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2004, Vol. 22, No. 8, pp. 2723–2727
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1 Introduction

This dissertation is dedicated to inversion methods for stellar occultation meas-

urements and to the optimization of retrievals. The work was motivated by

problems that have been encountered in the data processing of measurements

by the GOMOS (Global Ozone Monitoring by Occultation of Stars) instrument

on board the Envisat satellite. The dissertation consists of three parts. The

first part deals with optimization of retrievals by inclusion of a priori information

about smoothness of constituents profiles in the atmosphere and with develop-

ment of a methodology for creating this a priori information. The second part

is dedicated to optimal selection of measurements based on information theory,

aiming at optimal design of future instruments, as well as at improved efficiency

of the data processing. The third part introduces extra geophysical parameters

(air density, pressure and temperature), which can be obtained from the pointing

measurements by stellar occultation instruments.

The inversion methods developed are applied to GOMOS measurements.

However, the methods are formulated in a general form that allows their ap-

plication beyond the GOMOS mission.

The dissertation consists of six original publications that will be referred to

by roman numerals (I–VI). The major contributions of the individual papers are

as follows. Publ.I discusses inclusion of a priori information about smoothness

of atmospheric profiles in inversion algorithms. Two methods are developed. One

of them – ”the target resolution method”– develops the classical Tikhonov regu-

larization. The second method includes a priori information about smoothness of

atmospheric profiles in the form of Bayesian optimal estimation. In Publ.II, the

methodology for creating a priori information about smoothness of atmospheric

profiles is developed. In Publ.III, the methods for selection of measurement sub-

sets using information theory are examined. Two optimization problems, both

taking the information content of the measurements as a criterion, are defined

and discussed. The selecting procedures were developed, compared with each

other and existing methodologies and applied to selection of the most inform-

ative channels for GOMOS measurements in the UV-Visible wavelength range.

In Publ.IV, it is shown that occultation geometry under a spherical symmetry

assumption leads to models described by the Abel integral equations. Analyz-

ing general properties of the Abel transform, this work derives practical rules for

discretization and for solution of inverse problems containing Abel-type integral

equations. Publ.V and Publ.VI present a feasibility study for retrieval of

temperature and density profiles from pointing measurements by stellar occulta-

tion instruments. This study introduces extra geophysical parameters that can

be obtained from the GOMOS measurements. Inclusion of a priori information is

discussed and error analysis is performed.
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The overview section is organized as follows: Chapters 2-4 are dedicated to

the description of the forward model and inverse methods for the main GOMOS

mission: monitoring of ozone and trace gases in the atmosphere. In particular,

in Chapter 2, the occultation principle, the forward model and the inversion stra-

tegy are introduced. Chapter 3 summarizes the results of Publ.I and Publ.II.

Chapter 4 is dedicated to the information theory approach for optimal selection

of measurements (Publ.III). Chapter 5 discusses refractive measurements by the

GOMOS instrument and inverse problems for retrieval of geophysical parameters

from these measurements (Publ.V and Publ.VI).
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2 Stellar occultation and inverse problems

2.1 The changing atmosphere

Measurements of chemical composition of the atmosphere during the past 40 years

have clearly demonstrated that the concentration of several key components ex-

hibit systematic trends. Detection of the ozone hole, significant increase of green-

house gas concentrations and global mean surface temperature are the warning

signs of environmental change.

On March 1, 2002 ESA launched a large environmental satellite, Envisat,

which provides measurements of the atmosphere, oceans, land and ice. Envisat

carries ten scientific instruments, including three instruments dedicated to atmo-

spheric composition sounding: MIPAS, SCIAMACHY and GOMOS. GOMOS is

the acronym for Global Ozone Monitoring by Occultation of Stars. Its major

objective is the monitoring of the global vertical distribution of ozone and other

trace gases from the upper troposphere to the upper mesosphere.

Ozone is a minor constituent in the Earth’s atmosphere but it plays a crucial

role in shielding Earth’s biosphere against solar UV-radiation. Ozone is a central

element in stratospheric chemistry and it has an important role in maintaining

the thermal structure of the stratosphere. The heat released by the dissociation

of ozone drives the stratospheric circulation that distributes ozone from the ozone

production areas around the equator toward polar regions. Ozone is also one of

the main greenhouse gases.

Observations in the mid-1980’s revealed a large springtime ozone hole over

Antarctica and subsequent analyses have also shown a general slow declining trend

of the total ozone content in the stratosphere. The key driving process behind the

decline is the release of anthropogenic CFC gases to the atmosphere. After a long,

slow transport to the stratosphere complex CFC molecules are dissociated by the

solar ultraviolet radiation and chlorine atoms are released into the stratospheric

air. Increased amounts of chlorine atoms amplify the normal catalytic destruc-

tion cycles of ozone. In addition to this (’normal’) homogeneous chemistry, the

heterogeneous chemistry on polar stratospheric clouds or on surfaces of volcanic

aerosol particles lead to a faster loss of ozone. This explains the severe loss of

ozone over Antarctica together with the low temperatures developed during the

stable winter vortex over the South Pole. International treaties, starting from

the Montreal Protocol of 1988, have limited the amount of CFC gases released

to the atmosphere, causing reduction of their quantities in the troposphere. Due

to very long drift times to the stratosphere these positive trends will affect the

stratospheric chlorine concentrations slowly: the estimated recovery time for the

ozone loss is about 50 years.

Adequate ozone content in the atmosphere is necessary for the normal func-

tioning of the biosphere and therefore we need to monitor systematically the
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Figure 2.1. Split of the ozone hole into two holes in September 2002. Assimilated
GOMOS and OSIRIS data. Courtesy of Seppo Hassinen, FMI.

global distribution of ozone. Even after the very intensive research in the past

20 years, some questions in the ozone problem remain unresolved. Perhaps the

most important one is the coupling of the greenhouse effect and the ozone prob-

lem. The enhanced greenhouse effect cools the stratosphere and therefore slows

down chemical reactions but also creates opportunities for buildup of stratospheric

clouds needed in the heterogeneous chemistry. Dynamics can also play a signi-

ficant role in shaping ozone distribution. For example, the ozone hole over the

Antarctica was split in September 2002 (Figure 2.1). It is assumed that the split

was generated by planetary wave activity.

One of the main purposes of Envisat is to provide measurement data on the

Earth’s changing atmosphere. The GOMOS mission aims to answer the following

questions:

• What is the vertical distribution and the trend of ozone in the stratosphere

and in the mesosphere over all the world?

• What is the effect of the limitation on CFC release?

• Are the chemistry and dynamics of ozone well understood, i.e. do model

predictions agree with measurements?

These objectives require long-term measurements of ozone and other trace

gases with high accuracy, global coverage and good vertical resolution.



13

Figure 2.2. Occultation principle [http://envisat.esa.int/dataproducts/gomos].

Satellite measurements are indirect, and therefore inversion methods play a

key role in the retrieval of atmospheric profiles. The scientific objectives of the

GOMOS mission require accurate and efficient inversion algorithms. Specific fea-

tures of inverse problems from satellite measurements can be outlined as follows:

1. The retrieved products should be as accurate as possible. The error estim-

ates should be correct.

2. The vertical resolution should be sufficient to resolve the dynamical struc-

tures and peak values of concentrations.

3. The inversion procedure should be numerically efficient due to vast amount

of data.

2.2 UV-Visible spectral measurements by GOMOS

GOMOS is the first operational stellar occultation instrument. However, first

occultation measurements were made already 30 years ago [Hays and Roble, 1968;

Roble and Hays, 1972]. The solar occultation technique [Chu et al., 1989] had a

key role in deriving ozone trends in 1979-2000. Recently, the UVISI instrument on

the MSX satellite has carried successfuly steller occultaions in 1996-2001 deriving

ozone concentrations in the stratosphere [Yee et al., 2002; DeMajistre and Yee,

2002; Vervack et al., 2002].

The benefit of the occultation principle is its self-calibrating measurement

concept (for references and reviews of occultation method, see [Hays and Roble,

1968; Elliot, 1979; Smith and Hunten, 1990; Korpela, 1991; Kyrölä et al., 1993;

Bertaux et al., 2004; Kyrölä et al., 2004]). The reference stellar spectrum is first

measured when a star can be seen above the atmosphere. During the occultation,

the measurements through the atmosphere provide spectra modified by absorp-

tion, scattering and refraction (Figure 2.2). When these occulted spectra S(λ, h)



14

Figure 2.3. Spectral coverage and resolution of the GOMOS detectors
[http://envisat.esa.int/dataproducts/gomos].

are divided by the reference spectrum Sstar(λ), nearly calibration-free horizontal

transmission spectra are obtained:

T (λ, h) =
S(λ, h)

Sstar(λ)
. (2.1)

Here λ and h denote wavelength and tangent altitude, respectively. These trans-

missions are the input data for retrieval of atmospheric constituent densities.

Since stars are point sources of quite low-intensity light, special instruments

are needed for the recording of stellar spectra. The challenging pointing system

consisting of a steering-front mechanism (SFM) and a star tracker (SATU) allows

detection of a star and keeping the image of the star in the centre of the slit

(which is incorporated in order to minimize the scattered solar light in bright

limb occultations). GOMOS includes two spectrometers, one operating in the UV-

Visible and the other at infrared wavelengths. The detectors are two-dimensional

charge-coupled devices (CCD); they allow measurements of radiation coming from

extended sources and from stars with good spectral resolution. Light from a point

source is focused on the few central lines of the detector, while the diffuse light

scattered from the atmosphere is spread over the CCD. Therefore, it is possible

to estimate the scattering contribution to the total signal. The wavelength range

of detectors and spectral resolution is shown in Figure 2.3.

Each UV-visible spectrum contains 1416 spectral values in the wavelength

range 250-675 nm, and one stellar occultation comprises 70-100 spectra at differ-

ent tangent altitudes in the range of∼10-140 km. One complete stellar occultation

thus contains over 100 000 data points. Vertical profiles of ozone, NO2, NO3, aero-

sol and air density are retrieved from the UV-Visible spectrometer measurements.

The next section presents the formal description of the forward model.
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2.2.1 Forward model

The stellar light and the background signal (scattered light) are recorded by CCD.

The background signal is negligible in dark limb occultations. In this dissertation,

only dark limb measurements are considered.

The signal Sobs(λ, t) recorded by each pixel of the CCD (marked by the

wavelength λ) at the moment t can be presented as a sum of a useful signal

Satt(λ, t) and noise Snoise(λ, t)

Sobs(λ, t) = Satt(λ, t) + Snoise(λ, t). (2.2)

The noise term in (2.2) contains the dark current of the CCD, photon noise

and readout noise. Statistics of photocounts obeys a Poisson distribution, which

can be approximated to good accuracy by a normal distribution due to large

variance values. The readout noise is assumed to have a normal distribution. The

mean dark current can be estimated and subtracted from the detected signal as

an offset signal.

The noiseless signal Satt(λ, t) originates from the occulted star and can be

represented as

Satt(λ, t) =
∫

Wins(λ, λ′, t)Tatm(λ′, t)Sstar(λ
′)dλ′, (2.3)

where Wins(λ, λ′, t) represents an instrumental transmission function, Sstar(λ) is

a non-attenuated stellar spectrum and Tatm(λ, t) is an atmospheric transmission

function. When the stellar spectrum is measured above the atmosphere, the

reference spectrum is obtained

Sstar
obs (λ, t) =

∫
Wins(λ, λ′, t)Sstar(λ

′)dλ′ + Snoise(λ, t). (2.4)

The atmospheric transmission function Tatm(λ, t) has a complicated structure.

First, it contains the component due to absorption and scattering (extinction) of

gases, which can be modelled by using the well-known Lambert-Beer law

Text = e−τ , (2.5)

where the optical depth τ is given by

τ(λ) =
∑
j

∫
σj(λ, T(r̄(s)))ρj(r̄(s))ds. (2.6)

Here the ρj’s are constituent densities depending on the position r̄ and the σj’s

are the temperature-dependent absorption or scattering cross sections. The integ-

ration is performed along the optical path joining the instrument and the source.

The cross sections and typical transmission functions are shown in Figures 2.4

and 2.5, respectively.

Second, the atmospheric transmission function Tatm(λ, t) contains also a com-

ponent generated by refractive effects. These effects are:
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Figure 2.4. The absorption and scattering cross sections in the UV-Visible wavelength
range.

Figure 2.5. Left: transmission including the effects of absorption and scattering at selec-
ted altitudes simulated with LIMBO [Kyrölä et al., 1999]; right: atmospheric
composition used in the simulation.
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• Refraction.

A nearly exponential decrease of the atmospheric air density leads to bending

of rays coming from a star. The bending angle increases with decreasing

altitude.

• Refractive dilution.

The change of the propagation direction in the atmosphere will result to

dilution of the related intensity.

• Chromatic aberration.

The dependence of the refractive index of the atmosphere on wavelength

leads to a spatial separation of rays of different colors.

• Scintillation.

This results from diffraction of light passing through air density irregu-

larities. If the stellar light is measured with a high-frequency device, the

measured intensity exhibits fluctuations that may exceed its regular value

by several hundred percent.

The refractive effects are discussed in more detail in Chapter 5. The most elabor-

ate analysis of refractive effects and scintillation can be found in [Dalaudier et al.,

2001; Kan et al., 2001; Gurvich and Brekhovskikh, 2001; Gurvich and Chunchuzov,

2003].

The influence of absorption and refractive effects on received light at satellite

level is quite different: refraction changes the direction of propagation but has no

effect on the energy (number of photons) transported by light, while absorption

removes photons (and thus energy) from a light beam but does not change its

direction. It is assumed that the absorption and refraction affect the atmospheric

transmission independently, so it can be expressed as a product [GOMOS ESL,

1999]

Tatm(λ, t) = Text(λ, t)Tref(λ, t). (2.7)

The finite measurement time ∆t = 0.5 s of GOMOS should be also taken

into account. By combining (2.2), (2.3), (2.5), (2.6) and (2.7), we get the forward

model of the GOMOS measurements:

Sobs(λ, t) =
1

∆t

∫
∆t

∫
Wins(λ, λ′, t′)Trefr(λ

′, t′)Tscint(λ
′, t′)×

exp

−∑
j

∫
σj(λ

′, T(s))ρj(s)ds

Sstar(λ
′)dλ′dt′ + Snoise(t). (2.8)

The typical geometry scales of GOMOS measurements are shown in Figure

2.6.
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Figure 2.6. GOMOS geometry scales. The altitude of the satellite orbit is 800 km.
Taking atmosphere thickness 100 km, the longest distance that a light ray
travels in the atmosphere is ∼2100 km (at a tangent altitude of 15 km).
The distance between the two points at which this ray intersects the 30 km
altitude level is ∼880 km. The measurement time ∆t = 0.5 s defines the
sampling vertical resolution, which is better than 1.7 km. The chromatic
separation of rays both at satellite level and in the atmosphere (not shown)
is significantly smaller than the sampling resolution: it is ∼10 m at 30 km
altitude for rays of wavelengths 500 nm and 675 nm.

2.2.2 GOMOS retrieval strategy

The GOMOS processing starts with various instrumental corrections. First, the

mean dark current is subtracted from the reference and attenuated spectra. Second,

the reference star spectrum is averaged from sufficiently many measurements

above the atmosphere, thus giving an accurate estimate of the star spectrum Sstar.

Then the spectrum observed through the atmosphere is divided by the reference

spectrum, yielding the atmospheric transmission function:

Tatm =
Sobs

Sstar

. (2.9)
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The component due to refractive effects is estimated and removed from the

transmission data (GOMOS ESL [1999, 1998]; Dalaudier et al. [2001])

T obs
ext =

Tatm

Tref

. (2.10)

The refractive term Tref is presented in the form

Tref = TdTscin, (2.11)

where the component Td corresponding to regular refractive effects (refractive

dilution) is modulated by the scintillation component Tscin. The dilution term

Td can be estimated from ray tracing calculations. In the GOMOS processing,

ECMWF air density data are used in ray tracing.

For scintillation correction, GOMOS is equipped with two fast photometers

sampling simultaneously stellar flux in low-absorption wavelength regions (∼495

nm and ∼ 675 nm) at a frequency of 1 kHz. The estimation of Tscin consists

of detecting fluctuations from the scintillation measurements and averaging them

over the 0.5 s integration time of spectrometers. This estimation assumes that all

high-frequency fluctuations in the photometer signal (except for noise) are due to

scintillations, while fluctuations due to structure in the vertical profiles of absorb-

ing constituents affect only the low-frequency component of the signal. Another

hypothesis of the GOMOS refractive effects correction is that light rays of differ-

ent colors come through exactly the same refractive structures, so that the signal

perturbations at different wavelengths are identical after appropriate shifting and

stretching as a result of the regular refractive effect. The second hypothesis is

always satisfied in vertical occultations (in orbital plane), but may be violated

in oblique occultations if isotropic turbulence is well developed. Validity of these

assumptions is discussed in more detail in [Dalaudier et al., 2001; Kyrölä et al.,

2005].

After the correction of refractive effects, the transmission spectra, which are

approximately described by equations (2.5) and (2.6) are obtained. These trans-

mission spectra provide the basis for retrieval of atmospheric constituent densities.

It is possible, in principle, to discretize the atmosphere into volume cells and

perform a kind of atmospheric tomography (global inversion). However, the di-

mension of the problem makes this approach unfeasible: 1500 spectrally resolved

data at approximately 80 altitudes give 120 000 measurement points in one oc-

cultation; GOMOS makes 300-500 occultations every 24 hours; 10 unknown con-

centrations in at least 8000 volume cells (80 divisions in altitude × 20 latitudinal

divisions × 5 longitudinal divisions) give 80 000 parameters to fit. Furthermore,

the temporal resolution would be lost with this approach.

Therefore, individual occultations are considered in the GOMOS processing.

Three basic inversion schemes that evaluate individual occultations have been

considered. All assume local spherical symmetry of the atmosphere. In the first
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scheme, transmission data from every tangent height are inverted to horizontal

column densities for different constituents (spectral inversion). For every constitu-

ent, the collection of horizontal column densities at successive tangent heights is

converted to vertical density profiles (vertical inversion). The second scheme first

calculates the vertical profile of the wavelength-dependent extinction. Then the

vertical profiles of constituents can be reconstructed from the vertical profiles of

extinction using the cross sections. The third method starts from the transmis-

sions from all tangent heights and inverts the constituent densities in one step

[Sihvola, 1994; Haario et al., 2004; Vanhellemont et al., 2004]. The different ap-

proaches to inversion of GOMOS data are schematically shown also in Figure

2.7.

The present GOMOS processing scheme relies on the first method, i.e. spec-

tral inversion followed by vertical inversion. This method has been chosen for

two reasons. The first is a significant reduction in amount of data that must be

handled at a time. The ’spectral first’ approach contributes to the fast reduc-

tion in size of data. The second reason is related to the observation geometry

of GOMOS. The result of the spectral inversion – horizontal column densities –

might be also useful for assimilation of GOMOS measurements into atmospheric

models. The current GOMOS processing scheme allows various applications of

GOMOS data (Figure 2.7).

The split of the inversion into the spectral inversion and the vertical inversion

is mathematically correct only if the cross-section kernel in (2.6) is independent

of the spatial variables, otherwise we need to use so-called effective cross-section

method [Sihvola, 1994]. In this method, the optical depth τ is presented in the

form

τ(λ, `) =
∑
j

∫
ρj(z(s))σj(λ, T(z(s)))ds =

∑
j

σeff
j (λ, `)Nj, (2.12)

where Nj is the line density of the species j

Nj =
∫

`
ρj(z(s))ds (2.13)

and

σeff
j (λ, `) =

∫
`
σj(λ, T(z(s)))ρj(z(s))ds

Nj

(2.14)

is the effective cross section of species j.

The use of the effective cross sections allows the separation of the inversion

problem into two parts. The spectral inversion part is given by (2.12) with the

horizontal column densities Nj as unknowns. The vertical inversion part is given

by (2.13) with local density ρj(z) as the unknowns. The two parts are, however,

coupled together by the unknown effective cross sections. In order to take into

account the coupling effect, the processing makes use of an iterative loop over

spectral and vertical inversions.
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2.2.3 Spectral inversion

The spectral inversion problem is that of determination of horizontal column dens-

ities from the observed transmission data Tobs. It is coupled with the vertical

inversion via an iterative loop that uses the effective cross sections. At each loop,

the problem can be written as

Tobs = exp(−ΣN) + ε, (2.15)

where Tobs is a vector of observed transmittances that include absorption and

scattering, Σ is a matrix of cross sections and N is a vector of unknown horizontal

column densities.

The estimations of horizontal column densities is based on the standard maxi-

mum likelihood method (more complete but also computationally more expensive

methods are discussed in [Tamminen and Kyrölä, 2001; Tamminen, 2004]). Un-

der the assumption of a Gaussian distribution of the measurement noise, it is

equivalent to minimization of the χ2 statistics

χ2 = (Tmod(N)−Tobs)
TC−1(Tmod(N)−Tobs), (2.16)

where Tmod is the modelled transmission and C is the covariance matrix of

the transmission errors. The minimization is performed using the Levenberg-

Marquardt algorithm [Press et al., 1992]. The covariance matrix C of the trans-

mission errors has two components. The first (and dominating) Cobs is due to

noise in measurements. If there is no operation destroying stochastic independ-

ence of errors, this covariance matrix is diagonal. In addition to measurement

noise, the covariance matrix can also include the component Cmod, which comes

from various approximations and modelling errors. If the data statistics and the

modelling error are Gaussian, the total error is a sum of these two:

C = Cobs + Cmod. (2.17)

The modelling errors are briefly discussed in [Kyrölä et al., 1993] and in Publ.III;

a more detailed analysis is presented in [Sofieva et al., 2005]. Specification of all

modelling errors is a complicated task, and it is not yet fully solved.

The forward model can be linearized by simply taking logarithm of (2.15), so

that at each altitude we have the standard linear model with additive noise

τ = − lnTobs = ΣN + ε1, (2.18)

where τ is a measurements vector (optical depth), and ε1 is a noise vector. The li-

nearized form is convenient for the error analysis and sensitivity studies. However,

the linearization is possible only if data are pre-processed in order to eliminate

non-positive values. Furthermore, the linearization modifies the distribution of
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the measurement noise, but provided |ε1| =
∣∣∣ ε
Tobs

∣∣∣� 1 and Tobs > 0 the Gaussian

approximation still holds [Kyrölä et al., 1993; Tamminen and Kyrölä, 2001].

A specific aspect of the spectral inversion is discussed in Publ.III, namely,

the information content of measurements. It is defined by the structure of the

forward model matrix Σ, by the noise level and a priori information used in

the inversion. The information approach is discussed also in Chapter 4 of this

dissertation.

2.2.4 Vertical inversion

The vertical inversion aims to determine a vertical profile, ρ(z), that fulfils the

equation

N(z) =
∫

ρ(z(s))ds, (2.19)

where N is any of the horizontal column densities inverted in the spectral inversion

(2.15) and the integration is performed along the ray path. Assuming spherical

symmetry of the atmosphere and ignoring refraction of rays, the vertical inversion

problem (2.19) can be presented as an Abel integral equation

N(p) = 2
∫ ∞

p

ρ(r)rdr√
r2 − p2

. (2.20)

Here p is the ray perigee altitude. Vertical inversion consists of reconstruction of

the vertical density profile ρ(r) from the horizontal column densities N(p), known

for different values of the impact parameter. The formal solution can be written

as

ρ(r) = − 1

π

∫ ∞

r

N ′(p)dp√
p2 − r2

. (2.21)

The vertical inversion problem in its continuous formulation (2.20) is ill-

posed; this follows from the compactness of the forward model operator. This is

discussed in Publ.IV.

In practice, we have only a finite number of measurements. The problem

of reconstruction of a continuous function from a finite number of measurements

is inherently ill-posed. However, a discrete representation obtained by dividing

the atmosphere into layers according to a measurement structure and making

certain assumptions about the profile behavior within the layers (constant, linear,

polynomial altitude dependence) transform the problem to an even-determined

problem. In GOMOS processing, the number of layers is chosen equal to the

number of measurements (horizontal column densities). Different discretization

schemes of the vertical inversion (2.20) are discussed in Publ.IV. It is found that

the collocation method [Gorenflo and Vessella, 1991] gives the most numerically

efficient and stable pole-free discretization.
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In the collocation approach, it is first assumed that the upper limit in the

integral (2.20) is finite (R). Suppose that there are M measurements at the points

x1, x2, ..., xM : Ni = N(xi). We generate the layers structure ri, i = 1, ...,M + 1

so that xi ∈ (ri, ri + 1) (usually it is chosen xi = (1 − s)ri + s ri+1, where s is

the shift between the layers and the measurements structures). For the midpoint

collocation method, ρ(r) is replaced by ρ̃(r) = ρ(xi) when ri < r ≤ ri+1, for

the trapezoidal collocation method ρ(r) is replaced by a linear interpolation term

ρ(r) = (rj−1−r)ρ(rj)+(r−rj)ρj−1

rj−1−rj
and for polynomial collocation method by a poly-

nomial interpolation term. Then Eq.(2.20) is collocated at the points xi by the

formula

2
∫ R

xi

ρ(r)rdr√
r2 − p2

= Ni for i = 1, 2, ...,M. (2.22)

Finally, we arrive at the triangular linear system Kijρj = Ni, i = 1, 2, ...,M . Let

us note that the weak singularity disappears as the result of integration∫ ri

xi

a0 + a1r + ... + amrm

√
r2 − x2

dr

in calculation of the elements Kii of the matrix K. In GOMOS-related literature,

the midpoint collocation discretization is often called the ’onion peeling’ method.

Regardless of the discretization, the vertical inversion in the matrix form can

be written as

N = Kρ + ε, (2.23)

where K is the forward model (kernel) matrix, N is a vector of measurements

(horizontal column densities), ρ is a vector of unknowns (profile) and ε is a vector

of measurement noise. In GOMOS processing, bending of ray trajectories due to

refraction is also taken into account. The discretized GOMOS vertical inversion

problem (3.4) is well-conditioned (the condition number of the forward model

matrix K for a typical occultation is ∼ 25), so it can be solved with usual matrix

inversion. The inversion is slightly noise-amplifying by a factor ∼2 (Publ.IV).

However, in the case of dim stars, the reconstructed profiles are significantly con-

taminated with noise.

2.3 Characterization of retrieved profiles

The most complete characterization of the reconstructed profiles would be given

by their posterior distribution. However, the posterior distribution often is not

retrieved. In practice, the error of reconstruction is assumed to have Gaussian

distribution; it is characterized by its covariance matrix.

Let us consider the forward model (2.23). Given the retrieved profile ρ̂ in the

form of ρ̂ = GN, where G is the inversion matrix, the total error (i.e. a deviation

of a retrieved profile ρ̂ from the true one ρ) is
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ρ̂− ρ = (GK− I)ρ + Gε = (A− I)ρ + Gε. (2.24)

Here A = GK is the matrix of averaging kernels, I is the unit matrix. The latter

term in (2.24) is the error due to noise in measurements, while the former term

describes the smoothing error caused by deviation of averaging kernels from delta-

functions. The covariance of the total error (2.24) is [Rodgers, 2000]

Ctot = (A− I)Ce(A− I)T + GCεGT , (2.25)

where Cε is the covariance matrix of measurement noise and Ce is the covariance

of an ensemble of real profiles about the mean profile.

The concept of an averaging kernel allows further simplification in charac-

terizing quality of profile retrievals. More generally, the averaging kernel can be

defined as [Backus and Gilbert, 1970; Rodgers, 1990]:

A =
∂ρ̂

∂ρ
, (2.26)

where ρ̂ is the retrieved profile and ρ is the true profile. The width of the averaging

kernel can be used as a measure of resolution. One commonly used measure is

the Backus-Gilbert spread s(z) (e.g. Rodgers [2000]):

s(z) = 12
∫

(z − z′)2A2(z, z′)dz′/(
∫

A(z, z′)dz′)2. (2.27)

Another measure of resolution – a modified Backus-Gilbert spread – is briefly

discussed in Publ.IV. The resolution and the error estimates are often used for

simplified characterization of accuracy of retrieved profiles.

The GOMOS instrument is capable of retrieving the atmospheric profiles with

a very good resolution. The averaging kernels of the pre-launch GOMOS inversion

are sharply peaked (Publ.I, Figure 1). For a typical occultation, the resolution

(Backus-Gilbert spread) is ∼2 km in the mesosphere and upper stratosphere, and

is less than 1 km in the lower stratosphere and troposphere.

2.4 Specific features of stellar occultation measure-

ments

The GOMOS measurements have specific features that are not typical for other

remote sensing measurements.

The GOMOS instrument uses stars as a source of radiation. The stellar

spectra strongly depend on visual magnitude and effective temperature of the

star, and so does the signal-to-noise ratio. Values of signal-to-noise ratio for some

types of star are shown in Figure 2.4.
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The second specific feature is the dependence of sampling resolution on the

line-of-sight azimuth angle. The sampling resolution for different line-of-sight azi-

muth angles is shown in Figure 2.4. For very oblique occultations it can be nearly

twice as good as for vertical ones. The measurement grid becomes denser in the

lower part of the atmosphere due to refraction. These two features are inherently

determined by the design of the GOMOS instrument and measurement principle.

There is, however, one more feature that is defined not by the instrument, but

by insufficient knowledge of atmospheric processes. It was found that the error in

reconstructed gas profiles depends not only on the stellar spectral class, but also

on the obliqueness of occultation. This error is generated by incomplete scintil-

lation correction: the current algorithm does not correct the isotropic part of the

scintillation.

As a result of these specific features, GOMOS measurements are actually

a collection of measurements that differ from each other in signal-to-noise ratio

and vertical resolution. Global coverage for monitoring the atmosphere requires

robustness of the inversion algorithm: it should give comparably good results also

in cases of low signal-to-noise ratio. Publ.I considers regularization and inclusion

of a priori information in the inversion aimed at this objective.
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3 A priori information in inversion of stellar

occultation measurements

The application of inversion methods that use a priori information to stellar oc-

cultation is discussed in Publ.I. Let us consider the linear forward model

y = Kx + ε, (3.1)

where y is the measurement vector, K is the forward model matrix, x is the state

vector (a vector of unknown parameters) and ε is the vector of measurement

noise. The essence of inclusion of a priori information is expressed by the Bayes’

formula describing the posterior probability density function (pdf) P (x|y) via a

likelihood function P (y|x) and a priori pdf Pprior(x):

P (x|y) =
P (y|x)Pprior(x)

P (y)
. (3.2)

Here P (y) a priori probability density of y characterizing a priori knowledge

of the measurement data. This scaling factor P (y) is often not needed in practice.

In many applications, the prior pdf is assumed to be Gaussian with a mean

x0 and a covariance Ca: xa ∼ N (x0,Ca). In this case, the maximum a posteriori

(MAP) estimate of the retrieved profile xMAP can be presented in the following

form (e.g. Tarantola [1987])

xMAP = (KTCε
−1K + Ca

−1)−1KTCε
−1(y −Kx0) + x0, (3.3)

provided the measurement noise ε is also Gaussian: ε ∼ N (0,Cε) and mutually

independent of the unknown x.

3.1 Available a priori information. Methods for con-

structing a priori information

A priori information needed for application of (3.3) is not available with global

coverage even for ozone. The climatological data [Fortuin and Kelder, 1998] can,

in principle, be used as an a priori estimate of the mean of ozone profile, but

the inter-annual variability of the climatology does not reflect that of individual

profiles [Publ.I].

Nevertheless, in a few cases when an occultation is located near an ozone ob-

servation station, useful a priori information can be obtained. Publ.II develops

the methodology for creation of ’smoothness a priori’. The smoothness of ozone

profiles is characterized by the characteristic scale of the fine structure, which, in

turn, is defined as the correlation length of the profile fluctuations. The analysis

of the smoothness of ozone profiles based on 11-years ozone sonde measurements
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at Sodankylä is performed. It is found that the characteristic scale has only

slight seasonal variations and can therefore be considered as a relatively stable

atmospheric characteristic.

For other trace gases, the smoothness of profiles can be used at the mo-

ment only as ad hoc guess. Analysis of all available data and their assimilation

into dynamical and chemical transport models will allow obtaining useful a priori

information in future.

3.1.1 The need for advanced data analysis

The signal-to-noise ratio in stellar occultation measurements strongly depends on

stellar parameters (visual magnitude and effective temperature), and so does the

error of the vertical profile reconstruction.

In pre-launch simulations significant non-physical oscillations of reconstruc-

ted ozone profiles for dim stars (visual magnitude >2.5) were observed but only

for altitudes above 80 km and below 18 km (Publ.I, Fig.3). Therefore, no a

priori information or regularization were explicitly used in the GOMOS baseline

inversion, as the lowermost altitude of GOMOS measurements was expected to

be ∼18 km.

GOMOS validation has shown that the noise level is slightly higher than ex-

pected. Additional errors come from incomplete scintillation correction. Analyses

of GOMOS data have shown that a significant share of occultations (∼10%) is

terminated at altitudes below 10 km. For especially bright stars, such as Sirius,

GOMOS is able to follow the star even down to 5 km altitude. This enables

GOMOS to probe also the troposphere, but advanced inversion methods are re-

quired because of the low signal-to-noise ratio in the troposphere.

The vertical resolution achieved in GOMOS measurements is better than

the characteristic vertical scale of the ozone fine structures (1.0–1.4 km in the

troposphere and in the lower stratosphere, according to Publ.II).

These features encourage application of regularization or including a priori

information about profile smoothness in the GOMOS inversion. The inversion

methods that use smoothness of atmospheric profiles are discussed in Publ.I.

3.2 Smoothness of atmospheric profiles as a priori in-

formation in retrievals

Publ.I discusses inclusion of a priori information about smoothness of atmo-

spheric profiles in inversion algorithms. The smoothness requirement can be for-

mulated in the form of Tikhonov-type regularization, where the smoothness of

atmospheric profiles is considered as a constraint or in the form of Bayesian op-

timal estimation, where the smoothness of profiles can be included as a priori
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information. Two retrieval methods are developed. One of them – Tikhonov-type

regularization according to the target resolution – develops the classical Tikhonov

regularization. The second method is the statistical optimization with smoothness

a priori, which uses maximum a posteriori (MAP) estimates for retrieved profiles.

In this section, a short description of these methods is given. Following

Publ.I, we consider a linear forward model (which corresponds to GOMOS ver-

tical inversion):

N = Kρ + ε, (3.4)

where N is a vector of measurements (horizontal column densities), ρ is a vector

of unknowns (profile values), and ε represents a vector of measurement noise.

3.2.1 Statistical optimization with smoothness a priori

In most cases a priori information includes only a general measure of smoothness

of atmospheric profiles. Assuming that the neighboring discretized values of a

retrieved profile cannot be too different, we can write

ρi−1 + ρi+1 − 2ρi = h2
i ε

sm
i , (3.5)

where εsm
i are mutually independent Gaussian random variables with the zero

mean and hi is the discretization grid. Alternatively, first order or higher order

differences can be used in the left-hand side of (3.5). Explicit inclusion of the dis-

cretization step hi allows definition of smoothness not depending on disretization

grid. The equation (3.5) can be expressed in the matrix form as

Hρ = εsm, (3.6)

where tri-diagonal matrix H approximates second derivatives:

H = diag

[
1

h2
i

]


0 0 0 ... 0

1 -2 1 ... 0

... .. ... ... ...

0 ... 1 -2 1

0 0 ... 0 0

 (3.7)

It corresponds to the prior distribution (smoothness a priori)

Pprior ∝ exp(−1

2
ρTHTC−1

smHρ), (3.8)

where Csm is the covariance matrix of εsm. If the matrix HTC−1
smH is invertible,

the prior distribution is Gaussian: ρa ∼ N (0, (HTC−1
smH)−1).

Provided ρ and ε are mutually independent random variables, the meas-

urement noise ε is Gaussian: ε ∼ N (0,Cε), the a priori distribution is given by
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(3.8) and Ker(K) ∩ Ker(H)={0}, the MAP (maximum a posteriori) solution to

the problem (3.4) is given by

ρsm = (KTC−1
ε K + HTC−1

smH)−1KTCε
−1N. (3.9)

Indeed, under the assumptions made, the likelihood function is

P (N|ρ) ∝ exp
(
−1

2
(N−Kρ)TC−1

ε (N−Kρ)
)

. (3.10)

Substituting (3.10) and (3.8) into the Bayesian formula (3.2), we get a posteriori

probability density function

ln P (ρ|N) ∝ −1

2

(
(N−Kρ)TC−1

ε (N−Kρ) + ρTHTC−1
smHρ

)
. (3.11)

By differentiating (3.11) we get that the posterior pdf achieves its maximum when

ρ = ρsm, defined by (3.9). The condition Ker(K) ∩ Ker(H)={0} guarantees

invertibility of the matrix (KTC−1
ε K + HTC−1

smH).

The solution ρsm can also be computed without using the formula (3.9). For-

mulation of the equivalent least square problem for determination of ρsm [Kaipio

and Somersalo, 2005] allows its numerically efficient computation by methods of

linear algebra.

The only information needed for application of this method are the uncer-

tainties of the second differences Csm, which can be obtained from analysis of

high-resolution profile measurements such as ozone sonde data. The statistical

optimization with smoothness a priori efficiently combines the measurements and

a priori information, applying additional smoothing only when it is required by

low signal-to-noise ratios.

3.2.2 Target resolution method

The classical Tikhonov regularized solution of the problem (3.4) can be derived

as a minimizer of the functional

F (λ) = ‖Kρ−N‖2 + λ‖Hρ‖2. (3.12)

Here λ is the regularization parameter and H is the matrix representing first,

second (3.7) or higher order differences (which are assumed to be bounded, thus

characterizing the smoothness of the solution), and ‖ · ‖ is `2-norm.

Provided that Ker(K)∩Ker(H)={0}, the Tikhonov-regularized solution of

(3.12) exists, and it is unique. It is given by the formula

ρ̂ = (KTK + λHTH)−1KTN. (3.13)

The optimal choice of the regularization parameter λ is a central issue in the

literature discussing the Tikhonov regularization. It can be chosen, for example,
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according to the Morozov’s discrepancy principle (e.g. Morozov [1993]; Hansen

et al. [2000]), which states that λ should be chosen from the condition:

‖N−Kρ̂(λ)‖ = ‖ε‖. (3.14)

Application of the Tikhonov regularization as well as the statistical optim-

ization with smoothness a priori discussed above leads to a certain degradation

of resolution. The regularization parameter can be also chosen according to some

target resolution, if the optimal value of the regularization parameter does not

meet the resolution requirements. Then the actual vertical resolution does not

depend on the instrumental noise and the discretization grid. This simplicity of

profile characterization makes this method attractive. The details of its applica-

tion are discussed in Publ.I.

Nowadays, it is the target resolution method that is used in the operational

GOMOS inversion. The regularization parameters depending on altitude and

on constituent are defined so that the actual vertical resolution (Backus-Gilbert

spread) satisfies the resolution requirements.

3.2.3 Concluding remarks

Application of the two newly developed inversion methods – the target resolution

method and the statistical optimization with smoothness a priori – to reconstruc-

tion of ozone profile from GOMOS measurements is discussed in Publ.I. Their

efficiencies were compared with that of the original GOMOS inversion (’onion

peeling’) and the classical inversion methods (the standard Tikhonov regulariza-

tion and the classical MAP estimate (3.3)). Realistic simulations for the typical

measurement conditions with smoothness a priori information created from 10-

years analysis of ozone sounding at Sodankylä and analysis of total retrieval error

(including components due to measurement noise and due to smoothing proper-

ties of inversion) illustrate the advantages of the proposed methods. The following

main conclusions can be drawn:

1. The standard Tikhonov regularization with smoothing parameter chosen ac-

cording to the discrepancy principle is not recommended for the ozone profile

retrieval from the GOMOS measurements, because the ’optimal’ smoothing

violates the resolution requirements: almost all fine structures of ozone pro-

files are smoothed out by this method.

2. The regularization with the choice of the smoothing parameters according

to the resolution requirements is the most attractive method because of the

predetermined vertical resolution, independence from measurement grid and

from stellar properties. It is a kind of ’minimal guaranteed strategy’, but it

is not optimal in the statistical sense. The target resolution method is used

in the operational GOMOS processing nowadays.
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3. The statistical optimization with smoothness a priori efficiently combines

measurement data and information on smoothness of profiles and gives the

estimates with accuracy approaching that of the classical MAP estimates.

It is a good alternative to the classical statistical optimization in cases when

mean and/or standard deviation of retrieved quantities are not known.
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4 Optimal selection of measurements:

information theory approach

Remote sensing measurements of the atmosphere with high spectral resolution

instruments provide a large amount of information about the atmosphere, but it is

not evident how to use it efficiently. The number of measurements can significantly

exceed the number of retrieved parameters. For example, the GOMOS UV-Visible

spectrometers’ sample at each altitude consists of approximately 1500 spectrally

resolved data, while no more than 10 unknown parameters are retrieved. One of

the commonly-used approaches for simplifying the retrieval is to select a smaller

subset of data for analysis. The optimal selection of a measurement subset has

two goals:

1) to reduce the dimension of a problem in order to speed up the data pro-

cessing;

2) to detect the most informative measurements (in spectroscopy - spectral

channels) with the aim of optimizing the design of future instruments.

The efficiency of measurements can be described by a wide range of paramet-

ers, such as the accuracy of the retrieved quantities, resolution and precision. For

optimization problems, however, a single quantity, Figure of Merit, is required.

C.D. Rodgers [1996] proposed characterizing the efficiency of measurements by

their information content in the Shannon sense.

The information content of an experiment is a value that can be considered

as the amount of knowledge obtained by making the experiment. It is defined

as the reduction in the entropy of the probability density functions [Shannon

and Weaver, 1949] before and after the experiment. The entropy of a continuous

probability density function P (x) is defined as

H(P ) = −
∫

P (x) log(P (x))dx, (4.1)

where the integral is taken over the state space. For the Gaussian distribution

with the covariance matrix C the entropy is determined by the formula

H(P ) = const +
1

2
ln |C|, (4.2)

where |C| is the determinant of C. If the prior and posterior distributions are

Gaussian, the information content I can be expressed as

I =
1

2
(ln |Ca| − ln |C|), (4.3)

where Ca and C are the prior and posterior covariances, respectively.

The information content describes the reduction of the ’volume of uncer-

tainty’ caused by making an experiment, and generalizes the concept of signal-to-

noise ratio in the state space [Rodgers, 2000]. Although the information content
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is not the only Figure of Merit (e.g. Dudhia et al. [2002]), it is one of natural

choices.

Consider the linear forward model, connecting a measurement vector y and

a vector of unknowns x:

y = Kx + ε. (4.4)

Here K is the forward model matrix and ε is a random error vector. The problem

is assumed to be over-determined, i.e. a number of measurements significantly

exceeds a number of unknowns.

Applying the statistical inversion to problem (4.4) (MAP estimate) and as-

suming that the noise ε and the retrieved vector x are mutually independent

Gaussian random variables ε ∼ N (0,Cε), x ∼ N (xa,Ca), we get the posterior

covariance matrix C and the information content I in the form:

C−1 = KTC−1
ε K + C−1

a (4.5)

I =
1

2
ln |C−1Ca| =

1

2
ln |E + KTC−1

ε KCa|, (4.6)

where E is a unit matrix.

Any removal of measurements (channels in spectroscopy) leads to a decrease

in the information content (Publ.III). Consequently, the maximal information

content corresponds to the initial over-determined problem. The problem of op-

timal subset selection consists of choosing such channels that contain ’almost all’

of the original information content. Two formulations of the optimization prob-

lems with constraints, either limiting the number of measurements or the value of

the information content are stated in Publ.III:

Optimization problem OP1 Choose the minimal set of measurements

providing the information content I0, i.e.

A = min{Ai ⊆ U | IAi
≥ I0}, (4.7)

where U is the set of channels and Ai are its subsets.

Optimization problem OP2 Choose the subset of m channels from N

available channels so that the information content is maximal, i.e

I = max
Ai⊆U

IAi
, dim(Ai) = m. (4.8)

Publ.III discusses the uniqueness of solution to these problems and the chal-

lenges in their solving. The problem of maximization of information content

cannot be solved exactly either by integer programming methods, because of non-

linearity of the objective function, or with combinatorial methods, because of

the astronomical number of different possible combinations of measurements. An

effective procedure for searching for the optimal data subset is therefore needed.

The sequential selection procedure proposed in [Rodgers, 1996] allows the choosing
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of high-informative channel subsets. If there is no correlation between measure-

ment errors, the information content can be computed efficiently. These ideas

were applied to the AIRS sounder [Rodgers, 1996], the IASI instrument [Lerner

et al., 2002] and the MIPAS instrument [Bennet et al., 1999; Dudhia et al., 2002].

In Publ.III two new channel (measurement) selection procedures are pro-

posed and developed: the sequential deselecting procedure and the fast algorithm

for channel selection. These also provide approximations to solutions of the optim-

ization problem. The efficiencies of these selection procedures and the sequential

selection procedure of Rodgers [1996] are compared by means of a Monte Carlo

generation of the forward model in a low-dimensional case. This statistical test

has shown that the sequential deselecting procedure gives the best approximation

to the global optimum of the problem. The numerical efficiency of each procedure

is also discussed. As a conclusion, the application of the sequential deselecting

procedure is recommended if numerical efficiency is not crucial.

As a real application, the selection of the most informative spectral chan-

nels for GOMOS measurements is considered in Publ.III. Both the sequential

selecting and deselecting procedures gave similar subsets of the most informative

channels for ozone, NO2, NO3, air and aerosol retrieval. They cover most of the

UV-visible wavelength range with a spectral gap at 370 - 400 nm. At each altitude,

∼ 50% of the spectral channels are non-informative, and they can be removed from

data processing without any significant reduction in performance. However, for

different altitudes, different parts of the spectrum have high information content.

As follows from Publ.III (Figure 5), the UV part is very important for the upper

atmosphere, while the visible channels become more significant for the lower at-

mosphere, where the UV part has negligible information content. From the point

of view of instrument design it is therefore important to cover the whole UV-VIS

spectrum, except for the wavelength band 370 - 400 nm: this has low information

content for all altitudes.

For the GOMOS baseline inversion, the selection of the most informative

channels is not so important, as the inversion is fast enough. However, channel

selection can be an important consideration in alternative inversion algorithms,

such as the one-step inversion.
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5 Refractive measurements by GOMOS

Stellar occultation instruments must have a high pointing accuracy, because they

follow point-like sources. These two features allow accurate measurements of the

refractive angle in the limb viewing geometry. The determination of the strato-

spheric density and temperature profiles from the refractive-angle measurements

by stellar occultation instruments is considered in Publ.V and Publ.VI. The

refractive angles can be measured by GOMOS in two different ways. First, the

refractive angles can be obtained from the recordings of the pointing system,

which includes the steering front mechanism (SFM) and the star tracker (SATU).

Second, the refractive angles can be retrieved with a high vertical resolution from

bi-chromatic scintillation measurements using correlation analysis. Publ.V and

Publ.VI discuss the first type of refractive angle measurements only.

The idea of reconstructing temperature profiles from measurements of re-

fractive angle has a long history. The first feasibility studies were performed over

35 years ago [Tatarskiy, 1968a,b]. It was shown, that high-precision measurements

of refractive angle (up to microradians) are required for accurate reconstruction

of temperature. Development of radio-occultation technique has allowed accurate

measurements of refractive angle. The radio occultation measurements are indir-

ect: the refractive angle is reconstructed from the excess-phase data measured via

Doppler-shift. Nowadays, the radio-occultation technique for temperature sound-

ing of the troposphere and stratosphere has been investigated in depth [Kursinski

et al., 1997; Steiner et al., 1999; Rieder and Kirchengast, 2001], and has been suc-

cessfully validated [e.g., Kursinski et al. [1997]; Gorbunov and Kornblueh [2001]].

However, the possibility of stratospheric temperature profiling using refract-

ive angle measurements by stellar occultation instruments has not been studied

enough. The only attempt was made by the MSX-UVISI instrument [Vervack

et al., 2002], but the accuracy of temperature reconstruction was rather poor.

The pointing system of MSX-UVISI instrument is different from that one used in

GOMOS.

Publ.V presents the feasibility study aimed at analysis of the accuracy

achievable in temperature profiling with the GOMOS and COALA (a planned

successor of GOMOS) instruments and at deriving the pointing accuracy require-

ments for the temperature profiling with accuracy of 1-2 K and the vertical resol-

ution of 1-2 km. This study introduces extra geophysical parameters, which can

be obtained from the GOMOS instrument.

5.1 Forward model

The forward model consists of the determination of the refraction angle from an

assumed density profile in the atmosphere. We assume that the refractive index n
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Figure 5.1. Refractive measurements by GOMOS: definition of parameters.

depends on the wavelength λ of the light and on the neutral air density ρ according

to the Edlen formula [Edlen, 1966]:

n = 1 + C(λ)
ρ

ρ0

, (5.1)

where ρ0 is the air density at the Earth’s surface and C(λ) is a constant depending

on the wavelength λ as:

C(λ) = 10−6
(
83.42 +

24060

130− λ−2
+

160

39− λ−2

)
, (5.2)

where λ is in micrometers.

Under the spherical symmetry assumption, the refractive angle α may be

determined as

α(p) = −2p
∫ ∞

rt

d(ln n)

dr

dr√
n2r2 − p2

, (5.3)

where rt is a tangent altitude and p is an impact parameter (for definitions of

parameters, see Fig. 5.1).

Introduction of a new variable y = nr, which is often called a refractive
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altitude, allows us to write (5.3) in the form of an Abel transform

α(p) = −2p
∫ ∞

p

d(ln n)

dy

dy√
y2 − p2

≈ −2p
∫ ∞

p

ν ′dy√
y2 − p2

, (5.4)

where ν = n − 1 is refractivity. The representation of the forward model in the

form of the Abel transform (5.4) allow the analytical solution of (5.3). Efficient

numerical implementation of the forward modelling is discussed in Publ.IV.

5.2 Inversion algorithm

Applying the inverse Abel transform, we can obtain the refractive index from the

reconstruction formula

n(y) = exp

(
1

π

∫ ∞

y

α(p)dp√
p2 − y2

)
, (5.5)

where y = n(r)r is the refractive altitude. Real geometric altitudes can be de-

termined as

z =
y

n(y)
−R, (5.6)

where R is the apparent Earth radius (the local radius of curvature of the Earth

surface). The integration of equation (5.5) can be carried out numerically using

any standard quadrature method. The weak singularity of the integrand at the

lower limit does not cause problems for a numerical realization: the value of the

integral at the vicinity of the singular point can be estimated or the midpoint

product integration method can be applied [Publ.IV].

The reconstruction of the refractive index from refractive angle measure-

ments is a well-posed inverse problem [Publ.IV]: the inversion operator (5.5)

corresponds to fractional integration of order 1/2 and thus has a good smoothing

effect on possible noise inherent in values α(p). Different discretization methods

are discussed in Publ.IV.

The density profile can then be obtained using Edlen’s formula (5.1). By

using the hydrostatic equation we can calculate the pressure P at the altitude z

as

P (z) =
∫ ∞

z
g(x)ρ(x)dx, (5.7)

where g(x) is the acceleration of gravity. Finally, temperature can be determined

from the equation of state of an ideal gas

T (z) = k
P (z)

ρ(z)
. (5.8)

The influence of different error sources (instrumental noise, limited sampling

frequency, scintillation, chromatic smoothing, forward modelling errors) on the

retrieval performance is discussed in Publ.V and in Publ.VI.
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5.3 A priori information in inverse problems from re-

fractive measurements

Inclusion of a priori information in the form of the Bayesian optimal estimation

can significantly improve the accuracy of the retrievals from radio occultation data

[Rieder and Kirchengast, 2001]. A similar approach can be also applied to the

inversion of stellar occultation measurements. The availability of relatively good

a priori information – density and temperature data from ECMWF (European

Centre for Medium-range Weather Forecast) – prompts the application of the

Bayesian approach (MAP method). The inversion steps are linear (except for

the last one: reconstruction of temperature from density and pressure); there-

fore, a priori information can be included either in retrieval of refractive angle or

refractivity or density. The forward model can be written as

xmeas = x + ε, (5.9)

where xmeas presents a vector of measured parameters (refractive angle, refractivity

or density), x is a vector of unknown parameters and ε is a vector of noise.

Provided that a priori profile xprior and the measurement noise ε are Gaus-

sian: xprior ∼ N (xa,Ca), ε ∼ N (0,Cε), the MAP estimate xopt is the weighted

combination of the a priori profile xa and the reconstructed profile xmeas

xopt = xa + Ca(Cε + Ca)
−1(xmeas − xa). (5.10)

The optimization affects the retrieval mainly in the upper atmosphere, where

the signal-to-noise ratio is low, while in the lower atmosphere the retrieval is

dominated by observation data. The prior covariance Ca can be taken, e.g., in

the form

Ca(i, j) = σiσj exp

(
−|zi − zj|

L

)
, (5.11)

where zi denotes an altitude grid point, σi is the standard deviation for the a

priori profile at the point zi and L is the characteristic scale defining the profile

smoothness. Alternatively, a Gaussian or a triangular shape of the correlation

function can be used.

The inclusion of a priori information in the density profile retrieval is dis-

cussed in Publ.VI. It is shown that the inclusion of a priori information sig-

nificantly improves the accuracy of reconstruction, but the vertical resolution is

degraded at high altitudes.

The GOMOS refractive angles can be retrieved from the pointing data of

the Steering Front Assembly (SFA) and the star tracker (SATU). The sampling

frequencies of SFA and SATU recordings are 10 Hz and 100 Hz, respectively. This

gives resolution better than 300 m in the lower atmosphere. At the moment, the

GOMOS pointing data are in the validation phase.
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6 Summaries of original publications

I V. F. Sofieva, J. Tamminen, H. Haario, E. Kyrölä and M. Lehtinen: Ozone

profile smoothness as a priori information in the inversion of limb measure-

ments, Annales Geophysicae, 2004, Vol. 22, No. 10, pp. 3411–3420

Publ.I discusses inclusion of a priori information about smoothness of at-

mospheric profiles in inversion algorithms. Two recently proposed retrieval

methods are further developed. One of them – Tikhonov-type regulariz-

ation according to the target resolution – develops the classical Tikhonov

regularization. The second method includes a priori information about the

smoothness of atmospheric profiles in the form of Bayesian optimal estim-

ation. A grid-independent formulation for the proposed inversion methods

is proposed, thus isolating the choice of calculation grid from the ques-

tion of how strong the smoothing should be. The approaches discussed are

applied to the problem of ozone profile retrieval from stellar occultation

measurements by the GOMOS instrument on board the Envisat satellite.

Realistic simulations for the typical measurement conditions with smooth-

ness a priori information created from 10-years analysis of ozone sounding

at Sodankylä and analysis of total retrieval error illustrate the advantages

of the proposed methods. The proposed methods are equally applicable to

other profile retrieval problems from remote sensing measurements.

II V. F. Sofieva, E. Kyrö, E. Kyrölä: Smoothness of ozone profiles: analysis of

11-years of ozone sonde measurements at Sodankylä, Annales Geophysicae,

2004, Vol.22, No.8, pp. 2723-2727

In Publ.II, the methodology for creating a priori information about smooth-

ness of atmospheric profiles is developed. This information can be used in

advanced inversion methods for remote sensing measurements (considered

in Publ.I) and in the instrument design for defining the vertical resolu-

tion requirements. The smoothness of the ozone profile is characterized by

the characteristic scale of the fine structure, which, in turn, is defined as

the correlation length of the ozone profile fluctuations. The analysis of the

smoothness of ozone profiles based on 11-years ozone sonde measurements

at Sodankylä is performed. It is found that the characteristic scale has only

slight seasonal variations and can therefore be considered as a relatively

stable atmospheric characteristic. The mean values of the characteristic

scale are ∼ 1 km for altitudes below 10 km, and ∼ 1.4 km for altitudes

10–25 km.

III V. F. Sofieva and E. Kyrölä: Information approach to optimal selection of

the spectral channels, Journal of Geophysical Research, 108(D16) 4513, doi:

10.1029/2002JD002980, 2003
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In Publ.III, methods for the selection of measurement subsets using in-

formation theory are examined. These methods are applied to an over-

determined inverse problem typical to high-resolution spectrometry. Two

optimization problems in channel selection, both taking the information

content of the measurements as a criterion, are defined and discussed. The

concept of the information content of each individual measurement is intro-

duced, and basic analytical relations are derived. A sequential deselecting

procedure is developed and a fast algorithm for channel selection is proposed.

These provide approximations to solutions of the optimization problem. The

efficiencies of these selection procedures and a sequential selection procedure

[Rodgers, 1996] are compared by means of a Monte Carlo generation of the

forward model in a low-dimensional case. As a real application, the selection

of the most informative spectral channels in UV-Visible wavelength range

for GOMOS measurements is considered.

IV V. F. Sofieva and E. Kyrölä: Abel integral inversion in occultation measure-

ments, in Occultations for Probing Atmosphere and Climate, edited by G.

Kirchengast, U. Foelshe and A. Steiner, Springer Verlag, 2004, pp. 77- 86

In Publ.IV, it is shown that occultation geometry under a spherical sym-

metry assumption leads to models described by the Abel integral equa-

tions. Analyzing general properties of the Abel transform, this work derives

practical rules for discretization and for solution of the inverse problems,

containing Abel-type integral equations. Two applications in remote sens-

ing are considered: reconstruction of local densities from horizontal column

densities (vertical inversion) in absorptive stellar occultation measurements

and reconstruction of air density from refractive angle measurements. The

ill- or well-posedness of these problems is discussed. Efficient discretization

schemes are proposed, tested and compared with each other.

V V. F. Sofieva, E. Kyrölä, J. Tamminen and M. Ferraguto: Atmospheric dens-

ity, pressure and temperature profile reconstruction from refractive angle

measurements in stellar occultation, in Occultations for Probing Atmosphere

and Climate, edited by G. Kirchengast, U. Foelshe and A. Steiner, Springer

Verlag, 2004, pp. 289-298

In Publ.V, the determination of the stratospheric density and temperat-

ure profiles from the refractive-angle measurements by stellar occultation

instruments is considered. The forward model and the inversion algorithm

are described. The error analysis was performed by Monte-Carlo simula-

tions with additive Gaussian noise. The main error sources are identified

and sensitivity of the inverse procedure to them is studied. The accuracy

attainable in the temperature profiling with the present design of stellar

occultation instruments is analyzed.
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VI V. F. Sofieva, E. Kyrölä, M. Ferraguto and GOMOS CAL/VAL team: From

pointing measurements in stellar occultation to atmospheric temperature,

pressure and density profiling: simulations and first GOMOS results, IG-

ARSS 2003, ISBN: 0-7803-7930-6 IEEE

Publ.VI presents a feasibility study for retrieval of temperature and dens-

ity profiles from pointing measurements by the GOMOS instrument. This

study introduces extra geophysical parameters that can be obtained from

the GOMOS instrument. Inclusion of a priori information is discussed and

a realistic error analysis is carried out.
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