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1. Introduction 
Properties of heat-treated wood have been studied since 1930. First investigations were 

conducted in USA and they concentrated on the swelling and shrinkage of thermally 

treated wood /1/. Since then, much work has been done to clarify changes occurring in 

thermally modified wood. Over the past two decades, thermally modified wood has 

drawn a great deal of attention as a durable and environmentally-benign material and 

new processes to enhance specific material properties of wood were developed. In the 

mid 1990 Viitaniemi et al. /2-4/ developed a heat treatment process which uses 

superheated steam at atmospheric pressure. Several studies on alternative heat-treatment 

processes were conducted in France /5-7/, the Netherlands /8, 9/, Germany /10/, and 

Japan /11/. In France, wood was heated in an inert atmosphere and products were 

referred to as “Torrefaction” and “Retifaction”. The “Plato Wood” process in the 

Netherlands involved several heating steps, while the German one took place in 

vegetable oil.  

 

Thermally treated wood has many technically useful properties. One of the well-known 

modifications is lower equilibrium moisture content /1, 2, 12, 13/. Treated wood 

experiences reduced swelling and shrinkage than native wood. In addition, thermal 

modification of wood at elevated temperatures improves durability against fungi /2, 7, 

14/. Furthermore, the darker colour of the heat-treated wood is often desirable and such 

wood has been proposed as a substitute for some tropical woods. However, the 

diminished strength of thermally modified wood is deleterious and limits its use under 

load. The extents of all these modifications depend on the heat treatment conditions: 

type of the process, duration and temperature of the heat treatment as well as the nature 

of the wood itself. For example, modifications are normally considerable when the 

wood is treated at temperatures above 200 °C. Applications of the thermally treated 

wood are many. It is utilised in interior and exterior claddings, garden furniture, 

flooring, and sauna furnishing /15/. 

 

Recent developments in spectroscopic equipment and techniques have increased their 

application in many fields of science and technology. The most important vibration 

spectroscopic methods in chemical analysis of organic materials are mid infrared (MIR) 

and Raman spectroscopies. Both of these are rapid and nondestructive means to obtain 
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qualitative and quantitative structural information. Utilisation of mathematical data 

processing has improved interpretation and quantification of the spectral data. FT-IR 

spectroscopy is frequently used in studying lignocellulosic materials, whereas Raman 

spectroscopy is a fairly new technique in this field. 

 

1.1 Objectives of the research  

Many of the properties of thermally modified wood are well-known. However, the 

mechanisms driving and determining the changes and relationships between physical, 

morphological, and chemical properties are still not fully understood. For instance, the 

behaviour of the heat-treated wood under outdoor conditions needs more clarification. 

Also, a basic knowledge of the chemical and physical modifications is vital for 

optimisation of processes to produce wood tailored for specific purposes. The main aim 

of this thesis was to utilise FT-IR and UV resonance Raman (UVRR) spectroscopic 

techniques to characterise Scots pine wood samples treated by an industrial scale 

process developed at VTT. In addition, the applicability of UVRR spectroscopy for 

analysing wood extractives was studied.  

 

2. Structure of Scots pine wood 

2.1 Macroscopic structure 
Wood is an anisotropic material which means that it has significantly different 

properties in longitudinal, tangential, and radial directions (Fig. 1) /16/. This is due to 

the specific orientation and distribution of cells in wood tissues /17/. The radial surface 

continues from the cambium across the growth rings to the pith parallel to the stem axis, 

while the surface tangent to the growth rings and parallel to the stem axis is called the 

tangential surface. Cross-section or transverse section of wood is the plane 

perpendicular to the stem axis. 

 

The major cell types of the Scots pine xylems are tracheids and parenchyma cells 

accounting for approximately 90-94 /18/ and 5-11 % /16/ of the wood volume, 

respectively. The principal functions of the wood cells are conduction of water, 

mechanical support, and storage of food reserves. Dead Scots pine tracheids have both 
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conductive and mechanical properties. They conduct water between tracheids though 

bordered pits, whereas the ultrastructure and dimensions of the tracheid cell wall has 

impact on the strength. The living parenchyma cells act as supply of reserve food /19/.  
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Figure 1. Sections of a Scots pine stem /20/. 

 

Temperate and boreal zone trees have concentric annual growth rings that result from 

the dissimilarities in the structure, size, and proportions of the various types of cells 

formed during the different periods of the growing season. Earlywood cells have a large 

radial diameter, wide lumen and thin walls while those of latewood have thick walls, 

smaller radial diameter and small lumen. In softwoods, the earlywood cells act as 

conducting cells while the latewood cells give wood its mechanical strength /16, 18/. 

 

The inner part of the Scots pine tree is often dark-coloured and it is referred as 

heartwood. The change in colour is derived from resin that is produced by dying 

parenchyma cells in the transition zone between heartwood and sapwood. 

Simultaneously, bordered pits of the tracheids become aspirated. As a consequence of 

this heartwood does not participate in conduction of water /21/.   

 

Lateral displacement, or leaning, of the tree as a result of external forces, such as wind, 

snow fall, or a landslide, leads to formation of reaction wood. It is formed as a 

biological response of wood to preserve its original position of the stem and branches. 

In softwoods the reaction wood is formed on the lower side of the leaning stem or 

branches and is called compression wood. Compression wood tracheids are shorter and 
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thicker than those of normal wood. They also have a round-shaped cross-section instead 

of angular outline of normal tracheids /16/. 

 

2.2 Chemical composition 

Wood is a composite of cellulose, hemicelluloses, lignin, and extractives. Furthermore it 

contains small amounts of inorganic elements, pectin /22/, proteins, starch, low-

molecular weight phenols and oligosaccharides /23/.  

 

The framework component of the wood cell wall is cellulose. The typical cellulose 

content for Scots pine wood is ∼40 % of the dry matter /24/. Cellulose is a linear 

polymer of 1,4-β-D glucopyranosyl units and exhibits a high degree of polymerization 

(>10,000). Cellulose molecules tend to form intramolecular and intermolecular 

hydrogen bonds, whilst clusters of the cellulose molecules are linked together by strong 

hydrogen bonds. These well-organized units are termed as microfibrils, in which highly 

ordered (crystalline) and less ordered (amorphous) regions vary in their relative 

proportions /25/. 

 

Hemicelluloses are surrounding substances between cellulose microfibrils. They are 

heteropolysaccharides that have a relatively low degree of polymerization (150-200) 

/25/. Hemicellulose content for Scots pine wood is ∼ 25 % of the dry wood /24/. The 

major hemicellulose in softwoods is O-acetyl-galactoglucomannan accounting for ∼ 16 

% of the dry wood /24/. The molecule chain is built up of β-D-mannopyranose and β-D-

glucopyranose units that are linked with 1,4-glycosidic bonds. Galactoglucomannans 

are further divided, according to their galactose content, into fractions that are rich and 

poor in galactose. The molar ratio of galactose:glucose:mannose for the galactose-poor 

fraction is 0.1:1:4 and that for galactose-rich portion is 1:1:3 /26/.   Furthermore, Scots 

pine contains significant amounts of arabino-(4-O-methylglucurono)-xylan (∼ 9 %) /24/.  

 

Lignin is a solidifying agent between neighbouring cells and cellulose microfibrils 

accounting for about 28 % of the dry matter of Scots pine wood /24/. It is a complex 

high-molecular weight polymer that is built up of phenylpropane units. Phenylpropane 

structures are linked to each other with ether and carbon-to-carbon bonds. Of the 
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interunit bonds of lignin, β-O-4 aryl ether type linkages dominate accounting 

approximately 35 % of all bonds in lignin /27/. Softwood lignin is referred to guaiacyl 

lignin because its main structural elements originate from coniferyl alcohol precursor. In 

addition, softwood lignins contain minor amounts of syringyl- and p-

hydroxyphenylpropane units /28, 29/.  The average amount for the methoxyl groups per 

100 phenyl propanoid unit is in the range of 92-97 for softwoods /30/.  

 

Extractives are minor non-structural constituents of wood and they can be removed with 

neutral solvents such as hexane, acetone, and diethyl ether. Typical non-volatile resin 

content for Scots pine stemwood is in the range of 1-4.5 % (w/w) /31-33/. The 

predominant components of the softwood resin are fatty and resin acids, triglycerides, 

sterols, and steryl esters. Levopimaric acid is the predominant resin acid in Scots pine 

wood /31/. Of the volatile components of the Scots pine stemwood, α-pinene and Δ3-

carene dominate accounting for 88 % of the amount of volatile resin. The total amount 

of volatiles for Scots pine wood is about 0.6 % (w/w) /34/. 

 

Stemwood of Scots pine wood contains trace amounts (0.5-1 % (w/w)) of low molar 

mass phenolic compounds (lignans, stilbenes and flavonoids) that are not regarded as 

wood resin but are co-extracted with wood resin when acetone or other polar solvents 

are used for extraction /35/.  

 

2.2.1 Location of the wood resin and hydrophilic compounds  
Heartwood and sapwood of Scots pine wood have dissimilar extractive distributions and 

compositions. The major portion of extractives in sapwood is located in axial and radial 

parenchyma cells. Fatty acid triglycerides are the predominant components comprising  

∼ 70 % of the hexane extract of sapwood /36/. A typical concentration of triglycerides 

for Scots pine sapwood is in the range of 0.7-2.3 % (w/w) /37/. Unsaturated oleic, 

linoleic, and pinolenic acids form the major part of the fatty acids in Scots pine sapwood 

/31/.  Other notable resin substances in parenchyma cells are the steryl esters and free 

sterols. In addition to the parenchyma resin, sapwood of Scots pine contains small 

amounts of canal resin, which is mainly composed of resin acids and volatile 

monoterpenes /38/. 
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Heartwood resin contains some of the sapwood resin substances as well as additional 

components, formed during transition of sapwood into heartwood /39/. These 

components have become distributed throughout the heartwood tissue /40/. Major 

components in Scots pine heartwood are resin acids. Their total concentration is in the 

range of 2-9 % /36, 41-43/ of dry wood comprising about 70 % of the total amount of 

the non-volatile wood resin in Scots pine heartwood. Volatile monoterpenes contribute 

to the canal resin fluid and they add up to 25-30 % of the total amount of the heartwood 

resin /34/. Fatty acid esters and most of the steryl esters are hydrolysed in the 

sapwood/heartwood boundary. Moreover, small amounts of phenolic components are 

produced during the transition of sapwood to heartwood. The main phenolic compounds 

in Scots pine stemwood are pinosylvin and its monomethylethers. The content of 

pinosylvins in the heartwood is about 0.01-1 % (w/w) /35, 41, 43/. 
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Figure 2. Distribution and composition of wood extractives across the stem of a 75-year-old Scots 
pine tree according to Lindgren and Norin /35/. Total extractives (1), triglycerides (2), resin acids 
(3), fatty acids (4), pinosylvins (5). 

 

Wood resin composition and concentration in Scots pine knots and branchwood differs 

from that of stemwood. Knots and branchwood can contain large amounts of lipophilic 

extractives, 4.5-32 % (w/w), and these are predominantly resin acids /43/. Recent 

studies by Willför et al. /43/ revealed that the content of stilbenes and lignans in Scots 

pine knots can be very high, 1-7 % (w/w) and 0.4-3 % (w/w) respectively. They 



 7

reported that the ratio of pinosylvin monomethyl ether to pinosylvin was higher in knots 

than in stemwood. 

 

 

2.3 Modifications in wood structure and its components during 
heating 
 

2.3.1 Chemical modifications  
Some minor changes can be occurred in wood at temperatures above 50 °C, such as 

elimination of water /44/ and release of volatile components (ie. monoterpenes) /45/. 

Migration of wood resin onto the surface of wood has been observed at low 

temperatures 120-160 °C /46, 47/. Of the structural components, hemicelluloses are the 

most vulnerable to thermal degradation /44, 48/.  Degradation rates of hemicelluloses 

have been reported to be four times higher at 150 °C than that of wood or α-cellulose, 

whereas lignin deteriorated at about half of the rate of wood /49/. Thermal deterioration 

of wood and its components is greater under steaming and oxygen than under dry and 

inert heating conditions /49/. Acetic and formic acids liberated from wood during 

thermal treatment enhance hydrolysis of hemicelluloses and cellulose /50, 51/. 

Noticeable decreases in the content of polysaccharides occurs at temperatures above 

150 °C /51-53/.  Hydrolysed sugars are further dehydrated and great varieties of volatile 

compounds are formed, such as furfural and hydroxymethyl furfural /54/.  

 

Much work has been conducted on the thermal stability of different lignins /55-58/ and 

lignin model compounds /59, 60/. The first thermal changes in lignin have been detected 

at temperatures above 150 °C /61, 62/.  Molecular weight of lignin has been reported to 

decrease extensively at temperatures above ∼180 °C in various thermal treatments /55, 

57, 63/ as a result of breaking down of aryl-ether interunit linkages. The amount of 

methoxyl groups in lignin diminished when wood was heated at temperatures above 180 

°C /61, 64/. At elevated temperatures (> 200 °C) structure of lignin becomes more 

condensed /8, 56, 65/.  
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2.3.2 Physical modifications and fungal resistance 
Hygroscopicity and subsequent shrinkage and swelling of wood are reduced by heating 

above thermal degradation temperatures. Schneider and Rusche /66/ reported that the 

hygroscopicity of woods heated at temperatures 150-200 °C was diminished up to 35 %. 

According to Viitaniemi and Jämsä /67/, equilibrium moisture content of wood 

decreases 40-60 % depending on the heat treatment conditions and wood material.   

 

Diminished strength properties of heat-treated wood are a major drawback limiting its 

use under load. Bending strength /2, 68/ and modulus of elasticity /69/ have been 

reported to decrease up to 30-50 % under drastic heat treatment conditions. LeVan et al. 

/70/ and Winandy /71/ found that the thermal degradation of hemicelluloses was directly 

related to a strength loss.  

 

Colour of wood darkens as a result of different oxidative and/or hydrolytic discolouring 

reactions taking place in wood during the heat treatment. Darkening of wood is 

generally more intensive when heat treatment time is prolonged and temperature raised 

/72/.  

 

One of the desired properties of the thermally modified wood is better resistance to rot 

and mould. Several groups /2, 3, 7, 10, 14/ have reported enhanced rot resistance for 

various wood species as a result of heat treatment. Rot resistance have been associated 

with degradation of wood constituents /2/, lower equilibrium moisture content /14/, and 

formation of toxic degradation products /6, 14/.   

 

3. Research methods 

3.1 IR spectroscopy 

The mid infrared region lies between 2.5-25 μm that corresponds to the wavenumber 

region of 4000-400 cm-1. A molecule gives a signal in IR spectroscopy if there is a 

change in a dipole moment during a vibration, which means that molecules having 

asymmetric bonds are IR active. Complex molecules, such as the wood polymers, have 

a large number of vibrational modes. Some of the vibrations are localised, while the 

others are considered as vibrations of the whole molecule /73/. Wavenumber region 
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between 4000-1500 cm-1 in the mid infrared spectrum is referred as a functional group 

area. Bands in this region are assignable to individual bonds or functional groups of the 

molecules. Occasionally these bands are useful diagnostically but more often they are 

supplementary to the spectral region below 1500 cm-1 that is called fingerprint region 

(1500-400 cm-1).  IR bands in this region are utilised frequently to confirm the identity 

of the compound. Also, some bands characteristic for certain functional groups do occur 

in this region that can be used complimentary to the functional group bands.  

 

Fourier transform spectrometers fitted with modern IR techniques allow rapid analysis 

of the samples as such without laborious preparation. Also, utilisation of multivariate 

data analytical techniques has enabled more effective use of the spectral data. 

 

3.1.1 Attenuated total reflectance (ATR) technique 

In attenuated total reflectance (ATR) spectroscopy sample is pressed against a crystal of 

high refractive index (Fig. 3). The incident radiation penetrates into the sample surface 

through the crystal. The sampling depth depends on the wavelength, the incident angle 

of the radiation and the refractive indices of the sample and the crystal material (Eq. 1). 

Usually the analysis depth is in the range of 0.3-3 μm. Commonly used crystal materials 

are germanium, diamond, KRS-5, and zinc selenide. ATR techniques are referred 

according to the crystal geometries /74/.  

 

 

plesa D 

Reflected light 
to the detector

ATR 
crystal 

Incident 
radiation 

Sample 
 

Figure 3. Schematic picture of the microscopic attenuated total reflectance (ATR) spectroscopy. D 
denotes to the sampling depth. 
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where, 
 
 
D analysis depth 
λ is wavelength 
n1, n2 are refractive indices of a sample and crystal material, respectively 
α is the incident angle of the ATR crystal 
 
 

3.1.2 Photoacoustic (PA) spectrometry  

In photoacoustic (PA) spectroscopy a sample is illuminated with a modulated beam 

emerging from the interferometer. At wavelengths where a sample absorbs some 

fraction of incident radiation, a modulated thermal fluctuation will be generated. 

Modulated heating of the sample causes pressure variation of the gas in the 

photoacoustic cell and produces a signal, which is detected by a microphone of high 

sensitivity /75/. All types of materials can be analysed usually as such without 

preparation.  

 

On the basis of the photoacoustic theory, analysis depth and oversaturation of the strong 

bands in the spectrum can be controlled by adjusting modulation frequency of the 

incident radiation. In addition to the modulation frequency, the sample’s optical and 

thermal properties have an impact on the actual analysis depth /76-78/. 

 

3.2 Raman spectroscopy 

In Raman spectroscopy photons are not absorbed but shifted in frequency below and 

above the Rayleigh line frequency. Shift of the scattered photons to lower frequencies 

takes place as a molecule abstracts energy from the exciting photons. A Raman shift to 

lower frequencies is referred as a Stokes process. Scattered photons can also pick up 

energy released by a molecule during transitions to the ground state. This phenomenon 

is referred as an anti-Stokes process and is parallel to the emission /79/. A molecule 

produces a signal in Raman spectroscopy when there is a change in polarisability. This 

means that a molecule having a centre of symmetry is Raman active whilst asymmetric 

(1) 1/22
2nα2sin2

1nπ2

λ

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⋅⋅⋅

=D
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bonds are more active in IR spectroscopy. Consequently, Raman spectroscopy provides 

complimentary information to IR spectroscopy /74/.  

 

v = 3
v = 2
v = 1
v = 0

Stokes          Rayleigh Anti-Stokes

hνo hνo hνo

h(νo-ν) h(νo+ν)hνo

v = 3
v = 2
v = 1
v = 0

v = 3
v = 2
v = 1
v = 0

Stokes          Rayleigh Anti-Stokes

hνohνo hνohνo hνohνo

h(νo-ν)h(νo-ν) h(νo+ν)h(νo+ν)hνohνo

 
Figure 4. Comparison of the Raman and infrared phenomena: ν = vibrational frequency and   
ν0 =exciting frequency. 
 

Raman spectroscopy has some very useful features over IR spectroscopy. It is possible 

to detect very low concentrations of substances due to the resonance Raman effect. 

Resonance enhancement occurs if the excitation wavelength lies close to an electronic 

absorption of a particular structure within the molecule. The Raman signal can be 

considerably enhanced, often by several orders of magnitude. The resonance 

enhancement enables detection of trace amounts of chemical components if the other 

components in the material do not absorb light at the excitation wavelength /80/. 

 

3.3 Multivariate data analysis methods 

Processing of the spectral or other chemical data with multivariate data analytical 

methods such as, principal component analysis (PCA) and partial least squares (PLS) is 

referred as chemometrics /81/.  

 

PCA is a powerful method to analyse large amounts of spectral data. Such data are 

converted into few matrices in PCA, which contain information on the significant 

similarities/dissimilarities between samples or sample groups. Evaluations of 
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similarities/dissimilarities between samples or sample groups are achieved by plotting 

scores. Loading line plots reveal which variables cause the differences within the 

samples and with spectral data the loading plot is the subspectrum that shows 

characteristic vibrations for each samples or sample groups /82, 83/. Loading line plots 

often facilitate interpretation of the spectral data. For example, baseline variations and 

spectral noise can be eliminated in many cases as well as the resolution of overlapping 

bands /84/.  

 

PLS is the most common multivariate data analysis method that is used for establishing 

quantitative correlations between spectral and chemical data. The whole spectral range 

can be utilised in PLS calibrations instead of the single band intensities. Spectral data 

are often pretreated by spectral filters prior to the PLS calibration in order to remove 

noise and signals that are not related to the wet chemical data /81/. 

 

4. Applications of infrared and Raman spectroscopy in 
the analyses of wood and its components 
Raman and FT-IR spectroscopic methods have been utilised in many investigations into 

the chemical characterisation of wood and its constituents. In addition, both physical 

and morphological properties of wood have been studied with IR and Raman 

spectroscopies. In many studies multivariate data analysis methods have been utilised in 

combination with spectral data to establish relationship with wet chemical or other data. 

 

FT-IR and UV resonance Raman spectra of softwood (pine) are presented in Fig 5. 

Functional group vibrations of the softwood IR spectrum include bands due to O-H, C-

H, C=O and aromatic ring stretching. The majority of the fingerprint bands in the IR 

spectrum arises from different vibrations of polysaccharide derived bonds; C-H, C-O, 

C-O-C, C-OH /85/. Furthermore, guaiacyl lignin contributes to several bands (1420, 

1273, 1220, 1140, 1030 cm-1) in the fingerprint region /86, 87/. The UV Raman 

spectrum of the softwood exhibits vibrations originating mainly from lignin and wood 

resin, since aromatic lignin and other unsaturated structures are resonance enhanced due 

to UV excitation /88, 89/. Therefore the most intense Raman signal is at 1605 cm-1 

resulting from the symmetric aromatic ring vibration. Unsaturated structures derived 
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from wood resin have UV Raman vibrations at 1650 cm-1 /90, 91/. The UVRR spectrum 

of softwood also contains resonance enhanced bands typical of guaiacyl lignin in the 

fingerprint region (Fig. 5). 

 

800130018002300280033003800
Wavenumber, (cm-1)

C=O 

C=C

guaiacyl 
lignin

CO
COC, CCC 

OH 
strecthing

CH and CH2

strecthing CH, CH2,
C-OH bend.

cellulose

 

Figure 5. FT-IR photoacoustic (----) and UV resonance Raman (----) spectra of Scots pine wood. 
UVRR spectrum was collected with excitation wavelength of 244 nm.  

 

4.1 FT-IR spectroscopy 

IR spectroscopic methods have been utilised to characterise the molecular structure of 

wood and its polymers since 1950’s.  

4.1.1 Polysaccharides 
Several research groups have studied band assignments of cellulose with modified 

celluloses /92, 93/. The degree of cellulose crystallinity was determined using 

deuterated celluloses in combination with with IR spectroscopy by Mann and Marrinan 

/94/. Later on (1964) cellulose crystallinity was assessed, by Nelson and O’Connor /95/, 

from an intensity ratio of IR bands. A more accurate characterisation of the IR spectrum 

of cellulose was achieved by using mathematical processing, such as deconvolution /96/ 

and second derivatives /97/. Sugiyama et al. /98/ assigned IR bands for the cellulose 

allomorphs Iα and Iβ. Thereafter, Kataoka and Kondo /99/ utilised FT-IR spectroscopy 

to examine the crystalline structure of cellulose during the wood cell formation.  
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More recently, dynamic FT-IR spectroscopy has been applied to study the structure of 

cellulose by Hinterstoisser /100, 101/. They demonstrated that it was possible to 

correlate specific OH-bands with the structure of cellulose. The main bands in the 

dynamic spectra of native cellulose were derived from the C-O-C bridge connecting 

adjacent rings and intramolecular hydrogen bonds. Furthermore, interactions between 

cellulose and other wood polysaccharides were examined with dynamic FT-IR by 

Åkerholm et al. /102, 103/ while Kacurácova et al. /104/ studied interactions of 

cellulose/pectin and cellulose/xyloglugan composites.  

 

4.1.2 Lignin and wood extractives 
IR band assignments of the lignin model compounds and milled wood lignins have been 

investigated by numerous groups in the past /86/. More recently, Faix /87/ undertook a 

detailed study on the differences between lignins of different biological origins. 

Additionally the studies of Collier et al. /105, 106/ provided new band assignments for 

lignin. The oriented structure of lignin and its viscoelastic properties have also been 

examined by dynamic FT-IR spectroscopy /107/. These studies suggested that lignin 

had a different time dependent behaviour than wood polysaccharides and that lignin was 

oriented along the fibre axis.  

 

The quantification /108-110/ and chemical heterogeneity /111, 112/ of lignins have been 

examined by FT-IR techniques linked with multivariate data analytical methods. 

Moreover, lignin distributions in pulps /113/ and wood chips following impregnation of 

cooking liquor /114/ were studied with FT-IR microscopic reflection techniques.  

 

Wood resin components can be identified from solid wood /46, 115/ and different 

extracts of wood /116, 117/ since many of them have strong IR signals due 

predominantly to their carbonyl structures. FT-IR spectroscopy is also commonly 

utilised to analyse pitch deposits in pulping and papermaking processes and wood resin 

in paper and pulp samples /118, 119/. 

 

4.1.3 Structure and modification of wood and its components 
Numerous FT-IR spectroscopic studies on the structure of wood have been conducted 

during the past 50 years. The most current ones deal mostly with the structure of wood 
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after various modifications. Chemical changes in the molecular structure of wood 

exposed to natural and/or artificial weathering have been monitored by different FT-IR 

techniques /120-124/. In addition, depth profiling of the photochemical changes in the 

exposed wood surface was carried out with FT-IR microspectroscopy /125/. All these 

studies revealed that the structure of lignin had deteriorated and various new carbonyl 

containing moieties were formed on the wood surfaces. In addition, IR spectroscopy 

was applied to detect thermal modifications in wood /115, 126/ and lignin /56/ and 

changes occurring in wood following fungal decay /127, 128/. 

 

4.2 Raman spectroscopy 

Raman spectroscopy is a fairly new technique in the field of wood and lignocellulosic 

chemistry. In conventional Raman spectroscopy, the light induced fluorescence (LIF) 

arising from the lignocellulosic samples has limited the number of the applications, 

because the intensity of the fluorescence often overwhelms the Raman signal. This 

problem was partly solved earlier by water immersion or oxygen flushing techniques. In 

many applications LIF has been overcome by the development of the near-infrared 

(NIR) FT spectrometers. Also, use of UV excitation has shown to be a way to collect 

good quality Raman spectra from all lignocellulosic materials /88, 89/. Saariaho et al. 

/129/ used an optical Kerr gate to suppress fluorescence originating from lignin 

containing pulps.  

 

4.2.1 Wood components 
Raman band assignments of guaiacyl and syringyl lignins were examined with NIR FT-

Raman by Takayama et al. /130/ while Saariaho et al. /88/ studied the Raman band 

characteristics of lignin model compounds using UV excitation wavelengths. The lignin 

contents of unbleached and partially bleached pulps were assessed with NIR FT-Raman 

technique by Agarwal et al. /131/. 

 

Wood resin was characterised using FT-Raman spectroscopy by Holmgren et al. /132/. 

They reported a characteristic band of pinosylvin monomethyl ether from the solid 

wood and its extract. Shen and Rosenholm /133/ examined FT-Raman spectral 

differences between extracted and exuded wood resin. 
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4.2.2 Structure and modification of wood 
Agarwal and Ralph /134/ applied near infrared FT-Raman spectroscopy for 

characterisation of Black spruce whereas Yamauchi et al. /135/ recorded typical Raman 

bands for an Asian hardwood species abundant in flavonoid-like compounds. FT-

Raman spectroscopy was also utilised to detect changes in the relative proportions of 

the crystalline cellulose in wood after (bio)chemical treatments /136/.  

 

Raman spectroscopy has been shown to be a useful tool to detect chromophores in 

photoyellowed thermomechanical pulps /137, 138/ and bleached chemical pulps /129/. 

Contributions from chromophores can easily be detected in the region 1500-1750 cm-1 

because, with the exception of the lignin band at 1600 cm-1, wood components have 

only weak signals in that region.  

 

Ona et al. /139/ established relationships between FT-Raman data and monosaccharide 

content of the Eucalyptus wood. They also assessed the chemical composition of wood 

by employing with FT-Raman data and multivariate data analytical approaches /140/. 

Furthermore, these approaches were used to determine the morphological /141/ 

characteristics and density /142/ of wood samples. 

 

5. Materials and methods 

5.1 Wood samples 

5.1.1 Thermal modification 
Industrially kiln-dried Scots pine (Pinus sylvestris) wood was used as raw material in 

the heat treatments.  Scots pine planks (50×200 mm in cross section) were kiln-dried to 

a moisture content of 11-16 % ( ∼ 70 °C drying temperature) in the Stora Enso 

Honkalahti sawmill in south eastern Finland. Prior to the heat treatments planks were 

cut to a length of 1.5 m and cleaved into two battens (Fig. 6). One batten was used as 

untreated reference material and the other was heat-treated under steam with a method 

developed at VTT /3, 4/. The total time for the heat treatment was 3 days and the 

effective temperatures were 100, 120, 140, 160, 180, 200, 220 or 240 °C. Details of the 

heat treatments are described in papers I-IV. 
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Figure 6. Picture of the kiln-dried pine planks used in the heat treatments, cross-section area of 50 
mm * 200 mm and length of 1500 mm. 

 

5.1.2 Weathering experiments of thermally modified wood 
Thermally modified panels were weathered, vertically heartwood side up, on racks in 

Espoo, Finland for seven years (1994-2001). The racks were facing south /143, 144/. 

Sample preparation for spectroscopic analyses is explained in Paper III. 

5.1.3 Brown and soft rot tests of thermally modified wood 
The biological durability of pine against brown rot (Poria placenta) and soft rot fungus 

were performed at VTT according to the standards EN 113 and EN 807, respectively. A 

more detailed description of the tests is given in Paper IV.  

5.1.4 Scots pine wood samples for UVRR study 
A stemwood disc from a fresh Scots pine tree was sawn. Sapwood and heartwood parts 

of the disc were sampled and cut into sticks, freeze-dried, and ground in a Wiley mill. In 

addition, dead branch wood and fresh knotwood Scots pine samples were taken and cut 

into sticks prior to the UVRR study (Papers V and VI).  

5.2 Model compounds  
The resin acids, sandaracopimaric, isopimaric, abietic, palustric, neoabietic, and 

dehydroabietic acids were obtained from KCL (Espoo, Finland). Fatty acid ester 

(methyl oleate), oleic, linoleic, and linolenic acids were all commercial products 

(Fluka). Sitosterol acetate and sitosterol were commercial products from Sigma-Aldrich 

and Merck, respectively. Pinosylvin (3,5-stilbenediol) and chrysin (5,7-

dihydroxyflavone) were products from Oy Separation Research Ab and  Apin 
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Chemicals, respectively. The model compounds (5-10 mg) were mixed with KBr (100 

mg) and pressed to pellets. 

 

5.3 Extractions of the wood samples 
Ground, thermally-modified Scots pine samples were extracted with acetone using a 

Soxhlet apparatus for six hours (Paper II). 

 

Extraction of the ground Scots pine sapwood and heartwood samples was carried out in 

an ASE (Accelerated Solvent Extractor, Dionex Corp.) apparatus according to Willför 

et al. /145/. The lipophilic substances were first removed using hexane and thereafter 

the hydrophilic compounds were extracted with an acetone:water (95:5 v/v) mixture. 

Knotwood sticks were extracted with acetone for 6 hours using a Soxhlet apparatus 

(Papers V and VI). 

 

5.4 Gas chromatography 
Free fatty acids, resin acids, free diterpenyl aldehydes, and free sterols were analysed as 

described in papers V and VI and by Ekman and Holmbom /146/. Esterified fatty acids 

and sterols, as well as oligolignans, were analysed according to Örså and Holmbom 

/147/. 

 

5.5 FT-IR spectroscopy 
FT-IR spectra of the wood samples and acetone extracts were obtained using a Bio-Rad 

6000 spectrometer. Photoacoustic (PA) spectroscopy was used to collect spectra from 

all heat-treated wood samples and extracts (Papers II-IV). Behaviour of wood resin 

during the heat treatments was studied by microscopic reflection techniques (Paper I).  

 

5.6 Raman spectroscopy 
UVRR spectra of the heat-treated samples, wood sticks, model compound pellets and 

dried extracts were collected with a Renishaw 1000 UV Raman spectrometer coupled to 

an Innova 90C FreD frequency-doubled Ar+ ion laser (Coherent Inc., CA) tunable to 

229, 244 or 257 nm wavelength. Spectra of the model compounds and native wood 

extracts were collected using all three excitation wavelengths, while 244 nm excitation 
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was used to record spectra from the heat-treated samples and their extracts. Details of 

the sample preparations are described in Papers II-III, and V-VI. 

 

Visible excitation Raman spectra of the resin and fatty acids were recorded using a 

Kaiser Optical Systems HoloLab Raman spectrometer equipped with an Olympus BX60 

microscope. The excitation wavelength was 785 nm (Paper V). 

 

6. Results and discussion 

6.1 Thermally modified wood 

6.1.1 Behaviour of Scots pine wood resin during heat treatment 

Thin dark rings around the sapwood edges were observed when Scots pine samples 

were heated at 100-140°C. FT-IR ATR difference spectrum of the sapwood edge and 

heartwood (Fig. 7) shows distinct bands for Scots pine wood resin.  Positive bands at 

3012, 2928, 2854, and 1744 cm-1 in the difference spectrum are related to fatty acid 

esters /148/. Earlier studies have shown that the lipophilic compounds in wood, such 

fats, waxes, and steryl esters, migrate to the surface of wood after planning and form a 

monolayer or a structured multilayer /149, 150/. It is also known that drying wood at 

high temperatures lowers the surface wettability, partly due to the migration of wood 

extractives to the surface /47, 151/. Moreover, it has been reported that resin was 

transported to the timber surface during high temperature drying at >100°C /152/.  

 

Triglycerides were not detected on the sapwood at temperatures above 160 °C. This can 

be due to decomposition and condensation reactions of fatty acid esters. Previous 

studies have revealed that unsaturated fatty acids and their esters were partly oxidised 

during wood drying yielding volatile aldehydes, alcohols, and shorter acids /152/.  
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Figure 7. Diamond-ATR difference spectrum of the Scots pine sapwood and heartwood which had 
been heat-treated at 140°C.  

 

Light microscopy revealed that small resinous spots were observable in the heartwood 

part of the heat-treated samples. The majority of these spots were detected at the 

latewood or earlywood/latewood boundary and were clearly distinguished in the 

samples treated at 100-180 °C. IR spectra acquired from these spots showed absorbance 

bands typical of resin acids. Following treatments at higher temperatures, the spots were 

not detected by either light or IR microscopy, in the samples cut from the middle of the 

heat-treated battens. This observation was confirmed by the IR and UV Raman data 

collected from acetone extracts of the heat-treated wood samples (Paper II). Both IR and 

UV Raman spectra from acetone extracts showed characteristic bands for wood resin 

only when the wood samples had been treated at the lower temperatures (100-180 °C). 

Moreover, the previously reported band at 992 cm-1, characteristic of pinosylvins, 

(Paper VI) was detected by UVRR spectroscopy in the samples treated at 100-180 oC.  

 

When the battens were treated at 200 °C, dark resinous areas, that had IR absorbances 

characteristic of bands for resin acids, were observed in the wood samples taken from 

the outer parts of the battens. After treatments at higher temperatures (>200 °C) resin 

acids were no longer detected by IR microscopy, which indicated that the majority of 

them had been removed from the wood or had been degraded. Kotilainen /153/ 

demonstrated that the amount of native wood resin in the extracts decreased when wood 

was heated at high temperatures. 
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6.1.2 Thermal modification of lignin and polysaccharides 

Principal component analysis (PCA) of the FT-IR spectral data showed that the samples 

treated at the two highest temperatures (220 and 240°C) were separated from those 

treated at lower temperatures (100-200°C). Positive and negative bands in the loading 

line plot revealed chemical structures enriched in wood treated at the elevated 

temperatures and lower temperatures, respectively (Fig. 8). Bands at 1600, 1490, and 

1296 cm-1 result from vibrations of the aromatic ring which indicated that lignin 

contents of the wood samples treated at 220 and 240°C were elevated. This was in 

agreement with the increased Klason lignin contents of the samples (Paper II). A shift of 

the guaiacyl ring band at 1270 to 1296 cm-1 indicated that the structure of lignin was 

more condensed than that of the wood samples treated below 200 °C /154/.  Similar 

observations have been reported previously by many groups /8, 65, 155, 156/. It has also 

been suggested that degradation products of hemicelluloses such as, organic acids, and 

furfural, were involved in the condensation reactions of lignin /157, 158/. Furthermore, 

Funaoka /56/ et al. identified diphenyl methane type structures in lignin following 

heating. Many of the negative bands (3452, 1134, and 1083 cm-1) in the loading line 

plot of the PCA-derived model of the heat-treated Scots pine samples (Fig. 8) arise from 

the wood polysaccharides and that these are associated with mild heating temperatures; 

100-200°C. It is well reported that the wood hemicelluloses begin to degrade at fairly 

low temperatures /8, 14, 44, 48, 159, 160/. Organic acids such as acetic and formic acid, 

liberated during the heat-treatment of wood, catalyse chain degradation of cellulose /50, 

51/.  

 

PCA of the UV Raman spectral data (Paper II) of the heat-treated wood samples gave a 

similar result to the model based on the FT-IR data. The loading line plot showed that 

the guaiacyl structure of lignin was modified at the highest temperatures and new 

unsaturated and/or carbonyl structures were formed from the degradation products of 

lignin and amorphous polysaccharides (Paper II).   

 

The acetone extracts of the heat-treated wood samples were examined in Paper II. Both 

UV Raman and FT-IR spectral data revealed that guaiacyl lignin became partly soluble 

into acetone when Scots pine wood was treated at 180°C. The amount of substances 
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derived from lignin in the extracts increased with increasing treatment temperature up to 

220 °C.  At 240 °C the content of the acetone soluble substances was diminished, which 

also indicated that lignin was partly condensed. Fengel and Przyklenk /61/ detected 

increased content of vanillin in methanol:benzene extracts of spruce wood when the 

samples were heated in the temperature of 150-180 °C. They also found that the amount 

of vanillin in the extract was decreased at elevated temperatures (200 °C). Westermark 

et al. /63/ detected homolytic cleavage of β-aryl ether linkages in lignin at temperatures 

above 130 °C. 

 

 

898

1134
1083

3452

1296
12001490

16001782

1709

2847
2970

-0.07

-0.02

0.03

0.08

0.13

400100016002200280034004000
Wavenumber, (cm-1)

p[1]

 

Figure 8. Loading line plot of the PCA model of the heat-treated Scots pine samples based on the 
FT-IR photoacoustic (PA) spectral data. Positive bands characterise structures typical for the wood 
samples treated at 220 and 240 °C, while the negative bands reveal structures characteristic for 
samples heated at 100-200 °C. 

 

6.1.3 Heat-treated wood exposed to weathering 

Paper III describes effects of natural weathering on the chemistry of the heat-treated 

wood. The loading line plot of the FT-IR based PCA model of the weathered and 

unweathered heat-treated wood (Fig. 9) shows structures degraded and formed on the 

heat-treated wood surface as a result of weathering. Intensities of the IR absorptions for 

guaiacyl lignin at 1512, 1269, 1220, 864, and 814 cm-1 were reduced and this is in 

agreement with the findings of previous studies /121-125/. Degradation of lignin was 

more intense for weathered reference wood than heat-treated wood surfaces according 

to FT-IR, and UVRR spectral data.  It is probable that the condensed structure of lignin 
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in the heat-treated wood, at least partially, inhibited UV light-induced degradation 

reactions. Ayadi et al. /161/ suggested that the modified structure of lignin as well as 

new phenolic moieties were responsible for the improved durability of heat-treated 

wood exposed to weathering.  

 

The surface of the weathered reference wood was rich in cellulose, whilst that of the 

heat-treated wood was enriched with conjugated carbonyl structures (bands at 1650 and 

1543 cm-1; Fig. 9.) typical of oxidized lignin. Increased content of cellulose /162, 163/ 

and carbonyl groups /122, 123/ have been reported for the surfaces of weathered native 

woods. Weathering did not degrade hemicelluloses on the weathered heat-treated wood 

surfaces to the same degree seen with the reference wood surfaces (Paper III). This most 

probably results from the decreased content of hemicelluloses in the heat-treated wood. 
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Figure 9. Loading line plot of the PCA model of the weathered and unweathered heat-treated wood 
based on the FT-IR data. Negative bands show structures degraded during the weathering, while 
positive bands characterise structures typical for weathered heat-treated wood surface. 

 

6.1.4 Heat-treated wood exposed to fungi 

FT-IR and UVRR results of Paper IV showed that both brown and soft rot fungi 

selectively degraded polysaccharides of the reference wood sample. Brown rot fungus 

(Poria placenta) attacked mainly hemicelluloses, while soft rot fungus depolymerised 

cellulose as well. Some changes were also seen in the aromatic structure of lignin. 

Gilardi et al. /164/ observed an extensive degradation of the cell wall polysaccharides as 

well as slight alterations in the structure of lignin when Scots pine wood was exposed to 
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brown-rot fungus. It is known that brown-rot fungi primarily attack softwood 

polysaccharides and, to a lesser degree, modifies lignin, whilst soft-rot fungi degrade 

both softwood and hardwood polysaccharides /165/.  

 

Weight losses of the wood samples were largest for the reference samples and minor for 

the wood samples heat treated at >220 °C, which is a sign of increased biological 

resistance for the heat-treated wood. Only minor chemical changes were observed in the 

wood samples treated at high temperatures >220 °C. Degradation of the polysaccharides 

was clearly detected in the FT-IR spectral data of the other samples exposed to fungal 

decay. Chemical modifications, in particular the reduced hemicellulose contents of the 

thermally treated wood have been demonstrated to have a significant impact on the 

biological resistance of wood /14/, since the hemicelluloses are the primary carbon 

source of such fungi. In addition, the lower equilibrium moisture content probably 

enhances biological resistance of wood. Kamdem et al. /5/ detected polyaromatic 

compounds in the extracts of the heat-treated poplar and maritime pine that could 

contribute to biological resistance of the thermally modified wood. Thus, toxic 

degradation products of wood polysaccharides, lignin, and extractives can also play a 

role in fungal resistance of wood following heat treatment. Prolonged heat treatment 

time /11/ and increased temperature /2, 14/ have been reported to enhance fungal 

resistance of wood. Moreover, lower pH value of the thermally modified wood can 

partly contribute to the better durability against fungi /14/. 

 

6.2 Characterisation of the Scots pine wood resin with 
UVRR spectroscopy 

6.2.1 Model compounds 

UVRR spectra in Papers V and VI showed that all double bonds and aromatic rings of 

the lipophilic and hydrophilic model compounds were resonance enhanced as a result of 

UV excitation. Isolated oleophilic structures had strong Raman signals in the region 

1660-1630 cm-1, whereas aromatic rings and conjugated double bonds were represented 

by UV Raman bands in the region 1649–1548 cm-1.  
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Some model compounds showed characteristic UV Raman bands in the fingerprint part 

of the spectrum. Pinosylvin had a relatively intense band in the aromatic substitution 

region at 996 cm-1 which can be useful in identification of stilbenes. Of the other model 

compounds, dehydroabietic, neoabietic and isopimaric acid showed a weak band below 

1000 cm-1.  

 

Distinct structures of the model compounds were enhanced depending on the excitation 

wavelength. Change in the excitation wavelength had a greatest impact on the aromatic 

model compounds (Fig. 10). Therefore, particular structure/structures in a molecule can 

be detected by selecting the excitation wavelength.  
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Figure 10. UVRR spectra of dehydroabietic acid collected at the excitation wavelengths of 229, 244, 
and 257 nm. 

 

6.2.2 Solid wood samples and extracts 

UV Raman spectra of the hexane extracts from Scots pine heartwood and sapwood 

showed characteristic bands for resin and fatty acids in the alkene vibration region 

(1660-1640 cm-1), which supported the GC analyses (Paper V). It was possible to 

identify certain resin acids from the spectra and detailed characterisations of the spectra 

are given in Paper V.  

 

Paper VI includes UV Raman spectra collected from the hydrophilic heartwood and 

sapwood extracts. Heartwood acetone-water extract had many bands typical of 

pinosylvin due to its high stilbene content (∼ 90 % w/w). In addition, the extract 
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contained bands distinctive for resin and fatty acids. Sapwood acetone-water extract 

showed bands due to oleophilic structures at 1655–1650 cm-1.  

 

Wood resin gave UV Raman signals when the spectra were recorded from the 

unextracted heartwood, knotwood and branchwood samples. UVRR spectra of these 

samples showed bands in the double bond region at 1660-1650 cm-1. The intensity of 

the double bond/aromatic ring bands depended on the concentration and location of the 

wood resin. These bands were most intense for knotwood and branchwood samples 

abundant in wood resin.  In addition, several other bands typical for wood extractives 

were observed in the spectra of knotwood and branchwood samples (Papers V and VI), 

which indicated that the wood resin in these samples was resonance enhanced even 

more than lignin (Fig. 11). A characteristic band of pinosylvin (996 cm-1) was detected 

in the UVRR spectrum of knotwood (Fig. 11). Holmgren et al. /132/ identified this band 

in the FT-Raman spectrum of the Scots pine heartwood.  
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Figure 11. UV Raman spectra of the Scots pine knotwood and its acetone extract. A and B denotes 
to the spectrum of solid wood and acetone extract, respectively. 
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7. Conclusions 
FT-IR and UVRR spectroscopy provided useful information on modifications at the 

molecular level in Scots pine wood after thermal treatment. Also, chemical changes in 

heat-treated wood exposed to natural weathering and fungi were detected by these 

methods. The main modifications observed in the heat-treated samples (100-240 °C) 

with UVRR and FT-IR spectroscopy are listed below: 

 

• Fatty acid esters were detected on the sapwood edges at low temperatures (120-

160°C). 

• Levels of the major native wood resin components decreased in wood at 

temperatures above 180°C. 

• The structure of guaiacyl lignin was increasingly condensed at temperatures 

above 200°C, especially at 240°C. 

• A significant increase in lignin content was detected at temperatures above 

180°C, whilst hemicellulose content was diminished.  

• Lignin on the surface of thermally modified wood was less vulnerable to natural 

weathering than that of reference wood. 

• Scots pine wood treated at elevated temperatures (220-240 °C) was more 

resistant to brown and soft rot fungal attack than the untreated wood.  

  

UVRR spectroscopy proved to be a useful tool to detect extractable compounds in 

native wood samples and their extracts. This was due to the strong resonance 

enhancement of unsaturated structures of the wood resin components by UV excitation. 

The UVRR spectra of pinosylvin contained a significantly strong band at 996 cm-1 that 

was detected in the spectra of the solid knotwood samples as well as acetone extracts of 

stemwood and heat-treated samples.  

 

UVRR spectroscopy can be developed further to determine the content of pinosylvins in 

solid softwood samples and extracts and as a logical extension of this can be utilised in 

tree breeding programs to screen out trees rich in pinosylvins. It can also be possible to 

apply UVRR technique to determine total amount of wood resin in solid wood samples 

that have even distributions of wood resin. Furthermore, UVRR spectroscopy can be 
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beneficial in the analysis of pitch deposits in pulping and papermaking processes as well 

as wood resin in pulp and paper samples.  
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