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Abstract

Carbon nanotubes are tubular molecules of pure carbon with typical diameters of
1 nm – 100 nm and lengths from 100 nm up to several cm. The nanotubes have
outstanding electronical and mechanical properties which has resulted in remark-
able scientific interest and in proporsals of various applications. For example,
their ability to be either metals or semiconductors enables the usage of nanotubes
as components of electronic devices, while excellent mechanical characteristics
motivate the use of nanotubes as reinforcement agents in composite structures
and in nanoelectromechanical devices.

This thesis aims to contribute to the understanding of the mechanical proper-
ties of carbon nanotubes and it contains two parts. The first part concentrates on
initially defect-free but strained nanotubes and on the deformations and defects
induced by the strain. The employed methods are empirical and tight binding
molecular dynamics simulations. As results the criteria for uniform and discon-
tinuous buckling deformations are reported. In addition, defect formation and
strain relaxation are discussed and the stability of various strained and deformed
structures is assessed.

The second part of the thesis evaluates defects as a means to improve the
bulk mechanical properties of a nanotube sample. Defects, and irradiation as
a method of inducing them, are proposed to improve mechanical load transfer
between a nanotube and its surroundings. These proposals are verified by analyt-
ics and molecular dynamics simulations based on classical empirical potential.
The load transfer between nanotubes is found to improve significantly in the
presence of defects. This concept is extended to bundles of nanotubes where
the improved tube-tube load transfer is predicted to increase shear and stiffen the
bundle at moderate irradiation doses. The load transfer has great significance
for reinforcement of polymer composites in which the nanotube bundles may act
as reinforcement fibers. Furthermore, the mechanical degradation of individual
tubes as a result of the defects is also assessed. Point defects have little effect on
the axial stiffness of an individual tube but the tensile strength may decrease to a
fraction of the strength for a perfect tube. Although individual tubes deteriorate
in strength because of the defects, the results indicate that the overall mechanical
properties of a nanotube sample can be significantly improved by imperfections
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in the structure of the tubes.
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Chapter 1

Introduction

Carbon is a very special element: Its electronic structure is 1s22s22p2 and the 2s
electrons readily participate in molecular bonding. This enables a wide variety
of bonding configurations and allotropes as different as the ultra-hard, brittle and
insulating diamond and layer-wise lubricant semimetal graphite. More recently
an even wider set of properties has been discovered with various carbon nano-
structures such as fullerenes, diamondoids, nano-onions and carbon nanotubes.
Although the nanostructures have opened new possibilities in the electronics, the
traditional uses for carbon are mechanical in nature. Examples of this are the
hard synthesized diamond and diamond coatings, the carbon fibers and whiskers
in reinforcement of composite structures, and the smooth graphite in lubrication
and surface processes.

In this thesis the focus is on novel carbon nanostructures, more specifically
on carbon nanotubes. The history of carbon nanotubes dates back to the question
of smallest possible carbon fiber in the 1970’s when ultra-thin carbon fibers were
synthesized. Despite the fullerene initiated [1] incentive on carbon nanostructures,
it was by chance that Sumio Iijima took interest in the carbon soot he had and
made his interpretation: tiny concentric shells of graphene in the form of mini-
ature tubules [2]. Carbon nanotubes were born. A few years later single-walled
nanotubules were produced [3, 4].

Carbon nanotubes excited interest in nanoscale materials research mainly be-
cause of their unusual electronic structure [5, 6]. This lead to extensive research
of carbon nanotubes as components of nanoelectronic devices. The superiority of
nanotubes over silicon-based technology has been demonstrated in transistor-like
devices [7]. Nevertheless the progress of electronics based in nanotubes is held
back by the lack in high quality mass production methods and in controlling the
conductivity properties during the synthesis. Also, an improved electric contact
to electrodes and other surrounding media is still pursued.

As the carbon nanotube technology has matured, more interest is paid on the
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fact that these miniature tubes are the tiny brothers of carbon fibers and inherit the
mechanical strength. In fact, due to high level of perfection the tubes have mech-
anical properties superior to most materials [6]. Carbon nanotubes have an axial
Young’s modulus in the 1 TPa regime and tensile strength of about 60 GPa [5, 6].
The corresponding values for commercial steel are about 200 GPa for the Young’s
modulus and 500 MPa for the tensile strength [8], which makes carbon nanotubes
five times stiffer and over hundred times tougher than steel. Carbon nanotubes
show also remarkable flexibility and capability to recover from extreme mechan-
ical bending or buckling [5, 6]. Besides this the smooth graphene surface exhibits
interesting tribological properties. The structural and mechanical properties of
carbon nanotubes have lead to research in nanotube-based nanoelectromechanical
devices. The tubes can be also used as reinforcement fibers, like carbon filaments,
and this has lead to progress in nanotube-polymer composites. In the current
view it appears that high performance mechanical applications may be where the
near-future of carbon nanotubes lies because electronic applications for carbon
nanotubes require much more control over the growth process.

The contribution of this thesis to the nanotube field lies in the studies of
structural and mechanical properties of carbon nanotubes. The thesis presents
the results of a series of computational and theoretical studies of strained and
defective carbon nanotubes. The employed simulations tools are empirical poten-
tial and tight binding molecular dynamics simulations. Novel results concerning
local curvature induced strain and defects are presented. Defect-free nanotube
surface is an extremely low friction surface with high chemical stability. This
may prove problematic for applications in which the function relies on conveying
mechanical load to the nanotubes, for example, in polymer composites. Nanotube
tribology and the role of defects are examined in view of employing the tubes as
reinforcement fibers. Irradiation and irradiation induced defects are proposed as a
means of tailoring the mechanical properties of nanotubes. The thesis presents
an extensive study of defects and strain induced local changes encompassing
single-walled tubes, multi-walled tubes and bundles of nanotubes.

The thesis consists of an overview and the publications. The overview aims
at giving a general perspective to the field and employed methods thus setting
the landscape for the research and the results presented in the publications. The
overview begins with an introduction to carbon nanotubes that covers the current
state of the field. Chapter 3 discusses atomistic simulations methods. The methods
employed in this thesis are covered in detail. A summary of the results is given in
Chapter 4. In addition, the publications are referred to, where appropriate, in the
rest of the overview.



Chapter 2

Carbon nanotubes

Carbon nanotubes are molecules that consist of pure carbon. They can be thought
of as a graphite sheet that has been rolled into a seamless tubule. If the tube is
formed of a single graphite layer, graphene, it is called single-walled while multi-
walled carbon nanotubes (MWNTs) are formed of several co-axial shells one-
inside-another. Typical diameters for single-walled carbon nanotubes (SWNTs)
are between 1 nm and 2 nm, and for MWNTs tens of nanometers. The length of
carbon nanotubes lies between hundreds of nanometers and millimeters, although
the synthesis of even centimeter-long tubes [9, 10] is possible. SWNTs readily
bundle into a triangular lattice in which the individual tubes are bound together
by van der Waals forces. The inter-tube separation in a nanotube bundle or in a
MWNT is close to 0.34 nm, the graphite interlayer distance [5, 6]. Figure 2.1
shows examples of carbon nanotube structures.

2.1 Various types of carbon nanotubes

Since the accidental discovery of carbon nanotubes various production methods
have been developed and later on improved. Carbon nanotubes are produced by
three main techniques, arc discharge, laser ablation and chemical vapor deposition
(CVD). Arc discharge synthesis is based on creating carbon vapor between two
carbon electrodes by introducing an arc discharge between them. Nanotubes form
from the resulting vapor. Laser ablation methods use a high-energy laser-beam
to dissolve the molecules of a carbon based feedstock gas. The decomposed
carbon molecules reform into nanotubes. Chemical vapor deposition, on the
other hand, is based on feeding in gas phase material which then reconstructs
to form the tubes. Arc discharge and laser ablated tubes used to be superior
in quality to tubes grown by CVD methods but in the recent years CVD grown
tubes have improved in quality and can be almost as good. The reason for the
improvement is the scalability of CVD processes. Most of the interest in nanotube
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Figure 2.1: Examples of carbon nanotube structures. The nanotubes can be capped as the
SWNT on the left. The MWNT on the right has been left uncapped to clarify the nested
structure.

synthesis has turned on methods that are potentially extendable to continuous or
large-scale production – for example, on CVD. This has resulted in significant
improvement in both the CVD tube quality and in the controllability of the CVD
processes. Despite this there remains work to be done before these methods are
up to controlled mass production. Simultaneously novel scalable methods based
on, for example, combustion are pursued.

Currently the carbon nanotube synthesis is at a stage where the synthesized
tubes are of high quality and novel gas-flow CVD synthesization methods enable
centimeter-long nanotubes [9, 10]. We can control tube growth sites by selective
catalyst placement [11, 12], and partially also the type of tubes produced [6].
The current challenges in nanotube production lie in developing a method that
combines a scalable process with low-cost, high-quality product with control over
the diameter, length and conductivity.

There are numerous ways to roll a graphene sheet to a tube and the resulting
structures are most commonly classified by an index pair(n, m) that defines the
tube structure in a unique way. The details of this common nanotube classification
scheme can be found in Appendix A. The pair of indices(n, m) defines the
chirality, that is, how the hexagons formed by carbon atoms are oriented with
respect to the tube axis. There exist two possible high symmetry structures for
nanotubes known as the zigzag,(n, 0), and the armchair,(n, n). The names



2.2 Electronic properties 5

derive from the pattern formed when a particular tube is cut perpendicular to
the axis. The indices can be employed to determine the electronic structure of
an SWNT [5]. Depending on the combination of the indices, the tube can be
metallic or semiconducting [5]. The rolled graphene layer is not, however, all:
Unless chemically treated or sonicated, the tubes usually come capped by a hemi-
fullerene. The fullerene caps contain pentagons that close the nanotube structure.

In practice the tubes have defects and deviate from the theoretical perfect
structure that was discussed above. For example, vacancies, various non-hexagonal
rings and the Stone-Wales defect, which is a complex of two pentagons and two
hexagons, have been considered. The whole nanotube morphology can change
because of these imperfections, for example, nanotubes in a spiral telephone-
cord-like form can be synthesized [13, 14]. Theµm sized rings observed in
Refs. [15, 16] are interesting nanotube structures. At first atomic force microscope
(AFM) measurements indicated that the rings were coils instead of closed tori [17]
but later evidence of SWNTs that formed closed rings was reported [18].

2.2 Electronic properties

This thesis contributes to the understanding of the mechanical properties of nano-
tubes and therefore the electronic properties will be treated only briefly and to
cover the major aspects. The electronic structure of carbon nanotubes is unique
in materials science. A minor change in the structure can determine whether the
tube is semiconducting or metallic. The conductivity of an SWNT is governed by
its electronic structure which is determined by the index combination(n, m). For
MWNTs the situation is more complex because the multiple layers contribute to
the conductivity. Currently, most of the interest in the nanotube electronic trans-
port focuses on individual tubes. Bulk transport may be interesting in conducting
composites but the main interest is in devices based on individual tubes. The
tubes show both ballistic and diffusive transport character depending on the level
of perfection of the tubes. SWNTs are more typically ballistic while MWNTs are
diffusive because of a higher defect concentration [19].

The effect of defects and deformations on nanotube conductivity has been
studied in Refs. [20–27]. Defects in carbon nanotubes act as local scattering
centers for charge carriers. The scattering effects of isolated point-defects are
averaged over the circumference. Therefore their influence decreases with an
increasing diameter and is small for all but the very thinnest tubes. However,
if the defects or deformations accumulate locally a tunneling barrier may form.
Two tunneling barriers close to each other in a thin wire such as a nanotube form
a single electron transistor. This has been exploited in experiments where sharp
bends [28, 29] and ion irradiation [30] have been employed for forming tunneling
barriers.
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Semiconducting behavior has been observed for individual SWNTs. In MWNTs
or conglomerations of SWNTs there are usually both semiconducting and con-
ducting layers [31] which makes the pure semiconducting behavior rare in the
measurements involving multiple nanotube shells. Currently the development of
nanotube based electronics devices has reached the stage where nanotube devices
have been demonstrated to behave superior to silicon devices [7]. Mass production
schemes are still lacking.

2.3 Mechanical properties

Although the electronic properties and their potential tunability have enticed the
scientific community, nanotubes also possess remarkable mechanical properties.
These are less sensitive to chirality than the electronic properties and as such more
easily exploiteden masse while the control over the synthesis is not complete
enough to provide tubes with desired electronic band structure. The mechanical
properties of carbon nanotubes are closely related to the properties of a graphite
sheet even though the tubular anisotropy affects the behavior of carbon nanotubes.
The basis is the graphitesp2-bond which is one of the strongest chemical bonds.
In nanotubes the overall density of defects can be extremely low depending on
the synthesizing method and prevailing synthesizing conditions. This has led to
predictions of a very high axial strength and ultra-low friction between the shells.

2.3.1 Mechanical strength

The small size of carbon nanotubes presents challenges for experimental charac-
terization. Nevertheless measurements have been performed. The first Young’s
modulus measurement [32] related thermal vibration amplitudes of MWNTs to
their Young’s modulus and obtained an average value of 1.8 TPa with a large
spread. After that, with AFM techniques, values such as 1.28 ± 0.59 TPa for
arc-discharge produced tubes have been obtained [33]. The latest measuring
technique is by Poncharalet al. who have induced vibrations on MWNTs by
alternating electric potential and measured the vibration frequencies [34]. They
report Young’s modulus values between 0.7 TPa and 1.3 TPa for tubes with a
diameter less than 12 nm and between 0.1 TPa and 0.3 TPa for thicker tubes.
This large drop is explained by an onset of a wavelike bending mode of the
nanotube [34]. Measuring SWNTs is more complicated than measuring MWNTs
due to their small diameters and the tendency to bundle. Krishnanet al. report in
Ref. [35] a measurement of individual SWNTs using the thermal vibration method
of Ref. [32] and they obtain an average value of 1.25 TPa. Although the current
measurements suffer from inaccuracies due to vibration amplitude measurement
and assumptions made on AFM tip characteristics, the current agreement is that
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both SWNTs and MWNTs have a Young’s modulus value around 1 TPa. This
is extremely high and sets nanotubes as the strongest known material albeit chal-
lenged by other nanotubular structures such as boronnitride tubes [6].

Theoretical calculations of axial Young’s modulus for individual SWNTs give
results around 1 TPa or slightly higher [36, 37]. Most of the theoretical attention
has been on SWNTs because the intertube interactions are weak in MWNTs and
thus less important in estimating axial mechanical properties. In Ref. [37] Lu
presents Young’s modulus values for MWNTs as well as SWNTs and obtains
values from 0.97 TPa to 1.11 TPa with the value increasing slightly with the
number of layers. In this thesis the theoretical discussion on nanotube strength
is extended to the influence of defects on the Young’s modulus. The research
reported in Publication V indicates that point-defects have little influence on the
Young’s modulus. This may explain the excellent agreement between the theo-
retical estimates concerning pristine tubes and the measurements in which the
nanotubes are likely to contain defects.

Measurements of tensile strength, that is, the strength corresponding to failure,
suffer from difficulties and inaccuracies related to the small size of the measured
object. Tensile strength has been measured for MWNTs in Ref. [38] where the
contact is only to the outmost layer of the multi-walled tube. A sword and sheath
type of failure of this layer was reported. The tensile strength values ranging from
11 GPa to 63 GPa were reported [38]. For individual SWNTs the experimental
value of tensile strength is still an open question but for bundles of SWNTs tensile
strength values ranging between a few GPa and several tens of GPa depending on
the bundle and measurement characteristics have been reported [39–41].

Theoretical tensile strength of nanotubes is high [42–45]. The measurements
fall short of the theoretical predictions which may result from limitations in the
theoretical description or from the presence of imperfections in the structure. The
simulations suffer from restricted time scales and model-related limitations, such
as the cut-off problem [43]. The difference between the results of the theoretical
works and the experiments can also be partially explained by the work done in this
thesis in Publication V. The results show that even a single point-like structural
imperfection in an otherwise perfect nanotube can deteriorate the mechanical
strength to a fraction.

Even though not as strong as theoretically expected, the tubes still have an
extremely high tensile strength. As a result of this, nanotubes can bear large
strain before plastic deformation or brittle failure. The tubes can buckle, flatten,
form ripples, and generally deform under strain [46–48] but plastic deformation
and relaxation can occur only at elevated strain levels and temperatures [49–51].
These aspects are discussed in more detail in Publications I-III.

The high axial Young’s modulus and tensile strength combined with the low
weight and fiber-like form make nanotubes enticing candidates for composite
reinforcement. Composites of nanotubes are based on dispersing nanotubes into
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Figure 2.2: A schematic presentation of a nanotube oscillator. The inner tubes slide with
respect to the outer shells almost friction-free.

a matrix of material that acts as the main body of the composite. The nanotubes
are the reinforcement fibers and improve the overall mechanical strength of the
composite. With the improved treatment and manipulation techniques, promising
results concerning nanotubes in a polymer matrix, that is, nanotube–polymer
composites, have emerged [52–54].

2.3.2 Low-friction surfaces of carbon nanotubes

Carbon nanotubes have extremely strong covalent bonding of atoms within the
shells but very weak van der Waals type interactions between them [6]. The co-
valentsp2-type bonding results in exceptional axial strength for individual nano-
tubes. On the other hand, the weak inter-shell interactions combined with low
defect concentrations indicate that the surfaces of the tubes slide easily with re-
spect to each other, that is, the tubes are low-fiction surfaces. These anisotropic
mechanical properties imply a broad range of possible applications as constituents
of nanometer-scale devices and novel composite materials.

The low-friction behavior can potentially be exploited in MWNT based low
friction components of nanomechanical devices. Indeed, as recent experimental
[55–58] and theoretical [59–63] studies demonstrate, the individual cylinders of
MWNTs easily slide or rotate with respect to one another. Linear bearings with
ultra-low friction have been implemented [55] and an electromechanical device
[64] in which the operation is based on the low-friction properties of the MWNTs
has been demonstrated. These properties can also be utilized in MWNT-based
oscillators [60–63, 65] with operating frequencies up to several gigahertz. Figure
2.2 shows a schematic presentation of a nanotube oscillator.

The easily sliding surfaces can also be detrimental for applications. A low-
friction surface indicates that mechanical load transfer is inefficient. This can be
detrimental in various reinforcement applications. These questions are addressed
in Publications IV-VI.
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2.3.3 Defects and mechanical properties

Nanotubes can have an extremely low defect density and many of their key prop-
erties, for example, the long electron scattering lengths and the ultra-low friction
discussed above are based on this property. Despite this, as in any material, defects
play an important role in nanotube properties. Defects act as scattering centers for
charge carriers. They also make the tube less strong and thus defects are rarely
desirable from the purely mechanical point of view. Defects are generated in
the synthesizing process and they can also be caused by, for example, ion or
electron beam irradiation of the tube, or mechanical manipulation. The most
typical structural defects are fivefold (pentagon) and sevenfold (heptagon) rings
in the sixfold (hexagonal) lattice. Other types of typical defects are vacancies,
interstitials and miscellaneous bonding configurations such as locally amorphous
structure. Non-carbon based defects include substitutional atoms or atom groups.
In addition to these, MWNTs exhibit diverse defects related to irregularities in
the layered structure. Defects may alter the tube form from a straight tube to a
bulging, kinked, spiral or even more miscellaneous form [5, 6]. Figure 2.3 shows
examples of defects in nanotubes.

In Publications IV-VI of this thesis the aspect of employing defects, more
precisely irradiation induced defects, to manipulate mechanical properties is stud-
ied. We propose and show that defects can be employed to improve load trans-
fer between the low-friction surfaces of the nanotubes. This enables improved
mechanical properties for applications such as nanoelectromechanical devices or
polymer composites in which tube-tube-slippage may be detrimental.

2.4 Irradiation and carbon nanotubes

Because the second part of this thesis, Publications IV-VI, concentrates on eval-
uating the effects of irradiation induced damage on nanotube mechanical proper-
ties, an overview of irradiation based carbon nanotube research is presented here.
In many ways the bombardment of carbon nanotubes with energetic electrons
or ions gives rise to similar results as in graphite [66] but there are also subtle
differences because of the all-surface structure of a carbon nanotube [67].

When a material is irradiated, the dominant energy transfer method can be
kinetic energy transfer to the nuclei, electronic excitations, electron knockouts,
etc. depending on the incident particle and on the target material. In carbon
nanotubes atomic knock-out displacements dominate the process [6]. This creates
single and multiple vacancies and a corresponding number of sputtered atoms,
which can, if energetic enough, knock out additional particles. Because of the one
dimensional structure, the sputtered atoms can propagate out from the tube thus
reducing the number of potential interstitial atoms. The remaining interstitials can
be treated as adatoms [68, 69] on the tube surface because of the large tube-tube
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Figure 2.3: Examples of defects in nanotubes. The leftmost image shows a Stone-Wales
defect that has been given much consideration in nanotubes. It consists of a complex of
two pentagons and two heptagons and is formed by a bond rotation from the hexagonal
lattice. The center image shows a vacancy structure in which two of the dangling bonds
in the vacancy have reconstructed to form a pentagon and the remaining dangling bond
(blue) protrudes from the surface. The image on the right shows an ad-atom on the surface
of a nanotube.

separation. The structure enables the sputtered atoms to propagate far from the
collision site even though the incident beam energy would be only slightly above
the knockout threshold. Therefore, once created the vacancy–ad-atom pairs, that
is, the Frenkel pairs, are not likely to recombine instantaneously [67]. Figure 2.4
shows a knock-out process that results in the formation of a Frenkel pair.

Carbon nanotubes behave differently from a bulk material when the irradiation
damage is annealed. Because vacancies and sputtered atoms can be separated in
distance, recombination annealing does not take place to such an extent as in
bulk materials. There appears to be two annealing mechanisms: vacancy healing
through the saturation of dangling bonds which results in non-hexagonal rings and
interstitial migration which results in recombination of the defects [67].

Both electron and ion irradiation have been employed in carbon nanotube re-
search. Electron irradiation has been employed to modify nanotube structure [70–
73], for example, to coalesce nanotubes [71] and to weld the tubes together to
form molecular junctions [72], which provides interesting prospects for nanoelec-
tronics. Figure 2.5 shows an example of irradiation-induced welding of carbon
nanotubes. Ion-irradiation has been employed for example to form tunnel barri-
ers [74], to induce inter-tube links [75] and for chemical functionalization [76].

Irradiation induced defects have been demonstrated to induce inter-tube links
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Figure 2.4: A visualization of an irradiation knock-out process in a carbon nanotube
bundle. The displaced atom can be seen moving in the axial direction.

Figure 2.5: An example of irradiation-induced welding of nanotubes. The irradiated
nanotubes have coalesced to form a cross-junction. The figure is provided courtesy of
Arkady Krasheninnikov.
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[66, 75, 77–79] and to bind graphite layers [80]. Such links are likely to be effect-
ive in load transfer as reported in Publications IV and VI. Simultaneously, carbon
nanotubes show evidence of remarkable self healing of damage [69] and the
results of Publication V show that this compensates largely for the defect-induced
structural weakening. With the current results on functionalization [76, 81] and
load transfer [75, 79] it appears reasonable that bombardment with energetic
particles may be employed to tailor nanotube properties and reactivity with the
environment. Besides this, irradiation has prospects in the electronics sense:
It enables controlled nanowelding of the tubes, tunnel barrier formation, and
potentially also improved contacts.



Chapter 3

Simulation methods

A rigorous calculation of the properties of a system at the atomistic scale is based
on solving the many body time dependent Schrödinger equation and obtaining
the many body wave function�(r1, . . . , rn, t). Unfortunately, exact analytical
solutions exist only for a handful of cases such as the hydrogen atom and the
harmonic oscillator. Numerically the problem is intractable for systems contain-
ing more than a few particles. The exponentially rising demand of computational
resources ensures that exact quantum mechanics is not to be considered as a way to
solve condensed matter problems. Researchers have to rely on approximations of
various orders of the Schrödinger equation and even on totally classical empirical
approaches.

This chapter offers first an overview on the approximations,i.e., on materials
simulation methods at atomic scale. The survey is presented in Section 3.1. In
this thesis the emphasis is on classical molecular dynamics and empirical carbon
modeling by the Brenner interaction model [82] and its long range extension
by Stuartet al. [83]. Therefore these are discussed in detail followed by an
introduction to the density functional theory based tight binding method [84, 85]
employed in Publication III.

3.1 Introduction

The methods of modeling the atomic interactions can roughly be divided into
three categories: The first principles, orab initio, methods are the most rigorous
ones. Only a few well controlled approximations to exact quantum mechanics
are made. Semiempirical methods contain more drastic approximations and may
also contain empirically defined parameters. Empirical methods are a group of
methods that are tuned to reproduce an empirically defined fitting set. The three
categories, their drawbacks and benefits, and the most popular methods of each
are briefly described in this section.
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3.1.1 First principles methods

The most rigorous approach to problems of condensed matter physics are the
first principles methods. They do not employ any empirical parameters in the
calculation. The results are based on quantum mechanics and well controlled
approximations. The two most used first principles methods are the Hartree-Fock
method [86] and the density functional theory [87, 88]. The first principles meth-
ods are highly accurate but the system size that can be handled is restricted to tens,
at most a couple of hundred atoms.

The Hartree approach to the quantum mechanical many body wave function
is to approximate the function by a product of single particle functions. The
approximation is refined by adding Fermi–Dirac statistics by replacing the product
of the wave functions by the Slater determinant. The method obtained with this
inclusion is called the Hartree–Fock approach [86]. Even though the method is
not always extremely accurate, it is much used. The accuracy can be enhanced
but this increases the consumption of CPU-time [89]. In its most rigorous form,
the Hartree–Fock method can be used on systems of tens of atoms.

Density Functional Theory (DFT) [87, 88] is based on using the electron
densityn(�r) of the system as the basic variable. The ground state is completely
described by the electron density as stated by the Kohn–Sham theorem [87, 88].
There are various schemes of determining the energy of the system from the
electron density. In the most simple form of DFT, in local density approxima-
tion (LDA), the expressions based on a non-interacting electron gas at the local
electron density of the real system. Currently DFT is a very accurate method and
its accuracy can be enhanced by the use of methods combining Hartree–Fock and
DFT description, for example, B3LYP1 functional description [89]. DFT can be
used on systems of a few hundred atoms.

3.1.2 Semiempirical methods

Semiempirical methods employ various approximations and may include experi-
mentally fitted parameters. Their power with respect to the first principles meth-
ods lies in a smaller consumption of CPU-time but they must be employed more
carefully to obtain reliable results. Semiempirical methods include interaction
schemes like the tight binding method (TB) [90] and various molecular orbital
methods of computational chemistry [89].

The tight binding method avoids most of the heavy calculation of theab initio
methods. There are several methods in this family. The TB-methods have in
common a number of simplifications such as minimal basis sets compared to
the first-principles methods and elimination of difficult integrals, that are either

1B3LYP is short forBecke’s3-parameter formula, B3, which describes the exchange functional,
and LYP forLee,Yang, andParr who developed the correlation functional [89].
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made small by mathematical transformations or used as parameters to be fit to
experimental data. In principle, everything that can be calculated by theab initio
methods can be calculated by an appropriate tight binding method and with less
CPU-time. The keyword above is the ’appropriate’: the generality and the trans-
ferability of a tight binding method depend on the approximations. Although valid
for thousands of particles, the method used must be assessed case-specifically.

In computational chemistry the methods similar to tight binding are called
the neglect of diatomic differential overlap methods [89]. Also these methods
simplify the involved integrals but retain the molecular orbital description. The
group involves various methods such as AM12 and PM33 [89].

3.1.3 Empirical methods

The category of empirical methods contains a wide set of parametrized classical
force fields that reproduce more or less accurately the fitting set that is determined
either from experimental data or fromab initio simulations. Force-field methods
have the benefit of being computationally simple and thus fast. They allow the
simulation of large systems (up to hundreds of millions of atoms) over a greater
time-span (up to microseconds) than the methods presented above.

The simplest approximation for the interaction potential takes into account
only two-particle interactions. Potentials like this are called pair potentials. The
Lennard-Jones potential [91] and the Morse potential [92] are two very well known
examples of pair potentials. Although pair potentials are not ideal for the study of
the mechanical properties of materials, they are very much used because they
are simple to implement and algorithms based on pair potentials are kind on
computational resources. There are, however, some severe shortcomings which
should be taken into account whenever pair potentials are used. For example, an
interaction described by a pair potential model can depend only on the distance
between the two particles. Thus the potential can not model directional bond-
ing. Pair potentials often predict wrong vacancy formation energies and melting
temperatures [91, 92].

The construction of an accurate force-field encounters often system and ma-
terial based difficulties, and often even fundamental limitations. Difficult media
are metals, alloys, semiconductors, and oxide-based insulators. In this thesis
the emphasis is, of course, on carbon. Describing carbon accurately requires a
lot of caution and is difficult because the 2s electrons participate in molecular
bonding and together with the 2p electron orbitals hybridize to form a wide variety
of potential bonding configurations that depend on the environment and on the
ambient conditions. Even by itself, carbon can form structures as diverse as the

2AustinModel1 is named after the place of its origin, that is, University of Texas, Austin, USA.
3ParametrizedModel3 is named so because it was the third parametrized model released by the

person in charge for its development.
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isotropic diamond crystal or the anisotropic planar graphite and nanostructures. If
the consideration is extended to organic molecules, even only hydrocarbons, the
bonding variety, and at the same time the complexity of describing it accurately,
becomes vast.

If covalently bonding materials, likesp2-carbon, are simulated, the modeling
of directional bonding is essential in order not to obtain outright wrong results.
In general this means that the interaction potential used must include at least a
three-body interaction term. Because carbon is the basis of all organic materials
and because diamond and graphite have various applications in materials science,
numerous attempts to create accurate classical interaction potentials have been
made but only a few of the proposed schemes are widespread. For example,
carbon interaction potentials developed by Tersoff in Refs. [93–95] and Brenner
in Ref. [82] are widely used in the modeling of carbon. The Brenner model
is considered more versatile because of additional conjugated bond description
while the structures modeled by the Tersoff model suffer from an overbinding
of radicals and the description of systems involving bonds that exhibit a mixture
of sp3 and sp2 hybridization is inaccurate. Both models are short ranged and
cover only the nearest neighbors to speed up the calculations. For description of
graphite or multi-walled nanotubes, much longer range interactions are required.
Various long-range extensions that are most often based on Lennard-Jones type
additional term to describe theπ -bonding have been proposed. Stuartet al. [83]
have aimed at maintaining the reactivity description of the Brenner [82] model
while introducing the long-range interactions. Therefore, this model was chosen
where long-range interactions are required.

In general the force-field methods can give information on the structure and
dynamics of a system, the total energies, entropies, free energies, and diffusive
processes in the system. By their construction the methods are incapable of pre-
dicting any properties related to the electronic structure such as electrical conduct-
ivity, optical, or magnetic properties. In short, the classical force field methods are
structural tools. The general accuracy of results obtained by classical force field
methods is far from the level of accuracy obtained byab initio simulations but so
are the feasible system size and attainable time scale as well.

3.2 Methods employed in this thesis

In this thesis the emphasis is on studying carbon nanotube properties through
classical means. The choice allows studying structures that have dimensions com-
parable to the experimentally observed ones. Classical molecular dynamics [91]
with Brenner’s hydrocarbon potential [82] and in Publications IV and VI Stuart’s
extension to it [83] are employed in the simulations. In Publication III a density
functional theory based tight binding model is employed [84, 85]. A molecular
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dynamics program with an interactive graphical interface was implemented for
Publications I-III by the author. This program incorporates Lennard-Jones interac-
tion model and Brenner carbon-carbon interaction model. For Publications IV-VI,
another program implemented in the Accelerator Laboratory of University of
Helsinki has been used. The program carries the name Parcas and in the following
it will be referred to by this name. Parcas was originally implemented for the study
of ion bombardment of materials and a vast number of interaction models and
parametrizations have been incorporated to it. For the tight binding calculations a
tight binding implementation developed in the group of Prof. Frauenheim at the
University of Paderborn has been used. Next the relevant aspects of these methods
for the research presented in this thesis are discussed.

3.2.1 Classical molecular dynamics

If phenomena are studied classically in the atomistic scale there are two concur-
rent simulation methods. Classical Monte Carlo methods are based on treating a
mathematical problem by finding a probabilistic analogue and then solving it by
stochastic sampling. The basic Monte Carlo algorithm is called the Metropolis
Monte Carlo and is described in Refs. [92, 96]. The second method, the classical
molecular dynamics (MD) method, is a deterministic method and this was chosen
for the work. The basic concept of an MD simulation is to simulate the time
evolution of a system. In classical MD the atoms are considered as point-like
masses that interact according to a given potential energyV (�r1, �r2, . . . , �rN ). The
evolution is computed in steps of a small time periodδt and is thus discrete. The
essential quantity to be known is the potential energy, since a system of interact-
ing classical particles obeys Hamiltonian dynamics and consequently Newton’s
equation of motion

�Fi = m
d2�ri

dt2
= −∇i V (�r1, �r2, . . . , �rN ) , (3.1)

where the indexi refers to one of theN particles in the system [91].

Integration of the equations of motion

In order to find out, how the system evolves in time, the equation of motion must
be solved for each particle. This is called the integration of the equation of motion.
There are several integration schemes of various complexity and order [91, 92],
but the discussion is limited to the ones employed in this thesis.

A Verlet leapfrog algorithm has been chosen for the program that was de-
veloped for the study because of the simplicity and relative stability of the al-
gorithm in comparison to other integration algorithms [91]. Also the regular Verlet
integration algorithm [92] was implemented but the numerical stability was not as
good as with the equivalent leapfrog algorithm.
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The integration equations of the Verlet leapfrog algorithm are{
�ri (τ + δt) = �ri (τ ) + δt �vi

(
τ + 1

2δt
)
,

�vi

(
τ + 1

2δt
) = �vi

(
τ − 1

2δt
) + δt �ai (τ ) ,

(3.2)

whereδt is the integration time step. In order to obtain the new position and the
new velocity,�ri (τ + δt) and�vi

(
τ + 1

2δt
)
, one must know�ri (τ ), �vi

(
τ − 1

2δt
)
, and

�ai (τ ). It should be noted that the position and the velocity in the algorithm are not
computed at the same time.

Next a list-like representation of the workings of a classical molecular dynam-
ics simulation using the Verlet leapfrog integration algorithm is presented.

I. Set the initial position and velocity distribution at the timeτ = τ0.

II. Calculate the accelerations at the current timeτ .

III. Calculate the velocities at the timeτ + 1
2δt .

IV. Calculate the new positions and update the positions.

V. Compute the relevant physical quantities.

VI. Set the current time to beτ = τ + δt .

VII. Go to II and continue looping as long as the simulation is run.

The steps from II to VI represent one molecular dynamics step. The step is re-
peated and a discrete time development of the system and its dynamics is obtained.

The other classical simulations program employed in the thesis, Parcas, em-
ploys the 5th order predictor-corrector Gear integration scheme [92]. This integ-
ration scheme is considered computationally heavy with only small improvements
to the integration accuracy because of the use of higher order derivatives and the
corrector step. The scheme has, however, an accuracy advantage at short time
steps and therefore it is used in this molecular dynamics program that was ori-
ginally developed for ion bombardment simulations in which the particle energies
are typically extremely high and thus short time steps are used. The integration
equations of the Gear algorithm are based on a predictor step



�r p
i (τ + δt) = ∑5

j=0
�r( j)
i (δt) j

j !
�v p

i (τ + δt) = ∑4
j=0

�v( j)
i (δt) j

j !
�a p

i (τ + δt) = ∑3
j=0

�a( j)
i (δt) j

j !
�bp

i (τ + δt) = ∑2
j=0

�b( j)
i (δt) j

j !
. . .

(3.3)
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which is corrected by a following corrector step. The predicted positions�rp
i (τ +

δt) are used to compute the corrected accelerations�ac
i (τ + δt). The acceleration

correction becomes:

��ai (τ + δt) = �a p
i (τ + δt) − �ac

i (τ + δt) . (3.4)

The corrected positions, velocities,etc. can now be written


�rc
i (τ + δt) = �r p

i (τ + δt) + c0��ai (τ + δt)

�vc
i (τ + δt) = �v p

i (τ + δt) + c1��ai (τ + δt)

�ac
i (τ + δt) = �a p

i (τ + δt) + c2��ai (τ + δt)
�bc

i (τ + δt) = �bp
i (τ + δt) + c3��ai (τ + δt)

. . .

(3.5)

A detailed discussion of how to choose the coefficientsci can be found in Refs. [97,
98]. In a schematic form the Gear integration algorithm works as follows

I. Set the initial positions at the timeτ = t0.

II. Calculate the predicted positions, accelerations,etc. at the timeτ +δt using
the current values of each quantity.

III. Calculate the correction to the acceleration based on the predicted positions.

IV. Correct the predicted values of positions, accelerations,etc..

V. Compute the relevant physical quantities.

VI. Set the current time to beτ = τ + δt .

VII. Go to II and continue looping as long as the simulation is run.

For the beginning of the simulation the initial position distribution, the initial
velocity distribution, and the initial time step value must be set. For the simulation
of solids, an appropriate initial position distribution is, for example, the lattice
structure the particles form in nature under the prevailing physical conditions
of the simulation. The initial velocity distribution defines the temperature and
the momentum of the system. The time stepδt must be set so that the particle
movement in one step is very small compared to the average particle distance.
The smaller the time step is the more justified it is to use the force computed at a
momentτ as an approximation for the force during the interval[τ, τ + δt]. On
the other hand, a too small time step wastes computational resources. Time step
length is therefore a compromise between accuracy, stability and speed. Typically
the step is approximately 1 fs in equilibrium simulations. For the simulations in
this thesis the time step values have been slightly smaller because the structures
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have often been distorted and out of equilibrium thus involving larger recuperating
forces. It should be noted that all finiteδt values induce a drift that increases the
total energy of the simulated system unless the energy is kept at level by employ-
ing a thermostat algorithm. If the energy drift is detrimental, and thermostating
may disturb the results, an unusually short timestep should be used as in the static
friction simulations of Publication IV.

Calculating the physical quantities of the system

Classical molecular dynamics simulations allow the calculation of physical prop-
erties of the system quite easily. The expressions are in general based on statistical
mechanics and averages. The time average of a quantityA is calculated

< At >= 1

t

∫ t

0
A[x(τ )]dτ , (3.6)

wherex[τ ] describes the state of the system at timeτ . This expression allows
the computation of any physical quantity that can be evaluated momentarily for
the system. For example, the total energy of the system at a moment of timeτ is
given by:

Etot(τ ) = 1

2

∑
i

m�vi (τ )2 +
∑

i

∑
j>i

V (�r1(τ ), �r2(τ ), . . . , �rN (τ )) , (3.7)

whereV (�r1(τ ), �r2(τ ), . . . , �rN (τ )) stands for the potential energy. It is important
to notice that the velocity in the Verlet leapfrog algorithm of Equation (3.2) is not
�v(τ) but �v(τ + δt

2 ) instead. The average of two adjancedv values may be used
for the computation of the required velocity at a momentτ but the approximation
causes some fluctuation in the momentary value of total energy. As another ex-
ample of computing physical quantities for the system, the local temperature of the
system can be obtained from the equipartition theorem. The equipartition theorem
states that the part of the kinetic energy associated to each degree of freedom is
given by1

2kbT , wherekb is the Boltzmann constant. In a three dimensional system
with N point-like masses there are 3N degrees freedom and thus

T = 2〈Ek〉
3kbN

(3.8)

is obtained for the temperature of the system. Here〈Ek〉 is the average total kinetic
energy of the system [99].

3.2.2 Brenner potential energy model

Brenner’s hydrocarbon potential energy model [82], which is based on Abell’s [100]
and Tersoff’s [93–95] bonding formalism and interaction models, was chosen for



3.2 Methods employed in this thesis 21

the work. The interaction potential has previously given better results in describ-
ing sp3-bonding than Tersoff’s carbon potential energy model, which suffers from
overbinding of atoms [101]. The bonding in carbon nanotubes is mainly graphitic
sp2-bonding, but there is also somesp3-bonding present, and thus Brenner’s
potential energy model was chosen over Tersoff’s formulation. When previously
used on carbon nanotubes, Brenner’s parameterization has given results that are in
excellent agreement with corresponding tight binding computations [49, 50, 102,
103].

The Brenner potential energy model is an empirical many body interaction
potential developed for hydrocarbons. The basic formulation is that of Tersoff’s
but some additional terms are introduced to correct for the overbinding of radicals
and for taking into account nonlocal effects in the system. This section introduces
the Brenner model while the detailed mathematical treatment of computing the
forces is left to Appendix B.

The binding energy in the Brenner bond order potential energy model is given
by a sum over the bonds:

Eb =
∑

i

∑
j>i

[
VR

(
ri j

) − −
Bij VA

(
ri j

)]
, (3.9)

whereVR represents the repulsive part of the interaction andVA the attractive part.
Here the empirical bond-order function is given by

−
Bij = 1

2

(
Bij + Bji

) + 1

2
Fij

(
N (t)

i , N (t)
j , Nconj

i j

)
, (3.10)

where Fij represents the correction for overbinding, and the attractive and the
repulsive pair terms are given by

VA
(
ri j

) = fi j

(
ri j

) D(e)
i j Si j

Si j − 1
e
−√

2/Si j βi j

(
ri j −Re

i j

)
, (3.11)

and

VR
(
ri j

) = fi j

(
ri j

) D(e)
i j

Si j − 1
e
−√

2Si j βi j

(
ri j −Re

i j

)
, (3.12)

in which the functionfi j

(
ri j

)
is the cut-off function that restricts the pair interac-

tion to the nearest neighbors andri j is the interatomic distance of particlesi and
j . D(e)

i j , Si j , Re
i j , andβi j are experimentally fitted parameters. The values of the

parameters are given in Appendix B. The cut-off function drives the interaction

smoothly to zero at a given interval
[
R(1)

i j , R(2)
i j

]
:

fi j

(
ri j

) =




1, if ri j < R(1)
i j

1
2

[
1 + cos

(
π

(
ri j −R(1)

i j

)
R(2)

i j −R(1)
i j

)]
, if R(1)

i j < ri j < R(2)
i j

0, if ri j > R(2)
i j ,

(3.13)
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where R(1)
i j and R(2)

i j are the cut-off radii. The presence of a cut-off function intro-
duces an artefact related to overestimating the interparticle forces at interparticle
distances in the cut-off range [43, 101, 104]. This must be taken into account in
the simulations and the topic is discussed in the related Publications IV and V.

In Equation (3.10) the empirical bond-order termBij reads as

Bij =
[
1 +

∑
k �=i, j

G
(
θi j k

)
fik (rik ) e

αi jk

[(
ri j −R(e)

i j

)
−

(
rik −R(e)

ik

)]

+ Hij

(
N (H)

i , N (C)
i

)]−δi j
(3.14)

for hydrocarbons. The expression is simplified in the absence of hydrogen. If, as
in the case studied here, only pure carbon is present the parameterαi j k = 0 and
the hydrogen bonding functionHij is zero for all (carbon) particlesi , j , andk.
The expression becomes

Bij =

1 +

∑
k �=i, j

G
(
θi j k

)
fik (rik )




−δi j

. (3.15)

The angleθi j k represents the angle between bondsi − j andi − k, and the angle
dependent functionG is given by

G
(
θi j k

) = a0

(
1 + c2

0

d2
0

− c2
0

d2
0 + (

1 + cos
(
θi j k

))2

)
, (3.16)

wherea0, c0 andd0 are empirically fitted parameters. Again, the values can be
found in Appendix B.

The number of neighbors for an atom is defined to be

Ni =
∑

j

fi j

(
ri j

)
, (3.17)

where the cut-off functionfi j is used to make the expression continuous. The
value ofNi can be used to determine if the atomi is part of a conjugated system.
A carbon atom is part of a conjugated system whenever the atom has one or more
neighbors, that have a coordination number less than four (Ni < 4). A value for
describing the conjugated bond between the atomsi and j , Nconj

i j , is given by

Nconj
i j = 1 +

∑
k �=i, j

[
fik (rik ) F (xik ) + f jk

(
rjk

)
F

(
xjk

)]
, (3.18)

where

F (xik ) =




1, if xik ≤ 2
1
2 [1 + cos(π (xik − 2))] , if 2 < xik < 3

0, if xik ≥ 3 ,

(3.19)
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and
xik = Nk − fik (rik) . (3.20)

When Equations (3.11) and (3.12) are plugged into Equation (3.9) it becomes

Eb =1

2

∑
i

∑
j �=i

[
D(e)

S − 1
fi j e

−√
2Sβ(ri j −Re) − 1

2

D(e)S

S − 1
fi j e

−
√

2
S β(ri j −Re)·

[[
1 +

∑
k �=i, j

G
(
θi j k

)
fik

]−δ +
[
1 +

∑
k �=i, j

G
(
θj ik

)
f jk

]−δ + Fij

]]
,

(3.21)

where fi j andFij are shorthand notations forfi j

(
ri j

)
andFij

(
N (t)

i , N (t)
j , Nconj

i j

)
.

The parameters Si j , βi j , Re
i j , δi j and D(e)

i j have been replaced by shorter notationS,
β, Re, δ, andD(e) because the indices are unnecessary since only carbon-carbon
interactions are considered. Equation (3.21) can now be used to compute the
interparticle forces

�fm = −∇m Eb . (3.22)

The gradient and some additional details concerning the potential energy model
are presented in Appendix B.

3.2.3 Stuart potential energy model

The second employed empirical potential energy model, the Stuart model [83] is
an extension of the Brenner model [82]. The Stuart model adds torsional potential
description of hydrocarbon rotations, and, what is more important for this thesis,
describes the long range van der Waals interactions required for the description of
graphite interlayerπ -bonding or tube-tube interaction in MWNTs or bundles of
single walled nanotubes.

Stuartet al. maintain the original form and parametrization of the Brenner
model [82] whereever possible. The original Brenner energyEb (Eq. 3.21), the di-
hedral correctionEtors and the long-range energyELJ contribution are considered
independent and treated separately:

E = Eb + ELJ + Etors . (3.23)

The long range interaction is described through a Lennard-Jones (LJ) interac-
tion potential

V LJ
i j

(
ri j

) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

. (3.24)

This Lennard-Jones interaction depends on the distance between the atomsi and
j , on the strength of their interaction, and on the network of bonds connecting
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these atoms. These requirements are described by the additionalELJ term in
Equation (3.23):

ELJ
i j =

[
S

(
tr

(
ri j

))
S

(
tb

(−
B

∗
i j

))
+ 1 − S

(
tr

(
ri j

))]
Cij V LJ

i j , (3.25)

whereS(t) describes switching the interaction on and off:

S(t) = �(−t) + �(t)�(1 − t)[1 − t2(3 − 2t)] . (3.26)

Here�(t) is the Heaviside step function, that is, fort < 0 the switching function
equals to unity and fort > 1 S(t) = 0. In between and at the end points the
function and the first derivative are continuous. The functiont (ri j ) scales as

tr
(
ri j

) = ri j − rLJmin
i j

rLJmax
i j − rLJmin

i j

, (3.27)

where rLJmin
i j and rLJmax

i j limit the switching region. These have been chosen
rLJmin

i j = σi j andrLJmax
i j = 21/6σi j to maximize the width of the switching region

while maintaining the minimum of the LJ-potential unperturbed and taking care
that the lower limit does not create artificial reaction barriers. The choice of
rLJmin

i j = σi j also keeps the second derivative of the functional continuous.

The other criterion function in Eq. 3.24 is the bonding switchS

(
tb

(−
B

∗
i j

))
.

Here the argument functiontb

(−
B

∗
i j

)
scales the Brenner model bond-order term

−
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In other words, when the bond order is large,tb > 1 and the Lennard-Jones

interactions will not be present. On the other hand, if
−
B

∗
i j is small, the LJ term

will be present in a degree appropriate to the prevalent covalent bonding strength.
To account for the fact that LJ interaction is typically computed between atoms
that are further distanced than the covalent interaction cut-off R1

CC, a bond order

term
−
B

∗
i j with slight difference to the original bond order term

−
Bij presented by

Eq. 3.10 is employed:
−
B

∗
i j = −

Bij |ri j =rLJmin
i j

. (3.29)
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TheCij functional criterion of Equation (3.25) cuts off LJ interactions between
atoms that are first, second or third neighbors. This decouples the covalent in-
teraction description and the dihedral rotation description from the long-range
interactions. The functionCij is a distance based function that smoothly scales
from one to zero over the bonding region.

The second modification to the Brenner model, the dihedral correctionEtors,
is relevant for the description of saturated hydrocarbons. The original Brenner
model does not differentiate between rotated configurations of these. Stuartet al.
add a barrier for rotations by introducing a torsional potential with the physical
symmetries and barrier heights thus removing arbitrary rotations present in the
original Brenner. The systems described in this thesis are all-carbon and therefore
the exact funtional form of the modification is not discussed here. For detailed
information, please refer to Ref. [83].

3.2.4 Density functional theory based tight binding

The tight binding method employed in this thesis is the density functional theory
(DFT) based method introduced by Prof. Frauenheim and his group [84, 85].
The basic idea of the density functional based tight binding (DFTB) model is
to employ a linear combination of atomic orbitals (LCAO) to form the molecular
wave function�. The atomic orbitalsφν are expressed by

φν(�r) =
Ni∑

i=1

Nj∑
j=1

an,i, j r
l+i−1e−αj r Yl,m

( �r
r

)
, (3.30)

where�r is the position of an electron andn, l, andm refer to the main and the
angular quantum numbers. The factorsNi , Nj and αj are chosen to yield an
accurate basis set.

The coefficientsan,i, j can be obtained by solving the Kohn-Sham equations of
single atoms. The Kohn-Sham equations are modified by an artificial contraction
potential that redistributes the electron density far from the nuclei but maintains
the close-range electron density. The Kohn-Sham equation with this modification
reads: [

− �
2

2me
∇2 + V nuc+ce + e2

∫
nve(�r ′)
|�r − �r ′|d3�r ′

+∂
(
nve(�r)εxc

homnve(�r)
)

∂nve(�r)
+

(
r

r0

)2]
φν (�r) = ενφν(�r) .

(3.31)

where nuc refers to the nuclei, ce to the core electrons, and ve to valence electrons.
The termεxc

hom is the exchange correlation energy density of a homogenous elec-
tron gas with a densitynve, and the equation therefore is in local density approx-
imation (LDA). The first term inside the parenthesis describes the kinetic energy
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operator, the second describes the potential energy of the nuclei and the core
electrons (pseudopotential approximation), the third term describes the valence
electrons and the last term inside the parenthesis is the confinement term. These
equations are solved within the DFT and a set of basis functionsφν are obtained
for each atom type.

Now that we have the basis functions, we return to the many body Schrödinger
equation. The Hamiltonian matrix elements are obtained by replacing the many
body system effective potentialVeff by a superposition of the atomic potentials.
The effective potential becomes

Veff(�r) =
∑

m

V m
0 (|�r − �Rm |) , (3.32)

where �Rm is the site vector of atomm. The constituting neutral potentialsVm
0 read

V m
0 (r) = V nuc+ce + e2

∫
nm
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|�r − �r ′| d3�r ′ + ∂

(
nm

ve,c(�r)εxc
homnm

ve,c(�r)
)

∂nm
ve,c(�r)

, (3.33)

wherenm
ve,c is the confined electron density of atomm.

The molecular orbitals can be written as a linear combination of the basis
functions

�i(�r) =
∑
ν,m

cνiφν(�r − �Rα) . (3.34)

Next, variational analysis of the secular equations leads to a matrix relation between
the coefficientscνi

M∑
ν

cνi

(
H 0

µν − εi Sµν

)
, ∀µ , i , (3.35)

where
H 0

µν =
〈
φµ|Ĥ0|φν

〉
(3.36)

and
Sµν = 〈

φµ|φν

〉
. (3.37)

The Hamiltonian matrix elements yield

H 0
µν =




εneutral free atom
µ if µ = ν, m = n〈
φα

µ

∣∣∣T̂ + V m
0 + V n

0

∣∣∣ φβ
ν

〉
if m �= n

0 n = m , µ �= ν.

(3.38)

Here the indicesm andn refer to the atom around which the wave functions are
centered on andµ andν to the basis orbitals.
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The total energy within the DFTB method is written

Etot =
∑

i

∫
εi,kd�k + Erep, (3.39)

where the integration is over thek space and the repulsive contribution can be
obtained by taking the difference of the self consistent field DFT cohesive energy
and the corresponding TB band structure energy:

Erep(R) =
{

E SC F
L D A −

∑
i

∫
εi,kd�k

} ∣∣∣∣
reference structure

(3.40)

The forces resulting from the energy expression 3.39 can be calculated as de-
scribed in Section 3.2.1 where molecular dynamics is dealt with.





Chapter 4

Overview of the results

This thesis consists of two parts. In the first part the attention is on perfect nano-
tube structures under strain and the resulting deformations, defects and stability.
This research is covered by Publications I-III. Publications IV-VI, the second
part of the thesis, address the properties of nanotubes with defects. In them the
question whether defects can be employed to improve the mechanical properties
of a nanotube sample is addressed. The work describes defect induced roughening
of the nanotube surface,i.e., mechanical load transfer through common defects.
The mechanical degradation of the properties of individual nanotubes when the
defects are present is also assessed.

4.1 Nanotubes under strain: toroidal and bent nanotube
structures

Publications I and II were motivated by the experimental observations ofµm-
sized toroidal nanotubes [15, 16]. The reason is that closed nanotube rings should
have interesting electronic and magnetic properties [105–108]. Besides this, a
nanotube circle is a uniformly bent nanotube. Nanotubes can be under bending
strain, for example, because of pinning to the substrate or because of mechanical
loading or manipulation. The uniform bending strain induces changes in the
structure and stability that have been assessed in Publications I and II.

In Publication I large toroidal carbon nanotubes were studied using molecular
dynamics simulations and the Brenner interaction model [82]. We examined
nanotori with diameters in the size range between 22 nm and 700 nm. For the
largest tori, that is, tori in the experimentally observed [15, 16] size regime,
the curvature does not cause significant structural changes in the cross-section
or distribution of atoms. For tori that are considerably smaller than the experi-
mentally observed ones the cross-section was found to deform into an ellipse. If
the amount of local curvature exceeded a critical curvature radius, the torus was
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Figure 4.1: Examples of strain-induced deformations in nanotubes. The structure on the
left maintains its circular symmetry although the cross-section deforms into an ellipse
(center image). The structure on the right has buckled because the local curvature has
exceeded a critical value. Publications I and II address questions related to the toroidal
structures.

found to buckle. Relatively high diffusion barriers prevent the formation of defects
and the observed buckling does not change the hexagonal bonding configuration
although the bonding angles deformed to account for the buckles. Figure 4.1
shows examples of strain-induced deformations in nanotubes.

The results of Publication I can be extended to bent nanotubes, because such
structures often are under similar local strain conditions as the toroidal structures.
Experimental observations of nanotube bends [48, 109] seem to show similar
buckling behavior as we report here. Nanotori with(n, n)-chirality, that is, arm-
chair tubes, seemed to have smaller critical buckling radii than the corresponding
tori formed of(n, 0)-tubes, or zigzag tubes. Details of the index-based structural
classification of the nanotubes can be found at Appendix A. Deformations that
include buckling induce more drastic changes in the conductivity properties than
an elliptical deformation of the nanotube cross-section [26, 27, 110].

Publication II extends the discussion of toroidal nanostructures to the thermal
stability of the structures and to comparison with nonuniform bending. The struc-
tures are found to be thermally extremely stable and to hold their form at highly
elevated temperatures. For tori of the experimentally observed sizes, the diameter
of the tube was found to be a much more significant factor for the stability than the
toroidal form. The barriers for defect formation were observed to be extremely
high: Thermal treatment by high temperature was required to induce defects, for
example pentagon–heptagon defect pairs. The results considering the thermal
stability of the nanotori indicate that much smaller stable toroidal structures than
the circles observed in Refs. [15, 16] can exist. If the means of synthesizing tiny
nanotori can be developed, the rings would have applications in nanoelectronics.

When comparing the uniform toroidal bending behavior with dynamical bend-
ing at finite temperature we observed buckling for sufficiently large local curvature,
buckle propagation, plastic defect formation and fracture depending on the local
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strain in the structure. Due to simulations based restrictions on timescales the bent
structure is at a non-equilibrium state. The behavior in dynamical bending seems
to be locally similar in many ways to the behaviour found in toroidal structures.
It should be noted that the bending configurations are far from equilibrium which
may affect the description accuracy of the interatomic model potential used in this
work.

Publication III presents further work related to structural properties of nano-
tubes under bending conditions. Besides the classical molecular dynamics model
with an empirical interaction potential by Brenner [82], a tight binding model
by Frauenheimet al. [84, 85] was employed. Unlike in the toroidal case of
Publication I, the dynamically bent nanotubes in Publication III do not show
significant chirality dependence on the onset of buckling, which may be due to
somewhat different conditions,i.e., the study is dynamical and performed at a
finite temperature. The present approach with finite temperature is likely to muffle
the chirality dependence observed in the more static study of Publication I.

Tight binding simulations predict different location for buckling to appear
and a larger amount of deformation in the tube. In addition significantly more
conversion fromsp2-bonding tosp3-bonding is observed than in the simulations
based on the Brenner model. The agreement with the classical method is better for
small bending angles and for small distortions. However, the greater resistance of
the Brenner potential model to switch tosp3 bonding should be taken into account
when interpreting the results of strongly bent structures.

We reported that although the models predict similar behavior when the nano-
tube structure is only slightly deformed, the results differ significantly when buck-
ling occurs. Our conclusion is that although qualitatively the tight binding and
the empirical models predict similar behavior, the latter is not sufficient if exact
structural information of the deformations is required.

4.2 Mechanical properties of defective nanotubes

As discussed in Section 2.3.2, the surfaces of pristine nanotubes slide extremely
easy with respect to each other. The low-friction behavior enables many nanoelec-
tromechanical applications but it can also be an undesired property. For example,
if nanotubes are employed as reinforcement agents, an improved load transfer to
the surroundings may be desirable. The strength of mechanical contact between
two nanotubes also affects the sample properties, for example, bundles of nano-
tubes bend and split easily. The following results aim at assessing whether defects
can be employed to improve the mechanical properties of a nanotube sample in
terms of the load transfer.

In Publication IV the static friction force between the shells of a MWNT,
that is, the force required to depin a shell of a MWNT, was assessed first by a
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Figure 4.2: An example of a covalent intershell bond formed by two vacancies in
adjanced nanotube layers. Publication IV reports that such bonds transfer mechanical
load efficiently between nanotubes.

qualitative analysis of the situation and then by quantitative molecular dynamics
simulations. In order to do so we employed the Stuart potential energy model [83].
The analytical analysis indicated that the static friction force had three main con-
tributions. The first component of the force results from the capillary force that
is due to the change in the overlapping surface area when a shell of a MWNT
is pulled out. The capillary force scales with the tube diameter. The second
significant contribution is due to the interacting surfaces and can be called the
shear term. It scales with the interaction area. The remaining contribution to the
static friction force is due to defects and imperfections in the tubes and scales with
the pinning strength and density of the defects.

For defect-free nanotubes the capillary contribution dominates the onset of
sliding when the tubes are short. For long tubes the force scales with the in-
teraction area because the shear term dominates. We calculated the cross-over
length to be approximately 300 nm. If the shells of a MWNT are not perfect,
the defects induce an additional contribution to the pinning force. We evaluated
this contribution by assessing the pinning strength of defects typical to irradiation.
Irradition-induced defects were considered because we proposed irradiation as an
efficient means of inducing defects.

We found that the typical values of the force needed to depin the shells in
a short double-walled carbon nanotube (DWNT) with a vacancy in the inner
tube are typically 0.1 nN−0.4 nN. Correspondingly a single defect compound
that results in a covalent bond between the tubes pins the layers with a force
of 4 nN−8 nN. Figure 4.2 shows an example of such defect compound. The
values corresponding to covalent bonding are of the same order of magnitude
as the capillary force, but much larger than the shear forces in short nanotubes.
This means that for an MWNT with a diameter of about 6 nm and length of
∼ 500 nm, the onset of sliding is governed not by frictional forces resulting
from the inter-shell interaction energy corrugation, but by the defects even if
there are only 1–2 such defects in the sliding shells. This corresponds to a defect
concentration of∼ 10−6 Å−2 in the sliding shells, that is, a linear concentration
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of 1 defect per 300 nm, or a volume concentration of∼ 5 · 1017 cm−3. For
defects that do not bond the shells covalently the corresponding value is a defect
concentration of∼ 10−5 Å−2 (linear concentration of 1 defect per 10 nm, and
volume concentration of∼ 2·1019 cm−3). The load transfer effect of non-covalent
bonds appears smaller than that of covalent bonds but it should be noted that
inter-shell links have a lower probability to be formed. Nevertheless, already a
few of them have a significant effect on the load transfer.

By irradiating the MWNT with energetic electrons or ions one can easily
create a substantial amount of defects in the MWNT – even up to the complete
amorphization and collapse of the tube [66]. Thus, although sliding should oc-
cur between the shells with the lowest defect concentration, the irradiation dose
needed for pinning the shells can be achieved. Notice that neutron irradiation of
graphite, which should also result in links between planes, gives rise to a growth
in shear modulus with an increase in irradiation dose [111]. Since the mechanism
of defect formation should be the same, these experimental results support the
predictions of Publication IV.

Inevitably high doses will also result in the deterioration of mechanical char-
acteristics of the nanotube [112]. However, the results of Publication V show that
the small amount of defects (a linear concentration of 1 defect per 10 nm, or per
300 nm if the defects involve covalent inter-shell links) that is required to transfer
the axial mechanical load from one of the sliding shells to the other, will affect
only slightly the nanotube Young’s modulus and critical strength. Thereby, using,
e.g., the transmission electron microscope (TEM) with electron energies higher
than the the minimum energy of the electron required to knock a carbon atom
out of its original position (∼ 100 keV [113]), one can prevent the shell sliding
and thus partially transfer the mechanical load from one of the shells to the other.
Note that the irradiation can be used in a similar fashion to transfer load from the
SWNTs at the perimeter of a SWNT rope to the inner tubes. TEM was employed
in experiments [55–58] on MWNT telescopic properties to monitor the motion of
the shells — the same setup can immediately be applied to testing of how the load
is transferred between the shells (given that the electron beam energy is higher
than the threshold). Such an experiment should also be interesting in elucidating
the behavior of irradiation-induced defects in nanotubes and graphite.

We proposed a scheme for employing irradiation to weld together nanotube
shells selectively based on the energy, and thus the penetration depth, of the
incident particle [77]. Because the electron energy threshold for displacing car-
bon atoms should be slightly lower for nanotubes with smaller diameters due to
curvature effects which generate some strain in the carbon network, the electrons
with energies just above the threshold should create damage mainly in the inner
shells. This, combined with atomic force microscope manipulation of the tubes,
opens up new techniques for nanoengineering. Due to much larger ranges and
smoother defect distribution, only electron irradiation can be used for transferring
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the load between the shells in MWNTs in macroscopic samples,e.g., MWNT-
based composite materials.

To conclude, in Publication IV the results of a molecular dynamics study of
the telescopic behavior of MWNTs and conditions for the effective load transfer
between shells of MWNTs were reported. We simulated the response of pristine
MWNTs and nanotubes with irradiation-induced defects to the external force
acting on one of the shells. In addition, we demonstrated that a small amount of
defects can increase the interlayer shear strength by several orders of magnitude
and, thus, small-dose electron or ion irradiation can be employed for the mechan-
ical load transfer between the shells. Finally we discussed how the experimental
setup used in previous studies on MWNT telescopic behavior can be employed
for checking our results and improving our understanding of irradiation-induced
phenomena in graphitic materials.

Publication V reports the results of a theoretical study that assesses the effects
of vacancy-related defects on the mechanical characteristics of single-walled car-
bon nanotubes. Figure 4.3 shows examples of the studied defects. Vacancies can
be expected to degrade the mechanical strength because nanotubes are essentially
one dimensional in structure. Therefore, any deficiencies in the atomic network
should affect the strength significantly and thus possibly vitiate the benefits re-
ported in Publication IV. The results of Publication V indicate that although indi-
vidual tubes degrade mechanically, defects can be considered as means to transfer
load between nanotubes. Specifically, in Publication V we calculated the Young’s
modulus and tensile strength of SWNTs with vacancies for different defect con-
centrations and vacancy types. These were first assessed by continuum theory
based analytics and then classical molecular dynamics simulations employing the
Brenner interaction model.

We reported that the Young’s modulus of the nanotubes depends weakly on
the vacancy concentration: a relatively high defect density of one vacancy per
50 Å gives rise to a small decrease in the Young’s modulus: only about 3 %, if
we consider a thin(5, 5) nanotube. Thin tubes are most sensitive to defects and
therefore the effect is even less if the tube has a larger diameter. Vacancy recon-
structions by saturating dangling bonds were reported to diminish the degradation
for the majority of the tubes and vacancy orientations studied.

We also showed that vacancies have a much stronger effect on the tensile
strength of nanotubes. The work done in Publication V indicates that the tensile
strength can degrade down to 60 % of the intact tube value if even a single vacancy
is present. For the critical strain the effect can be even more deleterious. The
critical strain of the defective SWNT can be half of the intact tube value. Sim-
ilar to the nanotube Young’s modulus, the degradation of tensile characteristics
is partly alleviated by the ability of the nanotube carbon network to heal the
vacancy damage by saturating the dangling bonds. However, even reconstructed
defects decrease the tensile characteristics by 5 %−10 % for the zig-zag tubes and
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Figure 4.3: A (10, 10)-nanotube with single and multiple vacancies. The images below
show the structure when the nanotube has been thermally annealed to heal the atomic
network. Publication V addresses the mechanical degradation of individual nanotubes
due to such defects.

10 %− 15 % (tensile strength) and 25 %− 30 % (critical strain) for the armchair
tubes. Overall, the tensile characteristics, especially if defects were present, were
observed to be chirality dependent. This is consistent with the previous reports on
tensile strength dependence on chirality for intact tubes [43].

The results of Publication V indicate that the Young’s modulus of nanotubes
with defects will essentially be the same unless the vacancy concentration is ex-
tremely high. On the other hand, the tensile strength will substantially drop due to
the quasi-one-dimensional atomic structure of SWNTs already if a single vacancy
is present – the tensile strength of a SWNT is governed by the “weakest” segment
of the tube. Given that a small number of defects are always present in nanotubes,
this may explain why the theoretically predicted Young’s modulus agrees well
with the experimentally measured values, while the tensile characteristics are
much worse.

Finally, within the framework of the continuum theory we have derived an
expression which can be used to calculate the Young’s modulus of defective CNTs
at an arbitrary vacancy concentration, unless the defect concentration is so high
that there are several defects in a specific unit cell of the nanotube. Thus, know-
ing the irradiation dose and defect production rate one can evaluate the drop in
Young’s modulus, which is indispensable for the qualitative explanation of the
recent experimental data on the behavior of Young’s modulus of irradiated nano-
tube bundles [79]. Note also that the defect concentration and ideally the defect
types can be estimated by probing the electronic structure of nanotubes by using
various experimental techniques such as Raman, electron spin resonance and
optical absorption spectroscopy. Thus, simultaneous monitoring of the nanotube
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Figure 4.4: A section of a nanotube bundle with defect-induced links. Irradiation-induced
structural damage is reported in Publication VI to induce stiffening of nanotube bundles
at moderate doses. At high doses the structural weakening overcomes the stiffening effect
in accordance to Ref. [79].

mechanical properties and defect concentration can shed light on the properties of
irradiation-induced defects in carbon nanotubes.

Publication VI extends the discussion of defect mediated load transfer in
MWNTs to bundles of single walled nanotubes. Electron irradiation measure-
ments in Ref. [79] showed a dramatic increase of the bending stiffness of a nano-
tube bundle at moderate irradiation doses and then followed by a mechanical
degradation at higher doses. This is highly relevant in nanotube–polymer com-
posites in which the bundle acts as reinforcement. In Publication VI we present
theoretical background for what happens when the nanotube bundle is irradiated.
We present analytical formulae based on approximation for electron irradiation
damage in nanotubes and we relate this information to the bending stiffness of
the bundle. We show that a trade-off between bundle stiffening due to inter-tube
covalent bonds and a drop in Young’s modulus of the individual nanotubes due
to the irradiation induced defects can explain the steeply increasing and then de-
creasing bending modulus value observed in electron irradiation measurements in
Ref. [79]. The studied system is presented in Figure 4.4. Based on the results we
can draw the conclusion that irradiation is a good tool to enhance the mechanical
properties of nanotube bundles when they are used as reinforcement agents.
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Summary

In this thesis strained and defective carbon nanotubes were studied by analytical
and molecular dynamics simulation methods. The thesis consists of two parts. In
the first part of the thesis nanotubes under strain, and in particular under bending
strain, were considered. Strain induced deformations and changes in the nanotube
structure were assessed. A critical limit in the local curvature was found at which
it became energetically favorable for the structures to buckle. Thermal stability
was observed to be extremely high and defect formation barriers prevented the
formation of structural defects except at very high temperatures.

The observations in the first part of the thesis indicate that toroidal nanotubes
with diameters much smaller than the experimentally observedµm sized rings
can exist. If such small nanorings can be synthesized, they will have applications
in electronics. Based on quantum interference effects the rings show, for example,
peculiar localized electron states, colossal paramagnetic moments, persistent cur-
rents and exceptional response to external electromagnetic fields. Furthermore,
the results of bent structures and the observed high defect formation barriers show
how remarkably flexible and strong the nanotubes are.

In the second part of the thesis the use of defects as a means to improve
mechanical contact between nanotubes was evaluated. The emphasis was on
irradiation-induced defects because irradiation has been proposed as an efficient
method of inducing defects in a controlled fashion. Irradiation-induced defects
were found to significantly improve load transfer between nanotube shells in
multi-walled nanotubes and between tubes in bundles. Already at very low con-
centrations the defects are the dominating factor in the static friction force between
two nanotubes. However, defects inevitably diminish the mechanical strength of
individual tubes in the sample. Depending on the magnitude of this effect, the
degradation could render the defect-induced increase in load transfer useless for
the improvement of the over-all mechanical characteristics of the sample. There-
fore, the magnitude of the degradation was assessed. The Young’s modulus of the
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tubes was found to be insensitive to point defects but the tensile strength decreased
significantly even if a single defect was present. The defective nanotubes, even
though weakened, were still extremely strong. We reached the conclusion that the
improvement in load transfer to the surroundings overcomes the weakening effect
and defects can be employed to improve the over-all characteristics of a sample
that contains nanotubes. Evidence for this was provided by addressing the bending
stiffness of a nanotube bundle in the presence of defects. At moderate irradiation
doses and defect densities the bending stiffness shows a dramatic increase but if
the defect concentration is extremely high, the weakening in the individual tubes
overcomes the effect of increased shear.

The second part shows that defects are not always undesirable in a nanotube
structure. They can be used to tailor and to improve mechanical characteristics
of a nanotube sample. The results can guide and help in the development of
applications where the slippage of nanotubes with respect to each other or the
surroundings could be detrimental.



Appendix A

Classification of nanotube
structures

The most commonly used notation to differentiate between nanotubes is intro-
duced here. The notation follows that of Ref. [5]. The hexagonal network of
Figure A.1 depicts a graphene layer – each of the hexagon corners represents a
position of a carbon atom. The graphene layer can be thought as a tube cut open.
Therefore the figure can be used to visualize the notation and concepts discussed.
The notation of Figure A.1 corresponds to rolling the graphene layer to a tube in
such a way that�O B and �AB ′ lie on top of each other.

To begin with, two base vectors�a1 and�a2 are defined as shown in Figure A.1.
The chiral vector�C that joins two equivalent pointsO and A (or equivalentlyB
andB ′) on the tube surface is

�C = n�a1 + m�a2 . (A.1)

Each pair of integers(n, m) represents a possible tube structure and can be used
to classify the structures. There exist two possible high symmetry structures for
nanotubes known as the zigzag,(n, 0), and the armchair,(n, n). The names derive
from the pattern formed when a particular tube is cut perpendicular to the axis.
All other combinations ofn andm are known as chiral nanotubes. Examples of
arm-chair, zig-zag and chiral nanotubes are presented in Fig. A.2. From here on a
nanotube structure will be identified by the indicesn andm and, correspondingly,
it will be referred to as an(n, m)-nanotube [6].

In Figure A.1 it can be seen that the circumference length of the nanotube is
the length of the chiral vector, which is given by

C =
√ �C · �C = a

√
n2 + m2 + nm, (A.2)
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Figure A.1: Wrapping a graphite sheet to an(n, m)-nanotube.

where the values {
�a1 · �a1 = �a2 · �a2 = a2

�a1 · �a2 = a2

2

(A.3)

have been used for the inner products of�a1 and�a2. The graphite lattice constant
value can be employed as a first approximation for the length of the base vector

|�a1| = |�a2| = a = 0.24612 nm, (A.4)

although in nanotubes the curvature induces small chirality dependent variations
from graphite bond lengths. Besides the chiral vector, another commonly used
term in the study of nanotubes is the chiral angleθ . It is defined as the angle
between the vectors�C and�a1 and has values ranging from 0 toπ

6 because of the
hexagonal symmetry of the graphene lattice. The cosine of the chiral angle is
expressed withn andm as

cosθ = �C · �a1

| �C ||�a1|
= n + m

2√
n2 + m2 + nm

. (A.5)

A unit cell of a carbon nanotube is defined with the help of the translational
vector

�T = t1�a1 + t2 �a2 . (A.6)

The vector is normal to the chiral vector and thus parallel to the nanotube axis. It
represents the translation required in the direction of the nanotube axis to reach
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(a) The zig-zag structure (b) The armchair struc-
ture

(c) A chiral structure

Figure A.2: Zigzag and armchair structures and an example of a chiral nanotube. The
figures present a(10, 0)-, a(5, 5)- and a(7, 3)-nanotube.

the nearest equivalent lattice point. Using the information that�T is perpendicular
to �C , i.e., �T · �C = 0, expressions fort1 andt2 in terms ofn andm are obtained:

{
t1 = +A (2m + n)

t2 = −A (2n + m) .
(A.7)

The constantA is determined by the requirement that�T specifies the translation to
the nearest equivalent lattice point, that is,t1 andt2 do not have a common divisor
except unity. Thus

A = 1

gcd(2m + n, 2n + m)
, (A.8)

where gcd stands for the greatest common divisor of the arguments. The expres-
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sions fort1 andt2 become {
t1 = 2m+n

gcd(2m+n,2n+m)

t2 = − 2n+m
gcd(2m+n,2n+m)

.
(A.9)

Therefore the unitcell length is is

T =a
√

t2
1 + t2

2 + t1t2

=
√

3C

gcd(2m + n, 2n + m)
,

(A.10)

where Equation (A.2) has been used. The vectors�C and �T specify the parallel-
ogram that forms the unit cell of a nanotube. In Figure A.1 the unit cell is the
parallelogramO AB′ B.

The number of atoms in a nanotube unit cellN can be computed by noticing
that for each hexagon present there are two atoms in the unit cell. The area of
a hexagon is

√
3

2 a2. The number of atoms can be calculated by dividing the area
of the unit cell by the area of one hexagon and multiplying the result by the two
atoms in each hexagon:

N = 4C2

a2gcd(2m + n, 2n + m)
. (A.11)

Now the unit cell of an arbitrary nanotube and the amount of particles are
known. There still remains to be explained the way the positions of each atom
in the unit cell are computed. To accomplish this, a third vector, the symmetry
vector �R, is defined. It is defined as the site vector having the smallest positive
component in the direction of�C. In terms of the vectors�a1 and�a2 the vector�R is
expressed as

�R = p�a1 + q�a2 , (A.12)

where p andq are integers and do not have a common divisor except for unity.
The symmetry vector can be used to calculate the site vector of each hexagon in
the unit cell

�Ri = i �R , (A.13)

wherei is the index of each hexagon(i ∈ [1, N
2 ]). The site vector�Ri exists only

in the unit cell and thus appropriate shifts that keep the vector inside the unit cell
must be performed in order to compute the positions of the hexagons correctly
[5].

For each hexagoni there exists two atoms. The first one shares the site vector
of the hexagons obtained from Equation (A.13) and the other is dislocated by a
vector that corresponds to a translation along an edge of the hexagon to the next
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Figure A.3: Calculating the positions of the atoms on the hexagonal network.

site (see Figure A.3). The translation along an edge of the hexagon corresponds
to either of the translations

{ �W1 = −2
3�a1 + 1

3�a2

�W2 = 1
3�a1 + 1

3�a2
(A.14)

depending on which one is chosen. The atom sites can thus be computed using
the expressions { �Ri = i �R

�Ri+ N
2

= i
( �R + �Wj

)
,

(A.15)

in which i ∈ [1, N
2 ]. As can be seen in Figure A.3, appropriate shifts must be

performed to ensure that the sites are situated inside the unit cell.

So far we have worked in the coordinate system of Figure A.1 and used
the vectors�a1 and �a1 as the base. Now we move to the coordinate system of
a nanotube. The base of the coordinate system is transformed so that the unit
vectors in the direction of�C and and�T form the new base. Since�C and �T are
perpendicular, it is natural to choose the Cartesian unit vectors�i and �j as the base
vectors. The coordinate system is set so that�i is parallel to �C and �j to �T . The
graphite lattice constanta is chosen to be the unit distance in the system. In this
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base the vectors�a1 and�a2 are expressed as

�a1 = cos(θ)�i + sin(θ) �j
�a2 = cos

(π

3
− θ

)�i − sin
(π

3
− θ

) �j

=1

2

(
cos(θ) + √

3 sin(θ)

)�i + 1

2

(
−√

3 cos(θ) + sin(θ)

) �j .

(A.16)

The site of each atom is obtained as

�Ri =i

(
RC

a
�i + RT

a
�j
)

�Ri+ N
2

=i

(
RC

a
�i + RT

a
�j + �Wj

)
,

(A.17)

wherei ∈ [1, N
2 ], RC is the component of�R on �C , andRT is the component of�R

on �T . Again, appropriate shifts to keep the site vectors inside the unit cell must
be performed. The projectionsRC andRT are

RC = �C · �R
| �C| =(2n + m) p + (2m + n)

2C
a2

= t1q − t2 p

2C
gcd(2m + n, 2n + m)a2

RT = �T · �R
| �T | =

√
3 (mp − nq) a2

4C

= (mp − nq)
T

N
.

(A.18)

Introducing Equation (A.16) to the Equations (A.14) the shifts become


�W1 = 1
2

(
− cos(θ) + 1√

3
sin(θ)

)�i − 1
2

(
sin(θ) + 1√

3
cos(θ)

) �j
�W2 = 1

2

(
+ cos(θ) + 1√

3
sin(θ)

)�i + 1
2

(
sin(θ) − 1√

3
cos(θ)

) �j . (A.19)

If the values of the coefficientsp and q are known, the Equations (A.17)
- (A.19) can be used to calculate the site vectors of each particle. Let us now
determine the values ofp and q. To begin with the symmetry vector�R exists
inside the unit cell: its projections on the vectors�C and �T must be shorter than
the vectors themselves. Therefore�R must satisfy

{
0 <

�R· �T
| �T |2 = 2(mp−nq)

N ≤ 1

0 <
�R· �C
| �C|2 = 2(2n+m)p+2(2m+n)q

N ≤ 1 ,
(A.20)
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which can be simplified to{
0 < mp − nq ≤ N

2

0 < (2n + m) p + (2m + n) q ≤ N
2 .

(A.21)

By definition �R is the site vector that has the smallest positive component on the
vector �C. Therefore the projection

RC = �C · �R
| �C| =(2n + m) p + (2m + n) q

2C
a2

= t1q − t2 p

2C
gcd(2m + n, 2n + m)a2

(A.22)

must be minimized. Sincep, q, n, andm are integers andn andm are positive
or zero, thep and theq that give the smallest projection component on vector�C
must satisfy

t1q − t2 p = 1 . (A.23)

The left side can not be negative or equal to zero because Equation (A.22) must
give a positive nonzero value forRC . Taking into account the constrictions of
Equations (A.21), there is only one pair of coefficients that satisfies Equation
(A.23). In practice the pair is found by looping through the possibilities allowed
by Equations (A.21).

With p andq solved the site vectors of each particle of the unit cell can be
calculated. The site vectors obtained are on a plane and a transformation must be
performed in order to obtain a cylindrical three dimensional form. The site vector
�Ri of a particle is expressed by its components as

�Ri = xi�i + yi �j (A.24)

and while theyi component is kept intact, thexi and thezi components undergo
a transformation: {

z′
i = + sin( xi

rtube
)rtube

x ′
i = − cos( xi

rtube
)rtube ,

(A.25)

wherertube is the radius of the tube and is obtained from

rtube = C

2π
. (A.26)

The coordinates of each atom in an arbitrary nanotube are thus obtained from the
expression

�R′
i =x ′

i
�i + y′

i
�j + z′

i
�k

�R′
i = − cos(

xi

rtube
)rtube�i + yi �j + sin(

xi

rtube
)rtube�k ,

(A.27)
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where�k is the third Cartesian base vector (�i , �j , and�k form an orthonormal base
with a as the unit length), andxi , and yi are the coordinates of atoms on the
hexagonal plane. As seen in Figure A.2, the tube axis is along they-axis and the
tube cross-section lies on thexz-plane in the coordinates chosen.

The unit cell created the way explained above can be multiplied thus mani-
folding the resulting tube length. The method presented allows also the use of
periodic boundary conditions in the direction of the tube axis, although then only
integer multiples of unit cells can be piled on top of each other.



Appendix B

Brenner potential energy model:
Calculating the forces

In this appendix computing the interparticle forces according to the Brenner inter-
action model [82] is discussed. The force on a particlem is the negative gradient of
the potential�fm = −∇m Eb . In the case of the Brenner model the potential energy
Eb for an all-carbon system is given by Equation (3.21). Taking into account the
symmetries the force becomes

�fm = −
∑
j �=m

D(e)

S− 1
e
√

2Sβ(Re−rmj )
[√

2Sβ fmj
�rmj

rmj
+ ∇m fmj

]

−
∑
j �=m

1

2

D(e)S

S− 1
e

√
2
Sβ(Re−rmj )

[
δ fmj

(
1 +

∑
k �=m, j

G
(
θmjk

)
fmk

)−δ−1

·

·
∑

k �=m, j

[
fmk∇m G

(
θmjk

) + G
(
θmjk

) ∇m fmk

]
·

δ fmj

(
1 +

∑
k �=m, j

G
(
θjmk

)
fjk

)−δ−1

·
∑

k �=m, j

f jk∇m G
(
θjmk

)

− fmj ∇m Fmj +
[√

2

Smj
β fmj

�rmj

rmj
− ∇m fmj

]
·

·
[(

1 +
∑

k �=m, j

G
(
θmjk

)
fmk

)−δ

+
(

1 +
∑

k �=m, j

G
(
θjmk

)
fjk

)−δ

+ Fmj

]]

−
∑
j �=m

∑
k �=m, j

1

2

D(e)S

S− 1
e

√
2
Sβ(Re−rkj ) fkj ·

[(
1 +

∑
l �= j,k

G
(
θkjl

)
fkl

)−δ−1

·

·
(

fkm∇m G
(
θkjm

) + G
(
θkjm

) ∇m fkm

)
− 1

2
∇m Fkj

]
.

(B.1)



48 Brenner potential energy model: calculating the forces

The treatment covers the carbon-only parts of the interaction model. Therefore a short-
hand notations for the parameters have been used.δ, D (e), S, andβ map to the corres-
ponding hydrocarbon parameters, for example,δ = δ CC = δi j . The hydrogen description
is omitted because the research done in this thesis does not cover hydrocarbon structures.

Writing

cos
(
θi j k

) = �ri j · �rik

ri j rik
(B.2)

the gradient of the functionG
(
θi j k

)
of Equation (3.16) becomes

∇m G
(
θi j k

) = −
2a0c2

0

(
1 + �ri j ·�rik

ri j rik

)
∇m

�ri j ·�rik
ri j rik(

d2
0 +

(
1 + �ri j ·�rik

ri j rik

)2
)2 , (B.3)

where the term∇m
�ri j ·�rik
ri j rik

has the following values depending on whether the indices run
jmk, k jm, or m jk:

∇m
�rjm · �rjk

rjmrjk
= − 1

rjmrjk

[
�rjk −

(
�rmj · �rjk

r2
mj

)
�rmj

]

∇m
�rkj · �rkm

rkj rkm
= − 1

rmkrkj

[
�rkj −

(
�rmk · �rkj

r2
mk

)
�rmk

]

∇m
�rmj · �rmk

rmj rmk
= − 1

rjmrmk

[
1 +

(
�rjm · �rmk

r2
jm

)]
�rjm

− 1

rjmrmk

[
1 −

(
�rjm · �rmk

r2
mk

)]
�rmk .

(B.4)

Gradients involving index combinations withoutm are zero.
In order to obtain the gradient ofFij some manipulation of the differentials is re-

quired. Using the chain rule [114]∇m Fij can be expressed as

∇m Fij

(
N (t)

i , N (t)
j , Nconj

i j

)
=

∂ Fij

(
N (t)

i , N (t)
j , Nconj

i j

)
∂ N (t)

i

∇m N (t)
i

+
∂ Fij

(
N (t)

i , N (t)
j , Nconj

i j

)
∂ N (t)

j

∇m N (t)
j

+
∂ Fij

(
N (t)

i , N (t)
j , Nconj

i j

)
∂ Nconj

i j

∇m Nconj
i j .

(B.5)

Noticing that only∇m Fmj and∇m Fkj are present in Equation (B.1) the above can be
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Table B.1: Parameter values for Brenner’s potential energy model.

Parameter Value Value
1st parametrization 2nd parametrization

R(e)
CC 1.315· 10−10 m 1.39 · 10−10 m

D(e)
CC 6.325eV 6.0 eV

βCC 1.5 · 1010 1
m 2.1 · 1010 1/m

SCC 1.29 1.22
δCC 0.80469 0.5
αCCC 0.0 0.0
R(1)

CC 1.7 · 10−10m 1.7 · 10−10

R(2)

CC 2.0 · 10−10m 2.0 · 10−10

a0 0.011304 0.00020813
c0 19 330
d0 2.5 3.5

simplified to

∇m Fmj = ∂ Fmj

∂ N (t)
m

∇m

(∑
k

fmk

)
+ ∂ Fmj

∂ N (t)
j

∇m

(∑
k

fkj

)

+ ∂ Fmj

∂ Nconj
mj

∇m


 ∑

k �=m, j

[
fmk F (xmk) + fjk F

(
xjk

)]
= ∂ Fmj

∂ N (t)
m

∑
k

∇m fmk + ∂ Fmj

∂ N (t)
j

∇m fmj

+ ∂ Fmj

∂ Nconj
mj

∑
k �=m, j

(
F (xmk) ∇m fmk + fjk

∂ F
(
xjk

)
∂xjk

∇m fmj

)

∇m Fkj = ∂ Fkj

∂ N (t)
i

∇m


∑

j

fkj


 + ∂ Fkj

∂ N (t)
j

∇m

(∑
i

fki

)

+ ∂ Fkj

∂ Nconj
kj

∇m


 ∑

i �=k, j

[
fik F (xki ) + fi j F

(
xj i

)]


= ∂ Fkj

∂ N (t)
i

∇m fmk + ∂ Fkj

∂ N (t)
j

∇m fmk

+ ∂ Fkj

∂ Nconj
kj

(
F (xkm) ∇m fmk + F

(
xjm

) ∇m fmj
)

∑
i �=k, j,m

[
fik

∂ F (xki )

∂xki
∇m fmk + fi j

∂ F
(
xj i

)
∂xj i

∇m fmj

]
,

(B.6)
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Table B.2: Partial derivative values for the cubic spline interpolation of the function

Fij

(
N (t)

i , N (t)
j , Nconj

i j

)
. F(i, j, k) = F( j, i, k), F(i, j, k > 2) = F(i, j, 2), and

∂F(i, j,k)
∂i = ∂F( j,i,k)

∂i . All partial derivative values not given are zero [82, 116].

1st parametrization 2nd parametrization

F(2, 3, 1), F(2, 3, 2) −0.0465 −0.0363
F(1, 2, 2) −0.0355 −0.0243
F(1, 1, 1) 0.1511 0.1264
F(2, 2, 1) 0.075 0.0605
F(1, 2, 1) 0.0126 0.0120

F(1, 3, 1), F(1, 3, 2) −0.1130 −0.0903
F(0, 3, 1), F(0, 3, 2) −0.1220 −0.0904

F(0, 2, 2) −0.0445 −0.0269
F(0, 2, 1) 0.0320 0.0427
F(0, 1, 1) 0.1100 0.0996
F(1, 1, 2) 0.0074 0.0108

∂F(2,0,1)

∂i −0.1160 −0.09950
∂F(2,1,1)

∂i −0.13205 −0.10835
∂F(2,0,2)

∂i −0.0610 −0.0452
∂F(1,2,2)

∂i 0.02225 0.01345
∂F(1,3,2)

∂i 0.03775 −0.02705
∂F(2,3,2)

∂i 0.0565 0.04515
∂F(2,3,1)

∂i 0.0565 0.04515
∂F(2,1,2)

∂i −0.0602 −0.08760

where again the shorthand notations forf i j
(
ri j

)
and Fij

(
N (t)

i , N (t)
j , Nconj

i j

)
have been

used. The derivative ofF(x ik) with respect toxik is

∂ F (xik )

∂xik
=




0, if xik ≤ 2

−π
2 sin [π (xik − 2)] , if 2 < xik < 3

0, if xik ≥ 3 .

(B.7)

Equations (3.17), (3.19), and (3.20) have been used to calculate the values of the partial
derivatives of Equation (B.5) except for the values of the functionFij and its partial
derivatives which are interpolated using a tricubic spline interpolation from the values
of Table B.2 [115].

There still remains the cut-off function of Equation (3.13) to differentiate. The gradi-
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ent of the cut-off function is

∇m fmj
(
rmj

) =




0, if rmj < R(1)
mj

−1
2

π

R(2)
mj −R(1)

mj

sin

(
π

(
rmj −R(1)

mj

)
R(2)

mj −R(1)
mj

)
�rmj
|rmj | , if R(1)

mj < rmj < R(2)
mj

0, if rmj < R(2)
mj

∇m fim (rim ) =




0 , if rim < R(1)
im

+1
2

π

R(2)
im −R(1)

im

sin

(
π

(
rim −R(1)

im

)
R(2)

im −R(1)
im

)
�rim|rim | , if R(1)

im < rim < R(2)
im

0 , if rim < R(2)
im ,

(B.8)

and zero for all pairs of indices that do not includem.
Now all the terms to compute the acceleration of a particle according to Equation

(B.1) have been defined. The time development of the system can be calculated as
discussed in Section 3.2.1.
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