. Maximum (minimum) change applies to all CS 
discharge pressure increments along the control horizon M. 
 

 Maximum 
(bar) 

Minimum 
(bar) 

Maximum 
change (bar) 

Minimum 
change (bar) 

CS1  53.3 35 5 -5 
CS2 53 35 5 -10 
CS3 53 35 5 -10 

 
CS2 and CS3 apply quite large minimum changes, while their discharge pressure changes may 
be quite large when CSs shut down. 
 
 
5.11.1 Cost function approximation no.1 
 
In the first two cases the first variant of the cost function approximation (5.38) with quadratic 
head is used. The simulation time period is 1.3.2003 00:00 to 9.3.2003 24:00, or 1296 10-minute 
control intervals. 
 
Case1 
 
The values of the tuning parameters are: jb=8, Nb=4 and  P=100. No input variable damping is 
used, i.e. R=0. The results are presented in figures 5.13 to 5.16 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.13 CS1 discharge pressure from 1.3.2003 00:00 to 9.3.2003 24:00. The solid line 
represents the result of the optimiser; the dashed line is as operated. 
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Figure 5.14 CS2 discharge pressure from 1.3.2003 00:00 to 9.3.2003 24:00. The solid line 
represents the result of the optimiser; the dashed line is as operated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.15 CS3 discharge pressure from 1.3.2003 00:00 to 9.3.2003 24:00. The solid line 
represents the result of the optimiser; the dashed line is as operated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.16 Px3 checkpoint pressure from 1.3.2003 00:00 to 9.3.2003 24:00. The solid line 
represents the result of the optimiser; the dashed line is as operated. 
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CS1 and CS2 discharge pressures are at their maximum limits over a large portion of the time 
period. CS1 discharge pressure experiences some ringing behaviour at the end of the period, and 
ringing is also seen in CS3 discharge pressure. 
As a whole, the optimiser seems to be able to run the pipeline system quite optimally, while CS1 
and CS2 discharge pressure are high and CS3 discharge pressure is low (lower than the 
operators have kept it). The Px3 checkpoint pressure is kept very close to the minimum limit 29 
bar by the optimiser. 
 
Case 2 
 
The MPC literature frequently claims that the control horizon M should be as large as possible 
to ensure good control performance. In the second optimisation test run we will repeat the 
previous case, but with jb=16, i.e. M=61. The other parameter values are the same as above. The 
results are presented in figures 5.17 to 5.19 below. CS1 discharge pressure is very close to case 
1 and not displayed at all. The other pressure values are displayed together with the 
corresponding values from case 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.17 CS2 discharge pressure from 1.3.2003 00:00 to 9.3.2003 24:00. The solid line 
represents the result of the optimiser with jb=16; the dashed line is from case 1 with jb=8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.18 CS3 discharge pressure from 1.3.2003 00:00 to 9.3.2003 24:00. Solid line: jb=16, 
dashed line: case1,  jb=8. 
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Figure 5.19 Px3 pressure from 1.3.2003 00:00 to 9.3.2003 24:00. Solid line: jb=16, dashed line: 
case1,  jb=8. 
 
 
If we consider the optimiser's ability to keep Px3 as close as possible to its minimum limit to be 
a performance measure, jb=16 gives a somewhat better result than  jb=8. However, the change is 
not large, because there still seems to be room for improvement. This issue will be further 
discussed below in section 5.11.4. 
 
 
5.11.2 Cost function approximation no.2 
 
Next, we revert to the second cost function approximation with linear flow and linear pressure 
dependence (5.43).  
 
Case 3 
 
The values of the tuning parameters are: jb=8, Nb=4 and P=100. No input variable damping is 
used, i.e. R=0. The values of the cost function approximation parameters are as shown in 
Appendix D. The time period is 1.1.2003 00:00 to 17.3.2003 22:00, or 2436 control intervals. 
The results are presented in figures 5.20 to 5.24 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.20 CS1 discharge pressure from 1.3.2003 00:00 to 17.3.2003 22:00. Solid line: 
optimiser, dashed line: as operated. 
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Figure 5.21 CS2 discharge pressure from 1.3.2003 00:00 to 17.3.2003 22:00. Solid line: 
optimiser, dashed line: as operated. Note, that CS2, as operated manually, is shut down for the 
second time at 15.3.2003 06:00 (time point 2050). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.22 CS3 discharge pressure from 1.3.2003 00:00 to 17.3.2003 22:00. Solid line: 
optimiser, dashed line: as operated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.23 Px3 pressure from 1.3.2003 00:00 to 17.3.2003 22:00. Solid line: optimiser, dashed 
line: as operated. 
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Figure 5.24 Cost function (kW) as optimised (solid line) and operated (dashed line) over the 
time period 1.3.2003 00:00 to 17.3.2003 22:00.  
 
 
As can be seen in figure 5.24, the cost function is lower for the operating data in the ranges 
1060...1720 and 2050...2436, due to the shutdown of CS2. The effect of the idle power of CS2 
(parameter b2 in the cost function) is the main reason for the cost difference. 
 
For each type of constraint (12 CS envelope constraints and the Px3 minimum limit) and for 
each optimal solution, the optimiser monitors the number of active (scalar) constraints in the 
prediction horizon. The maximum number of active constraints for each type is equal to the 
length of the prediction horizon, P. In figure 5.25, the number of active constraints for this case 
is shown. In the beginning of the time period (until 1060) the active constraint monitoring was 
switched off. An observation to be further discussed in section 5.11.4 is that CS2 and CS3 
minimum speed limits seem to be highly active over the whole period.  
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Figure 5.25  Number of active constraints from 1.3.2003 00:00 to 17.3.2003 22:00 (Top) CS1 
surge limit, (Next to top) CS2 minimum sped limit, (Next to bottom) CS3 minimum speed limit 
and (Bottom) Px3 minimum limit 
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Case 4 
 
The optimisation run of case 3 is repeated, but with jb=16, which gives a control horizon M=61. 
The time period is 1.3.2003 00:00 to 12.3.2003 16:00. CS1 and CS2 discharge pressures behave 
very much as they do in case 3, so only CS3 discharge pressure and Px3 pressure are shown in 
figures 5.26 and 5.27 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.26 CS3 discharge pressure with jb=16 (solid line) and from case 3 (dashed line) over 
the time period 1.3.2003 00:00 to 12.3.2003 16:00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.27 Px3 pressure with jb=16  (solid line) and from case 3 (dashed line) over the time 
period 1.3.2003 00:00 to 12.3.2003 16:00. 
 
 
Case 5 
 
The optimisation run of case 3 is repeated, but with jb=10 and P=64. The time period is 1.3.2003 
00:00 to 12.3.2003 16:00. Only Px3 pressure is shown in figure 5.28 below together with Px3 
pressure from case 4. 
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Figure 5.28 Px3 pressure with new parameters (solid line) and from case 4 (dashed line) over 
the time period 1.3.2003 00:00 to 12.3.2003 16:00. 
 
 
 
5.11.3 Maximisation of energy consumption 
 
Case 6 
 
This optimisation run is a maximisation of the cost function. The only motive for this is to test 
the optimisation method because it will encounter other constraints than in the previous cases. 
The cost function approximation no. 2 with linear flow and linear pressure dependence (5.43) is 
used, the time period is 1.1.2003 00:00 to 11.3.2003 24:00 and the values of the tuning 
parameters are: jb=16, Nb=4 and  P=100,  R=0. The results are shown in figures 5.29 to 5.32 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.29 CS1 discharge pressure (solid line) and as operated (dashed line) over the time 
period 1.3.2003 00:00 to 11.3.2003 24:00. 
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Figure 5.30 CS2 discharge pressure (solid line) and as operated (dashed line) over the time 
period 1.3.2003 00:00 to 11.3.2003 24:00.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.31 CS3 discharge pressure (solid line) and as operated (dashed line) over the time 
period 1.3.2003 00:00 to 11.3.2003 24:00.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.32 Px3 pressure (solid line) and as operated (dashed line) over the time period 
1.3.2003 00:00 to 11.3.2003 24:00.  
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As expected (see the steady-state optimisation in section 5.9), CS1 and CS2 discharge pressure 
take small values and CS3 discharge pressure is high, this means that Px3 temporarily reaches 
pressures of up to 45 bar. 
 
In figure 5.33, the number of active constraints in the prediction horizon at each optimisation 
interval is shown. CS2 and CS3 maximum speed constraints are active which certainly 
maximises energy consumption. Both CS1 surge and choke limits being active reveals that the 
operating point of CS1 makes large excursions within the envelope constraints over the control 
horizon M. CS1 minimum speed and CS2 surge constraints were also active at sporadic 
moments with the number of active constraints less than 3, but these are not shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.33 a)…c) Number of active constraints from 1.3.2003 00:00 to 11.3.2003 24:00. a) 
(Top) CS1 choke limit, b) (middle) CS1 surge limit, c) (bottom) CS2 maximum speed limit 
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Figure 5.33 d) Number of active constraints from 1.3.2003 00:00 to 11.3.2003 24:00. CS3 
maximum speed limit 
 
 
 
5.11.4 Sub-optimal behaviour of the checkpoint pressure 
 
In the ideal situation at hand, where the consumption forecasts are perfectly known over the 
prediction horizon, the optimiser should be able to keep Px3 very close to the minimum limit 
(29 bar). It actually achieves this aim, but it seems difficult to achieve significant improvement 
by selecting cost function approximation or varying the values of the tuning parameters. There is 
some modelling error, i.e. the linear model from CS3 discharge pressure to Px3 does not exactly 
match the dynamics of "Simone", but error in this SISO sub-system should not be harmful. 
Moreover, the fresh free response prediction obtained from "Simone" at each optimisation 
interval should help up the situation. There is one unique feature of this pipeline system, which 
can be generalised to any gunbarrel system. 
 
Suppose that the current operating point of CS3 is close to the minimum speed limit (see figure 
5.34). As a matter of fact, the optimal strategy is often to run CS3 this way (see figure 5.25). If 
gas consumption is predicted to decrease downstream CS3, then predicted Px3 values will 
increase, and the optimal decision would be to decrease CS3 discharge pressure. However, the 
CS3 minimum speed limit will not allow this, or it will allow only an extremely minimal 
decrease. Obviously, decreasing CS2 discharge pressure would decrease CS3 suction pressure 
after a certain time (see figure 5.34 b), leading to increased CS3 head and a movement away 
from the CS3 minimum speed limit. The central issue is that the magnitude of the CS2 discharge 
pressure decrease must be large enough to compensate for the fast dynamics of the CS3 
discharge to suction pressure. From a strict optimisation point of view, it is not optimal to 
significantly decrease CS2 discharge pressure just to be able to make a small reduction in CS3 
discharge pressure. Hence, Px3 is just allowed to float well above its minimum limit in a 
"suboptimal" manner. 
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Figure 5.34 a) (left) A movement within the CS3 envelope in direction “1” from the current 
operating point x is not possible, direction “2” requires a CS2 discharge pressure decrease. b) 
(right) response sketches to illustrate, that for CS2 to enable a movement from x to the left, a 
large CS2 discharge pressure decrease is needed. 
 
 
 
5.11.5 Energy consumption calculation and comparison 
 
The optimal discharge pressure, suction pressure and CS gas flow evolution in the different 
cases are substituted into the original cost function (5.35) using the value P=0 to obtain the cost 
function as a function of time and the "current" simulated pressure and flow values at each 
optimisation interval. The average cost function values of the respective time periods are 
calculated and shown in table 5.2. The longer the optimisation time period, the smaller the cost 
because gas consumption and therefore CS gas flows decrease. The relative difference between 
operated data and optimiser results are compared up to 8.3.03 09:00 only, as this is the moment 
of time the operators shut down CS2 for the first time. The relative difference, 4.81%, is the 
energy saving the optimiser can achieve in case 3 compared to how the pipeline was actually 
operated in the beginning of March 2003. 
 
The influence of the type of cost function approximation and tuning parameters is very small, 
which indicates that the cost function is "flat". Comparing the case 3 optimal cost function with 
case 6, where maximisation was performed, the difference is 17.48%. 
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Case 1.3.03 00:00- 

8.3.03 09:00 
1.3.03 00:00- 
9.3.03 24:00 

1.3.03 00:00- 
17.3.03 22:00 

1.3.03 00:00- 
12.3.03 16:00 

1.3.03 00:00- 
11.3.03 24:00 

Operated 59397 - - - - 
Case 1 56524 54386    
Case 2 56478 54332    
Case 3 56542 54439 50235  52831 
Case 4 56506 54509 - 52574  
Case 5 56550 54490 - 52617  
Case6     64023 
Relative 
difference 

4.81 %    17.48 % 

 
Table 5.2 Average cost function values (kW) over different time periods and the different 
optimisation cases discussed. 
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Chapter 6 
 
Optimisation with discrete decision variables 
 
 
 
 
 
 
 
In this chapter, discrete decision variables, namely the start-up and shutdown commands of 
compressor stations (CSs) will be added to the receding horizon optimisation problem. This 
leads to a Mixed Integer Quadratic Programming (MIQP) problem. A systematic approach to 
defining an MIQP for a dynamic optimisation problem is to formulate it as a Mixed Logical 
Dynamical (MLD) system.  
 
 
 
6.1 Shutting down and starting up compressor stations 
 
As shown in Chapter 4, the dynamics of a pipeline system changes when the running status of 
CSs changes. We evaluated a number of linear dynamic models with respect to discharge 
pressure and off-take consumption flow changes at steady-state conditions. Steady-state in this 
respect means, that the models were evaluated after all transients related to shut down or start up 
had levelled out. 
 
A CS shutting down at some time point k+ ks in the prediction horizon may be illustrated as in 
figure 6.1. The optimal choice of the shutdown time ks can be given to the receding horizon 
optimiser.  
 
  w=1 
 w         w=0 
 
 
          Pd 
 
 
          Ps 
 
 
 
 
    
    k  k+ks k+ks+m     k+M-1         k+P     discrete time in 
     present time           prediction horizon 
 
Figure 6.1 Shutting down a CS at time k+ks and restarting at k+ks+m. “w” is the switch 
variable, Pd is the discharge pressure and Ps is the suction pressure. The control horizon is M<P 
implying that no CS status changes may occur past M. 
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If possible, for each CS, the optimiser should calculate an optimal sequence of running status 
values and, based on the receding horizon principle, implement the first values of the sequence 
and delete the rest of them, while the optimisation is repeated in the next cycle. “w” is defined 
as an integer valued decision or “switch” variable for the CS, where w(k)=1 means that the 
station is running and w(k)=0 is shut down. Before shutting down the CS, the discharge pressure 
of the CS follows the optimal values calculated by the optimiser. At shutdown time, the 
shutdown transient (see Chapter 4, section 4.6) is initiated. 
 
From ks and onwards in the prediction horizon, we lose the discharge pressure as a decision 
variable and from that moment we must use the linear models valid for the CS shut down in the 
optimiser.  
 
 
 
6.2 A linearised pipeline system model 
 
The pipeline system may be approximated by a series of pressure vessels as in figure 6.2, with 
the pressure of each vessel depicted by the shaded area.  At some locations, CSs are used to 
raise the pressure. From a pure dynamic modelling perspective, the CSs are simply linear 
controllers capable of manipulating the gas flow from one vessel to a subsequent one. Thus, the 
pressure of the vessel immediately downstream the CS, i.e. the discharge pressure is ideally 
controlled by the gas flow, and no other variables of the system have any influence on that 
pressure. Accordingly, the pressure of the vessel immediately upstream the CS is the suction 
pressure of the station. The accuracy of this space-discretised model may be increased at wish 
by decreasing the volumes of the pressure vessels. The requirement that the discharge and 
suction pressures are equal when a CS is shut down may as well be met by using small enough 
vessel volumes.  
 
 
  Pd1,0              Pd2,0         Pd3,0 
 
 
 
 
 
 
 
          Ps,2       Pd,2 
 
 
Figure 6.2 Space-discretised pressure vessel model of a pipeline system with three CSs and four 
off-takes. Pd1,0, Pd2,0 and Pd3,0 are the set points of the CS discharge pressure controllers (PC). 
 
 
If we linearise and discretise this model, we obtain: 
 

 1 1 1

1

(k 1) (k) (k) (k)  ,  (0)=
(k) (k)

+ = + +
=

0x A x B u E d x x
y C x

 (6.1) 

 

PC PC PC 
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Note, that linearisation is done with respect to some operating point (usually a steady-state 
point) x=xs, u=us and d=ds. For simplicity, we will leave these out from the expressions below. 
Note also, that for the time being, we assume that the linear models also contain the contribution 
of off-take flows d. 
 
The output vector y of the system contains all relevant output variables needed: CS suction 
pressures, flow rates and checkpoint pressures. The subscript “1” for the model matrices means, 
that this is a nominal or “base case” model, where all CSs are running. 
 
Note also, that for the disturbance contribution, the following expression holds approximately 
over the prediction horizon, within the linearisation error, if the linear model matrices in (6.1) 
are compatible with the simulator model (i.e. the matrices are obtained by linearising the same 
simulator model which provides the free response prediction Z0,p(k) (see section 5.6, expression 
(5.33) and it's definitions): 
 

 k+i z (k+j)
 

≈ 
 

∑
j-1

j j-1-i
1,p 1 0 1 1 0,p

i=0
C A x + A E d( )  (6.2) 

 
where C1,p is a row of the matrix C1 corresponding to  the output variable “p” , p=1,2,...,2Nc+Nx 
and $(k k 1)−0x xA , see section 5.4, expressions 5.24 and 5.25. 
 
We will use the mixed logical dynamical system (MLD system) approach (Bemporad and 
Morari, 1999) for the modelling needed for shut down and start up optimisation. Let us assume 
that we have linear models A1,B1,E1,C; A2,B2,E2,C; …, An,Bn,En,C, for n different modes of 
operation and binary variables δi(k), i=1,2,…,n. Then, a piecewise linear system may be defined 
using auxiliary variables z and δ: 
 

 

n

i
i 1

n

i
i 1

(k) ( (k) (k) (k))δ (k),

(k 1) (k)

δ (k) 1

=

=

= + +

+ =

=

∑

∑

i i iz A x B u E d

x z  (6.3) 

 
 δ is binary valued and controls the model change, for example, δ1(k)=1 may stand for all CSs 
running, δ2(k)=1 means CS1 is shut down, δ3(k)=1 means CS2 shut down, and so on. All 
possible combinations yield n=2Nc, where Nc is the number of CSs. 
  
Assume now, that a CS shuts down at the moment k+ks, whereby the linear model A1,B1,E1,C 
will be replaced by the model A2,B2,E2,C, i.e. δ1(k+j)=1, δ2(k+j)=0, j=1,2,… ks and δ1(k+j)=0, 
δ2(k+j)=1, when j= ks+1, ks+2,... For any output variable yp we may write: 
 

 
ks-1 ks-1

p s
i=0 i=0

y (k+k )=  + (k+i) + (k+i) 
 
 

∑ ∑ks ks-1-i ks-1-i
p 1 0 1 1 1 1C A x A B u A E d  (6.4) 
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ks-1

p s 2 s
i=0

ks-1

2 s
i=0

y (k+k +1) [  + (k+i) + (k+k ) +

                             (k+i) + (k+k ) ]    

= ∑

∑

ks ks-1-i
p 2 1 0 2 1 1

ks-1-i
2 1 1

C A A x A A B u B u

A A E d E d
 (6.5) 

 
and for any ks’≥m≥1, where k+ks+ks’ is the moment of the next model change: 
 

 

ks-1 m-1
1 i

p s 2 s
i=0 i=0

ks-1 m-1
1 i

2 s
i=0 i=0

y (k+k +m) [  + (k+i) + (k+k +i) +

                             (k+i) +  (k+k +i)]    

− −

− −

= ∑ ∑

∑ ∑

m ks m ks-1-i m
p 2 1 0 2 1 1 2

m ks-1-i m
2 1 1 2

C A A x A A B u A B u

A A E d A E d
(6.6) 

 
Now, let yp stand for the suction pressure of the CS "p" shutting down at time k+ks. Up to this 
time in the prediction horizon, optimal values of discharge pressures, up(k), may be determined 
by the optimiser, but after that moment of time, the shut down takes over and determines the 
behaviour of the discharge pressure. Separating up from the input vector u after the moment of 
shut-down and rearranging (6.6) yields: 
 

ks-1 ks-1

p s
i=0 i=0

m-1 m-1 m-1
1 i 1 i 1 i

2 s 2 s 2 s
i=0 i=0 i=0

y (k+k +m) [  + (k+i)  + (k+i) 

                   (k+k +i) (k+k +i) (k+k +i) ]    − − − − − −

=

+ +

∑ ∑

∑ ∑ ∑

m ks m ks-1-i m ks-1-i
p 2 1 0 2 1 1 2 1 1

m m m
2 NP 2 P 2

C A A x A A B u A A E d

A B M u A B M u A E d

 (6.7) 
 
where MNP is an Nc times Nc identity matrix with a zero entry on the diagonal at (p,p) and MP is 
an Nc times Nc zero matrix with a "one" on the diagonal at (p,p). The term containing the latter 
in (6.7) is the suction pressure response of CS "p" to the discharge pressure of the same CS. 
 
The discharge pressures of the other CSs, ui ,i=1,2,...,Nc, i≠p and the off-take flows, di 
,i=1,2,...,Nd ,will now affect the discharge pressure Pd,p through very nearly the same dynamics 
as the suction pressure yp. Recalling, that the difference in the dynamics can be made arbitrarily 
small by choosing small enough pressure vessel volumes in the linear model (see figure 6.2), the 
resulting discharge pressure at time k+ks +m is: 
 

 

d,p s

m-1 m-1
1 i 1 i

p s 2 s 2 s
i=0 i=0

P (k+k +m)=

 u (k+k +m-1) + (k+k +i) (k+k +i)     

    

− − − −+∑ ∑m m
p 2 NP p 2C A B M u C A E d (6.8) 

where up(k+ks+m-1) represents the discharge pressure value as determined by the shutdown 
transient.  
 
Equating (6.7) and (6.8), while the discharge and suction pressures must be equal when the CS 
"p" is shut down, the fourth and sixth terms in (6.7) are cancelled out by the second and third 
terms in (6.8), respectively, leaving us with m equations from which the m unknown values 
up(k+ks),..., up(k+ks +m-1) can be solved:  
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j-1ks-1 ks-1
1 i

2 s
i=0 i=0 i=0

p s

[  + (k+i)  + (k+i) (k+k +i)] =

u (k+k +j-1)

       

− −+∑ ∑ ∑j ks j ks-1-i j ks-1-i j
p 2 1 0 2 1 1 2 1 1 2 PC A A x A A B u A A E d A B M u

 (6.9) 

 
where j=1,2,...,m. Because of the definition of MP, no discharge pressures ui(k+ks+j) ,i≠p are 
present in this equation when j≥0. 
 
(6.9) is called the "equation constraint" because it will be used as such when setting up the 
receding horizon optimisation problem, as will be seen below. 
 
Note 1. The second and third terms on the left side of (6.9) are "rest responses" to inputs and 
disturbances (discharge pressures and off-take flows), respectively, prior to the shut-down. 
 
Note 2. Any output variable yp of the pipeline system is calculated using expressions of type 
(6.6), where the discharge pressures of any CS being shut down are calculated by expressions of 
type (6.9) over the shut down period. 
 
Let us now assume that the CS "p" restarts at time k+ks+ks’< k+M. From a modelling and 
optimisation perspective, it is much easier to start (or restart) a CS, as we only have to stop 
applying the equation (6.9) and allow the optimiser to again calculate values for up(k+ks+ks’+1), 
up(k+ks+ks’+2),... 
  
If CS “p” is not running when the optimisation at cycle “k” commences, the equation constraint 
(6.9) is applied for time points k+1,…, k+ks, until a CS start-up. Over this period, δ1(i)=0 and 
δ2(i)=1 and the model , , ,2 2 2A B E C  is valid. 
 
 
 
6.3 The free response prediction with compressor station shutdown and start -up 
 
The simulator calculates the free response prediction vector Z0(k) once per optimisation cycle 
“k” prior to the optimisation calculations. The simulator uses the latest information available 
including CS running status and discharge pressures, which are considered to be constant over 
the whole prediction horizon. 
 
The equation constraint (6.9) would require a rest response to the off-take flows before the 
shutdown moment k+ks, which the simulator does not provide. Using expression (6.6) to 
calculate any output variables yp would require the simulator to provide predictions 
corresponding to the model , , ,2 2 2A B E C  which is valid after CS shutdown. This is not provided 
by the simulator either. In other words, the data in Z0(k) is in principle not consistent with the 
shutdown or start-up speculations made by the optimiser. The missing off-take flow models 
could be obtained by identifying linear models as was done for the inputs, but this is a large 
extra burden, especially when the pipeline system contains a large number of off-takes. 
 
The question remains: do we have to revise the optimisation method to iterate between 
simulator runs and optimisations to reduce the error in cases where the optimiser wants to 
change CS status? 
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The largest error caused by the inconsistency comes from the fact that the "isolating" effect in 
the downstream direction of a running CS disappears when it shuts down. In reverse, the 
isolating effect appears when a CS is started up. Consider the example of a simulation study 
with "Simone" on the Finnish pipeline system in operating point no.1 (See Appendix A) in 
figure 6.3. All off-take flows are at constant steady-state values, but one off-take flow Fa is 
varying 40000 Nm3/h, as shown in figure 6.4. This flow variation is 7.1 % of the steady-state 
flow through CS2 in operating point no.1. When CS2 is running, Fa does not have any effect on 
pressure Pb (CS3 suction pressure), but after CS2 shut down, Pb will have a response to changes 
in Fa. The distance from CS1 to Fa is 85 km. 
 
 
 
   CS1        CS2    CS3 
 
            Pa       Pb                   Pc 
 
     

Fa      Fb            Fc 
 
Figure 6.3 Pipeline simulation case to show effect of off-take flow Fa on Pb when CS2 is 
shutting down.  
 
 
The free response prediction of Pb with CS2 running would remain a constant 38.7 bar, see the 
horizontal dashed line in figure 6.4 b). A CS2 shutdown is simulated with a constant off-take 
flow Fa, which is equivalent to assuming that there is no effect from Fa to Pb, which is what the 
simulator assumes when it calculates the free response prediction without knowing the plans to 
shut down CS2. Another shutdown is simulated with the Fa variations shown in figure 6.4. The 
values of Pb from both simulations are graphed in figure 6.4 b). The difference between these 
results, which is equal to the error in Pb made by using the constant free response prediction, is 
graphed in figure 6.4 c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4 a) (left) Fa flow changes from 40000 Nm3/h to 0 and back again. b) (middle)  Pb 
responses to CS2 shut down at time point 51 c) (right) The difference between the two Pb curves 
in b). The time axis in all graphs are expressed in 10-minute time steps. 
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CS status changes do not influence responses in the upstream direction nearly as dramatically, as 
can be seen from the step response graphs in Appendix A. For example, Pa will always respond 
to off-take flows Fa, Fb and Fc irrespective of the status of CS1, CS2 and CS3. Figure 6.5 shows 
some cases collected from Appendix A. 
 
The shut-down transient of a CS clearly dominates over effects caused by off-take flow changes 
when CSs shut down from high discharge pressures. The same is true for start-up transients, 
while the CS cannot usually stay at low discharge pressure after starting up. There are, however, 
cases where moderate discharge pressures are used (see CS3 shut-down simulation runs in 
section 6.8.2. below). In such cases, the inconsistency may generate some error. 
  
If the off-take flow changes over the prediction horizon are small, then the error caused by the 
inconsistency is small as well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5 a) (left) CS2 suction pressure Pa response to Px3 flow rate change of 10000 Nm3/h 
in operating point no. 1 when all CSs are running (solid line) and CS2 shut down (dashed line) 
from figures A.10 b and A.18 b in Appendix A. b) (right) Pa response to Px3 flow rate change in 
operating point no. 2 when all CSs are running (solid line), CS2 is shut down (dashed line) and 
CS3 is shut down (dashed-dotted line) from figures A.10 b, A.18 b and A.26 b in Appendix A 
 
 
 
Despite the inconsistency, no iterations between the receding horizon optimiser and the 
simulator will be introduced and optimiser development will continue to be based on the single 
free response prediction Z0(k). 
 
 
 
6.4 A mixed logical dynamical system 
 
In this section we will formulate the receding horizon optimisation problem including CS 
shutdown and start-up optimisation using a mixed logical dynamical system (MLD system) 
(Bemporad and Morari, 1999). Note, that we have already defined the piecewise linear model in 
(6.3), which is an essential part of that system concept. The general form is: 
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(k 1) (k) (k) (k) (k)
(k) (k) (k) (k) (k)

(k) (k) (k) (k)

+ = + + +

= + + +

+ ≤ + +

1 2 3

1 2 3

2 3 1 4 5

x Ax B u B δ B z
y Cx D u D δ D z
F δ F z F u F x F

 (6.10) 

 
The state x, input u and output y are each partitioned into continuous parts (subscript "c") and 
logical, i.e. integer- or binary-valued parts (subscript "l"): 

, ,          
T T TT T T T T T

c l c l c lx x  x u u  u y y  yA A A . In the case of pipeline optimisation, only the logical 
inputs ul will be needed. 
 
The non-linearity involved with multiplying integer variables (δ) with continuous ones (u, see 
expression (6.3)) is taken care of by introducing the so-called "big M" concept. Defining 
auxiliary variables (k)= (k)+ (k)+i i i iz A x B u E d(k) , i=1,2,...n, (6.3) is equivalent to the following 
set of inequalities, written as vector inequalities which have to be satisfied component-wise: 
 

 

i

i

i

i

(k) δ (k)
(k) δ (k)
(k) (k)+ (k)+ - (1-δ (k))
(k) (k)+ (k)+ - (1-δ (k))

≤

≥
≤
≥

i

i

i i i i

i i i i

z M
z m
z A x B u E d(k) m
z A x B u E d(k) M

 (6.11) 

 
where m (M) is a vector of minimum (maximum) values of the state vector x. Only one zi-
vector is non-zero at one time, the other n-1 vectors being forced to zero by (6.11). While the 
free response prediction Z0(k) is used, all matrices ≡iE 0 , i=1,2,...,n in (6.11) and instead the 
outputs of the MLD system over the prediction horizon, j=0,1,…,P-1, are calculated as: 
 

 
n

i 0,i
p=1

y (k+j)= (k+j) z (k+j) + ∑i pC z  (6.12) 

 
The initial state of the system x0=0, because the contribution of the initial state is actually 
accounted for in Z0(k), see expression (6.2). 
We will relax the normal requirement within MLD systems that the coefficient matrices in 
(6.10) are time invariant so that we allow F5 (or a part of it) to be the carrier of the free response 
prediction values. Define an extra auxiliary variable vector zn+1 of the same dimension 2Nc+Nx 
as the output vector y. The equality (k) (k) (k)=n+1 0 0z C Z , where C0 is a matrix (C0 (i,j)=1, 
when i=1,.., 2Nc+Nx , j=P(i-1)+k, otherwise 0) used to pick values from Z0, is implemented as  
4Nc+2Nx extra inequalities in (6.10). Then, defining = = =1 1 2C D D 0  and [ ]  ...  =3D C C C I in 
(6.10) we obtain: 
 

 [ ]
2

n

n+1

(k)
(k)

(k)   ...  ...
(k)

(k)

 
 
 
 =
 
 
  

1z
z

y C C C I
z
z

 (6.13) 
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Let us define a new set of binary variables, "w", constituting the logical part of the input vector 
u, ul = w, and defined as the running statuses of the CSs. The number of w-variables is Nc and 
n=2Nc. The variables wi and δj are related as shown in figure 6.6. 
 
 
 
Case w1 w2 w3  δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 
All CSs running 1 1 1  1        
CS 1 off 0 1 1   1       
CS 2 off 1 0 1    1      
CS 3 off 1 1 0     1     
CS1 and CS2 off 0 0 1      1    
CS1 and CS3 off 0 1 0       1   
CS2 and CS3 off 1 0 0        1  
All CS off 0 0 0         1 

 
Figure 6.6 Table relating model change variables δi  with CS running status variables wi for 
Nc=3 and n=8. wi =1 means CS number "i" is running, otherwise CS "i" is shut down. The 
empty table entries for δi contain zeros. 
 
 
It is easy to verify that the following set of inequalities and one equality determines the values 
for δi(k+j), j=0,1,...P-1, satisfying the relations in figure 6.6: 
 
   

 

1 1 2 3

2 1 2 3

3 1 2 3

4 1 2 3

5 1 2 3

6 1

δ (k+j)+w (k+j)+w (k+j)+w (k+j) 2
δ (k+j)+1-w (k+j)+w (k+j)+w (k+j) 2
δ (k+j)+w (k+j)+1-w (k+j)+w (k+j) 2
δ (k+j)+w (k+j)+w (k+j)+1-w (k+j) 2
δ (k+j)+1-w (k+j)+1-w (k+j)+w (k+j) 2
δ (k+j)+1-w (k+j)+w

− ≤
− ≤

− ≤
− ≤

− ≤

− 2 3

7 1 2 3

8 1 2 3

1 2 3 4 5 6 7 8

(k+j)+1-w (k+j) 2
δ (k+j)+w (k+j)+1-w (k+j)+1-w (k+j) 2
δ (k+j)+1-w (k+j)+1-w (k+j)+1-w (k+j) 2
δ (k+j)+δ (k+j)+δ (k+j)+δ (k+j)+δ (k+j)+δ (k+j)+δ (k+j)+δ (k+j)=1

≤
− ≤

− ≤

 (6.14) 

 
Writing the equality as two inequalities, we obtain n+2 inequalities which are added to the 
matrix inequality in (6.10).  
 
The final MIQP problem we are going to obtain, or the time required to solve it, will benefit if 
we can limit the number of searches in the tree of binary decision alternatives. In addition, it is 
not at all recommended to shut down and start up CSs frequently. If wi(k), wi(k+k1), 
wi(k+k1+k2)…, wi(k+k1+k2+…+kJw-1), where ki>1, can be freely manipulated by the optimiser, 
but intermediate values must be frozen, we can define equalities wi(k+1) - wi(k)=0, wi(k+2) - 
wi(k+1)=0,…; wi(k+k1+1) - wi(k+k1)=0,…. The total number of equalities for one CS is 

Jw

i w
i 1

k J
=

−∑ , where ki are the lengths of the freezing intervals and Jw is the total number of those 

intervals. For the whole MIQP problem, with Nc CSs, we obtain 
Jw

c i w
i 1

2N ( k J )
=

−∑  inequalities. 
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The limiting equality technique is the same as that used in multi-rate control (Ling and Lim, 
1996) and is illustrated in figure 6.7. 
 
 
 
 
w1 
 
w2 
… 
 
wNc 
 
   k  k+k1      k+k1+k2    k+k1+k2+k3        k+P 
 
Figure 6.7 Example on limiting the wi-variables over the prediction horizon P. Each value of wi 
is frozen over kr sample intervals so, that k1+k2+  ... +kJw = P. In the figure, Jw =4. 
 
 
If considered necessary, it is possible to block the continuous decision variables ui using the 
same technique as in Chapter 5, section 5.10. However, Bemporad and Morari (1999) do not 
recommend using even a shorter control horizon, M < P, as savings in the computational load 
will not be significant. They do not mention blocking, but presumably blocking is not 
recommended either on the same grounds. 
 
The 4NcP CS envelope constraints (see Chapter 5, the matrix inequalities (5.51)) can now be 
written as scalar inequalities: 
 

 

r n

ij i i ij i 0,i
p=0 p=1

n

ij Nc+i 0,Nc+i q
p 1 q Qi0

a Δu (k+p)+u (k-1) +b (k+r) z (k+r)

c (k+r) z (k+r) δ (r)
= ∈

   
+ +   

   
 

′+  ≤ Μ 
 

∑ ∑

∑ ∑

p

p

C z

C z
 (6.15) 

 
where i=1,2,..., Nc , j=1,..,4 and r=0,1,...,P-1. M' is a sufficiently large number to relax the 
compressor constraints when CS "i" is shut down, which is true for the values of q belonging to 
the set Qi0. (For the example in figure 6.6, if i=2, then Q20={3,5,7,8}, i.e. when δ3(k), δ5(k), 
δ7(k) or δ8(k)=1, then CS2 is shut down and the constraints must be relaxed). 
 
The constraints on checkpoint pressures are:  
 

 
n

2Nc+i 0,2Nc+i x,i,min
p=1

(k+r) z (k+r)  P+ ≥∑ pC z  (6.16) 

 
where i=1,2,..., Nx and r=0,1,...,P-1. 
 
The minimum and maximum CS discharge pressure limits and the discharge pressure change 
limits are, both relaxed when a CS is shut down: 
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'
i d,i,max q

q Qi0

'
i d,i,min q

q Qi0

u (k+r) P M δ (r)

u (k+r) P -M δ (r)

∈

∈

≤ +

≥

∑

∑
 (6.17) 

and: 

 

'
i i i,Max q

q Qi0

'
i i i,Min q

q Qi0

u (k+r)-u (k+r-1) u (r) M δ (r)

u (k+r)-u (k+r-1) u (r)-M δ (r)

∈

∈

≤ ∆ +

≥ ∆

∑

∑
 (6.18) 

 
where i=1,2,..., Nc and r=0,1,...,P-1. 
 
We can calculate the values of all output variables (see (6.13)) needed for calculating the value 
of the quadratic cost function. However, we have to add the contribution of the CS status 
changes to the cost function so that the "zero degree term" of the CS power consumption, bi, 
i=1,2,...,Nc (see section 5.7, expression (5.35)) is added to the cost when the CS  is running, but 
otherwise not. In this way, we obtain zero cost for a CS in shut down status, while discharge 
pressure equal to suction pressure yields zero for the adiabatic head of the CS. The cost 
contribution of start-up and shutdown optimisation is: 
 

 
Nc P-1

i i
i 1 j=0

b w (k+j)   
=
∑ ∑  (6.19) 

 

which replaces the term 
P Nc

j
i 1 j 1

b
= =
∑∑ in (5.35). 

If there is a need to consider an extra cost associated with the status changes of the CSs, a start-
up cost may be defined. First, we must detect whether some wi(k+j)> wi(k+j-1) and, if this is the 
case, "raise a flag" or more precisely, collect all start-ups for each CS into a variable. Let the 

total start-up cost for the CSs be a linear expression: 
Nc P-1

S,i i
i=1 j=0

C v (k+j)∑ ∑ , where Cs,i is the cost in 

power units and vi(k+j)=1 if wi(k+j)> wi(k+j-1). If the vi(k+j):s are binary variables, then the 
inequalities (6.20) apply over j=0,...,P-1. wi(k-1) is the current running status of CS "i" when 
entering the optimisation cycle. 
 

 
i i

i i

i i i

w (k+j)+v (k+j)  0
w (k+j-1)+v (k+j)  1
w (k+j)-w (k+j-1)-v (k+j)  0

− ≤
≤

≤
 (6.20) 

 
These 3NcP additional inequalities must be added to the set of inequalities in (6.10). 
 
The final effort needed to obtain a complete MLD system with all relevant variables and 
inequalities is to set up the equation constraint within the MLD framework. Before that, we will 
inspect the dimensions of the resulting MIQP problem using the auxiliary variables and 
inequalities obtained so far. 
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6.5 The MIQP problem 
 
The optimal control, or dynamic optimisation, problem based on an MLD system will result in 
an MIQP problem (Bemporad and Morari, 1999) with the variables defined as follows: 
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 (6.21) 

 
For T

2 3[   ]= T T T
1X X X X , the MIQP problem is: 

 

 
T1Min.  + 

2
Subject to     ≤

TX QX b X

AX B
 (6.22) 

 
The matrices Q, b, A and B can be calculated from the expressions given in section 6.4 and 
from the cost function expressions in section 5.7.   
Table 6.1 summarises the number and dimensions of the variables in the MIQP problem. The 
term “expanded” means the total number of scalar variables over the whole prediction horizon. 
 
 
 

Variable Name Dimension Number Expanded 
Auxiliary variable zi r n rnP 
Auxiliary variable zn+1 2Nc+ Nx 1 (2Nc+ Nx)P 
Input variable u Nc 1 NcP 
Auxiliary binary variable δi 1 n nP 
Auxiliary binary variable vi 1 Nc NcP 
Input binary variable wi 1 Nc NcP 

 
Table 6.1 Variables of the MIQP problem 
 
 
The total number of MIQP variables is [rn+3Nc+Nx]P continuous and (n+2Nc)P  binary 
variables. Table 6.2. summarises the linear inequalities of the MIQP problem. 
 
The total number of MIQP inequalities is [17Nc+3Nx+4rn+n+2]P –2Nc Jw 
 
If each of the outputs yi is represented by three states, the dimension of the state vector x, 
r=3(2Nc+ Nx), which is equal to the dimension of all auxiliary variables zi. Using this 
assumption, for Nc=3, Nx=1, n=2Nc =8, Jw=6 and P=100 we obtain 17800 as the total number 
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(expanded) of continuous variables; 1400 as the total number of discrete variables and 73564 as 
the total number of inequalities.  
 
 
 

Inequality Dimension Number Expanded 
big-m inequalities for zi (6.11) 4r n 4rnP 
zn+1 = C0Z0 equations 2Nc+ Nx 2 2(2Nc+ Nx)P 
δi to wi relations (6.14) n+2 1 (n+2)P 
CS envelope constraint (6.15) 4Nc 1 4NcP 
Checkpoint pressure limits 
(6.16) 

Nx 1 NxP 

Discharge pressure limits (6.17) 2Nc 1 2NcP 
Input increment limits (6.18) 2Nc 1 2NcP 
Limiting wi (figure 6.7) 2Nc (P-Jw) 2Nc(P-Jw) 
Startup cost management (6.20) 3Nc 1 3NcP 

 
Table 6.2 Linear inequalities of the MIQP problem  
 
 
If we limit the number of CS status combinations in figure 6.6. in order not to accept "All CS 
off" (δ8), "CS2 and CS3 off" (δ7) and "CS1 and CS3 off" (δ6), we have n=5, giving 11500 
continuous variables, 1100 discrete variables and 48064 inequalities.  
 
If we further reduce P from 100 to 50, we obtain 5750 continuous variables, 550 discrete 
variables and 24014 inequalities. 
 
It is not at all surprising to obtain such a large dimension of the MIQP problem. 
 
We did not yet implement the equation constraint into the MLD system and further into the 
MIQP problem. We have good ground to assume that it can be done, since the equation 
constraint is linear. On the other hand, we can also assume that some additional auxiliary 
variables and inequalities are required. As at this point we already saw a dimensional explosion, 
we will not develop the MLD system-based MIQP problem any further. 
 
 
 
6.6 Step response models revisited  
 
In Chapter 5 we used step response models in the optimiser. So far, in this chapter we have used 
state-space models. The reason for using state-space models is that MLD systems are defined 
based on state-space models and the background for the shutdown transient, which is 
determined through the equation constraint, is easier to explain this way. 
 
If we want to use step response (matrix) models in our MLD system, we would need some kind 
of state-space model of type (6.3) including model change variables δi. Consider a non-minimal 
state-space model X(k+1)= MssX(k) + S1∆u(k); y(k)= HX(k) which is slightly modified from 
(5.19) so, that we use a shift matrix Mss consisting of P x P Ms-matrices, where the last row and 
last column of Ms (5.20)  are deleted, and S1 (5.21) is modified to use step response vectors of 
length P instead of length P+1. Moreover, we will use an output matrix H (a modified matrix T, 
see (5.22)) : H(i,j)=1, if j=P(i-1)+1, otherwise H(i,j)=0. It is easy to verify that propagating this 
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model over ∆u(k), ∆u(k+1),…, ∆u(k+P-1) with the initial condition X(k)=0, the sequence of 
outputs $ $ $(k 1), (k 2),..., (k P)+ + +y y y is the predicted control response of the system, i.e. the 
predicted outputs excluding the contribution of the free response prediction Z0(k). If we now 
issue a model change at time k+ks, we will start to use another step response matrix, say S2, 
instead of S1 in our model, while the matrix Mss remains unchanged. 
 
This is an acceptable state-space model and can be used as a basis for an MLD system and a 
changing model with a common state vector is obtained here also. Johansen and Murray-Smith 
(1997) in Chapter 1, page 19, recommend a common state vector for the separate local models 
involved in a modelling problem where different local models apply in different operating 
regimes. This is satisfied by both the model (6.3) and by the non-minimal model presented here. 
 
Recalling section 6.2, expressions (6.5) and (6.6) we see that a model change at time k+ks, 
causes a “mixed dynamic model” while model C,A1,B1 mixes with C,A2,B2 in the lower left 
sub-matrix of the impulse response matrix: 
 
 

1

1 1 1

ks 1 ks 2 ks 3
1 1 1 1 1 1 1

ks 1 ks 2 ks 3
2 1 1 2 1 1 2 1 1 2 1 2

P ks ks 1 P ks 1 ks 2 P ks 2 ks 3
2 1 1 2 1 1 2 1 1 2 2 2

0 0 0 0 0
0 0 0 0

0 0
0

− − −

− − −

− − − − − − − −

 
 
 
 
 

=  
 
 
 
 
 

CB
CA B CB

H CA B CA B CA B CB
CA A B CA A B CA A B CA B CB

CA A B CA A B CA A B CA B CB

L
L

M M M
L L
L

M M M
L L

 (6.23) 
 

the step response matrix S corresponding to H contains matrices 
i j

s
k 0

 , i k  , j i
−

=

≤ ≤∑ k
1 1CA B in the 

left upper sub-matrix, 
ks j i-ks-1

k
2 s s

k 0 k=0
 + , i k +1 , j k

−

=

≥ ≤∑ ∑i-ks k
2 1 1 2CA A B CA B in the left lower sub-matrix 

and 
i j

2 2 s s
k 0

 , i k +1 , k +1  j i
−

=

≥ ≤ ≤∑ kCA B  in the right lower sub-matrix. 

 
Propagating the non-minimal state space model and implementing a model change at k+ks yields 
predictions over the whole horizon for the system output, excluding the contribution of the free 
response prediction Z0(k) : (k)SΔu% , where S has the structure (5.17) and each sub-matrix of S 
is: 
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1
ij

1 1
ij s ij s

1 1 2
ij s ij s ij
1 1 2 2
ij s ij s ij ij

1 1 2 2
ij ij ij s ij s

s (1) 0

s (k ) s (k -1) 0
s (k +1) s (k ) s (1) 0
s (k +2) s (k +1) s (2) s (1)

s (P) s (P-1) s (P-k -1) s (P-k -2)

 
 
 
 
 

=  
 
 
 
 
 

ijS

M
L

L
M M

 (6.24) 

 
 
where the superscript 1 refers to step response coefficients in the step response matrix S1 and 
superscript 2 for S2. No mixed dynamics is seen in any part of the matrix Sij. 
 
The non-minimal state-space model leaves effects of ∆u(k), ∆u(k+1),…, ∆u(k+ks-1) on the 
output predictions un-updated after a model change, i.e. it behaves in a "conservative" way. The 
model change applied by Bemporad and Morari (1999) can be considered “abrupt”. The model 
change of a physical system may in reality be something in between: Johansen and Murray-
Smith (1997) address a piecewise linear model of exactly the same structure as (6.3), but the δi 
‘s are not restricted to binary values, while they can accept any values 0≤ δi ≤ 1, because there is 
a need for smooth model changes. Smooth weighing functions for selecting dynamic models 
from a model bank in multiple model adaptive control applications are also discussed by Schott 
and Bequette (1997). 
 
Note: Smooth model changes can also be implemented with the piecewise models (6.3) by 
defining a proper number N of intermediate models (A11,B11 ), (A12,B12 ), …,(A1N,B1N ), 
“between” models (A1,B1 ) and (A2,B2 ), and associated switch variables δ11, δ12 ,… δ1N. 
 
If the "conservative" model change offered by the use of step response model matrices is not 
satisfactory, then state-space models can be used instead, whereby "abrupt" model changes 
follow. Smooth model change potentially means introducing some additional model change (or 
transition) dynamics. In such a case, an ad-hoc model change method for step response matrices 
may be constructed: define a first-order model change dynamics, operating on the step response 
matrix elements in the lower left sub-matrix (see (6.24)): 
 
 s s(i,j) α(i-k ) (i,j) (1 α(i-k )) (i,j)= + −12 1 2S S S  (6.25) 

 

where i= ks+1, ks+2,..,P and j=1,2,.. ks and M
i- T/Tα(i)= e ∆   , when i>0 and α(i)=0  otherwise, and 

where ∆T is the optimisation interval and TM is a suitable time constant value. For the sub-
matrices Skj (k=1,..,n ; j=1,…,m) of a multivariable step response matrix S we can use different  

values M,k,j
i- T/T

kjα (i)= e ∆ 
  . 

 
The extension to multiple step response model changes is straightforward. For example, 
changing to a third model S3 at time k+ks+ks' yields: 
  

 

 
 

=  
 
 

1

12 2

123 23 3

S 0 0
S S S 0

S S S
 (6.26) 
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where 
 
 1 s 1 s(i,j) α (i-k ) (i,j) (1 α (i-k )) (i,j)= + −12 1 2S S S  (6.27) 

 
where i= ks+1, ks+2,.., ks+ks’ and j=1,2,.. ks 
 
 ' '

2 s s 2 s s(i,j) α (i-k -k ) (i,j) (1 α (i-k -k )) (i,j)= + −23 2 3S S S  (6.28) 

 
where i= ks+ks’+1, ks+ks’+2,..,P and j= ks+1, ks+2,.. ks+ks’ 
 

 
' '

s s 2 s s 1 s 1 s

'
2 s s

(i-k -k ,j) α (i-k -k )[α (i-k ) (i,j) (1 α (i-k )) (i,j)]

(1 α (i-k -k )) (i,j)

= + − +

−

123 1 2

23

S S S
S

 (6.29) 

 
where i= ks+ ks’+1, ks+ks’+2,..,P and j= 1,2,.. ks 
 
The ad-hoc model change introduces error in the left lower sub-matrices of the modified step 
response matrices. The larger the difference of the models, the larger the error. To get an idea of 
the error introduced, let us compare the step responses of the Finnish natural gas pipeline system 
which are presented in Appendix A. In particular, we collect responses from figures A1 b, A7 b, 
A7c and A12 b, A15 b, A15 c , the solid lines corresponding to operating point no.1. In figure 
6.8 the CS2 and CS3 suction pressure step responses for CS2 is running and CS2 shut-down are 
presented. The responses are in fact different, but some similarity in shape and direction (sign of 
gain) is seen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.8 a) (left) CS2 suction pressure response to CS1 when CS2 running (solid line) and 
shut down (dashed line) b) (middle) CS2 suction pressure response to CS3 when CS2 running 
(solid line) and shut down (dashed line) and c) (right) CS3 suction pressure response to CS3 
when CS2 running (solid line) and shut down (dashed line) 
 
  
Assume, that we have available a candidate CS shut down – start up sequence 
in T[   ... ]= T T T

1 2 Ncw w w w . Using the P(2Nc+2) inequalities (6.14), we may solve δi(k+1),…, 
δi(k+P-1), i=1,…, 2Nc to obtain the model change moments ks, ks', ... and then modify step 
response matrices SP, SX and SF using suitable model change time constants. 
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The terms 
j-1ks-1

1 i
2 s

i=0 i=0
[ (k+i)  + (k+k +i)]       − −∑ ∑j ks-1-i j

p 2 1 1 2 PC A A B u A B M u  of (6.9) can in step  

response matrix form be written as, when index "p" is changed to "i" : 
 
 (k) [  ] (k) P,R P,R P,R P,R P,R P,R P,R

i i,1 i,2 i,i-1 i,i i,i+1 i,NcS Δu S S ... S  S  S  ...S Δu% %A  (6.30) 

where 
 
 

ij

ij ij

ij s ij s
2 2

ij s ij s ij s ij s
2 2

ij s ij s ij s ij s

s ij s

s (1) 0 0
s (2) s (1) 0

s (k ) s (k 1)
α(1)s (k 1) (1 α(1))s (k 1) α(1)s (k ) (1 α(1))s (k )
α(2)s (k 2) (1 α(2))s (k 2) α(2)s (k 1) (1 α(2))s (k 1)

α(P k )s (P) (1 α(P k ))

−
=

+ + − + + −
+ + − + + + − +

− + − −

P,R
ij

L

0

S

S

M M
L

M
2 2
ij s ij s ijs (P) α(P k )s (P 1) (1 α(P k ))s (P 1)

 
 
 
 
 
 
 
 
 
 
 
 − − + − − − 

 (6.31) 
 
where SL = 0 when i≠j and 
 

 

2
ij
2 2
ij ij

2 2 2
ij s ij s ij

s (1) 0 0
s (2) s (1) 0

s (P k 1) s (P k 2) s (P M 1)

 
 
 =  
  − − − − − + 

LS
L

M
 (6.32) 

when i=j. 
 
The superscript “2” for step response coefficients in (6.31) and (6.32) stands for the model to 
change to at ks. α is the model change coefficient. The equation constraint for CS “i” can now 
be written, recalling, that M´ is a large-valued constant for relaxing constraints: 
 
 ' , '

,i iM (k) (k) (k) u (k 1) M− ≤ + − − − ≤P R
w i i 0 0 i P w iI w S Δu Z S Δu I I w%  (6.33) 

 

while the relation 
j

i i i
r=0

u (k+j) Δu (k+r) + u (k-1)= ∑ , j=0,1,..M-1 is true, where S0 is defined in 

(5.37) and Iw is a P x Jw matrix which resolves the blocking of wi : 
 

 

w,1

w,2

w,Jw

 
 
 =  
  
 

W

I 0
0 I 0

I

0 I
O

L

 (6.34) 

 
where each Iw,j is a kj-vector of ones. 
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As was seen in Chapter 5, blocking of ∆u is conveniently implemented with step response 
models. We can easily see that the model change procedure introduced above can as such be 
applied on blocked step response matrices. However, care must be taken, when the equation 
constraint is considered. The origin of this is the idea to equate discharge and suction pressure at 
every point in the prediction horizon where a CS is shut down. If ∆u is blocked, Nb>1 (see 
(5.57) in section 5.10), for a shutdown period of, say, P1 time points, we can find only P1/ Nb 
distinct values of the blocked vector ∆ui , the number of equations being P1. This over-
determined set of equations cannot be supplied as equation constraints to a QP solver, since 
some of those cannot be satisfied, and the QP solver will announce an infeasible solution. Let us 
define an averaging matrix Am : 
 
 

 

0

0

0

0

 
 
 
 =  
 
 
 
 

jb

jb

m

jb

pmb

I

I 0
A

0 I
I

O  (6.35) 

 

where the vectors [ ]T

b

1 11...1
N

=jbI are of length Nb and the vector [ ]T1 111..1
P M

=
−pmbI is of length 

P-M. The equation constraint (6.33) is modified as follows: 
 
 ' , '

,i i MM [ (k) (k)] (k) u (k 1) M    − ≤ + − − − ≤T T P R T
m w i m i 0 u i m w iA I w A S Δu Z I Δu I A I w% (6.36) 

 
where we have replaced Ip as multiplier of ui(k-1) with IM, which is a jb-vector filled with ones. 
 
The compressor envelope constraints (5.51), checkpoint pressure limits (5.52) and the discharge 
pressure limits are now, respectively, written as: 
 
 

 
ij i ij

'
ij

a ( (k) u (k 1)) b ( (k) (k))

c ( (k) (k))  M ( )

+ − + + +

+ ≤ −

P
0 i p i 0,i

F
i 0,Nc+i P w i

S Δu I S Δu Z

S Δu Z I I w

%

%
 (6.37) 

 
 (k) (k)+ ≥X

i 0,2Nc+i x,i,minS Δu Z P%  (6.38) 
  

 
'

i M

'
i M

(k) u (k 1) M ( )

(k) u (k 1) M ( )

+ − ≤ + −

+ − ≥ − −
u i M d,i,max w i

u i M d,i,min w i

I Δu I P I J w

I Δu I P I J w
 (6.39) 

 
 

 
'

M

'
M

(k) M ( )

(k) M ( )

≤ + −

≥ − −
i i,max w i

i i,min w i

Δu Du I J w

Δu Du I J w
 (6.40) 

 
 
where Jw is a M x Jw matrix which resolves the blocking of wi  with respect to the control 
horizon: 
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w,1

w,2

w,Jw

 
 
 =  
  
 

W

J 0
0 J 0

J

0 J
O

L

 (6.41) 

 
where each Jw,i is a vector of ones with length ki/Nb except for Jw,Jw, whose length is 

Jw 1
Jw

b i
i 1b b

k 1min(  ,  j k )
N N

−

=

− ∑  

 
The value of the control horizon, M, the ∆u-blocking and w-blocking must be synchronised so 
that at least some input increments are available after the last CS shutdown or start-up event in 
order to be able to set up the equation constraint or to conduct a decent CS start-up. In other 
words, we have to require k1+ k2 +… + kJw-1  < M. (See figure 6.7). Also, the w and ∆u blocking 
intervals must be multiples, i.e. ki/Nb = integer. 
 
As a cost function update we will substitute zeros for the cost parameters when CS “i” is shut 
down : i.e.  ai=0 over the period(s) CS “i” is, by wi, projected to be shut down in the prediction 
horizon. Possible CS start-up costs can be treated as explained in section 6.4. 
 
 
 
6.7 Simplified, step-response matrix based enumeration method  
 
In section 6.6 we actually described a procedure for modifying the step response matrices 
involved and for setting up the constraints for the final QP problem, once a candidate CS shut 
down and start up sequence is given. No auxiliary variables are needed and only the equation 
constraint for each CS is added to the set of constraints. The total number of (scalar) decision 
variables is Ncjb. The constraints are Nc(4P+4jb) CS envelope and variable limit constraints and 
NxP constraints for pressure check points and finally the equation constraint, equivalent to 2Ncjb 
inequality constraints. 
 
One practical detail to consider is the set of admissible switching options. Some values of w 
may not be allowed either temporarily (for example, CS is being serviced and may not be started 
up) or permanently (for example, too frequent shutdowns / start-ups can not be allowed for 
given CSs). We will use a look-up table of admissible switching options, where the user has 
entered pre-selected values. Too frequent start-up/shutdown activities can be taken care of in 
this way. In addition, we will use a limitation external to the optimisation procedure: once a CS 
has been started up by the optimiser, it is not allowed to shut the same CS down until after a pre-
defined number of optimisation cycles, a different valued parameter for each CS,  NRi , 
i=1,2,…,Nc. The same cannot be applied in the other direction: if a CS is shut down by the 
optimiser, it must always have the opportunity to re-start the CS in case of an unpredicted gas 
consumption increase. 
 
The algorithm sequence is as follows: 
 

1. Select a vector w 
T

  
T T T
1 2 Ncw  w  ...wA  from a given set (table) of switching options  

2. Modify the step response matrices SP, SF and SX as explained in section 6.6. 
3. Modify the cost parameter vector aj to be zero-valued for all the time steps that any CS j is 

projected to be in a shut down state (as determined by w) 
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4. Calculate matrices Qj, bj (j=1 or 2 depending on the chosen cost function alternative), A and 
B. 

5. Solve the QPproblem : T1Min. J =  ,   
2

+ ≤T
j jΔu Q Δu b Δu AΔu B% % % % . Add the contribution of 

the idle power 
Nc

i
i 1

b
=
∑ W iI w to the cost function value J. 

Tabulate the result :  
optimal Δu%  
switching option w 
optimal cost function value J  
feasible/infeasible flag (i.e. is the solution feasible or can no feasible solution  

be found) 
6. If all switching options have been checked, go to 7, if not go to 1. 
7. From the QP result table, select from among the feasible solutions the one with the smallest 

value of the cost function end exit. 
 
The CS cost parameter aj, j=1,…,Nc multiplies vectors in DF of (5.40) and Ip in (5.46) and 
(5.47). It is easy to redefine aj as vectors and use component-wise multiplication (or notation 
diag(aj) DF and diag(aj) Ip ). The value of the vector aj is calculated as j ja= W ja I w . Zeroing the 
cost function parameter in this way ensures that the CS j disappears completely from the cost 
function when CS “j” is shut down. 
 
The simplified procedure is much smaller in size than the MLD-based MIQP problem with its 
many auxiliary variables. Recall that the latter was not finalised, as the equation constraint was 
not yet included. The property of the rapidly growing complexity and size of the optimisation 
problems containing discrete decision variables is well known (Stursberg and Engell, 2002; 
Perea-Lopez et al., 2003) among others. Growing complexity can also be seen in the gas supply 
system example of Bemporad and Morari (1999). Bemporad and Morari (2001) mention a risk 
that hybrid problems of practical interest cannot be solved with present mixed-integer methods 
because of the so-called NP-hardness: the solution time grows exponentially with the problem 
size. If so, only small problems are practically solvable. One possible way of tackling this 
problem is to take advantage of special structures of each particular problem in order to develop 
good rather than strictly optimal solutions. 
 
 
 
6.8 Simulation results 
 
Receding horizon optimisation including CS start-up and shutdown optimisation of the Finnish 
natural gas pipeline system is simulated in the same fashion as described in section 5.11. 
 
6.8.1 Start-up and shutdown optimisation of CS2 
 
Case 1 
 
As a first simulation run, start-up/shutdown optimisation of CS2 is tested. In addition, the 
discharge pressures of all three CSs are optimised. The simulation period is from 1.3.2003 00:00 
to 13.3.2003 21:00. It is not possible (feasible) to shut down CS2 in the very first days of March 
because of the large gas consumption and consequently larger pressure drops in the pipeline 
segments. The values of the tuning parameters are jb=8, Nb=4, P=100, R=0. For w2, we define 
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Jw=7, k1= k2 = … = k6 = 4 and k7=76. The admissible values for w2 are shown in table 6.3. The 
only admissible values for w1 and w3 are [1 1 1 1 1 1 1]. Note that we define different admissible 
sets for situations where CS2 is shut down and when it is running. Undoubtedly, the sets can be 
the same, but when CS2 is running, a very fast re-start is not considered (0 1 1 1 1 1 1 would 
allow only 40 minutes, since Nb=4, shutdown time before re-start ). A larger number of distinct 
values is used when CS2 is shut down in order to let a possible projected start-up moment 
approach in a natural way 
 
The start-up cost parameters Cs,i  (see section 6.4) are zero in this simulation. 
 
Another restriction imposed on the optimiser is that if CS2 is re-started, it has to remain running 
for NRi=12 optimisation cycles (2 hours) before it may try to shut down again. 
 

Admissible w2 values, CS2 running No. 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 2 
0 0 0 0 0 1 1 3 
0 0 0 0 1 1 1 4 
1 1 1 1 1 1 1 5 
Admissible w2 values, CS2 shut down No. 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 2 
0 0 0 0 0 1 1 3 
0 0 0 0 1 1 1 4 
0 0 0 1 1 1 1 5 
0 0 1 1 1 1 1 6 
0 1 1 1 1 1 1 7 
1 1 1 1 1 1 1 8 

 
Table 6.3 Admissible w2 values for CS2. 
 
 
The step response matrices are modified using the ad-hoc method described in section 6.6. The 
time constants for suction pressure model changes in the matrix SP between the two modes: CS2 
running and CS2 shut down, can be presented as the matrix: 

200 0 200
350 0 500

− − − 
 =  
 
 

MT , where the elements TM(i,j) are the time constants in minutes used for 

model changes within PS . The top row indicates that there are no models for CS1 suction 
pressure and the zero entries mean that no smooth model change is needed while the response of 
the CS2 suction pressure must as such be available all the time over the prediction horizon. For 
the step response matrix of the gas flows, SF, no model changes are applied, while the gas flow 
responses are very similar even for different CS running statuses.  
 
 
The results of the optimisation run are presented in figures 6.9 to 6.15 below. 
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Figure 6.9  CS1 discharge pressure from 1.3.2003 00:00 to 13.3.2003 21:00. Optimiser (solid 
line), as operated (dashed line). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10  CS2 discharge pressure from 1.3.2003 00:00 to 13.3.2003 21:00. Optimiser (solid 
line), as operated (dashed line). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.11  CS3 discharge pressure from  1.3.2003 00:00 to 13.3.2003 21:00. Optimiser (solid 
line), as operated (dashed line). 
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Figure 6.12  Px3 checkpoint pressure from 1.3.2003 00:00 to 13.3.2003 21:00. Optimiser (solid 
line), as operated (dashed line). 
 
 
The optimiser shuts down CS2 quite early on 5.3.2003 21:00 (time point 700), but re-starts CS2 
eight times before it remains shut down for a longer period, while the human operator shuts 
down CS2 at time point 1062 (8.3.2003 09:00) “once and for all”, i.e. he does not need to restart 
at all (figure 6.10). The optimiser starts CS2 after a long period of down time, at 12.3.2003 
16:00 (time point 1680), which is 7 hours before the human operator starts it, 12.3.2003 23:00 
(time point 1720). 
 
The energy consumption from this optimisation run is graphed together with the corresponding 
values as operated in figure 6.13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.13 Cost function from 1.3.2003 00:00 to 13.3.2003 21:00. Optimiser (solid line), as 
operated (dashed line). 
 
 
The average cost for the optimised case over the whole time period is 48929 kW and as operated 
52078 kW; the difference is 5.99%. From the moment the optimiser begins to shut down CS2 
(time point 700) and to the end of the period, the corresponding numbers are: 43337 kW , 47049 
kW and 7.89%. 
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The optimiser increases CS3 discharge pressure every time CS2 shuts down (figure 6.14), while 
the optimiser predicts that CS3 suction pressure will, in the near future, decrease considerably 
because of the shutdown. In this situation, CS3 would have to decrease its discharge pressure 
not to violate the maximum speed limit, but the Px3 minimum limit requires some CS3 
discharge pressure level. The optimiser solves this trade-off situation by a short-term gas 
deposit into the pipeline segment downstream CS3: Immediately at CS2 shutdown, it is possible 
to increase the CS3 discharge pressure for a short time, followed by a decrease, but this is 
enough to keep Px3 above the minimum limit for a longer time. As seen in figure 6.15, the CS3 
maximum speed limit activity correlates with CS2 being shut off. These actions are seen as non-
optimal behaviour of Px3, since it escapes from the minimum line (figure 6.12). Every time CS2 
restarts, a temporary decrease in CS3 discharge pressure is observed, as the optimiser recognises 
return of the capabilities to control Px3 optimally.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14  CS2 (upper graph) and CS3 (lower graph) discharge pressure from  5.3.2003 16:30 
(time point 672 in figures 6.10 and 6.11) to  8.3.2003 04:00 (time point 1032). 
 
The active constraints in the prediction horizon are shown in figure 6.15. Only a few constraints 
other than those shown are active: the CS2 minimum speed limit is somewhat active at the end 
of the period with CS2 running, because gas consumption is decreasing. The CS2 choke line is 
activated every time CS2 starts up. CS1 has no active constraints except for a short surge line 
activation at time point 1000, when there is a temporary CS1 discharge pressure decrease (figure 
6.9). 
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Figure 6.15  CS3 minimum speed constraint activity (upper graph), CS3 maximum speed 
constraint activity (middle graph) and Px3 minimum limit activity (lower graph) from  5.3.2003 
16:30 (time point 672) to  8.3.2003 04:00 (time point 1032). 
 
 
If eight restarts cannot be accepted, then a suitable start-up cost can be defined, or the patterns 
for w2 can be more strict. If we allow only [1 1 1 1 1 1 1] and [0 0 0 0 0 0 0], we would actually 
mimic the human operator in that the optimiser allows no re-starts within the control horizon M 
(M=29 control intervals = 290 minutes) when shutting down CS2. 
 
In order to get an idea of the optimiser’s ability to predict the actual down time of CS2, data for 
the eight short shut down periods in figure 6.14 are listed in table 6.4. ”First pattern” means the 
optimal and feasible value of w2 found by the optimiser at the beginning of each shutdown 
period. The “Predicted shut down time” is obtained by multiplying the number of zeros in “First 
pattern” with Nb, which is 4 in this case. The “actual shutdown time” is obtained by counting the 
number of optimisation intervals when CS2 is shut down. Table 6.4 reveals that the actual 
deviates from the predicted times, the reasons being mainly modelling error and the use of a 
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single free response prediction (see section 6.3).  Note, that the largest difference is for “0 0 0 0 
0 0 1”, which comes as no surprise, as this is the pattern with the longest down time stating that 
sometime in the future CS2 must restart. “0 0 0 0 0 0 0” allows no re-start at all. 
 
 
No. of shut 
down period 

First pattern (w) Predicted shut 
down time 

Actual shut down 
time (fig. 6.14) 

1 0 0 0 0 1 1 1 16 10 
2 0 0 0 0 1 1 1 16 15 
3 0 0 0 0 1 1 1 16 13 
4 0 0 0 0 0 1 1 20 17 
5 0 0 0 0 0 1 1 20 16 
6 0 0 0 0 0 0 1 24 32 
7 0 0 0 0 0 1 1 20 20 
8 0 0 0 0 0 0 1 24 42 
    

 
Table 6.4 Predicted and actual shut down times of CS2 corresponding to the short shut down 
periods in figure 6.14. 
 
 
Figure 6.16 below shows the predicted behaviour of CS3 suction pressure when CS2 is shutting 
down for the first time (time moment 30 in figure 6.14, the upper graph) as calculated by the 
optimiser as explained in section 6.6 (In summary: the optimal ∆u2 –vector is obtained through 
the equation constraint, and CS3 suction pressure prediction is then equal to: 

T T
2 3[ (k) 0 ... 0] [ (k) 0 ... 0]+ + +P P P

31 1 3 2 3 3 0,3S Δu S Δu S Δu Z (k) , see Chapter 5, section 5.6). The 
CS3 discharge pressure over the prediction horizon as returned by “Simone” as the free response 
prediction for the next cycle is (k 1)+0,3Z . The predictions are quite close to each other. The 
effect of the averaging matrix (see section 6.6, expression (6.35)) is seen as a “knee” in the 
response at time point 29, where the control horizon ends. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.16 Predicted behaviour along the prediction horizon of CS3 suction pressure when 
CS2 shuts down: by optimiser using linear model (solid line) and by  “Simone” (dashed line) 
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Figure 6.17 shows the free response prediction of the Px3 pressure prior to shutting down CS2. 
As can be seen, the first 5 to 6 points are very close to the minimum limit, but later on in the 
prediction horizon the pressure is well above the limit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.17 Predicted behaviour along the prediction horizon of Px3 pressure prior to shutting 
down CS2: the free response prediction from “Simone”  
 
 
 
6.8.2 Start-up and shutdown optimisation of CS3 
 
Case 2 
 
The optimisation period is from 1.3.2003 00:00 to 13.3.2003 21:00 but the optimiser does not 
find it feasible to shut down CS3 before 6.3.2003, and therefore the results below are graphed 
from 6.3.2003 12:00 to 13.3.2003 21:00 . 
The parameters are the same as in CS2 shutdown/start-up optimisation (jb=8, Nb=4, P=100, 
R=0. Jw=7, k1= k2 = … = k6 = 4 and k7=76) and for w3, the admissible values are the same as 
shown in table 6.3 for the CS2 case. 
 
As the model change time constants for the suction pressure step response matrix SP we use: 

200 200 0
500 500 0

− − − 
 =  
 
 

MT . In CS3 shutdown /start-up cases we need to define the model change 

constant between the response model from CS3 to Px3 and CS2 to Px3, for which a value of 125 
minutes was chosen. The start-up cost parameters Cs,i  (see section 6.4) are zero in this 
simulation. If CS3 is re-started, it has to remain running for NRi=6 optimisation cycles (1 hour) 
before it may try to shut down again. The results are shown in figures 6.18 to 6.24 below. 
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Figure 6.18 CS1 discharge pressure from 6.3.2003 12:00 to 13.3.2003 21:00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.19 CS2 discharge pressure from 6.3.2003 12:00 to 13.3.2003 21:00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.20 CS3 discharge (solid line) and suction (dashed line) pressure from 6.3.2003 12:00 
to 13.3.2003 21:00. Suction pressure is graphed only to make it easier to follow when CS3 is 
shut down and when it is running. 
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Figure 6.21 Px3 checkpoint pressure from 6.3.2003 12:00 to 13.3.2003 21:00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.22 Number of active CS1 surge limit constraints from 6.3.2003 12:00 to 13.3.2003 
21:00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.23 Number of active CS2 minimum speed limit constraints from 6.3.2003 12:00 to 
13.3.2003 21:00. 
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Figure 6.24 Number of active Px3 minimum pressure constraints from 6.3.2003 12:00 to 
13.3.2003 21:00. 
 
 
Comparing the average energy consumption over the interval 5.3.2003 18:00 to 13.3.2003 21:00 
(the start of this interval is slightly before the first shutdown of CS2) we obtain 42943 kW for 
case 1 and 43985 kW for this case. The result is obvious as it can be seen that CS3 is not 
capable of being shut down as much as CS2. 
 
The first CS3 shutdown appears a lot later than the first CS2 shutdown (see section 6.8.1). The 
reason is that the behaviour of the optimiser is somewhat contradictory, while it simultaneously 
minimises Px3 pressure against the minimum limit and looks for opportunities to shut down 
CS3. The optimiser cannot shut down CS3 if it can not compensate a predicted Px3 decrease 
below the minimum limit with CS2 discharge pressure, and with Px3 predictions largely 
varying, there are few such opportunities. The total number of CS3 re-starts is 7 (figure 6.20). 
The third re-start period at about time point 730 is very short, as are some shutdown periods. 
The shutdown/ start-up behaviour is somewhat "nervous". 
 
Note, that CS3 shuts down from a much lower discharge pressure level than CS2, and the 
disturbing effect of the error introduced by using a single free response prediction may now be 
visible, while the shutdown transient is less dominating. 
 
CS2 takes over the task of minimising Px3 against the minimum limit when CS3 is shut down. 
As seen in figure 6.21, Px3 keeps quite close to the limit at the beginning of the period, but later 
on the familiar sub-optimality appears. The active constraint graphs in figures 6.22 to 6.24 show 
that the CS2 minimum speed limit is constraining and that it is a familiar reason (see section 
5.11.4) for the sub-optimality. The CS1 surge limit is also somewhat active, which in 
combination with the aforementioned really constitutes a “lock-up” situation giving very few 
opportunities to decrease CS2 discharge pressure. The sub-optimal increase of Px3 around time 
point 700 is not due to the CS2 minimum speed limit, but the increased activity of the Px3 
minimum limit suggests that a considerable Px3 decrease is predicted in the future, which 
requires CS2 to prepare for this in good time because of the slow dynamics. 
 
Case 3 
 
Inspired by the observation in case 2 above, that CS3 has more difficulties shutting down than 
CS2 has, we will test the admissible patterns in table 6.5, which project a future CS3 shut down 
and a possible subsequent start up in the three added table entries in boldface. The parameters 
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are otherwise the same as in case 2 above. The optimisation period is 6.3.2003 00:00 to 8.3.2003 
21:00.The results are shown in figures 6.25 to 6.27 below, together with results from the 
previous case over the same period. 
 
 

Admissible w3 values, CS3 running No. 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 2 
0 0 0 0 0 1 1 3 
0 0 0 0 1 1 1 4 
1 1 1 0 0 0 0 5 
1 0 0 0 0 0 1 6 
1 0 0 0 0 1 1 7 
1 1 1 1 1 1 1 8 
Admissible w3 values, CS3 shut down No. 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 2 
0 0 0 0 0 1 1 3 
0 0 0 0 1 1 1 4 
0 0 0 1 1 1 1 5 
0 0 1 1 1 1 1 6 
0 1 1 1 1 1 1 7 
1 1 1 1 1 1 1 8 

 
Table 6.5 Admissible w3 values for CS3. New table entries for CS3 running are no’s 5 
(shutdown after 12 intervals and leaving it shut down) and no’s 6 and 7 
(shutdown after 4 intervals and later re-start). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.25 CS2 discharge pressure from 6.3.2003 00:00 to 8.3.2003 21:00. Solid line: present 
case, dashed line: case 2 
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Figure 6.26 CS3 discharge pressure from  6.3.2003 00:00 to 8.3.2003 21:00 
Solid line: present case, dashed line: case 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.27 Px3 pressure from 6.3.2003 00:00 to 8.3.2003 21:00. Solid line: present case, 
dashed line: case 2 
 
 
The optimiser makes large changes in CS3 discharge pressure (the three “spikes” in figure 6.26) 
and is actually capable of shutting down CS3 earlier than in the previous case. In case 2, the 
optimiser could not make the third shut down at all (time points 230 to 250, figure 6.26). The 
largest difference is that the fourth shut down takes place at time point 260, whereas the (third) 
shutdown in case 2 is delayed until time point 350. As expected, because of the CS3 “spikes”, 
Px3 makes somewhat larger excursions. 
 
The average cost over the time period considered is 44836 kW and for the comparison case, 
47104 kW, the relative difference being 4.8%. Consequently, it is beneficial to let the optimiser 
“prepare” for CS3 shutdowns by making short-term gas deposits. The average cost over the 
period used in this case for the cost function obtained in case 1 with CS2 shutdown optimisation 
yields 44858 kW, which is 18 kW more. In practice, CS2 and CS3 shutdown optimisation 
produces the same energy consumption. However, the time period for comparison is too short 
for a final conclusion. 
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6.8.3 Optimisation with erroneous consumption forecasts 
 
Case 4 
 
Until now, all simulation studies have been conducted using perfectly known gas consumption 
forecasts, i.e. all off-take flows are known in advance. In this case we choose four off-takes, to 
which randomly generated disturbances are added. The disturbances are white noise with the 
maximum amplitudes shown in table 6.6. To make the disturbance more realistic, the duration of 
each sample from the random population with a normal distribution is given a length, which is 
also a random number from a normal distribution between 5 and 20 control intervals (50 to 200 
minutes). See figure 6.28 for an example of a disturbance sequence. 
 
 
Location of disturbed off-take Max. disturbance 

amplitude, Nm3/h 
154 km downstream CS1 (in Kotka branch) 6000 
52 km downstream CS2 6000 
45 km downstream CS 3 (in Helsinki branch) 12000 
178 km downstream CS3 (in Tampere branch) 2500 

 
Table 6.6 Disturbances added to selected consumption forecasts. See figure 4.1 for a pipeline 
system schematic. 
 
The sum of the maximum disturbance amplitudes is 26500 Nm3/h, which is equal to 3.47% of 
the total gas flow through CS1 in operating point 1 (763400 Nm3/h, see table A.1, Appendix A). 
A 3.47 % forecast error is not particularly high according the experience of Gasum Oy’s 
operating personnel. However, adding an unknown disturbance 2500 Nm3/h to the fourth 
selected off-take, which is the off-take located near check point Px3 is a demanding case, as Px3 
pressure upsets will be large. 
 
At each optimisation cycle, the values picked from the four random sequences are added to the 
original off-take flows stored in a file for “Simone” (see Appendix C) over the whole prediction 
horizon. This is a quite radical thing to do compared to the ideal forecast philosophy, where 
changes in off-take flows appear at the far future end of the prediction horizon and definitely not 
in the very beginning of it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.28 The random disturbance sequence of the fourth disturbed off-take (178 km 
downstream CS3, table 6.6) 
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The simulated case is comparable to case 1 in section 6.8.1 above, but here CS2 is enabled for 
shutdown/start-up optimisation later than in case 1, which is at 7.3.2003 00:00. Otherwise, the 
parameters are the same as described in case 1. The results are shown in figures 6.29 to 6.32 
below. For comparison, a corresponding disturbance-free simulation, with CS2 shutdown 
enabled at 7.3.2003 00:00 is run and CS2 discharge pressure from this run is presented in figure 
6.33 The simulation period is from 7.3.2003 00:00 to 13.3.2003 05:00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.29 CS1 discharge pressure from 7.3.2003 00:00 to 13.3.2003 05:00 
when off-take flows are disturbed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.30 CS2 discharge pressure from 7.3.2003 00:00 to 13.3.2003 05:00 
when off-take flows are disturbed. 
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Figure 6.31 CS3 discharge pressure from 7.3.2003 00:00 to 13.3.2003 05:00 
when off-take flows are disturbed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.32 Px3 pressure from 7.3.2003 00:00 to 13.3.2003 05:00 when off-take flows are 
disturbed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.33 CS2 discharge pressure from 7.3.2003 00:00 to 13.3.2003 05:00 
in the disturbance-free case. 
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CS1 discharge pressure makes rather deep but temporary excursions from the familiar maximum 
pressure policy. CS2 makes 8 extra restarts compared to the disturbance-free case. CS3 
discharge pressure makes high-frequency and high-amplitude movements, but is still not 
capable of keeping Px3 above the minimum limit at all times during the simulation. Obviously, 
a sudden positive off-take flow disturbance (at the Px3 off-take) in the very beginning of the 
prediction horizon (or in the current value as well) causes a rapid Px3 pressure decrease, which 
cannot be compensated for by any admissible increase in CS3 discharge pressure (maximum 
limit is 53bar). The constraint relaxation mechanism for the minimum limit of Px3 (see section 
5.10) has particular value, as can be seen from figure 6.32. 
 
The extra re-starts of CS2 suggest that CS2 should be kept running for most of the time without 
trying to shut it down. The re-starts are related to the fact that CS3 is forced to make a discharge 
pressure increase in order to keep Px3 above the minimum limit, which cannot be implemented 
with CS2 being shut down, as CS3 suction pressure is too low. Examining closely figures 6.30 
and 6.31, it can be seen in all eight extra re-start cases that CS3 discharge pressure increases 
simultaneously with CS2 re-starts. In order to obtain better results in a disturbed case, constraint 
relaxation mechanisms must be further developed: the Px3 limit relaxation must be further tuned 
and relaxation for CS envelope constraints must be implemented.  
 
 
6.8.4 Execution times 
 
The simulation test bench is implemented in two interconnected computer workstations as 
described in Appendix C. Table 6.7 below shows the execution time for one receding horizon 
optimisation cycle without shut-down/startup optimisation. The "Simulation task" consists of 
simulating one interval for obtaining the "current values" and P+1 intervals for obtaining the 
predictions (see Appendix C, section C.3). The time for data transfer between the two computers 
is included in the execution time of the simulation task. The optimisation task is defined as 
setting up the step response matrices, as well as the linear constraint and cost function matrices 
for the QP problem for one w-pattern per CS only and solving the QP problem. The parameter 
values are jb=8, Nb=4 and P=100. For larger values of jb and P the execution time increases. 
 
 

Task Execution time, seconds 
Simulation task 80 
Optimisation task 10 
Total execution time 90 

 
Table 6.7 Execution times for one optimisation cycle 
 
The execution time for shutdown/start-up optimisation can be calculated when the number of w-
patterns the optimiser must solve for is known. For example, in table 6.5, the optimiser 
evaluates 8 patterns for CS3, which then would give a total execution time of 160 seconds for 
one cycle. However, the "fmincon" solver spends considerable less time when it does not find a 
feasible solution, and on average, the optimisation task executes faster than calculated by this 
simple formula. If the total execution time exceeds 10 minutes, real-time operation would not be 
possible with a 10-minute optimisation interval. However, the execution time of the receding 
horizon optimiser can be decreased considerably keeping in mind that Matlab script files are not 
the correct tool with which to implement fast executing program code. 
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Chapter 7 
 
Conclusions 
 
 
 
 
 
 
 
In this work, it was shown that adequate results were obtained from real-time receding horizon 
optimisation, based on free response predictions obtained from a pipeline system simulator, 
using linear control variable models and approximate quadratic cost functions. Representative 
tests in a simulation test bench were performed and the results were compared with actual 
operational data. Receding horizon optimisation including discrete decision variables was 
implemented using a simple, sequential, enumerative procedure instead of using a Mixed 
Logical Dynamical model which would result in a large and possibly non-solvable MIQP 
problem. The simple procedure requires users to pre-define the shutdown and start-up patterns 
they wish to use. This is a drawback of the method and the price to be paid for simplicity. In 
principle, the MIQP solver itself is capable of finding optimal solutions, without the need to pre-
define shutdown and start-up patterns or to otherwise significantly limit the search space. 
 
The results of the receding horizon optimiser were compared with actual operational data from 
the Finnish natural gas pipeline system. The savings in compressor station energy consumption 
was shown to be in the order of 5 to 8% depending on the case. One might ask why the energy 
savings often reported in literature, 10 ... 25 % could not be achieved. One answer is that the 
operating personnel at Gasum Oy actually operates the pipeline system not far away from the 
typical, recommended "high -pressure strategy". Another reason is that the short-term (daily and 
weekly) gas consumption variation is rather moderate in the Finnish pipeline system. Thirdly, 
we might question whether the 25-% savings potential promises are realistic. Nevertheless, one 
outcome of this study is the simple idea of evaluating the savings potential of a pipeline system: 
let the optimiser both minimise and maximise the energy consumption and then calculate the 
difference between the minimum energy and the maximum energy. An energy maximisation run 
with the receding horizon optimiser showed a 17.5% relative difference with respect to the 
minimum energy case, which was the maximum savings potential in the Finnish pipeline system 
in March 2003. It may also be concluded, that the optimisation method searches the constrained 
solution space effectively. 
 
The basic nature of the optimal strategy found in this study coincides with the results on 
gunbarrel pipelines presented in the literature: keep pressures high in those pipeline segments 
with downstream compressor stations, otherwise keep pressures low. Using the simple gain 
formula derived in Chapter 4 combined with the fact that segment gain is always greater than 
one, we arrive at a brand new interpretation of this strategy: a control engineer's point of view. 
"Because any discharge pressure increase produces a larger suction pressure increase at a 
downstream compressor station, then the cost increase of the upstream station is smaller than the 
cost decrease of the downstream station. Hence, the pressure should be as high as possible". 
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Two quadratic cost function variants for approximating the energy consumption of the 
compressor stations (see Chapter 5) were developed. The first variant showed unattractive 
numerical properties. Although the second variant showed more approximation error than the 
first one, it had better numerical properties and was selected as the preferred cost function 
approximation for the study. 
 
The optimum solution is usually constrained, i.e. multiple constraints are active at the optimum. 
This was seen to be true for both steady-state and dynamic optimisation. This suggests that the 
shape of the cost function is not overly important, and the approximate quadratic cost functions 
can be used despite the approximation error. Taking it a step further, we might ask whether the 
optimisation of a gunbarrel system is so constrained that the cost function can be simplified to 
something like "maximise the pressure in segments, except the last one, where pressure should 
be minimised". Before such a simplification can be made, the effect of different values for the 
compressor station cost parameters on the optimum solutions must be investigated. 
 
It was shown that step response matrices, which are popular within Model Predictive Control 
practice, can successfully be used when constructing the QP sub-problems used in start-
up/shutdown optimisation. In particular, it was easy to set up the “equation constraint”, which is 
needed to model the shutdown period of a compressor station in the prediction horizon. 
However, it was shown, that step response matrices do not offer the same model change 
characteristics in the prediction horizon as state-space models do. For model change with step 
response matrices, an ad-hoc model change dynamics  is required. 
 
In the literature, a fear for gas inventory depletion was seen which generates complicated 
optimisation schemes to ensure that the pipeline system enters an adequate final state. The 
receding horizon optimiser developed in this work does not contain any kind of inventory 
depletion protection or final state considerations. Still, it successfully performs receding horizon 
optimisation without explicitly recognising, for example, calendar day changes. 
 
Further development of the optimisation method 
 
The simple gain formula in Chapter 4 is useful as such. However, it is necessary to have the 
steady-state pressure distribution of the pipeline system under consideration available. 
Alternatively, suitable average values of pipeline pressures over long enough time periods can 
be used as approximate steady-state pressure values. 
 
There seem to be no simple formulas available for pipeline system time constants.  As a further 
development scenario, it would be useful to develop formulas for both gains and time constants 
for pipeline segments of any shape and branching structure, as functions of pipeline geometry 
and possibly gas content and gas flow. 
 
State estimation, which was not evaluated in detail in this study, is an important issue. As the 
free response predictions are obtained from an external simulator, there is in most cases no 
access to the complete internal state of the simulator. The simple and intuitive "state 
reconstruction" method described in Chapter 5, where gas consumption or supply forecasts 
assumed to be the source of error as they are updated proportionally to the error in measured 
variables, may not work correctly in all cases. As was seen in Chapter 5, rigorous state 
estimation tends to require the possibility to adjust estimated state values over the prediction 
horizon in some controlled way. It may be desirable to develop some ad-hoc method, where 
constant-valued forecast updates would be replaced by functions of time along the prediction 
horizon. 
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The results of this work indicate that constraint relaxation techniques need to be further 
developed. In some cases, the optimiser was overly cautious or "nervous", as it has interrupted 
an otherwise good-looking optimal policy for a short time (for example, a compressor station 
was started up just to compensate for a limit violation of 0.1 bar 6 hours in the future). The 
nervous behaviour was observed especially in the simulation run with erroneous forecasts in 
Chapter 6.  
 
In principle, receding horizon optimisation could be implemented on any gas pipeline system of 
a suitable size and structure. A practical detail must, however, be considered. The compressor 
stations are geographically spread out over a large area. Are operating personnel prepared to 
give an optimiser running in some control centre, the authority to a) manipulate discharge 
pressures b) shut down and start up compressor units at remote locations? This cultural issue 
should be discussed before making the final decision to implement an optimiser.  
 
Extensions of the optimisation method 
 
For looped pipeline systems, the second quadratic cost function approximation (see Chapter 5) 
must be used, as gas flow through compressor stations is better accounted for in this one. A 
straightforward looped pipeline system implementation can be based on the fact that the looped 
system is divided into branched gunbarrel systems with interconnecting gas flow streams, the 
latter being new decision variables of the optimisation problem. 
 
In this study, compressor stations contain only one running compressor unit. The extension to 
multiple unit stations includes the following steps: 
-  Evaluate the parameters of the linearised envelopes of the new compressor units 
- Implement new decision variables: a) gas flow through individual units in a parallel unit 
configuration; b) discharge pressures of individual units in a serial unit configuration 
-  Implement the dynamic responses of the new intra-station decision variables noting, that they 
will not extend from inside the station out to the pipeline system. The dynamic responses of 
variables inside the stations are very fast, almost instantaneous. 
 
Scope limits are an important issue and may be even more important in looped and/or 
complicated pipeline systems. The "Scope limit" defines the limits for the pipeline system to be 
optimised. In this study, we found the Finnish-Russian border to be a scope limit, but generally 
speaking, there are others, for example responsibility and ownership limits, which more or less 
artificially divide a pipeline system into parts, across which very little information on gas 
consumption forecasts or pipeline system status is shared. 
 
The changing natural gas delivery principles, where short-term ("spot") deliveries and pipeline 
capacity utilisation become more important, do not constitute major challenges to the receding 
horizon optimisation method developed in this study. In case future short-term deliveries can be 
quantified, they can be added to the consumption forecast data storage, from which the 
optimiser picks the data and solves the optimisation problem as usual. The real-time 10-minute 
stepping can be modified so that the optimiser performs "look ahead optimisation", i.e. it steps 
forward a given number of steps with maximum speed. Also, the prediction and control horizon 
and the shutdown/start-up patterns can be adapted for off-line use. Typically, off-line 
applications would need larger control and prediction horizons. All in all, the real-time receding 
horizon optimiser can be extended towards a planning tool. 
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Appendix A. Dynamic responses of the Finnish natural gas pipeline system 
 
A.1 Introduction 
 
The step responses of selected pressure and flow variables of the Finnish natural gas pipeline 
system are obtained by using the “Simone” pipeline simulator in three different operating points, 
which are characterised by different gas flow throughput: Operating point no. 1 has a gas flow 
distribution corresponding to beginning of March 2003, operating point no. 2 has a gas flow 
corresponding to April 2003 and operating point no. 3 is extrapolated from operating points 1 
and 2 so, that operating point 2 represents an intermediate value. See table A.1 for details. In  all 
operating points, discharge pressures for CS1, CS2 and CS3, respectively, are 53, 51 and 48.6 
bar. 
 
 
Operating point 1 2 3 
Gas flow CS1, Nm3/h 763400 655900 555800 
Gas flow CS2, Nm3/h 560900 469600 378600 
Gas flow CS3, Nm3/h 506300 422200 347500 
CS1 suction pressure 40 40 40 
CS2 suction pressure 40.17 43.48 46.18 
CS3 suction pressure 38.65 42.45 45.40 
PX1 pressure 41.15 44.27 46.55 
PX2 pressure 43.11 45.66 47.50 
PX3 pressure 29.52 40.26 42.55 

 
Table A.1 Steady state values at operating points no. 1,2 and 3 when all CSs are running 
 
If  CS2 is shut down (by-passed), a long pipeline segment connects CS1 and CS3. Table A.2 
shows details when CS2 is shut down in the three operating points defined above. The gas flows 
and CS discharge pressures are the same as the values in table A.1. As can be seen in table A.2, 
CS3 suction pressure in operating point no.1 decreases down to 22.34 bar. With this suction 
pressure, a CS3 discharge pressure of 48.6 bar can not be maintained unless the CS envelopes 
within "Simone" are disabled (the so called "free mode", see Appendix C). 
 
 
Operating point 1 2 3 
CS1 suction pressure 40 40 40 
CS2 suction pressure 40.29 43.48 46.18 
CS3 suction pressure 22.34 32.90 39.88 
PX1 pressure 41.26 44.10 46.55 
PX2 pressure 29.58 37.05 42.25 
PX3 pressure 29.53 40.26 42.55 

 
Table A.2 Steady state values at operating points  when CS2 is shut down. 
 
 
If CS3 is shut down (by-passed) , a long pipeline segment now connects CS2 and the checkpoint 
PX3. Table A.3 shows details when CS3 is shut down in the three operating points defined 
above. The gas flows and CS discharge pressures are the same as the values in table A.1. 
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PX3 pressure decreases  far below the 29 bar minimum limit, which is not acceptable. Moving 
over to operating point no. 2 increases the PX3 pressure with nearly 14 bar, a typical feature of a 
long pipeline segment with a small average diameter. 
 
 
Operating point 1 2 3 
CS1 suction pressure 40 40 40 
CS2 suction pressure 41.27 43.48 46.18 
CS3 suction pressure 39.65 42.46 45.43 
PX1 pressure 42.13 44.10 46.55 
PX2 pressure 44.52 45.67 47.50 
PX3 pressure 20.49 34.07 38.87 

 
Table A.3 Steady state values of operating points when CS3 is shut down. 
 
 
In tables A.4 to A.6  below, gains of the responses are calculated using the gain formula (4.4), 
when applicable (a response exists and it is not zero-gain). These gains may be verified by 
comparing with the graphs in this appendix, unless the responses are so slow, that they do not 
reach steady state within the time frame of the graph. 
 
 
Operating point 1 2 3 
 CS1 CS2 CS3 CS1 CS2 CS3 CS1 CS2 CS3 
CS1 suction pressure          
CS2 suction pressure 1.32   1.22   1.15   
CS3 suction pressure  1.32   1.20   1.12  
PX1 pressure 1.29   1.20   1.14   
PX2 pressure  1.18   1.17   1.07  
PX3 pressure   1.65   1.21   1.14 

 
Table A.4 Gains calculated with gain formula (4.4) using data from table A.1 Column headers 
CS1, CS2 and CS3 mean, that the discharge pressure of those respective CSs are the input to the 
models, which produce responses for the variables on the table rows with the gains as specified. 
 
 
Operating point 1 2 3 
 CS1 CS2 CS3 CS1 CS2 CS3 CS1 CS2 CS3 
CS1 suction pressure          
CS2 suction pressure 1.32   1.22   1.15   
CS3 suction pressure 2.37 -  1.61 -  1.33 -  
PX1 pressure 1.28   1.20   1.14   
PX2 pressure 1.79 -  1.43 -  1.25 -  
PX3 pressure   1.65   1.21   1.14 

 
Table A.5 Gains calculated with gain formula (4.4) using data from table A.2.  
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Operating point 1 2 3 
 CS1 CS2 CS3 CS1 CS2 CS3 CS1 CS2 CS3 
CS1 suction pressure          
CS2 suction pressure 1.28   1.22   1.15   
CS3 suction pressure  1.29   1.20   1.12  
PX1 pressure 1.26   1.20   1.14   
PX2 pressure  1.15   1.12   1.07  
PX3 pressure  2.49 -  1.50 -  1.31 - 

 
Table A.6 Gains calculated with gain formula (4.4) using data from table A.3 
 
 
As CS2 is shut down (table A.5), CS2 discharge pressure is not an input to any model. CS2 is 
not isolating, and CS1 discharge pressure acts on CS3 suction pressure and checkpoint PX2. 
Accordingly, when CS3 is shut down (table A.6), CS3 "disappears" as an input and CS2 
discharge pressure acts on checkpoint PX3. 
 
Step tests for control response are performed by making a +1 bar discharge pressure change at 
each CS in turn. The disturbance responses are obtained by making a +10000 Nm3/h step 
change in gas off-take flow near checkpoint PX3. All step tests are initiated at steady state 
operating point conditions. 
 
To visualise the influence of operating point on pipeline dynamics, each graph below presents 
responses at all three operating points so, that a solid line represents operating point no.1, a 
dashed line operating point no.2 and a dotted (or short-dashed) line operating point no. 3. 
 
The graphs are presented as CS1 (or PX1) pressure or flow to the left, CS2 (or PX2) in the 
middle and CS3 (PX3) to the right. This same order is preserved even, if there is no response 
due to the CS’s isolating effect, but an empty space is left for the zero response. The leftmost 
figure is referred to as figure “a”, the middlemost figure as “b” and the rightmost as “c”, for 
example, figure A.4 b. 
 
CS1 suction pressure is not shown because there is a virtual pressure controller at CS1 suction 
point keeping the suction pressure constantly at 40 bar, as explained in section 4.2. 
 
The time axes have been selected based on the settling times of the responses. The shortest 
settling times are for CS flows (especially the flow of the station, where a discharge pressure 
step change has been made), for which a time axis length of 6 hours is usually used. Typically, 
an 11 hour time axis is used, but for very slow responses, 16 hours is used. All time axes in the 
graphs below are presented using a sample time interval (or “scale tick”) of 10 minutes. 
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A.2 Pipeline system responses when all compressor stations are in operation 
 
 
 
 
 
 
CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
 
Figure A.1 Responses of suction pressures to CS1 discharge pressure. CS1 suction pressure is 
fixed, CS2 responses are shown, and CS3 responses are all zero.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.2 Responses of pipeline checkpoint pressures to CS1 discharge pressure. PX2 and 
PX3 are all zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.3  Responses of station flows to CS1 discharge pressure. CS2 and CS3 flow rates are 
all zero. The flow rate peak is lower in  operating point 1 but higher and almost equal in  
operating points 2 and 3. 
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CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
Figure A.4 Responses of CS2 and CS3 suction pressures to CS2 discharge pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.5 Responses of PX1 and PX2 checkpoint pressures to CS2 discharge pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.6 Responses of CS1 and CS2 flow rates to CS2 discharge pressure. 
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CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
Figure A.7  Responses of CS2 and CS3 suction pressures to CS3 discharge pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.8  Responses of PX1, PX2 and PX3 checkpoint pressures to  CS3 discharge pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.9 Responses of CS1, CS2 and CS3 flow rates to CS3 discharge pressure.  
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For CS3 the flow rate peak is lower in the operating point no. 1 but higher and almost equal in  
operating points no. 2 and 3. CS3 is flow graphed on an 11 hour time axis because flow 
differences are seen also after an initial period.   
 
 
 
 
 
 
CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
 
Figure A.10  Responses of  CS2 and CS3 suction pressures to a 10000 Nm3/h step change in 
gas flow rate at off-take PX3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.11 Responses of checkpoint pressure PX1, PX2 and PX3 to a 10000 Nm3/h step 
change in gas flow rate at off-take PX3. 
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A.3 Pipeline system responses when compressor station CS2 is shut down 
 
 
 
 
 
 
 
CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
Figure A.12 Responses of CS2 and CS3  suction pressures  to CS1 discharge pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.13 Responses of  PX1 and PX2  checkpoint pressures to CS1 discharge pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.14 Responses of CS1 and CS2 flow rates to CS1 discharge pressure. Note, that CS1 
flow rate curves coincide, practically speaking.  
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CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
Figure A.15 Responses of CS2 and CS3 suction pressures to CS3 discharge pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.16 Responses of PX1, PX2 and PX3 checkpoint pressures to CS3 discharge pressure. 
PX3 response to CS3 is the same as in the case with all CSs in operation (figure A.8 c), since 
CS3 isolates pipeline segments.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.17 Responses of CS1, CS2 and CS3 flow rates to CS3 discharge pressure 
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CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
           
Figure A.18  Responses of CS2 and CS3 suction pressures to PX3 off-take flow rate  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.19  Responses of  PX1, PX2 and PX3 checkpoint pressures  to PX3 off-take flow rate 
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A.4 Pipeline system responses when compressor station CS3 is shut down 
 
 
The situation where CS3 is shut down in operating point no.1, which shows the largest gas 
consumptions, is near gas exhaust. As can be seen in table A.3 above, the pressure at PX3 
decreases to about 20 bar, which is far below the minimum limit (29 bar) and thus this is not an 
acceptable operating point. Here we use it only to demonstrate the dynamical behaviour. In 
operating point 1 with CS3 shut down, it is not possible to make a 10 000 Nm3/h increase in gas 
off-take flow at PX3, and therefore, in figures A.26 and A.27 below, only responses for 
operating points no. 2 and 3 are shown. 
 
 
 
 
 
 
 
 
 
 
 
 
CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
 
Figure A.20 Responses of CS2 suction pressure to CS1 discharge pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.21 Responses of PX1 checkpoint pressure to CS1 discharge pressure. Note, that PX1 
responses equals those when all CSs are running (figure A.2 a) 
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Figure A.22 Responses of CS1 gas flow rate to CS1 discharge pressure 
 
 
 
 
 
 
CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
Figure A.23 Responses of CS2 and CS3 suction pressures to CS2 discharge pressure. 
Note the slow dynamics of CS3 suction pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.24 Responses of PX1, PX2 and PX3 checkpoint pressures to CS2 discharge pressure. 
Note the very slow dynamics of PX3 especially in operating point no. 1. 
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Figure A.25 Responses of CS1, CS2 and CS3 flow rates  to CS2 discharge pressure. 
 
 
 
 
 
 
 
 
CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
 
Figure A.26  Responses of CS2 and CS3 suction pressures to off-take flow rate change at PX3. 
Responses in operating point 1 not shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.27  Responses of PX1, PX2 and PX3 pressures to off-take flow rate change at PX3. 
Responses in operating point 1 not shown. 
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A.5 Effect of discharge pressure level on pipeline dynamics. 
 
With the gas flow rates used in operating point no. 2, the CS discharge pressures are 
significantly decreased in order to obtain a fourth operating point, in which we once again will 
run a series of step tests. The steady state values of this operating point are shown in the table 
below together with steady state values of operating point no. 2 for comparison. All CSs are 
running. 
 

 New operating point Oper. point 2 (Table A.1) 
CS1 discharge pressure 50 53 
CS2 discharge pressure 47 51 
CS3 discharge pressure 43 48.6 
CS1 suction pressure 40 40 
CS2 suction pressure 39.70 43.48 
CS3 suction pressure 37.48 42.45 
PX1 pressure 40.40 44.27 
PX2 pressure 41.14 45.66 
PX3 pressure 34.74 40.26 

 
 
Pressure level does not have a very large impact on pipeline dynamics. Below, only some 
selected step responses to CS discharge pressures are shown. In all graphs, a solid line 
represents the original operating point no. 2 and the dashed line the operating point with reduced 
pressure level. A slight gain increase can be seen in figures A.28 and A.29 c, but the otherwise 
the dynamics has not changed significantly. 
 
 
 
 
 
 
 
 
 
 
CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
Figure A.28 Response of CS2 suction pressure to CS1 discharge pressure 
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CS1 suction pressure is 
fixed at 40 bar 
 
 
 
 
 
Figure A.29 Response of CS2 and CS3 suction pressures to CS2 discharge pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.30 Responses of CS1 and CS2 flow rates to CS2 discharge pressure. CS2 flow rates 
are practically speaking identical. Some differences are seen in CS1 flows, obviously because of 
the change in pipeline segment dynamics due to the pressure level change. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.31 Responses of PX1, PX2 and PX3 checkpoint pressures to CS3 discharge pressure 
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Appendix B. Linear transfer functions for the Finnish natural gas pipeline system 
 
 
Transfer function models obtained from identification on simulated data together with graphs 
visualising the modelling error are presented below for selected cases. 
 
Relative error is in all cases calculated as the difference between linear, identified model and 
simulated outputs divided by maximum absolute value of identified output. If the relative error 
is large, usually greater than 5%, then the step response of the identified linear model is graphed 
together with the step response from “Simone”, otherwise the relative error is graphed, because 
for small errors, the two step response curves are almost overlapping. 
 
The graphs and transfer functions in all figures below are shown in the same order: for operating 
point 1 at the left (figure “a”) , for operating point no. 2 in the middle (figure “b”) and for 
operating point no. 3 to the right (figure “c”).  For each figure below, a corresponding figure in 
Appendix A can be found showing the “Simone” step response. 
 
The identification strategy is to find decent but not too high order linear models, in other words, 
good model fit is not bought with the price of using more model parameters. It seems that for 
operating point no.1, low order models give a larger relative error suggesting higher order 
models to be used. For operating points no. 2 and 3, low order models give smaller errors, 
indicating that lower gas throughput in the pipeline system decreases the complexity of the 
dynamics. For compressor station gas flows, a higher order model would obviously provide 
better results, but at this stage, we will use low order models. See figure B.2 below. 
 
For all transfer functions shown below, gains are in appropriate units (dimensionless, i.e. 
bar/bar) for pressures and Nm3/(h, bar) for gas flow rates. Time constants are expressed in 
minutes. 
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B.1 Linear models for operating points no.1, 2 and 3 when all compressor stations are in 
operation 
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Figure B.1 CS2 suction pressure response to CS1 discharge pressure. Compare figure A.1 b , 
Appendix A.  
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Figure B.2 CS1 gas flow response to CS1 discharge pressure. Maximum relative errors are for 
figures a, b and c, respectively, 24 % , 10.7 % and 10.1 %. Compare figure A.3 a , Appendix A.  
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Figure B.3 CS2 suction pressure response to CS2 discharge pressure. Maximum relative errors 
are for figures a, b and c, respectively, 4.2% , 5.8 % and 4.4 %. Compare figure A.4 b , 
Appendix A.  
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Figure B.4 Px3 pressure response to CS3 discharge pressure. Maximum relative error for figure 
a is 4.5 %.. The high frequency fluctuations of the relative error in figures b and c are due to the 
2 decimal places presentation accuracy of Px3 in the “Simone” output data files. Compare figure 
A.8 c , Appendix A.  
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Figure B.5 CS2 suction pressure response to CS3 discharge pressure. Maximum relative errors 
are for figures a, b and c, respectively, 6.5% , 5.89% and 11.9 %. Compare figure A.7 b, 
Appendix A.  
 
 
B.2 Linear models for operating points no.1, 2 and 3 when CS2 is shut down 
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Figure B.6 CS2 suction pressure response to CS1 discharge pressure. Most obviously, the 
relative error in figure “a” could be made smaller using a higher order model. Compare figure 
A.14 b , Appendix A.  
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Figure B.7 CS3 suction pressure response to CS1 discharge pressure. Note that CS2 being 
bypassed, we have a very long pipeline segment consequently with slow dynamics. Compare 
figure A.14 c , Appendix A.  
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Figure B.8 CS1 gas flow response to CS1 discharge pressure. Maximum relative errors are for 
figures a, b and c, respectively, 21.3 % , 22.9 % and 21.8 %. Compare figure A.14 a , Appendix 
A.  
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B.3 Linear models for operating points no.1, 2 and 3 when CS3 is shut down 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
( )( )

195s 11.26
65s 1 430s 1

+
+ +

  
( ) ( )

190s 11.18
29s 1 430s 1

+
+ +

 

 

 
( )( )

122s 11.12
46s 1 260s 1

+
+ +

 

 
 
Figure B.9  CS3 suction pressure response to CS2 discharge pressure. Maximum relative error 
in figure  c is 4.5 % Compare figure A.23 c , Appendix A.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
( )( )

10.87 1
120s 1 350s 1

 
− + 

+ +  
 

 

 
( )( )

10.84 1
80s 1 320s 1

 
− + 

+ +  
 

 

 
( )( )

10.83 1
35s 1 250s 1

 
− + 

+ +  
 

 
 
 
Figure B.10 CS2 suction pressure response to CS2 discharge pressure. Maximum relative errors 
are in figure a: 9.2 % and figure b: 6.2 % Compare figure A.23 b , Appendix A.  
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Figure B.11  Px3 response to CS2 discharge pressure. Compare figure A.24 c , Appendix A.  
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Figure B.12  PX2 response to CS2 discharge pressure. Maximum relative errors in figure b 4.6 
% and in figure c 4.8 %. Compare figure A.24 b , Appendix A.  
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Appendix C. Software description 
 
 
C.1 The program structure of "Simone" 
 
The “Simone” (“simulation of memory optimised networks)”natural gas pipeline system 
simulator, version 3.2, 1991 is used (Jeni’cek et. al., 1991). This is a software program, which 
runs under an MS-DOS window under the Windows 95 operating system. This version was 
chosen because of practical reasons and the age of the program is not an issue, since the 
dynamical model of the Finnish natural gas pipeline system has been continuously been kept up 
to date on this version, although newer “Simone” versions are in use in parallel. “Simone”, 
version 3.2,  is not, as such, capable of fulfilling the needs of a real time receding horizon 
optimiser, but it has an excellent program structure, which enables the necessary modifications. 
 
The kernel of “Simone” consists of a few executable files, which are controlled by a number of 
MS-DOS Batch command files. “Simone” uses a number of central data input files as well. The 
most important ones are (see figure C.1): 
• A “Boundary condition file, BCA” containing gas flow rate profiles (flow rate data vectors) 

for all off-takes. 
• A “Run command file, CRD” used to control the simulation. Specific commands are: 

• Set a value for a compressor station’s discharge pressure 
• Switch a compressor station’s status to “run” or “bypass” (means shut down) 
• Set a compressor station to “free mode” (do not obey envelope limits) or to “normal 

mode” (obey envelope limits) 
• Modify the gas flow rate of a given off-take from the values in the boundary 

condition file. 
• Definition file for compressor station envelope curves and power consumption 

characteristics, CSED 
• “Tabular output definition file, TDF” for controlling the ASCII output format of simulation 

data results 
• “Initial conditions, ICU” file. Contains initial conditions of all state variables of the 

simulation model 
 
The most important output files from “Simone” are: 
• The ASCII output data file , “OUT”, defined by the TDF-file 
• The “Final conditions, FCU” file. Contains values of all state variables at the end of the 

simulation period. 
 
For the identification experiments described in chapter 4, a BCA file with constant steady state 
values of the off-take flow rates was used. Step changes of compressor station discharge 
pressures and the off-take flow near the check point Px3 were implemented in the CRD file. 
 
 
C.2 Extensions to "Simone" 
 
“Simone” has a very limited capability on simulation time. With the 10 minute sampling 
interval chosen, only about 22 hours can be simulated. Also, the CRD file may host only a 
limited number of commands. Therefore, the “Simone” was extended with a number of auxiliary 
programs as follows, see figure C.1 
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                 External controller/optimiser application 
 
 
 
Figure C.1 The “Simone” simulator with it’s associate files and auxiliary programs 
 
The auxiliary program AP1 re-samples (from 60 to 10 minutes) the off-take flow rate data from 
the large BCA2 file containing gas flow values for all 194 off-takes for the whole month of  
March 2003 and writes the data to a smaller BCA file which “Simone” is capable of handling. 
Analogously, AP2 takes re-sampled and filtered discharge pressure values and compressor 
station start up / shut down commands for the three compressor stations as operated during the 
spring of 2003 from CRD2 and writes the data to the CRD file. A third program, which takes 
care of overall sequencing and administration, AP0, keeps track of the actual simulation time 
(which within “Simone” is the “physical time”, starting 1.3.2003 00:00 and steps forward with 
10 minute increments). The sequencing program starts simulation with the FCU-file from the 
previous simulation cycle copied to the ICU file of the present cycle and updates the time tick to 
a data file (not shown in the figure) which AP1 and AP2 can read in order to pick the correctly 
timed values from the BCA2 and CRD2 files. The ASCII data output file OUT is updated with 
simulated results after each 10-minute simulation and the program AP3 is collecting this data 
into OUT2 which spans the whole simulated period. 
 
The auxiliary programs AP0 to AP3 are all implemented by the author in the Pascal 
programming language. Modifications of the DOS BATCH files used by “Simone” are done by 
the author as well. 
 
 
C.3 Real time operation and predictions with "Simone" 
 
The auxiliary programs presented above are extended to perform prediction calculations, which 
simply means, that the simulation period is extended from 10 minutes (or any basic interval) to 
any longer interval. In this case, "Simone" picks gas off-take flow values, as usual, from the 
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BCA file, which is updated from BCA2, but values for each off-take over the prediction horizon 
(P) are needed (see figure C.2 for an illustration). The compressor station discharge pressures 
and shut down/start up commands (decision variables) are received from an external control or 
optimisation application. In the case described in this study, these values are assumed to be 
constant over the whole prediction horizon. The main co-ordination program AP0 conducts two 
simulation steps at each time it is acknowledged by the external application, that decision 
variables have been updated: 
 
1. Simulate one interval (10 minutes) into the future to obtain the new "measured" (or "current") 
values of pressure and gas flow variables 
2. Simulate P+1 intervals into the future to obtain the free response predictions of pressure and 
gas flow variables. 
 
The simulation results are collected into the file OUT2 and the external application is 
acknowledged, that the simulation is completed. 
 
 
 
 Off-take flows (consumption forecast, file BCA2) 
 
 
 
 
 
 
 
 Off-take flows 
 over P (file BCA)  P+1   time 
 
 
Figure C.2 Off-take flows over the prediction horizon are obtained by picking values from a 
"long term storage" of off-take flows 
 
 
The auxiliary programs also allow off-take flow values in the BCA2 file to be updated from an 
external application (arrow towards BCA2 in figure C.1). This feature is used when testing the 
effect of erroneous forecasts on the optimisation (See Chapter 6, section 6.8.3) 
 
With the auxiliary programs described above, "Simone" is capable of operating in a real-time 
mode, if the simulation cycles above are timed to start when fresh, measured data is available 
and the controller or optimiser has fresh decision variables available. If state estimation schemes 
(see Chapter 5) are needed, then at least the method of updating off-take flows (over the 
prediction horizon) based on differences between measured and simulated pressures can be 
implemented in a straightforward way. 
 
Typically, in real-time operation, BCA2 holds gas consumption forecasts for each off-take and 
is possibly updated from a separate forecasting application. 
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C.4 The real-time receding horizon optimiser 
 
The optimiser is built upon Matlab 6.5 and Matlab's Optimisation Toolbox. While "Simone" 
runs under MS-DOS, and it's memory usage did not allow network software to operate on the 
computer, a separate computer running the Windows NT operating system for the optimiser was 
used and a serial communication link was set up between the two computers. Matlab 6.5. 
contains good support and existing functions for serial communication. The optimiser consists 
of a number of "M-files" (script files written in Matlab's script language). As explained in 
Chapter 5, the kernel of the optimiser is the solver "fmincon" of the Optimisation Toolbox. For 
the optimiser, a graphical user interface was built, also for which good support and a multitude 
of functions exist within Matlab 6.5. 
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Appendix D. Details of the dynamic simulation model of the Finnish natural gas pipeline 
system 
 
 
The composition of the natural gas entering the Finnish pipeline system is as shown in table 2.1, 
Chaper 2. The average molecular weight of the gas is 16.4 kmol/kg. 
In all simulations performed in this work, isothermal conditions are assumed, the constant 
temperature being 5 °C, which is one degree less than the yearly average temperature of the 
pipeline system. As the compressibility expression, the following simplified expression is used 
(Riikonen, 1993) 
 

Pz 1.0016
476

= − , 

 
where P is the absolute pressure in bar. The expression is valid in the range 0...100 bar. 
 
The cost parameters for compressor stations CS1, CS2 and CS3 are, respectively: 
 
a1=0.2969,   b1=10270 kW 
a2=0.30484, b2 =9540 kW 
a3=0.32618, b3=7230 kW 
 
These parameters have been obtained by fitting the cost function expression (5.35) in Chapter 5 
to the compressor station gas consumption of each station calculated by "Simone". The data 
used for the parameter fit is the true operating data from 1.3.2003 to 31.3.2003. "Simone" uses 
compressor models of type (3.16) in Chapter 3. The values of the various parameters of those 
models are automatically calculated by "Simone" when the user enters value pairs of adiabatic 
head and volume flow rate. The compressor models are kept up to date while the operating 
personnel of Gasum Oy enters new data into "Simone" whenever changes in compressor 
characteristics (ageing effects, compressor and/or gas turbine maintenance and so on) are 
changed. 
 
The value of γ is 0.22. 
 
The parameters of the quadratic cost function approximation, the first variant with quadratic 
head approximation and independent gas flow, are: 
 
a=  -0.00005926 
b=   0.0001064 
c=  -0.00002731 
d=   0.011525 
e=  -0.013052 
f=   0.028312 
 
The parameters of the quadratic cost function approximation, the second variant with linear head 
approximation and linear gas flow, are: 
 
aL=0.0049 
bL=-0.0072 
cL=0.0862 
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This approximation is accurate for pressure ratios (Pd/Ps) in the higher end, 1.4 … 1.7. 
 
In figures D.1 to D.3 below, the compressor envelopes for the three units used in the simulations 
are shown. The non-linear, original limit curves as they are configured into “Simone” as points 
in the (volume flow, Head) co-ordinate system, are shown as dashed lines. They are actually 
piecewise linear, because the number of points used is small. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure D.1 CS1 envelope approximation. True envelope curves from “Simone” (dashed lines) 
and linear approximations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure D.2 CS2 envelope approximation. True envelope curves from “Simone” (dashed lines) 
and linear approximations.  
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Figure D.3 CS3 envelope approximation. True envelope curves from “Simone” (dashed lines) 
and linear approximations.  
 
 
 
 
The linear compressor station envelope constraints, ij ij VOL ija H b q c 0+ + ≤ , i=1,2,…,Nc, j=1,…4, 
see section 5.7, Chapter 5, have the following parameter values: 
 
Constraint aij bij cij 
CS1 minimum speed 1 2.5137 -19.3257 
CS1 choke line 1 -6.8298 19.0749 
CS1 surge line 1 -19.3353 25.7433 
CS1 maximum speed 1 5.2260 -86.4505 
CS2 minimum speed 1 3.8001 -25.6039 
CS2 choke line 1 -13.6946 35.4812 
CS2 surge line 1 -47.9946 44.0984 
CS2 maximum speed 1 11.8167 -140.4125 
CS3 minimum speed 1 5.5417 -25.549 
CS3 choke line 1 -81.5262 359.763 
CS3 surge line 1 -25.2874 5.9534 
CS3 maximum speed 1 7.6084 -73.5893 
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For the steady state optimisation in section 5.9, Chapter 5, the quadratic constraint 
approximations q 2 q q

VOL VOLH a q b q c 0− − − ≤  are used: 
 
 
Constraint aq bq cq 
CS1 minimum speed 1.161 -4.321 -9.8834 
CS1 choke line -0.4807 -0.8302 -1.5968 
CS1 surge line -2.2355 -4.8863 4.0823 
CS1 maximum speed 1.205 -10.2868 -39.4746 
CS2 minimum speed 2.4383 -7.6044 -13.915 
CS2 choke line -1.2907 -0.6014 4.3555 
CS2 surge line -10.6086 -3.4298 1.6358 
CS2 maximum speed 3.4072 -21.4871 -66.356 
CS3 minimum speed 0.9316 0.9324 -21.9072 
CS3 choke line -128.2 1097.9 -2348.9 
CS3 surge line -16.9539 14.2716 -23.5829 
CS3 maximum speed 1.9963 -5.8246 53.6028 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


