

Könönen, V. (2004): Multiagent reinforcement learning in Markov games: asym-
metric and symmetric approaches. Doctoral thesis, Helsinki University of Technology,
Dissertations in Computer and Information Science, Report D8, Espoo, Finland.

Keywords: Markov games, reinforcement learning, Nash equilibrium, Stackelberg equilib-
rium, value function approximation, policy gradient

ABSTRACT

Modern computing systems are distributed, large, and heterogeneous. Computers, other
information processing devices and humans are very tightly connected with each other and
therefore it would be preferable to handle these entities more as agents than stand-alone
systems. One of the goals of artificial intelligence is to understand interactions between
entities, whether they are artificial or natural, and to suggest how to make good decisions
while taking other decision makers into account. In this thesis, these interactions between
intelligent and rational agents are modeled with Markov games and the emphasis is on
adaptation and learning in multiagent systems.

Markov games are a general mathematical tool for modeling interactions between multiple
agents. The model is very general, for example common board games are special instances
of Markov games, and particularly interesting because it forms an intersection of two dis-
tinct research disciplines: machine learning and game theory. Markov games extend Markov
decision processes, a well-known tool for modeling single-agent problems, to multiagent do-
mains. On the other hand, Markov games can be seen as a dynamic extension to strategic
form games, which are standard models in traditional game theory. From the computer
science perspective, Markov games provide a flexible and efficient way to describe different
social interactions between intelligent agents.

This thesis studies different aspects of learning in Markov games. From the machine learn-
ing perspective, the focus is on a very general learning model, i.e. reinforcement learning,
in which the goal is to maximize the long-time performance of the learning agent. The the-
sis introduces an asymmetric learning model that is computationally efficient in multiagent
systems and enables the construction of different agent hierarchies. In multiagent reinforce-
ment learning systems based on Markov games, the space and computational requirements
grow very quickly with the number of learning agents and the size of the problem instance.
Therefore, it is necessary to use function approximators, such as neural networks, to model
agents in many real-world applications. In this thesis, various numeric learning methods are
proposed for multiagent learning problems.

The proposed methods are tested with small but non-trivial example problems from different
research areas including artificial robot navigation, simplified soccer game, and automated
pricing models for intelligent agents. The thesis also contains an extensive literature sur-
vey on multiagent reinforcement learning and various methods based on Markov games.
Additionally, game-theoretic methods and methods originated from computer science for
multiagent learning and decision making are compared.

Acknowledgments

The research work documented in this thesis has been carried out at the Laboratory of Com-
puter and Information Science (CIS) at Helsinki University of Technology during the years
2000–2004. The research project has been funded mainly by Helsinki Graduate School in
Computer Science and Engineering (HeCSE) and the CIS laboratory. I am also very grate-
ful to Emil Aaltonen Foundation, Finnish Foundation of Technology, and Finnish Cultural
Foundation for the personal grants I have received from them.

I wish to thank Academy Professor Erkki Oja for supervising my thesis and for providing
excellent working facilities and conditions for me. I also wish to thank my thesis advisor,
Professor Timo Honkela, for his valuable advices during the manuscript preparation.

I would like to express my sincere gratitude to the reviewers of my thesis, Dr. Kary Främling
and Dr. Petri Koistinen. Their timely comments and fruitful discussions with them led to
significant improvements of the manuscript. Special thanks go to Dr. Markus Koskela and
Dr. Panu Somervuo for reviewing the language of the early version of the thesis.

My co-workers at CIS laboratory and my friends in general have made this period of my
life very pleasant. In particular, the following persons have offered enjoyable working envi-
ronment and delightful discussions: Mr. Mika Inki, Dr. Jarmo Hurri, Mr. Jarkko Salojärvi,
Dr. Esa Alhoniemi, Dr. Johan Himberg, Dr. Harri Haanpää, and Dr. Sampsa Laine. Profes-
sor Esko Turunen and Dr. Jarkko Niittymäki deserve special compliments for their guidance
and encouragement in the early steps of my scientific career.

I am deeply indebted to my parents, Tarmo and Hilkka, for their continuous support and
encouragement during this thesis work and my whole life.

In Espoo, 15th November 2004

Ville Könönen

ii

Contents

Abstract i

Acknowledgments ii

Abbreviations vi

Symbols vii

1 Introduction 1

1.1 The main contributions of the thesis . 2

1.2 Publications and author’s contributions . 3

1.3 Organization of the thesis . 4

2 Reinforcement learning in Markov decision processes 5

2.1 History of RL in brief . 5

2.2 General principles . 6

2.2.1 A formal model of the agent based system 6

2.2.2 Suitable performance criteria . 7

2.3 Markov decision processes . 8

2.4 Actual solving and learning methods for MDPs 10

2.4.1 Solving methods for MDPs . 11

2.4.2 Learning methods for MDPs . 11

2.5 Exploration vs. exploitation . 13

iii

3 Principles of game theory 15

3.1 Brief history of game theory . 16

3.2 Basic game theoretical models . 16

3.2.1 Categorization of games . 17

3.2.2 Extensive form . 17

3.2.3 Strategic form . 18

3.2.4 Correspondence of the extensive form and the strategic form 19

3.3 Solution concepts for games . 20

3.3.1 Elimination of dominated strategies 20

3.3.2 Stackelberg equilibrium . 22

3.3.3 Correlated equilibrium . 23

3.3.4 Nash equilibrium . 24

3.3.5 MaxMin solution . 25

3.3.6 MaxMax solution and its extensions 26

3.4 Stackelberg solution and normal representation 26

4 Multiagent reinforcement learning in Markov games 29

4.1 Mathematical principles . 29

4.2 AMGs . 31

4.3 Correspondence between models . 32

4.3.1 Correspondence between MGs and extensive form games 33

4.3.2 Correspondence between AMGs and asymmetric MGs 33

4.4 RL in multiagent settings . 34

4.4.1 RL in AMGs . 34

4.4.2 Symmetric learning in MGs . 35

4.4.3 Asymmetric learning in MGs . 36

4.5 Some considerations on numeric approximation 37

4.5.1 Value-function-based methods . 38

iv

4.5.2 Policy gradient methods . 40

4.5.3 Learning to play optimally . 41

4.6 Why to use MGs in multiagent reinforcement learning? 43

5 Example problems 45

5.1 Grid world example . 45

5.2 Simplified soccer game . 48

5.3 Pricing scenarios . 48

5.3.1 Flat pricing problem . 50

5.3.2 Two-layer pricing problem . 52

6 Conclusions 55

Bibliography 57

v

Abbreviations

AMG Alternating Markov Game
CPU Central Processing Unit
GLIE Greedy in the Limit with Infinite Exploration
MDP Markov Decision Process
MG Markov Game
POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning
RRR Restricted Rank-based Randomized learning policies
SARSA State-Action-Reward-State-Action

an on-policy reinforcement learning method
SGP SubGame Perfectness
TD(0) Temporal Difference learning method with one timestep reward
VAPS Value And Policy Search
WoLF Win or Learn Fast
COIN COllective INtelligence

vi

Symbols

S states of the environment
Ai actions available to agent i
ri(s, a1, a2) reward for agent i when the actions

a1 and a2 are selected in a state s ∈ S
st state at the time instance t
ai

t action selected by agent i at the time instance t
ri
t+1 reward for agent i associated with the state

transition at the time instance t
πi policy function for agent i
πi
∗ equilibrium policy for agent i

∆(A) set of all probability distributions over
the elements of a set A

([a1], [a2]) strategy profile consisting of pure strategies
in two-player games

(p ∗ [a1] + q ∗ [b1],
r ∗ [a2] + s ∗ [b2]) strategy profile consisting of mixed strategies

in two-player games
σi randomization between the pure strategies of

player i (a mixed strategy)
δ randomization between the joint strategies of

the players (a correlated strategy)
Qi

π1,π2(s, a1, a2) total expected reward of player i when
actions a1 and a2 are selected in a state s ∈ S
and policies π1 and π2 are followed thereafter

V i
π1,π2(s) total expected reward of player i in a state s

when policies π1 and π2 are followed (value function)
γ discount factor in reinforcement learning methods
Qi

t(st, a
1
t , a

2
t); V i

t (st) Q-function of agent i at the
time instance t; value function of agent i
at the time instance t

p(s′|s, a1, a2) state transition probability s → s′ when
actions a1 and a2 are selected in a state s ∈ S

P (a|s) probability of selecting action a in a state s
αt learning rate at the time instance t
Val{Qi

π1,π2(s)} value of a state s for agent i

when some game theoretic solution concept is
applied to a Q-function Qi

π1,π2(s)
φ(s, a1, a2) unit vector with the element corresponding to

the state-actions tuple (s, a1, a2) set to one
f i(s, a1, a2;ω) parameterized value function approximation

for agent i (parameterized with ω)

vii

π(s, a1, a2;θ) parameterized joint policy function (parametrized
with θ)

ui(p1, p2) utility value of broker i when the current prices are
p1 and p2 in the flat pricing model

ui(p1, p2, s; l) utility value of agent i when the current prices are
p1, p2 and s in the two-layer pricing model. Maximum
price limit for the brokers is l

viii

Chapter 1

Introduction

This doctoral thesis deals with multiagent learning among intelligent agents. Here, multia-
gent means that there are multiple simultaneous learners present in the system; intelligence
means that learners are aiming at rational decision making and the term agent refers to de-
centralized learning, in which the actual reasoning and learning procedures take place inside
each learner.

A commonly accepted feature of intelligence is the capability of learning. In fact, these two
terms are often linked together so strictly, perhaps too strictly, that there is a straight corre-
spondence between intelligence and the ability to learn; a system that is capable of learning,
deserves to be called intelligent and every system recognized as intelligent should also be able
to learn. Overall, the goal of learning is to improve the performance of the learning agent
with respect to its, perhaps unknown, environment. In this thesis, the goal of agents is to
learn to anticipate long-time consequences of their action choices. This anticipation ability
is achieved by using reinforcement learning based on Markov Decision Processes (MDPs).
Additionally, learning agents co-exist with each other in the environment and hence, to be
able to act rationally, try to model their opponents. In this thesis, the relationship be-
tween agents is modeled with Markov Games (MGs) that are generalizations of MDPs for
multiagent domains.

MGs can be seen as extensions to two distinct research areas: MDPs and classic (static)
game theory. They extend single-agent MDPs to multiagent domains by associating a ma-
trix game with each state of the environment. On the other hand, MGs can be seen as
multistate extensions to static matrix games. Table 1.1 lists the main types of relevant op-
timization problems according to the number of decision makers and their time dependency.
The term Markov game stems from the work of Zachrisson (1964) and they are also called
stochastic games due to the earlier work of Shapley (1953). As single-agent MDPs are spe-
cial cases of more general MGs, MGs are also referred to as competitive Markov decision
processes. Single-agent MDPs are competitive Markov decision processes with zero-level of
competitiveness and, in the other extreme, there are zero-sum MGs with the maximum level
of competitiveness. Between these two extremes, there exist MGs where the interests of the
agents are only partially conflicting.

1

Table 1.1: Different types of optimization problems and the corresponding research
fields.

one agent many agents
static decision theory static game theory
dynamic Markov decision processes Markov games

The roots of MDPs and MGs extend to the 1950s. Since then, these two dynamic decision
making models have evolved rather independently and have been studied in different fields
such as engineering, applied mathematics, and economics. The theory of simpler single-agent
MDPs evolved more rapidly and numerous efficient solving and learning methods exist for
these processes. The theory of MGs has also matured significantly in recent years and some
numeric solution algorithms exist for these more complex processes. However, in the case of
MGs, learning the game structure and learning to play optimally are still very active research
areas.

In this thesis, the focus is on efficient, both tabular and numeric, learning methods in MGs.
The thesis consists of an introductory part and five publications listed in Section 1.2. The
publications contain most of the contributions of the thesis and are thus referred in appro-
priate positions of the text.

1.1 The main contributions of the thesis

The main contributions of the thesis are:

• Literature survey of the current status of reinforcement learning research. The funda-
mental research results in the field of reinforcement learning, particularly multiagent
reinforcement learning, and game theory are covered in this thesis.

• Asymmetric multiagent reinforcement learning model. This learning model simplifies
the decision making procedure in MGs by setting an additional requirement of the
ordering among decision makers. In contrast to the symmetric learning model, the
asymmetric learning model has stronger convergence properties and lower computa-
tional and space requirements.

• Numeric methods for value-function-based and policy-gradient-based multiagent rein-
forcement learning in MGs. Applying multiagent reinforcement learning methods to
realistic problems requires the use of function approximators such as neural networks.
For this purpose, efficient and general gradient based methods for multiagent reinforce-
ment learning are proposed in this thesis.

• Hybrid model for multiagent reinforcement learning in MGs. In MGs, the opponents are
modeled in each state of the system by using matrix games. In many problem instances
this is not required and hence, in this thesis, a method is proposed for dividing the
state space into two subspaces: the space of complex states and the space of simple
states. The opponent is modeled only in the complex states resulting in much lower
computational and space requirements than in standard MGs.

2

1.2 Publications and author’s contributions

The thesis includes the publications listed below. The corresponding Roman numbering of
the publications is used through the thesis when referring to the publications.

I Könönen, V. J. (2004). Asymmetric multiagent reinforcement learning, Web Intelligence
and Agent Systems: An International Journal (WIAS) 2(2): 105–121.

II Könönen, V. J. (2004). Gradient Descent for symmetric and asymmetric multiagent
reinforcement learning, Technical Report A78, Helsinki University of Technology, Pub-
lications in Computer and Information Science.

III Könönen, V. J. (2004). Hybrid model for multiagent reinforcement learning, Proceedings
of the International Joint Conference on Neural Networks (IJCNN-2004), Budapest,
Hungary, pp. 1793–1798.

IV Könönen, V. J. (2004). Policy gradient method for team Markov games, Proceedings
of the Fifth International Conference on Intelligent Data Engineering and Automated
Learning (IDEAL-2004), Exeter, UK. pp. 733–739.

V Könönen, V. J. and Oja, E. (2004). Asymmetric multiagent reinforcement learning
in pricing applications, Proceedings of the International Joint Conference on Neural
Networks (IJCNN-2004), Budapest, Hungary, pp. 1097-1102.

In Publication I, the author of the thesis proposes a multiagent reinforcement learning model
based on the asymmetric (Stackelberg) equilibrium concept. The publication also presents
an off-policy learning method that utilizes the proposed learning model. Moreover, the
convergence properties of the proposed method are studied analytically and empirically.

In Publication II, the author extends the general numeric gradient-based learning framework
from single-agent domains to multiagent domains. The framework presented in this publica-
tion takes into account the possible time varying exploration policy and makes it is easy to
apply different error criteria. The proposed method is tested with two example problems.

In Publication III, the author proposes a method that combines normal single-agent and
multiagent reinforcement learning methods by dividing the state space of the problem into
two subspaces: one containing states where the other agents are modeled and the other
where the opponents are not modeled. The state space division is done by utilizing task
specific information. The proposed method significantly reduces the computational and space
requirements of the multiagent reinforcement learning methods based on MGs. Moreover,
the proposed method is tested with a small example problem.

In Publication IV, the author applies asymmetric multiagent reinforcement learning to team
MGs. Based on this learning method, the direct policy gradient method, originally developed
for single-agent learning tasks, is extended to team problems. In addition, the proposed
method is applied to a simple soccer game.

In Publication V, asymmetric multiagent reinforcement learning is applied to two pricing
problems. The original idea of using asymmetric learning to pricing problems was developed

3

by the author. The systems used in testing the learning models were implemented by the
author. Both authors participated in writing the article.

1.3 Organization of the thesis

The rest of this thesis is organized as depicted in Fig. 1.1. Chapter 2 contains background
and basic principles of reinforcement learning based on MDPs. Chapter 3 concentrates on
basic concepts and foundations of game theory. These two chapters are mostly parallel and
aimed to form two distinct foundations for the next chapter on multiagent reinforcement
learning in MGs. Chapter 4 is also the main chapter of the thesis containing, together with
Chapter 5 and publications, most of the contributions of the author. Chapter 5 introduces
three example applications of multiagent reinforcement learning based on MGs. Finally,
Chapter 6 concludes the thesis.

Multiagent reinforcement
learning in Markov games

Reinforcement learning in
Markov decision processes

Principles of game theory

Chapter 3

Chapter 2

Chapter 4 Chapter 5
Example problems

Figure 1.1: Mutual relationship of the chapters in the thesis.

Overall, this work has been written from the computer science point of view. The used
notation may differ, in place to place, from the usual notation in game theory. In particular,
the decision makers are commonly referred to as players and their options as strategies in
game theory whereas in machine learning as agents and actions, respectively. In this thesis,
the decision makers face a game theoretic problem at each time step, usually identified as a
stagegame, and therefore game theoretic terms are used when discussing these stagegames.
On the other hand, when learning processes containing multiple stages are discussed, machine
learning terms are utilized.

4

Chapter 2

Reinforcement learning in
Markov decision processes

There are basically three major learning paradigms in machine learning: supervised learning,
unsupervised learning and reinforcement learning (RL). In supervised learning, there exists
a teacher having knowledge of the environment, in the form of input-output pairs, and the
learning system for which the environment is unknown. The teacher provides samples from
the environment by giving correct outputs to inputs and the goal of the learning system is to
learn to emulate the teacher and to generalize the samples to unseen data. In unsupervised
learning, contrary to supervised learning, there exists no external teacher and therefore no
correct outputs are provided. RL is located between supervised and unsupervised learning:
correct answers are not directly provided to the learning system but it learns features of the
environment by continuously interacting with it. The learning system takes actions in the
environment and receives reward signals from the environment corresponding to these action
selections.

In this thesis, the goal is to study RL in systems with multiple simultaneous learners in
the same environment. The methods discussed in the thesis lean heavily on single-agent RL
methods. This chapter provides a short view to the history of single-agent RL and to the
general principles of single-agent RL methods. Moreover, the focus is on problems in which
the consequences (rewards) of selecting an action can take place arbitrarily far in the future.
The mathematical tool for modeling delayed reward problems are Markov Decision Processes
(MDPs) and thus the methods discussed here are based on MDPs.

2.1 History of RL in brief

The modern RL methods have their roots in the early 1910s. American psychologist Edward
Thorndike made studies on animal psychology and the psychology of learning. In Thorndike
(1911), he discussed the idea that the actions producing satisfaction to the animal will be

5

later reselected more likely than the actions producing discomfort. This simple principle is
called the Law of Effect and it is, due to its intuitivity, widely regarded as a basic principle of
human and animal behavior (see e.g. Bower and Hilgard, 1981; Cziko, 1995; Dennett, 1978).

Another major research discipline that has greatly affected modern RL is optimal control
theory. It emerged in the late 1950s mainly due to the work of Bellman (see e.g. Bellman,
1957a; Bellman, 1961). The goal of optimal control theory is to find a control that minimizes
some measure of the system’s behavior over time. A general tool for solving optimal control
problems is dynamic programming. Bellman also proposed an MDP, the core of most RL
methods, as a model of discrete and stochastic optimal control problem in Bellman (1957b).

These two branches joined in the late 1970s to produce an efficient learning technique, namely
temporal difference learning. Its roots are in the concept of secondary reinforcers, i.e. rein-
forcements that are paired with primary reinforcers, like food or pain. For example, the
well-known work of Pavlov (1984) (unabridged edition of the original text published in 1927)
provides an example of secondary reinforcers in which a sound is the secondary reinforcer and
the food is the primary reinforcer. In temporal difference learning, the learning agent learns
to anticipate long-time consequences of its action choices. In this case, long-time expected
rewards can be considered as secondary reinforcers and the immediate rewards as primary re-
inforcers. The first paper proposing temporal difference learning rules was by Witten (1977).
Thereafter, numerous articles on temporal difference methods have been published, e.g. the
actor-critic architecture by Sutton, Barto and Anderson (1983). Perhaps the most well-
known methods for solving reinforcement learning problems are Q-learning (Watkins, 1989)
and SARSA-learning (Rummery and Niranjan, 1994). The convergence of these methods
were studied in Watkins and Dayan (1992) and Singh, Jaakkola, Littman and Szepesvári
(2000). A thorough survey of the basic methods for RL problem can be found in Kaelbling,
Littman and Moore (1996).

2.2 General principles

A fundamental concept in RL is an agent that interacts with its environment in the manner
illustrated in Fig. 2.1. The agent is assumed to be autonomous and rational. Autonomous
means that the agent is capable of making decisions on its own and everything else, i.e.
its real environment, other agents, etc., are part of its environment. The agent also has a
purpose or a goal, perhaps set by the designer of the agent and so it has a utility function
representing its goal. It tries to behave rationally with respect to this utility function, i.e. to
select actions that maximize its expected utility value.

Because the agent is an autonomous entity, it should have some instruments for sensing and
affecting its surrounding environment. The agent has sensors for observing the environment
and effectors for changing the environment by its own action selections.

2.2.1 A formal model of the agent based system

At each time step, the environment is in some state. The agent knows this state, either
exactly or partially, and makes its action choices based on this information. The agent then

6

Environment

Agent

Action

Cost
State

Figure 2.1: An overview of the learning system in its environment.

implements its action selection by using the effectors and based on the action selection, the
environment changes its state, perhaps stochastically. After the state transition, the agent
observes the new state and an immediate reward associated with the state transition.

Formally, the model of the system consists of the following parts (in this thesis it is assumed,
for brevity, that the system is discrete, i.e. time, states, and actions are all discrete):

– The environment is in some discrete state s ∈ S at each time step.

– The learning agent has a set of actions available in each state s ∈ S,
denoted A(s).

– When the system changes its state, the agent gets a real-valued reward r ∈ R.

– There is a function π that stipulates the behavior of the agent and thus summarizes
the agent’s knowledge of its environment.

The main difference between supervised learning and reinforcement learning is that in rein-
forcement learning, the feedback from the environment does not include information about
the right action choice. It only provides a punishment or a reward signal based on the
current action choice of the agent. Due to the lack of correct answers, the learning system
should gather information of its environment in a trial-and-error manner. This leads to the
exploration vs. exploitation dilemma that will be discussed at the end of this chapter.

2.2.2 Suitable performance criteria

A rational agent always selects the action that maximizes some performance criterion that
reflects design objectives of the agent. Usually it is not enough to maximize only the direct
reward r. Instead, it is preferable to maximize the long time performance of the agent. Three
suitable long-time performance criteria are presented below. In each case, the criterion is
an expected value because different sources of stochasticity can exist in the system (state
transitions, action choices, etc.). Moreover, all criteria depend on the policy π that stipulates
the behavior of the agent.

– Expected total reward: Eπ[
∑h

t=0 rt+1]. In this case, the objective function is the total,
cumulative reward collected in some finite length h episode of the interaction between

7

the agent and the environment. This error criterion is suitable for the cases in which
the length of the task is known to the agent a priori. However, the difficulty is that
the optimal behavior (policy) is not necessarily stationary; it could change over time.

– Expected total discounted reward: Eπ[
∑∞

t=0 γtrt+1]. This is almost the same as the
previous criterion except that now the horizon h is infinite. With infinite horizon, the
expected total reward would be unbounded and therefore the rewards are discounted
by a discount factor γ ∈ [0, 1[that controls the balance between the significance of
immediate rewards and future rewards. If γ is near zero, the agent makes its decisions
almost myopically; decisions are based on immediate rewards and, on the other hand,
if γ is near one, the agent is willing to sacrifice immediate rewards for acquiring a large
long-time expected utility value.

– Expected average reward: limh→∞ Eπ[1
h

∑h
t=0 rt+1]. In this case, the goal is to maxi-

mize the total average reward over time. This criterion is complementary to the pre-
vious performance criterion and, in fact, the optimal policy maximizing the expected
discounted reward criterion becomes equivalent to the policy maximizing the expected
average reward criterion when γ approaches unity. The main difficulty with this cri-
terion is that it is not possible to balance between policies that emphasize short time
rewards and then policies that emphasize longtime rewards. On the other hand, the
methods that use the expected average reward criterion do not have a discount factor
parameter γ and thus have one parameter less than methods based on the expected
discounted reward criterion.

The second performance criterion, the expected total discounted reward criterion, is the one
used most in reinforcement learning literature. This is mainly due to the fact that it is easier
to handle mathematically than the other two criteria. All methods presented in this thesis
utilize this performance criterion.

2.3 Markov decision processes

The actual consequences of an action selection in the current state may take place in the
distant future. Therefore it is very important to be able to anticipate these consequences and
always choose an action that leads to optimal behavior. This problem of delayed rewards is
often called the credit assignment problem and the tool for handling it is an MDP. A thorough
coverage of the basic principles of MDPs can be found in (Sutton and Barto, 1998).

Formally, a Markov decision process can be defined in the following way:

Definition 2.1 A Markov Decision Process (MDP) is a tuple (S, A, p, r), where S is the set
of all states, A is the set of all actions, p : S × A → ∆(S) is the state transition function
and r : S × A → R is the reward function. ∆(S) is the set of all probability distributions
over the set S.

At each time step, the environment is in some state s ∈ S and the agent selects an action
a ∈ A(s). Based on this action selection, the environment changes its state according to the

8

probability distribution p and the agent gets an immediate reward r. The state transition
probabilities p may depend only on the current state of the environment and the current
action selection of the agent. In this thesis, it is assumed for brevity that the agent has the
same set of actions available in each state, i.e. A(s) = A,∀s ∈ S.

The central concept in MDPs is the policy function π that stipulates the actual behavior of
the agent, i.e. it maps states to actions. Formally, the following mapping exists for all t:

π : St → At. (2.1)

Note that this policy function depends also on time, i.e. the function can return different
actions at different time steps t even in the same state s. This property is needed in the finite
horizon problems where the optimal policy can be time dependent. For example, consider
a game playing situation where the player (agent) knows the actual length of the game. In
the last rounds of the game, the player might be willing to take more risks to achieve his
goals than in the beginning of the game if he seems to be losing the game. In infinite horizon
problems or problems in which the actual length of the task is not known a priori, the only
way to behave optimally is to assume at each time step that the task will still continue
infinitely long and therefore the optimal policy is not time-dependent, i.e. the policy π is
stationary :

π : S → A. (2.2)

In this thesis, the focus is on stationary policies.

For making decisions in MDPs, the agent needs to associate values for the states of the
environment. A natural choice for this value is one of the above presented performance
criteria when the policy π is followed. In the case of the expected total discounted utility
value, this criterion takes the following form:

Vπ(s) = Eπ

[∞∑
t=0

γtrt+1

∣∣s0 = s

]
, (2.3)

which is simply the expected (state transitions are generally stochastic) discounted sum of
rewards when the agent starts from the state s ∈ S and follows the policy π infinitely. For
the actual comparison of the actions in an arbitrary state s ∈ S, it is useful to extract the
immediate rewards from Vπ(s). This function is often called Q-function and formally it can
be expressed in the following way:

Qπ(s, a) = Eπ

[∞∑
t=0

γtrt+1

∣∣s0 = s, a0 = a

]
. (2.4)

This can be written in the following recursive form that is also known as the Bellman equa-
tion:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)Vπ(s′). (2.5)

The literal interpretation of the above equation is that the value of selecting an action a in
a state s is the sum of the immediate reward r and the discounted expected value of further
states when the policy π is followed.

9

Bellman’s optimality principle states that no matter how the agent has reached the current
state it should behave optimally from now on. Applying this principle simultaneously in
each state s ∈ S, the global optimal behavior is acquired. Hence, for the optimal policy π∗
it should hold in every state s ∈ S that

Vπ∗(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)Vπ∗(s
′)

]
. (2.6)

The policy function is a mapping from the state space S into the action space A. For the
rational agent and for the optimal value function Vπ∗ , the optimal policy function can be
written in the following form:

π∗(s) = arg max
a∈A

Qπ∗(s, a). (2.7)

Note that because the optimal policy function implements the rational agent that maximizes
its expected discounted utility in each state, the value of each state is always the value of
the maximizing action. Therefore, it is possible to write Eq. (2.6) in the policy independent
form:

V∗(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V∗(s′)

]
. (2.8)

In this thesis, the subscripts denoting optimal policies are preferred because in the following
chapters, where multiagent extensions to MDPs are discussed, it is easier to distinguish
between different agents and their policies by using these subscripts.

2.4 Actual solving and learning methods for MDPs

In this section, several basic solution and learning methods for MDPs are discussed briefly.
If the model of the environment, i.e. state transition probabilities and rewards r are known,
all information about the MDP is known a priori and it is possible to solve the problem
by using various available solution methods. If this model is not known, there are two
possibilities (Kaelbling et al., 1996):

1. Learn a model of the environment by interacting with the environment and then solve
the problem by using some solution method. These methods are usually referred to as
model-based methods.

2. Learn the optimal value function by interacting with the environment and then act
optimally with regard to this value function. These methods are often called model-
free methods.

An overview of different methods is provided in this section. However, the focus of this
thesis is on model-free learning methods and therefore only the relevant solving and learning
methods are discussed in detail.

10

2.4.1 Solving methods for MDPs

It is possible to find the unique optimal value function Vπ∗ by solving simultaneously Eq. (2.6)
for each state s ∈ S. Unfortunately the equation contains the maximum operator and hence
it is not possible to solve the problem by using standard methods for systems of linear
equations such as Gaussian elimination. In addition, if the state space of the problem is
large, solving Eq. (2.6) for each state becomes intractable. However, it is possible to express
the problem as a linear program and solve it by using one of the many methods designed for
solving linear programs, e.g. the Simplex method due to Dantzig (1963). A lot of software
packages and subroutine libraries also exist for this purpose (see e.g. NAG, 2004; IMS, 2004).
However, also in this case, the number of linear constraints is quite large even with relatively
simple problems.

The policy iteration and value iteration algorithms are two very simple and important al-
gorithms for solving MDPs. Also, many more sophisticated learning methods are based on
the ideas behind these two algorithms. The main idea behind the policy iteration algorithm
is to improve the policy function π directly. The algorithm calculates the value function
corresponding to this policy function by solving the system of linear equations and then
determines the greedy policy according to this value function. The algorithm stops when
there are no changes in the policy function in two consecutive iterations of the algorithm. If
| · | denotes the size of an arbitrary set, there are |A||S| distinct policies and since the policy
improves in each iteration, the algorithm requires at most |A||S| iterations (Littman, 1996).
The policy iteration algorithm is presented in the algorithmic form in Algorithm 2.1.

Solving the system of linear equations in the policy iteration algorithm requires a lot of
computation if the state and the action spaces are large. Another way to solve MDPs is to
use the value iteration algorithm which is based on successive approximations of the value
function V and thus there is no need to compute the exact value of this value function in
each state in every iteration of the algorithm. The value iteration algorithm is listed in
Algorithm 2.2.

In Algorithm 2.2, the end condition that is expressed in a very rough manner as the policy
is good enough, must be selected suitable for the problem in hand. A natural choice is to
calculate distances between vectors containing values of V in each state from consecutive
iterations of the algorithm and terminate the algorithm when the difference is small enough.
However, in many problems, particularly in control problems, only mutual ordering of the
actions counts and this ordering converges much before the value function. Therefore some
other stopping criteria may be used.

2.4.2 Learning methods for MDPs

If the model of the environment is not known a priori, it must be estimated during the
learning process. In the value iteration algorithm, the whole state space is swept through in
each iteration and the real model of the environment is used to estimate the Q-function. In
the TD(0)-algorithm by Sutton (1988), the value function is updated by using data gathered
from the interaction with the environment. When the environment is in a state st at time
instance t and the agent selects the action at, the system changes its state to st+1 and the

11

Algorithm 2.1 Policy iteration algorithm.
Initialize the value function V arbitrarily, e.g. V (s) = 0 for each s ∈ S. Initialize the
policy function π arbitrarily, i.e. π(s) ∈ A(s),∀s ∈ S.
policy evaluation:
repeat

for all s ∈ S do
Vt+1(s) = r(s, π(s)) + γ

∑
s′∈S p(s′|s, π(s))Vt(s′)

end for
until maximum change in V is ≤ ε
policy improvement :
πold = π
for all s ∈ S do

π(s) = arg maxa∈A[r(s, a) + γ
∑

s′∈S p(s′|s, a)V (s′)]
end for
if πold <> π then

Go to policy evaluation
end if

Algorithm 2.2 Value iteration algorithm.
Initialize the value function V arbitrarily, e.g. V (s) = 0 for each s ∈ S.
while policy is not good enough do

for all s ∈ S do
for all a ∈ A do

Q(s, a) = r(s, a) + γ
∑

s′∈S p(s′|s, a)Vt(s′)
end for
Vt+1(s) = maxa∈A Q(s, a)

end for
end while

agent gets the reward rt+1. Then, the value function V is updated by using the following
equation:

Vt+1(st) = (1− αt)Vt(st) + αt[rt+1 + γVt(st+1)]. (2.9)

The main idea of this algorithm is to move the value of V (st) gradually toward the expected
value of rt+1 +γV (st+1) which is the desired value of V (st). Because the agent observes only
one state transition at each time step, the algorithm is a stochastic approximation algorithm
and therefore the learning rate parameter should satisfy the usual conditions of stochastic
approximation theory, see Robbins and Monro (1951). Note that the TD(0) algorithm is,
in fact, a version of the Widrow-Hoff learning rule (Widrow and Hoff, 1960) in which the
desired output is set to rt+1 + γV (st+1).

Perhaps the most used algorithm for reinforcement learning is Q-learning, which is a version
of the above learning rule in which the value function V is substituted with the Q-function
and the policy is the greedy policy with respect to the Q-function. The actual learning rule
takes the following form:

Qt+1(st, at) = (1− αt)Qt(st, at) + αt[rt+1 + γ max
b∈A

Qt(st+1, b)]. (2.10)

12

Particularly in control problems, a fitness value should be available for each state-action
pair, which is often difficult to implement with TD(0)-learning rule. In Q-learning, the agent
can select its actions directly based on Q-function in each state and when the process has
almost converged it is reasonable to act rationally and select the actions that maximize the
Q-function in each state. Another advantage of Q-learning is that it is exploration insensitive
in the sense that it is guaranteed to converge if every state-action pair is visited infinitely
often. For this reason, Q-learning is often referred to as an off-policy method. As state and
action spaces of real-world problems are often very large, this property is seldom satisfied
and the actions are often selected by using some of the exploration techniques discussed at
the end of this chapter.

SARSA-learning differs from Q-learning in the sense that it does not use an artificial action
in the state st+1, i.e. an action that maximizes the Q-function. Instead, it selects actions
based on the current, possibly non-stationary, exploration policy. The update rule for the
SARSA-learning is as follows:

Qt+1(st, at) = (1− αt)Qt(st, at) + αt[rt+1 + γQt(st+1, at+1)]. (2.11)

This learning rule can learn the optimal Q-function if the used exploration policy chooses
actions optimally in the limit. This property is satisfied in the GLIE (Greedy in the Limit with
Infinite Exploration) exploration policy. Although the use of on-policy learning methods such
as SARSA, set additional restrictions to the exploration policy, on-policy methods appear
to be superior to off-policy algorithms in many prediction and control problems (Singh,
Jaakkola, Littman and Szepesvári, 2000).

TD(0), Q-learning and SARSA-learning build the model of the environment implicitly dur-
ing the learning process. Another approach is to build the model during the learning process
and then use this model for value or Q-function updating. Examples of this type of learn-
ing methods are DYNA proposed in Sutton (1990), Sutton (1991) and prioritized sweeping
proposed by Moore and Atkeson (1993). Additionally, the specific category of model based
methods contain methods that utilize normal on-policy or off-policy learning methods but
also predict the parts of the environment that are useful for the agent (see e.g. Barto, Bradtke
and Singh, 1995; Dean, Kaelbling, Kirman and Nicholson, 1993). The basic solution methods
for RL problems are discussed by Sutton and Barto (1998). More mathematical coverage of
RL methods with an emphasis on the stochastic-approximation theory is given by Bertsekas
and Tsitsiklis (1996). A broad perspective to machine learning is given by Mitchell (1997).

2.5 Exploration vs. exploitation

In real-world applications of RL, state and action spaces become very large and therefore
it is intractable to visit all states or state-action pairs multiple times during the learning
process. The one way to circumvent this problem is to interact with the environment and
select the actions that are expected to lead to the most interesting and most useful parts of
the state space. The decisions are often based on the current estimation of the value function
and some probabilistic component that occasionally selects actions that do not have high
expected utility values yet. If this random component is too small, some good areas of the

13

state space may remain unvisited and the learned value function is suboptimal. On the other
hand, selecting all actions at random is too inefficient.

Perhaps the most used exploration method is ε-greedy exploration in which actions are usually
selected by using greedy action selection but with a small probability, ε, actions are selected
from the uniform distribution independently from the Q-function. In the beginning of the
learning process ε is usually very large and it is decayed during the learning.

Another well-known method is the softmax action selection in which the action selection
probabilities are determined by the Gibbs distribution in the following way:

P (a|s) =
eβQ(s,a)∑

b∈A eβQ(s,b)
, (2.12)

where β is the temperature parameter the determines how random the action selection proce-
dure is. If β is near to zero, the agent selects actions almost randomly and when β approaches
infinity, the action selection approaches greedy action selection. This method together with
ε-greedy action selection results in GLIE exploration methods because they approach greedy
action selection eventually.

Another class of exploration methods is RRR (Restricted Rank-based Randomized learning
policies) exploration. In RRR exploration methods, the actions are ranked according to some
rule and then the ranks determine actual probabilities for choosing actions so that higher
ranks get the same or higher probability than lower ranks. Different exploration strategies
can be represented in the RRR framework, e.g. pure random exploration or the ε-greedy
exploration. Note that softmax action selection depends directly on Q-values and therefore
it is not an RRR exploration policy.

14

Chapter 3

Principles of game theory

Mathematical game theory provides means to formally inspect social interactions between
rational and intelligent decision makers. In game theory, the term game refers not merely to
literal games even though it is possible to inspect also these games with game theory, but any
social interactions between two or more decision makers. Social interactions consist of any
kind of cooperation or conflict situations between humans or any other type of autonomous
agents. Game theoretic models are used to analyze these interactions in various domains
including finance, politics, and warfare.

Decision makers in game theory are usually denoted as players and the options available
to the players as strategies. The basic assumption is that the players are intelligent and
rational. Intelligence means that all players know everything that the game theorist knows
and are thus capable of making the same inferences as the game theorist. Rationality means
that players always try to maximize their social welfare. As the modern game theory is built
on decision theory, the social welfare of the players is evaluated in terms of utility value and
therefore rational players select strategies that maximize their expected utility values taking
into account the strategies of their opponents.

The main aim of this chapter is to provide a brief outline of game theory, its history and a
review of methods needed in the consecutive chapters. The discussion is divided into four
sections. In the first section, the history of game theory is discussed in brief. Mathematical
games can be expressed in different forms. An overview of these forms and the relationships
between them is given in the second section. When the social interaction between players is
expressed as a mathematical game, the goal of the players is to find a solution to the game,
i.e. strategies that maximize their expected utility values. Suitable solution concepts are
discussed in the third section. Most of these solution concepts are simply special cases of
the Nash equilibrium concept, which is perhaps the most studied solution concept in game
theory. If some special properties are required from the applied solution concept, the game
can be represented in a more compact and computationally efficient form. These issues are
covered in the last section of the chapter. In all examples presented in the chapter, numbers
denote payoff values for the players and the goal of the players is to maximize their payoffs.

15

3.1 Brief history of game theory

Modern game theory can be said to have been established by Morgenstern and von Neu-
mann in their seminal book (von Neumann and Morgenstern, 1944). However, earlier work
by Cournot (1897), Edgeworth (1881), Zermelo (1913), Borel (1953c), Borel (1953a), Borel
(1953b) (English translations from original articles published in the 1920s), and von Neu-
mann (1959) can be thought to construct a prelude for this seminal book and thus the whole
theory of mathematical games. Cournot studied economical systems and discussed a special
case of duopoly and a solution concept that is, in fact, a special case of the Nash equilibrium
concept. Edgeworth studied the role of agreements in free markets and proposed the concept
of contract curve as a solution to trading between individuals. Zermelo studied the game
of chess and provided a proof that the game has an optimal strategy, corresponding to a
subgame perfect equilibrium that is a Nash equilibrium solution of chess. Borel proposed
the concept of mixed strategy, i.e. a randomization between two or more pure strategies in a
game. In addition, he proposed the minimax solution concept in two-person zero-sum games
and proved its existence in a few special cases. Von Neumann then extended this existence
proof for arbitrary two-player zero-sum games. Another solution concept for general-sum
mathematical games was proposed by von Stackelberg (1934) within the context of economic
competition. English translation of this work can be found in von Stackelberg (1952).

In von Neumann and Morgenstern (1944), the authors considered only minimax solutions
proposed earlier by Borel and von Neumann in von Neumann (1959) and Borel (1953c), Borel
(1953a), Borel (1953b), respectively. In 1950, Nash extended this solution concept for general-
sum games in Nash (1950b). The Nash solution concept, providing a safe solution to general-
sum games from which no single player is willing to deviate, is perhaps the most studied
solution concept in game theory. In fact, most of the solution concepts proposed later are
only special cases of Nash equilibria. Nash also studied bargaining problems in Nash (1950a)
and Nash (1953). He was awarded the Nobel prize in economy for his contributions in game
theory in 1994 together with Harsanyi and Selten.

Kuhn (1953) introduced extensive form games with imperfect information (extensive form
games were introduced earlier by von Neumann and Morgenstern (1944)). Selten (1975)
proposed a suitable solution concept for extensive form games, the subgame perfect equilib-
rium concept. A wide range of models of repeated games, i.e. static games that are repeated
finitely or infinitely many times, have been studied in the game theory literature. Perhaps
the most interesting special case is the stochastic game model (Markov game model) origi-
nally proposed by Shapley (1953) that is, in fact, a natural game theoretical extension to
single-agent Markov decision processes originally proposed by Bellman (1957a). Markov de-
cision processes and Markov games have a close relationship, as was discussed in the previous
chapter, to optimal control theory and its multiplayer version, dynamic game theory.

3.2 Basic game theoretical models

Mathematical games can be represented by using two different main representations: the
strategic form and the extensive form. In this section, mathematical games are categorized
with respect to two attributes: the number of players in the game and the correlation be-

16

tween the payoff values of the players. In addition, the two main representations of the
games are discussed and their features are compared. The thorough discussion of the basic
representations and their mutual relationships can be found in Myerson (1991).

3.2.1 Categorization of games

Modern game theory can be considered as an extension of decision theory to the situation
which contains multiple decision makers. Thus, if the game only has one decision maker,
it can be handled as a decision theoretic problem as the player always implements a strat-
egy that maximizes the player’s own expected utility function. As the number of players
increases, the computation of a solution becomes, depending on the solution concept, more
demanding.

Another important property of games is the payoff correlation between players. With a
maximal correlation, either positive or negative, in the payoff values of players, the solution
of the game is easier to obtain than in the general case; it can be said that the operators are
more “close” to the normal maximum operator of decision theory. In Fig. 3.1, an illustration
of how the nature of a mathematical game depends on its payoff structure is presented. In
a team game, the same utility function is shared by all players and hence the correlation
between players’ payoff values is at maximum. On the other end, in zero-sum games the
payoffs are complements of each other and there exists the maximal negative correlation
between the payoff values. In general-sum games, the objectives of the players are partially
conflicting and therefore these games lie between the extreme cases presented in Fig. 3.1.

Zero−sum game Team game

Non−cooperative Cooperative

Payoff structure

Figure 3.1: Payoff structure vs. nature of games.

3.2.2 Extensive form

Extensive form is the most versatile way to represent social interactions between decision
makers. It models the temporal structure of the game explicitly and therefore even large
board games can be represented as extensive form games.

In Game 3.1, there are two simple examples of extensive form games. An extensive form
game is a tree that represents all the events that can occur in the game. The tree consists
of nodes, one of which is the root that represents the beginning of the game. Each node is
controlled by one of the players, i.e. one of the players makes its strategy selection in each
node. The nodes are connected with branches that represent different strategy choices for
the players. The nodes that are not followed by any further branches are terminal nodes
and they represent possible ways that the game could end. At each terminal node, there is
a set of numbers, separated by commas, that represent payoff values for each player when
the game ends at this terminal node. When the game is actually played, the game instance

17

forms a path from the root node to one of the terminal nodes; this sequence of events is
called the path of play. Each node has two labels: the first corresponds to the number of the
player that controls the node and the second to the information set of the node. If two nodes
are in the same information set, the player that controls these nodes can not distinguish
between these decision nodes. In Game 3.1, the two games differ only in that player 2 has
different information on the strategy selected by player 1. In the game on the left, both
nodes controlled by player 2 have distinct information states and therefore player 2 knows
what strategy player 1 has selected at the previous time step. In the game on the right,
player 2 can not distinguish between the two nodes and therefore has no information about
the strategy selection of player 1. In fact, the rightmost game illustrates the situation where
both players choose their strategies simultaneously. In addition, extensive form games may
have probabilistic change nodes that are usually marked with the player number 0 (“Nature”)
and strategies available for this player marked with probability values.

1.1

2.2

2.3

3,1

0,0

0,0

1,3

a

A
b

1

1

B

2

a2

2

b2

a2

a2

b2

b21.1

2.2
3,1

0,0

0,0

1,3

2.2

a

b

1

1

Game 3.1: Two extensive form games with different information states for player 2.

3.2.3 Strategic form

A simpler and more compact way than the extensive form to represent mathematical games is
the strategic form. Contrary to the extensive form, it does not represent the time dependence
of the players’ strategy selections and thus shrinks the game into a single time step. A
strategic form game is fully determined by the set of players, the strategies available to each
player and the rule determining how the payoffs of the players depend on their strategy
selections. A compact representation of games in the strategic form is a multidimensional
array of numbers corresponding to the joint strategy choices of the players. Therefore, games
in the strategic form are usually referred to as matrix games and particularly in the case
of two players, if the payoff matrices for both players are separated, as bimatrix games. In
general, an N -person matrix game is defined as follows:

Definition 3.1 A matrix game is a tuple Γ = (A1, . . . , AN , r1, . . . , rN), where N is the
number of players, Ai is the strategy space for player i and ri : A1 ×A2 × . . .×AN → R is
the payoff function for player i.

In addition to the pure strategies, ai ∈ Ai it is allowed that players can randomize over
their pure strategies. Let ∆(Ai) be the set of all distributions over the strategies of player i.

18

Then, an arbitrary mixed strategy, i.e. a randomization over the pure strategies of player i,
is denoted as σi ∈ ∆(Ai).

Usually, as the strategic form games are static, it is assumed that the players implement (or
are ready to implement and can not change their decisions anymore) their strategy selections
simultaneously and get their rewards after the implementation. This often implies that the
players also select their strategies simultaneously. However, with some solution concepts,
e.g. the Stackelberg equilibrium, the players have an ordering in their decision process and
the payoff values realize only after all players have selected their strategies.

An example matrix game is depicted in Game 3.2. In that game, there are two players, both
with three possible strategies. The first number in each cell denotes the payoff value for
player 1 and the second number for player 2.

a2 b2 c2

a1 0, 1 −2,−1 − 3
2 , 2

3
b1 −1,−2 −1, 0 −3,−1
c1 1, 0 −2,−1 −2, 1

2

Game 3.2: An example matrix game of two players each having three possible pure
strategies.

3.2.4 Correspondence of the extensive form and the strategic form

Extensive form games can be transformed into the strategic form although all references
to the timing of the moves in the original extensive form are lost. In many cases, this
reduction does not cause any problems and the resulting strategic form games are often
much easier to analyze. On the other hand, there exists also games in which the reduction
has crucial consequences and the solutions obtained from strategic representations can be
quite suspicious.

There are two basic representations of an extensive form game in the strategic form, namely
the normal form and the multiagent form. In the normal form, a strategy of a player defines
the player’s behavior in all of the player’s information states of the game. The normal
representation of the extensive form game depicted on the left in Game 3.1 is shown in
Game 3.3 and the extensive form game depicted on the right in Game 3.4.

a2A2 a2B2 b2A2 b2B2

a1 3, 1 3, 1 0, 0 0, 0
b1 0, 0 1, 3 0, 0 1, 3

Game 3.3: The normal form representation of the extensive form game depicted in
Game 3.1 (left).

If two pure strategies of a strategic form game lead to the same payoff for the player no matter
what the player’s opponents do, then the strategies are called payoff equivalent. Then it is
possible to alter the actual game by deleting all but one strategy from each equivalence class
of strategies and the resulting game is called purely reduced normal form. Moreover, if a

19

a2 b2

a1 3, 1 0, 0
b1 0, 0 1, 3

Game 3.4: The normal form representation of the extensive form game depicted in
Game 3.1 (right).

mixed strategy leads to the same payoff value for the player, regardless of the opponents’
play, as a pure strategy, then this pure strategy is said to be randomly redundant and can be
erased from the game. When the randomly redundant strategies are removed from purely
reduced normal form, the game has the same relevant information as the original game but
the number of the strategies is smaller. The game is said to be in the fully reduced normal
form.

In the multiagent representation of an extensive form game, the set of players is modified by
defining a player for each information state of the game. A strategy profile in the multiagent
representation of an extensive form game is usually referred to as a behavior strategy profile
and it defines a probability distribution over the strategies available to the player in the
corresponding information state. Many mixed strategies may generate an equal behavior
(they are behaviorally equivalent) in the course of play.

The representations discussed above are very generic and suitable for all extensive form
games. If the extensive form game has some special properties or special properties are
required for the applied solution concept, e.g. SubGame Perfectness (SGP), a more suitable
representation may be found. These issues are discussed at the end of this chapter.

3.3 Solution concepts for games

The goal of game theory is to estimate, given a game in some representation, the possible
paths of the play through the game tree in the extensive form. In decision theory, the rational
decision maker selects a strategy that maximizes the decision maker’s expected utility value.
In game theory, the strategy selections of the opponents affect the utility value of the player
and therefore the player should take the opponents’ behavior into account. In this section,
various possible solution concepts for mathematical games in strategic form are introduced.
The applicability of a particular solution concept depends crucially on the properties of the
game, such as the number of players, the correlation between the players’ payoff functions,
and the roles of the players in the decision making. In some sense, however, it might me useful
to think that all of these solution concepts are only extensions of the maximum operator used
in decision theory for multiple decision makers. The solution concept presented in this section
are discussed more thoroughly e.g. in Myerson (1991) and in Fudenberg and Levine (1998).

3.3.1 Elimination of dominated strategies

Perhaps the weakest solution concept for solving mathematical games is the elimination of
dominated strategies. It is based on the fact that a rational player should never select a

20

strategy that does worse than some other strategy regardless of the opponents’ play. It only
provides a method to reduce the number of strategies available to the players and does not
always lead to a situation in which all players have only one strategy left. The method can
be further divided into two subcategories: reduction of strongly dominated strategies and
reduction of weakly dominated strategies.

Reduction of strongly dominated strategies is the weaker one of the elimination methods
and it may be possible to continue the reduction further by using the elimination of weakly
dominated strategies. The strategy ai is strongly dominated by the mixed strategy σi if the
following inequality holds for all strategy profiles a1, . . . , ai−1, ai+1, . . . , aN :

ri(a1, . . . , ai−1, ai, ai+i, . . . , aN) < ri(a1, . . . , ai−1, σi, ai+i, . . . , aN), (3.1)

where the right hand side is a short-hand notation for the expected payoff value given a
mixed strategy σi. After a strongly dominated strategy is erased from the set of strategies,
other strategies may become strongly dominated and the elimination process can thus be
continued. The order in which the strategies are eliminated does not affect the final residual
game resulted from the iterated elimination process.

In the game depicted in Game 3.5, the strategy c2 is dominated for player 2 by the mixed
strategy in which player 2 selects strategies a2 and b2 with an equal probability. After
eliminating c2, b1 becomes dominated by a1 for player 1. In the resulting game, b2 is then
strongly dominated by a2. This reduction process thus leads to a game in which both
players have only one strategy option left and hence the elimination process provides a
unique prediction of the game depicted in Game 3.5.

a2 b2 c2

a1 2, 3 3, 0 0, 1
b1 0, 0 1, 6 4, 2

Game 3.5: An example strategic form game. The iterated elimination of strongly
dominated strategies leads to the unique prediction of the game, namely the strategy
profile ([a1], [a2]).

The other closely related method is the elimination of weakly dominated strategies. The
strategy ai is weakly dominated by the mixed strategy σi if the following inequality holds
for all strategy profiles a1, . . . , ai−1, ai+1, aN :

ri(a1, . . . , ai−1, ai, ai+i, . . . , aN) ≤ ri(a1, . . . , ai−1, σi, ai+i, . . . , aN) (3.2)

with the strict inequality holding for at least one of the opponents’ strategies. Note that
weakly dominated strategies include all strongly dominated strategies and hence the reduc-
tion process often leads to smaller residual games. However, this reduction process is order
dependent and therefore the resulting residual game depends on the order in which the
weakly dominated strategies are eliminated.

As stated above, the elimination of dominated strategies is not a real solution concept for
games in strategic form as the residual game may have more than one strategy left for all
players. The well-known game named Battle of Sexes (for detailed description of this game
and the other popular example games, see e.g. Luce and Raiffa, 1957), depicted in Game 3.4,

21

is an example of games in which it is not possible to eliminate any strategies by using the
above discussed elimination processes.

3.3.2 Stackelberg equilibrium

When the Stackelberg solution concept is applied to a matrix game, the players are put in
some ordering and all the players are assumed to know and accept this ordering. In the
two-player case with player 1 selecting a strategy first, player 1 is called the leader and
player 2 the follower. It is often said that the leader is capable of enforcing or announcing
a strategy selection to the follower who then selects, in its turn, its own strategy rationally
based on this enforcement. Note that this does not mean that the leader has an advantage
over the follower; in fact since the leader has to put its cards on the table first, the follower
can enforce the leader to play some strategy. For example, in Game 3.6, if player 1 (the row
player) is acting as the leader and player 2 as the follower, the leader has to consider the
rational responses of the follower. If the leader selects the strategy a1, the follower’s rational
response is a2. If the leader selects b1, the follower responds with the strategy b2 and if the
leader selects c1, the follower selects c2. Clearly, the leader’s strategy choice b1 leads to the
best payoff for the leader and therefore it is also the unique rational strategy selection for
the leader.

a2 b2 c2

a1 1, 1 0, 0 0, 0
b1 0, 0 3, 1 0, 0
c1 0, 0 0, 0 2, 1

Game 3.6: An example strategic form game with the unique Stackelberg equilibrium
strategy profile ([b1], [b2]).

The only requirement of the Stackelberg equilibrium is that the follower’s response should
be unique. If this is not the case, some additional requirements should be set. In Game 3.7,
there is an example in which the follower’s response is not unique when the leader selects
its strategy a1. However, if the follower always chooses the first of its rational responses,
the unique Stackelberg equilibrium for this game is the strategy profile ([a1], [a2]). Another
possibility is that the leader acts in a risk-aware manner and always selects the strategy
with the minimal possible loss. In this case, the unique equilibrium is the strategy profile
([b1], [b2]).

a2 b2

a1 3, 1 0, 1
b1 0, 0 1, 2

Game 3.7: An example strategic form game in which player 2 does not have the
unique rational response when player 1 selects the strategy a1.

In general, there could be several possible Stackelberg strategies for the leader with the same
value. Therefore, there is no need for the leader to fluctuate among its rational strategies.
This leads to the fact that the value of the Stackelberg equilibrium point is unique for the

22

leader and can also be unique for the follower, which is a very important property when this
equilibrium concept is applied in learning algorithms. This issue is discussed more deeply
in the next chapter. Another important property of the Stackelberg equilibrium concept
is that it always exists in pure strategies and is therefore very fast to compute (it is also
possible to introduce the concept of a mixed strategy Stackelberg solution that leads to a
bilevel optimization problem; see Bard (1998)). In addition, in the two-player case, only
the leader has to have a model of its opponent, i.e. the follower. That reduces the total
amount of space required to compute the solution of the game. If the game has a special
payoff structure, i.e. the team or the zero-sum payoff structure, the Stackelberg equilibrium
has a special meaning. These two cases are discussed below with the MaxMin and MaxMax
solutions.

3.3.3 Correlated equilibrium

When the Stackelberg solution concept is applied to a strategic form game, there is a strict
ordering among the decision makers. In the next two solution concepts, i.e. the correlated
equilibrium concept and the Nash equilibrium concept, the roles of all players are equal and
they make their strategy selections simultaneously. As none of the players reveal their strat-
egy selections, all the players are uncertain about their opponents’ strategies and therefore
the equilibrium strategies are often mixed.

In the correlated equilibrium concept, it is assumed that in addition to players, there exists
a mediator, a human or a machine that stochastically recommends pure strategies to the
players. Each player may or may not obey this recommendation. The mediator draws its
recommendations from the following joint distribution:

δ ∈ ∆(A1 × . . .×AN). (3.3)

The distribution δ is a correlated equilibrium if it satisfies the following strategic incentive
constraints:∑

a−i∈A−i

δ(ai, a−i)(ri(ai, a−i)− ri(bi, a−i)) ≥ 0,∀i ∈ N,∀ai ∈ Ai,∀bi ∈ Ai, (3.4)

where N is the number of players and A−i = A1× . . .×Ai−1×Ai+1× . . .×AN . The meaning
of these constraints is that it is rational for all players to obey the recommendation of the
mediator if the distribution δ satisfies these constraints. The mediator should rank feasible
recommendations by using some fitness function, e.g. the sum of the players’ payoff values.

a2 b2

a1 3, 1 0, 0
b1 0, 0 1, 4

Game 3.8: An example strategic form game with the correlated equilibrium
([b1], [b2]).

As an example, consider Game 3.8. If the mediator recommends the joint strategy that
maximizes the summed utility value of the players, the correlated equilibrium point can be

23

obtained by solving the following linear program:

max f = 4δ(a1, a2) + 5δ(b1, b2)

(3− 0)δ(a1, a2) + (0− 1)δ(a1, b2) ≥ 0
(0− 3)δ(b1, a2) + (1− 0)δ(b1, b2) ≥ 0
(1− 0)δ(a1, a2) + (0− 4)δ(b1, a2) ≥ 0
(0− 1)δ(a1, b2) + (4− 0)δ(b1, b2) ≥ 0

δ(a1, a2), δ(a1, b2), δ(b1, a2), δ(b1, b2) ≥ 0

δ(a1, a2) + δ(a1, b2) + δ(b1, a2) + δ(b1, b2) = 1.

The unique solution of this linear program is δ(a1, a2) = δ(a1, b2) = δ(b1, a2) = 0 and
δ(b1, b2) = 1.0, which is also intuitively clear from the example. It is quite efficient to solve
a game by using the correlated equilibrium concept and the corresponding linear program.
Moreover, due to the existence of the mediator, the equilibrium selection is always coordi-
nated. However, in many problems the players are not willing to communicate with each
other or to use a mediator and therefore some other solution concept, such as the Nash
equilibrium concept, could be more useful.

3.3.4 Nash equilibrium

Independent mixed strategies (σ1, . . . , σN) are said to constitute a Nash equilibrium solution
of a game if there is no compulsion to deviate from this equilibrium point for any rational
player alone. Therefore the Nash equilibrium concept provides a secure solution concept for
the game if all players know that other players will also play the same Nash equilibrium so-
lution. Mathematically, a mixed strategy profile (σ1, . . . , σN) constitutes a Nash equilibrium
if the following inequality holds for all σi ∈ ∆(Ai) and for all i:

ri(σ1
∗, . . . , σ

i−1
∗ , σi, σi+1

∗ , . . . , σN
∗) ≤ ri(σ1

∗, . . . , σ
N
∗). (3.5)

There can be infinitely many Nash equilibria in a finite game. Hence, players should agree on
which equilibrium point to select. This agreement can be done for example by allowing some
social rules in decision making. Note that if all players calculate the set of possible equilibria
and there exist a social rule for the equilibrium point selection, e.g. always select the first
equilibrium in the list, it is required that all the players use the same (and deterministic)
method for computing the list of equilibria.

As shown by Nash (1950b), every finite game in strategic form possesses at least one Nash
equilibrium point in mixed strategies. However, as there does not always exist Nash equilibria
in pure strategies, some sophisticated optimization procedure is needed for calculating the
Nash equilibria. In principle it is possible to enumerate all pure strategy supports and
examine whether there exists a Nash equilibrium. However, the number of supports grows
very fast with the size of the game and therefore this method is only feasible with small
games.

In two-person games, the Lemke-Howson algorithm provides a way to find at least one Nash
equilibrium. The method provides a solution to the linear complementarity problem (Cottle,

24

Stone and Pang, 1992) and is globally convergent. However, due to the linearity assumption,
the method is not suitable for games with more than two players. Moreover, the computa-
tional complexity of the Lemke-Howson algorithm is unknown (the worst case lower bound
complexity is, however, known to be exponential; see Murty (1978)).

The Lemke-Howson algorithm can also be used for trying to determine the set of all Nash
equilibria. It can compute the set of accessible Nash equilibria but this set does not always
include all equilibria of the game. When the number of players is more than two, the problem
of finding Nash equilibria is considerably harder and it is still an open research question if
computationally efficient methods exist for this purpose. A good source of information
on calculation of the Nash equilibria is McKelvey and McLennan (1996). An overview of
the methods applicable for two-player games can be found in von Stengel (2002). Some
complexity results about Nash equilibria can be found in Conitzer and Sandholm (2003c).

In the battle of sexes game depicted in Game 3.4, there are two pure strategy Nash equilibria,
in which both players select strategies a, i.e. the strategy profile ([a1], [a2]) or both select b,
i.e. ([b1], [b2]). In addition to these pure strategy equilibria, there are also a mixed strategy
equilibrium (0.75 ∗ [a1] + 0.25 ∗ [b1], 0.25 ∗ [a2] + 0.75 ∗ [b2]).

In games with special payoff structures. e.g. two person zero-sum games or team games, the
Nash equilibrium concept has some special forms. These issues are discussed more thoroughly
below.

3.3.5 MaxMin solution

Much of the early work in game theory was on two-person zero-sum games, i.e. games
where two players have totally opposite interest and therefore there is the maximal negative
correlation between their payoff functions. Mathematically, in two-person zero-sum games
it holds for all a1 ∈ A1 and for all a2 ∈ A2:

r1(a1, a2) = −r2(a1, a2). (3.6)

The strategy profile σi ∈ ∆(Ai) is a MaxMin strategy for player 1 if and only if:

σ1 ∈ arg max
τ∈∆(A1)

min
a2∈A2

r1(τ, a2). (3.7)

In here, the minimum could also be defined over the mixed strategies of player 2. However,
since the min operator is “inside” the max operator, it always attains its minimum in pure
strategies. At the same time, for player 2 it holds that:

σ2 ∈ arg min
τ∈∆(A2)

max
a1∈A1

r1(a1, τ). (3.8)

Note that neither of these equations includes the actual equilibrium strategy of the opponent
and therefore it is not required to coordinate the equilibrium selection, although there can
be more than one equilibrium in the game.

Because the utility values of player 2 are negations of the values of player 1, the same
equations apply also for player 2 when the utility functions are changed from r1 to r2. The

25

principal strength of the MaxMin solution is that it provides a security level solution to the
game: it is a best response against the worst possible strategy selection of the opponent and
the corresponding outcome is the worst case outcome. If the player assumes that it faces a
zero-sum game, it can do no worse but possibly better against an unknown opponent.

If it is assumed that both players make their decisions simultaneously, a MaxMin solution
is guaranteed to exist only in mixed strategies. However, if the players do their strategy
selections sequentially, there exists also a MaxMin solution in pure strategies corresponding
to the two-player Stackelberg solution in zero-sum games. However, in this case the solution
is dependent, as in the general-sum case, on the ordering of the players.

3.3.6 MaxMax solution and its extensions

The opposite class of games to zero-sum games is games in which the players share the same
utility function and hence maximal positive correlation exists between the payoff functions.
In this case, the problem reduces, in fact, to the decision problem in which there is a meta-
player corresponding to all the players. The strategies available to the metaplayer are joint
strategies of all the players sharing the same utility function. The metaplayer acts rationally
and therefore implements a joint strategy maximizing the payoff function over the joint
strategies (MaxMax solution).

The main problem with the MaxMax solution is the coordination of strategy selections. The
utility function defined over the joint strategies may reach its maximum in several points
and therefore all the players should select the same equilibrium point. A solution to this
problem is to put players in some order known to all of them and then apply the Stackelberg
solution concept (Stackelberg solution corresponds to the maximum over all joint strategies
if all players share the same payoff function) to the game.

3.4 Stackelberg solution and normal representation

All strategic form games can be thought to have been derived from the extensive form games.
Thus all solution concepts, except for the correlated equilibrium concept, introduced in this
chapter are only special cases of Nash equilibria of extensive form games represented in the
strategic form. Consider the two extensive form games depicted in Game 3.1. The only
difference between these games is the information state of player 2: in the first case player
2 does know the strategy of player 1 and in the second case player 2 does not know what
strategy player 1 has deployed at the previous time step. The normal representations of the
games are depicted in Games 3.3 and 3.4. However, as player 2 has two separate information
sets, there are four pure strategy options available for player 2 in the normal representation
of the game. Moreover, there are several Nash equilibria in this normal representation and
all of these correspond to Nash equilibria in the original extensive form game. One of these
equilibria has the SGP property, i.e. it is a rational solution for each proper subgame in the
corresponding extensive form game (roughly speaking, proper subgames are extensive form
games originating from some node in the original extensive form games, e.g. the original game
and leaf nodes). This solution can be achieved by backward induction starting from the leaf

26

nodes and evaluating the value of each proper subgame. When this procedure is continued
backwards, eventually, at the root node, the optimal equilibrium value of the whole game is
obtained. In the extensive form game depicted on the left in Game 3.1, this solution can be
achieved by representing the game in the normal representation depicted in Game 3.4 and
applying the Stackelberg equilibrium concept to this game.

The SGP property and the Stackelberg equilibrium concept can be used for constructing
different player hierarchies. Consider the game of three players in which one of the players,
say player 1, is acting as the leader and is thus capable of enforcing its strategy to two
followers, i.e. players 2 and 3. Then the payoff function for each player is a three dimensional
tensor. Now, when the leader fixes its strategy, the followers face a two-player strategic form
game, which may be different for each enforcement. The followers are at the same level of the
hierarchy and utilize the Nash equilibrium concept in their mutual game. If the leader now
knows which Nash equilibrium the followers will select, it can choose a rational Stackelberg
strategy. As an example, consider the strategic form games depicted in Games 3.9 and 3.10
corresponding to the leader’s strategy choices of a1 and b1, respectively. Now, if in Game 3.9
the followers select the pure strategy Nash equilibrium corresponding to the strategy profile
([a2], [a3]), the overall strategy profile is ([a1], [a2], [a3]) and produces some payoff, say 1, for
the leader. Similarly, if the followers select the Nash equilibrium ([a2], [b3]) in Game 3.10,
the overall strategy profile is ([b1], [a2], [b3]) leading to payoff 2 for the leader. Clearly, the
leader maximizes its own payoff by selecting the strategy b1.

a3 b3

a2 1, 1 0, 0
b2 0, 0 1, 1

Game 3.9: The resulting subgame when the leader selects the strategy a1.

a3 b3

a2 0, 0 1, 1
b2 1, 1 0, 0

Game 3.10: The resulting subgame when the leader selects the strategy b1.

27

Chapter 4

Multiagent reinforcement
learning in Markov games

A fundamental assumption behind Markov Decision Processes (MDPs) is that the environ-
ment of the learning agent satisfies the Markov property, i.e. state transitions may depend
only on the current state and the action selection of the agent. In many problems this is
not the case; there are additional factors that affect the state transition probabilities. For
example, it is possible that the real state of the environment is not known to the agent,
or other agents can exist in the environment. In this thesis, the focus is on the multiagent
learning problem and how to solve it by modeling the behavior of other agents.

In this chapter, two extensions of MDPs to multiagent domains are discussed. In the first
extension, Alternating Markov Games (AMGs), only one agent makes its action selection
in each state and the environment changes its state based on this action selection. In the
more complex and general model, Markov Games (MGs), all agents implement their actions
simultaneously in each state and the environment changes its state based on these actions.
In this chapter, only models with two agents are discussed. However, the presented models
and methods can easily be extended for an arbitrary number of agents.

4.1 Mathematical principles

Although the AMG model is simpler and closer to the single-agent MDPs than the “real”
MG model, it can also be considered as a special case of this more general model. Therefore,
the general MG model is discussed first. In an MG, the process changes its state according to
the action choices of all agents in the system and can thus be seen as a multicontroller MDP.
A thorough discussion about MG model can be found in Filar and Vrieze (1997). Formally,
an MG can be defined as follows:

29

Definition 4.1 A Markov game (stochastic game) is defined as a tuple (S, A1, A2, p, r1, r2),
S is the set of all states, Ai is the set of all actions for each agent i ∈ {1, 2}, p : S×A1×A2 →
∆(S) is the state transition function, ri : S ×A1 ×A2 → R is the reward function for agent
i. ∆(S) is the set of all probability distributions over the set S.

In each state, both agents select their actions by solving the associated bimatrix game. In
this thesis, we make a distinction between two types of action selection:

1. Both agents select their actions simultaneously. In this case, the agents are uncertain
about their opponent’s current move and the action selection procedure is therefore
probabilistic. The use of the Nash or the correlated equilibrium concepts lead to this
type of action selection. This case is referred to as the symmetric MG model.

2. Agents select their actions sequentially and the actions are implemented simultaneously.
Sequentiality implies that there should be an ordering among the agents and that the
action selection procedure is deterministic. The use of Stackelberg equilibrium leads
to this type of action selection. This case is referred to as the asymmetric MG model.
Asymmetric MGs can also be represented as enlarged AMGs. This correspondence is
discussed later in this chapter.

As in single-agent reinforcement learning (RL), the behavior of an agent is specified by a
policy function. In an MG, there are separate policy functions for each agent and the goal of
the agent is to find an equilibrium policy, i.e. a policy that is a best response to its opponent’s
policy. In the symmetric case, the policy function is defined as follows:

πi : S → Ai. (4.1)

Note that the action selection procedure in the symmetric case is actually probabilistic.
However, the randomization is assumed to be “inside” the policy function and therefore the
policy is expressed as a function from the state space to the agent’s action space. In the
asymmetric case, the action selection procedure is deterministic. If agent 1 selects its action
prior to agent 2 (agent 1 is acting as the leader and agent 2 as the follower), agent 1 should
model both its own and also its opponent’s behavior. Therefore, the policy function of agent
1 is of the form of Eq. (4.1). Agent 2 does not have a model of agent 1 and is thus unable to
make its action choice alone. Indeed, agent 1 announces (enforces) its action to agent 2 and
agent 2 responds rationally to this announcement. Therefore, the policy function of agent 2
depends on the current state and the current enforcement, i.e.:

π2 : S ×A1 → A2. (4.2)

In the case of two agents, an equilibrium policy is defined as follows:

Definition 4.2 Let Π1 and Π2 be the policy spaces for agents 1 and 2, respectively. Policies
π1
∗ and π2

∗ constitute equilibrium policies of an MG if the following inequalities hold for all
π1 ∈ Π1 and π2 ∈ Π2 in each state s:

V 1
π1,π2

∗
(s) ≤ V 1

π1
∗,π2

∗
(s)

V 2
π1
∗,π2(s) ≤ V 2

π1
∗,π2

∗
(s).

30

If agents 1 and 2 follow the policies π1 and π2, respectively, the expected discounted utility
Ri of agent i is the following:

V i
π1,π2(s) = Eπ1,π2 [Ri|s0 = s] = Eπ1,π2

[∞∑
t=0

γtri
t+1|s0 = s

]
, (4.3)

where ri
t+1 is the immediate reward associated to the state transition after the action selec-

tions in state st for agent i. γ is a discount factor. Moreover, the value for each state-actions
tuple is:

Qi
π1,π2(s, a1, a2) = Eπ1,π2 [Ri|s0 = s, a1

0 = a1, a2
0 = a2]

= ri(s, a1, a2) + γ
∑
s′∈S

p(s′|s, a1, a2)V i
π1,π2(s′). (4.4)

Note that this equation for the Q-value is a very natural extension to the single-agent case.
The main difference with the single-agent case is that in the multiagent case, a matrix game
is associated with each state s ∈ S whereas in the single-agent case these matrix games
reduce to vectors containing the utility values for the learning agent. For the equilibrium
policies π1

∗ and π2
∗ it should hold in each state that:

V i
π1
∗,π2

∗
(s) = Val{Qi

π1
∗,π2

∗
(s)}, (4.5)

where Val{·} is one of the solution concepts discussed in Chapter 3 and Qi
π1
∗,π2

∗
(s) is the

matrix game associated with the state s. Note that this value is not necessarily unique.
For example, in the case of Nash equilibrium concept, there can be several equilibria with
different values.

A thorough discussion about the numeric solution methods for MGs can be found in Filar and
Vrieze (1997). As mentioned in Chapter 2, the concept of the MDP was originally proposed
by Bellman (1957b) as a discrete version of the optimal control problem. Multicontroller
version of the optimal control problem is discussed by Basar and Olsder (1982), which also
includes references to the stochastic discrete multicontroller problem, i.e. stochastic game.

4.2 AMGs

In this section, the general MG model is simplified so that the state space is divided into
two distinct subspaces S1 ∈ S and S2 ∈ S so that S1 ∩ S2 = ∅ and S1 ∪ S2 = S. In states
S1, agent 1 makes its action selection and the system changes its state according to this
selection. Correspondingly, in states S2, the state transitions are controlled by agent 2. As
there is now only one decision maker in each state, the model is very close to the single-agent
reinforcement learning model and equilibrium policies are always deterministic.

In AMGs, for agent 1 (equations are symmetric for agent 2) when arbitrary policies π1 and
π2 are followed it holds in a state s1 ∈ S1 that:

Q1
π1,π2(s1, a1) = r1(s1, a1) + γ

∑
s′∈S

p(s′|s1, a1)V 1
π1,π2(s′) (4.6)

31

and in a state s2 ∈ S2:

Q1
π1,π2(s2, a2) = r1(s2, a2) + γ

∑
s′∈S

p(s′|s2, a2)V 1
π1,π2(s′). (4.7)

In the above equations, ai is an action selection of agent i. The value of the state s, V 1
π1,π2(s),

is defined as follows:

V 1
π1,π2(s) =

{
Q1

π1,π2(s, π1(s)) s ∈ S1

Q1
π1,π2(s, π2(s)) s ∈ S2.

(4.8)

For equilibrium policies π1
∗ and π2

∗ it holds that:

V 1
π1
∗,π2

∗
(s) =

{
maxb∈A1 Q1

π1
∗,π2

∗
(s, b) s ∈ S1

Q1
π1
∗,π2

∗
(s, π2

∗(s)) s ∈ S2,
(4.9)

meaning that the agent should behave optimally in all states in which it controls the process.
π2
∗ is defined in the natural way:

π2
∗(s) = arg max

b∈A2
Q2

π1
∗,π2

∗
(s, b). (4.10)

In addition, if the interests of the agents are fully conflicting, the AMG has a zero-sum payoff
structure. In this case the whole system can be modeled by using a single Q-function and
the agents can be isolated from each other. In this case, Eq. (4.6) for optimal policies π1

∗
and π2

∗ reduces to the following form:

Qπ1
∗,π2

∗
(s1, a1) = r(s1, a1) + γ

∑
s′∈S

p(s′|s1, a1)Vπ1
∗,π2

∗
(s′) (4.11)

and the value Vπ1
∗,π2

∗
(s) in a state s is:

Vπ1
∗,π2

∗
(s) =

{
maxb∈A1 Qπ1

∗,π2
∗
(s, b) s ∈ S1

minb∈A2 Qπ1
∗,π2

∗
(s, b) s ∈ S2.

(4.12)

Applying reinforcement learning to game playing is one of the most studied domains of re-
inforcement learning in the literature. In most of the traditional board games, the play-
ers take turns during the game and therefore it is natural to formalize these games as
AMGs. Various RL based methods have been applied to game playing tasks, e.g. check-
ers (Samuel, 1959), chess (Thrun, 1994), go (Schraudolph, Dayan and Sejnowski, 1993) and
backgammon (Tesauro, 1992; Boyan, 1992).

4.3 Correspondence between models

Both extensive form games discussed in Chapter 3 and MGs are dynamic models of decision
making, i.e. the time dependence is a crucial feature in both models. A close relationship
exists between these two models; in fact it is possible to model and solve some problems
using either one of these models. On the other hand, AMGs are special cases of the more
general MGs. Perhaps surprisingly, asymmetric MGs can also be represented as enlarged
AMGs. These relationships are discussed in this section.

32

4.3.1 Correspondence between MGs and extensive form games

Every state in an MG contains a normal representation of the extensive form game, the
exact form of which depends on the applied solution concept. For example, in a two-agent
symmetric MG, the decision nodes of agent 2 are in the same information state. Corre-
spondingly, in the case of the Stackelberg equilibrium concept with agent 1 acting as the
leader, both decision nodes of agent 2 are in distinct information states. As an example,
consider a two-agent symmetric MG with two states with both agents having two actions
available in each state and with deterministic state transitions from a state to another (the
same transition for each joint action). If the process has infinite horizon, i.e. there are no
time limits set, the system can be modeled as the extensive form game illustrated in Fig. 4.1.
Note that the game is indeed infinite as there are no leaf nodes in the game tree. Therefore,
it is not possible to model infinite horizon problems as extensive form games. In addition,
even with finite horizon problems, the extensive form game grows very fast with the length
of the time horizon and therefore it is not tractable to model these problems as extensive
form games either.

s1

s2 s2 s2 s2

s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1s1s1

Figure 4.1: The correspondence between MGs and extensive form games.

4.3.2 Correspondence between AMGs and asymmetric MGs

An asymmetric MG can also be represented as an enlarged AMG, i.e. the AMG that has
more states than the original asymmetric MG. In fact, a general MG model endowed with
the Stackelberg equilibrium concept constitutes a special case of AMG model in which the
system changes its state stochastically only when both agents have selected their actions.

As an example of the correspondence between AMGs and asymmetric MGs, consider a simple
MG including only one state and two agents with two possible options. The state can thus
be represented with two 2 x 2 matrices. Further, if agent 1 is acting as the leader and agent
2 as the follower, the optimal policy can be determined simply by solving the bimatrix game
using the Stackelberg solution concept. In the corresponding enlarged AMG, the original
state is divided into three substates, namely s1, s2 and s3. The state s1 is controlled by
agent 1 and states s2 and s3 by agent 2. The state transitions are deterministic and can

33

s3

r11 r12 r21 r22

s1

s2V() s3V()
a1 b1

a2 b2 a2 b2s2

Figure 4.2: A state in an MG endowed with the asymmetric equilibrium concept
described as an AMG. The state s1 is controlled by agent 1 and the states s2 and
s3 by agent 2. In the states s2 and s3, rewards are for agent 1.

occur from s1 to s2 or to s3. Both agents get their rewards when agent 2 has done its action
selection and thus all Q-values in the states s2 and s3 are determined by these rewards. On
the other hand, there are no rewards when the system changes its state from s1 to either s2

or s3 and therefore the Q-values in the state are determined by the values of these two states
and the behavior of agent 2. Clearly, agent 1 always chooses the action with the highest
utility value in the state s1. This setting is illustrated in Fig. 4.2. Note the correspondence
with Fig. 4.2 and the game on the left in Fig. 3.1 in Chapter 3.

As was seen in the above example, MGs endowed with the asymmetric solution concept
can be represented as AMGs. However, MGs are usually more compact representations for
these problems. The reason for this is that AMGs are more general in the way that they
allow stochastic transitions and rewards after all state transitions, which never happens in
asymmetric MGs. Moreover, the number of states is larger when a problem is modeled with
AMGs and this may hinder the interpretation of the model.

4.4 RL in multiagent settings

Reinforcement learning methods for both AMGs and general MGs are straightforward exten-
sions of single-agent learning rules. However, opposite to single-agent learning, the conver-
gence of these methods can only be proved in some special cases. The convergence properties
of RL methods in MGs as well as in AMGs are discussed e.g. in Littman (1996), Szepesvári
and Littman (1999) and in Publication I.

4.4.1 RL in AMGs

The Q-learning rule in AMGs is almost identical to the single-agent update rule. For agent
1 in state s1 ∈ S1, it takes the following form (for agent 2, the rules are symmetric):

Q1
t+1(s

1
t , a

1
t) = (1− αt)Q1

t (s
1
t , a

1
t) + αt[r1

t+1 + γV 1
t (st+1)], (4.13)

34

where

V 1
t (st+1) =

{
maxb∈A1 Q1

t (st+1, b) st+1 ∈ S1

Q1
t (st+1, z) st+1 ∈ S2.

(4.14)

In Eq. (4.14), z is the rational action choice of agent 2:

z = arg max
b∈A2

Q2
t (st+1, b). (4.15)

In the zero-sum case, the system can be modeled using only one Q-function and there is no
need for an explicit model of the opponent. The convergence of the zero-sum AMGs was
proved by Littman (1996). For the general-sum case, convergence is not guaranteed.

4.4.2 Symmetric learning in MGs

The Q-values of a symmetric MG can be learned using similar methods as in single-agent
reinforcement learning problems. In this thesis, only Q-learning-type off-policy methods are
discussed. The general off-policy learning rule takes the following form:

Qi
t+1(st, a

1
t , a

2
t) = (1− αt)Qi

t(st, a
1
t , a

2
t) + αt[ri

t+1 + γVal{Qi
t(st+1}], (4.16)

where Val{·} is one of the solution concepts discussed in Chapter 3. Its purpose is to evaluate
the value of the matrix game associated with state st+1. The choice of this solution concept
is dependent on the type of the problem at hand and it has a crucial effect on convergence
properties of the above update rule. Some symmetric solution concepts are listed below with
possible application areas and their major properties. An extensive survey on the learning
methods in symmetric MGs is Littman (2001b).

MaxMax. This solution concept is a natural choice in team MGs, in which all agents
share the same utility function. The operator simply returns the maximal value of the
matrix game and therefore the learned optimal policy is always deterministic. The above
update rule converges with probability one (Littman, 2001b) when the MaxMax operator is
used. However, the convergence does not imply that the agents also learn to play optimally.
The value function may reach its maximum value in several points and all the agents should
select the same point; otherwise the resulting policy is not an equilibrium policy. It is
possible to solve this problem by setting an ordering among the agents, i.e. to apply the
asymmetric solution concept in each state or to use some other methods for learning to play
optimally (see e.g. Wang and Sandholm, 2003). RL in a team of learning agents was applied
to elevator control in (Crites, 1996).

MaxMin. This solution concept is suitable for problems with two learning agents in which
the learners’ interests are fully conflicting, i.e. the payoff structure of the problem is zero-sum.
The solution is stochastic in general and can be calculated using a simple linear program.
With this solution concept, the above update rule converges with probability one (Littman,
2001b). Note that it is possible to use this concept also with general-sum games. In this case,
it finds the worst-case solution assuming that the opponent is always minimizing the agent’s

35

utility value. An off-policy method utilizing the MaxMin solution concept was originally
proposed by Littman (1994). This method is also the first one utilizing RL in MGs and the
method was later extended, combining the MaxMax and MaxMin concepts, to general-sum
problems in Littman (2001a). Reinforcement learning applied to differential games modeled
as zero-sum MGs with large state and action spaces is discussed in Sheppard (1997). A
more recent study of RL in zero-sum problems is Banerjee, Sen and Peng (2001), in which
on-policy RL methods are applied to these problems.

Nash. The Nash solution concept is a generalization of the MaxMin concept to general-
sum games with an arbitrary number of agents. In general, the optimal policy is stochastic.
With general-sum problems, it is not possible to provide convergence proofs for the above
update equation. Moreover, in the general case, the computational requirements of the
equilibrium point calculation can be high. An off-policy multiagent reinforcement learning
method utilizing the Nash solution concept was originally proposed by Hu and Wellman
(1998) (see also Hu, 1999; Hu and Wellman, 2003) and the convergence properties of the
proposed algorithm are clarified in Bowling (2000). Experimental results of using the Nash
equilibrium concept in multiagent reinforcement learning can be found in Hu and Wellman
(2000). A slightly modified version of the method introduced in Hu and Wellman (1998) takes
into account the possibility that the opponent agent uses a non-equilibrium but stationary
policy, see (Suematsu and Hayashi, 2002).

Correlated equilibrium. A Nash equilibrium point consists of independent probability
distributions over the action spaces of the agents. A correlated equilibrium is, on the contrary,
a joint distribution over the joint strategy space of the players and it can be calculated by
using a simple linear program. Also in this case, the convergence of the above update rule
is not guaranteed. Applying correlated equilibria in multiagent RL was originally proposed
by Greenwald and Hall (2003).

4.4.3 Asymmetric learning in MGs

The general update rule for asymmetric learning is the same as in the symmetric case.
However, now the value Val{·} is different for the leader and for the follower. The update
rule for the leader (agent 1) is as follows:

Q1
t+1(st, a

1
t , a

2
t) = (1− αt)Q1

t (st, a
1
t , a

2
t) + αt[r1

t+1 + γ max
b∈A1

Q1
t (st+1, b, T b)], (4.17)

where the operator T : A1 → A2 conducts the follower’s best response to the leader’s action
enforcement. Similarly, the update rule for the follower is as follows:

Q2
t+1(st, a

1
t , a

2
t) = (1− αt)Q2

t (st, a
1
t , a

2
t) + αt[r2

t+1 + γ max
b∈A2

Q2
t (st+1, g(st+1), b)], (4.18)

where g(st+1) is the leader’s action enforcement in state st+1.

As the two Q-learning processes presented in Eqs. (4.17) and (4.18) are very strongly coupled
by enforcements and responses, there are two possible ways to implement the learning system:

36

1. The leader commits to giving its action enforcements in all states of the system. In
this case, only the leader should have a model of the follower available. The follower
does not have to have a model of the leader.

2. Both agents have models of their opponents available and they accept their roles. If the
leader’s enforcement is unique (by a social convention etc.), both agents are capable
of calculating the equilibria alone and communication between agents is not needed.
This makes it possible to teach the agents individually; the model of the opponent is
only an aid in the learning process.

If the leader’s enforcement is unique, the value of the equilibrium point is also unique. Thus,
there is no need for special equilibrium selection methods in the learning methods utilizing
the Stackelberg equilibrium concept. This is an advantage of asymmetric MGs compared to
symmetric MGs. Moreover, it is possible to concatenate the symmetric and asymmetric MGs
by utilizing the subgame perfectness property as was discussed at the end of the previous
chapter.

RL methods for asymmetric MGs were originally proposed by the author in Könönen (2003a).
A broader discussion and coverage of the subject can be found in Publication I. The properties
of RL in asymmetric MGs are studied further in all publications included in this thesis and
comparisons with the symmetric MGs are carried out in Publications I, II and III.

Applying the Stackelberg solution concept for solving stagegames in MGs can be seen as a
simple form of recursive opponent modeling : the agent utilizes some model of its opponent for
making optimal decisions. Recursive opponent modeling has been studied in computer sci-
ence literature in many sources (see e.g. Gmytrasiewicz and Durfee, 1995; Gmytrasiewicz and
Durfee, 2000; Carmel and Markovitch, 1996). However, it has not been applied previously,
to the best of the author’s knowledge, to evaluating stagegame values in RL algorithms.

Based on the previous work of Gmytrasiewicz and Durfee, different levels of agent modeling
in computational market environments were studied in Hu and Wellman (2002). More-
over, Littman and Stone (2001) applied the Stackelberg solution concept against a learning
opponent endowed with the single-agent Q-learning algorithm in simple strategic form games.
Another related method utilizing learning automata for opponent modeling was discussed
by Carmel and Markovitch (1998).

An asymmetric MG forms an infinite extensive form game with perfect information, i.e. all
agents know what actions their opponents have previously selected. RL in finite extensive
form games has been studied in Huang and Sycara (2003) and Sun and Qi (2000). In the
former study, an extensive form game is played several times and learners apply a simple
learning automaton and a Q-learning algorithm for estimating their outcomes in the game.
In the latter study, an opponent modeling method is applied to certain restricted AMGs.

4.5 Some considerations on numeric approximation

Solving problems with large state-actions spaces leads to the need for using function approx-
imators, such as neural networks. Numeric approximation of value functions in multiagent

37

reinforcement learning methods based on MGs coincides to a great extent with single-agent
methods. However, taking the behavior of the opponent into account increases the complexity
of the problem. In this section, a brief discussion of numeric methods is given, emphasizing
the differences between single-agent and multiagent methods.

In the value-function-based methods, the value-functions or Q-functions are approximated
with function approximators. In multiagent settings, there is a different approximator for
each agent and the agent tries to optimize the weights of this approximator taking into
account the action choices of its opponent. In policy gradient methods, the policy function
π is parameterized directly and it forms a joint distribution over the joint action space of the
agents. In this thesis, policy gradient methods are only discussed in the case of team MGs,
i.e. MGs in which all the agents share the same value function.

4.5.1 Value-function-based methods

In multiagent settings, it is essential to take into account the behavior of the opponent.
Therefore, the agent should have a model of its opponent available during learning. In this
thesis, it is assumed that the agents observe action selections and rewards of both agents in
the system, making it possible to estimate the Q-function of the opponent. The observed
states, actions and rewards until the time instance t are collected into the history ht:

ht = {s0, a
1
0, a

2
0, r

1
1, r

2
1, . . . , st−1, a

1
t−1, a

2
t−1, r

1
t , r2

t }, (4.19)

where st, ai
t and ri

t are the states, actions and rewards, respectively, associated with the time
instance t. The superscripts refer to the agent number, i.e. i = 1, 2. In some problems, a single
history containing all data from the interaction between the agents and the environment may
exist. In episodic learning, on the other hand, the history contains all data of the current
episode and when the end state is reached, the history is cleared.

In approximator training, the first step is to select a suitable error function and then find
such parameters ωi that minimize the error function. One possibility is to minimize the
expected squared error function:

ei(ht) =
1
2

∑
st∈S

P (st|st−1, a
1
t−1, a

2
t−1)[r

i
t + γVal{Qi

t−1(st;ωi)} −Qi
t−1(st−1, a

1
t−1, a

2
t−1;ω

i)]2,

(4.20)
where Val{·} is one of the solution concepts discussed in Chapter 3 and it generally depends
on the weights ω1 and ω2. If only one sample of state transitions is observed at each time
step, the weights can be updated using the following update rule:

∆ω ∝ [ri
t + γVal{Qi

t−1(st;ωi)} −Qi
t−1(st−1, a

1
t−1, a

2
t−1;ω

i)]
∂Qi

t−1(st−1, a
1
t−1, a

2
t−1;ω

i)
∂ω

,

(4.21)
where ω is an arbitrary parameter in ωi. This rule can be used in an on-line manner after
every state transition, or in a batch manner for each completed episode history ht. However,
the above equation is a special case of the Widrow-Hoff learning rule and thus does not take
into account the fact that the value estimate of the next state is also a function of the weights
ω1 and ω2. Therefore Baird (1995) proposed a method that extends Eq. (4.21) to perform

38

true gradient descent of the error function proposed in Eq. (4.20). The multiagent version
of the update equation takes the following form:

∆ω ∝ [ri
t + γVal{Qi

t−1(st;ωi)} −Qi
t−1(st−1, a

1
t−1, a

2
t−1;ω

i)][φγ
∂Val{Qi

t−1(st;ωi)}
∂ω

−
∂Qi

t−1(st−1, a
1
t−1, a

2
t−1;ω

i)
∂ω

],
(4.22)

where φ is a parameter that controls the direction of the gradient. If φ = 0, Eq. (4.22)
reduces back to Eq. (4.21) and in the case of φ = 1, Eq. (4.22) is the real gradient of
Eq. (4.20). However, in this case the learning process could be extremely slow due to the
fact that the parameters are updated to different directions by two gradient terms in (4.22).
Therefore, a combination of the two methods with the value of φ between the two extremes
both guarantees the convergence of the method and leads to quicker convergence than the
real gradient. Some theoretical limits for φ are derived in Baird (1995), but usually the
value of φ can be selected heuristically; it is even possible to change the value during the
learning process. Another drawback of Eq. (4.22) is that the operator Val{·} is not in general
differentiable with respect to ω in ωi. For some operators, e.g. maximum, this problem can
be circumvented. However, in most cases, it is enough to assume that the nondifferentiable
points of Val{·} constitute a zero-volume set and differentiate the corresponding Q-value
estimates with respect to an arbitrary parameter (Bertsekas and Tsitsiklis, 1996).

Another approach to value function approximation is to minimize the total error Ei generated
by all histories:

Ei =
∞∑

t=0

∑
ht∈Ht

P (ht)ei(ht), (4.23)

where Ht is the space containing all histories of length t and ei(ht) is the immediate error
function for agent i, e.g. the one presented in Eq. (4.20). In this equation, both ei(ht) and
P (ht) are functions of ω1 and ω2 and thus differentiating Eq. (4.23) with respect to an
arbitrary parameter ω in ωi leads to the following equation:

∂Ei

∂ω
=

∞∑
t=0

∑
ht∈Ht

P (ht)
[
∂ei(ht)

∂ω

+ ei(ht)
t−1∑
j=0

∂

∂ω

(
lnP (a1

j |sj ;ω1,ω2) + lnP (a2
j |sj ;ω1,ω2)

)]
,

(4.24)

where P (ai
j |sj ;ω1,ω2) is the probability that agent i selects the action ai

j in a state sj at the
time instance j. This probability term defines the exploration function during the learning.
A favorable but not necessary property of the exploration policy is that it will approach
the true equilibrium in the limit, i.e. the greedy action selection in single-agent settings.
In multiagent settings, a natural way is to calculate an equilibrium point and then deviate
from this point with some small probability ε. During learning, ε → 0 and thus the action
selection probabilities approach the true equilibrium probabilities. Another problem is that
in multiagent settings, the exploration probability functions are usually not smooth functions
with respect to the parameters ωi. However, by setting certain simplifying assumptions, as
was done in Publication II, this problem can be circumvented and the results can still be
good.

39

An interesting property of the gradient in Eq. (4.24) is that the immediate error function
exists directly in the gradient. This property makes it possible to combine value function
based methods and direct policy gradients in the same equation. That is particularly useful in
non-Markov domains, e.g. in partially observable MDPs (POMDPs), in which normal value-
function-based methods often give poor results. Applying Eq. (4.23)-type error functions in
single-agent reinforcement learning was originally proposed by Baird and Moore (1999).
The resulting methods are sometimes referred to as the VAPS framework, standing for
Value And Policy Search. The VAPS framework was extended to multiagent systems by
the author in Könönen (2003b) and in Publication II. The framework can be initialized in
different ways leading to various actual RL methods. If only policy search is utilized, the
method corresponds to the REINFORCE algorithm proposed by Williams (1992) (see also
Williams, 1988; Weaver and Tao, 2001).

4.5.2 Policy gradient methods

Another approach to the multiagent reinforcement learning problem is to parameterize the
policy function directly. A suitable way to describe multiagent systems is to define the policy
function (joint policy function) to be a joint distribution over the joint action space in each
state:

π(s, a1, a2;θ) = P (a1, a2|s;θ), (4.25)

where θ is an arbitrary parameter vector. The distribution defines the probability of selecting
the joint action (a1, a2) in a state s ∈ S. Note that this approach has a close relationship
to the correlated equilibrium concept, where the mediator draws its recommendations from
the joint distribution π.

In this thesis, the policy gradient method is applied only to team problems, in which the
utility function is the same for each agent. Additionally, the focus is on the start state
formulation of the problem, where the agents start from an initial state and try to maximize
their long-time utility value.

The object function of the policy gradient method is the expected utility in a start state s0:

ρ(s0, π) = Vπ(s0) =
∑
b∈A1

∑
c∈A2

π(s0, b, c;θ)Qπ(s0, b, c). (4.26)

By differentiating Eq. (4.26) with respect to an arbitrary parameter θ and substituting the
Q-function with an approximation f , parameterized with ω, the policy gradient takes the
following form :

∂ρ

∂θ
=

∑
s∈S

dπ(s)
∑
b∈A1

∑
c∈A2

∂π(s, b, c;θ)
∂θ

f(s, b, c;ω), (4.27)

where dπ(s) is the discounted weight (probability) of reaching state s starting from the initial
state s0 and following π. It is a real number (a probability) and therefore it can be excluded
from Eq. (4.27) and still get the unbiased estimate of the gradient if the state transitions are
sampled by following the joint policy function π.

40

If the function approximator f fulfills the following compatibility condition

∂f(s, a1, a2;ω)
∂ω

=
∂ lnπ(s, a1, a2;θ)

∂θ
, (4.28)

it can be shown that the error due to the use of the function f in place of Q is orthogonal
to the gradient of the policy function π and hence it is possible to use f in place of Q in
Eq. (4.27).

Note that by virtue of Eq. (4.28), the selection of the parametric joint policy function also
fixes the form of f . For example, in the case of Gibbs distribution, the joint policy function
takes the following form:

π(s, a1, a2,θ) =
eθT φ(s,a1,a2)∑

b∈A1

∑
c∈A2 eθT φ(s,b,c)

, (4.29)

where φ(s, a1, a2) is a unit vector with the element corresponding to the state-actions tuple
(s, a1, a2) set to one. Correspondingly, the compatible function approximator f takes the
linear form:

f(s, a1, a2,ω) = ωT [φ(s, a1, a2)−
∑
b∈A1

∑
c∈A2

φ(s, b, c)π(s, b, c;θ)]. (4.30)

The parameters ω can be learned by minimizing some error function, e.g. the one pre-
sented in Eq. (4.20). The relationship between the parametrized policy function and the
value function approximation were proposed simultaneously by Konda and Tsitsiklis (2000)
and Sutton, McAllester, Singh and Mansour (2000) for single-agent problems. The policy
gradient method applied to team problems and its extensions to general-sum problems are
discussed in Publication IV and in Könönen (2003c). The method proposed by Sutton et al.
(2000) was used to game playing in Bowling and Veloso (2002b).

4.5.3 Learning to play optimally

Multiagent RL in MGs involves two major and partially interrelated problems:

– Learning the game structure, or the relevant parts of the game structure, of the prob-
lem.

– Learning to play well when the game structure is already known.

If the game structure is already known, e.g. learned by using some of the methods presented
above, there can be multiple equilibrium polices, only some of which are optimal. Even in
team games, there can be various Nash equilibria with different values and the agents need
to be able to coordinate their action selections. A basic text, written from the game theory
point of view, on learning to play in games in provided by Fudenberg and Levine (1998). In
this section, a short literature survey on this issue from the computer science point of view
is provided.

41

In team MGs, the optimal value of each stagegame is unique and therefore it is enough to use
the MaxMax solution concept in the off-policy learning rule to learn the exact game structure.
When the agents are playing according to the learned game structure, they should be able
to coordinate their actions; otherwise it is possible that the agents select joint actions that
do not constitute an equilibrium at all. A straightforward way to circumvent this problem
is to set an ordering among the agents. This method was discussed in Boutilier (1996)
(for a game theoretical justification of this, see Publication IV). In symmetric team MGs,
the method that learns to play an optimal Nash equilibrium was proposed by Wang and
Sandholm (2003). Conitzer and Sandholm (2003b) proposed a method for zero-sum games
that guarantee that the learner does not lose more than a given amount. The work of
Conitzer and Sandholm is consistent with the Win or Learn Fast (WoLF) principle proposed
by Bowling and Veloso (2002a). According to this principle, the agent should not to accrue
losses (win) or to learn to prevent future losses (learn fast). Conitzer and Sandholm (2003a)
also proposed a very general convergent method for repeated games and a method for learning
near-Pareto-optimal conventions in repeated games was proposed by Wang and Sandholm
(2004). Learning to play a Pareto-optimal Nash equilibrium in strategic form games by
allowing some communication between agents was proposed by Verbeeck, Nowé, Lenaerts
and Parent (2002).

One of the first attempts to utilize single-agent Q-learning against stationary and learning
opponents was carried out by Sandholm and Crites (1995) with different state descriptions
and exploration policies. A classical comparison of single-agent Q-learning and multiagent
Q-learning (called joint-action learning) was carried out by Claus and Boutilier (1998) in
fully cooperative repeated games. They utilized a simple (one state) version of the standard
Q-learning algorithm in their work. A more advanced method for applying single-agent RL
in cooperative multiagent domains was proposed by Lauer and Riedmiller (2000). When the
single-agent RL methods are utilized in multiagent domains, the applied exploration policy
has a crucial effect for the performance of the learning method. This problem is investi-
gated in detail in Kapetanakis and Kudenko (2002b), Kapetanakis and Kudenko (2002a)
and Kapetanakis, Kudenko and Strens (2003) in team games. Convergence properties of
simple gradient ascent algorithms in small general-sum games were studied by Singh, Kearns
and Mansour (2000). A totally different approach for fitting single-agent RL methods to
multiagent domains is the COllective INtelligence (COIN) framework (see e.g. Wolpert and
Tumer, 2000). The basic principle of COIN is to define local reward signals for individual
agents so that the agents collectively maximize some external utility measure. The COIN
framework has also been applied to some real-world applications, see Wolpert, Tumer and
Frank (1999) and Wolpert, Kirshner, Merz and Tumer (2000).

Learning methods based on MGs usually estimate the opponents’ behavior in each state by
applying the same RL algorithm that the opponent uses itself (this is possible if the actions
of all agents as well as all rewards are fully observable). Keeping a copy of the opponent
requires much space and learning the models of the opponents requires much computation.
Therefore, it would be preferable to separate opponent modeling from the actual learning
methods. In Uther and Veloso (2003), a simple fictitious play model is used to opponent
modeling in MGs. Tesauro (2004), applies Q-learning for mixed strategies in game learning
and uses Bayesian methods for opponent modeling.

42

4.6 Why to use MGs in multiagent reinforcement
learning?

The principal idea behind MGs is to model the opponent and the agent’s own, opponent
dependent utility function and then act rationally based on this information. Compared
to single-agent MDPs, storing additional parameters for opponent modeling and for the
own utility function requires a considerably larger amount of space, and in the learning
problem, learning these parameters requires more computation. So why should one use
learning methods based on MGs instead of simpler single-agent MDPs?

In a multiagent environment, if the other agents’ behavior converge, i.e. their action selection
distributions become stationary in the limit, the normal Q-learning update rule will converge
to the optimal Q-function with probability one. Additionally, if the agent uses a GLIE
(Greedy in the Limit with Infinite Exploration) exploration policy and the best response
policy is unique, it will converge in behavior with probability one (Littman, 2001b). However,
two simultaneous single-agent Q-learners do not in general converge to mutual best responses.
Even in simple MGs containing only one state, a best response policy can be stochastic.

In all cases, it is not adequate to use GLIE exploration policies. For example, if the state
and action spaces are sufficiently small, it is possible to teach the whole utility function
to the agents by sweeping multiple times through the state-actions space. In this case, a
single-agent utility function represents expected values averaged over the opponent’s actions.
This can lead to suboptimal behavior in some cases. As an example, consider a simple two-
agent example where the agents have the utility values presented in Game 4.1. Naturally, if
multiagent reinforcement learning is used (there is a matrix of values for both agents), the
agents learn exactly their own utility functions. If agent 1 is acting as a leader by selecting
its action prior to agent 2, the equilibrium point is (a1

2, a
2
2), leading to the payoffs (2.0, 1.0).

With single-agent learning, the agents learn the averaged payoff values that imply suboptimal
behavior as they lead to payoff values (0.0, 0.0).

a2
1 a2

2 single(1)
a1
1 1.0, 2.0 0.0, 0.0 0.5

a1
2 0.0, 0.0 2.0, 1.0 1.0

single(2) 1.0 0.5

Game 4.1: A simple stagegame for two agents. The first number in each cell is a
payoff for agent 1 and the second number for agent 2. The row and column marked
with the word single are averages over the opponent’s action selections.

Each stagegame in an MG corresponds to a social interaction between agents. Therefore, in
some cases, it is more desirable to learn these games and analyze them to acquire an overview
of the problem. In addition, it is possible to classify these games automatically. Oppositely,
single-agent learning methods could only provide average values and the real nature of the
multiagent learning task would remain unclear.

43

Chapter 5

Example problems

This chapter briefly introduces three small example problems that are used for testing the
presented multiagent reinforcement learning algorithms in the publications included in this
thesis. Although the problems are quite simple, they are widely used for testing multiagent
reinforcement learning algorithms and methods in the literature. The used example problems
are the grid world example, the simplified soccer game, and two pricing applications.

5.1 Grid world example

Various grid world problems have been used for testing both single-agent and multiagent
reinforcement learning methods in many works (see e.g. Sutton and Barto, 1998; Mitchell,
1997; Greenwald and Hall, 2003; Littman, 2001a). The problem used in this thesis, originally
proposed by Hu and Wellman (1998), is a version of a robot navigation problem in which the
agents learn to navigate through a grid world without colliding with each other or with other
obstacles. The problem is particularly interesting due to its general-sum payoff structure,
i.e. the interests of the agents are only partially conflicting.

In Publication I, two versions of the grid world problem are used for testing the proposed
learning techniques. Version 1 contains only deterministic state transitions whereas version
2 has also two probabilistic transitions. The versions are similar to those in Hu and Wellman
(1998), in which the problems were solved using a tabular symmetric multiagent reinforce-
ment learning algorithm. In this thesis, both versions of the problem are solved by using the
symmetric and asymmetric learning models. Moreover, in Publication II, the version 1 of
the problem is solved also by using several numeric learning methods.

In both versions of the grid world problem, there is a grid world containing nine cells and
two competing agents (Fig. 5.1). The agents start from the lower corners marked with 1 and
2, respectively, and on each round they can move to an adjacent cell (4-neighborhood). In
version 1 of the problem, there are two distinct goal positions, one for each agent, and in
version 2, the goal cell is the same for both agents. The agents get large positive payoffs when

45

they reach the right goal positions. In the symmetric learning model both agents get small
negative payoffs if they try to move to the same position, after which the agents are returned
back to their original positions. In the asymmetric learning model, only agent 1 (leader) gets
the negative payoff and is thereby trying to avoid the collision with its enforcements. Overall,
the ultimate goal of the agents is to reach the goal cells using as few moves as possible.

In version 2 of the problem, there are two barriers above the initial cells 1 and 2. When an
agent tries to move upwards from the start position, it gets through with probability 0.5,
otherwise the barrier blocks the movement and the agent remains in the start position. This
extension can be modeled as a stochastic state transition in the corresponding Markov game
(MG).

G2 G1

21 21

G2
G1

Figure 5.1: The game boards used in the two versions of the grid world problem.
In both cases, the agents are initially located in the cells marked with the numbers
1 and 2. The goal cells are marked with the symbols G1 and G2. In version 2 of
the problem, there are barriers above the start cells (marked with thick lines).

The problem can be characterized with the following MG:

• A state in this problem is a pair s = (p1, p2), consisting of the positions of the agents.
Hence, the state space of this example consists of 9 x 9=81 states.

• The agents get positive payoffs of 0.9 when they find the right goal cells.

• The action set for both agents is Ai = {Left,Right,Up,Down}, i = 1, 2. The agents
are restricted to stay on the game board.

• The discount factor γ is 0.99.

• In the asymmetric model, agent 1 is acting as the leader.

• In the symmetric model, if the agents collide, both agents get negative rewards of -0.1.
Only the leader gets this negative reward in the asymmetric model.

When one of the agents reaches the goal position, both agents are moved back to their initial
positions and the learning round is continued as a new episode. The learning was repeated
50 times in every test case. Some of the equilibrium paths generated by the symmetric and
the asymmetric learning models in version 1 are shown in Fig. 5.2. In Fig. 5.3, the two
equilibrium paths in version 2 are shown.

The averaged payoff values from the test runs are shown in Table 5.1. In version 1, both
learning models performed equally and found optimal paths. In version 2, the symmetric
model found both of the optimal paths illustrated in Fig. 5.3, whereas the asymmetric model

46

Figure 5.2: Some equilibrium paths in version 1 of the grid world problem.

Figure 5.3: Equilibrium paths in version 2 of the grid world problem.

found only the path on the right. The reason for this phenomenon is that only the leader
gets negative feedback from a collision, which motivates the leader to move upwards in the
start state.

Table 5.1: The averaged payoff values from 50 runs in the form (agent 1, agent 2).
version 1 version 2

symmetric 0.87, 0.87 0.51, 0.79
asymmetric 0.87, 0.87 0.37, 0.88

In Publication III, the state space of the grid world problem is divided into two subspaces:
one containing states with matrix games (complex states) and the other containing states
with the utility values for the learning agent only (simple states). The main idea is that the
complex states model the “critical” parts of the state space. In this problem, the complex
states are states where the distance between the agents is at most two cells. The simple
states then model the “easy” parts of the state space where there is no interaction between
the agents. In the grid world problems, if the distance between the agents is exactly two
cells, there exist joint actions that lead to a collision between the agents and therefore it is
justified to apply multiagent reinforcement learning in these complex states. The grid world
problem used to test this hybrid model is similar to the previously introduced version 1 of
the problem except that the size of the grid is 4 x 4 cells.

The hybrid model was tested with both symmetric and asymmetric learning models in Pub-
lication III. The actual learning was carried out using a Q-learning type off-policy learning
method (details are given in Publication III). In each case, the learning was repeated 50
times and each learning round took 100000 episodes. The averaged learning times (CPU
time in seconds) are presented in Table 5.2. From the table it can be seen that the learning
procedure is significantly faster with the hybrid learning model. In addition, the learning
was much faster with the asymmetric than with the symmetric learning model.

47

Table 5.2: Averaged learning times (CPU time in seconds) from 50 learning rounds.
normal hybrid

symmetric 237 180
asymmetric 78 48

5.2 Simplified soccer game

The aim of Publication IV is to provide a direct policy gradient method for team MGs, i.e.
MGs where all the agents share the same utility function. The proposed method is tested with
a simple soccer game that was originally proposed by Peshkin, Kim, Meuleau and Kaelbling
(2000). In this game, there are three players (agents): one fixed-strategy opponent and two
learning agents that constitute a team. One of the three agents holds the ball at any time.
The game is played on a 5 × 6 field illustrated in Fig. 5.4. In this figure, the cell marked
with G1 is the goal for the learning agents and the cell G2 for the fixed-strategy agent. The
agents are capable of moving to the four cardinal directions or staying in the current cell.
Only one agent can be in a certain cell simultaneously. The agent having the ball loses it
when colliding with another agent. In addition, the learning agents are capable of passing,
within two cells, the ball to their team mate.

A state consists of the agents’ positions and the ball possession information. Initially the
fixed strategy agent is located in the left half of the field and the learning agents in the right
half of the field. The ball possession is selected randomly. The game ends when the agent
possessing the ball reaches a goal cell. The cell G1 produces the payoff of 1 and G2 the
payoff of -1. The players are then returned back to random initial positions. After the agents
select their actions, using the Stackelberg equilibrium concept or by sampling from the joint
policy function, the actions are carried out in random order. This induces stochastic state
transitions to the MG. The fixed strategy player always moves toward the agent possessing
the ball until it gets the ball, after which it starts to move directly toward the goal cell G2.

The model was taught with 50000 games. The discount factor was γ = 0.9 and the maximum
length of a game was restricted to 50 moves. Additionally, the model was tested with 1000
games. In Fig. 5.5, the average number of wins (averaged over 20 test runs) is plotted
against the number of training games. From this figure, it can be seen that the number
of wins increases along the number of games. However, the system learns very fast in the
beginning of the learning process, and later the learning continues but it is not as dramatic.
When the system has been trained with more than 40000 games, there is a small drop in
the number of wins. This is due to the randomness in the system, namely stochastic state
transitions and random initial configurations.

5.3 Pricing scenarios

Two pricing scenarios, the flat pricing problem and the two-layer pricing problem, are used
to test proposed methods in three of the publications included in the thesis. In Publica-
tion II, different numeric solution techniques are applied to the simple (flat) pricing scenario

48

G1 G2

Figure 5.4: The game field in the soccer example. The cell G1 is the goal for the
learning agents and the cell G2 for the fixed strategy opponent.

0 1 2 3 4 5
x 10

4

0

200

400

600

800

1000

Training Rounds

W
in

s

Team
Opponent

Figure 5.5: The number of wins plotted against the number of the training rounds.

and in Publication I, a two-layer pricing problem is solved by using the asymmetric multi-
agent reinforcement learning method. Moreover, both pricing scenarios are discussed more
thoroughly in Publication V. Overall, due to different cost structures commonly arising in
economical systems, asymmetric equilibrium concepts are extensively used to analyze these
systems in operation research literature (see e.g. Ho, Luh and Muralidharan, 1981; Salman
and Cruz, 1981). In this thesis, the problem is much harder; the goal of the agents is to learn
to behave optimally towards an unknown opponent.

In both scenarios, there are two competing agents (brokers) that sell identical products and
compete against each other on the basis of price. At each time step, one of the brokers
decides its new price based on the opponent’s, i.e. the other broker’s, current price. After
the prices have been set, the customer either buys a product from the broker with the
cheapest price or decides not to buy the product at all. The objective of the agents is to
maximize their profits. The interaction between the two brokers is modeled as an asymmetric
multiagent reinforcement learning model. Additionally, the flat pricing scenario is extended
to the hierarchical pricing problem of three agents, in which one of the agents is acting as a
supplier that sells products to the brokers.

49

5.3.1 Flat pricing problem

Tesauro and Kephart (1999) modeled the interaction between two brokers as a single-agent
reinforcement learning problem in which the goal of the learning agent is to find the pricing
strategy that maximizes its long time profits. Additionally, reinforcement learning aids the
agents to prevent “price wars”, i.e. repeated price reductions among the brokers. As a
consequence of a price war, the prices would go very low and the overall profits would be
small. Tesauro and Kephart reported very good performance of the approach when one of the
brokers keeps its pricing strategy fixed. However, if both brokers try to learn simultaneously,
the Markov property assumed in the theory of Markov decision processes does not hold and
the learning system may encounter serious convergence problems. However, the learning
agents achieved a good performance with some pricing scenarios and the methods were
even extended to apply function approximators such as neural networks and regression trees
in (Tesauro, 2001; Sridharan and Tesauro, 2000). A minimax-style algorithm was applied to
the pricing problem in (Tesauro and Kephart, 1998).

In this thesis, the pricing scenario is modeled as an asymmetric MG. In Publication V, the
system is tested with two economical models: the Shopbot model (Greenwald and Kephart,
1999) and Price-Quality model (Sairamesh and Kephart, 1998). In this chapter, for brevity,
only the Shopbot model is discussed.

In the Shopbot model, the customer buys the product from the broker having the lowest
price. At each time step, after the customer has done his purchase decision, both brokers
get their immediate profits according to the utility functions defined as follows:

u1(p1, p2) =
{

p1 − c if p1 ≤ p2

0 otherwise (5.1)

and

u2(p1, p2) =
{

p2 − c if p1 > p2

0 otherwise, (5.2)

where p1, p2 ∈ P are the current prices of broker 1 and broker 2, respectively, and c ∈ [0, 1]
is the fixed marginal cost of the product. In this thesis, all prices lie in the unit interval and
the parameter c = 0.2.

The basic assumption is that the brokers do not make their decisions simultaneously, i.e.
there is an ordering among the decision makers. Hence, the system is modeled with the
following asymmetric MG:

• The state is the current price of broker 2.

• Broker 1 is acting as the leader and decides its price prior to broker 2. Hence, as the
state is the current price of broker 2, the utility of broker 1 depends only on its price
selection and the current state.

• Broker 2 is the follower and its utility value depends on the leader’s enforcement and
its own price selection.

50

At each time step, broker 1 calculates the Stackelberg equilibrium point of the matrix game
associated with the current state and makes its pricing decision based on this solution. After
that, broker 1 announces its price decision to broker 2 who, in its turn, maximizes its utility
value based on this enforcement. This process is illustrated in Fig. 5.6.

p 2
t−1 p 2

t−1
p 2

tp 1
t p 2

t

broker 1 broker 1broker 2

Figure 5.6: Timeline of the price decisions in the flat pricing problem. The price
symbols below the dots describe the states and symbols above the arrows represent
the price decisions.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Discount factor

C
um

ul
at

iv
e

pr
of

it

Broker 1
Broker 2

Figure 5.7: The averaged profits in the flat pricing model with the Shopbot pricing
function. All data points are averages of 1000 test runs, each containing 100 pricing
decisions for both agents.

In the test runs, the number of different pricing options was set to 25 for both agents. During
training, each state-actions tuple was visited 1000 times. In the testing phase, the initial
state (price of broker 2) was selected randomly and one test run consisted of 100 pricing
decisions per broker. In Fig. 5.7, the cumulative profit (average from 1000 test runs) of
each agent is plotted against the discount factor γ in the case of the Shopbot pricing model.
As can be seen from the figure, the average profit of broker 1 grows monotonically as the
discount factor increases. Also the profit of broker 2 increases albeit not monotonically.
Moreover, even the use of a small discount factor γ = 0.1, corresponding to a very shallow
lookahead, leads to relatively high profits compared to γ = 0.0. The use of higher discount
factors increases profits further but the growth is not so dramatic.

51

5.3.2 Two-layer pricing problem

In addition to the flat pricing problem, the two-layer pricing problem contains a supplier that
sells products to both of the brokers. At each time step, one of the brokers decides its new
price based on the opponent’s (other broker) current price and the price set by the supplier.
The supplier, in its turn, decides its action based on the asymmetric solution concept. After
the prices have been set, the customer either purchases a product from a broker or decides
not to buy the product at all. After the customer’s decision, the brokers get their profits
according to their immediate reward functions presented in Eqs. (5.3) and (5.4). The utility
values for the supplier are shown in Eqs. (5.5) and (5.6) when the brokers 1 and 2 are charged,
respectively.

u1(p1, p2, s; l) =
{

p1 − s if p1 ≤ p2 and s < lp1

0 otherwise (5.3)

u2(p1, p2, s; l) =
{

p2 − s if p1 > p2 and s < lp2

0 otherwise (5.4)

us1(p1, p2, s; l) =
{

s− c if p1 ≤ p2 and s < lp1

0 otherwise (5.5)

us2(p1, p2, s; l) =
{

s− c if p1 > p2 and s < lp2

0 otherwise. (5.6)

In Eqs. (5.3)–(5.6), p1 and p2 are the prices of the brokers 1 and 2, respectively, s is the
price of the supplier and l ∈ [0, 1] is the largest fraction of the broker’s price that the broker
is willing to pay to the supplier. As in the flat pricing problem, c is a fixed marginal cost of
the product. c could also be associated with some quality parameter, perhaps different for
each broker. However, in this thesis, the parameter has the same fixed value for each broker.

At each time step, the customer compares the prices and purchases the product from the
broker only if its price decision is lower than the current price of its competitor. In addition,
if the supplier is charging too much from the broker (expected profit of the broker is too
low), the broker does not buy the product from the supplier and the utility drops to zero for
both the supplier and the broker.

In this problem, reinforcement learning is used to aid the agents in anticipating the long-time
consequences of their price decisions on both levels of the agent hierarchy. The supplier does
not know the actual value of l used in Eqs. (5.3)–(5.6) and therefore it is justified also to use
learning, e.g. reinforcement learning, also for the supplier.

The learning task is simplified by assuming that broker 2 keeps its pricing strategy fixed, i.e.
it decides its price based on the immediate utility value defined in Eq. (5.4). Furthermore,
the supplier also keeps its pricing strategy fixed with broker 2. Fig. 5.8 illustrates this
relationship.

In the corresponding MG, the state is the opponent’s (other broker’s) last price and the
action is the current price decision. As broker 2 uses a fixed strategy, there is no need for
a game between the brokers. The parameter l has a value of 0.8 and the producing cost
for the supplier is c = 0.2 per product. In addition, the maximum price allowed to the
supplier is 0.8. The training phase was conducted similarly as with the flat pricing model.

52

Broker 1 game Broker 2 game

Broker 1 Broker 2

Fixed

Fixed

Supplier

Figure 5.8: Supplier-broker relationship.

In the testing phase, the initial prices were selected randomly and one test run consisted of
100 pricing decisions per broker. In Fig. 5.9, the cumulative profit (average from 1000 test
runs) of each agent is plotted against the discount factor γ. As can be seen from this figure,
the average profit of the supplier grows monotonically as the discount factor increases. The
brokers also learn a pricing strategy that leads to a notable growth in the profits compared
to the myopic case (γ = 0). The optimizing broker (broker 1) rises its price to the maximum
in some situations and therefore has slightly lower profits than the static broker. However,
the cumulative profits are much higher also for broker 1 when compared to the myopic case.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

Discount factor

C
um

ul
at

iv
e

pr
of

it

Supplier
Broker 1
Broker 2

Figure 5.9: Averaged profits in the two-layer pricing model. All data points are
averages of 1000 test runs each containing 100 pricing decisions for both agents.
The maximal possible profit is 100 for the brokers and 200 for the supplier.

53

Chapter 6

Conclusions

Most real-life situations include social interactions between multiple natural or artificial
actors. It is often crucial to be able to anticipate the behavior of the other actors in order to
satisfy one’s own goals. Recreational games, e.g. board games, are good examples of these
interactions between humans. A mathematical tool for dealing with these interactions is
game theory.

In many problems, the nature of the interaction is not known a priori; the exact structure of
the game should be learned from the history of interactions between agents. Therefore, the
fusion of traditional game theory and various machine learning techniques is a very active
research area at the present moment. Although multiagent machine learning techniques
have been studied for a long time, the problem has manifested to be very hard. As a
result, research based on multiagent reinforcement learning is still in the “basic research”
phase and most of the real-world multiagent applications use methods designed originally for
single-agent domains. In this thesis, various aspects of multiagent reinforcement learning are
studied and several extensions to single-agent reinforcement learning for multiagent domains
are proposed.

One of the main contributions of this thesis is the application of the asymmetric Stackelberg
equilibrium concept for evaluating stagegame values in Markov games (MGs). This procedure
leads to deterministic optimal policies and is much faster than the use of the symmetric
equilibrium concept. Moreover, it is possible to use a combination of the asymmetric and
symmetric equilibrium concepts in the learning process and thereby to cover a wide variety
of different problem settings.

Applying reinforcement learning methods for solving complex problems requires the use
of function approximators. In this thesis, two approaches to numeric approximation in
multiagent reinforcement learning tasks are studied. In the first approach, the Q-function
is approximated with a function approximator, which is then used for estimation of the
optimal policies. In the second approach, the policy function is parameterized directly and
the optimal parameter values are then sought by using a gradient based method.

55

In many real-world applications where reinforcement learning techniques are deployed to
multiagent systems, single-agent reinforcement learning is directly applied. Although some
principal assumptions behind these learning models are violated, the methods work surpris-
ingly well in many cases. In this thesis, a hybrid model is proposed in which the interaction
between the agents is modeled only in some predefined states and the normal single-agent
learning model in the remaining states. This can considerably reduce the number of free
parameters in the model and thus speed up learning, while maintaining the expression power
of MGs in the critical states.

The nature of the problem in question stipulates the equilibrium concept in MGs. In this
thesis, the learning methods are tested with several example problems. In some of these tests,
the roles of the learning agents are symmetric, leading to symmetric equilibrium concepts,
whereas in other tests, the agents have distinct roles leading to the asymmetric equilibrium
concept. The pricing problems discussed in the thesis are examples of problems, where the
roles of the agents are naturally different due to the cost structure. Additionally, both the
symmetric and asymmetric learning methods are applied to simple grid world problems and
their convergence speeds are compared. The asymmetric equilibrium concept provides one
justification for the use of the MaxMax operator in multiagent Q-learning with team games.
Based on this operator, a policy gradient method is extended to multiagent domains and
tested with a simplified soccer game.

Since MGs generally have a huge number of free parameters to learn and there are several
possible solution concepts with different features, MGs have been mainly of theoretical in-
terest to researchers in the field of reinforcement learning. However, there exist equilibrium
concepts, for example the Stackelberg equilibrium concept, that make it possible to evalu-
ate games very quickly and therefore to accelerate the learning procedure considerably. On
the other hand, this approach requires that the learning agents accept their roles and with
general-sum games, it is not possible to provide general convergence proofs. Therefore it
remains an open question to find a learning method that is guaranteed to converge to an
equilibrium policy with general-sum problems. When the stagegames in an MG have been
learned, it is possible to classify and study the properties of these games and acquire rel-
evant information about the underlying process. This classification could be accomplished
either manually or automatically by applying the methods for classification and clustering.
The interesting future research direction is to study the encoding of the games, i.e. how the
stagegames can be provided to the classification methods.

56

Bibliography

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approxima-
tion, Proceedings of the Twelft International Conference on Machine learning (ICML-
1995), Tahoe City, CA, pp. 30–37.

Baird, L. C. and Moore, A. (1999). Gradient descent for general reinforcement learning,
Advances in Neural Information Processing Systems (NIPS-1998), Denver, CO, pp. 968–
974.

Banerjee, B., Sen, S. and Peng, J. (2001). Fast concurrent reinforcement learners, Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-
2001), Seattle, WA, pp. 825–832.

Bard, J. F. (1998). Practical Bilevel Optimization—Algorithms and Applications, Kluwer
Academic Publishers.

Barto, A. G., Bradtke, S. J. and Singh, S. P. (1995). Learning to act using real-time dynamic
programming, Artificial Intelligence 72(1–2): 81–138.

Basar, T. and Olsder, G. J. (1982). Dynamic Noncooperative Game Theory, Vol. 160 of
Mathematics in Science and Engineering, Academic Press Inc. (London) Ltd.

Bellman, R. E. (1957a). Dynamic Programming, Princeton University Press.

Bellman, R. E. (1957b). A Markov decision process, Journal of Mathematical Mechanics
6: 679–684.

Bellman, R. E. (1961). Adaptive Control Processes: a Guided Tour, Princeton University
Press.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming, Athena Scientific.

Borel, E. (1953a). On games that involve chance and the skill of the players, Econometrica
21(1): 101–115.

Borel, E. (1953b). On systems of linear forms of skew symmetric determinant and the general
theory of play, Econometrica 21(1): 116–117.

Borel, E. (1953c). The theory of play and integral equations with skew symmetric kernels,
Econometrica 21(1): 97–100.

57

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes,
Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and Knowledge
(TARK-1996), De Zeeuwse Stromen, The Netherlands, pp. 195–210.

Bower, G. H. and Hilgard, E. R. (1981). Theories of Learning, Prentice-Hall.

Bowling, M. (2000). Convergence problems of general-sum multiagent reinforcement learning,
Proceedings of the Seventeenth International Conference on Machine Learning (ICML-
2000), Stanford, CA, pp. 89–94.

Bowling, M. and Veloso, M. M. (2002a). Multiagent learning using a variable learning rate,
Artificial Intelligence 136(2): 454–460.

Bowling, M. and Veloso, M. M. (2002b). Scalable learning in stochastic games, Proceedings of
the AAAI-02 Workshop on Game Theoretic and Decision Theoretic Agents, Edmonton,
Canada, pp. 11–18.

Boyan, J. A. (1992). Modular neural networks for learning context-dependent game strategies,
Master’s thesis, Cambridge University.

Carmel, D. and Markovitch, S. (1996). Incorporating opponent models into adversary search,
Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96),
Portland, OR, pp. 120–125.

Carmel, D. and Markovitch, S. (1998). Model-based learning of interaction strategies in
multi-agent systems, Journal of Experimental and Theoretical Artificial Intelligence
10(3): 309–332.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in coopera-
tive multiagent systems, Proceedings of the Fifteenth National Conference of Artificial
Intelligence (AAAI-98), Madison, WI, pp. 746–752.

Conitzer, V. and Sandholm, T. W. (2003a). AWESOME: A general multiagent learning
algorithm that converges in self-play and learns a best response against stationary op-
ponents, Proceedings of the Twentieth International Conference on Machine Learning
(ICML-2003), Washington, DC, pp. 83–90.

Conitzer, V. and Sandholm, T. W. (2003b). BL-WoLF: A framework for loss-bounded learn-
ability in zero-sum games, Proceedings of the Twentieth International Conference on
Machine Learning (ICML-2003), Washington, DC, pp. 91–98.

Conitzer, V. and Sandholm, T. W. (2003c). Complexity results about Nash equilibria, Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI-2003),
Acapulco, Mexico, pp. 765–771.

Cottle, R. W., Stone, R. E. and Pang, J.-S. (1992). The Linear Complementarity Problem,
Academic Press.

Cournot, A. A. (1897). Researches into the Mathematical Principles of the Theory of Wealth,
Macmillan.

Crites, R. H. (1996). Large-Scale Dynamic Optimization Using Teams of Reinforcement
Learning Agents, PhD thesis, University of Massachusetts Amherst.

58

Cziko, G. (1995). Without miracles : universal selection theory and the second Darwinian
revolution, MIT Press.

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton University Press.

Dean, T., Kaelbling, L. P., Kirman, J. and Nicholson, A. (1993). Planning with deadlines
in stochastic domains, Proceedings of the Eighteenth National Conference on Artificial
Intelligence (AAAI-93), Washington, DC, pp. 574–579.

Dennett, D. C. (1978). Why the law-of-effect will not go away, Brainstorms, Bradford/MIT
Press, pp. 71–89.

Edgeworth, F. Y. (1881). Mathematical Psychics: An Essay on the Application of Mathe-
matics to the Moral Sciences, Kegan Paul.

Filar, J. A. and Vrieze, K. (1997). Competitive Markov Decision Processes, Springer-Verlag.

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games, MIT Press.

Gmytrasiewicz, P. J. and Durfee, E. H. (1995). A rigorous, operational formalization of
recursive modeling, Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-1995), Menlo Park, CA, pp. 125–132.

Gmytrasiewicz, P. J. and Durfee, E. H. (2000). Rational coordination in multi-agent envi-
ronments, Autonomous Agents and Multi-Agent Systems 3(4): 319–350.

Greenwald, A. and Hall, K. (2003). Correlated-Q learning, Proceedings of the Eighteenth In-
ternational Conference on Machine Learning (ICML-2003), Washington, DC, pp. 242–
249.

Greenwald, A. R. and Kephart, J. O. (1999). Shopbots and pricebots, Proceedings of the
IJCAI-1999 Workshop on Agent Mediated Electronic Commerce, Stockholm, Sweden,
pp. 1–23.

Ho, Y.-C., Luh, P. B. and Muralidharan, R. (1981). Information structure, Stackelberg
games, and incentive controllability, IEEE Transactions on Automatic Control AC-
26(2): 454–460.

Hu, J. (1999). Learning in Dynamic Noncooperative Multiagent Systems, PhD thesis, The
University of Michigan.

Hu, J. and Wellman, M. P. (1998). Multiagent reinforcement learning: Theoretical framework
and an algorithm, Proceedings of the Fifteenth International Conference on Machine
Learning (ICML-1998), Madison, WI, pp. 242–250.

Hu, J. and Wellman, M. P. (2000). Experimental results of multiagent reinforcement learning,
Proceedings of the Seventeenth International Conference on Machine Learning (ICML-
2000), Stanford, CA, pp. 407–414.

Hu, J. and Wellman, M. P. (2002). Learning about other agents in a dynamic multiagent
system, Cognitive Systems Research 2(1): 67–79.

Hu, J. and Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic games,
Journal of Machine Learning Research 4: 1039–1069.

59

Huang, P. and Sycara, K. (2003). Multi-agent learning in extensive games with complete
information, Proceedings of the Second International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS-2003),, Melbourne, Australia, pp. 701–708.

IMS (2004). IMSL Numeric Library. http://www.vni.com/.

Kaelbling, L. P., Littman, M. L. and Moore, A. W. (1996). Reinforcement learning: A
survey, Journal of Artificial Intelligence Research 4: 237–285.

Kapetanakis, S. and Kudenko, D. (2002a). Improving on the reinforcement learning of coor-
dination in cooperative multi-agent systems, Proceedings of the AISB-2002 Symposium
on Adaptive Agents and Multi-Agent Systems, London, UK.

Kapetanakis, S. and Kudenko, D. (2002b). Reinforcement learning of coordination in co-
operative multi-agent systems, Proceedings of the Eighteenth National Conference on
Artificial Intelligence (AAAI-02), Edmonton, Alberta, Canada, pp. 326–331.

Kapetanakis, S., Kudenko, D. and Strens, M. (2003). Learning to coordinate using com-
mitment sequences in cooperative multiagent-systems, Proceedings of the AISB-2003
Symposium on Adaptive Agents and Multi-Agent Systems, Aberystwyth, UK.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms, Advances in Neural
Information Processing Systems (NIPS-1999), Denver, CO, pp. 1008–1014.

Könönen, V. J. (2003a). Asymmetric multiagent reinforcement learning, Proceedings of
the 2003 WIC International Conference on Intelligent Agent Technology (IAT-2003),
Halifax, Canada, pp. 336–342.

Könönen, V. J. (2003b). Gradient based method for symmetric and asymmetric multiagent
reinforcement learning, Proceedings of the Fourth International Conference on Intelli-
gent Data Engineering and Automated Learning (IDEAL-2003), Hong Kong, China,
pp. 68–75.

Könönen, V. J. (2003c). Policy gradient method for multiagent reinforcement learning, Pro-
ceedings of the second International Conference on Computational Intelligence, Robotics
and Autonomous Systems (CIRAS-2003), Singapore. CD-ROM.

Kuhn, H. W. (1953). Extensive games and the problem of information, in H. W. Kuhn and
A. W. Tucker (eds), Contributions to the Theory of Games, Vol. 2, Princeton University
Press, pp. 193–216.

Lauer, M. and Riedmiller, M. (2000). An algorithm for distributed reinforcement learn-
ing in cooperative multi-agent systems, Proceedings of the Seventeenth International
Conference on Machine Learning (ICML-2000), Stanford, CA, pp. 535–542.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learn-
ing, Proceedings of the Eleventh International Conference on Machine Learning (ICML-
1994), New Brunswick, NJ, pp. 157–163.

Littman, M. L. (1996). Algorithms for Sequential Decision Making, PhD thesis, Brown
University.

60

Littman, M. L. (2001a). Friend-or-Foe Q-learning in general-sum games, Proceedings of the
Eighteenth International Conference on Machine Learning (ICML-2001), Williamstown,
MA, pp. 322–328.

Littman, M. L. (2001b). Value-function reinforcement learning in Markov games, Cognitive
Systems Research 2(1): 55–66.

Littman, M. L. and Stone, P. (2001). Implicit negotiation in repeated games, Proceedings of
The Eighth International Workshop on Agent Theories, Architectures, and Languages
(ATAL-2001), Seattle, WA, pp. 393–404.

Luce, R. D. and Raiffa, H. (1957). Games and Decisions: Introduction and Critical Survey,
John Wiley and Sons.

McKelvey, R. D. and McLennan, A. (1996). Computation of equilibria in finite games, in
H. M. Amman, D. A. Kendrick and J. Rust (eds), Handbook of Computational Eco-
nomics, Vol. 1, Elsevier Science, pp. 87–142.

Mitchell, T. M. (1997). Machine Learning, McGraw-Hill.

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with
less data and less time, Machine Learning 13(1): 103–130.

Murty, K. G. (1978). Computational complexity of complementary pivot methods, Mathe-
matical Programming Study 7: 61–73.

Myerson, R. B. (1991). Game Theory: Analysis of Conflict, Harvard University Press.

NAG (2004). Numerical Algorithms Group (NAG). http://www.nag.co.uk.

Nash, Jr., J. F. (1950a). The bargaining problem, Econometrica 18(2): 155–162.

Nash, Jr., J. F. (1950b). Equilibrium points in N-person games, Proceedings of National
Academy of Sciences of the United States of America 36: 48–49.

Nash, Jr., J. F. (1953). Two person cooperative games, Econometrica 21(1): 128–140.

Pavlov, I. P. (1984). Conditioned Reflexes, Dover Publications.

Peshkin, L., Kim, K.-E., Meuleau, N. and Kaelbling, L. P. (2000). Learning to cooperate
via policy-search, Proceedings of the Sixteenth Conference on Uncertainty in Artifical
Intelligence (UAI-2000), Stanford, CA, pp. 489–496.

Robbins, H. and Monro, S. (1951). A stochastic approximation method, Annals of Mathe-
matical Statistics 22(3): 400–407.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist systems,
Technical Report CUED/F-INFENG/TR166, Cambridge University, Engineering De-
partment.

Sairamesh, J. and Kephart, J. O. (1998). Price dynamics of vertically differentiated infor-
mation markets, Proceedings of the First International Conference on Information and
Computational Economics (ICE’98), Charleston, SC, pp. 28–36.

61

Salman, M. A. and Cruz, Jr., J. B. (1981). An incentive model of duopoly with government
coordination, Automatica 17(6): 821–829.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers, IBM
Journal of Research and Development 3(3): 210–229.

Sandholm, T. W. and Crites, R. H. (1995). On multiagent Q-learning in a semi-competitive
domain, Proceedings of the IJCAI-1995 Workshop on Adaption and Learning in Multi-
Agent Systems, Montréal, Canada, pp. 191–205.

Schraudolph, N. N., Dayan, P. and Sejnowski, T. J. (1993). Temporal difference learning
of position evaluation in the game of go, Advances in Neural Information Processing
Systems (NIPS-1993), Denver, CO, pp. 817–824.

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in exten-
sive games, International Journal of Game Theory 4: 25–55.

Shapley, L. S. (1953). Stochastic games, Proceedings of National Academy of Sciences of the
United States of America 39: 1095–1100.

Sheppard, J. W. (1997). Multi-Agent Reinforcement Learning in Markov Games, PhD thesis,
The Johns Hopkins University.

Singh, S. P., Jaakkola, T. S., Littman, M. L. and Szepesvári, C. (2000). Convergence
results for single-step on-policy reinforcement-learning algorithms, Machine Learning
38(3): 287–308.

Singh, S. P., Kearns, M. and Mansour, Y. (2000). Nash convergence of gradient dynamics in
general-sum games, Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence (UAI-2000), Stanford, CA, pp. 541–548.

Sridharan, M. and Tesauro, G. (2000). Multi-agent Q-learning and regression trees for
automated pricing decisions, Proceedings of the Seventeenth International Conference
on Machine Learning (ICML-2000), Stanford, CA, pp. 927–934.

Suematsu, N. and Hayashi, A. (2002). A multiagent reinforcement learning algorithm using
extended optimal response, Proceedings of the First International Joint Conference on
Autonomous Agents & Multiagent Systems (AAMAS-2002), Bologna, Italy, pp. 370–
377.

Sun, R. and Qi, D. (2000). Rationality assumptions and optimality of co-learning, Proceed-
ings of the Third Pacific Rim International Workshop on Multi-Agents (PRIMA-2000),
Melbourne, Australia, pp. 61–75.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences, Machine
Learning 3(1): 9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming, Proceedings of the Seventh International Con-
ference on Machine Learning (ICML-1990), Austin, TX, pp. 216–224.

62

Sutton, R. S. (1991). Planning by incremental dynamic programming, Proceedings of the
Eighth International Workshop on Machine Learning (ML-1991), Evanston, IL, pp. 353–
357.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction, MIT Press.

Sutton, R. S., Barto, A. G. and Anderson, C. W. (1983). Neuronlike elements that can
solve difficult learning control problems, IEEE Transactions on Systems, Man, and
Cybernetics 13: 835–846.

Sutton, R. S., McAllester, D., Singh, S. P. and Mansour, Y. (2000). Policy gradient methods
for reinforcement learning with function approximation, Advances in Neural Information
Processing Systems (NIPS-1999), Denver, CO, pp. 1057–1063.

Szepesvári, C. and Littman, M. L. (1999). A unified analysis of value-function-based
reinforcement-learning algorithms, Neural Computation 11(8): 2017–2060.

Tesauro, G. (1992). Practical issues in temporal difference learning, Machine Learning 8(3–
4): 257–277.

Tesauro, G. (2001). Pricing in agent economies using neural networks and multi-agent Q-
learning, in R. Sun and C. Giles (eds), Sequence Learning: Paradigms, Algorithms,
and Applications, Vol. 1828 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 288–307.

Tesauro, G. (2004). Extending Q-learning to general adaptive multi-agent systems, Advances
in Neural Information Processing Systems (NIPS-2003), Vancouver, British Columbia,
Canada, pp. 871–878.

Tesauro, G. and Kephart, J. O. (1998). Foresight-based pricing algorithms in an economy of
software agents, Proceedings of the First International Conference on Information and
Computational Economics (ICE’98), Charleston, SC, pp. 37–44.

Tesauro, G. and Kephart, J. O. (1999). Pricing in agent economies using multi-agent
Q-learning, Proceedings of the Workshop on Game Theoretic and Decision Theoretic
Agents (GTDT’99), London, UK, pp. 71–86.

Thorndike, E. L. (1911). Animal Intelligence, Macmillan.

Thrun, S. (1994). Learning to play the game of chess, Advances in Neural Information
Processing Systems (NIPS-1994), Denver, CO, pp. 1069–1076.

Uther, W. and Veloso, M. M. (2003). Adversarial reinforcement learning, Technical Report
CMU-CS-03-107, Carnegie Mellon University.

Verbeeck, K., Nowé, A., Lenaerts, T. and Parent, J. (2002). Learning to reach the Pareto
optimal Nash equilibrium as a team, Proceedings of the Fifteenth Australian Joint Con-
ference on Artificial Intelligence (AI-2002), Canberra, Australia, pp. 407–418.

von Neumann, J. (1959). On the theory of games of strategy, in A. W. Tucker and R. Luce
(eds), Contributions to the Theory of Games, Vol. 4, Princeton University Press, pp. 13–
42.

63

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior,
Princeton University Press.

von Stackelberg, H. (1934). Marktform und Gleichgewicht (in German), Springer-Verlag.

von Stackelberg, H. (1952). The Theory of Market Economy, Oxford University Press.

von Stengel, B. (2002). Computing equilibria for two-person games, in R. J. Aumann and
S. Hart (eds), Handbook of Game Theory, Vol. 3, North-Holland.

Wang, X. and Sandholm, T. W. (2003). Reinforcement learning to play an optimal Nash
equilibrium in team Markov games, Advances in Neural Information Processing Systems
(NIPS-2002), Vancouver, British Columbia, Canada, pp. 1603–1610.

Wang, X. and Sandholm, T. W. (2004). Learning near-Pareto-optimal conventions in poly-
nomial time, Advances in Neural Information Processing Systems (NIPS-2003), Van-
couver, British Columbia, Canada, pp. 863–870.

Watkins, C. J. (1989). Learning from Delayed Rewards, PhD thesis, Cambridge University.

Watkins, C. J. and Dayan, P. (1992). Q-learning, Machine Learning 8(3–4): 279–292.

Weaver, L. and Tao, N. (2001). The optimal reward baseline for gradient-based reinforce-
ment learning, Proceedings of the Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI-2001), Seattle, WA, pp. 538–545.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits, IRE Western Electric Show
and Convention Record 4: 96–104.

Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist systems,
Technical Report NU-CCS-88-3, College of Computer Science, Northeastern University.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning, Machine Learning 8(3–4).

Witten, I. H. (1977). An adaptive optimal controller for discrete-time Markov environments,
Information and Control 34(4): 286–295.

Wolpert, D. H., Kirshner, S., Merz, C. J. and Tumer, K. (2000). Adaptivity in agent-
based routing for data networks, Proceedings of the Fourth International Conference on
Autonomous Agents (Agents 2000), Barcelona, Catalonia, Spain, pp. 396–403.

Wolpert, D. H. and Tumer, K. (2000). An introduction to collective intelligence, Technical
Report NASA-ARC-IC-99-63, NASA Ames Research Center.

Wolpert, D. H., Tumer, K. and Frank, J. (1999). Using collective intelligence to route Internet
traffic, Advances in Neural Information Processing Systems (NIPS-1998), Denver, CO,
pp. 952–958.

Zachrisson, L. E. (1964). Markov games, in M. Dresher, L. S. Shapley and A. W. Tucker
(eds), Advances in Game Theory, Princeton University Press, pp. 211–253.

Zermelo, E. F. (1913). Über eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels (in German), Proceedings of the Fifth International Congress of Mathe-
maticians, Cambridge, UK, pp. 501–504.

64

	Abstract
	Acknowledgments
	Contents
	Abbreviations
	Symbols
	Introduction
	The main contributions of the thesis
	Publications and author's contributions
	Organization of the thesis

	Reinforcement learning in Markov decision processes
	History of RL in brief
	General principles
	A formal model of the agent based system
	Suitable performance criteria

	Markov decision processes
	Actual solving and learning methods for MDPs
	Solving methods for MDPs
	Learning methods for MDPs

	Exploration vs. exploitation

	Principles of game theory
	Brief history of game theory
	Basic game theoretical models
	Categorization of games
	Extensive form
	Strategic form
	Correspondence of the extensive form and the strategic form

	Solution concepts for games
	Elimination of dominated strategies
	Stackelberg equilibrium
	Correlated equilibrium
	Nash equilibrium
	MaxMin solution
	MaxMax solution and its extensions

	Stackelberg solution and normal representation

	Multiagent reinforcement learning in Markov games
	Mathematical principles
	AMGs
	Correspondence between models
	Correspondence between MGs and extensive form games
	Correspondence between AMGs and asymmetric MGs

	RL in multiagent settings
	RL in AMGs
	Symmetric learning in MGs
	Asymmetric learning in MGs

	Some considerations on numeric approximation
	Value-function-based methods
	Policy gradient methods
	Learning to play optimally

	Why to use MGs in multiagent reinforcement learning?

	Example problems
	Grid world example
	Simplified soccer game
	Pricing scenarios
	Flat pricing problem
	Two-layer pricing problem

	Conclusions
	Bibliography

