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1 Introduction

Quantum mechanics, predominately established in 1927 [1], strongly contributes to our

modern philosophy of life. It gives a peculiar but precise explanation for the physical

phenomena on the atomic scale. In addition, it helps us to understand the properties of

certain macroscopic systems such as superconductors and lasers [2]. The development

in techniques of microscopy, nano-fabrication, and accurate control of high frequencies

and low temperatures continuously build up technological potential. Eventually, it leads

to a possibility of accurate engineering of macroscopic quantum mechanical systems.

This raises strong prospects towards devices whose functionality essentially relies on the

coherent properties of the quantum states, such as a quantum mechanical computer [3].

Several different physical systems allow for controlled manipulation of their quantum

state [4, 5]. Thus far the most extensive controlled discrete state-space comprising of

collection of seven two-state systems has been demonstrated using nuclear magnetic

resonance (NMR) in a liquid solution [6]. The other techniques studied for this purpose

involve nuclear spins [6, 7], trapped ions [8], cavity quantum electrodynamics [9], and

electrons in quantum dots [10, 11]. Especially, the recently established possibility to

manipulate nanolectronic superconducting circuits [12–25] has considerably broadened

the quantum realm.

One of the promising applications for the manipulation of quantum states is quantum

computation [3,4,26–28]. Quantum computers are supposed to be useful for solving cer-

tain mathematical problems efficiently. Especially, Shor’s integer factorization [29] and

Grover’s database search [30] show considerable speed-up compared to the algorithms

on classical digital computers. In particular, Shor’s algorithm could be utilized to break

the widely employed RSA cryptosystem [31] in polynomial time. This would strongly

influence our society that relies on the safety of information encryption protocols.

In addition to applications in computation, the framework of coherent manipula-

tion of quantum states can be used to describe other entanglement-related phenomena

of quantum mechanics, such as quantum teleportation [32] and quantum cryptogra-

phy [33–35]. The quantum teleportation transports the initial state of a source system

into separate destination system while the quantum cryptography provides revolutionary

secure communication protocol. In the communication the transported information is

protected at fundamental level by the laws of physics instead of relying on the limitations

of any mathematical techniques or computing technology. Both quantum teleportation

and cryptography are successfully demonstrated experimentally, and devices for quantum

cryptography are even commercially available [36].

In the classical sense the quantum computers are universal: a quantum computer

allows for emulating a classical computer but the quantum computer cannot be efficiently

emulated by a classical computer [37]. This is due to two distinctive features of the

quantum computer: quantum mechanical superposition and entanglement. According

to the superposition principle a quantum system can virtually lie in two or more distinct
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states simultaneously. The entanglement is also a purely quantum phenomenon that

allows the states of two or more subsystems to be described in comparison to each other.

This leads to non-classical correlations between observable physical properties of the

systems.

Physically, any computation must be encoded into a temporal evolution of a physical

system. In the quantum circuit model [38], which is the current paradigm in quantum

computation, the amenable system for computation is a collection of two-level systems

called a quantum register. In this context, the two-level systems are called quantum bits

or qubits. Due to the laws of quantum mechanics their properties are richer than the

ones of classical bits. When isolated from the dissipative environment, the physical state

of the quantum register corresponds to a vector in a very high-dimensional Hilbert space.

The temporal evolution of the state vector is described by the Schrödinger equation [39]

whose formal solution is called a propagator. The propagator is a unitary operator, which

combines quantum mechanics to the computation. In addition to the quantum circuit

model which we use here, quantum computation can be formulated using various other

approaches, for example, quantum random walk [26], quantum Turing machine [40, 41],

quantum computing by measurements [42–44], and quantum cellular automata [45].

In the context of quantum computing the unitary transformations are called gates.

The role of bits and gates feature a remarkable difference between the most proposals of

a quantum computer and a classical computer based on semiconducting transistors. The

classical logic gates are implemented by static semiconductor structures and the bits are

flying objects between them, whereas the quantum bits are often static entities and the

gates are operations which are actively applied on them. A quantum gate may involve

in the simplest form only adjustment of the occupation probabilities of given quantum

states. In general, the full unitary transformation acting on all the possible states of a

qubit register can be implemented.

The form of the propagator depends on the interactions appearing between the phys-

ical qubits and the transition probabilities within the states of a single qubit. In typical

realizations of quantum register, the form of the inter-qubit interactions is fixed and the

Hamiltonian allows only limited tuning of the interaction parameters. This naturally

leads to restrictions for the realizable gate arrays. Let us consider two examples. An

array of two-electron quantum dots [11] may be considered as a quantum register. In

this register two different spatial charge distributions within a quantum dot will act as

qubit states. The Coulomb force between the electrons in the quantum dots results in

inter-qubit coupling. The range of the Coulomb force is, in principle, infinite. However,

in practice the interactions couple only spatially neighboring qubits. In an NMR quan-

tum computer [7] the qubits are encoded into nuclear spins of a molecule, which acts as a

quantum register. The coupling between the qubits is due to the magnetic dipole-dipole

forces. Since the dipole-dipole coupling strongly reduces as the separation of the atoms

grows, the interaction part of the Hamiltonian consists of, to a good approximation, only

the nearest neighbor couplings. Therefore the native gate library of a quantum computer
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based on a quantum dot or NMR register involves only two-qubit gates acting on a pair

of nearest-neighbor qubits. However, any gate can be build of them as shown below.

Although several realizations of quantum computer provide only limited library of gates,

there are also proposals, such as Josephson charge qubit register [24], where the coupling

between arbitrary two-qubits is controllable.

The current level of technology provides only limited possibilities to make use of

coherent quantum states in computing. The quantum states featuring coherent prop-

erties can be achieved in the experiments but they are fragile and easily destroyed by

undesired interactions with the environment. This is called decoherence [46]. Due to

the omnipresent decoherence, efficiency in using the computational resources is of prime

importance in the implementation of quantum computations. DiVincenzo [47] gives a

concrete list of criteria which a quantum system has to fulfill in order to be amenable

for execution of reasonably extensive algorithms.

In this thesis I study the efficient implementation of quantum computation. The

mathematical structure of the gate operations and the form of the interactions of the

physical system set the lower bound for the execution time needed for implementing each

of the gates. I show how to find for quantum gates implementations which almost achieve

the theoretically estimated lower bounds for the need of the computational resources.

Those implementations take advantage of techniques developed for numerical optimiza-

tion and matrix computation. Publications [I-III] study the physical implementation of

quantum gates, while the publications [IV-VII] discuss the mathematical structure of

the gates and how it helps to find an efficient implementation for them.

From the physical point of view, one needs to be able to control the system strongly

enough in order to obtain the desired propagators. Typically this is accomplished using

external fields, such as laser pulses or electric and magnetic fields. Subsequently, the

fundamental problem in manipulating the quantum state is to find the proper setting

for the external fields as a function of time. This can be considered as an optimization

problem. Properly conducted optimization provides, in general, the most effective imple-

mentation for any unitary transformation. Publications [I-III] show a straightforward

optimization technique for finding the control parameters of a Josephson charge qubit

register. In addition to quantum computation the similar strategy can be applied to more

practical applications, such as creating an accurate standard for electric current [48].

The dimension of the state space and thus the optimization problem grow exponen-

tially with the number of qubits in the register. Therefore, the numerical optimization

becomes computationally unrewarding for transformations acting on many qubits. To

efficiently implement a unitary transformation for arbitrarily many qubits, their internal

structure must be studied and utilized in the implementation.

Intuitively, unitary transformations can be understood as straightforward extensions

of rotations in a multidimensional complex vector space. Their mathematical properties

are studied extensively in the theory of the Lie groups [49]. They also play a significant

role in the field of matrix computation [50] which is the foundation of numerical compu-
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tation in engineering. One of the characteristic properties of unitary transformations is

that each of them can be expressed as a product of consecutive unitary transformations

which are simpler in form than the original one was. In the context of quantum com-

putation this is called a quantum gate decomposition where the expression gate refers

to transformations restricted into a subspace of a few qubits. The unitary transforma-

tion corresponding to the simplest quantum gates acting on one or two qubits are of

tensor product form. Surprisingly, decompositions of this kind have not been studied

in mathematics in detail. However, a series of physics papers [51–53] show that any

transformation can be exactly achieved using a rather limited set of gates. For example,

the set of one-qubit gates with almost any fixed two-qubit gate form a universal set

of elementary gates [52]. Publications [IV],[V], and [VII] present efficient methods for

finding implementation of a general n-qubit gate using an array of elementary gates.

Apparently, the theoretical research in quantum computing has proceeded much fur-

ther than the experimentally realizable devices. Undoubtedly, the strong progress in

both fields continues. However, even if a large-scale quantum computer would never be

built, the research of quantum computing helps us to better understand the universe we

live in. In a broad sense, the whole universe can be considered to be gigantic quantum

computer [54]. The question is: what is the problem it is solving.

This thesis is organized as follows. Section 2 introduces the basic concepts of quan-

tum computation and studies briefly its physical grounds. Starting from the Schrödinger

equation of the isolated quantum system a method for finding the propagator corre-

sponding to a desired quantum gate by numerical optimization is introduced. However,

due to the practical limitations of computational resources the optimization approach is

applicable only for gates acting on less than four qubits. In Sec. 3, methods for decom-

posing a general quantum gate acting on arbitrarily many qubits are presented. This

section also presents implementations for various generic quantum gates which can be

used as a basic building blocks of a quantum compiler. Section 4 applies the presented

methods to Shor’s integer factorization algorithm on a Josephson charge qubit register.

Finally, Sec. 5 summarizes the most important results of this thesis.
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2 Quantum state engineering

This section briefly reviews the essentials of the quantum mechanics needed for under-

standing quantum computation. A more comprehensive discussion of the fundamentals of

quantum mechanics is given, for example, by Ballentine [2], while Nielsen and Chuang [3]

present a thorough introduction to quantum computing.

Publications [I-III] describe a method for finding the control parameter sequences

for a quantum mechanical system which realize a desired unitary transformation on it.

The method is briefly reviewed here. In addition to this method, several authors have

presented other approaches to the problem in literature. In particular, the time-optimal

implementation of two-qubit gates using Cartan decomposition has been solved [55]

and a method based on optimal control theory has been introduced, for instance, in

Ref. [56]. However, the most fundamental problem of the field — finding the time-

optimal implementation of an arbitrary n-qubit gate with a given Hamiltonian — remains

unsolved.

2.1 State space of a quantum register

Nine philosophically different but physically equivalent formulations have been found for

quantum mechanics [1]. We follow the one formulated by Schrödinger [39] which states

that the physical state of a quantum system can be fully described by a temporally

evolving vector |ψ(t)〉 in a complete complex inner product space H called a Hilbert

space. This requires that the system is isolated from the environment. In this formalism,

each of the measurable physical quantities corresponds to a certain Hermitian operator

A = A†. The expectation value of the measurable quantity associated with A is obtained

as the inner product

〈A〉t = 〈ψ(t)| A |ψ(t)〉 , (2.1)

where we have assumed that the system is in the state |ψ(t)〉 at time t. Equation (2.1)

immediately implies that the global phase of the state vector does not carry any physical

information; states |ψ(t)〉 and eiθ |ψ(t)〉, where θ ∈ R, are equivalent with respect to all

physical observables.

Any bounded Hermitian operator A has a complete set of orthonormal eigenvectors

{|λi〉} which span the Hilbert space H. Here the curly braces denote the set whose

elements are characterized by index i. Especially, any state |ψ(t)〉 can be presented as

|ψ(t)〉 =
∑

i

ai(t) |λi〉 , (2.2)

where {ai(t)} are complex numbers. The formalism describes a projective measurement

M of the state with respect to basis {|λi〉}; the probability of finding state λi occupied at

time t is |ai(t)|2. To be consistent with the probabilistic interpretation, the state |ψ(t)〉
is normalized such that

∑

i |ai(t)|2 = 1.
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An operator of special interest is the Hamiltonian H, whose expectation value corre-

sponds to the total energy of the system. The eigenvectors of the Hamiltonian, {|φi〉},
are the energy eigenstates, while the corresponding eigenvalues are called the energy

levels of the system. The eigenstates of H, or any other Hermitian operator, yield a

natural basis for the state space of the system under consideration. This basis can be

utilized as a computational basis in quantum computation.

Let us restrict ourselves to the system consisting of d distinct quantum states. A

complex vector of unit length in a d-dimensional complex space fully describes the state of

this system: |ψ(t)〉 =
∑d

i=1 ai(t) |λi〉. Similarly the physical state of a register consisting

of n of those systems can be represented with a vector having dn components

|φ(t)〉n =
dn
∑

i=1

ai(t) |ei〉 , (2.3)

where {|ei〉} is a set of basis vectors which spans H.

In this overview I study only the properties of a register of n qubits ,i.e., a system

where d = 2, and denote the qubit states as

|0〉 =

(
1

0

)

and |1〉 =

(
0

1

)

. (2.4)

The state space of an n-qubit register is N = 2n-dimensional. For purposes of quantum

computation, it is convenient to choose the basis vectors for this space {|ek〉}, where

k = 1, ..., N , according to |ek〉 =
⊗

i |xk
i 〉, where xk

i ∈ {0, 1} and the index i = 1, ..., n

refers to the physical qubits. In this basis the state vector of the system is of the form

|Ψ〉 =
N∑

i=1

ai |ei〉 and
N∑

i=1

|ai|2 = 1. (2.5)

Conventionally in quantum computing, the order of the basis vectors has been chosen

such that the values xk
i essentially form the binary representation of the number k − 1,

i.e., k = 1+
∑n

i=0 2ixk
i . We note that the order of the basis vectors in the computational

basis is not fixed. Publication [IV] takes advantage of this freedom to reorder the basis

vectors, which simplifies the gate arrays, as explained in Sec. 3.3.5.

The fundamental difference of the quantum computer compared to the classical one

arises from the utilization of the properties of a high-dimensional Hilbert space H. For

comparison, the states accessible for a classical computer are limited to states which can

be presented by vectors |Ψ〉 = |ei〉, i.e., by the vectors in which all of the weight factors

except the one for state i vanish. The quantum mechanical superposition principle

allows several weight factors to be simultaneously non-zero. This makes the quantum

mechanical state space considerably larger than the classical one. Especially, a set of

non-classical states called the entangled states have interesting properties since they



– 7 –

yield non-classical correlations between the qubits. For example, the EPR-state (after

Einstein, Podolsky and Rosen [57]) of two qubits

|Ψ〉EPR =
1√
2

(|01〉 − |10〉) , (2.6)

has extraordinary properties. When the qubits are measured independently, each of them

has a 50% probability of being in state zero (or one). When the coordinate system or the

local parameters of the measurement systems are changed, the measurements still remain

correlated. Especially, when the qubits are moved far from each other after initializing

the EPR-state, the changes in the measurement setup of the first qubit can be easily

understood to involve non-local interactions which change the state of the second qubit

instantaneously. This easily leads to paradoxes, since there is no classical counterpart

for this correlation. Theoretically, the discrepancy of classical and quantum worlds can

described by famous Bell’s inequality [58,59]. However, the measurement of the quantum

correlations still require state of art experiments [60].

2.2 Unitary time-evolution

The temporal evolution of a quantum register is described by the Schrödinger equation

i~
∂

∂t
|Φ(t)〉 = H(γ) |Φ(t)〉 , (2.7)

where H(γ) is the Hamiltonian of the system. Here, the Hamiltonian is taken to depend

on a set of tunable parameters, formally denoted as γ. In general, the parameters are

time-dependent, γ = γ(t). The formal solution of Eq. (2.7) at time t for an initial state

|Φ(0)〉 is

|Φ(t)〉 = U(t, 0) |Φ(0)〉 , (2.8)

where the propagator U(t, 0) is

U(t, 0) = T exp

(

− i

~

∫

γ(t)

H(γ(t))dt

)

. (2.9)

Above T stands for the time-ordering operator. The time ordering is needed, since

the Hamiltonian operators associated with different moments of time do not typically

commute. From the form of Eq. (2.8) and the properties of the unitary transformation

one notes that the norm of the state vector is constant, unity, in time. The second

important note is that the temporal evolution of the quantum system is reversible, i.e.,

|Φ(0)〉 = U †(t, 0) |Φ(t)〉.
Since the state space H of the register is 2n-dimensional and all the operators in the

formalism are linear, the operators can be represented as 2n ×2n matrices once the basis

is fixed. The Hamiltonian H takes the form of a 2n × 2n Hermitian matrix, H. Similarly

the propagator U takes the form of a 2n × 2n unitary matrix, U . This unitary matrix
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is the connection between quantum mechanics and quantum computing. Namely, for

properly chosen control sequences γ(t), the matrix U corresponds to a certain quantum

gate which may be used as a building block of quantum algorithms.

The analysis of Eq. (2.9) shows that the global phase of the state vector |Φ(t)〉,
the determinant of U , and the zero-level of energy represent the same phenomenon

called gauge freedom which does not have any measurable consequences. Without loss

of generality, the Hamiltonian can be regarded traceless. The traceless Hamiltonian

generates propagators having unit determinant. Consequently, instead of considering

the full unitary group U(2n), we restrict ourselves to study the propagators that belong

to the group SU(2n).

The model of a quantum register presented above is an idealization which assumes

that the quantum system lies in a pure state, i.e., it lacks the interactions with the

environment. Thus the model totally omits the numerous degrees of freedom of the

environment which tend to become entangled with those of the register. This results in

inevitable decoherence [46,61] in any experimental setup. Moreover, one certainly applies

external forces to the system when tuning the parameters of the Hamiltonian. Strictly

speaking this is not consistent with the isolation requirement. Neglecting the environ-

ment we thus ignore the fact that the coherent lifetime of the quantum state is limited.

The shortness of the coherent lifetime may present fundamental difficulties in scaling the

quantum register up to large sizes; this scalability is the basic requirement for the execu-

tion of meaningful quantum algorithms [47]. Nevertheless, ingenious qubit architectures

combined with powerful theoretical tools, such as decoherence free subspaces and quan-

tum error correction [62], may be used in order to reduce the detrimental influence of

the environment.

2.3 Finding the control parameters by numerical optimization

The temporal evolution of a quantum register resulting from the applied Hamiltonian H
with control parameter sequences γ(t) can be straightforwardly evaluated using Eq. (2.9).

In contrast, to determine the physical realization of a quantum gate, the parameter

sequences γ(t), the inverse problem must be solved. This section presents numerical

optimization procedure which gives a solution for the inverse problem.

Let us start by discretizing the path γ(t) of control parameters which, in general,

involves infinitely many degrees of freedom. Denote the finite set of real numbers which

describe the path γ(t) by Xγ . Consequently, for a given arbitrary unitary matrix U , the

solution of the inverse problem is to find proper values of the parameters Xγ . When the

parameter path associated with Xγ is applied to a quantum register, the time-evolution

of the register results in a quantum gate UXγ
.

To be more concrete, the numerical optimization problem is to find the zeroes of the
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error function

p(Xγ) = ‖U − UXγ
‖. (2.10)

Minimization of p(Xγ) over parameters Xγ produces an approximation UXγ
for the de-

sired matrix U . Above ‖ · ‖ denotes a matrix norm [50], which can be taken to be the

Frobenius trace norm, which is numerically efficient to compute. Since all the matrix

norms are mathematically equivalent, a small value of a Frobenius trace norm implies a

small value in all other norms as well.

In practice, polygons in the parameter space provide a suitable discretization for

path γ(t). Let us consider a polygonal path having ν + 1 edges, which starts and ends

at the origin, i.e., the same fixed point for all gates. This makes it possible to execute

a sequence of gates one after the other, without need of abrupt changes in the control

parameter values. The resulting control-parameter path γ(t) for an n-qubit register is

of the vector form

γ(t) =
[
γ1(t), . . . , γk(t)

]T
, (2.11)

where γi(t) (i = 1, ..., k) are continuous piecewise linear functions of time for the chosen

parametrization. In order to evaluate the propagator in Eq. (2.9) with path γ(t) one

only needs to specify the k coordinates for the ν vertices of the polygon. On the other

hand, a 2n × 2n unitary matrix belongs to the group SU(2n) and the number of the real

degrees of freedom of group SU(2n) is 4n − 1. This sets the lower bound for the number

of discretization parameters needed for realizing the n-qubit gate:

kν ≥ 4n − 1, (2.12)

which is the necessary requirement for being able to parameterize all the degrees of

freedom in the matrix U .

For the calculations we choose the time spent in traversing each edge of the polygon

be constant, say, unity. Thus the execution time of the gate depends linearly on the

number ν of the vertices in the parameter path. This allows us to compare the execution

times of different realizations of a gate. In a particular physical implementation. The

actual time that corresponds to the traversing of one edge of the polygon depends on

the available energy scales of the Hamiltonian.

To evaluate the unitary operator UXγ
for a parameter set Xγ we need a numerical

method which is efficient, yet numerically stable. We divide the path γ(t) into short

intervals that take time ∆t to traverse. If γi collectively denotes the values of all the

parameters in the midpoint of the ith interval, and m is the number of such intervals, we

then find to a good approximation

UXγ
≈ exp(−iH(γm)∆t) . . . exp(−iH(γ1)∆t) . (2.13)

Especially, the form of the Eq. (2.13) takes into account the time ordering of the non-

commuting propagators in the different moments of time. The evaluation of the UXγ

using the above approximation consists of independent matrix multiplications which can
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be evaluated simultaneously. This allows straightforward parallelization of the compu-

tation.

To evaluate each of the exponential factors in Eq. (2.13) we may employ the truncated

Taylor series expansion

e−iH∆t ≈
l∑

k=0

(−iH∆t)k

k!
. (2.14)

Since ∆t is small the eigenvalues of the anti-Hermitian matrix A = −iH∆t are signif-

icantly less than unity and the expansion converges rapidly. The applicability of the

approximation is confirmed for the optimized path using finer discretization.

The Taylor series provides a fast and accurate but by not unique method to evaluate

the propagator. For example we could use the Cayley form

e−iH∆t ≈ (1 − iH∆t/2)(1 + iH∆t/2)−1 (2.15)

to evaluate the matrix exponential as well. The special property of the Cayley form is

that the approximation it yields is unitary by nature. Another applicable approach to

evaluating the propagator would be to directly integrate the Schrödinger equation using

some of the adaptive Runge-Kutta methods [63].

Using the above methods the minimization of the error function in Eq. (2.10) is

possible, provided the Hamiltonian under consideration allows for implementation of the

desired unitary transformations. Still, finding of the realization for any quantum gate

may be computationally hard; the size of the unitary matrices and thus the number of

dimensions of the optimization problem grows exponentially with the number of qubits n

on which the gate acts. Due to the restricted availability of computational capacity the

implementation of gates acting on a large number of qubits is limited. In practice gates

for more than three or four qubits have turned out to be computationally too demanding

using current supercomputers.
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3 Gate-efficient decompositions

One of the main results in quantum computation is that a properly constructed array of

elementary gates implements any unitary transformation [52]. In particular, this provides

us with a method to implement a quantum gate even though the numerical optimization

method described in the previous section would fail. The generation of the elementary

gate sequence for a given computational task is called quantum compiling. A quantum

compiler is a computer program which converts a given quantum algorithm into an

array of elementary quantum gates analogously to classical compilers which are used to

synthesize logic gate circuits for microprocessors. Although constructing an elementary

gate array for any unitary transformation is, in principle, straightforward procedure

using the results by Barenco et al. [52], finding of the most favorable gate array is still a

highly non-trivial task. The minimization of the number of elementary gates as well as

the number of extra qubits in the compilation helps one to better implement algorithms

on any physical realization of a quantum computer. Achieving gate arrays of lower gate

count is interesting not only because it results in shorter execution time in general but

also because it may introduce less errors.

Publications [IV-VII] introduce several efficient techniques which can be utilized in

quantum compiling. In all these techniques, the strategy is to first find an elementary

gate construction for a certain generic intermediate level quantum gate. In the second

step the intermediate level gates serve as building blocks for unitary matrix decompo-

sitions [50]. In addition to matrix decompositions the quantum compiler may employ

the algorithmic definition of the implemented computation, when it is available, see e.g.,

Ref. [64]. Moreover, the compiler may manipulate and simplify the obtained gate cir-

cuits by peephole optimization. For this purpose, Ref. [65] gives a comprehensive list of

simplification rules for the elementary gates.

In this section three categories of quantum gates are considered: gates permuting the

basis vectors, Sec. 3.2; gates corresponding to sparse matrices or involving high internal

symmetries, Sec. 3.3; and unstructured n-qubit gates, Sec. 3.3.5.

3.1 Elementary gates and notation

The set of unitary transformations which is available on a quantum computer is called a

quantum gate library. The gate library is universal when it is sufficient for exactly imple-

menting or arbitrarily closely approximating any n-qubit unitary transformation [38,41].

The result of a series of papers [51–53] is that a library involving certain one-qubit gates

and almost any fixed two-qubit gate is universal. Below I consider a gate library which

consists of the controlled-NOT gate (CNOT) and all the one-qubit gates, U ∈ SU(2). The

simple form of CNOT allows it to be used as a building block of logical functions but

otherwise it does not have any special status among the two-qubit gates.

The form of the interaction Hamiltonian of the quantum register dictates the time
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required for the physical realization of each of the gates. Typically, the two-qubit inter-

actions are much weaker compared to those needed in manipulations of a single qubit.

Thus CNOT or any other two-qubit gate takes considerably more time to realize than

any of the one-qubit gates. Accordingly, minimization of the number of two-qubit gates,

instead of the total gate count, is of prime importance in quantum compiling. Further-

more, the form of interactions may restrict the two-qubit gates to act only on spatially

neighboring qubits. This calls for specialized gate decompositions. In addition to the

minimal set of elementary gates, certain complicated multiqubit gates may also be in-

cluded in the library. This may help the compiler to accelerate the implementation of

the quantum algorithm.

A one-qubit gate U ∈ SU(2) acting on the kth qubit in an n-qubit register is repre-

sented by a unitary matrix

Ũ = I ⊗ . . .⊗ I
︸ ︷︷ ︸

k−1 times

⊗U ⊗I . . .⊗ I
︸ ︷︷ ︸

n−k times

, (3.1)

where ⊗ stand for the Kronecker product of matrices. For simplicity we omit below the

qubits that are unaffected in the transformation. Accordingly, the matrix representation

for gate U is

U =

(
a b

−b a

)

, (3.2)

where a and b are two complex numbers satisfying |a|2 + |b|2 = 1. Another parametriza-

tion for the matrices in SU(2) is obtained through its group theoretical structure

U = exp{i(a1σx + a2σy + a3σz)}, (3.3)

where {ai} are real numbers and {σi} are the generators of group SU(2). We fix the

basis for the two-state system such that the operator σz is diagonal. Furthermore we

call the vectors corresponding to the eigenvalues 1 and -1 by |0〉 and |1〉, respectively.

In this basis the matrix representations of the operators {σi} are called the Pauli spin

matrices:

σx =

(
0 1

1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
+1 0

0 −1

)

. (3.4)

In particular we define a one-parameter rotation:

Ra(θ) = ei(axσx+ayσy+azσz)θ/2, (3.5)

where θ stands for the rotation angle around the unit vector a. Here we note that Ra(θ)

can be made diagonal by a similarity transformation

Ra(θ) = VaRz(θ)V
†
a
, (3.6)

where Va stands for a unitary matrix depending only on the direction of the vector a.

Here, we note that the rotations about any single axis are additive

Ra(θ1)Ra(θ2) = Ra(θ1 + θ2) (3.7)
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and for a⊥ex the rotation angle is reversed by conjugation with σx:

ax = 0 =⇒ σxRa(θ)σx = Ra(−θ). (3.8)

The above identities play an important role in the elementary gate decompositions below.

When the rotation axis points towards any of the coordinate axes, the corresponding

one-parameter rotation is called an elementary rotation. The matrix representations for

the elementary rotations are

Rx(θ) = eiσxθ/2 =

(
cos θ/2 i sin θ/2

i sin θ/2 cos θ/2

)

, (3.9)

Ry(θ) = eiσyθ/2 =

(
cos θ/2 sin θ/2

− sin θ/2 cos θ/2

)

, (3.10)

Rz(θ) = eiσzθ/2 =

(
eiθ/2 0

0 e−iθ/2

)

. (3.11)

Any element in U ∈ SU(2) can be accessed using at most three consequent rotations:

U = Rz(α)Ry(β)Rz(γ), (3.12)

where angles α, β, γ are called the Euler angles. Instead of z and y axes any other two

rotation axes which are mutually orthogonal will qualify the above equation. This sets

one requirement for the controllability of the Hamiltonian of the quantum register: it

has to provide control over two independent generators of SU(2).

In addition to the one-qubit gates, the universal gate library must include at least

one two-qubit gate; almost any gate will qualify [53]. To keep the analysis of the circuits

simple, CNOT is typically chosen to be the only two-qubit gate in the gate library. The

matrix presentation for CNOT in basis {|00〉 , |01〉 , |10〉 , |11〉} is

UCNOT = I ⊕ σx =








1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







. (3.13)

The CNOT is our first example of the family of controlled gates, see Fig 3.1. In the

quantum circuit diagrams the qubits are denoted by horizontal lines and the gates as

rectangles on them. The control nodes are marked by circles which are connected to the

associated gate by a vertical line. The action of the CNOT is σx, i.e., the logical NOT in

the subspace spanned by {|10〉,|11〉}. In contrast, the subspace spanned by {|00〉,|01〉}
remains untouched. In general, the effect of the control nodes is to limit the gates to

act only on a certain subspace. The nodes in the quantum circuit diagram can be white

or black corresponding to the control qubit states |0〉 or |1〉, respectively. Thereafter we

refer by CkV to k-fold controlled one-qubit gate V . When applied to an n-qubit register,
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Figure 3.1: Quantum circuit symbols for (a) one-qubit gate , (b)

CNOT, (c) controlled one-qubit gate, (d) two-fold controlled two-

qubit gate. The white and black control nodes indicate that the gate

acts non-trivially only in the subspace of H in which the correspond-

ing qubit lies in the state |0〉 or |1〉, respectively.

this gate operates non-trivially in 2n−k-dimensional target subspace consisting of those

basis vectors for which the values of the controlled qubits match with those of the control

nodes.

The universal gate library of CNOT and one-qubit gates efficiently implements any

CkV gate, see Ref. [52]. As an illustration of this, Fig. 3.2 shows how an array of

elementary gates may emulate a controlled rotation. Basically, the structure of the gate

array takes advantage of Eqs. (3.7) and (3.8). In general, for the implementation of a

CkV gate, where V ∈ U(2), a quantum circuit of O(n2) elementary gates is required.

However, the gate CkW requires only O(n) gates provided that W ∈ SU(2). One

possibility to implement a gate CkU with more than one target qubit in U is to first

decompose gate U . Decomposition reduces it into array of elementary gates each having

k control nodes. In the second step they can be implemented as described above.

We say that an elementary gate array which implements a certain unitary transfor-

mation U is efficient if the number of degrees of freedom in U and the number of gates

in the gate array are on the same order. Furthermore we use the product symbol for

matrices with indices to denote certain gate decompositions. In these products the order

of the matrices is always taken to be from left to right.

3.2 Reversible implementation of arithmetic functions

The permutation matrices have a special role among the unitary matrices since they

represent reversible digital computation. Particularly, they provide an implementation

for the reversible arithmetic functions, such as adding and multiplying [64, 66, 67]. This

is important since quantum computation is always reversible; by definition the inverse

U−1 = U † exists for any unitary operator U . In other words, the output for each input

is uniquely determined, and vice versa.

Let us consider an example. A two-qubit register can contain a quantum state, which
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Figure 3.2: Implementation of a controlled one-parameter rotation

R using the elementary gates. For example, choose R1 = Rz(α/2)

and R2 = Rz(−α/2)to obtain R = Rz(α). Here we have assumed the

rotation axis to be perpendicular to x axis.

Table 1: Truth table for ADD 1 (MOD 4)

output \ input 0 1 2 3

0 0 0 0 1

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

is a superposition of four basis vectors |00〉,|01〉,|10〉, and |11〉. Let us relabel them as

|0〉,...,|3〉. In this basis, an adder that increases the value stored in the register by one

corresponds to a matrix

UADD 1 =








0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0







. (3.14)

To make the adder reversible we have taken the modulo four of the result. Say that the

register is initially in state |i〉. The matrix UADD 1 transforms it into state |i+ 1 (mod 4)〉,
i.e., the unitary transformation works like the classical logic circuit whose truth table is

represented in Table 1. The gate array implementing the algorithm UADD1 is simple —

it involves only one CNOT.

The arithmetic functions [68] are the basic ingredients of quantum algorithms almost

similarly as they are for classical computations; only the superposition principle makes

a difference. It allows the quantum computers to simultaneously evaluate the same

function for several inputs using a single processor, which is classically impossible. The

classical digital computers rely on the fast and reliable evaluation of long sequences of

elementary operations one by one; parallelism can be obtained only by employing several

processors.

Shor’s factorization algorithm [29] is based on the quantum Fourier transformation

(QFT) and the evaluation of the modular exponential function f(x) = ax (mod N),

where a, x, and N are integers. The quantum computer evaluates f(x) for all the integer

values of x from 0 to 2n−1, where the value of n is on the order of several hundreds. This
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is massive parallelism which is not achievable without a quantum computer. The QFT

helps one to analyze the resulting output state and deduce the period of the function

f(x).

The complexity of the gate array needed for modular exponential function sets the

requirements on computational resources of Shor’s algorithm. Publication [II] discusses

the structure of Shor’s algorithm and presents a detailed method to construct the ele-

mentary gate array for it. In addition to the algorithm discussed there, several other

techniques to implement a modular exponential function are represented in literature.

Reference [69] gives a recent review of them. Besides, Draper et al. [70–72] discuss effec-

tive implementations of an adder, which is an important ingredient of the exponential

function.

3.3 Building blocks of a quantum computer

The set of operations available on a quantum computer is larger than that available on a

classical one. The following sections are devoted to discussion about gates which appear

only in quantum computers, that is, gates that generate entangled or superposed states.

Let us approach this enormous subject through a few important examples especially

considering uniformly controlled gates. For them we know several applications and,

most importantly, an elementary gate array which efficiently implements them. Due to

the efficient implementation these particular gates should be considered as a part of a

quantum compiler — tools for implementing quantum algorithms [73].

3.3.1 Quantum Fourier transformation

Quantum Fourier transformation is the best known quantum gate, or low-level algorithm,

which is known to involve only a polynomial number of elementary gates in the number

of qubits n. The elements of the matrix representing an n-qubit QFT are given by

Ul,m =
1√
2n
e2πilm/2n

. (3.15)

References [43,74] present a decomposition of QFT into one- and two-qubit gates follow-

ing the construction of the classical Fast Fourier Transformation (FFT) algorithm [68].

Very recently Tucci [75] found that this construction can also be produced by using

a more general method, namely, Cosine-Sine matrix decomposition which can also be

utilized to find implementations of unstructured n-qubit gates.

3.3.2 Uniformly controlled gates

A sequence of consequent controlled gates with slightly different control node configu-

rations appear frequently in the circuit diagrams of quantum algorithms. Let us call a

sequence of 2k such gates, each having k control nodes, a uniformly controlled U gate,
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Figure 3.3: k-fold uniformly controlled m-qubit gate, F k
T (U(2m)),

stands for a sequence of k-fold controlled gates Ui. Each of the gates

acts on the set of target qubits T . Here Ui ∈ U(2m), where i =

1, . . . , 2k.

see Fig. 3.3. The gate shown acts on an n qubit register. Thus it has m = n− k target

qubits which we denote collectively by T . Let us denote a gate of this kind by a symbol

F k
T (U(2m)).

The concept, quantum circuit symbol, and an efficient implementation of a uniformly

controlled gate was for the first time introduced in Publication [V] in the context of

uniformly controlled rotations. After that it has been utilized in decomposing general

n-qubit gates in [VII], [76], and [77], and in preparation of quantum states in [VI],

and [76],[VII]. Bullock et al. have generalized uniformly controlled gates for a quantum

register which is built of qudits, d-level (d > 2) quantum systems [78]. The methods to

implement uniformly controlled z rotations are also closely related to the earlier work

by Bullock and Markov [79], and Schuch and Siewert [80].

Reducing the number of control and target qubits

Above F k
T (U(2m)) is defined straightforwardly as a sequence of the gates CkUi. The

sequence consists of all possible control node combinations, thus involving 2k CkUi gates

in total. Clearly this definition of F k
T (U(2m)) does not provide an economical imple-

mentation for it. To efficiently implement F k
T (U(2m)) in terms of CNOTs and one-qubit

gates we need methods to manipulate the uniformly controlled gates.

In literature two different techniques are presented to manipulate the uniformly con-

trolled gates: Cosine-Sine Decomposition [V] (CSD) and the quantum multiplexor [76]

(QM). The effect of CSD is to produce a decomposition which involves gates with a

reduced number of target bits. Similarly, the effect of QM is to produce a decomposition

which involves gates with a reduced number of control nodes, see Fig. 3.4.

Tucci [81] was the first to consider CSD [82] in the context of quantum computation.

Bullock discussed its relation to the Kheneja-Glaser decomposition in Ref. [83]. CSD of
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Figure 3.4: Methods to manipulate a uniformly controlled gate: (a)

Cosine-Sine decomposition, (b) Quantum multiplexor.

a unitary 2n × 2n matrix U is

U =

(
u11 0

0 u12

)(
c s

−s c

)(
u21 0

0 u22

)

, (3.16)

where ujk, j, k ∈ {1, 2} are 2n−1 × 2n−1 unitary matrices. The real diagonal matrices c

and s satisfy s2+c2 = I that justifies the name Cosine-Sine decomposition. The matrices

u11 ⊕ u12 and u21 ⊕ u22 correspond to the rightmost and leftmost uniformly controlled

gates in rhs of Fig. 3.4(a), respectively. The central matrix involving s and c parts

corresponds to the uniformly controlled y-rotation. Reference [82], for example, explains

details of evaluating the numerical values of the matrices in the decomposition. One

should note that the matrices in CSD are not unique. This leaves room for optimization

since for properly chosen matrices the resulting elementary gate sequences may simplify,

see Ref. [75].

Quantum multiplexor is a clever trick to eliminate the control nodes from a uniformly

controlled gate. The QM circuit then takes the form

(
v1

v2

)

=

(
b

b

) (
d

d†

) (
a

a

)

, (3.17)

where v1 ⊕ v2 is the matrix presentation of the decomposed F 1
T (V ) gate and a and

b are the matrix representations for the gates V1 and V2 in Fig. 3.4(b). The central

matrix d⊕ d†, where d is a unitary diagonal matrix of size 2m−1 × 2m−1, corresponds to

the uniformly controlled z-rotation. All the matrices in the decomposition are unitary.

Shende et al. [76] have introduced a method for determining the matrices of the right

side in Eq. (3.17) for a given F k
T (V ) gate.

When employed together, the CSD and QM techniques reduce any F k
T (U(2m)) gate

into several uniformly controlled one-qubit gates. Below we consider how to implement

those gates using a library of elementary gates.
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Uniformly controlled one-qubit gates

Let us construct an elementary gate circuit for a uniformly controlled one-qubit gate.

Consider the controlled one-parameter rotations, F k
t (R), separately since they need less

gates to implement compared to general F k
t (U(2)) gates. In F k

t (R) the rotation angle

may vary, but the rotation axis is the same for each of the subrotations. The decom-

positions are designed assuming that the rotation axis is perpendicular to the x axis.

This is due to the structure of CNOT: I ⊕ σx. However, the choice of the axis of rota-

tion is virtual — the rotation axis can be changed straightforwardly using the result of

Eq. (3.6).

The elementary gate decompositions for the uniformly controlled gates are found

through recursive technique involving reflections of the gate sequences. This leads to gate

arrays whose properties can be described by the binary reflected Gray codes [63,84,85],

or by the ruler function given by Sloane’s sequence A001511 [86]. The ruler function gives

the changing bit in the binary reflected Gray code, where the bit string ig is obtained

from the binary representation ib of the number i as ig = ib XOR (ib/2). This particular

coding scheme was patented by Frank Gray [85] in 1953 for a communication system for

railways. The useful property of the Gray codes is that the adjacent bit strings differ

only in single bit, by definition.

A gate F k
t (U(2)) decomposes into gates involving less control nodes efficiently, see

Fig. 3.5. The decompositions shown in Figs. 3.5(a) and (b) strongly resemble each other

although they are based on different mathematical principles. Publication [V] discusses

the derivation of an elementary gate decomposition of F k
t (R) gate. There the main point

is that by sandwiching a gate F k
t (R) with two CNOTs selectively reverses half of the

rotation angles. Consequently the decomposition shown in Fig. 3.5(a) leads to a linear

system of equations for the rotation angles, which always has a solution. Publication

[VII] discusses the implementation of the uniformly controlled one-qubit gate. The

implementation takes advantage of tuning of the eigenvalues of 2 × 2 matrix U . The

tuning is performed by multiplying U by a diagonal matrix Γ. The eigenvalues of the

2× 2 matrix A = ΓU can be solved analytically, which fixes the matrix Γ. The analytic

solution should be possible, even if tedious, also for 4 × 4 matrices, i.e., for uniformly

controlled two-qubit gates. Arising out of this, the interesting question for the future

work is if this technique can be generalized for uniformly controlled m-qubit gates, where

m ≥ 2.

The recursive application of decompositions represented in Fig. 3.5 yield an elemen-

tary gate decomposition of F k
t (R) and F k

t (U(2)). Figure 3.6 presents quantum circuits

obtained for gates F 3
4 (R) and F 3

4 (U(2)) using three-level recursion. In general, the de-

composition of a gate F k
t (U(2)) includes an alternating sequence of 2k one-qubit gates

and 2k−1 CNOTs which we denote by F̃ k
t (U(2)). Moreover, the implementation involves

a cascade of k distinct uniformly controlled z rotations which corresponds to a single

diagonal (k + 1)-qubit gate ∆k+1, see Sec. 3.3.3. The implementation of the diagonal



– 20 –

2

3

2 2

4

5

6 7

8

9

:
;
<
=

>�?0@
3 3 3

4

6 7

8

9

:
;
<
=

>�AB@

Figure 3.5: Decomposition of a uniformly controlled one-qubit gate.

(a) One parameter rotation, (b) general one-qubit gate U ∈ SU(2).
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Figure 3.6: Quantum circuit realizing a three-fold uniformly con-

trolled one-qubit gate (a) one-parameter rotation, (b) general one-

qubit gate. Here ri stands for a one-parameter rotation and in ui is

a general one-qubit gate. The alternating sequence of CNOTs and

ui gates is denoted by F̃ 3
4 (U(2)) while the gate ∆4 corresponds to a

diagonal 16 × 16 unitary matrix. Its implementation is discussed in

the text.
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Figure 3.7: CNOT cascade which can be efficiently implemented

using nearest-neighbor CNOTs.

part of the gate sequence can often be circumvented by merging it to the adjacent gate.

Compared to the gate F k
t (U) the implementation of the gate F k

t (R) requires fewer ele-

mentary gates. Namely, an alternating sequence of 2k CNOTs and 2k one-qubit rotations

implements the gate.

Linear chain of qubits with nearest-neighbor couplings

In the practical realization of a quantum computer, the spatial arrangement of the quan-

tum register or other reasons may limit the interactions between the qubits. Let us con-

sider a quantum register whose topology corresponds to that of a linear chain and which

allows the gates to act only on nearest-neighboring qubits. This topology turns out to

be amenable for implementing a uniformly controlled gate. This may have important

consequences for experimentally realizing quantum computing.

The quantum circuit presented for a uniformly controlled gate can be translated

efficiently into an array of nearest-neighbor gates. The technique is based on the circuit

identity shown in Fig. 3.7. The strategy is to modify the decomposition shown in Fig. 3.5

by inserting an identity in the form of a CNOT cascade and its inverse, a similar cascade,

into the circuit next to the central CNOTs. The other of the cascades is absorbed into the

following uniformly controlled gate. The remaining cascade, together with the central

CNOT, can be efficiently implemented using nearest-neighbor CNOTs as illustrated in

Fig. 3.8.

The complexity of the nearest-neighbor implementation depends on the relative order

of the target and control qubits, and the order in which the control qubits are eliminated.

An efficient strategy is to first eliminate the control nodes that are furthest apart from

the target. Furthermore, for the gates with numerous control nodes, it is advantageous

to use a sequence of swap gates to move the target qubit next to the center of the

chain before the operation and back after it. A swap gate can be realized using three

consecutive CNOTs [3].
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Figure 3.8: Reducing a uniformly controlled gate into nearest-

neighbor gates: (a) uniformly controlled rotation and (b) general

one-qubit gate. Here the circuit diagrams may also be mirrored hor-

izontally.

Using this strategy a gate F̃ n−1
t (U(2)) can be implemented with at most

CU(2)(n, s) =
5

6
2n + 2n− 6s−

{
1
3
, n even

5
3
, n odd

(3.18)

nearest-neighbor CNOTs. Here s = 1, . . . , dn
2
e is the distance of the target qubit t from

the end of the chain. Figure 3.9(a) depicts the resulting circuit for the case k = 4 and

s = 1.

Similar treatment for gate F n−1
t (Ra) yields a quantum gate array with

CR(n, s) =
5

6
2n + 3n− 6s−

{
4
3
, n even

5
3
, n odd

(3.19)

nearest-neighbor CNOTs. Figure 3.9(b) displays an example circuit for the case k = 4

and s = 1.

A Uniformly controlled one-qubit gate carries 3 · 2k degrees of freedom, and requires

roughly the same number of elementary gates for its implementation. We conclude

that arrays of nearest-neighbor CNOTs provide efficient implementations for F k
t (R) and

F k
t (U(2)) gates, and therefore for any uniformly controlled gate. In particular this can

be utilized to efficiently implement unstructured unitary transformations as discussed

below. Furthermore, the structure of the nearest-neighbor circuit allows several gate

operations to be executed in parallel which may further reduce the execution time of the

algorithm.
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Figure 3.9: Implementation of three-fold uniformly controlled one-

qubit gate: (a) general one-qubit gate and (b) one-parameter rota-

tion. Here ri gates are generic rotations in plane perpendicular to

x-axis and ui gates belong to SU(2). A five-qubit diagonal gate is

denoted by ∆5, see Sec.3.3.3.
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Figure 3.10: Quantum circuit for a diagonal quantum gate.

3.3.3 Diagonal quantum gate

Several gate decompositions involve parts which correspond to a diagonal unitary matrix,

as explained above. A diagonal gate adjusts the phases of the state vector, and hence does

not feature any practical properties alone. In contrast, when diagonal gate is connected

to other gates, it starts to play a significant role as seen below.

Bullock and Markov [79] were the first to find the efficient implementation for an

arbitrary diagonal gate using an array of CNOTs and elementary rotations about z axis.

The array they propose for an n-qubit diagonal gate ∆n consists of 2n − 2 CNOTs and

2n − 1 one-parameter rotations. Comparing this to 2n − 1, that is the number of degrees

of freedom in the diagonal unitary matrix having determinant 1, we find that the gate

array efficiently implements it. Schuch and Siewert posted their paper [80] on the preprint

server four days after Bullock and Markov. Their solution to the problem resembles that

given in Ref. [79] providing, however, a considerably different gate sequence, which is

amenable for the parallel execution of the elementary gates.

The uniformly controlled rotations provide a framework which straightforwardly ex-

plains the operational principle of the optimal circuit for diagonal gates obtained by

Bullock and Markov using other methods. Figure 3.10 illustrates the decomposition

of a diagonal gate ∆n into F i
i+1 (Rz) gates. The first equality in Fig. 3.10 shows how

F n−1
n (Rz) and ∆n−1 gates implement ∆n gate. The recursive application of this decom-

position yields a cascade of n uniformly controlled z rotations which exactly corresponds

to a diagonal gate acting on n qubits.

3.3.4 State preparation

Here, the state preparation means a unitary transformation which converts a single

known n-qubit quantum state |a〉n into another well specified state |b〉n. Knill [87] has

discussed a quantum gate array needed for this transformation and shown that it is

of O(n2n) complexity. Recently, Shende et al. [88] found a minimal circuit which im-

plements the state preparation for a two-qubit register. Publication [VI] describes an

explicit method for constructing an elementary gate array of complexity O(2n) for the
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state preparation of an n-qubit register. Again, the implementation takes advantage of

the uniformly controlled rotations and their gate-efficient implementation. Almost simul-

taneously with [VI] Shende et al. [76] come up with the same construction independently.

Furthermore, Publication [VII] describes improvements to the construction and achieves

a gate count which is only a factor of two away from the theoretical minimum.

In all the reported schemes the state preparation follows the same strategy; the state

|a〉n is first transformed into one of the basis vectors |e1〉n and then using the same

strategy backwards from |e1〉n to |b〉n. The quantum circuit to transform a state |a〉n

into |e1〉n consists of a sequence of gate pairs [VI]

Sa =
n∏

i=1

[(
F i−1

i (Ry)F
i−1
i (Rz)

)
⊗ I2n−i

]
. (3.20)

The effect of a gate pair F i−1
i (Ry)F

i−1
i (Rz) on the state |a〉i is to nullify half of the

elements:

F i−1
i (Ry)F

i−1
i (Rz) |a〉i = |a′〉i−1 ⊗ |0〉1 . (3.21)

Hence, each successive gate pair nullifies half of the elements of the state vector that

have not yet been zeroed. Eventually, all the elements except one have been zeroed, and

we have the desired transformation

Sa |a〉n = |e1〉n (3.22)

up to a global phase. Similarly we obtain Sb |b〉n = |e1〉n. Combining these result we get

S†
bSa |a〉n = |b〉n , (3.23)

where S†
bSa is the desired transformation which maps |a〉n to |b〉n.

The gate array producing the transformation S†
bSa can be improved [VII] by making

on each of the gate pairs in Eq. (3.20) a replacement

F i−1
n (Ry)F

i−1
n (Rz) = ∆iF̃

i−1
i (U(2)) . (3.24)

The reduction of the gate array comes from the fact that the gate ∆i can be compensated

by the neighboring gates, and thus requires no gates to implement. Figure 3.11 shows the

circuit for this transformation. The entire circuit for transforming |a〉n to |b〉n requires

2 · 2n − 2n − 2 CNOTs and 2 · 2n − n − 2 one-qubit gates. The transformation is very

efficient since a vector of unit length in 2n-dimensional complex space with arbitrary

global phase involves describes 2n+1 − 2 real degrees of freedom.

3.3.5 Unstructured unitary transformations

An interesting result in quantum computation is that a relatively simple universal gate

library exists. Universal gate library includes those elementary gates that are needed
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Figure 3.11: Quantum circuit for transforming an arbitrary n-qubit

state vector |a〉n into a desired state vector |b〉n . The resulting

gates are of the form F̃ i−1
i (U(2)) which is efficient to implement,

see Fig. 3.6.

for implementing an arbitrary transformation in the state space of the qubit register.

Barenco et al. [52] presented the first detailed decomposition of an unstructured n-qubit

gate U into elementary gates in 1995. The construction they presented requires O(n34n)

elementary gates. Afterwards, Knill [87] in 1995 and Cybenko [89] in 2001 presented

decompositions which involve O(n4n) gates. However, we can easily argue that an array

of O(4n) gates should implement U , since any unitary transformation of n qubits is

represented by a unitary matrix U of size 2n × 2n, which has 4n real degrees of freedom.

Before 2004, there was an annoying gap between the known decompositions and

the known highest lower bounds for the gate counts. Although the techniques which

eventually lead to minimal gate arrays were considered already in 1999 [81], the explicit

gate array yielding even the O(4n) complexity was first presented in [IV]. Publication

[IV] presents two improvements to Barenco’s construction, which eventually results in

O(4n) complexity. Although the presented implementation together with previous results

confirms that asymptotic scaling for the construction is Θ(4n) the actual gate count for

the circuit is considerably high even for a small number of qubits.

A partial problem, the implementation of a two-qubit gate using minimal number

of elementary gates was fully solved in Refs. [88, 90–92]. The main problem, the imple-

mentation of an unstructured n-qubit unitary transformation using minimal number of

elementary gates was solved in [V], [76] ,[VII], [77]. The gate arrays that these papers

suggest do not only achieve the asymptotically minimal complexity O(4n), but they also

almost reach the theoretical minimum in the gate counts: 4n in number of one-parameter

rotations and d 1
4
(4n − 3n − 1)e [88] in number of CNOTs. Recently, Bullock et al. [78]

generalized the result obtained for a register involving d-level systems, qudits, instead of

qubits.

Some recently discovered quantum algorithms [93–95] embody unstructured unitary

transformations as a part of their structure and hence call for techniques for their efficient

implementation. However, from algorithmic viewpoint it is important to note that an

unstructured n-qubit gate indeed requires a non-polynomial, O(4n), amount of gates to
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realize and thus cannot be considered solely an efficient implementation of any quantum

algorithm.

QR Decompositions

Numerical matrix computation [50] is a field of mathematics that provides excellent

tools to construct and manipulate quantum gate arrays. For example, theorem of QR

decomposition proves that for each matrix A there exists unitary matrix Q and upper

diagonal matrix R such that A = QR. Here Q may be be realized as a product of the

Givens rotations [96]. Especially, if the matrix A is unitary, the matrix R is essentially an

identity. Consequently, the sequence of Givens rotations yields a useful decomposition

of a unitary matrix. Traditionally [52,89,97] a technique based on this principle was em-

ployed in quantum computation to find the elementary decomposition of an unstructured

unitary matrix. Publication [IV] presents improvements to the traditional construction

that eventually lead to the quantum gate decomposition of minimal complexity O(4n).

Let us outline how to find the sequence of Givens rotation matrices whose product

implements any (special) unitary matrix U ∈ SU(2n). A Givens rotation iGj,k is a two-

level complex matrix which operates non-trivially only on two basis vectors |ej〉 and |ek〉.
A numeric values of the elements of a matrix iGj,k can be chosen such that it selectively

nullifies the element on the ith column and the jth row of a matrix U when multiplied

from left: Ũ =iGj,kU . For example,

1GN,N−1U =










u1,1 u1,2 . . . u1,N

...
...

. . .
...

uN−2,1 uN−2,2 . . . uN−2,N

ũN−1,1 ũN−1,2 . . . ũN−1,N

0 ũN,2 . . . ũN,N










,

where the elements of Ũ that differ from those of U are indicated with the tilde.

Applying 1GN−1,N−2 to the modified matrix Ũ we can nullify the element ũN−1,1

and similarly the whole first column, except the diagonal element. The unitarity of

the matrix U fixes its absolute value to unity. Furthermore, the Givens rotation can

be defined such that the argument of the resulting diagonal element vanishes, i.e., it

obtains value 1. When further applied to the columns 2 to N − 1 the process results in

an identity matrix. Thus we obtain the factorization
(

2n−1∏

i=1

2n
∏

j=i+1

2n−iGj,j−1

)

U = I ⇐⇒ U =

(
2n−1∏

i=1

2n
∏

j=i+1

i+1G†
2n−j+2,2n−j+1

)

, (3.25)

which yields the implementation of an arbitrary quantum gate provided that an elemen-

tary gate implementation of each of the Givens rotations is known.

Let us consider the most convenient basis which would allow us to implement the QR

decomposition with the simplest gate array. In Publication [IV] we choose the order of
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Figure 3.12: (a) Four bit Gray code. White squares stand for bit

value 0 and black squares denote 1. (b) The number of control nodes

needed for the Givens rotation nullifying the elements of the matrix

U . The width of the line s between the matrix elements represents

the number of control nodes required to zero the element below the

line.

the basis vectors {|ei〉} of the quantum register according to the binary reflected Gray

code. The special property of any Gray code ordered basis is that only one bit changes

between the adjacent basis vectors |ei〉 and |ei+1〉. The important consequence of this is

that the operations limited to the subspace spanned by |ei〉 and |ei + 1〉 take the form

of Cn−1G gates, where G ∈ SU(2). Consequently, each of the Givens rotations can

be implemented using only one Cn−1G gate which saves gates compared to the earlier

schemes [52,89,97].

Furthermore, we find that only a small fraction of the control nodes in the Cn−1G

gates appears to be essential for the final result of the decomposition. If s control

nodes are removed from a Cn−1G gate, the matrix representation of such an operation

is no more two-level, but rather 2s+1-level, i.e., the matrix operates non-trivially to all

pairs of basis vectors which satisfy the remaining control conditions. The strategy of

eliminating the control nodes is following: once some element of U becomes zero in the

diagonalization process, use control nodes in such a way that it does not mix with the

non-zero elements.

The number of control nodes necessary for each of the gate depends on the position of
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Figure 3.13: Quantum circuit equivalent to an arbitrary three-qubit

quantum gate U up to a global phase. Here iΓj,k stands for Given’s

rotation matrix which nullifies element (i,j) of U with element (i,k)

of U . The control nodes indicated with a black square on the upper

right hand side corner are superfluous and may be omitted to decrease

the complexity of the decomposition.

the nullified element in the matrix. Figure 3.12(a) illustrates the Gray code involved in a

diagonalization process of a four-qubit gate U ∈ SU(24). Figure 3.12(b) illustrates the

number of control nodes necessary in the diagonalization. The total number of gates in

the implementation depends on the number of the control nodes in each of the involved

gates. In Publication [IV] we found that the number of k-fold controlled gates decreases

exponentially with the number of control nodes. On the other hand, gate CkV takes

O(n) gates to implement [52]. These results together imply that the gate array for an

n-qubit unitary gate involves O(4n) elementary gates.

To calculate the number of elementary gates, we use the decompositions described in

Ref. [52]. For large n, the leading contribution to the number of CNOTs is approximately

8.7 × 4n. We note that neither one of the two techniques alone, the Gray code ordered

basis vectors nor the elimination of the control nodes suffices to decrease the circuit

complexity to O(4n). As a curiosity, the technique presented here has recently been

generalized and adopted again to numerical matrix computation [98].

Cosine-Sine Decomposition

We are proceeding toward the elementary gate array with minimal complexity. The

approach taken here is presented in detail in [V] and [VII]. In this approach, the Cosine-

Sine decomposition is applied recursively to an unstructured n-qubit gate. This method

yields a gate array

U(2n) = F n−1
n (U(2))

2n−1−1∏

i=1

F n−1
n−γ(i) (Ry)F

n−1
n (U(2)) , (3.26)

where γ is the ruler function [86].

In publication [V] we decompose each of the F n−1
n (U(2)) gates starting from the left

as

F n−1
n (U(2)) = F n−1

n (Rz)F
n−1
n (Ry)F

n−1
n (D) , (3.27)

where D is a 2 × 2 diagonal unitary matrix. For each F n−1
n (U(2)) gate the rightmost

F n−1
n (D) that emerges from the decomposition can be merged into the neighboring
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F n−1
n−γ(i) (Ry) gate

F n−1
n−γ(i) (Ry)F

n−1
n (D) −→ F n−1

n−γ(i) (Ry)F
n−1
n−γ(i) (Rz) . (3.28)

Furthermore, this merging requires that the next F n−1
n (U(2)) gate at right is multiplied

by a diagonal gate. When applied to the entire sequence of gates, it takes the form

U(2n) = F n−1
n (Ry)F

n−1
n (Rz)

2n−1−1∏

i=1

F n−1
n−γ(i) (Ry)F

n−1
n−γ(i) (Rz)F

n−1
n (Ry)F

n−1
n (Rz) ∆n,

(3.29)

where ∆n corresponds to an n-qubit diagonal matrix. The total complexity of the de-

composition is 4n − 2n+1 CNOTs and 4n one-qubit rotations.

Publication [VII] presents a second variant of the decomposition. Starting from the

last gate in Eq. (3.26), we write the diagonal part ∆n separately:

F n−1
n (U(2)) = ∆nF̃

n−1
n (U(2)) . (3.30)

The diagonal part ∆n can then be merged with the neighboring F n−1
n−γ(i) (Ry) gate,

which is transformed into a general gate of type F n−1
n (U(2)). Again, the diagonal part

can be separated and merged into the next gate F n−1
n (U(2)). Continuing this process

sequentially, we finally obtain

U(2n) = ∆nF̃
n−1
n (U(2))

2n−1−1∏

i=1

F̃ n−1
n−γ(i) (U(2)) F̃ n−1

n (U(2)) , (3.31)

which is an efficient implementation for any unstructured unitary transformation. This

decomposition involves in total 1
2
4n − 1

2
2n − 2 CNOTs and 1

2
4n + 1

2
2n − n− 1 one-qubit

gates.

The F k
t (R) and F k

t (U(2)) gates can be implemented efficiently using gates nearest-

neighbor gate arrays. This is the most interesting feature in the quantum circuits pre-

sented above, since due to that they are amenable to experimental realizations allowing

only the nearest neighbor gates. To obtain the minimal nearest neighbor gate arrays it

is favorable to have the target qubit of a uniformly controlled one-qubit gate as close to

the center of the chain as possible. Consequently, we start the CS decomposition from

the ends of the qubit chain, moving alternatingly towards the center. In this fashion, a

general n-qubit gate can be implemented using at most

CU(n) =
5

6
4n − n2n − 2n+

{
5
6
2n − 5

3
, n even

1
2
2n − 1

3
, n odd

(3.32)

nearest-neighbor CNOTs.
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Figure 3.14: Combination of Cosine-Sine decomposition and quan-

tum multiplexor yields a method to reduce the number of qubits the

gates operates on.
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Figure 3.15: The minimal elementary gate implementation of a

two-qubit gate [88].

NQ recursion

A combination of CSD and QM techniques provides the NQ recursion [76]. Each step of

that recursion reduces a n-qubit gate into four (n− 1)-qubit gates and three uniformly

controlled rotations, see Fig. 3.14. To decompose an n-qubit gate the recursion is con-

tinued until the level of two-qubit gates is encountered. Here we note that each of the

uniformly controlled rotations commutes with a diagonal gate. Thus all the two-qubit

gates in the decomposition — except the rightmost one — can be implemented using

two CNOTs, see Fig. 3.15. This leads to the complexity of 1
2
4n − 3

2
2n + 1 CNOTs and

9
8
4n − 3

2
2n + 3 elementary rotations.

Example: three-qubit gate

Let us briefly summarize how to find elementary gate arrays for unstructured n-qubit

gates. Above we have discussed four different methods: improved QR decomposition, CS

decomposition (CSD1), improved CS decomposition (CSD2), and NQ method. Figure

3.16 illustrates the quantum circuit diagrams obtained using the different methods for

an arbitrary three-qubit gate. Tables 2 and 3 compare in the decompositions the number

of gates needed for an n-qubit gate, where n=1,...,9.

Certain quantum gates that are likely to be useful in quantum computation comprise

internal symmetries and can thus be implemented using only a polynomial number of

elementary gates. For example, O(n2) gates are needed to implement a quantum Fourier

transformation of n qubits [3]. Although the method presented apparently requires O(4n)

elementary gates, it is still possible that using proper optimizations the gate array will
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Figure 3.16: Quantum circuit for a three-qubit gate obtained us-

ing (a) QR decomposition, (b) CS decomposition, (c) improved CS

decomposition, and (d) NQ method. Gates marked by G denote the

Givens rotations, uniformly controlled Ry and Rz have their stan-

dard meaning, one-qubit R and u gates denote one-qubit rotations

and general one-qubit gates, and the gates with symbol Ũ stand for

the uniformly controlled one-qubit gates without diagonal part.

appreciably simplify, and the result will resemble that of polynomial decompositions, as

was found in Ref. [75].
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Table 2: Comparison of the decompositions with respect to the

number of CNOTs needed in different decompositions.
n 1 2 3 4 5 6 7 8 9

QR 0 4 64 536 4156 22618 108760 486052 2078668

CSD1 0 8 48 224 960 3968 16128 65024 261120

CSD2 0 4 26 118 494 2014 8126 32638 130814

NQ 0 3 21 105 465 1953 8001 32385 130305

Table 3: Comparison of the decompositions with respect to the total

number of gates needed in different decompositions.
n 1 2 3 4 5 6 7 8 9

QR 1 14 136 980 7384 42390 208820 944280 4062520

CSD1 1 23 111 479 1983 8063 32511 130559 523263

CSD2 1 11 58 249 1016 4087 16374 65525 262132

NQ 1 10 54 262 1142 4758 19414 78422 315222
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4 Shor’s algorithm on a Josephson qubit register

Superconductivity [99] belongs to the most extraordinary phenomena in nature. It occurs

in metals at very low temperatures, and also in certain ceramic materials at temperatures

exceeding the boiling point of liquid nitrogen 77 K. Superconducting structures feature

macroscopic quantum effects such as the quantization of the magnetic flux through a

superconducting loop. Using nanolithographic techniques one may fabricate submicron

scale superconducting electric circuits which involve weak links, e.g., thin insulator gaps

called Josephson junctions. They provide a potentially excellent housing for a quantum

register [25].

A qubit implemented in a Josephson junction circuit is a two-state system whose

basis states may correspond to distinct macroscopic variables: either the charge on

superconducting islands or the flux through superconducting loops. The recent devel-

opment on qubits operating on the charge regime is reported in Refs. [12, 16–20, 22]

while the qubits mainly taking advantage of the flux degree of freedom are considered

in [14,100–102]. In addition, other promising scenarios such as phase qubits [15,21] and

tetrahedral qubits [103] have been suggested. We consider here a so-called inductively

coupled Josephson charge qubit register. This model as well as others related realizations

of quantum computing are carefully analyzed in Ref. [24].

Publication [III] studies the implementation of Shor’s factorization algorithm using

a Josephson charge qubit register. The presented study combines the algorithmic issues

of Shor’s algorithm to those of physical realization, bridging a gap between these parallel

but rarely meeting research fields. The main problem is that the computational resources

available for Shor’s algorithm are strictly limited due to the strong decoherence that

plagues Josephson junction circuits [24, 104]. To meet these requirements we employ

a specialized implementation of the quantum algorithm which minimizes the number

of qubits and the execution time needed. In particular, the arithmetic functions are

implemented by methods that involve minimal number of extra qubits. To fight the

decoherence we accelerate the execution of the quantum algorithms. This is performed by

manipulating the algorithm on quantum gate level by replacing complicated elementary

gate sequences by tailored two- and three-qubit gates.

4.1 Inductively coupled Josephson charge qubits

An ideal Josephson charge qubit register is a homogeneous array of mesoscopic super-

conducting islands, see Fig. 4.1. Each of the islands is coupled to a gate voltage V i
g

through capacitance Cg. In addition, each island is coupled to a magnetic field with flux

Φi through a mesoscopic SQUID (Superconducting QUantum Interference Device) with

identical junctions, each having the same Josephson energy EJ/2, and capacitance CJ/2.

All the islands are coupled in parallel with an inductor L. In this setup, the Cooper pairs

can tunnel coherently between an island and the superconducting electrode. The qubit
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i is coded into the charge state of the island i. The basis states of a qubit correspond

to either zero or one extra Cooper pairs residing on the island, denoted by |0〉 and |1〉,
respectively.

The externally controllable variables of the model are the gate voltages {V i
g} and the

time-dependent fluxes {Φi} through each of the SQUID loops. The gate voltage V i
g tunes

the effective gate charge ni
g of the island whereas the external magnetic flux controls the

effective Josephson energy EJ(Φi). The dynamical variables of the model are the flux

ϕ through the inductor L and the time-integral of voltage φ̇i over the left junction of

the ith SQUID. The elementary circuit analysis [105] yields the Lagrangian of this qubit

register

L =
1

2

n∑

i=1

[
CJ

2
φ̇2

i +
CJ

2
(φ̇i − Φ̇i)

2 + Cg(φ̇i + ϕ̇− V i
g )2

]

− ϕ2

2L
+

1

2

n∑

i=1

[

EJ cos

(
2e

~
φi

)

+ EJ cos

(
2e

~
(φi − Φi)

)]

. (4.1)

The quantization of the system yields the Hamiltonian for the low-energy spectrum

of the n qubit-register [III]:

H = −C
∑

i<j

Bi
xB

j
xσ

i
y ⊗ σj

y −
∑

i

{1

2
Bi

zσ
i
z +

1

2
Bi

xσ
i
x

}

(4.2)

where σi
k =

i−1 times
︷ ︸︸ ︷

I ⊗ . . .⊗ I ⊗σk ⊗
n−i times

︷ ︸︸ ︷

I ⊗ I . . .⊗ I, k={x, z}. Above Bi
x = EJ cos

(

π Φi

Φ0

)

and

Bi
z = EC(1− 2ni

g) describe the control parameters of the qubit register and the constant

C = π2L/Φ2
0 (Cqb/CJ)

2 denotes the strength of the coupling between the qubits. Here

Φ0 = h/2e is the flux quantum and Cqb = CJ + Cg is the total capacitance of a qubit

in the circuit. We have denoted charging energy of the island by EC = (2e)2

CJ
and the

effective gate charge by ni
g = Cg

2e

(

V i
g − Φ̇i

2

)

. The approach taken is to deal with the

parameters Bi
z(t) and Bi

x(t) as dimensionless control parameters. Above, we have used

the natural units, ~ = 1. Furthermore we rescale the time such that C = 1.

The BCS gap ∆ for the typical fabrication material thin-film aluminium is ∼ 200

µeV ∼ 2.5 K. However, niobium is known to provide a gap as high as 1.5 meV. The

typical junction resistance is on range 1 − 100 kΩ while capacitance is on the order of 1

fF. This gives the Coulomb charging energy EC/kB ∼ 4K. The lowest relevant energy

scale of the system is set by the thermal energy kBT and the highest scale by the BCS

gap ∆BCS. A crucial assumption is that kBT lnNqp � EJ � EC � ∆BCS, where Nqp is

the number of quasiparticle modes. The lowest achievable operation temperature is tens

of mK. Since Nqp is a small integer ∼ 5, the above chain of inequalities for EJ limits

the critical current to tens of nA. The operation frequencies of this register would be

in the range of several GHz, which is within the operation range of the available signal

generators.
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Figure 4.1: (a) Schematic of a Josephson charge qubit and its rel-

evant parameters. The dashed line stands for an external coil which

produces flux Φi through the SQUID loop, when current Ii is applied.

(b) An array of Josephson charge qubits coupled in parallel with an

inductor L.
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The Hamiltonian of Eq. (4.2) is a convenient model for studying the construction of

quantum algorithms since it allows full control over the one-qubit part and the coupling

between the qubits. In particular, the coupling between any pair of qubits is available;

there are no restrictions of nearest-neighbor gates. Furthermore, the total Hamiltonian

can be set to zero by setting Bi
z = Bi

x = 0 for all i, thereby eliminating all temporal

evolution. Equally, the control parameter values Bi
x = 0 for all i 6= j eliminates all the

interqubit couplings and allows a straightforward implementation of one-qubit operations

on qubit j. However, if the parameter Bx is simultaneously nonzero for any two qubits,

there will automatically emerge a coupling between them. The interaction Hamiltonian

involves second order terms in control parameters, which complicates the finding of the

control sequences analytically. Hence numerical methods are convenient and may even

be necessary for finding the control-parameter sequences for multiqubit gates.

4.2 Control parameters of quantum gates

Numerical optimization provides us with a method to find control parameter sequences

which produce approximate quantum gates. Publications [I-III] show how to solve the

optimization task specified in Sec. 2.3 for the Josephson charge qubit register. In this

scheme the parameter path γ(t) is of the vector form

γ(t) =
[
B1

z (t), . . . , Bn
z (t); B1

x(t), . . . , Bn
x (t)

]T
. (4.3)

We let the control parameters {Bj
x(t)} and {Bj

z(t)} be piecewise linear functions of time,

and set the parameter loop to start at the origin, i.e., at the degeneracy point where

no time development takes place. Consequently the parameter paths become polygonal.

To fully specify the path only the 2n coordinates for the ν vertices of the polygon are

needed. Let us denote these parameters collectively as Xγ . We have used ν = 4 for the

two-, and ν = 11 for the three-qubit gates.

The piecewise linear parameter paths make this scheme experimentally viable since

the parameters are adjusted in such a way that no fields are switched instantaneously.

For practical applications it may turn out to be useful to try and describe the parameter

paths using a collection of smooth functions instead of a piecewise linear parametrization.

The realization of a gate U is now reduced to finding the set of numerical parameters

Xγ . First we note that the Hamiltonian of Eq. (4.2) allows us to tune the one-qubit

generators σx and σz independently, and thus to realize any Rx or Rz rotation. Conse-

quently, the realization of any one-qubit gate is straightforward using Eq. (3.12). The

remaining optimization task is to find the parameters Xγ for multiqubit gates which

minimize the error function

p(Xγ) = ‖U − UXγ
‖F , (4.4)

where U is the desired gate and UXγ
is the gate obtained for control parameters Xγ. To

evaluate the propagators in Eq. (2.9) we utilize the Taylor expansion. We find that the

three-term expansion is fast to evaluate and yields enough precision for our purposes.
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Figure 4.2: Parameter sequences implementing (a) Hadamard gate

(b) CNOT up to a global phase. (c) Solution of the optimization

problem using the path with qubic splines parametrization.

Figure 4.2 illustrates the control sequences for the Hadamard and CNOT gates.

Analytic calculation provides the sequence for the Hadamard gate, while numerical op-

timization must be used for the CNOT. In this thesis we have considered the numerical

optimization procedure through piecewise linear sequences. However, the parametriza-

tion is possible also using, for example, smooth spline sequences, see Fig. 4.2(c). The

smooth parameter sequences may be experimentally more easily reachable than piece-

wise linear ones. The qubic spline path with three control points contains enough free

parameters to describe any two-qubit gate. However, the resulting control parameter

fields obtain higher values, compare Figs. 4.2(a) and (c). On the other hand, the maxi-

mum field values are limited by the physical parameters of the quantum register. Thus

the execution time of the spline sequence is necessary not shorter than that of piecewise

linear sequence.

For this minimization problem, the error-function landscape is rough consisting of

many local minima, see Fig. 4.3. This is why any gradient-based minimization algo-

rithm will encounter serious problems. Thus a robust polytope search algorithm [106] is

employed for the minimization. Typical convergence of the search algorithm versus the
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Figure 4.3: Planar cut of the error function space illustrating its

roughness. The plane through the minimum point Xmin has been

chosen arbitrarily in the parameter space. The irregular shape of the

landscape easily reveals the complexity of finding the global minimum

and the reason why the gradient-based methods fail.

number of function evaluations is illustrated in Fig. 4.4. The natural question is the goal

for the error function minimization. We have assumed that a sufficient accuracy for the

gate operations is

‖UXγ
− U‖F < 10−4. (4.5)

The presented minimization routine takes on the order of 106 function evaluations to

reach this accuracy. Below a certain threshold level quantum error correction can, in

principle, be utilized to reduce the accumulated errors. However, it is still an open

question what the highest threshold level is or if there is any [107].

The above numerical optimization technique provides us with the realizations, not

only for any two-qubit, but also for any three-qubit gates. Hence, the gates acting on

many qubits need not necessarily be decomposed down to the level of CNOTs and one-

qubit gates. This yields a possibility of compressing the required quantum gate array

and thus accelerating the quantum algorithm, see Fig. 4.5. The utilization of three-qubit

gates in implementation of a quantum algorithm results in a shorter execution time and

smaller errors.

Let us illustrate the acceleration obtained using the three-qubit gates. We have chosen

the time spent in traversing each edge of the polygonal path γ(t) to be unity to make

the different gate realizations comparable. In this scheme, any three-qubit gate requires
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¸

Figure 4.4: Convergence of the algorithm for the Fredkin gate. The

error function values are indicated by the solid line and the distance

of the parameter sequence from the numerical optimum Xmin by the

dashed line.

an integration path γ(t) with 11 control points so that 6 × 11 > 63. This path takes 12

units of time to execute. Similarly, a two-qubit gate takes 5 units of time to execute.

Table 4 summarizes our results by comparing the number of steps that are required

to carry out a single three-qubit gate to the number of steps required for a sequence

of two-qubit gates which implements the three-qubit gate. In all studied examples the

optimized three-qubit gates provides a shorter execution time. The results in Table 4

are calculated assuming that the physical realization for any two qubit gates is available

through some scheme similar to the one which is employed above and one-qubit gates

are merged into two-qubit modules.

The possibility to implement nontrivial multiqubit gates in an efficient way may well

turn out to be a crucial improvement in making quantum computing experimentally

realizable. The acceleration of algorithm using multiqubit gates is discussed in Publica-

tions [II] and [III]. For further discussion on the implementation of non-standard gates

as the building blocks for quantum circuits, see Refs. [80, 108,109].

4.3 Shor’s algorithm

Shor’s algorithm is an important example of a quantum algorithm owing to its potential

applications in breaking the otherwise secure RSA cryptosystem. Many widely applied

methods of public-key cryptography are currently based on the RSA algorithm [110]

which relies on the computational difficulty of factorizing large integers.

The strategy in factoring a number N = pq, both p and q being primes, using a
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Figure 4.5: Acceleration of quantum computing via numerically op-

timized three-qubit gates on the Josephson charge qubit model. (a)

The quantum circuit symbol of the Fredkin gate, and (b) its physi-

cal implementation by controlling all three qubits simultaneously. (c)

The two-qubit gate decomposition of the Fredkin gate. Here V =
√
σx

and V ∗ stands for its Hermitian conjugate. (d) The physical imple-

mentation of the gate sequence; note that during each gate operation,

one of the qubits is in the idle state. The vertical axis in figures (b)

and (d) stands for the field amplitudes of the control parameters;

the solid line describes the parameter Bi
z and the dashed line the

parameter Bi
x, see text.

quantum computer relies on finding the period r of the modular exponential function

f(x) = ax (mod N), where 0 < a < N is a random number coprime to N . With a high

probability [29] one finds at least one prime factor of N is given by the greatest common

divisor of the numbers ar/2 ± 1 and N .

Shor’s algorithm has the following stages: (1) Initializing the quantum registers. (2)
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Table 4: Comparison of the execution times needed for various quan-

tum gates. The execution time of three qubit gates, the second row,

can be compared to the 12 edges, which is the time needed for the

optimized implementation of a three-qubit gate.
gate Toffoli QFT Fredkin U ∈ SU(23) [76]

number of two-qubit gates 3 3 5 14

execution time in edges 15 15 25 70

Generating the enormous superposition state. The number N takes n = dlog2(N + 1)e
bits to store into memory. Thus we need in a quantum register |x〉2n to store the integer

range 0 ≤ x ≤ 22n − 1. (3) Executing the algorithm Uf . This entangles each input value

x with the corresponding value of f(x):

Uf

2n−1∑

x=0

|x〉|1〉 =
2n−1∑

x=0

|x〉|ax (mod N)〉. (4.6)

(4) The quantum Fourier transformation (QFT) is applied to the register |x〉2n, which

squeezes the probability amplitudes into peaks due to the periodicity f(x) = f(x + r).

(5) A measurement of the register |x〉2n finally yields an indication of the period r. A

repetitive execution of the algorithm reveals the probability distribution which is peaked

at the value 22n/r and its integer multiples of output values in the register |x〉2n.

The evaluation of f(x) on a quantum computer can be implemented using several

different techniques [69], also efficiently in a linear nearest-neighbor qubit array [111]. To

obtain the implementation which involves the minimal number of qubits, one assumes

that the numbers a and N are hardwired in the quantum circuit. This means that the

quantum circuit must be redesigned for each N uniquely.

The approach taken in [II] follows a technique called the longhand multiplication

algorithm. It takes advantage of the fast powers trick, as well as the construction of a

multiplier suggested by Beauregard [112], which in part employs the adder by Draper [70].

In this scheme, to extract the period of f(x), we need at least two registers: 2n qubits

for the register |x〉2n to store numbers x and n qubits for the register |y〉n to store the

values of f(x). In addition for the scratch space we need an n + 1-qubit register |z〉n+1

and one ancilla qubit |a〉. Thus 4n+ 2 qubits are required in total. The register |x〉2n is

initialized as |0〉2n, whereas |y〉n = |1〉n.

Besides the quantum algorithm which is used to find r, a considerable amount of clas-

sical precomputing and postprocessing is required as well. However, all this computing

can be performed in a polynomial time.

4.3.1 Factorizing number 21

To demonstrate the level of the complexity of the quantum circuit and the demands on

the execution time, we explicitly present the quantum circuit needed for Shor’s algorithm
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to factor the number N = 21.

Figure 4.6 illustrates the structure of the quantum part of the factorization algorithm

for N = 21. We choose a = 11 and hardwire this into the quantum circuit. Since it

takes n = 5 bits to store the number 21, we need 4n + 2 = 22 qubits to implement the

circuit.

The modular exponential function is decomposed into controlled modular multipliers

acting on thirteen qubits. Each of them can be further decomposed into controlled

modular adders as indicated in Fig. 4.6. They are implemented by controlled phase-shifts

and QFT gates. A ten-qubit QFT breaks down to 42 two-qubit gates and one three-qubit

QFT. Similarly, the six-qubit QFT can be equivalently implemented as a sequence of 18

two-qubit gates and one three-qubit QFT. In this manner we can implement the entire

algorithm using only one-, two- and three-qubit gates. The control parameter sequence

realizing each of them can then be found using the scheme outlined in Sec. 2.3. Two

examples of the pulse sequences are also shown in the bottom insets of Fig. 4.6.

Following the above construction of the quantum circuit, the full Shor algorithm

to factor 21 requires about 2300 three-qubit gates and some 5900 two-qubit gates, in

total. Also a few one-qubit gates are needed but alternatively they can all be merged

into the multi-qubit gates. If only two-qubit gates are available, about 16400 of them

are required. If only a minimal set of elementary gates, say the CNOT and one-qubit

rotations are available, the total number of gates is remarkably higher. In our scheme

the execution time of the algorithm is proportional to the total length of the piecewise

linear parameter path which governs the physical implementation of the gate operations.

Each of the three-qubit gates requires at least a 12-edged polygonal path γ(t) whereas

two-qubit gates can be implemented with 5 edges. Consequently, on the order of 57100

edges are required for the whole algorithm if arbitrary three-qubit gates are available,

whereas ∼ 82000 edges would be required for an implementation with only two-qubit

gates.

Let us consider the experimental feasibility of our scheme. To factor the number

21, we need on the order of 104 edges along the control-parameter path. Currently,

typical coherence time of single Josephson qubit is on the order of of 10−6 s. Let us

optimistically assume that the n-qubit register could be fabricated without introducing

any extra sources of decoherence. This sets the upper limit for the duration of each edge

to be 10−10 s. Since our dimensionless control parameters in the examples are on the

order of unity, the energy scale in angular frequencies must be at least on the order of

1010 s−1. Typical charging energies for, say, thin-film aluminium structures may be on

the order of 10−23 J which corresponds to 1011 s−1. The ultimate limiting energy scale

is the BCS gap, which for thin-film aluminium corresponds to an angular frequency

of about 3 × 1011 s−1. Based on these rough estimates, we argue that factoring the

number 21 on Josephson charge qubits might be, in principle, experimentally accessible

- although extremely demanding. The utilization of quantum error correction or some

other of the related methods may significantly affect the presented analysis when applied
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Figure 4.6: Quantum circuit for Shor’s algorithm factoring the num-

ber 21 with the parameter value a = 11. The full circuit is shown

topmost and the decompositions of the modular multiplier and adder

blocks are indicated with dashed lines. We denote a phase-shift gate

by a box with a single number φ in it meaning that the phase of the

state |1〉 is shifted by e2πiφ/2n

with respect to the state |0〉. Two ex-

amples of numerically optimized parameter sequences are also shown.
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for hundreds of qubits.

Finally, let us consider a hacker with a quantum computer trying to break a message

encrypted with RSA-155 coding which is widely employed in electronic communication.

Let us note as background for this discussion that it has been demonstrated that 8000

MIPS (Million Instructions Per Second) years of classical computing power is needed

to decrypt the code using the general number field sieve technique [4]. Since RSA-

155 involves a 512-bit integer N , we would require on the order of 2000 qubits for our

quantum computer. For the execution of the algorithm, decoherence time of tens of

seconds is needed. This estimation agrees with Ref. [113] and apparently poses a huge

experimental challenge. Thus Shor’s algorithm does appear impractical for decrypting

RSA-155 since it is considerably easier to build a huge classical computing system which

yields the required computing power. In contrast, the quantum algorithm, owing to

its polynomial scalability, provides the only known potentially feasible method to break

RSA encryption involving 1024 or more bits.
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5 Summary

This thesis proposes theoretical methods to efficiently implement unitary transformations

on a quantum computer. As an application, Shor’s algorithm on an inductively coupled

Josephson charge qubit register is studied.

The complexity of elementary gate arrays of various generic n-qubit quantum gates

is discussed. Introduced improvements [IV] to the former gate decompositions show

that unstructured n-qubit gates belong to the complexity class Θ(4n). In addition, a

new versatile concept of uniformly controlled gates is introduced [V,VII]. For unstruc-

tured unitary transformations, a combination of the uniformly controlled gates and the

Cosine-Sine matrix decomposition provides elementary gate sequences with almost min-

imal gate count. Furthermore, the uniformly controlled rotation can be used in the

efficient preparation of a quantum state [VI],[VII]. The uniformly controlled gates are

efficiently implemented in a qubit register similar to a one-dimensional chain of qubits

with nearest-neighbor interactions [VII]. This makes the developed techniques suitable

for experimental realizations.

The numerical optimization algorithm based on the polytope search has been shown

to be useful for finding the control parameters for the Josephson charge qubit register [I –

III]. The proposed scheme allows implementation of desired gates acting on up to three

qubits. The three-qubit gates allow the merging of several one- and two-qubit gates

together. This shortens the required execution time and thus accelerates the quantum

algorithms.

The potential killer application for quantum computers is Shor’s algorithm due to the

possibility to break RSA encrypted messages. An explicit quantum gate construction

implementing Shor’s algorithm is considered in [II]. When applied to Shor’s algorithm,

the proposed acceleration scheme reduces the execution time roughly by a factor of two.

This reduction of execution time may turn out to be crucial since the decoherence limits

the time available for the execution of the algorithm. Still, the realization of a general

factorization algorithm for a large integer N will be extremely challenging, at least in

the near future.

In conclusion, this thesis presents a useful optimization scheme to find realization of

quantum gates, suggests a method of optimization of quantum algorithms using mul-

tiqubit gates, puts forward a new family of gates which may be utilized as building

blocks of a quantum compiler, and introduces decomposition techniques for general n-

qubit gates which involve appreciably smaller elementary gate counts than previously

reported.The results may be used in the quantum compilers to considerably shorten the

gate sequences of quantum algorithms or, in general, to optimize the operation of any

device that deals with the manipulation of coherent quantum states.
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Abstracts of Publications I–VI

I We introduce a method for finding the required control parameters for a quantum

computer that yields the desired quantum algorithm without invoking elementary

gates. We concentrate on the Josephson charge qubit model, but the scenario is

readily extended to other physical realizations. Our strategy is to numerically find

any desired double- or triple-qubit gate. The motivation is the need to significantly

accelerate quantum algorithms in order to fight decoherence.

II Quantum-circuit optimization is essential for any practical realization of quantum

computation, in order to beat decoherence. We present a scheme for implementing

the final stage in the compilation of quantum circuits, i.e. for finding the actual

physical realizations of the individual modules in the quantum-gate library. We

find that numerical optimization can be efficiently utilized in order to generate the

appropriate control-parameter sequences which produce the desired three-qubit

modules within the Josephson charge qubit model. Our work suggests ways in

which one can in fact considerably reduce the number of gates required to im-

plement a given quantum circuit, hence diminishing idle time and significantly

accelerating the execution of quantum algorithms.

III We investigate the physical implementation of Shor’s factorization algorithm on

a Josephson charge qubit register. While we pursue a universal method to factor

a composite integer of any size, the scheme is demonstrated for the number 21.

We consider both the physical and algorithmic requirements for an optimal im-

plementation when only a small number of qubits are available. These aspects of

quantum computation are usually the topics of separate research communities; we

present a unifying discussion of both of these fundamental features bridging Shor’s

algorithm to its physical realization using Josephson junction qubits. In order to

meet the stringent requirements set by a short decoherence time, we accelerate the

algorithm by decomposing the quantum circuit into tailored two- and three-qubit

gates and we find their physical realizations through numerical optimization.

IV Optimal implementation of quantum gates is crucial for designing a quantum com-

puter.We consider the matrix representation of an arbitrary multiqubit gate. By

ordering the basis vectors using the Gray code, we construct the quantum circuit

which is optimal in the sense of fully controlled single-qubit gates and yet is equiv-

alent with the multiqubit gate. In the second step of the optimization, superfluous

control nodes are eliminated, which eventually results in a smaller total number of

the elementary gates. In our scheme the number of controlled-NOT gates is O(4n)

which coincides with the theoretical lower bound.

V We consider a generic elementary gate sequence which is needed to implement

a general quantum gate acting on n qubits - a unitary transformation with 4n
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degrees of freedom. For synthesizing the gate sequence, a method based on the

so-called Cosine-Sine matrix decomposition is presented. The result is optimal in

the number of elementary one-qubit gates, 4n, and scales more favorably than the

previously reported decompositions requiring 4n − 2n+1 controlled NOT gates.

VI We consider a unitary transformation which maps any given state of an n-qubit

quantum register into another one. This transformation has applications in the ini-

tialization of a quantum computer, and also in some quantum algorithms. Employ-

ing uniformly controlled rotations, we present a quantum circuit of 2n +2− 4n− 4

CNOTs and 2n + 2− 5 one-qubit elementary rotations that effects the state trans-

formation. The complexity of the circuit is noticeably lower than the previously

published results. Moreover, we present an analytic expression for the rotation

angles needed for the transformation.

VII Uniformly controlled one-qubit gates are quantum gates which can be represented

as direct sums of two-dimensional unitary operators acting on a single qubit. We

present a quantum gate array which implements any n-qubit gate of this type

using at most 2n−1 − 1 controlled-NOT gates, 2n−1 one-qubit gates and a single

diagonal n-qubit gate. The circuit is based on the so-called quantum multiplexor,

for which we provide a modified construction. We illustrate the versatility of these

gates by applying them to the decomposition of a general n-qubit gate and a local

state preparation procedure. Moreover, we study their implementation using only

nearest-neighbor gates. We give upper bounds for the one-qubit and controlled-

NOT gate counts for all the aforementioned applications. In all four cases, the

proposed circuit topologies either improve on or achieve the previously reported

upper bounds for the gate counts. Thus, they provide the most efficient method

for general gate decompositions currently known.
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