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Edge Locilised Modes (ELMs) are edge phenomena in fusion plasmas that cause small bursts of energy and particles out 
of the plasma. In a fusion devices such as a tokamak, ELMs affect the plasma confinement and can cause divertor plate 
erosion. Therefore, for the operation of a tokamak fusion plasma it is important to understand the physical mechanisms 
behind the ELM phenomenon and to be able to minimise the detrimental effects of the ELMs. 

In this thesis, the ELMs are modelled using magnetohydrodynamic stability analysis. First an accurate equilibrium of the 
experimental plasma is created and then the stability of the equilibrium is analysed. The stability analyses show that the 
Type I or 'giant' ELMs in ASDEX Upgrade and JET plasmas are triggered by peeling-ballooning modes with low to 
intermediate toroidal mode number (n). The radial struture of these modes is relatively wide and is localised near the edge 
of the plasma. The ASDEX Upgrade plasmas with smaller Type II or 'grassy' ELMs are found to have narrower mode 
structure of the triggering instability. The stability against low-n modes is improved as well causing the triggering 
instability to shift to higher n. Increased plasma pressure in the core region is found to improve the stability of the edge 
against low-n instabilities. This can explain the easier access to Type II ELMs observed in such plasmas. The Type III 
ELMs in JET plasmas are found to be deep in the stable region against the low- to intermediate-n peeling-ballooning 
modes and are likelyto triggered by a different mechanism than other ELMs. Of various ELM-control methods, pellet 
triggering is studied and it is found that pellet-triggered ELMs are destabilised by the same mechanism as intrinsic Type I 
ELMs. In quiescent H-mode where no ELMs are observed, the plasma edge stability is significantly better than in similar 
ELMy plasmas. This can explain the absence of ELMs.
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Preface
The origin of this thesis is in a one week intensive course on Magnetohydrodynamic

instabilities lectured by Prof. Hartmut Zohm in 1997. I was in the middle of doing my
Master’s thesis on MHD equilibrium and knew already something about the subject, but
of course there was a lot of new material, too. In the end of the course, there was an oral
examination. That was very new to me (and probably also to other Finnish students) and
naturally, I was quite nervous. But I think, it went quite well, since in the end, Hartmut
asked me if I were interested in continuing on this subject and come to Germany after I
finished my Master’s thesis. I had not expected this kind of a question in an exam, but
after a little thought I answered yes and that put the wheels in motion.

After finishing the Master’s thesis, continued as a graduate student at the Laboratory
of Advanced Energy Systems in Helsinki University of Technology under the wings of Prof.
Rainer Salomaa. However, as we had agreed with Hartmut, a part of the work would be
done at IPP in Garching, Germany. During the following years, I spent a fews months
in Garching and the rest of the time in Finland. In Garching, I was supervised by Prof.
Sibylle Günter to whom I am indebted in gratitude for the inspiration and support during
my visits. Of other co-workers in Garching who I would like to mention for their help on
this journey are Dr. Hans-Peter Zehrfeld, Dr. Lorne Horton and Dr. Wolfgang Suttrop. I
am also grateful to the entire ASDEX Upgrade experimental team for providing the data
for my calculations as well as explaining how to use it.

It turned out that for my analyses of ASDEX Upgrade plasmas I needed an MHD
stability code and a suitable one was at General Atomics in San Diego, USA. My visit
there was very fruitful and thanks for that goes to Dr. Alan Turnbull.

Thanks to Rainer’s pushing, in addition to ASDEX Upgrade, I also had a chance to
work on JET experiment in UK. For the support of my work there, I am grateful for the
entire JET experimental team and for Dr. Vassili Parail in particular for his guidance in
my stability analyses.

Despite these many visits, the bulk of the work for this thesis was done at HUT in
Espoo. The people in the laboratory created a good working environment and it felt bad
to leave them all behind. At HUT, the person who basically kept me going through the
years that it took to write this thesis is Dr. Taina Kurki-Suonio. I am especially thankful
for her for the way she “forced” me to really understand what I was doing by asking the
right questions. She has also been invaluable in the writing process of not only this thesis
but also other publications.

This thesis has required a lot of hard work. I could not have survived through all that
without the support of my parents and my sisters. The questions such as Valpuri’s:”Is
fusion safe ?” showed your interest in my work and kept my motivation high. Last but
not least, I want to thank my wife Yang for your patience and care during the time I have
been writing this thesis.

The funding for this work has come from Euratom-TEKES. The cost of visits to
other institutes have been covered by Euratom Staff Mobility. I also received a personal
support from Fortumin Säätiö. I owe gratitude to these organisations. Most of the results
presented in this thesis have been calculated using computational resources of Finnish
Centre for Scientific Computing.
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Chapter 1

Introduction

Since the beginning of industrialisation, mankind has become increasingly dependent on
cheap and abundant energy. The energy consumption has steadily grown in the past
and is expected to do so in the future. Until now, the energy demand has been met
mainly by burning fossil fuels. However, two issues prohibit basing further growth on
them. First, the known oil and gas resources will last only a few decades with current
consumption. In the second half of this century, their use will come to an end even without
any other constraints. Second, the environmental impact from burning fossil fuels may
force mankind to phase them out even before the resources are exhausted.

One of the key questions of this century is how the gap between the ever-growing
energy consumption and the decreasing fossil fuel use will be covered. Conventional
nuclear energy that is based on the fission of heavy elements, like uranium, can contribute
to the energy production, but without breeder reactors the uranium resources will not
last longer than the fossil fuels. Furthermore, the fission power suffers from poor political
acceptance due to the risk of a serious accident, long term radioactive waste, and its
connections to nuclear weapons.

The renewables, wind and solar, show potential as a clean and abundant source of
energy. While small now, it is possible that they provide a significant share of the energy
in the future. However, in this work another future energy form, nuclear fusion, is inves-
tigated. Fusion energy is inherently safe and has very little effect on the environment. Its
use does not create a long-term radioactive waste problem. Best of all, its fuel reserves
are practically inexhaustible. The scientific and technological research and development
of the peaceful use of fusion energy started in 1950’s. The task has proved very chal-
lenging, but it is expected that fusion energy can start contributing to the world’s energy
production in the second half of the century.

1.1 The basics of nuclear fusion

In nuclear fusion, two light nuclei are fused together into a heavier nucleus. The lost mass
in the reaction is turned into energy according to the famous Einstein’s E = mc2 law. On
earth, the most prospective reactions for fusion energy production are:

D + D → 3He + n + 3.27 MeV

D + D → T + H + 4.03 MeV

D + T → 4He + n + 17.6 MeV
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D +3 He → 4He + H + 18.3 MeV .

The reaction between deuterium and tritium is the most probable one. Therefore, all
the current scientific research efforts are concentrated on realising a fusion reactor that
uses deuterium-tritium fuel, and at least the first fusion reactors are expected to use it in
energy production. Deuterium is readily obtained from sea water. Tritium can be bred
from lithium that is abundant in the earth’s crust.

The nuclei have a positive electric charge that makes them repel each other. The
fusing nuclei must have enough kinetic energy to overcome the electric repulsion force
and get within the range of the attractive nuclear force. This sets a requirement for the
fusion fuel. It must be very hot, with a temperature of about 100 million degrees C. At
this temperature the matter is in the form of a plasma. In plasma, the atoms are broken
into free electrons and ions. Since fusion plasma is very hot, the most crucial question is
how to confine it before it gets in contact with solid materials and cools down.

In the Sun, the largest fusion reactor in the solar system, the gravitational force takes
care of the confinement of the hot plasma. However, on earth, this method is not suitable
for power-producing reactor. The gravitational force is far too weak to be used in a fusion
power reactor scale. Therefore, other ways to confine the hot plasma and produce fusion
energy has had to be found. There are two main approaches for building a fusion power
reactor: inertial and magnetic confinement.

In inertial confinement, a small fusion fuel target sphere is imploded using powerful
lasers or particle beams. The temperature and density in the centre of the target reach
the conditions required for the fusion reactions and the target ignites. The process can
be interpreted as a small nuclear explosion. As the name implies, the only confinement is
that provided by the inertia of the particles.

In magnetic confinement, the plasma is confined using strong magnetic fields. In a
magnetic field, the charged particles of the plasma (electrons and ions) can not move freely
but instead gyrate around the magnetic field lines. The stronger the field, the smaller
the gyration radius. Unfortunately, the magnetic field confines the particles only in the
direction perpendicular to the field. Along the field lines, the particles can move freely.
However, if the field lines are bent into a toroidal shape, it is possible to fully confine the
particles.

In this thesis, a toroidal plasma device called tokamak is studied.

1.2 Tokamak

Tokamak is widely considered as the most promising device for harnessing fusion power
for peaceful applications [1]. Of all magnetically confined plasmas, it holds the record of
achieving, simultaneously, a high temperature, a long confinement time, and a high plasma
density. At the time of this writing, the record value for fusion power in a tokamak is 16
MW [2].

Figure 1.1 shows a schematic picture of the tokamak concept. Because of the toroidal
configuration of the magnetic field in a tokamak, it is useful to project the magnetic field
lines in two coordinates. The poloidal direction goes the short way and the toroidal direc-
tion the long way around the torus. The plasma toroidal current induced by the central
solenoid creates a poloidal magnetic field in the plasma. When this field is combined with

2



the magnetic field created by the external toroidal field coils, a helical field is created.
The charged particles gyrating around the helical field lines are fully confined.

central solenoid

toroidal field coil

poloidal field
(shaping) coils

plasma

Figure 1.1: The tokamak coil system. The plasma is confined using a plasma current
generated by the central solenoid and stabilised using the magnetic fields generated by the
toroidal field coils. The poloidal field coils are used to shape and position the plasma.

In addition to the magnetic coils shown in Fig. 1.1, the tokamak contains various
heating devices (neutral beam injectors, radio frequency antennas). The plasma itself is
kept inside a vacuum vessel. The edge of the plasma is allowed to have contact with
solid surfaces only at special limiters or divertors which will be explained in detail in
the following section. All the present-day tokamaks are still experimental devices and
their function is scientific research, not fusion energy production. Therefore, they are
usually equipped with extensive diagnostics to measure various plasma parameters, such
as temperature, density, radiation and magnetic field fluctuations. In an actual energy
producing reactor using DT-fuel, there would also be systems to transfer heat from the
reactor to the turbines and a tritium breeding blanket.

Today, the biggest tokamak is JET (Joint European Torus) [3], situated in the United
Kingdom and operated by the European Union. It holds the above-mentioned record for
the fusion power production. However, its performance is still slightly below net power
production with Pfusion/Pin ≈ 0.65 [2]. Currently, it is the only tokamak in the world
that can use fusion relevant deuterium-tritium fuel.

The second largest tokamak is JT-60U in Japan [4]. It operates with pure deuterium
and, consequently, is not able to reach the same fusion performance as JET. However, it
is possible to calculate what the fusion power production would be if deuterium-tritium
fuel were used. In JT-60U, values of up to Pfusion/Pin = 1.25 have been reached for the
virtual performance.

In addition to these two large devices, there are a number of medium and small scale
tokamaks in the world, like ASDEX Upgrade in Germany, TORE SUPRA in France, DIII-
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D and Alcator C-Mod in the United States. A description of all these devices is given in
Ref. [1]. In addition to conventional tokamaks, there are also so-called spherical tokamaks
that have a small aspect ratio, i.e. ratio between the overall size of the device and the
thickness torus. At the moment, the largest spherical tokamak devices are MAST [5] in
the United Kingdom and NSTX [6] in the United States.

In 2005, a decision on the construction of a large international experimental reactor,
ITER (International Tokamak Experimental Reactor), is expected. ITER is designed to
reach energy multiplication factor of 5-10, i.e., it should produce 5-10 times more fusion
energy than it needs for confining and heating the plasma. The original ITER design [8]
was finished in 1998, but it was found too expensive. To cut the cost of the machine, a
new design with reduced objectives has been finalised [7].

1.3 Plasma-wall interaction, limiters and divertors

Even in the earliest tokamaks problems arose from the interaction between the plasma
edge and the solid material surrounding it. When the hot fusion plasma comes into
contact with solid material that surrounds it, the plasma gives its energy to the material
and causes erosion. The eroded wall materials migrate into the plasma diluting it and
increasing radiation losses. Without any control of the impurities, reaching fusion relevant
conditions becomes impossible.

The first solution to the impurity problem was to isolate the plasma from the vacuum
vessel wall with a limiter. The concept of the limiter operation is fairly simple. The
helical magnetic field lines in a tokamak form nested toroidal surfaces. By placing a solid
object, the limiter, into the plasma, the surfaces that are outside the outermost surface
that is not in contact with the limiter are “scraped off” and the limiter becomes the only
solid contact with the plasma. The plasma boundary is defined by the last closed flux
surface that is not in contact with the limiter. The region just outside the boundary
and in contact with the limiter is called the scrape-off layer or SOL. The limiter is made
of materials that have high resistance against erosion and preferably also a low charge
number Z. The lower the average charge number of the plasma, the less it radiates. The
high-Z impurities also dilute the plasma more than low-Z impurities.

It turned out, however, that even with limiters it is difficult to reach fusion relevant
conditions before impurities become a problem. The limiter temperature would still be
too hot for the materials. The problem of impurities is greatly reduced by replacing the
limiter with a divertor [9]. In a diverted plasma, the edge magnetic field configuration
is altered using external poloidal coils (see Fig. 1.1), so that an x-point is created. The
outermost closed magnetic surface, called the separatrix, becomes the plasma boundary.
Inside the separatrix, the magnetic field forms closed flux surfaces. Outside the separatrix,
the flux surfaces are open and the magnetic field lines lead to a special divertor, where the
plasma is allowed to make contact with solid material. Unlike in the limiter configuration,
the use of the separatrix allows placing the divertor plates far from the hot plasma.
The temperature of the plasma that interacts with the divertor can be lower than the
plasma temperature at the separatrix. Furthermore, the transport of impurities from the
divertor plates to the core plasma is reduced from that of the limited plasma. Thus, the
divertor allows tokamak operation at high plasma temperature without suffering from
unacceptable erosion of the walls and influx of impurities. Figure 1.2 shows the difference
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a)

limiter

b)

divertor plates

x−point

Figure 1.2: The limiter a) and divertor b) concepts. The grey area represents the plasma.
The closed lines inside plasma show the flux surfaces, and the dotted line outside the
plasma boundary represents the extent of the scrape-off layer.

between limiter and divertor configurations.
Even with the divertor concept, the plasma-wall interaction places demanding require-

ments for the materials to be used in a tokamak fusion reactors. In ITER, the divertor
is subject to a heat load of 7-10 MW/m2 [10]. On top of that, plasma edge bursts called
ELMs (Edge Localised Modes) can deposit 25-80 MJ of energy on the divertor targets in
a short period of time (≈ 0.1 − 1.0ms) [12]. Such short bursts of energy can cause ab-
lation of the target material, which is unacceptable for the safe operation of the plasma.
In addition to causing erosion on the plasma facing components, ELMs also affect the
plasma performance, exhaust of helium ash and impurities, and global density of the
plasma. They play such an important role in the physics of well-confined plasmas that
understanding the physics of the ELM phenomenon and being able to control the ELM
behaviour is necessary for tokamak fusion reactor development. They are also the topic
of this thesis.

1.4 Outline of the thesis

The ELM phenomenon poses two main questions for the plasma physics research. First,
what is the triggering mechanism of the ELMs, i.e. what causes the plasma to lose a large
amount of energy and particles in a short burst ? Second, how can the ELM phenomenon
be affected by changing the plasma conditions or, more specifically, how can the ELMs
be reduced in size or eliminated completely ? This thesis tries to answer both of these
questions.

The method used to study the ELM phenomenon is magnetohydrodynamics or MHD.
MHD is a way to treat the plasma as a fluid whose motion is governed by the pressure of
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the plasma and electromagnetic forces. The collective treatment of plasma particles al-
lows global investigations of tokamak plasmas, as opposed to the local studies simulating
the motion of individual particles. In particular, MHD is a well-suited tool for study-
ing the equilibrium and stability properties of fusion plasmas. Chapter 2 gives a brief
introduction to the MHD theory and describes how the MHD theory is used to analyse
plasma equilibrium and stability properties in the study of the ELM phenomenon. The
equilibrium reconstruction taking self-consistently into account the so-called bootstrap
current is described. The concept of stability and a few instabilities most relevant to the
ELMs are introduced.

Chapter 3 gives an introduction to the ELM phenomenon itself. ELM types, as well
as a few other edge phenomena closely related to ELMs, are described. Experimental
observations of ELMs and the operational regimes of different ELM types are discussed.
A theoretical model for the ELMs is also introduced. This model will later be used
in more detailed investigations of specific ELMy regimes. Finally, a few experimental
methods that have been used in various tokamaks to control the ELMs are described.

Chapter 4 presents the results obtained in stability analyses of various ELMy plasmas.
It also combines the results from the publications relevant to this thesis. In publication 1,
the ELM model was tested for Type I ELMs in ASDEX Upgrade using experimental
data. The plasma pressure profile was given by the temperature and density profiles, and
the self-consistent equilibrium was calculated taking into account the bootstrap current.
The MHD stability analysis of the equilibria with varying amount of bootstrap current
showed that the plasma is indeed destabilised as the bootstrap current increases. This
observation agrees with the proposed model.

With certain changes in the plasma conditions, the large Type I ELMs are replaced by
smaller and more benign Type II ELMs. After the Type I ELM investigation, the analysis
was extended to Type II ELMs by investigating the changes in the edge plasma stability
due to the changes in plasma conditions that were experimentally required for Type II
ELMs. The differences between the stability properties of Type I and Type II ELMy
plasmas and how they can be used to explain the smaller amplitude of the Type II ELMs
were studied in publications 2 and 3. Publication 4 presents analyses of the edge stability
changes due to changes in the global plasma performance that is characterised by so-called
βp value. The stabilising effect of an increasing βp is investigated using artificial plasma
equilibria with varying values of core pressure. In some cases the ELMs can be avoided
without sacrificing the plasma performance. In Section 4.3, the complete suppression of
ELMs in the so-called quiescent H-mode is considered. The stability of the edge plasma in
ELM-free operation is compared with the normal Type I ELMy operation and a possible
mechanism for the ELM suppression is discussed.

In addition to operating the plasma in such conditions that the large ELMs are avoided,
an active control of ELMs is another possible way to reduce the ELM size. In Section
4.4, one such method, launching small pellets to actively trigger ELMs, is discussed. The
edge stability properties of plasmas with intrinsic high-frequency ELMs, intrinsic low-
frequency ELMs and pellet-triggered high-frequency ELMs are compared. The results of
the analysis can explain why the intrinsic and pellet-triggered high-frequency ELMs are
similar to each other, while the intrinsic low-frequency ELMs are significantly different.

In publication 5, the stability analyses of ASDEX Upgrade ELMs were supplemented
by a stability analysis of ELMs in JET. The emphasis of the analysis was on how the
edge stability is altered using various external methods such as gas puffing, heating and
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impurity injection. The stability changes were used to explain the changes in the observed
ELM behaviour, especially in the transition from Type I to Type III ELMs.

The final chapter collect all the results from the analyses of ELMs and draws a com-
prehensive picture of the ELM phenomenon within the framework of linear MHD stability.
Also a few guidelines for the future work are given.

During the course of this work, the stability calculations were done using well-established
stability codes such as MISHKA, GATO and IDBALL. Since the bootstrap current plays
an important role in the ELM triggering, the equilibrium code GRETA was modified to
calculate the equilibrium takes into account the bootstrap current self-consistently.
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Chapter 2

Methods

2.1 Magnetohydrodynamics

Plasma is composed of charged particles, electrons and ions. In a magnetic field, a charged
particle gyrates around the field line, but is free to move along it. In principle it is possible
to derive all the plasma phenomena from the behaviour of the individual particles and
their interactions. However, in tokamak fusion plasmas, the number of particles is so high
(> 1020 electrons and ions in a medium size tokamak) that in practise it is impossible to
follow the motion of all the particles individually. Magnetohydrodynamics or MHD is a
way to describe plasma as a fluid that is controlled by electromagnetic forces. This makes
it possible to describe macroscopic phenomena of the plasma without having to know the
position and the velocity of individual particles.

The MHD description of plasma can be divided into two approaches depending on how
the resistivity of plasma is treated. In the so-called ideal MHD, the plasma is considered
to be perfectly conducting in contrast to the resistive MHD where this assumption is
relaxed. The finite resistivity complicates the theoretical treatment of plasma and makes
the numerical computations more expensive in terms of computer resources. Since a hot
plasma has very high electrical conductivity, most plasma phenomena relevant to fusion
reactors can be investigated using ideal MHD.

A characteristic dimension for MHD phenomena is the overall dimension of the plasma,
typically of the order of one meter. A characteristic time scale of ideal MHD is set by
the thermal velocity of the ions, i.e. VTi = (2Ti/mi)

1/2. This is the fastest velocity at
which the plasma as a whole can be moved. For typical tokamak fusion reactors, the
magnetic field (B) is 5 T, typical temperature (Ti,e) 10 keV and density (n) 2× 1020m−3.
Corresponding length and time scales for particle gyro motion as well as typical length
and time scales of MHD phenomena are given in Table 2.1. In addition, a few other
time scales which are needed in the derivation of ideal MHD equations are listed. The
electron plasma period is the time that it takes for a charge separation to neutralise.
For phenomena slower than the electron plasma period, the plasma can be considered
quasineutral, i.e. the local electron and ion densities are equal. Electron collision time is
the time that it takes to equilibrate particle energies to a Maxwellian distribution through
collisions. The electron and ion temperatures are equilibrated (i.e. Te ≈ Ti) within the
energy equilibriation time. Alfvé time is the time it takes for a hydrodynamic wave to
move through the plasma. The growth time of MHD instabilities is often normalised to
the the Alfvén time.

8



Table 2.1: Typical time and length scales of a tokamak plasmas. Deuterium ions are
assumed.
Scale Formula Numerical value

Electron gyro radius re = (meTe)
1/2/eB 4.8× 10−5 m

Ion gyro radius ri = (miTi)
1/2/eB 2.9× 10−3 m

Characteristic ideal MHD length a 1 m
Electron plasma period τpe = 2π(meε/ne

2) 7.9× 10−12 s
Debye length λd = VTe/ωpe 4.7× 10−5 m
Electron gyro period τce = 2πme/eB 7.1× 10−12 s
Ion gyro period τci = 2πmi/eB 2.6× 10−8 s

Electron-electron collision time τee = 7.4× 10−6T
3/2
e /n 1.2× 10−4 s

Energy equilibration time τeq = (mi/2me)τee 2.1× 10−1 s
Alfvén time τA = a(µ0ρ)

1/2/B 1.8× 10−7 s

In the MHD theory, it is essential that the plasma is collisional, i.e. the particles inter-
act frequently with each other. Without this assumption such quantities as temperature
or pressure of the fluid element can not be defined. On the other hand, if ideal MHD is
considered, plasma should not be too collisional, since it is assumed that the resistivity
of the plasma is small. Low resistivity allows to neglect such phenomena as resistive
diffusion and reconnection of magnetic field lines.

It turns out that the collision frequency in most plasmas of fusion interest is so low that
the plasma can not be assumed collisional in the direction parallel to the magnetic field
lines. This can be seen by comparing the electron-electron collision time with the ideal
MHD time in Table 2.1. However, since the charged particles gyrate around magnetic
field lines, they can be assumed to be “frozen” to the field lines. This means that, while
the particle motion is very rapid in the parallel direction, gyro-averaged perpendicular
particle motion is slow and, consequently, the collisional effects are fast compared with the
transport across the field lines, so that the perpendicular behaviour can be treated with
the fluid model. This allows treating most fusion plasmas with the ideal MHD theory in
the direction perpendicular to the magnetic field.

The parallel direction has to be treated differently. In open-ended systems the parallel
behaviour largely determines the overall confinement of the device. In toroidal systems, all
parallel gradients disappear quickly due to the large parallel transport. The only parallel
effect, the parallel sound waves, have usually very little effect on the macroscopic perpen-
dicular instabilities. Consequently, extending the region of validity of the MHD model to
lower collisionalities by considering only perpendicular phenomena is well justified.

However, at all times it is good to keep in mind the limitations of the MHD theory. For
instance, if the particle orbit radius is comparable to the gradient lengths of the plasmas,
averaging the particle position over the Larmor orbit is no longer justified and even the
perpendicular MHD has reached its limit of validity. For instance, in the region near the
tokamak plasma edge, where a steep pressure gradient exists, MHD theory is close to the
limit of validity and some effects caused by the finite ion gyro radius start to play a role
in the MHD stability of the plasma.

The detailed derivation of the ideal MHD equations starting from the particle picture
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of the plasma is given in the Appendix. The equations are:

∂ρ

∂t
+∇ · ρv = 0, (2.1)

ρ
dv

dt
− J×B +∇p = 0, (2.2)

d

dt

(
p

ργ

)
= 0, (2.3)

E + v ×B = 0, (2.4)

∇× E = −∂B
∂t
, (2.5)

∇×B = µ0J, (2.6)

∇ ·B = 0. (2.7)

The restrictions for using these equations can be summed up by three conditions.

1. The ion gyro radius must be small compared with the characteristic length scale of
the MHD phenomena.

2. The collisionality must be large in order to keep ion and electron temperatures equal
and to ignore the viscous effects.

3. The resistivity must be small to avoid resistive diffusion.

The first and the third condition are satisfied for most plasmas that are interesting from
the fusion point of view. Unfortunately, the second condition is not. The collisionality is
too low for the particle motion parallel to the magnetic field lines to be treated accurately
by ideal MHD. Fortunately, in toroidal devices, like the tokamak, this has little effect
on the equilibrium and stability of the plasma. Consequently, the ideal MHD model for
tokamak fusion plasmas can be used in most cases.

2.2 MHD equilibrium and stability

Macroscopic plasma instabilities are one of the key issues in the fusion research. Some
instabilities can lead to a complete loss of confinement and naturally have to be avoided
in a fusion reactor. Some instabilities cause less dramatic effects, but play an important
role in the plasma performance. MHD theory is a useful tool for the study of all these
instabilities. In this chapter, methods for reconstructing the plasma equilibrium and
analysing the stability of the equilibrium are described.

2.2.1 Tokamak equilibrium

For a static plasma (v = 0), the force balance in the ideal MHD momentum equation
(2.2) gives:

j×B = ∇p. (2.8)

Therefore, in the equilibrium B · ∇p = 0, and there can be no pressure gradients parallel
to the magnetic field. In a tokamak, the plasma pressure is the highest in the centre of the
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plasma and the lowest at the edge. Consequently, the pressure gradient points from the
edge to the centre everywhere, and the magnetic field has no radial (from the centre to
the edge) component. Instead it forms nested surfaces that can be labelled, for instance,
by their poloidal flux ψp that is defined as

ψp =

∫
Ator

B · dA, (2.9)

where the integration is carried out in an arbitrary toroidal cross section Ator that is
bounded by the flux surface. Since the flux surfaces are nested, the poloidal flux value
acts as a unique label for each flux surface. Therefore it can be used as a radial coordinate.
In an axisymmetric device such as tokamak, the poloidal flux is a function of only two
coordinates, the radial distance R from the toroidal axis and the vertical coordinate along
the toroidal axis z.

Combining Eq. (2.8) with Ampere’s law and using the axisymmetry of a tokamak, the
plasma equilibrium is defined by a simple equation derived by Grad and Shafranov [18,19]

R
∂

∂R

(
1

R

∂

∂R
ψp

)
+
∂2ψp

∂z2
= −4πµ0R

2p′(ψp)− µ2
0J(ψp)J

′(ψp), (2.10)

where p is the pressure, J is the poloidal current, and the prime denotes the derivative
with respect to ψp. This equation can be solved for ψp(R, z) that gives the magnetic
configuration of the plasma. However, it must be noted that since on the right hand side
both p′(ψp) and J(ψp)J

′(ψp) are functions of the poloidal flux, the equation can generally
be solved only iteratively. The pressure profile can be obtained from the temperature and
density profile measurements, but there is no direct way to measure the poloidal current
profile. Therefore, the current profile has to be reconstructed using indirect information.
In most cases, most of the plasma current is driven inductively using the central solenoid.
If the loop voltage created by the solenoid is not varied, the radial profile of the ohmic
current can be assumed to be identical to the conductivity profile. In plasmas with a
steep pressure gradient, in addition to the ohmic current the plasma itself can generate a
current called bootstrap current. Next, the bootstrap current and its inclusion into the
equilibrium calculation is described.

2.2.2 Bootstrap current

The bootstrap current is a parallel current driven by the plasma pressure gradient. It
originates from the momentum transfer between trapped and passing particles. In a
tokamak, the bootstrap current can contribute a significant part of the plasma current.

The bootstrap current was first predicted by Bickerton, Connor and Taylor in 1971 [20].
Since then, it has been observed in various experiments, like TFTR [21] and JET [22]. It
is useful in advanced tokamak operation since it provides a way to drive plasma current
non-inductively. In the edge stability and ELM physics, the bootstrap current plays an
important role providing a mechanism to destabilise current-driven MHD instabilities.

The physical mechanism of the bootstrap current generation is briefly described below.
A more complete presentation by Peeters can be found in Ref. [23].
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Particle Drift Orbits

In a magnetised plasma, the particles move rapidly along the field lines. In the direction
perpendicular to the magnetic field lines their motion is restricted to gyration around the
field line. If there is a gradient in the magnetic field, the particles with a perpendicular
velocity of v⊥ drift with a velocity [1]

vd =
1

2
ρjv⊥B×∇B/B2. (2.11)

Here ρj is the gyro radius of the particle and it includes the sign of the charge, i.e.
ρj = mjv⊥/(ejB). The toroidal magnetic field strength varies as B ∼ 1/R, where R is
the major radius. Since in a tokamak the magnetic field is predominantly in the toroidal
direction, the gradient points to the centre of the device. Consequently, the direction of
the drift is either up or down depending on the direction of the magnetic field and the
charge of the particle.

The total energy and the so-called magnetic moment µ of the particle are conserved
along its path. This means that if the strength of the magnetic field changes along the
field line, it is possible that at some point the particle is reflected. This is seen from the
definitions

E =
1

2
mv2

‖ +
1

2
mv2

⊥, (2.12)

µ =
mv2

⊥
2B

. (2.13)

(2.14)

If the magnetic field increases, the perpendicular velocity also has to increase in order
to keep the magnetic moment constant. Since the total energy does not change, this
causes the parallel velocity to decrease. Once it becomes zero, the particle is reflected.
Remembering that in a tokamak B ∼ 1/R, the magnetic field strength increases as
the particles follow the helical field lines and move towards the centre of the tokamak
(decreasing R). In the poloidal plane, the reflection happens as shown in Fig. 2.1.

The particles that have enough parallel kinetic energy that they can complete circular
orbits in the poloidal plane without being reflected are called passing particles. The
particles that are reflected can not reach the high field side of the plasma and are thus
called trapped particles.

Combining the drift caused by the magnetic field gradient and the reflections, the
orbits in the poloidal plane look like in Fig. 2.2. Let us assume a particle with ∇B drift
upwards and initial velocity downward on the outboard side of the equatorial plane. The
particle starts its orbit from the midplane. As it moves downwards along the field line,
it drifts upward because of ∇B. The drift causes it to move inwards from the original
flux surface. If the particle does not have enough parallel velocity, it is reflected at some
point. After the reflection, it moves upwards along the field line. The drift causes it to
move further inwards until it reaches the midplane. After that the upward drift moves
the particle towards its original flux surface. At some point, it is reflected again. Then
it moves again downwards along the field line and the drift moves it outwards until it
finally reaches the starting point. The particle with sufficient initial parallel velocity
is not reflected, but it does experience the same inward drift below the midplane and
outward drift above the midplane as the reflected particle.
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B

R

reflection

Figure 2.1: Particle reflection in a torus with circular flux surfaces and B ∼ 1/R.

Because of the resulting orbit shape, the trapped particles are sometimes called banana
particles. The width of the banana orbit is dependent on the initial parallel velocity and
the poloidal magnetic field through the relation

∆r = v‖0
mj

ejBθ

. (2.15)

This is equal to the gyro radius calculated for a particle of the initial velocity v‖0 at the
midplane and magnetic field of Bθ. Therefore, it is often called the poloidal gyro radius.

Using the parallel and perpendicular components of the particle velocity on the out-
board side of the midplane, the particle distribution can be displayed as in Fig. 2.3. The
pitch is defined as

v‖
v

and the pitch angle as arccos
v‖
v
, where the velocities are taken at

the outermost position of the particle orbit. The pitch determines whether the particle is
trapped or passing. The trapped-passing border can be approximated for a plasma with
circular cross-section. Since the magnetic moment is conserved,

v2
⊥
B

=
v2
⊥0

B min
. (2.16)

Since also the energy is conserved and at the reflection point v‖ = 0, it is possible to solve
for the magnetic field at the reflection point (Bb) yielding the relation

Bb

Bmin

= 1 +

(
v‖0
v⊥0

)2

(2.17)

Since the magnetic field strength varies as 1/R, the ratio of the maximum field to the
minimum field at minor radius r can be written as

Bmax

Bmin

=
R0 + r

R0 − r
, (2.18)
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b)a)

Figure 2.2: Particle orbits in a tokamak: a) a banana orbit, b) a passing orbit

a)

v

v

v
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trapped

passing passing

=   2ε

b)

v

v

v

vf

−1 10

=  2ε

Figure 2.3: Passing and trapped particles in the velocity plane for fixed energy. In a), the
radius of the half circle represents the number of particles in that pitch (v‖/v). In this
case, the distribution is homogeneous and there are equal number of particles for every
pitch. In b) the same distribution is shown with a pitch as the x-axis and the distribution
as the y-axis. The borderline between the trapped and passing particles (v‖/v =

√
2ε) is

shown in both pictures.

where R0 is the major radius of plasma. In order to have a reflection inside the plasma, a
particle has to fulfil the condition Bb < Bmax. Using Eqs. (2.18) and (2.17) this condition

14



can be written as(
v‖0
v⊥0

)
<

(
2r

R0 − r

)1/2

. (2.19)

Using v2 = v2
‖ + v2

⊥ the trapping boundary in velocity space can be written as(
v‖0
v0

)
critical

=

(
2r

R0 + r

)1/2

. (2.20)

Assuming large aspect ratio (R/r), the boundary can be approximated as(
v‖0
v0

)
critical

=
√

2ε, (2.21)

where ε = r/R.

Banana Current

If there is a pressure gradient in the plasma, the particles on banana orbits will generate
current that is parallel to the plasma current. Next, the generation of this so-called
banana current is explained.

Let us consider two particles on two adjacent banana orbits as in Fig. 2.4. At the
point where the orbits touch, the particles are moving in opposite directions along the
field lines. If there is a density gradient pointing left, there are more particles on the
inner orbit than on the outer orbit at the touching point. This can be interpreted as
“net velocity” in the direction of the particle on the inner orbit. Since the particles are
charged, the net velocity means that current is flowing at this point.

inner orbit
outer orbit

��������
��������

������ ���������
���������
���������

���������
���������
���������n

net velocity

B

q=+e

j

Bpol

Figure 2.4: Banana orbits that are touching each other result in net velocity parallel to
the magnetic field in the presence of a density gradient.

The average parallel velocity of trapped particles is approximately v‖,tp =
√
εvth. The

trapped particle density can be approximated by nt =
√
εn, where n is the total density.

Assuming homogeneous temperature and recalling the width of a banana orbit given in
Eq. (2.15), the net velocity at the point where the orbits meet is given by

nju‖j ≈
√
εvthmj

eBp

√
εvth

√
ε
dn

dr
= 2ε3/2 1

eBp

T
dn

dr
, (2.22)
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where the relation v2
th = 2T/m was used. When the electron and ion contributions

are combined, the current density is obtained. Since the electrons drift in the direction
opposite to the ion drift, the effects of ions and electrons on the parallel current add
together

j = −enu‖e + enu‖i = 4ε3/2 1

Bp

T

(
dn

dr

)
. (2.23)

Here n = ne = ni and T = Te = Ti is assumed. The direction of this current is parallel to
the plasma current, if dn/dr < 0, which is true practically always in a tokamak plasma.

The net velocity can be interpreted as a shift in the distribution function towards the
direction of the net velocity. In the velocity space this can be illustrated as in Fig. 2.5

v

v

trapped

Figure 2.5: The distortion of the trapped part of the distribution function due to the density
gradient.

In addition to the density gradient, also the temperature gradient contributes to the
banana current. It can be explained as follows. If there is a temperature gradient, the
particles that have higher temperature also have higher average parallel velocity. At the
point where the orbits touch, the velocity difference between the orbits creates net parallel
velocity just like in the case of a density gradient. Combining the net velocities of electrons
and ions, a current is obtained. As with the density gradient, the direction of the current
driven by the temperature gradient is parallel to the plasma current if dT/dr < 0, which
is again fulfilled in a tokamak where the temperature decreases from the core to the edge.

Passing Particles and Bootstrap Current Generation

The passing particles do not stay on one flux surface along their path either, but unlike for
the trapped particles, there is never ambiguity of the radial position of the particle at a
given poloidal angle. Therefore, even in the presence of a density or temperature gradient,
the passing particles do not contribute directly to the parallel current. However, due to
collisions particles scatter from trapped to passing orbits and vice versa. This causes some
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of the net parallel velocity of the trapped particles to be transferred to passing particles.
After the collisions, the distribution function smooths as illustrated in Fig. 2.6. It can be
seen that the entire distribution is shifted along the parallel velocity axis.

v v

trapped

v

trapped

v

scattering

Figure 2.6: Scattering smooths the velocity distribution function and shifts it in the parallel
direction.

In the end, the distribution functions of the electron and ion parallel velocities can be
illustrated with Fig. 2.7. The electron distribution function has shifted in the direction
opposite to that of the ion distribution function.

f

v

electrons
ions

trapping
boundary

Figure 2.7: The distribution functions of electrons and ions for parallel velocity.

This is still not the full picture. The electron distribution is affected by collisions
with much heavier ions, while the collisions with light electrons do not affect the ion
distribution. The result is that the net electron velocity turns in the same direction with
the ions. However, the velocity of the electrons remains smaller than that of the ions.
The difference between the velocities can be interpreted as current. This current is called
the bootstrap current and it is parallel to the magnetic field.

Bootstrap Current in Equilibrium Calculations

Since the bootstrap current is parallel to the magnetic field, it can not directly affect the
force balance (j×B = ∇p). However, it changes the toroidal and poloidal current profiles
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and influences the equilibrium through them. The bootstrap current can be taken into
account when solving the equilibrium from the Grad-Shafranov equation in the following
way.

A standard free-boundary, separatrix-defined equilibrium is determined as a solution
of the Grad-Shafranov equation, Eq. (2.10). Instead of solving the poloidal flux, the
equation can be written in the form of that defines the toroidal current density [1]:

jt =
µ0

4πR

dJ2

dψp

+ 2πR
dp

dψp

. (2.24)

The standard way of calculating a plasma equilibrium is to assume functions dJ2/dψp

and dp/dψp known, and to solve the flux ψp(R,Z) from Eq. (2.10) using iteration. The
function dp/dψp can usually be obtained from the experiments, but the poloidal current
function is generally not known. Therefore, some assumptions on the dJ2/dψp term have
to be made. One possibility is to make an educated guess for the shape of the profile (for
instance, using diagnostic information on the q-profile), and then scale the magnitude so
that

∫
jtdA = Ip is consistent with the experimental plasma current. The boundary value

of J is also restricted by the condition JB = 2πRBt/µ0. However, this is a relatively crude
method and usually can not recreate the smaller details of the actual current profile such
as the pressure gradient dependent bootstrap current.

An equilibrium including the bootstrap current can be solved from Eq.(2.10) by ex-
pressing dJ2/dψp in terms of the flux surface average 〈 j·B 〉/µJ . The averaged parallel
current 〈 j·B 〉 includes the inductively driven current, the bootstrap current, and all other
possible externally driven currents. In the following, the externally driven currents are
neglected and only inductive and bootstrap currents are considered. This is done only
for simplicity. If the profile of the externally driven currents were known, they could be
included in the formulation as well. The inductively driven contribution to 〈 j·B 〉/µJ
can be evaluated using the experimental resistivity profile, and the bootstrap current
contribution can be obtained using an analytical formula from the neoclassical theory.

First, let us write out the flux surface average of a function Q as

〈Q 〉 ≡
∫
Q

dS

|∇V |
=

∮
Q

2πR

|∇V |
ds. (2.25)

Here, V is the volume inside a flux surface, S is the area of the flux surface and ds is
a length element on the flux surface. They both are, of course, flux quantities. The
integration is carried out on the poloidal plane along flux surface ψp.

Using the definition of the poloidal magnetic field, Bp = |∇ψp|/(2πR)xθ, and the
Ampère’s law, it is possible to derive an expression for the toroidal current. It can be
written as

µ0I =

∮
B · ds =

∮
|∇ψp|
2πR

ds =
dψp

dV

∮
|∇V |2

(2πR)2

2πR

|∇V |
ds

=
dψp

dV

1

4π2

〈
|∇V |2

R2

〉
. (2.26)

The flux surface averaged current 〈 j·B 〉 can be written in two parts. Using the
expression for the toroidal current (2.26) the poloidal contribution can be written as

〈Bpjp 〉 =
1

4π2

∮
|∇ψp|
2πR

|∇J |
2πR

2πR

|∇V |
ds
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=
dJ

dψp

dψp

dV

∮
|∇ψp|
2πR

ds =
dJ

dψp

dψp

dV
µ0I =

dJ

dψp

µ0I
2 µ04π

2

〈 |∇V |2/R2 〉
. (2.27)

The toroidal magnetic field is given by Bt = µJ/(2πR). Multiplying this with the toroidal
current density given in Eq. (2.24) and taking the surface average gives the toroidal
contribution

〈Btjt 〉 =

〈(
µ0

4πR

dJ2

dψp

+ 2πR
dp

dψp

)
µ0J

2πR

〉
=

µ2
0

4π2
J2 dJ

dψp

〈
1

R2

〉
+ µ0

dp

dψp

J. (2.28)

Adding the poloidal and toroidal contributions of flux surface averaged parallel current
together and combining terms yields

〈 j·B 〉 = 〈B2 〉 dJ
dψp

+ µ0J
dp

dψp

, (2.29)

where 〈B2 〉 is the surface averaged squared magnetic field and its components are

〈B2 〉 = µ0(LpJ
2 + LtI

2), 〈B2
t 〉 = µ0LpJ

2, 〈B2
p 〉 = µ0LtI

2, (2.30)

where Lp and Lt are the poloidal and toroidal inductance coefficients

Lp ≡
µ0

4π2
〈 1/R2 〉, Lt ≡

4π2µ0

〈 |∇V |2/R2 〉
. (2.31)

Using (2.29) the expression dJ/dψp can be eliminated from the Eq. (2.24), and we obtain

jt = 2πR

{
B2

t

〈B2 〉
〈 j·B 〉
µ0J

+
(
1− B2

t

〈B2 〉

) dp

dψp

}
. (2.32)

However, jt still depends on J itself as well as on the toroidal current I (through 〈B2 〉).
They can be solved, if 〈 j·B 〉/µ0J and dp/dψp are given. Taking the flux surface average
of (2.32), it is possible to write an equation for dI/dV . Similarly, taking (2.29), solving
for dJ/dψ and using the definition of 〈B2

t 〉, (2.30), it is possible to write an equation for
dJ/dV . These two ordinary differential equations are

dI

dV
=

〈B2
t 〉

〈B2 〉
〈 j·B 〉
µ0J

+
(
1− 〈B2

t 〉
〈B2 〉

) dp

dψp

(2.33)

1

2

dJ2

dV
= LRI

〈B2
t 〉

〈B2 〉

{
〈 j·B 〉
µ0J

− dp

dψp

}
. (2.34)

Here LR is the ratio of the inductances Lt/Lp. The two differential equations for I and J
have only terms containing dp/dψ and 〈 j·B 〉/µ0J .

Let us now consider the functions 〈 j·B 〉/µ0J and dp/dψp as given, and 〈B2 〉 as
defined by Eq. (2.30). The solution of the nonlinear two-point boundary value problem
described by (2.33) and (2.34) leads to a complete determination of the right-hand side
for the Grad-Shafranov equation, Eq. (2.10). For the solution, two boundary conditions
are needed. It is conventional to choose I = 0 on the magnetic axis. On the plasma
boundary, the poloidal current density has to vanish and, thus, J2

p = (Bt,vacR0)
2.
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If also the total plasma current Ip is prescribed (as the measured value), there are more
boundary conditions than dependent variables, and therefore an additional free parameter
Cs is needed. It is used to adjust the amount of parallel current contribution to the
equilibrium through I and J (Eqs. (2.33) - (2.34)). In all equations, 〈 j·B 〉 is replaced by
Cs · 〈 j·B 〉, and the equations (2.33) and (2.34) are augmented by the differential equation

dCs

dV
= 0, (2.35)

which means that the scaling of 〈 j·B 〉 is constant throughout the plasma. Now there
are 3 variables and 3 boundary conditions, and the boundary value problem has a unique
solution.

In order to get the plasma equilibrium, instead of dJ2/dψp now only the flux surface
averaged parallel current (〈 j·B 〉/µ0J) has to be prescribed, because dJ2/dψp is obtained
from the solution of the differential equations(2.33) - (2.35). Since analytical expressions
for the flux surface averaged bootstrap current 〈 j·B 〉bs/µ0J exist, this makes the boot-
strap current equilibrium reconstruction possible. Part of the parallel current is due to the
inductively driven current 〈 j·B 〉ind/µ0J . In a normal H-mode operation, where the cur-
rent has diffused into equilibrium, the inductively driven current obeys the conductivity
profile (∼ T

3/2
e ) and can be considered known as well.

At first look, the free parameter Cs seems unphysical. However, since it multiplies the
parallel current, it can be looked at as a varying loop voltage U that is used to control
the total current in a tokamak. Since parallel current density is proportional to the loop
voltage and conductivity σ as j‖ ∼ Uσ, purely inductive current can now be accurately
solved in the equilibrium reconstruction by knowing the total current and the conductivity
profile.

However, for bootstrap current, the situation is more complicated. In a general case
Cs 6= 1, which means that, in the equilibrium, the parallel current is not equal to the
value given by the neoclassical theory for the bootstrap current. However, if we use Cs to
scale only the inductively driven part of the parallel current (and multiply the bootstrap
current by 1), we retain the requirement of 3 variables and 3 boundary conditions for the
unique solution, but at the same time obtain the correct bootstrap current. This is in
fact exactly what is done in practise when a tokamak is operated. The loop voltage of
the transformer is varied to match the total current with the preset value. This scales the
inductively driven current but does not affect the bootstrap current.

Four analytical expressions for the bootstrap current 〈 j·B 〉bs/µ0J with slightly dif-
ferent assumptions on the geometry and the collisionality can be found in the literature:
the Hirshman model and the Harris model, both in [24], the Wilson model in [25] and
Sauter model in [26]. A common feature in all the models is that the bootstrap current
can be expressed with a formula that depends only on the pressure and temperature pro-
files and the plasma shape. The profiles can be obtained from the experiments, and the
plasma shape is solved in the iterative process of the equilibrium reconstruction. Com-
bining the above boundary value problem, Eqs. (2.33) - (2.35), with the solving of the
Grad-Shafranov equation allows self-consistent equilibrium reconstruction that takes into
account the bootstrap current. The equilibrium is solved iteratively, solving the current
profile using the previous equilibrium and the boundary value problem, and then solving
for the new equilibrium using the new current profile.

While there are some differences in the results of the different models, the general
behaviour is quite similar in all of them. In the experimental cases to be studied in later
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chapters, the Wilson model is used for Type I ELMs in ASDEX Upgrade. In all the other
analyses of ASDEX Upgrade plasmas, the more general Sauter model (that was published
after the Type I ELM analyses were completed) is used. It should be noted that, in all
the analyses where different equilibria are compared with each other, only one model is
used consistently.

2.2.3 Important MHD equilibrium quantities

Before continuing, we define a few quantities that play an important role in the MHD
stability analysis. They can be easily calculated once the equilibrium is solved.

One of the most crucial quantities affecting the tokamak plasma stability is the so-
called safety factor or q that is defined as

q(ψp) =
1

2π

∮
rBtds

RBp

. (2.36)

The integration is carried out on the poloidal plane along a flux surface ψp. In an ordinary
H-mode tokamak equilibrium, the safety factor grows monotonically from the centre of
the plasma towards the edge. If the plasma has a separatrix, the safety factor has a
singularity there (Bp = 0 at x-point).

The q-value can be differentiated with respect to the radial co-ordinate r. This gives
the magnetic shear that is defined as

s =
dq

dr

r

q
. (2.37)

The magnetic shear describes how the magnetic field lines are sheared from each other at
a given location.

Another important quantity is the so-called β-value that measures the ratio of the
plasma pressure to the magnetic pressure. It is defined as

β =
p

B2/(2µ0)
, (2.38)

where p is the pressure and B is the magnetic field. Instead of the above local definition
of β, usually a global or volume averaged β-value is used.

In addition to the total β, a quantity called the poloidal β is defined as

βp =
2µ0 < p >

< B2
p >

, (2.39)

where Bp is the poloidal magnetic field. From the definition of βp it is easy to see whether
the tokamak is dia- or paramagnetic. If βp > 1, the efficiency of the magnetic confinement
is better than if only the poloidal field was present. This means that, in addition to the
force jt × Bp, another inward pointing force exist. This is, of course, jp × Bt. In order
for this vector to point inwards, the poloidal current has to be chosen so that it reduces
the magnitude of the toroidal magnetic field. In this case, the plasma is diamagnetic.
Conversely, if βp < 1, the tokamak is paramagnetic, and the efficiency of the confinement
is worse than if βp = 1.
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2.2.4 MHD instabilities

A hot plasma, with a large current running through it, is a large source of free energy. If
the confinement of the plasma is lost, this energy is deposited onto the walls of the device
in a very short time and can cause serious damage. Therefore, it is very important to
keep the plasma stable so that a small perturbation from the equilibrium does not lead
to a complete loss of confinement, a so-called disruption.

However, instabilities whose growth can be limited to a small region of the plasma,
can be tolerated in the plasma operation. They increase the transport of particles and
energy out of the plasma, but do not lead to a catastrophic end of a discharge. While
the increase of energy transport always degrades the plasma confinement, sometimes the
increase in particle transport can even be beneficial, for instance, to remove helium ash
from the plasma. Increased transport due to small instabilities can also prevent other
more destructive instabilities from developing. Examples of such non-catastrophic MHD
instabilities are sawtooth crashes in the centre of the plasma and neo-classical tearing
modes localised on surfaces with rational values of q. Also the ELMs studied in this
thesis are in this category. They degrade the plasma confinement, but do not usually lead
to a disruption. The plasma recovers after each ELM back to its previous state and stays
there until the next ELM occurs.

In this section, the linear theory of the MHD stability is described. Two instabilities,
peeling and ballooning modes, are considered more closely, because they play a crucial
role in the ELM-model presented in Ch. 3.

The Concept of Stability

The equilibrium introduced earlier in Eq. (2.8) means that all forces in the system are
balanced. However, it does not guarantee that the system will return to the equilibrium
state if it is perturbed from it. If a small perturbation causes the system to depart further
from the original equilibrium, the system is said to be unstable. If the system returns
to the equilibrium after the perturbation, it is said to be stable. Figure 2.8 illustrates
the mechanical equivalent of the stability and instability. If the system is at the border
between stability and instability, it is called marginally stable.

a) b) c)

Figure 2.8: a) A stable, b) an unstable, and c) a marginally stable equilibrium.

In a stability analysis of a plasma, the plasma is assumed to be in an equilibrium,
and it is disturbed by a small perturbation. The stability of the plasma is determined
by its response to the perturbation. If the perturbation grows, the plasma is unstable. If
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the perturbation only leads to oscillations near the equilibrium, the plasma is stable for
the given perturbation. However, this determines only the stability against a particular
perturbation. Only if the plasma is stable against all possible perturbations, it can be
considered stable. Except for a few special cases, proving stability analytically is very dif-
ficult. Usually, numerical methods have to be used and, of course, the stability for infinite
number of different perturbations can not be tested. Therefore, various approximations
are used to simplify the analysis.

Linear Analysis

In the linear analysis, the equilibrium quantities, by definition, do not depend on time
and are indicated by the subscript “0”. The perturbed quantities are time-dependent and
are marked with the subscript “1”. The perturbed quantities are assumed to be much
smaller than the equilibrium quantities, i.e. Q(r, t) = Q0(r)+Q1(r, t), Q1/Q0 � 1, where
Q can be, for instance, the magnetic field B or pressure p. The linear analysis means that
all terms that contain non-linear second order terms (Q1(r, t) ·Q1(r, t)) are considered so
small that they can be neglected.

The perturbation of the plasma position, or the plasma displacement, is denoted with
a vector ξ(r, t). In the equilibrium, the plasma velocity is zero, v0 = 0. The perturbed
velocity is defined as

v1 =
∂ξ

∂t
. (2.40)

Neglecting the second order terms in the mass conservation equation (2.1), the energy
relation (2.3), and in Faraday’s law (2.7), and integrating with respect to time, we get

ρ1 = −∇ · (ρ0ξ),

p1 = −ξ · p0 − γp0∇ · ξ,
B1 = ∇× (ξ ×B0). (2.41)

Substituting these quantities into the momentum equation (2.2), gives

ρ0
∂2ξ

∂t2
= j0 ×B1 + j1 ×B0 −∇p1 ≡ F(ξ), (2.42)

F(ξ) =
1

µ0

(∇×B0)×B1 +
1

µ0

(∇×B1)×B0 +∇(ξ · ∇p0 + γp0∇ · ξ). (2.43)

The function F(ξ) is called the force operator.
Equation (2.42) can be used to determine how the plasma state develops in time for

a given perturbation. However, most of the time it is not the actual time development
that is of interest, but only the stability of the plasma against all perturbations. Using
Eq. (2.42) to test the plasma response to all possible perturbations is very difficult and
better suited methods have to be used.
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Eigenvalue Problem Formulation

The linear stability can be studied by assuming that the instabilities grow exponentially
(because an exponential function is a solution to Eq. (2.42)). All perturbed quantities
can then be written as

Q1(r, t) = Q1(r)e
−iωt. (2.44)

The perturbed momentum equation (2.42) now becomes

−ω2ρ0ξ = F(ξ). (2.45)

Equation (2.45) can be treated as an eigenvalue problem for the eigenvalue ω2. Once the
eigenvalue is solved, the stability of the plasma is known. If ω2 is negative, the plasma is
unstable and, correspondingly, if it is positive, the plasma is stable. The transition from
stability to instability occurs when ω2 = 0.

It can be shown [16] that the force operator is self-adjoint. This property allows to use
the energy principle where the change of the potential energy of the system is minimised.
Since the energy is conserved, a negative change of the potential energy corresponds a
positive change in the plasma kinetic energy. This is naturally an unstable situation.
Using the energy principle, the information about the growth rate of the instability is
lost, but usually the determination of the stability is more important than the actual
growth rate of the instability. The energy principle can be used by taking the inner
product of Eq. (2.45) with ξ∗ and integrating over the plasma volume, resulting

ω2 =
δW (ξ∗, ξ)

K(ξ∗, ξ)
, (2.46)

where

δW (ξ∗, ξ) = −1

2

∫
ξ∗ · F(ξ)dr

= −1

2

∫
ξ∗ ·

[
1

µ0

(∇×B1)×B0 +
1

µ0

(∇×B0)×B1

+∇(γp0∇ · ξ + ξ · ∇p0)

]
dr,

K(ξ∗, ξ) =
1

2

∫
ρ0|ξ|2dr. (2.47)

The function δW can be interpreted as the change in the potential energy associated
with the perturbation ξ. It is equal to the work done against the force F(ξ) with the
displacement ξ. The stability of the plasma can be determined from the change of the
potential energy δW . Only if

δW (ξ∗, ξ) ≥ 0 (2.48)

for all perturbations, the plasma is stable. This is equivalent with the earlier condition
ω2 ≥ 0. If there exists any (allowable) perturbation that makes the potential energy
negative, the plasma is unstable. So, in order to know the stability of the plasma, δW
must be minimised with respect to ξ. The minimum of δW then determines the stability.
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Using the vector identities ∇ × (B ×A) = B · ∇ ×A −A · ∇ × B and ∇ · (φA) =
φ∇ ·A+A · (∇φ) and the divergence theorem, the change of the potential energy can be
written as

δW =
1

2

∫
dr

{
|B1|2

µ0

+ γp0|∇ · ξ|2 − ξ∗ · (j0 ×B1) + (ξ∗ · ∇p0)∇ · ξ
}

−1

2

∫
dS(n · ξ∗)

(
p1 −

B0 ·B1

µ0

)
, (2.49)

where n is the unit vector normal to the surface. If there is no vacuum region around the
plasma, the surface term vanishes. With the vacuum region (but no surface currents or
jumps in the pressure), this term can be written as

δWvacuum =
1

2

∫
vac

dr
|B1|2

µ0

, (2.50)

and represents the energy transferred from plasma to the vacuum region.
The vacuum term is always positive definitive and, thus, stabilising. It is minimised

by setting the change of the magnetic field in the vacuum region zero. If there are no
currents at the boundary, all potentially destabilising effects are included in the fluid term
and it will be looked at more carefully.

It has been shown [27] that the fluid term can be written in an intuitive form

δWF =
1

2

∫
plasma

dr

[
|B1,⊥|2

µ0

+
B2

0

µ0

|∇ · ξ⊥ + 2ξ⊥ · κ|2 + γp0|∇ · ξ|2

−2(ξ⊥ · ∇p0)(κ · ξ∗⊥)− j‖(ξ
∗
⊥ × b) ·B1,⊥

]
, (2.51)

where b = B/B, κ is the curvature vector of the magnetic field κ = b ·∇b, and ξ⊥ is the
component of ξ that is perpendicular to the equilibrium magnetic field. The terms can be
interpreted as follows. The |B1,⊥|2 term is the energy required to bend the magnetic field
lines. The second term represents the energy required to compress the magnetic field.
The third term is the compressional energy of the plasma. These three terms are always
stabilising. The last two terms can be either stabilising or destabilising. The instabilities
caused by the fourth term are called pressure-driven modes, because ∇p is the source of
free energy. The last term represents current-driven modes. Here the source of free energy
is the parallel current density j‖.

Usually, the minimisation of δW has to be done using numerical methods. For that
purpose the displacement ξ is often Fourier analysed and given in form

ξ(r) = ξ(r)ei(mθ+nφ), (2.52)

where m and n are called poloidal and toroidal mode numbers, respectively.
Before going to the numerical investigation of experimental plasmas, two important

ideal MHD instabilities relevant to ELMs are discussed.

Peeling Modes

Peeling modes are kink-type instabilities occurring in the edge region of the plasma [28,
29]. In a peeling mode, the edge plasma ’peels’ off from the rest of the plasma. The
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destabilising free energy comes from the last term of (2.51) and, therefore, the peeling
modes are said to be current driven modes. The peeling modes have typically low or
intermediate toroidal mode numbers (n), i.e. n = 1− 10. The poloidal mode number (m)
depends on the rational surface at which the peeling mode is localized, so that q = m/n.
Due to the low mode numbers, the wavelength is long.

From the fourth term of (2.51)) it is easy to see that if the average curvature on a flux
surface is favourable (

∫
[(b · ∇b) · ∇p]dr < 0), the pressure gradient has stabilising effect

on the peeling modes because there is little variation in |ξ| with the poloidal angle due to
the long wavelength.

In the H-mode plasma edge, the turbulence is suppressed and a steep pressure gradient
builds up. The steep gradient region is often called the pedestal region. As described in
section 2.2.2, a pressure gradient generates bootstrap current. Therefore, in the pedestal
region, there is also higher current density than in the surrounding plasma. The destabil-
ising potential energy is localized to the edge region, where the current density gradient
is large and, consequently, also the instability is localized to this region. The simplified
radial structure of a perturbation that destabilises peeling modes is shown in Fig. 2.9.
The instability increases the plasma transport at the edge, and causes the pressure profile
to flatten. The edge current density drops due to lowered conductivity and decreased
bootstrap current (proportional to the pressure gradient). As the edge current density
gradient decreases below the stability limit, the plasma is stabilised again. The peeling
mode effects are usually limited to affect only the edge region.

ξ
r

a0 r
Figure 2.9: The radial structure of a perturbation that can destabilise peeling modes.

Ballooning Modes

The ballooning modes are pressure-driven instabilities that can only occur in a toroidal
device. The destabilising energy comes from the fourth term of Eq. (2.51). The modes
are localized to the region of unfavourable curvature (the curvature of the plasma and
the pressure gradient point in the same direction, i.e., (b · ∇b) · ∇p > 0) in order to
minimise the stabilising effect of the favourable curvature. Figure 2.10 shows a typical
mode structure for a perturbation that destabilises a ballooning mode. In order to be
localised on the unfavourable curvature region, the amplitude variation along the field
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line must be maximised. Therefore, the most unstable ballooning modes typically have
high toroidal mode numbers [30]. The mode structure is such that there are very fine
structures in the poloidal direction, but in the toroidal direction the wavelength is long.
In a tokamak, the toroidal magnetic field is much stronger than the poloidal field. Thus,
along the magnetic field line, the mode structure changes slowly, and the stabilising energy
from the field line bending is minimised.

In determining stability against ballooning modes, the stabilising field line bending and
the destabilising fourth term of (2.51) (pressure gradient drive) compete with each other.
For circular plasmas, this means that the ballooning modes are stabilised by the shear
of the magnetic field (s = rq′/q). The stabilising effect can be understood by following
two magnetic field lines that are only slightly apart in the radial direction. Therefore the
mode structure must be almost the same on both field lines. As the field lines are followed
around the torus, if there is shear in the magnetic field, the distance between field lines
starts growing. This means that in regions of strong shear the mode can not be entirely
localized on the unfavourable side and the destabilising energy is reduced. On the other
hand, low shear allows larger radial mode structures to stay together on adjacent field
lines. The net effect is that the increasing magnetic shear raises the ballooning stability
limit for given pressure gradient.

It turns out that in addition the stable region of high shear and low pressure gradient,
there is a second region of stability as well [80]. This stable region has very low shear and
high pressure gradient. The reason for this so-called second stable region is the following.
What stabilises the ballooning mode is not actually the global shear, but the local shear
in the region where the ballooning mode is localised. This region is the outboard side of
the midplane, since there the magnetic shear is most unfavourable. When the global shear
is lowered close to zero, the shear on the outboard side becomes negative. The more the
local shear varies between the inboard and outboard sides of the flux surface, the more
negative the outboard side shear becomes. Since the local shear is determined by the
local toroidal current density (the higher the current density, the lower the shear), a large
variation of toroidal current density on a flux surface creates also a large variation of the
local shear. Recalling from Eq. (2.24) that jt ∼ Rp′, we can see that a large pressure
gradient creates a large variation of the local shear on a flux surface. Therefore, when
the global shear is close to zero, the stability of the plasma against the ballooning modes
is improved by increasing the pressure gradient. Unfortunately, the access from the high
shear low pressure gradient region to the second stability region for circular plasmas is
closed, i.e. there is an unstable region between the two stable regions, see Fig. 2.11

Plasma shaping changes this situation. For strongly shaped plasmas, low shear can
open the access to the region of high pressure gradient with ballooning stability. The
reason for the stabilising effect of the plasma shaping is the following. If we follow a
magnetic field line once around the poloidal plane, in plasma with circular cross-section,
the distance the field covers in the region where the curvature is favourable is the about the
same as in the region where the curvature is unfavourable. The average curvature is then
neither favourable nor unfavourable. In carefully shaped plasma, however, it possible that
the distance covered in the region of favourable curvature is longer than in the region of
unfavourable curvature. The average curvature is favourable which improves the plasma
stability against the ballooning modes. An example of the shaping that makes the average
curvature more favourable is the increase of the plasma triangularity.

A numerical analysis of the ballooning stability yields a stability diagram depicted in
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z

Figure 2.10: The mode structure of a ballooning mode. The mode is localized to the
unfavourable region (low magnetic field side) of the plasma.

Fig. 2.11. For circular plasmas, there is no access from the first stable region (low p′, high
s) to the second stable region (high p′, low s), but when the plasma is strongly shaped
(increased elongation and triangularity) [31], the stable regions become connected and
the access to the second stable region is opened. The access to the second stable region
would make it possible to achieve high pressure values, and to operate the tokamak with
high β. The second stability access also plays a role in the edge stability and affects the
ELMs.
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Figure 2.11: Stability diagram of the ballooning mode [1]. The quantity α =
−(2µ0r

2p′)/(R0B
2
pol) is a measure of the pressure gradient, and s = rq′/q is the aver-

age magnetic shear. The shaded area on the left is the first stable region, and the shaded
region on the right is the second stable region. The dashed line represents a case where
the access to the second stability region is opened.
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2.2.5 Numerical tools

Several codes have been developed for both solving the plasma equilibrium and analysing
the stability of the equilibrium against MHD instabilities. In this thesis, GRETA code
that uses the methods described in Sec. 2.2.2 for the self-consistent equilibrium calculation
is used for ASDEX Upgrade plasmas. In GRETA, the plasma boundary is determined by
the poloidal field coil currents. For JET plasmas, JETTO [32] code is used. JETTO is a
transport code for energy, particles and current. In this case, the temperature and density
profiles are kept fixed to the experimental ones and the current is allowed to diffuse to an
equilibrium.

The stability against modes with low to intermediate toroidal mode numbers (n) is
analysed using GATO [33] and MISHKA [34]. GATO is used to analyse ASDEX Upgrade
plasmas and MISHKA to analyse JET plasmas. The codes use slightly different numerical
approaches to the stability problem, but the basic idea is the same in both codes.

The codes solve for the ideal stability of the plasma in the following way. The starting
point is the minimisation of the potential energy given by Eq. (2.49). By using a Galerkin-
type expansion, the perturbation can be written as ξ =

∑
i aiφi(x), where φi(x) are the

finite elements at location x. It is then possible to minimise δW by setting ∂δW/∂ai =
0. By discretising the plasma on a grid, the eigenvalue problem (Eq. (2.46)) is now
transformed into a matrix form AV = ω2BV , where A and B are matrix representations
of W and K, and V is the vector of coefficients ai. The solution to the matrix eigenvalue
problem is obtained by ordinary matrix inversion. From the point of view of computing
this part is the most demanding. The details of the numerical optimisation are, however,
beyond the scope of this thesis.

GATO runs are typically carried out on a 160x320 or 200x400 grid in order to achieve
sufficient convergence. The solution for the most unstable displacement ξ can be Fourier
analysed (ξ(x) = ξ(r)e−i(nφ+mθ), where n and m are the toroidal and poloidal mode
numbers).

For MISHKA runs, the number of poloidal harmonics and radial grid points are speci-
fied. In most cases, 100 radial points are sufficient for convergence, but with very localised
modes with high n, 200 radial points are used. The needed number of poloidal harmon-
ics m depends on the investigated toroidal mode number n and the safety factor at the
edge qa with the relation m=nqa. Both codes can pack radial grid points in the region of
interest, for instance, near rational flux surfaces or the edge of the plasma.

A few selected equilibria have been analysed using both codes for edge instabilities [35].
It was found that at low toroidal mode numbers results agreed reasonably well, but as
the mode number increased, the results started to diverge from each other. It is still
unclear, whether the reason for differences is in the transform of the equilibria, which is
not straightforward near the separatrix, or in the stability codes themselves.

The n=∞ ballooning stability is studied using GRETA (Type I ELMs in ASDEX Up-
grade) and IDBALL (all other cases). Both codes use similar methodology by expanding
the eigenfunction in powers of 1/n [36]. The expansion allows solving for the ballooning
stability independently on each flux surface and is therefore considerably faster than the
low-n analyses with GATO or MISHKA.

29



Chapter 3

Edge Localized Modes

3.1 Introduction

The simplest way to consider the transport of particles and energy perpendicular to the
magnetic field lines is to consider a linear device with a modest temperature gradient. Due
to collisions particles on adjacent gyro orbits exchange energy, and heat is transported
from the hot centre of the plasma to the cold edge. This is called “classical” transport.
In a torus, transport is enhanced by the banana orbits that are much wider than the
gyro orbits. Consequently, the collisional transport in a torus is higher than the classical
transport and it is called “neo-classical” transport. Since collisions are always present, the
confinement in a tokamak can never exceed the neo-classical level. The ions in plasmas
with only ohmic heating can reach the neo-classical confinement regime.

However, when the plasma is externally heated and the temperature gradient becomes
steeper, the confinement becomes significantly worse due to the so-called “anomalous”
transport. Compared to classical or neo-classical transport, it is usually orders of mag-
nitude faster. The anomalous transport is driven by plasma turbulence. The plasma
operating regime where anomalous transport is dominating throughout the plasma is
called low confinement mode or L-mode.

A great advance in tokamak research was made, when it was discovered that increasing
heating of the plasma above a certain threshold improves the confinement considerably
[37]. The turbulence then becomes suppressed in the edge region. Since the confinement
improvement is not global, the region where turbulence is suppressed is called a transport
barrier. The improved confinement operating regime is called high confinement mode or
H-mode.

In H-mode plasmas, short periodic bursts of plasma are often observed. They are
called Edge Localized Modes or ELMs. The ELMs are usually detected most easily by the
increased radiation coming from the divertor region (the so-called divertor Dα-radiation).
The radiation is produced when the particles released from the edge plasma during the
ELM burst collide with neutral atoms that are abundant near the divertor. The collisions
excite the atoms and their de-excitation is observed as radiation. Figure 3.1 shows ELMs
in a typical H-mode shot in ASDEX Upgrade. In addition to the Dα-signal, the ELMs
manifest themselves in the edge line-averaged density from the laser-interferometer and
the electron temperature on the top of the edge transport barrier from electron cyclotron
emission measurements. As can be seen in the figure, when an ELM occurs, the plasma
confinement in the edge region is lost and the temperature and density on the top of the
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Figure 3.1: The Dα-signal together with line-averaged electron edge density and electron
temperature at radius ρ = 0.97, (ρ =

√
ψN , ψN is the normalised poloidal flux) of ASDEX

Upgrade discharge #15875. Each peak in the Dα-signal represents an ELM.

edge transport barrier decrease rapidly followed by a slow recovery.
The ELM crash does not usually disturb the confinement in the core plasma as can be

seen in Fig. 3.2, where the relative change in electron temperature caused by the ELM
crash is plotted as a function of radius. However, in advanced tokamak operation with
an internal transport barrier (ITB), a large ELM can cause the loss of the barrier.

3.2 The importance of the ELM phenomenon

The ELMs have a degrading effect on the plasma confinement but, on the other hand,
they help to remove impurities and helium ash from the plasma. They also prevent the
density of the plasma from rising too high and causing a disruption. Stationary and clean
H-mode plasmas without ELMs have been difficult to achieve. Even though in ELMy H-
mode it is not possible to keep the confinement as high as in some ELM-free operations,
like the hot-ion mode in JET [11], its stable steady state operation and good impurity
exhaust in long pulses are superior to other operating regimes. Therefore, ELMy H-mode
has been chosen as the standard operating mode for ITER.

Probably the most harmful consequence of the ELMs is the erosion of the divertor
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Figure 3.2: Relative change in the electron temperature during an ELM. Fast ECE mea-
surements for discharge #15875 on ASDEX Upgrade at 4.010 s and 4.011 s have been
used to calculate the radial profile of (Te,preELM − Te,postELM/Te,preELM).

plates. From the point of view of the lifetime of the divertor plates, the ELM bursts are
much more destructive than the continuous flow of particles and energy. In ITER, the
ELM energy may exceed the threshold for divertor target ablation by a factor of 5 [12].
Therefore, reducing the ELM peak power load or getting rid of the ELMs altogether
without sacrificing the control of the density and sufficient helium exhaust are important
goals that have to be reached on the way to a fusion reactor.

In addition to tokamaks, ELMs have also been observed in stellarator and spherical
tokamak H-mode plasmas [13, 14]. Thus it looks like that the problems associated with
the ELMs have to be solved even if one of these alternatives to a tokamak turns out to
be better concept for harnessing the fusion energy.

It is also interesting to note that solar flares have been found to display similar MHD
instability properties as ELMs [15].

3.3 ELM cycle

The periodic nature of the ELM phenomenon makes it possible to investigate a single
ELM cycle and generalise it to the behaviour of the entire ELM phenomenon.

The most rapid changes occur naturally during the ELM crash (typically a few hundred
microseconds [47]) that is usually significantly shorter than the time between the ELMs
(several milliseconds, as can be seen in Fig. 3.1). A schematic description of the ELM
burst is shown in Fig. 3.3, where the poloidal plasma cross-section, the plasma pressure
profile and the Dα radiation from the divertor region are shown at four different time
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Figure 3.3: ELM cycle from the build-up of the edge pressure gradient (1) to the triggering
of the instability (2), the loss of the edge plasma (3) and the detection of the increased
Dα-radiation from the divertor region (4).

points during the cycle. The first picture shows the situation before the ELM crash. The
plasma is stable and has a steep pressure gradient at the edge. The gradient is maintained
by the edge transport barrier that is always associated with the H-mode. The second
picture shows the onset of an ELM. The pressure gradient exceeds a critical value for
the stability of the edge plasma. The instability is not necessarily driven by the pressure
gradient itself but, for instance, the pressure gradient can drive the bootstrap current (as
explained in the previous chapter) and the instability is triggered by the parallel edge
current.

Once the instability takes place, the confinement of the edge plasma is lost. The lost
plasma flows along the field lines (the third picture) and ends up on the divertor plates
producing a distinctive peak in the Dα-signal (the fourth picture). During the instability,
the edge pressure gradient is reduced until the plasma becomes stable again. Then the
pressure gradient starts recovering until it reaches the stability limit again and another
ELM occurs. If the conditions stay constant, the cycle can continue infinitely. Each cycle
removes generally a few per cents of the plasma energy and particles.

33



3.4 Classification of ELMs

While some of the features are common to all ELMy plasmas, there are also qualitative
differences between them. Consequently, it has become customary to classify ELMs into
three separate types. In ELM physics, the following classification scheme, first given by
Doyle et al. [38], is usually used:

• Type I ELMs: The Dα-signal shows large isolated bursts and, therefore, Type I
ELMs are also called ’giant’ ELMs. The plasma edge is close to the ideal ballooning
stability limit or even beyond it. As the heating power is increased, the ELM
repetition frequency also increases. The time-averaged degradation of the edge
plasma confinement is smaller than with other ELM types.

• Type II ELMs: These are observed only in strongly-shaped (high elongation and
triangularity) plasmas. The magnitude of the ELM bursts is lower and the frequency
is higher than that of Type I ELMs, while the confinement stays almost as good
as in Type I ELMy plasmas. Due to the strong shaping, the plasma is in the
connection regime between the so-called first and the second ballooning stability
regions (explained in more detail in Sec. 2.2). Sometimes, Type II ELMs are called
’grassy’ ELMs.

• Type III ELMs: The bursts are small and frequent. Therefore, another name for
Type III ELMs is ’small’ ELMs. The repetition frequency is found to decrease
with the heating power. The plasma confinement is degraded more than with other
ELMs. The edge plasma pressure can be well below the ballooning stability limit.

In addition to the above ELMy operating regimes two ELM-free operating modes with
stable density have been observed.

• In Alcator C-MOD, the so-called enhanced Dα-mode or EDA is observed [40, 41].
In EDA, while the plasma behaves like in ELMy H-mode (steady-state density, no
accumulation of impurities), no periodic bursts of plasma exist, but instead the Dα-
radiation remains at an increased level throughout the EDA-period. The particle
and energy confinement is poorer than in true ELM-free H-mode. The conditions
for EDA resemble that of Type II ELMs [41].

• In DIII-D and ASDEX Upgrade, the so-called quiescent H-mode (QHM) has been
achieved [42, 44]. In the quiescent H-mode, the ELMs become suppressed and,
instead, harmonic oscillations are observed in the plasma edge. They are signs
of other MHD activity that keeps the particle transport high. The high particle
transport keeps the density in control and avoids the typical problem of an ELM-
free H-mode where the plasma density uncontrollably increases and the discharges
ends with a disruption. In DIII-D, the quiescent operating mode has also been
successfully combined with improved core confinement, which led to the so-called
quiescent double barrier mode [45,46]

In ASDEX Upgrade, different types of ELMs have been found to correspond to differ-
ent plasma edge parameters [39]. Figure 3.4 shows schematically the ELM classification
in Tedge− nedge space, with the addition of the above-mentioned QHM and EDA regimes.
The edge temperature and density refer to the values on the top of the H-mode barrier.
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Type II ELMs

Figure 3.4: A schematic view of different ELMy and ELM-like regimes in the pedestal
temperature-density space. The numerical values of temperature and density for different
regimes vary between plasma devices. Also other factors such as plasma shaping affect the
access to different regimes.

The lower limit for the temperature at high density (labelled “MARFE unstable”) is
caused by the radiation cooling of the edge plasma and is inaccessible operating regime.

3.5 ELM precursors

During the ELM cycle, magnetic fluctuations are observed before the main ELM crash.
The fluctuations, also called precursors, differ between ELM types, which suggests that
the instabilities behind the ELMs themselves can be different. In ASDEX Upgrade, the
precursors are seen most clearly with Type III ELMs, but they have also been observed
with Type I and Type II ELMs. The Type III ELM precursor frequency varies around
50-150 kHz and the observed toroidal mode numbers n are of the order 10-15 [47,48]. For
type I ELMs frequencies of about 5-20 kHz and mode numbers n=5-10 are observed. In
addition, higher frequency modes (ν ≈ 75−145 kHz) with n=3-5 [49] and ν ≈300 kHz [50]
have been associated with the MHD activity occurring before an ELM. An example of
the magnetic signal of the high frequency activity and its frequency spectrum is shown
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Figure 3.5: The magnetic frequency spectrum from the Mirnov coils of the ASDEX Upgrade
shot #15875 (Type I ELMs). The Dα-signal on the bottom shows the occurrence of the
ELMs. Magnetic precursor activity can be seen between 300 and 600 kHz

in Fig. 3.5. The precursors observed with Type II ELM have frequency of about 30 kHz.
Typical toroidal mode numbers n are of the order of 3-4.

In JET, Type I ELM precursors at the frequency of about 20 kHz and mode numbers of
1-13 have been observed [51]. The lower mode numbers seem to be associated with lower
values of collisionality in the edge region and high mode numbers with high collisionality.
In addition to the precursors, the Type I ELM phenomenon has also been associated with
the so-called washboard mode activity (bands of fluctuating magnetic activity rotating
in the direction of the electron diamagnetic drift with typical frequencies in the range of
10-90 kHz) [52]. The washboard modes have also been observed with mixed Type I/Type
II ELMs [52].

While the exact relationship between the precursors and the ELM crash itself is still
not clear, the precursors can be used to obtain fundamental information on the underlying
mechanisms for the ELMs. The mode numbers give insight to the mode structure of the
instability that is responsible for the ELM. Therefore, to validate a theoretical model for
the ELMs, its predictions have to be compared against the information obtained from the
precursor observations.

3.6 The Connor-Wilson model for the ELMs

Several models for ELMs have been suggested (see Ref. [53] for a comprehensive summary
of models). One class of models use MHD instabilities to explain the ELMy behaviour
in the plasma. Both ideal [54] and resistive [55] instabilities have been considered. The
basic idea in these models is that the plasma goes through a cycle where it is destabilised
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by some instability causing an ELM. The ELM enhances the transport in the edge region,
the pressure gradient is relaxed and the plasma returns to stability. During the stable
phase, the edge profiles recover until the stability limit is reached again. The cycle can
continue as long as plasma core is heated and the edge stays in H-mode. Another class
of models, where ELMs are explained as transitions between L- and H-mode [56], is not
considered here.

Connor et al. [57] have suggested the following model for the Type I ELM cycle. A
sketch of the model is shown in Fig. 3.6. The ELM cycle starts with a low pressure
gradient as a result of the previous ELM crash that has removed the edge pedestal.
Due to the edge transport barrier, a pedestal with a steep pressure gradient develops
at the edge (1). As explained in Sec. 2.2, the first ballooning mode stable region is
limited by the pressure gradient. Consequently, the growth of the pedestal stops at the
ballooning stability limit (2). Due to the pressure pedestal, the bootstrap current, which
is proportional to the density and temperature gradients, builds up on a slower, resistive,
time scale. Eventually, the bootstrap current that is parallel to the magnetic field drives
the plasma ideal peeling mode unstable (3) causing an ELM crash and the loss of the edge
pressure pedestal (4), and the cycle starts from the beginning. The peeling-ballooning
ELM model has been experimentally studied in the DIII-D tokamak [58]. In Section
4.1, this model is analysed numerically using experimental plasma profiles for ASDEX
Upgrade Type I ELMs.

Pedestal develops

Bootstrap current
builds up

ELM crash

1

2

3

4

Edge 
current
density

Edge pressure gradient

UNSTABLE

STABLE

Figure 3.6: The ELM cycle according to Connor et al.

The model for the ELM cycle can be tested also for other ELM types. A qualita-
tive model for Type II ELMs has been given by Snyder et al. [59]. In this model, the
low-n peeling limit rises due to plasma shaping and increased density. Then, the ELM
is triggered by the intermediate-n peeling-ballooning instability that has a narrow mode
structure. The changes in the stability for Type II ELMs is analysed in Sec. 4.2.
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3.7 ELM control

Controlling the ELM phenomenon is of paramount importance in order to avoid the detri-
mental effects of ELMs. One way to avoid problems caused by large ELMs is to operate
plasma with small ELMs. Another possibility is to choose the operational parameters
so that the ELMs are completely avoided. This could mean operating the plasma in, for
instance, QHM or EDA-mode. However, these operating regimes are quite limited in their
flexibility and performance. For instance, L-mode operation would eliminate the ELMs
as well, but the confinement is inferior to H-mode. Therefore, it could be useful to device
methods to operate the plasma in ELMy H-mode, but avoid large ELMs by active control.
A few methods for active ELM control have been recently successfully tested experimen-
tally. In addition to developing techniques for controlling the ELMs, these methods also
allow probing the nature of ELMs.

3.7.1 Edge current modulation

In TCV tokamak, ELMs have been controlled using external coils to modulate the vertical
position of the plasma. Shifting the plasma up and down modulates the current flowing
at the plasma edge region. The method allows to either delay or precipitate the ELM
events [60].

In JET, ramping the total plasma current by changing the inductively driven current
has been observed to change the ELM behaviour [61,62]. Increasing the loop voltage and
thus ramping up the current in a typical Type I ELMy plasma first increases the ELM
amplitude, but after a short time (a few hundred ms), the Type I ELMs change to Type
III ELMs. In a current ramp-down, the opposite happens and the Type I ELMs reappear.
It is still questionable if this kind of method for ELM control is feasible for ITER because
it requires quite substantial variations in the plasma current.

3.7.2 Pellet launching

Another way to externally affect the ELMs has been used in ASDEX Upgrade. Small
pellets have been launched from the high field side to trigger ELMs [63]. The intrinsic
low-frequency, high-amplitude ELMs are then replaced by high-frequency low-amplitude
ELMs that are similar to the intrinsic high-frequency ELMs. A stability analysis of the
edge region of the pellet triggered ELMs is given in Sec. 4.4.

3.7.3 Impurity injection

Impurities in the edge plasma and scrape-off layer increase radiation. The increased
radiation can be used to mitigate the ELM effects on the divertors [64,65]. The particles
that are lost from the plasma during an ELM crash lose their energy through radiation
before they reach the divertors. This reduces the divertor heat flux.

Impurity injection can also be used to directly affect the ELM phenomenon itself. In
JET and JT-60U, it has been possible to increase the ELM-free phases between Type I
ELMs by injecting Argon into an H-mode plasma [66,67]. Unlike in ordinary gas puffing
experiments, using impurity seeding it has been possible to lower both the ELM size and
the ELM frequency [68].
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3.7.4 Edge ergodisation using external coils

Since the ELMs are triggered by an MHD instability that is caused by the steep pres-
sure gradient in the edge transport barrier, it is possible to prevent them by degrading
the edge confinement before the ELM crash. In DIII-D [69], this has been successfully
demonstrated by ergodising the plasma edge using external coils to produce magnetic
perturbations. The problem with this method is that also the confinement is degraded by
the loss of the edge barrier. However, the use of external coils for ELM control is still in
its infancy. With more experiments, it could be possible to develop this method to avoid
large Type I ELMs without significantly degrading the plasma confinement. The feasibil-
ity of this method in ITER depends on how large coils are required for the ergodisation
and if such coils can be installed.
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Chapter 4

ELM stability analysis results

4.1 Stability analysis of Type I ELMs in ASDEX Up-

grade

The ELM model described in the previous chapter is tested for experimental plasmas. In
publication 1, ASDEX Upgrade (R=1.6 m, a=0.5 m) discharge #11991 at 2.0 s is studied
with MHD stability analysis. This shot displays clearly detectable Type I ELMs. Here,
the stability analysis methods and the results are shortly described.

4.1.1 Equilibrium reconstruction

The plasma equilibrium is reconstructed using experimental temperature and density
profiles and self-consistent bootstrap current as described in Ch. 2.2. Temperature and
density profiles are taken just before (≈ 1 ms) an ELM crash. The electron temperature
profile is given by Thomson scattering near the edge and by ECE in the core plasma.
The ion temperature in the core plasma is obtained from charge exchange diagnostics.
However, near the edge it could not be accurately measured, and it is assumed to be
equal to the electron temperature. It is possible that this assumption overestimates
the steepness of the ion pressure profile near the edge. The reason is that the electron
temperature at the separatrix is set by the power balance between the parallel heat
conduction to the divertor and the perpendicular heat conduction across the separatrix.
The balanced separatrix temperature is found at about 100 eV. However, since the ions
are much slower than the electrons, the separatrix ion temperature is not limited by the
parallel heat conduction, and the separatrix ion temperature could be higher than the
electron temperature. Consequently, the ion pressure profile could also be flatter than
that of the electrons. However, the collisional equilibration should keep the electron and
ion temperatures similar. In equilibrium calculations, we assume Ti = Te.

The density profile is given by the lithium beam measurements near the edge. The
lithium beam measurement is combined with the deconvoluted interferometer data for the
full profile. The raw experimental profiles are smoothed for the equilibrium reconstruction.
Figure 4.1 shows the experimental and smoothed profiles. Both temperature and density
profiles display the typical steep H-mode transport barrier near the plasma edge.

The equilibrium is reconstructed with GRETA code that solves the Grad-Shafranov
equation (2.10) for the poloidal flux. Free plasma boundary is assumed, and the plasma
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Figure 4.1: The experimental and smoothed temperature and density profiles used in the
equilibrium reconstruction of the shot #11991 at 2.0 s.

shape is defined using the experimental currents in the poloidal field coils. The bootstrap
current is included in the equilibrium reconstruction as described in Sec. 2.2.2. The radial
profile of the ohmic current density is assumed parabolic, i.e. j(x) = (1− xa)b, where x is
the normalised poloidal flux, and a and b are adjustable parameters. In the equilibrium
construction, the parameters a and b are adjusted so that q stay slightly above 1 in the
plasma centre. This is done because, while the q-profile diagnostics in ASDEX Upgrade
are not accurate enough for detailed measurement of the q-profile, but the value in the
centre is known to stay above 1 as long as there is no sawtooth activity. Also, q95 (q at
ψp/ψp,edge = 0.95) is roughly known, and it is used in the equilibrium reconstruction. In
addition to the inductively driven current profile, the bootstrap current fraction (Ibs/Itot)
is varied to study how the amount of bootstrap current affects the stability of the plasma.
Figure 4.2 shows two flux surface averaged toroidal current density profiles for two values
of bootstrap current fraction, 0 % and 13 % that represents case where Cs = 1 in Eq.
2.35, i.e. the bootstrap current equals that given by the analytical formula. It is easy
to see that a peak is created near the edge as the bootstrap fraction is increased. This
current is the source of the peeling mode instabilities.

4.1.2 Stability analysis

Peeling mode stability

The low-n stability of the created self-consistent equilibria is analysed using GATO. An
example of a Fourier decomposition of the radial component of the perturbation (Xm =
ξ · ∇ψ) is shown in Fig. 4.3. This instability is found for the equilibrium where the
bootstrap current fraction is raised to 31 %. It can easily be seen that the mode has a
typical peeling-ballooning mode structure: The mode is localised to the edge region.

Figure 4.4 shows the growth rate of n=2, 3 and 4 modes as a function of the bootstrap
current fraction (Ibs/Itot). The growth rates are normalised to poloidal Alfvén frequency
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2
0), where B0 is the magnetic field, ρ0 is the mass density, R0 is the

major radius and q0 is the safety factor. All quantities are evaluated at the plasma centre.)
The increasing bootstrap current fraction in the equilibrium causes the plasma to become
low-n peeling-ballooning mode unstable. The vertical lines in Fig. 4.4 show the bootstrap
current fraction that is obtained taking into account 100 % of the neo-classical value
(in this case Wilson’s model [25], solid line) or ASTRA [74] transport code calculations
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Hirshman [24] model for the bootstrap current.

(dashed line). In the range between these two values, toroidal mode numbers ranging
from 3 to 6 are found unstable. In the figure, n=2 mode seems marginally unstable, but
the small value of the growth rate is at the limit of the numerical accuracy of the GATO
code. Only at very high values of the bootstrap current fraction does the n=2 mode
become unstable. For the given profiles n=1 mode is stable throughout the investigated
range of bootstrap current fractions. The unstable mode numbers agree with the Mirnov
coil observations of the Type I ELM precursors [49]. Similar results have been obtained
in DIII-D for low-n peeling modes associated with the Type I ELMs [73].

The main result of the linear stability analysis is that the increasing bootstrap current
fraction drives the edge plasma unstable. The mode structure of the instability is localised
in the edge region suggesting that only the edge confinement is affected when the stability
boundary is crossed. In addition, the mode numbers of the found instabilities agree with
the experimentally observed mode numbers for the ELM precursors. It must be noted,
however, that the linear stability analysis neither gives the time evolution of the plasma
after the instability has occurred, nor does it tell how fast the bootstrap current builds
up after the steepening of the pedestal pressure gradient. So, from this analysis, it is not
possible to know how much of the plasma is lost during each ELM burst or how long the
interval between two ELMs is. What can be said, however, is that the stability analysis
supports the triggering mechanism of the Connor-Wilson model for ELMs (Ch. 3).
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Ballooning mode stability

As explained in Ch. 2, the most unstable ballooning modes generally have high mode
numbers. Unfortunately, GATO is restricted to relatively low values of the toroidal mode
number and, therefore, another code is used to investigate the high-n ballooning stability.
The ballooning stability code GARBO [75] calculates the threshold pressure gradient for
the n= ∞ ballooning instability and compares it with the experimental pressure gradient.
With GARBO the investigated equilibria are indeed found high-n ballooning unstable if
the bootstrap current is low (Fig. 4.5). When the bootstrap current increases, the plasma
edge accesses the second stability region for high-n ballooning modes.

Unfortunately, the MHD diagnostics of ASDEX Upgrade are limited to low toroidal
mode numbers (n<7). Thus, only instabilities with these mode numbers can be accurately
identified experimentally. The high-n modes can not be distinguished in the precursors,
and a comparison with the numerical results is difficult.
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Figure 4.5: High-n ballooning stability for ASDEX Upgrade shot #11991 at 2.0 s for
different bootstrap fractions. Only the most unstable part of the plasma is plotted. The
core plasma is stable in all cases. The y-axis is ratio between the experimental pressure
gradient and the threshold pressure gradient for ballooning instability given by the GARBO
code, i.e. the points with p′/p′crit > 1 are unstable and those with p′/p′crit < 1 are stable.

It is possible that, since the profiles are created with slightly pessimistic assumptions
(e.g. the Ti gradient is as steep as the Te gradient), the ballooning instability is due
to an unrealistically steep pressure gradient. The peeling instability, on the other hand,
is current driven, and the uncertainty in the pressure profile does not affect it as much.
Therefore, even if the bootstrap current is slightly lowered due to the decrease in the
pressure and temperature gradients, the results presented in the previous section are still
valid. The curves in Fig. 4.4 would be only slightly shifted to the right.
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The conclusion that can be drawn from the ballooning mode analysis is that the edge
region pressure gradient of a Type I ELMy plasma is close to the ballooning stability limit.
Depending on the amount of bootstrap current, it is either slightly below or above the
stability boundary. This is in agreement with the theoretical Connor-Wilson model. The
ballooning limit of the plasma is considered “soft”: Once the plasma pressure gradient
reaches the limit, the instability creates turbulence and, thus, increases transport. As
the transport increases, the pressure gradient decreases below the stability limit. As the
instability disappears, the turbulence decreases again. This feedback mechanism keeps the
pressure gradient close to the stability boundary without causing a catastrophic instability.

The ballooning analysis also revealed that, as the bootstrap current fraction is in-
creased, the stability improves. In Fig. 4.5 the stability boundaries of a plasma both
without a bootstrap current and with 4 %, 13 % and 22 % bootstrap current fractions
are shown. Clearly, while the bootstrap current has a destabilising effect on the peeling
modes (Fig. 4.4), it stabilises the ballooning modes. The reason for the stabilising effect
is that, since we are investigating the edge of a strongly shaped plasma, the decreasing
shear (caused by the bootstrap current) gives plasma access to the second stability region
(recall Fig. 2.11).

Stabilising effect of the triangularity

In ASDEX Upgrade, long ELM-free periods have been observed in high triangularity
(δ = 0.3 − 0.4) shots, but not with low (δ = 0.1 − 0.2) or medium triangularity (δ =
0.2− 0.3) [76]. The ELM frequencies were also lower in the high triangularity shots. This
apparently stabilising effect of the triangularity is tested for the ELM model. If the model
is correct, the stabilising effect of the triangularity should be found also in the numerical
studies.

Two ASDEX Upgrade shots (#11991 and #11795) with similar plasma profiles but
differing in the plasma shape (Fig. 4.6) are analysed with respect to the peeling modes.
In addition to these two experimental shapes, an artificial equilibrium with experimental
plasma profiles (T, n), but even higher value of triangularity (δ = 0.38) is analysed.
The q-profiles of the two experimental cases are almost identical (q95=3.65 for #11991
and q95=3.85 for #11795). For the very high triangularity case, q95 is 4.4. It is found
that increasing the plasma triangularity indeed stabilises the plasma (Fig. 4.7). The
better stability means that it takes longer to build up the bootstrap current needed to
destabilise the peeling mode, or even that the plasma is stable against peeling mode when
the bootstrap current has reached its full neo-classical value. This translates to longer
periods between ELMs, or even a period with no ELMs at all. The numerical results thus
agree qualitatively with the experimental observations.

4.2 Type II ELM stability analysis

Above, the stability analysis results using experimental data from ASDEX Upgrade Type
I ELMy plasma was found to agree with the theory-based ELM model. In Publication
2 and 3, the stability analysis is extended to type II ELMs. As explained in Ch. 3, the
type II ELMs are smaller than type I ELMs and, thus, are more suitable for a fusion
reactor operation. In the stability analysis, the plasma conditions are changed from the
typical Type I ELMy plasmas to those required for the operation with Type II ELMs.
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The changes in the stability properties can provide an explanation to the changes in the
ELM behaviour.

4.2.1 Experimental observations of Type II ELMs

In DIII-D [77], in JT-60U [72, 78] and ASDEX Upgrade [71], it has been possible to
replace the large Type I ELMs with smaller Type II ELMs without sacrificing good
plasma performance. This is accomplished by using strong plasma shaping and high edge
safety factor. However, in JET, the total suppression of the type I ELMs has not been
successful. Instead a mixed type I-II operation has been achieved in strongly shaped
plasmas with high edge safety factor value [81].

In addition to these general requirements, specifically in ASDEX Upgrade it has
been observed that also an almost double-null configuration and sufficiently high den-
sity (nGW = 0.85 − 0.95) are required for the type II ELMs [71]. Decreasing density or
moving the second separatrix away from the first one causes a transition back to type I
ELMs.

In JT-60U, it has been observed that the requirements of plasma shaping and edge
safety factor for the access to small ELMs are less stringent if the global βp is increased
[72, 79]. Also the observed pedestal pressure is higher with increased βp suggesting that
the edge stability is improved against the ELM triggering instabilities.

4.2.2 Edge stability in Type II ELMy plasma

In Sec. 4.1, it was shown that, in ASDEX Upgrade, the type I ELMs are low-n peeling-
modes that are destabilised by the bootstrap current. In this chapter, these instabilities
are studied in Type II ELMy conditions. The changes in stability properties from those
of Type I ELMs can explain the different ELM behaviour.

In publications 2 and 3, the Type II ELMy conditions in ASDEX Upgrade are studied
with the same methods as Type I ELMs earlier. As before, the GATO code was used
to study low- to intermediate-n stability. High-n ballooning analysis is now done using
IDBALL (based on methods in [80]). Both IDBALL and GARBO find the ballooning
mode stability boundary using the expansion in powers of 1/n. The main difference is in
the easier handling of the results in IDBALL, which is the reason it was used now to replace
GARBO. In the stability analysis, the effects of various parameters (high triangularity,
high density, almost double null configuration) are analysed independently.

Triangularity and safety factor

The Type I ELM studies in Ch. 4.1 already showed that increasing triangularity improves
the edge stability against the low-n modes. If the triangularity is increased from 0.15
to 0.45, the stability of the edge plasma improves so that 30 % more edge current is
required to destabilise the low-n peeling-ballooning modes. If the high triangularity is
combined with high edge safety factor, also the spatial structure of the instability changes
significantly from that of the Type I ELMy plasma. This is illustrated in Fig. 4.8. The
eigenfunction of the n=3 instability with δ = 0.45 and q95 =5.0 is significantly narrower
than with δ = 0.15 and q95=4.3. It should be noted that both increased edge safety factor
and high triangularity are required for making the mode very localised at the edge.
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Figure 4.8: Fourier analysis of the eigenfunctions of the radial displacement for the n=3
peeling-ballooning mode for different q95-δ combinations. Each curve represents the eigen-
function of a single poloidal mode number. Low-q95 = 4.3, high-q95 = 5.0, low-δ = 0.15,
high-δ = 0.45.

Density

The role of density can be separately examined by keeping the pressure profile fixed, but
varying the ratio of density and temperature. When the density increases and temperature
decreases, the collisionality increases and the edge bootstrap current decreases. This
further stabilises the low-n peeling-ballooning modes. As can be seen in Fig. 4.9, the
stabilising effect applies to both single- and double-null plasmas. On the other hand, the
second stability access for the high-n ballooning modes becomes narrower in radius and
can even be completely closed as the density increases. The narrower or completely closed
second stability access can limit the steepening of the pressure gradient thus avoiding the
large Type I ELM crashes.

Double-null configuration

The access to Type II ELMs in ASDEX Upgrade, requires an almost double-null config-
uration. The transition from a pure single x-point configuration to a an almost double
null configuration affects the stability of the edge plasma. The x-point has a strong local
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stabilising effect on the low- and intermediate-n modes. In the case of two x-points, the
stabilisation is naturally even stronger. The stabilising effects of the double null and the
increasing edge density are shown in Fig. 4.9. The double-null plasma is more stable than
the single-null plasma.

The role of the double null was also studied by comparing two ASDEX Upgrade
discharges. One (#15865) is purely single null and displays Type I ELMs. In the other
(#15863) the plasma is moved closer to a double null (8 cm at the top of the plasma) and
has Type II ELMs. The density and temperature profiles of the shots are very similar.
The stability boundaries were found by varying the edge temperature gradients of the
two plasmas. In addition to the experimental plasma shapes, a fictitious true double-null
plasma was created using the experimental temperature and density profiles, but changing
the plasma shape. Figure 4.10 shows the growth rates for the n = 3 mode as a function
of the maximum pressure gradient in the pedestal region for the different configurations.
While both plasmas are stable at the experimental value of the pressure gradient, the
stability limit of the Type I ELMy plasma is considerably lower than in both Type II
ELMy plasma and the fictitious true double-null plasma.
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Figure 4.10: The n=3 peeling-ballooning mode growth rate as a function of the edge pres-
sure gradient for plasmas with Type I (#15865) ELMs, Type II (#15863) ELMs and for
an artificial double-null configuration.

In addition to the stability limit, the double-null configuration affects also the radial
structure of the instability. The effect of the x-points on the 2-dimensional mode structure
is shown in Fig. 4.11, where the plasma displacement ξ is plotted in the poloidal plane.
It is easy to see that in both cases the mode disappears completely near the lower x-point
and, in the case of the double-null plasma, also near the upper x-point.

It is interesting to note that the almost double-null configuration has similar effect on
the radial structure of the low-n instability as the combination high triangularity and high
safety factor, i.e., the eigenfunction becomes more localised on the edge. This can be seen
in Fig. 4.12, where the envelopes of the n=8 eigenfunctions for the two above-mentioned
ASDEX Upgrade discharges are compared. The eigenfunction for the equilibrium of
#15863 is significantly narrower than that of #15865.

Global poloidal β-value

In publication 4, the effect of increased global βp is investigated by varying the core
pressure and analysing its effect on the edge stability. The edge profiles are taken from
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Figure 4.11: The n=3 peeling-ballooning mode structure for single- (left) and double-
(right) null plasmas. Both upper and lower x-point eliminate the mode from their vicinity.
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the Type I ELM case of the previous study (ASDEX Upgrade discharge #15865). The
core density is increased and the effect of the increasing βp on the edge stability is studied.
For each value of βp the amount of bootstrap current that is included in the equilibrium
reconstruction is varied to find the stability boundary.

The increased core pressure changes directly the equilibrium in the core region, but as
long as no global mode is destabilised, this change does not influence the edge stability.
The effect of increasing βpon the equilibrium in the edge region is quite complicated.
When the poloidal β is increased, it lowers the current in the edge. The reason for this is
that in the high βp plasma, the Shafranov shift squeezes the flux surfaces on the low field
side and makes them further apart on the high field side. Thus, the distance between two
flux surfaces increases on the high field side and decreases on the low field side. Since the
toroidal current density is higher on the low field side, the flux surface averaged toroidal
current density in the edge region decreases with increasing βp. In addition to the current
modification, the shift of the flux surfaces also increases the average “favourability” of the
curvature (〈κ · ∇p〉).

The stability analysis results of the βp variation can be seen in Fig. 4.13, where the
growth rates of n=3 and n=8 modes are plotted as a function of the fraction of the boot-
strap current given by Sauter’s formula [26] included in the equilibrium reconstruction.
As can be seen, the increasing βp has a stabilising effect on both modes, i.e. higher
bootststrap current fraction is required for the destabilisation. The reason for the better
stability with high βp is the combined effect of lower current and more favourable average
curvature.

The increasing βp affects the high-n ballooning mode stability by moving the plasma
closer to the stability limit. The reason is the lower edge current which increases the shear
and thus limits the access to the second stability region.
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4.2.3 The edge stability effects on the ELM triggering

Above, all the conditions required for Type II ELMs were investigated with a stability
analysis. Now, the results can be combined and it is possible to predict, what the effects
the required plasma conditions have on the ELM phenomenon. Of course a linear MHD
analysis is not able to simulate the non-linear phase of the ELM crash, but with some
simple assumptions the qualitative changes in the ELMs can be predicted.

The main result of the stability analysis was that the eigenfunctions of the ELM-
triggering low- to intermediate-n peeling-ballooning modes are narrower in Type II than
in Type I ELM conditions. In addition, the plasma becomes more stable against low-n
modes, while the stability against modes with higher mode numbers is not improved.
Since the intermediate-n modes were found to have narrower mode width than the low-n
modes, the shift to higher mode numbers causes further localisation of the eigenfunction
of the ELM triggering instability.

In DIII-D, the relative temperature drop during an ELM crash has been shown to
match with the envelope of the most unstable mode corresponding to the equilibrium
created for the plasma just before the ELM crash [59]. Therefore, we can assume that
the width of the eigenfunction at least qualitatively affects both the ELM penetration
depth and the amplitude of the ELM. Using this assumption the stability analysis results
predict that the ELM-affected area and the ELM amplitude should be smaller for Type II
ELMs than for Type I ELMs. This is indeed what has been observed in the experiments.

4.3 Quiescent H-mode

The ELMs cause problems in a tokamak operating in H-mode because the energy and
particles that are lost from the plasma arrive to the plates in short bursts instead of a
continuous flow. However, it is possible to find an operating mode where the ELMs are
suppressed while keeping the good confinement and avoiding density accumulation. The
so-called quiescent H-mode (QHM) was first observed in DIII-D [45] and, more recently,
also in ASDEX Upgrade [44] [90]. The QHM is obtained by counter-injecting neutral
beams, keeping high clearance between the plasma and the surrounding solid surfaces,
and employing good cryopumping on the divertors by having the strike point at the
pumping position. From the fusion reactor operation point of view, the drawback of the
quiescent H-mode is that the effective charge (Zeff ) increases due to the accumulation of
impurities in the core plasma [43]. While the good performance of the quiescent H-mode
is experimentally proven, the reason for the ELM suppression is still lacking. The question
of how the pedestal pressure similar to ELMy H-mode can be attained in QHM without
destabilising the edge and causing an ELM crash is still to be answered.

4.3.1 Quiescent H-Mode in ASDEX Upgrade

Several features that distinguish QHM from standard ELMy H-mode have been observed
in ASDEX Upgrade discharges. The quiescent H-mode is characterised by good energy
confinement and suppression of ELMs. Compared to similar Type I ELMy plasmas, in
QHM the pedestal pressure is about 10 % higher [44]. Additionally, the rotation of the
core plasma is significantly increased. The effects of the core rotation on the plasma
performance are still unknown.
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While the ELMs are suppressed during the quiescent phase, special type of magnetic
activity is observed. Fishbones and edge harmonic oscillations are observed at the fre-
quency range of 7-30 kHz. Additionally, high frequency oscillations at the frequency of
350 and 490 kHz occur in QHM. While potentially important to the particle and energy
exhaust, the MHD events do not seem to limit the pedestal pressure to a lower value in
QHM than in ELMy H-mode. Therefore, it is unlikely that they alone could explain the
disappearance of the ELMs.

The QHM plasma profiles are characterised by high ion temperature, low density
and high Zeff (≈ 5, while values 1-3 are typical for ELMy H-mode). However, recent
experiments have been successful with Zeff at the same level as in ELMy H-modes [90].
The electron temperature is slightly higher in QHM than in ELMy H-mode.

All the quiescent H-mode plasmas first enter an ELMy phase, followed by the quiescent
phase, where the ELMs disappear, and eventually the ELMs reappear again. There can
be more than one quiescent phase, but it is notable that no completely ELM-free discharge
has been obtained. This behaviour has also been observed in D-IIID [45]. This indicates
that there has to be a change in the plasma conditions that trigger the suppression of
ELMs. The external conditions (high pumping, counter-injected neutral beams, high
clearance) can not directly stabilise the edge plasma and prevent the instability that is
responsible for the ELMs. This is further supported by the fact that ELMy H-modes
have been observed with counter-injected discharges with sufficient clearance. Therefore,
it seems that the ELM suppression is due both the configuration required for QHM and
the change in plasma profiles during the discharge.

4.3.2 Edge plasma stability analysis for QHM

In the earlier sections, the edge MHD stability was analysed before an ELM crash in
different plasmas. The stability analysis confirmed the model where at least the Type I
and Type II ELMs are triggered by low- to intermediate-n peeling-ballooning modes. If
the model is correct, these instabilities should be stable in QHM.

Stability limit for the pressure gradient

The stability of two counter-injected ASDEX Upgrade shots (#16104 and #16112) with
identical shapes, one with ELMs and the other in QHM is analysed. The global parameters
for both shots are: geometric major radius R = 1.62 m, minor radius a = 0.49 m, plasma
current Ip =1 MA, toroidal magnetic field BT = 2 T at R = 1.65 m, elongation κ = 1.7,
upper triangularity δu = 0.0 and lower triangularity δl=0.4. The Dα-signals of these
shots are plotted in Fig. 4.14. The signal from the QHM-discharge shows long intervals
when the ELM activity is completely suppressed, while the reference discharge has ELMs
throughout the H-mode period.

Since both of the analysed shots have counter-injected beams, the plasma shapes are
identical, and even the QHM-shot have an ELMy phase, neither the beam direction nor
the clearance can be the reason why one of these shots is quiescent and why the other has
ELMs. Both the direction of the beams and the wall clearance can still have some effect
on the stability boundaries, though.

As before, the equilibria for both discharges were created taking into account the
bootstrap current self-consistently. The smoothed electron density, electron temperature
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Figure 4.14: Dα-signal of a QHM-discharge (#16112) and an ELMy H-mode discharge
(#16104) in ASDEX Upgrade. In #16112, The ELMs are completely suppressed three
times, the longest period lasting about 1.5 s.

and ion temperature profiles used in the equilibrium reconstruction are shown in Fig.
4.15. Due to the high clearance no edge Thomson scattering is available for these shots.
The values from the core Thomson scattering and CXRS are used to set the pedestal
top values. The steepness of the edge profiles is adjusted so that the pressure gradient
is similar to a well-diagnosed H-mode plasma edge and equal in both plasmas. The Zeff

profile is taken flat at values of 5 and 2.5 for QHM and ELMy H-mode, respectively.
The inductively driven current profile is determined by the conductivity profile. The
pressure gradients and the corresponding bootstrap currents for both plasmas are shown
in Fig. 4.16. Note that with almost identical pressure gradients the bootstrap current
profiles in the steep gradient region differ significantly. This is because, in this parameter
range, the density gradient is more effective a driver of the bootstrap current than the
temperature gradient, and also because the ion temperature gradient, which is especially
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high in QHM, drives less bootstrap current than similar electron temperature gradient.
The largest effect, however, is that the higher Zeff of the QHM reduces the bootstrap
current. It accounts for roughly half of the difference between the current profiles. The
effect of Zeff on the stability will be analysed in more detail later.
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Figure 4.15: The smoothed electron density [1019m−3] (solid line), electron temperature
[keV] (dashed line) and ion temperature [keV] (dotted line) profiles for QHM and ELMy
H-mode plasmas.
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Figure 4.16: The pressure gradient and the corresponding flux-surface averaged bootstrap
current density as a function of the normalised radius for QHM (solid line) and ELMy
H-mode (dashed line) plasmas.

The stability properties of the QHM and ELMy plasmas are compared by varying
the edge pressure gradient and analysing the stability. For the edge pressure gradient
variation, the temperature profiles are scaled. They are multiplied by a scalar, new
equilibria are solved, and the stability analysis is repeated. The result of the pressure
gradient scan is shown in Fig. 4.17, where the growth rate of the n=3 mode is plotted
as a function of the normalised pressure gradient α (= −2µ0Rq

2(dp/dr)/B2) for both
ELMy and QHM plasmas. The edge bootstrap gradient is the destabilising force for the
low-n peeling-ballooning modes. As was shown above, with equal pressure gradients the
bootstrap current is lower in the QHM than in ELMy H-mode. This is the reason why
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in QHM-conditions the pressure gradient can be increased significantly higher than in
ELMy-conditions before plasma becomes unstable.
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Figure 4.17: Plasma edge stability against n=3 peeling-ballooning mode as a function of
the maximum normalised pressure gradient α in the edge region. The vertical line shows
the value of αmax for profiles in Fig. 4.15. One should note that the unscaled αmax is
same for both plasmas.

The toroidal mode number (n=3) used in the above stability analysis was selected on
the basis of experimental observations on ELM precursors. The observed mode numbers
for Type I ELMs in ASDEX Upgrade vary in the range of n=3-6 [49]. Similar mode
numbers are detected also for Type II ELMy precursors [71]. However, it is possible that
the edge stability is actually determined by intermediate mode numbers in the range of
n=5-31 [59]. Therefore, the stability at a higher mode number, in this case n=8, is also
analysed to see whether the mode number makes a difference in the stability behaviour.
While the growth rates for the unstable n=8 modes are higher, the threshold (in αmax)
where n=8 is destabilised, is found to be the same as for n=3. Therefore, it seems that
at least in the intermediate range, the mode number has little effect on the stability
limits. The stability analysis for even higher mode numbers becomes computationally
prohibitive.

As before also the n=∞ ballooning mode stability properties are compared. Figure
4.18 shows the n=∞ ballooning stability diagrams on two flux surfaces, at the location
of the steepest pressure gradient (ρ = 0.982) and between the steepest pressure gradient
and the plasma edge (ρ = 0.99). Both the QHM and Type I ELMy H-mode have access
to the second stability in the steepest gradient region. For the same value of α, QHM is
slightly closer to the stability limit than the ELMy H-mode. At the very edge (ρ > 0.99),
QHM becomes limited by the ballooning stability boundary while ELMy H-mode is still
in the second stability region. However, there α is already only half of the maximum
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value. Therefore, it can be said that the n=∞ ballooning stability does not limit the
pressure gradient in the steepest gradient region for either QHM or ELMy plasmas.
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Figure 4.18: The n=∞ ballooning mode stability diagram in s-α space at two different
radial locations for QHM (cross) and ELMy H-mode (circle). The dotted lines show the
stability boundary and the symbol shows the operational point, i.e., the equilibrium value
for shear and α at that location.

Stabilising effect of Zeff

In QHM the effective ion charge Zeff is significantly higher than in ELMy H-mode. In
addition to the aforementioned value of Zeff = 5 in ASDEX Upgrade QHM, in DIII-D
Zeff = 6.5 has been observed in quiescent double barrier mode that is similar to the
“ordinary” QHM [43].

The direct effect of Zeff on the equilibrium is to lower the bootstrap current. This leads
to improved stability against the low-n peeling-ballooning modes. This is illustrated in
Fig. 4.19, where the growth rate is plotted as a function of Zeff . In this scan, temperature
and density profiles are kept fixed. The plot shows that lowering the impurity content from
the value typical to QHM (Zeff=5) to the range of ELMy H-mode (Zeff = 2) corresponds
to a similar increase in the instability growth rate as caused by a 10 % increase in the
pressure gradient.

Here it should be noted that while the increasing Zeff has a stabilising effect on the low-
n peeling-ballooning modes through the reduced bootstrap current, it does not necessarily
mean that it is increased Zeff that reduces the bootstrap current in the experiment.
As explained above, also the high ion temperature and low density in QHM drives less
bootstrap current for the same pressure gradient than low ion temperature and low density
in the ELMy H-mode.

Plasma size and position

In ASDEX Upgrade, QHM has required a high clearance from the walls. The consequence
of the large clearance is that the plasma size is smaller than in typical ELMy H-modes.
The minor axis is 0.50 m instead of the conventional ELMy H-mode value of 0.53 m. The
effect of the plasma size to the edge stability is investigated by analysing the stability
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Figure 4.19: Plasma edge stability against the n=3 peeling ballooning mode as a function
of effective ion charge Zeff . The pressure profile used in the scan corresponds to the second
highest α for the QHM-plasma in Fig. 4.17

of two equilibria with the same shape, but slightly different minor radius. Total plasma
current and toroidal magnetic field are held fixed. As can be seen in Fig. 4.20, the edge
pressure gradient dp/dψN can be increased more with the smaller plasma than with the
larger one before it is driven n=3 unstable. Naturally, the difference in stability limits
is even higher if, instead of using the pressure gradient with respect to the normalised
flux surface on the x-axis, the actual spatial pressure gradient dp/dr were used. This is
because with smaller plasma size dψN/dr increases.

Alternatively to reducing the plasma size, sufficient clearance from the outboard wall
(as required by QHM) can also be achieved by moving the entire plasma inwards. The
clearance on the low field side affects the plasma conditions indirectly by changing the
fast particle population as well as recycling from the main chamber walls. These effects
can modify the plasma profiles and the impurity content. Additionally, outward radial
shift of the plasma directly changes the edge stability. If the plasma is shifted inwards
with fixed vacuum toroidal magnetic field and plasma current, the toroidal magnetic field
inside the plasma increases. This naturally lowers β and increases q, and tends to stabilise
the edge peeling-ballooning modes. The change in the growth rate for the n=3 mode as
a function of the radial position of the magnetic axis is shown in Fig. 4.21. With a radial
shift of 10 cm, the unstable mode is completely stabilised.

As shown above, small size and inward positioning of the plasma increase stability of
the edge against the low-n peeling-ballooning modes. However, these stabilising effects are
relatively small, and can not alone explain the ELM suppression. Other effects from large
clearance such as reduced ion orbit losses from ill-confined beam ions can have larger
effects on the edge stability, but without detailed kinetic simulations these effects are
difficult to quantify. The above stability analysis results on the plasma size and position
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Figure 4.20: The growth rate of the n=3 peeling-ballooning mode as a function of maximum
value of dp/dψN in the pedestal for a=0.49 m and a=0.53 m.
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Figure 4.21: The growth rate of the n=3 peeling-ballooning mode as a function of the
radial position of the magnetic axis. Here, R0 =1.685 corresponds to the most unstable
point for QHM-type plasma in Fig. 4.17.

have effect only in marginal cases, i.e. when the plasma is just at the border between the
ELMy H-mode and QHM, a change in the size or position could trigger the transition.

4.4 Pellet Triggered ELMs in ASDEX Upgrade

ASDEX Upgrade has been successful in triggering ELMs using pellet injection from the
high field side [63]. Small (6 × 1019 D-atoms) pellets were launched at the velocity of
560 m/s with repetition frequency of 19 Hz. During the 4 s when pellets were launched,
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Figure 4.22: The ballooning stability boundary and the plasma state in two radial locations,
a) ρ = 0.97 and b) ρ = 0.98 for intrinsic 3 Hz ELMs, intrinsic 20 Hz ELMs and pellet
triggered ELMs.

the large intrinsic low frequency ELMs were replaced by smaller ELMs with the same
frequency as the pellet launching. This chapter shows a stability analysis of plasmas with
intrinsic low frequency (3 Hz) very large ELMs, intrinsic high frequency (20 Hz) ELMs and
pellet triggered ELMs. Although the effect of the three dimensional ablating pellet itself
can not be fully included in a two dimensional stability analysis, as a first approximation
it can be assumed that the pellet is an external perturbation to the equilibrium. If the
equilibrium is close to the stability limit prior to the pellet injection, it is not unreasonable
to conclude that the pellet drives the plasma unstable and, thus, triggers an ELM. If the
edge is far from the stability limit, the ELM-triggering mechanism of the pellet has to be
something else.

Temperature and density profile data from Ref. [63] together with the analytical boot-
strap current model by Sauter et al. [26] are used to create self-consistent equilibria for
MHD stability analysis. In all three equilibria the shape of the plasma is identical and it
is matched to the experiment. As in earlier type I and type II ELM stability analyses,
we analyse the stability of the equilibria against low-n (n=3-8) peeling-ballooning modes
using GATO and against n=∞ ballooning modes using IDBALL. As mentioned in earlier
chapters, these are the most likely instabilities for triggering ELMs. The stability analysis
results are used to explain the ELM triggering mechanism.

The n=∞ ballooning stability diagram is shown at two radial locations on the edge in
Fig. 4.22. The diagram shows the stability boundaries in shear-α (α = 2Rq2(dp/dr)/B2)
space, as well as the location of the equilibrium in this space. There is a marked difference
between the reference case with intrinsic 3 Hz ELMs and the other two. In the 3 Hz
ELM case, the pressure gradient growth is limited by the tip of the ballooning stability
boundary. A slight decrease in the shear would take it to the second stability region. The
other two cases (intrinsic 20 Hz ELMs and pellet triggered ELMs) are deep in the 2nd

stable region. Thus, their pressure gradient is not limited by the ballooning modes.
The low- to intermediate-n peeling mode stability is studied by varying the edge

bootstrap current in the equilibria. GATO analysis shows that only the intrinsic 20 Hz
ELM plasma is unstable without any current increase. The pellet triggered case is stable
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Figure 4.23: Plasma displacement and Fourier decomposition of the radial component of
the displacement (ξ · ∇ψ) for the n = 8 peeling mode in the intrinsic 20 Hz ELM plasma.

but becomes unstable by increasing the edge current by 20 %. The intrinsic 3 Hz ELM
plasma is not destabilised even by a 50 % increase in edge current. The displacement on
the poloidal plane and the radial mode structure of the n = 8 mode are shown in Fig.
4.23 for the intrinsic 20 Hz ELMy equilibrium. The pellet-triggered equilibrium with 20
% increased edge current has similar mode structure and radial width.

Combining the differences in the high-n ballooning and low- to intermediate-n peeling-
ballooning mode stability properties can give an explanation to the different ELM be-
haviour between the different plasmas. The intrinsic 3 Hz ELMy plasma stays limited
by the first stability limit of the ballooning modes far from the stability limit of the low-
to intermediate-n modes. The ELM crash completely eliminates the H-mode pedestal.
Since the ELM crash occurs significantly below the low-n peeling-ballooning mode sta-
bility limit, it is likely that it is triggered by some other mechanism than the low- to
intermediate-n peeling-ballooning mode that has been found in Type I ELMs. In the
3 Hz intrinsic ELMy plasma, the ELM crash is more violent than a typical Type I ELM
crash, reducing the plasma energy by about 20 %. This also suggests that the triggering
mechanism is different. They should be considered as very special cases of Type I ELMs
or possibly not classified as Type I ELMs at all. Most likely they are short transitions
back to L-mode.

On the other hand, before an ELM crash, both the intrinsic 20 Hz ELMy and pellet
triggered ELMy plasmas are close to the low-n peeling-ballooning mode stability limit.
Their triggering is caused by this mode with a mode structure that is localised close to
the plasma edge as shown in Fig. 4.23. The ELM losses (about 5% of the plasma energy)
are similar to other type I ELMs. The pellet driven plasma is still below the stability
limit before the ELM crash, while the intrinsic 20 Hz plasma is already unstable. This can
be explained by the fact that the pellet creates a large local perturbation that is able to
trigger the instability even when the equilibrium is still slightly below the stability limit.

The active ELM triggering using pellets shows a promising way to reduce the ELM size,
which could benefit ITER operation considerably. The stability analysis showed that the
pellet triggered ELMs had similar characteristics as intrinsic ELMs with similar frequency.
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It must be noted, however, that the 3 Hz intrinsic ELMs that the pellet triggering was
able to remove, are significantly larger than normal Type I ELMs. Therefore, it is still
not clear that the pellet-triggering can reduce the size of ordinary Type I ELMs to that
of Type II ELMs by further increasing the launch frequency and reducing the size of a
pellet.

4.5 ELMs in JET

4.5.1 Experimental observations

Several experiments have been carried out on the JET tokamak to study the ELMs [82–86].
However, only the recent JET discharges in Diagnostic Optimised Configuration (DOC)
allow a detailed systematic stability analysis of the edge region using the experimental
density and temperature profiles.

In JET Type I and III ELMs are routinely achieved. However, unlike in ASDEX
Upgrade, so far no pure Type II ELMs have been observed. In addition to the standard
Type I and Type III ELMs, H-mode operation with mixed Type I-II has been achieved
[81]. Furthermore, steady-state operation with suppressed ELMs, like QHM in ASDEX
Upgrade and DIII-D, has not been successful in JET.

In publication 5, the stability of various experimental JET plasmas in DOC have been
analysed. Here, the methods and results are briefly summarised.

4.5.2 Equilibrium calculation

The low- to intermediate-n stability analysis of JET plasmas is conducted using the
MISHKA [34] stability code, since it has been used extensively in analysing JET plasmas.
In terms of computing requirements, MISHKA is also less expensive to run than GATO,
allowing studies at higher toroidal mode numbers. As before, the high-n ballooning anal-
ysis is conducted using IDBALL.

In the equilibrium calculations, experimental density and temperature profiles are
used. The edge density profile is obtained from the edge LIDAR system [88]. In the
fitting, the interferometer data is used as a constraint for the line-averaged edge density.
The core density profile is smoothed from the core LIDAR data. The electron temperature
is obtained from the edge LIDAR and ECE systems. Ion temperature from the charge
exchange system is found to agree with the electron temperature at the pedestal top and,
thus, an assumption of Ti = Te is used to set the ion temperature in the edge region.

The equilibrium is constructed using JETTO code [32]. The bootstrap current that
is important for the edge stability is calculated in JETTO using the formulation from
Ref. [89]. The JETTO equilibrium is used as the basis of the stability analysis, but it
can not be used as an input for the MISHKA stability code. Therefore, the equilibrium
is recreated using HELENA equilibrium code with inputs of current, pressure and plasma
shape from JETTO. In the stability analysis with MISHKA, the edge pressure gradient
and the current are varied in HELENA to find the stability boundaries in shear-α space.
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4.5.3 Edge stability within an ELM cycle

First, the stability of the equilibria just before and right after an ELM crash were com-
pared. Figure 4.24 shows the region in shear-α parameter space, where the operational
point (JETTO equilibrium values at a given flux surface) moves within an ELM cycle. In
addition to the operational points before and after the ELM crash, the stability bound-
aries are plotted. The region unstable against low- to intermediate-n modes is marked
by the number that represents the most unstable mode. The continuous line shows the
n= ∞ ballooning mode stability boundary. Before an ELM the plasma is in the second
stable region for the n= ∞ ballooning mode, and the operational point reaches the n=10
stability boundary. After the ELM crash, on the other hand, the plasma edge is far
from the low- to intermediate-n mode stability limit, and if the edge current is assumed
to be lost in the ELM crash, the edge pressure gradient becomes limited by the n= ∞
ballooning mode.
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Figure 4.24: Stability diagram in shear-α space of a Type I ELMy discharge (#55937)
before and after ELM crash at ρ =0.98. At 2 ms before the ELM (red circle), the current
is assumed to have reached the steady state. After the ELM, two assumptions of the
edge current are used: Either the current has diffused to steady state (blue square) or the
current is the same as before an ELM crash (blue diamond). The numbers represent the
mode number of the most unstable mode and the solid line and the crosses shows the n=∞
ballooning mode stability boundary. The thin lines in the operational points show the error
margins due to the errors in plasma profiles.

4.5.4 External effects on the edge stability

As was found in Sec. 4.2 for ASDEX Upgrade, the ELM behaviour can be affected
in various external ways. In JET experiments such methods as gas puffing, increasing
heating power, changing the magnetic field strength, shaping the plasma, and puffing
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impurities are used to change the ELMs. All these effects were studied in DOC except
the level of triangularity which naturally requires also discharges in other configuration.

The gas puff and power scans gave almost identical results. As shown in Fig. 4.25,
puffing gas or lowering the heating power makes the plasma more stable against the low-
to intermediate-n peeling-ballooning modes but, at the same time moves the operational
point closer to the high-n ballooning stability boundary. When the second stability access
becomes very narrow or is completely closed, the pressure gradient becomes limited by
the first ballooning stability, and the type of the ELMs changes from I to III.
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Figure 4.25: The α-shear stability diagram at ρ =0.99 for a) three levels of gas puffing
and b) three levels of NBI power. The numbers represent the mode number of the most
unstable mode and the solid line shows the n=∞ ballooning mode stability boundary. The
symbols with error bars show the experimental values of shear and α for each discharge.

Experimentally, it has been found that the frequency of the ELMs increases with
increasing q95. Since q ∼ Bt/Bp, the edge stability variation with varying q95 is analysed
by comparing discharges at three different levels of toroidal magnetic field but the same
total plasma current. The edge safety factor varies from 3 to 5.2. As shown in Fig. 4.26,
both the operational point and the stability boundary are shifted to higher values of α
with increasing q95. Since the normalisation of the pressure gradient for α is neutral for
the variation of the toroidal magnetic field, the higher value of α corresponds to a steeper
pressure gradient. Increasing q95 can therefore be seen as a way to achieve higher stable
pedestal pressure.
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Figure 4.26: The α-shear stability diagram at ρ =0.98 for three values of q95: 3.0 and
4.1 and 5.2. The dashed lines show the low- to intermediate-n stability boundary for each
value of q95: 3.0 (blue), 4.1 (red) and 5.2 (black). The solid black line shows the high-n
ballooning mode stability boundary. The symbols with error bars show the experimental
value of shear and α of each discharge.
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Chapter 5

Summary and Conclusions

Explaining the plasma mechanisms that cause the ELMs and finding ways they can be
influenced by changes in the plasma operation are fundamental problems for the safe and
reliable operation of a tokamak fusion reactor. In this thesis, the ELM phenomenon has
been investigated using MHD stability analyses. Most of the analyses were done using
experimental data from ASDEX Upgrade and JET. In addition, stabilising effects due to
plasma shaping and high poloidal β were studied using virtual plasma equilibria. The
linear MHD stability analysis results presented in this thesis shed light on the nature
of ELMs, explained some of the features observed in ELMs and formed a basis for the
development of effective ELM control methods.

The main emphasis in the ELM research has been on the mechanism that triggers the
ELMs. The model presented by Connor et al. [57] and extended by Snyder et al. [59] was
chosen as a candidate for the ELM cycle. The model explains the ELM triggering as an
interplay of high-n ballooning and low- to intermediate-n peeling-ballooning mode MHD
instabilities that are localised in the edge of the plasma. In this thesis, the model was
put into a test by analysing the linear stability of the experimental ASDEX Upgrade and
JET plasmas.

The linear analysis is, of course, limited in its ability to describe the time evolution of
the plasma behaviour. Consequently, it can not be expected to fully simulate the ELM
cycle. However, the results of the stability analyses that set the stability boundaries and
give the structure of the linear mode can give some insight also on the time evolution
during the ELM cycle. The stability boundaries set the conditions where the edge plasma
becomes unstable and results in ELM crash. Since the violent ELM crash is the most
important part of the ELM cycle, the explanation of the mechanisms governing the ELM
triggering is the key to any model for ELMs. In order to be consistent with experiments,
the correct ELM model based on MHD instabilities should predict that the stability
boundary is crossed just before an ELM crash.

The structure of the linear instability is likely to be associated with the transport
during the crash, i.e., the transport is increased more in the regions with high mode
amplitude than the regions of low amplitude. The MHD instabilities that serve as triggers
in the ELM model should naturally have high amplitude in the edge region and more or
less vanish in the core. A mode with a wide radial extent encompassing most of the
plasma is more likely to cause a disruption than an ELM.

In the analysis of ASDEX Upgrade Type I ELMs, it was found that, indeed, the
experimental pressure gradient is close to the high-n ballooning stability limit, if the
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bootstrap current is low. With increasing bootstrap current, the access to second stability
opened allowing the pressure gradient to steepen. However, just as predicted by the model,
the edge plasma became low-n peeling-ballooning mode unstable as the bootstrap current
increased. It is interesting to note that the mode numbers of the unstable modes agreed
with the experimental observations for the precursors of Type I ELMs. The radial extent
of the modes was limited to the edge region. It can be concluded that the stability analysis
results using experimental ASDEX Upgrade Type I ELMy plasmas predict Type I ELMs
to be triggered by low-n peeling-ballooning modes and, thus, agree with the studied ELM
model.

In the analysis of JET plasmas, it was found that before a Type I ELM, the edge can
access the second stability regime for ballooning modes. Just before an ELM, the edge
is, within error margins, at the low- to intermediate-n peeling-ballooning mode stability
boundary. After the ELM crash, the edge pressure gradient becomes again limited by the
ballooning stability boundary. Just like in the ASDEX Upgrade stability analysis, the
radial structure of the instabilities found in the JET plasmas before a Type I ELM crash
is also localised in the edge region. It can be concluded that also JET Type I ELMs agree
with the ELM model.

This is as far as a linear MHD can take the analysis of Type I ELM triggering mech-
anism. To get even further, a self-consistent transport analysis (such as simple models
used in [91] and [92]) is needed for simulating the true ELM dynamics. However, the
linear analysis can still be used to study how the triggering of ELMs can be influenced by
adjusting the plasma operation, and what can be done to limit the detrimental effects of
the ELMs. In addition, the effects of active control mechanisms on ELM triggering can
be investigated using MHD stability analysis.

In this thesis, several ways to affect the ELMs have been investigated. The stability of
the ASDEX Upgrade Type II ELMy plasma was compared with the Type I ELMy plasma.
The changes in the plasma operating conditions (the level of triangularity, density, safety
factor at the edge, and the double null configuration) were tested independently.

Increasing the triangularity increased the plasma stability against the ELM-triggering
low-n peeling-ballooning mode (higher edge bootstrap current was needed to destabilise
the plasma). When high triangularity was combined with the increase in the edge safety
factor, the mode structure of the instability became significantly more localised into the
edge region. The increasing density with constant pressure decreased the bootstrap cur-
rent in the edge because of the increasing collisionality. This had a further stabilising effect
on the low- to intermediate-n peeling-ballooning modes. Furthermore, it made the second
stability access narrower for the high-n ballooning modes. Consequently, the low-n modes
may not become unstable at all, and the ELM is triggered by a narrower intermediate-n
mode. The almost double-null configuration makes the instability even more localised at
the edge.

When all these effects are combined and the assumption that the magnitude of the
ELM is proportional to the width of the instability is used, it can be concluded that the
ELMs triggered in the Type II ELM conditions are smaller than those of the Type I ELMy
plasma. This is exactly what is seen in the experiments and the ELM model seems to
work very well with Type II ELMs in ASDEX Upgrade.

In addition to the stability analyses with experimental data, a stability analysis using
equilibria with virtual plasma profiles was conducted to investigate the effect of the global
poloidal β on the edge stability. In JT-60U, it had been observed that high pedestal
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pressure can be achieved with high values of global βp. With high βp, also the ELMs
tend to become smaller. In the stability analysis, the edge profiles were kept fixed and
the core pressure was increased. It was found that in plasmas with high triangularity,
the increasing βp stabilises the low- and intermediate-n peeling-ballooning modes. This
allows increasing the edge pressure gradient without triggering an ELM. The stabilising
effect of high βp was found to be reduced with low triangularity. The stability analysis
results can explain the higher pedestal pressures observed in high-βp high-triangularity
discharges.

The ELMs in JET were also investigated with various changes in the plasma conditions.
The stability analysis of the gas puff scan showed how the second stability access for high-
n ballooning modes closed when the gas puffing was increased, and the ELMs changed
from large Type I ELMs to smaller Type III ELMs with poorer confinement. On the
other hand, the increased gas puffing also stabilised the low- to intermediate-n peeling-
ballooning modes. The power scan had a very similar effect on the stability. The increasing
heating power moved the operational point of the edge plasma into the unstable region
of the low- to intermediate-n modes while at the same time widened the second stability
access for high-n ballooning modes. Since the Type III ELMs are far from the stability
boundary of the low- to intermediate-n modes, it is unlikely that they are destabilised by
the same mechanism as the Type I ELMs. This can also explain their smaller size. The
poor confinement that is generally observed with Type III ELMs can be due to the fact
that, in the operational space, the edge plasma is limited to the first stability region.

The active ELM control mechanism investigated in this thesis was the launching of
small pellets from the high field side. The active ELM control by launching pellets is a
relatively new idea and will require more experimenting to prove its true value, but the
current results are already encouraging. The impurity injection has been used as a way to
affect the ELMs and to mitigate the ELM effects on the divertors. The study of the pellet
injection discharges in ASDEX Upgrade showed that, from the edge MHD stability point
of view, the small ELMs triggered by the small pellets are very similar to the intrinsic
ELMs of the same frequency and differ considerably from the large ELMs that occurred in
the reference plasma without the pellets. Unlike in the intrinsic ELMy plasma, however,
the plasma with launched pellets is in the stable region before an ELM, and the pellet
itself is needed to drive the edge unstable and trigger an ELM. To further investigate
this, three dimensional modelling of the pellet plasmoid would be required. Even from
the two dimensional analysis it can be concluded that the pellet launching appears a very
promising way to mitigate ELM effects, and it can possibly still be improved with smaller
pellets and even higher launching frequency.

In addition to ELMy plasmas, the quiescent H-mode (QHM), an operating mode
without ELMs but with good confinement, was also investigated using the MHD stability
analysis. In the comparison between an ELMy H-mode and QHM, it was found that
higher pressure gradient is required for the destabilisation of the QHM. However, the
slightly improved stability does not fully explain why the QHM plasma does not reach
the stability limit and what is the role of the reversed neutral beam direction. Further
work is also required to explain the observed MHD oscillations in QHM that can play a
role in preventing the edge pressure gradient from steepening even further and causing an
ELM crash.

The stability studies shown in this thesis give some insight into the highly complicated
nature of the ELM phenomenon. The linear stability studies, especially the peeling-
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ballooning analyses, presented in this thesis should be still complemented with analyses
at higher mode numbers (n>10) that were neglected due to computational restrictions
of the GATO code. In order to further improve the understanding of the ELMs, the
results from the linear stability analyses should be used in a transport analysis to develop
a model that can predict what happens at the edge after an ELM crash. The stability
analysis methods themselves should also be improved to include some important effects
from the particle description of plasma, such as stabilisation due to the finite larmor radii
that can start playing a role when the pressure gradient becomes very steep, and the ion
orbit loss driven currents that can affect the current profile at the very edge.

Even though the theoretical explanation of all the aspects of ELMs is still far from
complete, the stability analyses have shown what kind of a role the MHD instabilities play
in the triggering of ELMs. They also revealed how the instabilities can be affected with
the changes in plasma and how these effects change the ELMs themselves. More work is
still needed for instance incorporating the plasma rotation in the stability analysis. Many
plasmas heated by neutral beams rotate at high speed which can affect the edge stability.
In the future, this will hopefully lead to a complete understanding of the ELMs and also
allow to develop tools to control the edge plasma so that the detrimental effects of ELMs
can be avoided without sacrificing the plasma performance of a fusion reactor.
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Chapter 6

Appendix: Ideal MHD equations

6.1 Kinetic picture of plasma

The ideal MHD equations can be derived starting from the Boltzmann equation for each
species:

∂fα

∂t
+ u · ∇fα +

qα
mα

(E + u×B) · ∇ufα =

[
∂fα

∂t

]
c

, (6.1)

and the Maxwell’s equations:

∇× E = −∂B
∂t
, (6.2)

∇ ·B = 0, (6.3)

∇×B = µ0J +
1

c2
∂E

∂t
,

= µ0

∑
α

qα

∫
ufαdu +

1

c2
∂E

∂t
, (6.4)

∇ · E =
σ

ε0
=

1

ε0

∑
a

qα

∫
fαdu. (6.5)

Here, the function fα = fα(r,u, t) is the distribution function, qα is the charge and mα

mass of species α. u is the velocity of the particle. For electromagnetic quantities the
conventional notation is used, i.e. B is the magnetic field, E is the electric field, J is the
current density, σ is the charge density, ε is the vacuum permittivity, µ0 is the vacuum
permeability, and c is the speed of light.

The right hand side of Eq. 6.1 represents changes in the distribution function due to
collisions between particles. It is defined as[

∂fα

∂t

]
c

=
∑

β

Cαβ, (6.6)

where Cαβ describes the collision rate of particle species α with particle species β.
Three conservation laws apply to the collisions, namely conservation of particles, mo-

mentum and energy. The conservation of particles implies∫
Ceedu =

∫
Ciidu =

∫
Ceidu =

∫
Ciedu = 0, (6.7)
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the conservation of momentum in collisions between like particles implies∫
meuCeedu =

∫
miuCiidu = 0, (6.8)

while, the conservation of energy in collisions between like particles implies∫
1

2
meu

2Ceedu =

∫
1

2
miu

2Ciidu = 0. (6.9)

Finally, the conservation of total momentum in collisions between unlike particles implies∫
(meuCei +miuCie)du = 0, (6.10)

and the conservation of total energy in collisions between unlike particles implies∫
1

2
(meu

2Cei +miu
2Cie)du = 0. (6.11)

6.2 Two fluid equations

Taking velocity moments of the Boltzmann equation gives the mass, momentum and
energy equations. The mass equation is obtained by integrating the Boltzmann equation
over the velocity space:∫ [

dfα

dt
−

(
∂fα

∂t

)
c

]
du = 0 ⇒ ∂nα

∂t
+∇ · nαvα = 0. (6.12)

Multiplying the Boltzmann equation by particle momentum and integrating over the
velocity space gives the momentum equation:∫

mαu

[
dfα

dt
−

(
∂fα

∂t

)
c

]
du = 0 (6.13)

⇒ ∂

∂t
(mαnαvα)+∇(mαnα〈uu〉)− qαnα(E+vα×B) =

∫
mαuCαβdu, α 6= β,(6.14)

Finally, the second moment (multiplication by 1/2mαu
2 and integration over velocity

space) gives the energy equation:∫
1

2
mαu

2

[
dfα

dt
−

[
∂fα

∂t

]
c

]
du = 0 (6.15)

⇒ ∂

∂t
(
1

2
mαnα〈u2〉)+∇·(1

2
mαnα〈u2u〉)−qαnαv ·E =

∫
1

2
mαu

2Cαβdu, α 6= β.(6.16)

Here nα is the number density of the particle species α, and vα is the macroscopic
fluid velocity. Their definitions are

nα ≡
∫
fαdu

vα ≡ 1

nα

∫
ufαdu. (6.17)
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The brackets 〈 〉 are defined as averages

〈Q〉 ≡ 1

nα

∫
Qfαdu. (6.18)

The random motion of the particles can be described with a new variable w = u−vα. By
definition 〈w〉 = 0. Before writing the fluid equations in terms of physical macroscopic
quantities, it is useful to introduce the scalar pressure,

pα ≡
1

3
mαnα〈w2〉, (6.19)

the total pressure tensor,

Pα ≡ mαnα〈ww〉, (6.20)

the anisotropic part of the pressure tensor

Πα ≡ Pα − pαI, (6.21)

the temperature,

Tα ≡
pα

nα

, (6.22)

the heat flux due to random motion,

hα ≡
1

2
mαnα〈w2w〉, (6.23)

the mean momentum transfer between unlike particles,

Rα ≡
∫
mαwCαβdw, (6.24)

and the heat generated due to collisions between unlike particles,

Qα ≡
∫

1

2
mαw

2
αCαβdw. (6.25)

Using these definitions and limiting to two fluids, the two-fluid equations can be written
in the form:

dnα

dt
+ nα∇ · vα = 0, (6.26)

mαnα
d

dt
vα − qαnα(E + vα ×B) +∇ · Pα = Rα, (6.27)

3

2
nα
dTα

dt
+ Pα : ∇vα +∇ · hα = Qα, (6.28)

∇× E = −∂B
∂t
, (6.29)

∇×B = µ0e(nivi − neve) +
1

c2
∂E

∂t
, (6.30)

∇ · E =
e

ε0
(ni − ne), (6.31)

∇ ·B = 0. (6.32)
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For simplicity, singly charged ions were assumed. If Zα > 1, the multiplication of nα by
electron charge e in Eqs. (6.29) and (6.31) is replaced by Zαe.

The above set of equations (6.26,6.27,6.28,6.29,6.30,6.31,6.32) describes the plasma
exactly, but is useless for practical purposes, since the heat transfer between particles Qα

is higher order. Another equation could be obtained by taking even higher moment of the
Boltzmann equation. This procedure produces the heat equation, which could be used to
solve for Qα. However, it would introduce yet another unknown quantity of even higher
order. To make practical use of the equations, the sequence has to be closed at some
point. This is done using a few approximations. While the approximations allow to make
better use of the equations, they also limit the validity of the theory. This has to be kept
in mind when the equations are used in practical problems.

6.3 Approximations

In full Maxwell’s equations, there are two components that are responsible for high-
frequency phenomena. The charge separation in Eq. (6.31) creates plasma oscillations
that have very high frequency (recall the electron plasma period in Table 2.1). Another
high-frequency oscillation comes from the second term of the right-hand side of Eq. (6.30).
The ratio between the second and the first term is proportional to the frequency of the
phenomenon, since ∂/∂t ≈ ω. In low frequency cases, the second term can be neglected.
Physically, this means that the electromagnetic waves of interest have phase velocities
much slower than the speed of light, ω/k � c.

Both Eqs. (6.31) and (6.30) can be transformed into low-frequency equations by letting
ε0 → 0. This eliminates the high-frequency components, i.e., the displacement current
ε0∂E/∂t and the charge density ε0∇ · E. The elimination of ε0∇ · E means that there
can not be any net charge anywhere in the plasma. Because of zero net charge, there is
no charge separation, and it is possible to define ni = ne ≡ n. However, here it must be
noted that neglecting the charge separation restricts the length scale of the phenomena to
larger than the Debye length, λd = VTe/ωpe. Remembering that, in MHD, only large-scale
low-frequency phenomena are considered, these assumptions are well justified.

It is possible to simplify the momentum equation (6.27) by neglecting the electron
inertia, i.e., me → 0. This means that the motion of the plasma is determined by the
ions, and the electrons respond infinitely fast on the time scales of interest. Again,
this approximation restricts the time and length scales of the phenomena that can be
treated with MHD. The time scales have to longer than the electron plasma period τpe =
(me/4πnee

2)1/2 and the electron gyro period τce = me/eB, and the length scales have to
be larger than the Debye length and the electron gyro radius re = VTe/ωce. Again, for
MHD phenomena in fusion plasmas these conditions are satisfied.

6.4 Single fluid equations

After simplifying the exact equations by eliminating the high-frequency phenomena and
the electron inertia, a set of equations that describe the behaviour of a single fluid is
obtained. The fluid motion is determined by the ion motion and the electrons follow
infinitely fast. In writing the equations, single-fluid variables will be used instead of
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variables that refer to particle species. Instead of using the number density, the mass
density is introduced,

ρ = min, (6.33)

where the mass of electrons was neglected as assumed above. The current density is
defined as

J = en(vi − ve). (6.34)

Since the inertia of electrons is neglected, the momentum of the fluid is carried by ions.
The fluid velocity is defined as

v = vi. (6.35)

The electron velocity can then be expressed as

ve = v − J/en. (6.36)

The total pressure and temperature of the fluid are defined as

p = nT = pe + pi, (6.37)

T = Te + Ti. (6.38)

Using these definitions, the single-fluid MHD equations can be written. The first
of the single-fluid equations, conservation of mass, comes from the first of the two-fluid
equations, Eq. (6.26), for ions when it is multiplied by ion mass,

∂ρ

∂t
+∇ · ρv = 0. (6.39)

Alternatively, by multiplying the same equation by the elementary charge e, writing it
separately for electrons and ions and then subtracting, yields

∇ · J = 0, (6.40)

which represents the conservation of charge.
From the definition of Rα, Eq. (6.24, it can be seen that Re = −Ri. Then writing the

momentum equation separately for electrons and ions and adding them together leads to
the equation

ρ
dv

dt
− J×B +∇p = −∇ · (Πi + Πe), (6.41)

where the effect of the electric field was eliminated by charge neutrality. The anisotropic
part of the pressure is dominated by the viscosity terms. Without going into details (see
Ref. [17]), the largest terms in Eq. (6.41) are the ion viscosity terms that are of the order

Πii ∼ nTiτiiVTi/a, (6.42)

where τii is the ion-ion collision time. If it is assumed that the plasma is collisional, i.e.,

VTiτii/a� 1, (6.43)
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then the approximation

∇ · Πi

∇p
∼ VTiτii

a
� 1, (6.44)

can be made. This allows neglecting the right hand side of Eq. (6.41).
Also the electron momentum equation can be written in single-fluid variables, yielding

E + v ×B =
1

en
(J×B−∇pe −∇ · Πe + Re). (6.45)

The left-hand side of Eq. (6.45) is the Ohm’s law for perfectly conducting material.
In ideal MHD, perfect conductivity is assumed, and the right-hand side should vanish.
Indeed, the right-hand side becomes negligible with the following assumptions. First, the
viscosity term is neglected under the same conditions as above. Second, neglecting the
right-hand side of Eq. (6.41) and multiplying it by 1/(en), it can be seen that

1

en
(J×B−∇pe) =

1

en
(J×B−∇p+∇pi) =

1

en
(ρ
∂v

∂t
+∇pi). (6.46)

The first term, ρ/(en)∂v/∂t, is comparable to ω/ωci times |v × B|. For low frequencies
(ω � ωci) it can be neglected. The second term, ∇pi/en, is compared with v × B,
resulting

|∇pi/en| ∼ Ti

ae
∼ miV

2
Ti

ae
,

|v ×B| ∼ VTiB,

⇒ |∇pi|/en
|v ×B|

∼ ri

a
, (6.47)

where ri = VTi/ωci is the ion gyro radius. Thus, in order to be able to neglect J×B and
∇pe terms, one has to assume that

ri

a
� 1, or

ω

ωci

� 1. (6.48)

This is the previous condition that the frequency of the MHD phenomenon has to be
lower than the ion gyro frequency and the length scales larger than the ion gyro radius.

The last term in the electron momentum equation is Re/en representing the collisions
between electrons and ions. It is dominated by electrical resistivity and, using transport
theory, can be written as

1

en
Re ∼ ηJ, (6.49)

where the resistivity η is

η ∼ me

ne2τei
. (6.50)

The momentum equation yields a scaling |J| ∼ |∇p|/|B|. Now, a condition for the
last term in Eq. (6.45) to be neglected can be written as

η|J|
|v ×B|

∼ η|∇p|/|B|
|v ×B|

∼ (me/mi)
1/2

ωτii

(ri

a

)2

� 1, (6.51)
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where 1/ω ∼ a/VTi is the typical time scale for MHD phenomena. Also the relation
between collision times of electrons and ions τei ∼ τee ∼ τii(me/mi)

1/2 was used. In
Eq. (6.51), the collision time is in the denominator, which means that while the earlier
conditions required plasma to be collisional, there should not be too many collisions.
Otherwise, the plasma is not ideal, and the resistive diffusion should be included.

Using some algebra and the definition of the ratio of specific heats (γ = 5
3
), the

remaining equations for ions and electrons (Eq. (6.28)) can be written in the form

d

dt

(
pi

ργ

)
=

2

3ργ
(Qi −∇ · hi − Πi : v), (6.52)

d

dt

(
pe

ργ

)
=

2

3ργ

[
Qe −∇ · he − Πe :

(
v − J

en

)]
+

1

en
J · ∇

(
pe

ργ

)
. (6.53)

The last term in the electron equation comes from (d/dt)e = (d/dt)−(J/en)·∇. Again the
right-hand side of these equations can be neglected under certain conditions. The terms
containing anisotropic pressure as well as the last term of the electron energy equation
become negligible with the assumptions that have already been used. The heat flux is
dominated by the conduction along the field lines and can be written as

hj ≈ −k‖j∇‖Tj, (6.54)

where k‖j is the parallel conductivity of the fluid of particle type j. Neglecting the joule
heating in the collisional heating terms Qj due to assumed negligible resistivity, only
electron and ion energy equilibration contributes to Qj. They can be written as

Qe =
n(Te − Ti)

τeq
, (6.55)

Qi = −n(Te − Ti)

τeq
, (6.56)

where τeq is the energy equilibration time that is proportional to the ion-ion collision time
with a relation

τeq ∼
(
mi

me

)1/2

τii. (6.57)

In order to neglect the terms containing Qj, the condition ωτeq � 1 has to be fulfilled.
Then Te ≈ Ti.

The transport theory (see for instance Ref. [1]) gives the parallel thermal conductivity
as k‖e ∼ nTeτeq/me for electrons and a value smaller by a factor of (me/mi)

1/2 for ions.
Adding the energy equations and neglecting the ion thermal conduction terms yields the
equations

d

dt

(
p

ργ

)
=

1

3ργ
∇‖ · (nTτeq/me∇‖T ). (6.58)

Here Te = Ti = T/2 was used. The right hand side is negligible with the same condition
as was used to neglect collisional heating terms, i.e. ωτeq � 1. It can be written out as

ωτeq ∼
(
mi

me

)1/2
VTiτii
a

� 1 (6.59)
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It is easy to notice that this is even more restrictive condition than that obtained from
the dominance of collisions in the momentum equation.

The ideal MHD equations can now be written as

∂ρ

∂t
+∇ · ρv = 0, (6.60)

ρ
dv

dt
− J×B +∇p = 0, (6.61)

d

dt

(
p

ργ

)
= 0, (6.62)

E + v ×B = 0, (6.63)

∇× E = −∂B
∂t
, (6.64)

∇×B = µ0J, (6.65)

∇ ·B = 0. (6.66)

6.5 Boundary conditions for MHD problems in fu-

sion devices

To use the ideal MHD equations derived above for practical purposes, boundary conditions
need to be defined. In a modern tokamak, the plasma is inside a conductive wall. Between
the plasma and the wall, there is a region that can treated as vacuum, where p = 0. Since
there are no currents in vacuum, the following equations define the vacuum magnetic field
B̂:

∇× B̂ = 0, (6.67)

∇ · B̂ = 0. (6.68)

On the surface of a perfectly conductive wall, the boundary condition is

n · B̂|wall = 0, (6.69)

where n refers to the normal vector of the wall. At the plasma boundary, the condition

n · B̂|surf = n ·B|surf (6.70)

must be satisfied, because the boundary is a flux surface with a constant pressure.
Plasma surface is free to move into the vacuum and, consequently, the normal compo-

nent of the velocity can be continuous across the boundary. Substituting Ampère’s law
into the momentum equation and integrating over the surface gives[

p+
B2

2

]
surf

= 0, (6.71)

where [X]surf denotes the change across the boundary, i.e. X̂−X. Similarly the Ampère’s
law gives

[n×B]surf = µ0K, (6.72)

where K is the surface current density. If there are neither surface currents nor jumps in
the pressure, these conditions require that the all the component of the magnetic field are
continuous.
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Abstracts of publications 1-5:

1. An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account
the bootstrap current. The peeling mode stability of the equilibrium is numerically
analysed using the GATO [1] code, and it is found that the bootstrap current can
drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis
of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap
current has a stabilizing effect on the ballooning modes. A combination of these
two instabilities is a possible explanation for the type I ELM phenomenon. Atrian-
gularity scan showed that increasing triangularity stabilizes the peeling modes and
can produce ELM-free periods observed in the experiments.

2. An MHD stability analysis of the plasmas with type II ELMs is presented. The
stability properties in type II ELMy plasmas (high-q95, high ) are found to signifi-
cantly di er from those of the type I ELMy plasmas. The differences between the
type I and type II ELM cycles due to these stability properties are described.

3. We investigated the differences between type I and type II edge localized modes
(ELMs) in ASDEX Upgrade using the MHD stability analysis. When plasma con-
ditions are changed from typical type I ELMy conditions to type II ELMy condi-
tions, the character of the edge instabilities change. With increased triangularity
and edge safety factor, the low-n peeling ballooning mode becomes more stable and
more localized to the edge region. We find the same mode localization effect in
almost double null configuration. When the plasma density is increased, the access
to the second stability of the high-n ballooning modes is closed. The changes in the
stability properties give a qualitative explanation to the observed small amplitude
of the type II ELMs.

4. An MHD stability analysis of the edge plasma shows that in highly triangular plas-
mas, the increasing global βp has a stabilizing effect on the low-n instabilities that
trigger edge localized modes (ELMs). The improved stability allows the access of
higher edge pressure gradients before the ELM is triggered. At the same time, the
edge plasma moves closer to the high-n ballooning mode stability boundary. The
stability changes can explain why the high value of βp helps to access smaller ELMs.

5. The plasma edge MHD stability is analysed for several JET discharges in the Di-
agnostic Optimized Configuration (DOC). The stability analysis of Type I ELMy
plasmas shows how after an ELM crash the plasma edge is deep in the stable region
against low- to intermediate-n peeling-ballooning modes. As the pressure gradient
steepens and the edge current builds up, the plasma reaches the low- to intermediate-
n peeling-ballooning mode stability boundary just before the ELM crash. Increasing
the plasma fueling by gas puffing makes the second stability access against high-n
ballooning modes narrower until it closes completely and the ELMs change from
Type I to Type III. Reducing the plasma heating has a similar effect. Increasing the
safety factor at the plasma edge improves the stability against low- to intermediate-n
modes allowing steeper pressure gradients to develop before an ELM crash.
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