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Abstract

This thesis is an analytical and computational treatment of Turing models, which
are coupled partial differential equations describing the reaction and diffusion be-
havior of chemicals. Under particular conditions, such systems are capable of
generating stationary chemical patterns of finite characteristic wave lengths even
if the system starts from an arbitrary initial configuration. The characteristics
of the resulting dissipative patterns are determined intrinsically by the reaction
and diffusion rates of the chemicals, not by external constraints. Turing patterns
have been shown to have counterparts in natural systems and thus Turing systems
could provide a plausible way to model the mechanisms of biological growth.
Turing patterns grow due to diffusion-driven instability as a result of infinites-
imal perturbations around the stationary state of the model and exist only under
non-equilibrium conditions. Turing systems have been studied using chemical
experiments, mathematical tools and numerical simulations.

In this thesis a Turing model called the Barrio-Varea-Aragon-Maini (BVAM)
model is studied by employing both analytical and numerical methods. In addi-
tion to the pattern formation in two-dimensional domains, also the formation of
three-dimensional structures is studied extensively. The scaled form of the BVAM
model is derived from first principles. The model is then studied using the stand-
ard linear stability analysis, which reveals the parameter sets corresponding to a
Turing instability and the resulting unstable wave modes. Then nonlinear bifurc-
ation analysis is carried out to find out the stability of morphologies induced by
two-dimensional hexagonal symmetry and various three-dimensional symmetries
(SC, BCC, FCC). This is realized by employing the center manifold reduction
technique to obtain the amplitude equations describing the reduced chemical dy-
namics on the center manifold. The main numerical results presented in this thesis
include the study of the Turing pattern selection in the presence of bistability, and
the study of the structure selection in three-dimensional Turing systems depending
on the initial configuration. Also, the work on the effect of numerous constraints,
such as random noise, changes in the system parameters, thickening domain and
multistability on Turing pattern formation brings new insight concerning the state
selection problem of non-equilibrium physics.
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Chapter 1

Introduction

Natural systems exhibit an amazing diversity of structures in both living and non-
living systems. Trees and plants growing from a single seed can show extremely
complex organization not to mention mammals, whose development begins from
a single fertilized egg cell. Mathematical biologists devise and study models that
at least qualitatively capture some essential characteristics of the natural mech-
anisms of growth. In these models the primary interest is not in genes, but in the
processes that follow the activation of a gene. The information stored in DNA cor-
responds to a blueprint, which is put into action by spontaneous physico-chemical
processes. DNA is known to have three billion (3 × 109) base pairs, whereas an
adult human being consists of tens of trillions of cells (1013). Thus it cannot con-
tain enough information for determining everything in detail, but it is responsible
for the major guidelines for the development of an organism. What could the
spontaneous processes generating the structure by following these guidelines be?

More than half a century ago a British mathematician Alan M. Turing ad-
dressed the problem. He assumed that genes (or proteins and enzymes) act only
as catalysts for spontaneous chemical reactions, which regulate the production
of other catalysts or morphogens. Finally, cells differentiate according to the
morphogen concentration in their surroundings. There was not any new physics
involved in Turing’s idea, but he merely suggested that the fundamental phys-
ical laws can account for complex physico-chemical behavior. In 1952 Turing
published his seminal article titled The Chemical Basis of Morphogenesis, where
he showed that a simple mathematical model describing spontaneously spreading
and reacting chemicals could give rise to stationary spatial concentration patterns
of fixed characteristic length from a random initial configuration and proposed
that reaction-diffusion modelsmight have relevance in describing morphogenesis,
the growth of biological form.

Turing begun his reasoning by considering the problem of a spherically sym-
metrical fertilized egg cell becoming a complex and highly structured organism. A
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spherically symmetrical egg should remain spherically symmetrical forever not-
withstanding plain chemical diffusion and reactions. As Turing (1952) put it:
“From spherical initial state chemical reactions and diffusion certainly cannot
result in an organism such as a horse, which is not spherically symmetrical.”
However, Turing showed that there is a fallacy in this argument and reasoned that
something must make the stable spherical state unstable and thus cause spontan-
eous symmetry-breaking. The egg in the blastula stage is never exactly spherically
symmetrical and the random deviations from the spherical symmetry are different
in two eggs of the same species. Thus one could argue that those deviations are not
of importance since all the organisms of a certain species will end up having the
same anatomical structure irrespective of the initial random deviations. However,
Turing emphasized and showed that “it is important that there are some devi-
ations, for the system may reach a state of instability in which these irregularities
tend to grow” (Turing, 1952). In other words, if there are no random deviations,
the egg will stay in the spherical state forever. In biological systems the random
deviations arise spontaneously due to natural noise and distortions.

Turing proved rigorously that a chemical state, which is stable against per-
turbations in the absence of diffusion may become unstable to perturbations in the
presence of diffusion. Turingor diffusion-driven instabilityis initiated by arbitrary
random deviations of the stationary state and results in stationary spatially peri-
odic variations in the chemical concentration, i.e., chemical patterns. The idea that
diffusion could make a stable and uniform chemical state unstable was innovative
since usually diffusion is thought to be stabilizing (e.g. a droplet of ink dispers-
ing to water). Intuitively Turing instability can be understood by considering the
long-range effects of the chemicals, which are not equal due to the difference in
the pace of diffusion and thus an instability arises. The random initial conditions
naturally have an effect on the resulting pattern, but only with respect to the phase
of the pattern. The intrinsic parameters determine that the system will evolve e.g.
towards stripes of a fixed width instead of spots, but the random initial conditions
together with the effects of the boundaries and the domain geometry determine the
exact positions and the alignment of the stripes (the phase). This idea becomes
evident by considering the fact that all tigers have stripes, but the stripe pattern is
not exactly similar in all individual tigers.

Some exhilarating common sense explanations of the mechanism of the Tur-
ing instability can be found from the literature: Murray has discussed sweating
grasshoppers on a dry grass field that is set alight (Murray, 1989). I have often
tried to illustrate the mechanism by using Turing’s own metaphor of missionar-
ies (M) and cannibals (C) on an island, which we will next revive. Imagine an
island inhabited by efficiently reproducing cannibals. It happens so that some mis-
sionaries decide to come to the island by boat to evangelize the cannibals. What
happens then? The rules are: If two or more missionaries meet one cannibal they
can convert him into a missionary (C + 2M → 3M). If the relative strength
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is the other way around, the missionaries get killed and eaten by the cannibals
(2C + M → 2C). As the missionaries die, more missionaries are brought to the
island. The competition between forces, constraints or tendencies is characteristic
to all pattern forming systems. In this example the missionaries want to convert
their opponents, whereas cannibals prefer eating them. The essential prerequisite
for the Turing instability is diffusion, which here corresponds to the movement of
cannibals and missionaries. The missionaries are assumed to have bicycles and
thus they move faster, i.e., they represent the inhibitor of the reaction and slow
down the reproduction of cannibals, which in turn are the activator. Should the
missionaries not have bicycles, they would always get killed as they meet canni-
bals, but by having bicycles they have a chance to escape and return where there
are more missionaries around. With these definitions the auto-catalytic nature of
the Turing mechanism becomes evident: In areas with many cannibals their num-
ber will increase due to reproduction, and as a result the cannibals will be even
more effective in killing missionaries. On the other hand, the predominance of the
cannibals means that more missionaries need to be brought to the island to convert
them. If the rate of the cannibal reproduction and missionary boat transport com-
bined with cannibals’ running and missionaries’ bicycling speed are appropriate,
the cannibals and missionaries might finally find a stationary pattern. This pattern
would correspond to a map of the island where the areas with cannibal dominance
can be marked by one color and the areas with missionary dominance by another
color.

Turing patterns were first observed in chemical experiments as late as 1990.
In addition to experiments, previous studies of Turing systems have employed
analytical mathematical tools and numerical computer simulations in studies of
different models exhibiting Turing instability. Apart from physicists also math-
ematical biologists have been interested in the Turing systems, which have been
shown to be able to at least qualitatively imitate many biological patterns such as
the stripes of a zebra or spots of a cheetah (see Fig. 1.1) and even more irregular
patterns such as those on leopards and giraffes, not to talk about the patterns on
exotic fish, butterflies or beetles. Also the segmentation of the fruit fly embryo has
been modeled using Turing systems (see e.g. Koch and Meinhardt (1994)). Con-
clusive evidence connecting Turing systems to formation of animal coat patterns
and biology in general is, however, still missing.

Despite the fact that the biological relevance of Turing’s work is controversial
even today, it had a significant impact on the development of nonlinear dynam-
ics and non-equilibrium physics. Turing gave the first detailed description of a
mechanism that can generate order in a non-equilibrium system. In the case of
Turing systems the most important prerequisite for the pattern formation process
is the difference in the characteristics of the random movement of the chemical
molecules due to thermal fluctuations, i.e., diffusion. The special feature of Turing
patterns is that their characteristics are determined intrinsically by the properties
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Figure 1.1: For example, the spots of a cheetah can be imitated by using a Turing model.
The pattern on the right hand side has been generated by a computer simulation starting
from a random state. (Photo: Helmi Leppänen.)

of the chemicals involved and not by external factors. The reaction-diffusion sys-
tem is kept out of equilibrium by fresh reagents, which are continuously fed into
the system. Under certain well-defined conditions this causes a chemical instabil-
ity, resulting in the formation of a Turing pattern with respect to the chemical
concentrations. If the feeding of fresh chemicals is stopped, the pattern will van-
ish, i.e., the system will return to equilibrium.

Since Turing’s goal was to find a generic mechanism, he was aware of the fact
that the models he proposed were a severe simplification of any real biological
system. In order to construct a manageable model he neglected the mechanical
and electrical properties of biological tissue, and instead considered the chemical
properties as the crucial factors in biological growth. However, Turing committed
suicide only two years after the publication of his only article on morphogenesis,
leaving behind a lot of unfinished work. Later it has been found that the relevance
of Turing instability is not confined to chemical systems, but also many other
physical systems exhibiting dissipative structures can be understood in terms of
diffusion-driven instability (Epstein et al., 1992). Turing instability has been con-
nected to gas discharge systems (Astrov et al., 1996; Ammelt et al., 1998), cata-
lytic surface reactions (Falta et al., 1990), semiconductor nanostructures (Temmyo
et al., 1997), nonlinear optics (Tlidi et al., 1997), irradiated materials (Walgraef
and Ghoniem, 2003) and surface waves on liquids (Barrio et al., 1997).

In general, according to the second law of thermodynamics, a closedsystem
always maximizes its entropy. This means that if a system is not in an equilibrium
state, it will move towards it. In nature, a seed can remain in an equilibrium state
for a long time before it germinates. If it finds its way into nutritious soil the seed
develops branches that become the stem and roots of the plant. As a structure
arises the entropy decreases locally, which seems to contradict the second law of
thermodynamics. Thus, it was long thought (and some people still do) that science
cannot explain the origins of life. To overcome this reasoning, the most important



5

point to notice is that natural systems are not closed systems, but are in constant
interaction with their environment. It was not until 1950s when the scientific
community began to understand that there are many analogous open systems, ran-
ging from chemistry to hydrodynamics. The constant external feeding of energy
into a system keeps the system away from equilibrium, and hence the dynamics
of the system are not anymore governed by the rules of equilibrium thermody-
namics, thus enabling self-organization of dissipative structures and many other
interesting phenomena. For example, a human being is an open dissipative non-
equilibrium system that has to keep up a constant influx of energy by eating. The
energy is consumed in resisting the universal increase of entropy to maintain the
structure of the body. If a human being stops eating, the entropy will win the
competition causing the body to break down.

The pattern formation behavior in Turing systems is very complex. In this
thesis a Turing model called the Barrio-Varea-Aragon-Maini (BVAM) model is
studied employing computational methods. We have focused on the dynamics of
the BVAM model under different conditions in both two- and three-dimensional
domains by employing large-scale computer simulations. The results of the nu-
merical simulations were justified and validated by analytical treatment of the
BVAM model using both linear stability analysisand nonlinear bifurcation the-
ory. In our work, the emphasis is on extending the present knowledge concerning
the characteristics of Turing structure formation in three dimensions as compared
to two-dimensional Turing pattern formation.

The purpose of Chapter 2 is to introduce the reader to the field of pattern
formation on a general level and to position the subject matter of this thesis to
a larger context. Some basic concepts related to pattern formation are reviewed
and two extensively studied classes of systems showing pattern formation, namely
hydrodynamical systems and chemical reaction-diffusion systems are discussed.
This chapter is concluded by a brief introduction to pattern formation in natural
systems and to the biological relevance of Turing’s ideas.

The focus of Chapter 3 is specifically on the chemical reaction-diffusion sys-
tems that exhibit Turing instability. First, the idea of Turing instability is dis-
cussed at an abstract level followed by a sketch of the formal methods available
for treating Turing systems. Then three well-known Turing models are introduced
to get some insight to Turing models in general. Finally, we discuss an exper-
imental CIMA reaction showing Turing patterns and review some other recent
experimental work.

Chapter 4 presents the results of our original work in the context of the BVAM
model. First, the model is derived and scaled followed by the linear stability
analysis in order to determine the unstable wave vectors and the parameter sets
resulting in the Turing instability. Then, pattern selection in the BVAM model is
studied by using nonlinear bifurcation analysis in both two- and three-dimensional
systems. The methods are presented in a detailed manner starting from the deriv-



ation of the amplitude equations for different symmetries, followed by the cen-
ter manifold reduction and stability analysis of the resulting amplitude equation
systems. The nonlinear analysis yields the parameter regimes corresponding to
morphologically different patterns and bistability.

The main results of this thesis are presented in Chapter 5. First, the numerical
procedure for solving the BVAM model is introduced and analyzed. Then, some
general result of Turing pattern formation in both two- and three-dimensional do-
mains are presented, and the difference between Turing pattern formation in two
and three dimensions is discussed. Next, the robustness of the Turing mechanism
is studied by introducing Gaussian noise in the system, which is followed by a
broad study of morphological transitions and the effects of bistability. Then, the
effect of the domain growing from a two-dimensional plane to a three-dimensional
slab is studied. The results are concluded by a study of spatio-temporal dynamics
in the BVAM model due to competing bifurcations and multistability.

Finally, in Chapter 6 the most important ideas presented in this thesis are
reviewed and the biological relevance of our results and Turing pattern formation
is discussed in general.



Chapter 2

Some general aspects on pattern
formation

The appearance of dissipative structures due to a spontaneous symmetry-breaking
is a phenomenon occurring in a variety of non-equilibrium systems. Dissipative
structures exist far from equilibrium and differ from typical equilibrium struc-
tures (e.g. crystals) in that they are kept in a steady-state by ongoing dynamical
processes feeding energy into the system. The structures persist by dissipating
the input energy, which makes non-equilibrium processes irreversible. Dissipat-
ive structures are typically macroscopic and the characteristic length scale of the
structure is independent of the size of the individual constituents (e.g. molecules)
of the system.

The formal theory of pattern formation is based on non-equilibrium thermo-
dynamics (see e.g. De Groot and Mazur (1962)) and was pioneered by the Russian
chemist Ilya Prigogine. The research was carried out in Brussels from the 1940s
to 1960s by Prigogine and coworkers. They extended the treatment of thermo-
dynamical systems to the nonlinear regime far from equilibrium and applied bi-
furcation theory to analyze state selection (Prigogine and Lefever, 1968; Nicolis
and Prigogine, 1977). In 1945 Prigogine had suggested that a system in non-
equilibrium tries to minimize its rate of entropy production and chooses the state
accordingly. This condition was proved to be inadequate by Landauer (1975),
who argued that minimum entropy production is not in general a necessary condi-
tion for the steady-state and that the most favorable state of the system cannot be
determined based on the behavior in the vicinity of the steady state, but one must
consider the global non-equilibrium dynamics. Nevertheless, in 1977 Prigogine
was awarded the Nobel price in chemistry for his contribution to the theory of
dissipative structures. Later studies have developed new techniques for analyzing
pattern selection (Pismen, 1980; Newell et al., 1993; Gunaratne, 1994; Ipsen et al.,
2000) and spontaneous symmetry-breaking in dissipative systems (Walgraef et al.,
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1980, 1981; Pismen, 1994; Callahan and Knobloch, 2001). It should be noted,
however, that the theory of non-equilibrium thermodynamics is still incomplete.

The exact definition of pattern formation is somewhat ambiguous since there
are numerous systems showing some sort of organized behavior. In this thesis
we will not discuss self-organized criticality, where the emphasis is on the de-
scription of the universal characteristics of the resulting configurations instead of
the mechanism resulting in self-organization behavior (Bak et al., 1987). On one
hand, pattern formation can be considered to refer to any process that gives rise
to some kind of observable patterns or in a more general sense increase of order
in the system. On the other hand, the definition may require that the mechan-
ism behind the patterns has particular characteristics. Haken (1977) has tried to
capture the general phenomena under the name synergetics, referring to the co-
operation of different effects, whereas Nicolis and Prigogine (1977) have called
similar phenomena self-organization of dissipative structures.

The point of view to pattern formation that is adopted here is little differ-
ent. Here the pattern formation is seen as a dissipative non-equilibrium process,
where local rules (interaction or reaction) or external constraints (time or length
scales) govern the global organization. There are numerous physical systems
exhibiting dynamical behavior that satisfy the above definition (see e.g. Gol-
lub and Langer (1999) and (Rabinovich et al., 2000)). Certain hydrodynamical
systems and chemical reaction-diffusion systems are good examples of pattern
formation and will be discussed in more detail in Secs. 2.2 and 2.3. Other prob-
lems related to the pattern formation according to the above definition include
periodically vibrated systems (e.g. granular media (Melo et al., 1995) or Faraday
experiment (Barrio et al., 1997)), interface dynamics (e.g. solidification, viscous
fingering, dendritic growth) (Cross and Hohenberg, 1993; van Saarloos, 1998)
and nonlinear optics (Tlidi et al., 1997). It should be noted, however, that, for
example, self-organization in amphiphilic systems (Chaikin and Lubensky, 1995)
or in block co-polymer melts (Matsen and Bates, 1996; Groot and Madden, 1998;
Groot et al., 1999) are excluded by the definition, since they are dynamical equi-
librium processes driven by minimization of the free energy, i.e., there is not a
constant external driving maintaining the non-equilibrium conditions, but rather
the system is evolving towards the equilibrium.

One of the challenges in studying pattern forming systems is the analysis of
the patterns themselves. How can one define what is a real pattern as opposed
to something random, characterize the properties of a pattern and differentiate
between patterns? In essence, many pattern forming systems may result in striped
or spotty patterns. Thus if you see a picture of a two-dimensional hexagonal lat-
tice of spots, by looking at it you cannot determine, whether the structure was
generated by chemicals in a gel, laser light in a cavity or charges on the surface of
a semiconductor. This should be duly noted, since the great variety of patterns that
can be observed in nature has inspired researchers to propose descriptive models
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for biological pattern formation. Patterns in natural systems and their mathemat-
ical modeling will be discussed in Sec. 2.4.

2.1 Basic concepts

There are some basic concepts that should be introduced before discussing prob-
lems related to nonlinear dynamics and pattern formation. Bifurcation refers to
a qualitative change in the dynamics of a system. At the bifurcation point, the
stability of stationary states typically changes. We write a differential equation
for an n-component reaction system as

dW
dt

= f (W, θ), (2.1)

where W = (w1, . . . , wn)
T stands for the n species wi , θ holds the parameter val-

ues and f is a typically nonlinear function of the species and parameters. Eq. (2.1)
describes a spatially homogeneous system since spatial dependence of W in the
form of diffusion operator (∇2) is missing. The behavior of the system can be
adjusted by the control parameter included in θ that defines the distance to the
thermal equilibrium state or to the onset of the pattern forming instability. Around
some critical value θc the system undergoes a bifurcation, which leads to the spon-
taneous symmetry-breakingand ordering at the macroscopic level.

2.1.1 Symmetry-breaking

Spontaneous symmetry-breaking is one of the key concepts while discussing bi-
furcations in non-equilibrium systems (corresponding to phase transitions in equi-
librium systems). The phenomena can be understood by considering equilibrium
phase transitions such as the liquid-solid phase transition, where homogeneous
liquid becomes a fixed crystal. Another example is the Ising model, which shows
a disordered structure at high temperatures with magnetization 〈m〉 = 0 and as
the temperature is lowered the system undergoes a second-order phase transition
into the symmetry-broken phasewith spins pointing coherently either up or down
(see Fig. 2.1).

As a non-equilibrium example let us consider a thin metal strip mounted to a
piece of wood. The strip has a weight attached to it and the height of the weight
can be adjusted. As the weight is low enough (h < hc) the strip will stand straight
and oscillate around the vertical state if perturbed. As the weight is moved higher
(h > hc), the strip becomes unstable to perturbations. The strip will bend either
to the left or right due to gravity and the flexibility of the strip. Upon bending
the mirror symmetry is broken with respect to the vertical axis. If the system
is then perturbed again, it will oscillate around the bent state. The situation is
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T >> TC , <m> = 0

T=TC

T = 0 , <m> = 1

Figure 2.1: The symmetry-breaking phase transition in the Ising model occurs at T = Tc.
At high enough temperatures T >> Tc the system is disordered. As the temperature
decreases the system enters the broken symmetry phase with the spins pointing either up
or down.

hC

hCh <

hCh > 

weight

Figure 2.2: A metal strip with a weight illustrating a system undergoing a spontaneous
symmetry-breaking via a subcritical pitchfork bifurcation as the height of the weight is
altered. The dashed arrows describe the oscillations around the steady-states due to per-
turbations.

illustrated in Fig. 2.2. It should be noticed that the system is driven by gravity. In
the absence of gravity the value of the bifurcation parameter, i.e., the height of the
weight (h), does not affect the behavior of the system. Then the bent states do not
exist for any value of h and the spontaneous symmetry-breaking does not occur.
The behavior of the system describes very well the pitchfork bifurcation, which
will be discussed later.

Chemical reaction-diffusion systems exhibiting pattern formation, such as the
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Turing systems studied in this thesis, are analogous to the non-equilibrium case. In
chemical systems the spontaneous symmetry-breaking occurs due to an instability
as the feed rate of a chemical exceeds certain threshold value. The initial state is
typically just a homogeneous state with random fluctuations, whereas the final
state is a highly organized pattern with respect to the chemical concentration.
The exact form of the resulting pattern is determined by the initial fluctuations
(corresponding to the metal strip bending either to the left or to the right), whereas
the general features of the morphology are governed intrinsically by the reaction
and diffusion rates of the chemicals (corresponding to deviation of the metal strip
from the vertical line, which is the same whether the strip bends to the left or
right).

2.1.2 Stability

Stability refers to a system’s ability to resist small perturbations. A system is in
a stationary state, when it satisfies the condition ∂W/∂t = 0 in Eq. (2.1). Let us
denote this solution by Ws such that f (Ws, θ) = 0. Next we introduce a time-
dependent perturbation denoted by w(t). Now the state W(t) of the system can
be written as

W(t) = Ws + w(t). (2.2)

There are two different definitions of stability. The state Ws is stable in the sense
of Lyapunovif the perturbed system never deviates “very far” from Ws. On the
other hand, the state is said to be asymptotically stableif it satisfies the previous
condition and, in addition, the perturbed system tends to return to the original state
Ws as time goes on. An asymptotically stable system is also stable in the sense of
Lyapunov, but the opposite is not always true. If a state is not stable, it is said to
be unstable.

The idea of stability is intuitive: If we disturb a system by a small amount, an
asymptotically stable system returns back to its original state. Figure 2.3 shows
schematically the idea of stable and unstable states with the help of three balls.
When the ball is on the top of a barrier, as a result of any little perturbation the
ball will fall to one of the stable states, A or B. On the contrary, when the ball is
in one of the lower stable states, it will stay there even if it is pushed to the side.
It is very important to notice that in the system of Figure 2.3 the direction of the
arbitrarily small perturbation fully determines the final state of the system (stable
state A or B). This is typical also to non-equilibrium systems.

The above discussion can be formulated mathematically as follows: if a norm
‖ · ‖ is defined in the phase space then the system is stable in the sense of Lya-
punov if for ∀ ε > 0 there ∃ δ(ε) > 0 such that ∀ W0, ‖ W0 − Ws ‖< δ ⇒ ‖
W(t) − Ws ‖< ε, for ∀ t ≥ 0. The system is asymptotically stable if, in addition,
‖ W(t) − Ws ‖→ 0 as t → ∞.
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    STATE
UNSTABLE

 STATE A

 STATE B

STABLE

STABLE

Figure 2.3: A schematic illustration showing three balls in stable and unstable states.
The stability of a state is determined by the effects of a small perturbation to that state.
If the ball is perturbed in the unstable state, the direction of the infinitesimal perturbation
determines the resulting state (A or B).

If the dynamics of a system can be captured in the form of an equation such
as Eq. (2.1), the stability of a stationary state Ws can be studied mathematically
by using linear analysis (see Sec. 3.1.1 for application to Turing models). The
Jacobian J of the system (Eq. (2.1)) is a matrix with elements defined as Ji j = ∂ fi

∂wj
.

Now the linear approximation for the system is given by

dW
dt

= A(W − Ws), (2.3)

where A stands for the Jacobian J evaluated at the stationary state Ws. The ei-
genvalues λi of A determine the stability of the state and the corresponding eigen-
vectors span the stable and unstable subspaces. If one or more of the real parts of
the eigenvalues λi are positive, the state is unstable.

The stationary states can be classified further according to the imaginary parts
and signs of the corresponding eigenvalues. For example, in a two-dimensional
phase space there are five types of fixed points: stable and unstable foci (imagin-
ary eigenvalues with non-zero real part), stable and unstable nodes (real eigen-
values) and saddle-nodes (real eigenvalues with different sign). In addition, there
is a further possibility for the state of the system, namely the limit cycle, which
corresponds to temporal oscillations with a fixed frequency. For a more detailed
discussion of the stability of fixed points, see e.g. Stich (2003).

As an example, let us consider the Fisher-Kolmogorov kinetics in the absence
of diffusion given by

dw

dt
= θw − w3, (2.4)

where w describes a real field (e.g. concentration) and θ is the bifurcation para-
meter of the model. The stationary states of Eq. (2.4) are given by w1

s = 0 for all
θ and w2,3

s = ±√
θ , for θ > 0. Since we are dealing with only one equation rather

than a system, the Jacobian reduces to a single derivative of the kinetics given by
θ − 3w2. The evaluation of this derivative at the stationary state w1

s yields θ and
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w2,3
s yields −2θ , which follows that for θ < 0 there exists only one stable state

w1
s . For θ > 0, w1

s becomes unstable and two additional stable stationary states
w2,3

s arise. The above stability scenario corresponds to the supercritical pitchfork
bifurcation at θc = 0, which will be introduced next.

2.1.3 Bifurcations

A bifurcation can be defined as a qualitative change in the topology of the phase
space of a system. It occurs due to a change in the value of the bifurcation para-
meterθ resulting in a spontaneous symmetry-breaking. In practise this can be
observed as the appearance of a new stationary state or as changes in the stabil-
ity of the stationary states. The are many types of bifurcations, for example, the
saddle-node bifurcation, pitchfork bifurcation and Hopf bifurcation. Their names
refer to different kinds of changes in the topology of the phase space. Bifurcations
may also be classified as subcritical and supercritical depending on the direction
of the bifurcation. A further classification is based on the co-dimensionof the
bifurcation, which more or less tells the number of parameters that have to be
adjusted in order to find the bifurcation point.

In the case of a saddle-node bifurcation, a stable node and an unstable saddle
point appear above the bifurcation point θc. An example of a saddle-node bifurc-
ation is given by the equation wt = θ − w2. For θ < 0 this equation has no
(real) stationary states, but for θ > 0 it has a stable and an unstable stationary
state with opposite signs. The bifurcation takes place at θc = 0 and is schem-
atically illustrated in Fig. 2.4A. A supercritical pitchfork bifurcation takes place
as the only stationary state loses stability and two new stable stationary states
appear. This situation corresponds to the case of the metal strip with a weight
(see Sec. 2.1.1) and it was also illustrated earlier using the Fisher-Kolmogorov
kinetics. The corresponding bifurcation diagram is presented in Fig. 2.4B. The
bifurcation parameter θ corresponds to quantity h − hc in the metal strip system
and the w corresponds to the deviation from the vertical state. A Hopf bifurcation
illustrated by Fig. 2.4C corresponds to a pair of imaginary eigenvalues crossing
the real axis and it results in a limit cycle with oscillations. The bifurcation dia-
grams presented in Fig. 2.4 correspond to a co-dimension-one bifurcation, since
the bifurcation point is adjusted by only one parameter θ . For a more detailed
discussion of bifurcation types and their characteristics the reader is referred to
Strogatz (1994).

The bifurcation diagrams in Fig. 2.4 may be easier to understand, if one con-
siders the bifurcation as a continuous deformation of a phase space landscape such
as is shown in Figure 2.3. For example, the saddle-node bifurcation corresponds
to a monotonous landscape rising from one point (creating an unstable state) and
lowering from another point (creating a stable state). The supercritical pitchfork
bifurcation, on the other hand, corresponds to a convex curve (with the peak at
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A

w

θ

B

w

θ

C

w

θ

Figure 2.4: The schematic bifurcation diagrams corresponding to A) a saddle-node bi-
furcation, B) supercritical pitchfork bifurcation and C) Hopf bifurcation (limit cycle).
Solid lines correspond to stable states, whereas dashed lines correspond to unstable states.
Here the critical value of the bifurcation parameter is assumed to be θc = 0.

Ws) deforming to the form of the landscape in Figure 2.3, where Ws would be the
unstable state.

Bifurcations can also be analyzed based on the eigenvalues and the corres-
ponding eigenvectors determined by the linear stability analysis around a particu-
lar stationary state (see Sec. 2.1.2). The eigenvectors span the stable (λi < 0) and
unstable (λi > 0) subspaces, Es and Eu of a stationary state. The center subspace
Ec is spanned by the eigenvectors of the bifurcating eigenvalues. These subspaces
are (linear) approximations of the full nonlinear dynamics described by the cor-
responding unstable, center and stable manifolds Wu, Wc and Ws (see Crawford
(1991)). The center manifoldis the surface separating the unstable and stable
manifolds in the space spanned by the nonlinear generalizations of subspaces Es,
Eu and Ec.

The center manifold theoremstates that the full dynamics of a nonlinear model
can be reduced to the center manifold near a bifurcation point. The dynamics on
the center manifold is described by normal forms or amplitude equations, which
are universal, i.e., all systems showing certain bifurcation have the same dynam-
ics on the center manifold (Crawford, 1991). The amplitude equations can be
expressed in terms of the parameters of the original system by devising a mapping
from the concentration space to the center manifold of the wave vector space. This
reduces the dimensionality of the problem from the dimension of the phase space
(described by PDEs) to that of the center manifold (described by ODEs). For a
rigorous mathematical justification of the method we refer the reader elsewhere
(Crawford, 1991; Callahan and Knobloch, 1997; Dionne et al., 1997). In relation
to Turing systems the center manifold reduction can be used to study pattern se-
lection and will be applied on the BVAM model later in this thesis (see sections
3.1.2 and 4.3). Turing bifurcation is different from the other bifurcations dis-
cussed above in that the number of stationary states does not change, but merely
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a stationary state becomes Turing unstable resulting in a Turing instability (see
Sec. 3.1).

2.2 Hydrodynamical systems

The behavior of hydrodynamical systems is related to motion of fluids. In this
section we introduce the reader to two phenomena related to a hydrodynamical
instabilities, namely Rayleigh-Bénard convection and Taylor-Couette flow. In the
former, patterns arise due to a thermal gradient and in the latter due to the cent-
rifugal force. A dimensionless control parameter determining the onset of the
instability can be derived for both of these systems.

2.2.1 Rayleigh-Bénard convection

The Rayleigh-Bénard experiment concerns the problem of thermal convection and
was first performed by Bénard in 1900. It was not until sixteen years later, when
Lord Rayleigh explained the phenomenon theoretically. Although the experi-
mental setup is simple, the system displays very rich behavior (see e.g. Elder
et al. (1992) or Ball (2001)). For example, the motion of continental plates result-
ing in earthquakes is caused by convective motion of magma in the mantle of the
earth. Also many weather phenomena are related to convection.

The idea of Rayleigh-Bénard convection is illustrated in Figure 2.5. Consider
a fluid placed between two infinite parallel horizontal plates, which are assumed
to be perfect heat conductors. If the temperature of the lower plate is denoted by
T1 and the upper plate by T2, and the temperature difference between the lower
and upper plates is given by �T = T1 − T2. If �T < 0, both conducting and
convective states of the fluid are stable. If �T is positive, but small, the thermal
conduction from lower to upper plate occurs and the temperature profile between
T1 and T2 becomes linear. The fluid will remain at rest since the viscosity and
thermal conduction are able to stabilize the system against small perturbations:
viscosity generates internal friction opposing movement and dissipative effects of
thermal conduction tend to restore the displacements.

As �T exceeds a certain threshold �Tc, thermal expansion makes the fluid
near the lower plate substantially less dense than the colder fluid above. This is
an unstable situation in the gravitational field. The warmer fluid near the lower
plate rises due to buoyant force, but there is no space for it above. Thus some of
the colder molecules must be brought down by gravity to make space for warmer
molecules. The ongoing process forms so-called Bénard cells, where fluid moves
in rolls (see Fig. 2.5). The up and down movement is distributed spatially with a
periodicity proportional to the distance between the plates.

It should be noted that in the case of Rayleigh-Bénard convection the charac-
teristic length scale (width of Bénard cells) is determined by an external length
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T1 T2

T1 

Figure 2.5: The idea of Rayleigh-Bénard convection. As the temperature difference
between the bottom and top plates exceeds the threshold value �Tc, Bénard cells are
formed and the fluid starts to move in rolls to opposite directions in the neighborhood
cells. The situation shown in the figure is ideal and in reality the cells are not always
parallel and defectless. (Image: Ville Mustonen.)

scale (separation of plates), whereas for example in the context of chemical in-
stabilities the characteristic length of the resulting patterns is often determined by
the properties of the chemicals that are intrinsic to the system. It should also be
noticed that from the macroscopic point of view the system is stationary, since the
velocity, temperature and density at a given point are time-independent and only
the fluid molecules are moving.

The Rayleigh-Bénard convection can be analyzed by employing dimensional
analysis (Barenblatt, 1987). Dimensional analysis is based on isolating the factors
that are relevant to the phenomena and deriving a dimensionless control parameter
that captures the essentials of the problem without knowledge of the exact mech-
anism.1 The relevant dimensions of the Rayleigh-Bénard convection problem are
given in Table 2.1.

As �T > �Tc the warmer and lighter fluid on the bottom is moved upwards
by a buoyant force per unit volume given by αρg�T . On the other hand, the mo-
tion of the fluid molecules is resisted by a friction force, which is a combination

1Incidentally, it could be mentioned that in 1950 G. I. Taylor used dimensional analysis to de-
termine the energy of American nuclear bombs based on a governmental PR-video of a nuclear
explosion and published his “top secret” findings in the Proceedings of the Royal Society of Lon-
don (see Barenblatt (1987) for details).
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Dimension Notation Unit
temperature difference between plates �T K
mass density of the fluid ρ kg/m2

acceleration of gravity g m/s2

thermal expansion coefficient of the fluid α 1/K
kinematic viscosity of the fluid ν 1/K
thermal diffusivity κ m2/s
separation between plates d m

Table 2.1: The dimensions of Rayleigh-Bénard convection problem

of the effects of fluid viscosity and stabilizing thermal conduction. This dissipat-
ive force per unit volume can be written as νκρ/d3. Consequently, the Rayleigh
number R, i.e., the control parameter of the Rayleigh-Bénard system is defined as
the ratio of the two forces

R = αg�T d3

κν
(2.5)

One should note that the Rayleigh number is indeed a dimensionless or unitless
combination of system parameters and it is independent on the mass density of
the fluid. It is widely known that instability occurs at Rc ≈ 1708 (Cross and
Hohenberg, 1993). At this dimensionless number the state of the fluid changes
from conductive to convective and the critical point is dependent only on the value
of this specific combination of parameters and independent of the fluid.

More rigorous analysis of the Rayleigh-Bénard instability requires a micro-
scopic description for the velocity field in the fluid with help of the Navier-Stokes
equation. Swift and Hohenberg (1977) have studied the dynamics of the system
with help of reduced dynamics at the onset of the instability. By writing an amp-
litude equation for the critical mode that grows due to deviations from the linear
temperature profile they obtained a model, which describes the spatio-temporal
changes in the system. The scaled model with spatial dependence is of the form

∂φ

∂t
= εφ − (∇2 + 1)2φ − φ3, (2.6)

where φ is an order parameter describing the vertical velocity of fluid molecules.
The Swift-Hohenberg model is asymptotically exact in the limit R → Rc

and it produces patterns that are similar to the ones observed in the experimental
systems. The model succeeds very well in capturing the essential features of
the system and enables detailed studies of the pattern formation mechanism (see
e.g. Elder et al. (1992)). For example, Cross and Hohenberg (1993), who offer a
detailed explanation of the analytical treatment of the system, list some drawbacks
of the Swift-Hohenberg equation. Figure 2.6 shows a pattern obtained from a
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Figure 2.6: Computer simulation of Rayleigh-Bénard convection using the Swift-
Hohenberg model. The view is from above. Notice that the convective cells are not
ordered as in the ideal situation of Figure 2.5. The dark and light colors denote the do-
mains with upward movement (warmer sparse liquid) and downward movement (cooler
dense liquid), respectively. (Image: Mikko Karttunen, Helsinki University of Techno-
logy.)

computer simulation of the Swift-Hohenberg model (Eq. (2.6)). In addition to the
labyrinthine striped pattern the model exhibits also hexagonal spotty patterns.

2.2.2 Taylor-Couette flow

Taylor-Couette flow is analogous to Rayleigh-Bénard convection in that it also
involves fluid moving in rolls. A Taylor-Couette instability may take place in a
fluid layer confined between two concentric cylinders rotating at rates �i and �o.
The difference in the angular frequencies between the inner and outer cylinders
� = �i − �o is the control parameter of the system (with critical value �c). If
only the outer cylinder is rotating, i.e., �i = 0 a stable laminar shear flow can
be observed. If, on the other hand, the inner cylinder is rotating at a high enough
rate as compared to the outer cylinder, i.e., � > �c, a turbulent flow is observed
in the form of a Taylor-vortex state (see Cross and Hohenberg (1993) or Walgraef
(1997)). The experimental setup is illustrated in Fig. 2.7.

In the Taylor-vortex state the fluid moves towards the wall of the outer cylinder
and back to the inner cylinder in similar cells as those observed in the context of
Rayleigh-Bénard convection. If one separates between fluid moving axially away
from the center and towards the center, stripes are observed as a function of height.
The Taylor-Couette reactor is essentially a one-dimensional pattern generator. In
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Figure 2.7: In a Taylor-Couette system fluid placed between two concentric rotating
cylinders exhibits a turbulent flow in the form of stripes when the angular frequencies
�i − �o exceeds a certain threshold value. For the explanation of the parameters, see the
text.

the Taylor-Couette flow the friction is again due to viscosity, but the destabilizing
force is the centrifugal force. More rigorous explanation of the phenomena can be
found from Manneville (1990).

The Taylor-Couette instability can be analyzed by employing dimensional
analysis in the same way as in the case of Rayleigh-Benard convection. If ri

and ro are defined as the radii of the inner and outer cylinders, denotes kinematic
viscosity of the fluid by ν, the so called Reynolds number can be found as a di-
mensionless combination of the relevant parameters such that

Re = ri ro(1 − η) �

ν
, (2.7)

where η = ri /ro. More often one uses the Taylor number defined as T =
4R2

eη(1−η)/(1+η), which has the critical value Tc ≈ 3416 above which Taylor-
vortices are observed. This approximation is the best when it is assumed that the
cylinders are of infinite height and the thickness of the fluid layer is small com-
pared to the radius of the outer cylinder (η → 1). After the primary subcritical
bifurcation of the laminar flow state to the Taylor-vortex at T = Tc state there are
subsequent bifurcations to wavy vortices, modulated wavy vortices and chaotic
states Walgraef (1997).
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2.3 Chemical reaction-diffusion systems

Chemical systems have been an important part of the field of pattern formation
ever since the first experimental observation of chemical oscillations in the early
1950s. Chemical reactions, especially when combined with diffusion, may pro-
duce very complex spatio-temporal behavior. Studies of pattern formation in
reaction-diffusion systems are based on analytical or numerical studies of math-
ematical models and experimental chemical systems (see Kapral and Showalter
(1995) for a review). Typically a simplified mathematical model is derived de-
scribing the essential characteristics of the experimental reaction-diffusion sys-
tem (Lengyel and Epstein, 1992).

Since this thesis deals with mathematical reaction-diffusion models let us out-
line the derivation of the reaction-diffusion equation system from the basic prin-
ciples. Let w = (u(x, t), v(x, t))T be a vector holding the chemical concentra-
tions of two chemical species at the position x ∈ � ⊂ �

N at the time t ∈ [0,∞).
T denotes a transpose and � is an arbitrary simply connected bounded and fixed
domain with a closed boundary domain denoted by ∂�. Due to the conservation
of matter the rate of change of a chemical in � is equal to the sum of the net flux
of the chemical through the boundary of the domain and the net production of the
chemical within the domain. Thus we can write

d

dt

∫
�

wd� = −
∫

∂�

F · dS+
∫

�

f(w)d�, (2.8)

where F = (Fu, Fv)
T is a vector containing the chemical fluxes per unit area and

f = ( f, g)T is a vector of net production rates per unit volume. Applying the
Gauss theorem to the first term on the right hand side of Eq. (2.8) one obtains∫

�

(
∂w
∂t

+ ∇ · F − f(w)

)
d� = 0. (2.9)

The integral and differential operator can be interchanged since � is fixed and the
integrand is bounded. Since Eq. (2.9) holds for any simply connected bounded
domain � and the integrand is continuous we get

∂w
∂t

= −∇ · F + f(w). (2.10)

In order to obtain a closed system, we need equations for the fluxes defined by
F . According to Fick’s law the chemical flux goes from higher to lower concen-
tration. More specifically, the chemical flux is proportional to the concentration
gradient. This can be formulated as

F = −D∇w, (2.11)
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where the diagonal matrix D contains the diffusion coefficients of the chemicals
such that D11 = Du and D22 = Dv. Substitution of Eq. (2.11) to Eq. (2.10) yields
the standard form of a reaction-diffusion model

∂w
∂t

= D∇2w + f(w). (2.12)

The exact form of the reaction kinetics f can be derived from the experimental
chemical formulae by using the law of mass action (Murray, 1989). For a well-
defined differential problem also the initial and boundary conditions are needed.
A typical choice is to use the Neumann zero-flux boundary conditions, where the
system behaves as the boundaries were impermeable. This can be formulated as

n · ∇w = 0 on ∂�. (2.13)

Periodic boundary conditions may also be used and then it would follow that the
system behaves as an infinite system provided that it is not too small. The above
derivation of a two-component reaction-diffusion system can easily be generalized
to any number of chemical species.

Turing systems, which are extensively studied in this thesis, are only one
type of reaction-diffusion models and there are numerous other reaction-diffusion
models fitting into the generic form of Eq. (2.12). Turing systems produce station-
ary spatial patterns and satisfy particular conditions related to the destabilization
of the stationary state and the competitive reactions of chemical species. In Tur-
ing systems pattern-forming phenomena are due to the so-called diffusion-driven
instability, which was first discussed by Nicolas Rashevsky in 1938, but Turing
gave the first mathematical treatment and analysis of such a model in 1952 (Tur-
ing, 1952). Since Chapters 3-5 are devoted to Turing systems we will, in this
section, present two other fundamental reaction-diffusion models that exhibit os-
cillatory dynamics.

2.3.1 Belousov-Zhabotinsky reaction

In the early 1950’s a Russian biochemist Boris Belousov observed an oscillation
in a chemical reaction while he was experimentally trying to reproduce some pro-
cesses related to the metabolic cycle of cells. Belousov could not get the results
published since he was unable to back up his observations theoretically, which
were claimed to contradict the second law of thermodynamics (Ball, 2001). Prior
to Prigogine’s work (Nicolis and Prigogine, 1977) it was held that entropy has
always to increase in a process and thus a chemical oscillation was deemed to be
impossible with entropy increasing and decreasing by turns. It was not before the
late 1960s, when Zhabotinsky confirmed Belousov’s findings and it was noticed
that the reaction first observed by Belousov exhibits a pattern formation mech-
anism with similarities to the mechanism Turing had proposed. However, it is
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important to remember that the Belousov-Zhabotinsky reaction produces travel-
ing waves, whereas Turing patterns are time-independent.

The basic mechanism of Belousov-Zhabotinsky (BZ) reaction consists of ceri-
um-catalyzed oxidation of malonic acid in an acid medium by bromate ions. Ac-
cording to the mechanism suggested by Field et al. (1972) the whole process in-
volves 10 different reactions of 14 different chemical compounds. Oscillations are
observed with respect to the concentration ratio of the cerium ions [Ce4+]/[Ce3+]
and the bromide ion concentration [Br−] (see e.g. Murray (1989)). Field and
Noyes (1974) proposed a mathematical model for the BZ reaction by deriving the
reaction kinetics using the law of mass action for the key elements of the reaction.
The three-component Oregonator model is given by

∂x

∂t
= qy − xy + x(1 − x) + Dx∇2x,

∂y

∂t
= −qy − xy + f z + Dy∇2y,

∂z

∂t
= x − z + Dz∇2z, (2.14)

where x, y and z correspond to the scaled concentrations [H Br O2], [Br−] and
[Ce4+], respectively. Dx, Dy and Dz are the respective diffusion coefficients and
q and f are parameters that adjusts the dynamics of the model. The Oregon-
ator model exhibits limit cycle oscillations and in the presence of the diffusion
term (spatial dependence) the mechanism produces concentric waves (target wave
patterns) or spiral waves (see e.g. Murray (1989)). The importance of the Ore-
gonator model arises from the fact that the findings of numerical studies can be
readily applied to experimental studies of the BZ reaction and vice versa.

Another model showing a behavior similar to the BZ reaction is the FitzHugh-
Nagumo (FHN) model

∂x

∂t
= (x − x3 − y)/ε + Du∇2x,

∂y

∂t
= x − γ y + δ + Dv∇2y, (2.15)

where Du and Dv are diffusion coefficients and ε, γ and δ are adjustable para-
meters. The FHN model was originally developed to describe the function of
neural cells and the propagation of neural signals along axons (see e.g. Murray
(1989) for an introduction). The FHN model exhibits, in addition to other more
complex behavior (bistable and excitable regimes), a Hopf bifurcation and similar
spatio-temporal behavior as the Oregonator model. This is why we next turn to the
complex Ginzburg-Landau equation, which is the prototype of all such models.
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2.3.2 Complex Ginzburg-Landau equation

Reaction-diffusion systems may have different local mechanisms that give rise to
global oscillatory dynamics. However, near a supercritical Hopf bifurcation (see
Fig. 2.4) the dynamics of all such models can be reduced to the complex Ginzburg-
Landau equation (CGLE) which describes the time evolution of the amplitude of
the oscillatory mode. This amplitude equation is given by

∂ A

∂t
= (1 − iω)A − (1 + iα)|A|2 A + (1 + iβ)∇2 A, (2.16)

where A is the complex amplitude of the oscillation, i is the imaginary unit, and
ω, α and β are adjustable parameters. Due to its generic nature the CGLE is
perhaps the most studied of all reaction-diffusion models (Schöpf and Kramer,
1991; Weber et al., 1992; Aranson et al., 1998). It shows rich behavior and it
has been applied in a variety of contexts. The CGLE shows the typical wave
solutions (plane, spiral, target), but also localized coherent structures and even
spatio-temporal chaotic behavior. For an introduction to the world of the CGLE
model the reader is referred to a review article by Aranson and Kramer (2002).

To deepen our understanding of the CGLE, we present the idea of an analytical
treatment of the model in the context of uniform oscillations. A spatially uniform
system corresponds to the Stuart-Landau equation, which is simply the CGLE
without the diffusion term, i.e.,

d A

dt
= (1 − iω)A − (1 + iα)|A|2 A. (2.17)

By comparing Eq. (2.17) to the Fisher-Kolmogorov kinetics (Eq. (2.4)) discussed
in Sec. 2.1.2 it can be noticed that the FK-kinetics actually correspond to the real
CGLE. The oscillations exhibited by the Stuart-Landau model have a real amp-
litude and phase. This can be formulated by writing the complex amplitude as
A = |A|e−iφ . The substitution of this trial solution into the Stuart-Landau equa-
tion yields two coupled equations describing the time evolution of the amplitude
(real) and phase (imaginary) parts

d|A|
dt

= (1 − |A|2)|A|,
dφ

dt
= ω + α|A|2. (2.18)

The nonlinear nature of this oscillator system is evident form the fact that the
changes in the amplitude (|A|) and phase of the oscillator (φ) are nonlinearly
dependent on the amplitude of the oscillator |A|. The first equation defines the
steady-states |Ac| = 0 and |Ac| = 1, which yields the constant frequency ω + α.
Thus the stable limit cycle is defined by A(t) = exp(−i (ω + α)t) and it is the
only attractor of the Stuart-Landau equation. For a discussion concerning other
solutions and the descriptive power of the CGLE see Stich (2003).
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2.4 Patterns in natural systems

Alan Turing’s (1952) pioneering work in the field of reaction-diffusion systems
was inspired by the complexity of self-organizing biological systems. Turing’s
goal was to understand processes that could explain how a fertilized egg becomes
an organism through the process of morphogenesis(see Murray (1988) and Maini
(2003)). At the beginning the embryo of any mammal is in a spherically symmet-
rical blastula stage, which is comprised of undifferentiated stem cells. Similarly
a seed of a plant is much simpler than the full-grown plant. Both the above men-
tioned initial stages of a living system contain the knowledge of the final structure
in their DNA. For example, the human DNA has only three billion (3 × 109)
base pairs, whereas human brain has a hundred billion neural (1011) cells with
complex interconnections. The whole human being consists of some tens of tril-
lions of cells (1013)! Thus it seems plausible that there are some spontaneous
physico-chemical processes that implement the instructions of DNA and drive
self-organization. Even if all the orders coded in the genes were found out, biolo-
gical growth still could not be explained since it is due to complex interaction of
various biochemical signals and mechanisms.

The work by Turing belongs to the field of pattern formation, a subfield of
mathematical biology. The study of biological pattern formation has gained pop-
ularity since the 1970s, when Gierer and Meinhardt (1972) gave a biologically
justified formulation of a Turing model and studied its properties by employing
computer simulations. As opposed to Turing’s ideas, mathematical biology, in
general, aims on developing mathematical models that capture the essential char-
acteristics of some biological phenomenon at least qualitatively (Meinhardt, 1982;
Mosekilde and Mouritsen, 1995). The main purpose of mathematical biology
could also be defined as building models that explain biological phenomena at
one hierarchical level by mechanisms at a lower level (Gyllenberg, 2004). For
example, collective phenomena can be explained by actions of individuals. In
general, mathematical biologists model, for example, population dynamics, bio-
logical signaling mechanisms, epidemics and mechanical aspects of morphogen-
esis such as the development of feathers, teeth or limbs (Murray, 1989, 2003).
By understanding not only the function of genes, but also the processes behind
physiology, for example diseases, such as cancer, can be studied and understood
better (Gatenby and Maini, 2003). Applications of reaction-diffusion schemes
in mathematical biology vary from modeling of the growth of bacterial colon-
ies (Mimura et al., 2000) to the propagation of the nerve pulses (Murray, 1989).
Another popular way of modeling natural systems have been models that are
based on cellular automata. Interestingly, it has been shown by Schepers and
Markus (1992) that cellular automata can reproduce patterns typically observed
in reaction-diffusion systems (spiral waves and Turing patterns).

The breaking of symmetry in embryos has been speculated to be due to pos-
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itional information that arises because of activating genes. According to the hy-
pothesis the genes encoding proteins give rise to morphogen gradients and cells
react to their chemical surroundings (see e.g. Hunding and Engelhardt (1995)).
The cells that are in the region of high concentration of a morphogen act differ-
ently from the cells that are in the region of low concentration. The existence
of morphogens has been shown in the experiments by developmental biologist.
Some 15 years ago researchers identified protein bicoid to be responsible for or-
ganization of the fruit fly embryo. The first experimental evidence of morphogens
in vertebrates has been obtained very recently in zebra fish embryo (Chen and
Schier, 2001) and nowadays there is also some very detailed knowledge available
concerning the forces related to morphogenesis (Hutson et al., 2003). Recent res-
ults in the context of microtubule self-organization (Tabony et al., 2002) would
suggest that gravity can cause a symmetry-breaking in a reaction-diffusion sys-
tem, which is very favorable for the biological applicability of Turing systems.
A reader interested in detailed explanations and modeling the formation of biolo-
gical structure is advised to start from the review article by (Koch and Meinhardt,
1994).

One of the most intriguing applications of mathematical biology and Turing
systems has been the modeling of animal coat patterns such as the spots of a chee-
tah and stripes of a zebra. More exotic patterns include the polygonal patterns
of giraffes and tubular arcs of leopards. For example, Murray (1989) and Koch
and Meinhardt (1994) offer many examples of Turing models that can imitate the
above mentioned as well as other animal patterns. Also the patterns found on fish
(Kondo and Asai, 1995; Barrio et al., 1999), butterflies (Sekimura et al., 2000)
and beetles (Liaw et al., 2002) have been modeled using Turing models. Accord-
ing to James Murray’s hypothesis it is assumed that the Turing model describes
morphogens spreading on the skin of an animal. After the pattern is established
the melanocytes, i.e., the pigment producing cells in the skin differentiate and start
to produce either eumelanin (black/brown) or phaeomelanin (yellow/orange). The
melanocytes are well understood apart from the fact how the color they produce
is determined.

The most important feature of the Turing models is that they generate the pat-
tern with respect to the chemical concentration from any arbitrary initial state and
the pattern can be changed from stripes to spots by changing only one parameter
of the model. In a biological system this would correspond to a small change in
the production of a morphogen. Turing himself was aware that any merely chem-
ical model trying to explain biological growth is a too simplified, but he emphas-
ized the importance of understanding the general mechanisms. While pursuing a
holistic view of natural systems one has to start from a theoretical model that neg-
lects factors that are assumed to be of secondary importance. Naturally there have
also been some bottom-up approaches. For example, experimentally backed up
protein dynamics of cell division has been modeled using reaction-diffusion equa-
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tions (Howard et al., 2001; Howard and Rutenberg, 2003). Also the distribution
of ATP in the cell cytoplasm has been modeled with a Turing model (Hasslacher
et al., 1993).

In addition to their simplicity and generic nature, Turing systems have also
many other desirable features as theoretical models for morphogenesis. The Tur-
ing models generate non-uniform spatial distributions thus enabling greater com-
plexity as compared to simple gradients. The models describe the effects of the
spatial geometry of the domain on the pattern formation. In addition, the chem-
ical evolution and the final Turing structures are very robust against random noise
and distortions (see Sec. 5.3) as are most natural systems. Turing models are an
example of very simple and generic mechanism showing an amazingly complex
behavior and in addition to their descriptive power they have a connection to some
very fundamental ideas of non-equilibrium systems.

However, there are some drawbacks in applying reaction-diffusion mechan-
ism to animal patterns. First, there is not enough experimental evidence of the
existence of morphogens related to patterns on the animal skin. For the mod-
els to be plausible, developmental biologists are asking for the identification of
morphogens and their reactions such that the models have correspondence to real
life. Secondly, the spreading of morphogens in living tissue involves complex
biochemical signaling mechanisms, which cannot be captured by the simple dif-
fusion mechanism in the models. Thirdly, also the electrical and mechanical as-
pects of living tissues should somehow be taken into account in the models, not
only chemical processes. In addition, theoretical requirements for the spontan-
eous symmetry-breaking might not be met in a living tissue since the diffusion
constants of many molecules are of the same order of magnitude. The existence of
Turing patterns requires a substantial difference in the pace of diffusion between
the two chemical species.

It could also be argued that theorists cannot be blamed for the inadequacy of
the technology available to the developmental biologists. It should also be re-
membered that the primary idea of Turing models is not to capture the details,
but the salient features of the process. In addition, although all proteins diffuse
approximately at the same pace (∼ 10−8cm2s−1), small molecules diffuse much
faster (∼ 10−6cm2s−1) (Koch and Meinhardt, 1994) and could thus act as morpho-
gen pairs to proteins resulting in a Turing instability in vivo.

Although there is no doubt that reaction-diffusion systems can imitate a vari-
ety of patterns that animals have on their skin, it is true that the evidence linking
Turing systems to biology is still missing. The most convincing evidence of the
existence of Turing patterns so far has been presented by Kondo and Asai (1995).
They showed that a Turing model could be matched with the stripe formation and
stripe addition on two different kinds of angelfish. Not only were they able to
imitate the branching of the stripes, but also to relate the time scales of the pat-
tern changes in the real fish to the time scales of computer simulations. Based
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on the computer simulations they could estimate the diffusion coefficients of the
morphogens on real fish to be of the correct order of magnitude. On the basis of
their findings the authors suggest that reaction-diffusion mechanism is a viable
mechanism for pattern formation in angelfish. Their claim is plausible, but more
conclusive evidence is still needed. The angelfish studies have been extended by
Varea et al. (1997), who studied pattern formation in two-dimensional domains
of realistic geometry, and by Painter et al. (1999) who increased the biological
accuracy of the description by considering the effects of cell movement due to
chemotaxis.

Because of the diversity of patterns generated by Turing models, they could
probably be used to imitate also many other biological patterns and structures.
Three-dimensional Turing structures (see Sec. 5.2.2) vary from planar layers to
complex lamellar networks and lattices of droplets. For example, many parts of
the human body show mesoscopic periodicity. Radivoj V. Krstić’s (1997) has il-
lustrated the three-dimensional structure of human organs in his magnificent ink
drawings carefully prepared based on experimental micrographs. His drawings
show many structures similar to three-dimensional Turing structures. For example
cerebral cortex, cornea of the eye and arteries show layered structure. Many or-
gans and glands could be speculated to correspond to the droplet phase. As an
example Fig. 2.8 shows a three-dimensional Turing structure obtained from our
numerical simulations (see Chapter 5 for details), where the cellular boundaries
and nuclei have been rendered manually. The resulting structure can be seen qual-
itatively very similar to parenchyma of different organs (see Krstic (1997)).

Recently, Turing systems have been proposed to explain the formation of con-
volutions found on the cerebral cortex (Cartwright, 2002). It would seem that the
organization of human anatomy is probabilistic at the lower level (e.g. all neural
connections in the brain are not pre-determined), whereas at the higher level it
is guided by some spontaneous physico-chemical processes (e.g. human brain
has particular structure), which are controlled by the genes. Whether or not Tur-
ing instability is a central part of these physico-chemical processes remains to be
studied.

In addition to the various forms and shapes found in living organisms, also
many inanimate natural or social systems show self-organizing behavior. For ex-
ample vegetation patterns and desertification have been modeled using a Turing-
type model (von Hardenberg et al., 2001). A reaction-diffusion model has also
been suggested for modeling the dynamics of language competition and spread-
ing in societies (Patriarca and Leppänen, 2004). On the other hand, collective
behavior of ants has been modeled by using random walker models (Schweitzer
et al., 1997). In the book Self-made tapestryPhilip Ball (1999) gives numerous
examples of self-organization ranging from chemical waves with length scales of
the order of millimeters to the more than billion times bigger structures of the
heavenly bodies. The book is written at a popular level and suitable for anyone,
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Figure 2.8: Top: Three-dimensional Turing structure obtained from a numerical sim-
ulation of the BVAM model (see Chapter 5). Bottom: The Turing structure resembles
much the structure of mesenchymal tissue after the cellular boundaries and cell nuclei are
manually rendered to the picture. (Image: Murat Ünalan.)
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who is interested in the mechanisms behind the morphological richness of the
world.

2.5 Summary

In this chapter, the field of pattern formation was introduced by discussing the
definition of pattern formation, related concepts and well-known systems exem-
plifying the phenomenon. According to the author’s definition, pattern formation
is a dissipative non-equilibrium process giving rise to spatio-temporal behavior
governed by intrinsic properties or external constraints. Spontaneous symmetry-
breaking is one of the most fundamental concepts related to pattern formation,
since it is a prerequisite for the formation of any kind of order into a system.
As a bifurcation parameter is varied symmetry-breaking occurs and the system
goes through a bifurcation, where the stability properties of the stationary states
change. These concepts were illustrated with a standing metal strip, which bends
due to perturbations if an attached weight is moved higher. Hydrodynamical sys-
tems showing spatially inhomogeneous movement of fluid and chemical reaction-
diffusion systems exhibiting temporal oscillations were introduced as examples of
pattern formation in non-equilibrium systems. Although there is not yet enough
evidence linking Turing systems to biology, Turing systems have indeed been
shown to provide a very simple and generic mechanism for imitating many nat-
ural formations.



30 Some general aspects on pattern formation



Chapter 3

Pattern formation in Turing
systems

A Turing system consists of two or more coupled nonlinear partial differential
equations (PDEs), which describe reactions and diffusion of chemicals or morpho-
gens. The remarkable feature of the Turing mechanism is that it is capable of
generating beautiful time-independent spatial patterns from any random initial
configuration provided that particular conditions are satisfied (Murray, 1989).

In its most general form a Turing model describing the time variation of two
chemical concentrations U and V due to reaction and diffusion can be written in
the form (see Section 2.3)

∂U

∂t
= DU∇2U + f (U, V)

∂V

∂t
= DV∇2V + g(U, V), (3.1)

where DU and DV are the diffusion coefficients setting the pace of diffusion for
chemicals U and V , respectively. For Turing instability to occur the diffusion
coefficient of the inhibitor chemical must be larger than that of the activator chem-
ical. The dynamics of the model is determined by the reaction kinetics f (U, V)

and g(U, V), which are nonlinear functions of the concentrations. These can be
derived from chemical reaction formulae by using the law of mass action and
other physical conditions (Murray, 1989). There are many alternatives to the ex-
act form of the reaction terms, some of which are reviewed in Section 3.2. The
scalar parameters within f and g govern the pattern selection in the model. Tur-
ing models typically generate either linear (2D stripes, 3D lamellae) or radial (2D
spots, 3D droplets) structures, although numerous other stable structures are pos-
sible (Callahan and Knobloch, 1999) too. Notice that for the reaction kinetics
f (U, V) ≡ g(U, V) ≡ 0 the system of Eq. (3.1) reduces to two independent
diffusion equations.
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In this chapter we will discuss the characteristics of Turing systems in general
and review some of the work that has been done in the field so far. In the first
section we will discuss characteristics of Turing instability and learn the principles
of studying Turing systems mathematically. After that three well-known Turing
models will be introduced. Finally, this chapter is concluded by an introduction
to a real chemical Turing reaction and a brief review of experimental work.

3.1 Turing instability

Turing instability is a phenomenon that causes certain reaction-diffusion systems
(Eq. (3.1)) to spontaneously give rise to stationary patterns with a characteristic
length scale from an arbitrary initial configuration. The key factor in inducing the
instability is diffusion and this is why Turing instability is often called diffusion-
driven instability. A remarkable feature of Turing systems as compared to many
other instabilities in systems out of equilibrium (Cross and Hohenberg, 1993; Ball,
2001) is that the characteristics of the resulting patterns are not determined by ex-
ternally imposed length scales or constraints, but by the chemical reaction and
diffusion rates that are intrinsic to the system. The spirals, target patterns and
traveling waves generated by the Belousov-Zhabotinsky (BZ) reaction (see Sec-
tion 2.3.1) are not due to a Turing instability since they are not stationary and the
diffusion rates of the chemicals involved in BZ reaction are usually more or less
the same. The difference in the diffusion rates of the chemical substances is a ne-
cessary, but not a sufficient condition for the Turing instability (Murray, 1989). In
this section, we will present how Turing instability can be formalized and treated
analytically.

3.1.1 Linear stability

Linear stability analysis is an often used method for studying the response of the
system to perturbations in the vicinity of a fixed point. Introductory illustrations
of the linear analysis method can be found in various sources (Murray, 1989;
Strogatz, 1994; Nicolis, 1995). In linear analysis one takes into account only the
linear terms and thus the results are insufficient for describing the dynamics of
the full nonlinear system. However, in the context of Turing systems, within its
limitations the method is effective in predicting the existence of an instability and
the characteristic wavelength of it.

To introduce the method, let us approach the Turing instability more quantitat-
ively by writing the most general form a reaction-diffusion system (cf. Eq. (3.1))
as

∂w
∂t

= D ∇2w + F(w,�), (3.2)
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where w = (U, V)T is a “vector” containing the concentration fields, the matrix D
holds the diffusion coefficients (for a two-species model in the absence of cross-
diffusion: D11 = DU , D22 = DV , D12 = D21 = 0), and the reaction kinetics is
described by F = ( f (U, V), g(U, V))T , which is adjusted by the parameter set
� including the bifurcation parameter. The homogeneous stationary state w0(�)

of the system is defined by the zeros of the reaction kinetics, i.e., F(w0,�) = 0.
The stability of this stationary state can be analyzed by studying the behavior of
the system, when a small inhomogeneous perturbation is introduced to the system
at state w0. We write w = w0 + dw, where the perturbation can be written as a
spectral decomposition given by

dw(x, t) =
∑

j

cj e
λj t e−ikj ·x. (3.3)

Here the spatial part is governed by the wave modes kj and the temporal part
by the corresponding eigenvalues λj = λ(kj ) describing the growth rate of the
perturbation. Substituting Eq. (3.3) to Eq. (3.2) and dropping the nonlinear terms
one obtains for each kj the equation

|A − Dk2
j − λj I | = 0, (3.4)

where k2
j = �kj · �kj and in the case of a two-species model the matrix A is given by

A =
(

∂U f ∂V f
∂U g ∂V g

)
(U0,V0)

, (3.5)

where the elements are the partial derivatives of the reaction kinetics evaluated at
the stationary state (U0, V0). Now Eq. (3.4) can be solved, yielding the so called
characteristic polynomial of the original problem (Eq. (3.2))

λ2 + [
(DU + DV)k2 − fU − gV

]
λ +

DU DVk4 − k2(DV fU + DU gV ) + fU gV − fV gU = 0. (3.6)

The dispersion relation λ(k) predicting the unstable wave numbers can be solved
from Eq. (3.6). The growing modes are of the form Wei �k·�r eλ(k)t , where W is the
amplitude and λ(k) is the growth rate defined by the dispersion relation. Thus
the wave numbers k with Re{λ(k)}) > 0 grow exponentially until the nonlinear-
ities in the reaction kinetics bound this growth, whereas the wave numbers k with
Re{λ(k)} < 0 will be damped. The schematic example of a real part of a disper-
sion relation presented in Fig. 3.1 shows a wave window with growing modes and
predicts the characteristic length of the pattern.

One can obtain an estimate for the most unstable wave number and the critical
value of the bifurcation parameter �C by considering the fact that at the onset of
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Figure 3.1: A schematic presentation of the real part of a dispersion relation λ(k) corres-
ponding to a Turing instability with the most unstable wave number kc. Other unstable
wave modes are all those with Re{λ(kj )} > 0.

the instability λ(kc) = 0. The term independent of λ in Eq. (3.6) evaluated at kc

has to equal to zero resulting in an equation having only a single solution at the
onset. As a result the critical wave number can be written as

k2
c = DV fU + DU gV

2DU DV
=

√
fU gV − fV gU

DU DV
, (3.7)

and the corresponding characteristic length of the pattern is defined by λc =
2π/kc. Furthermore, the critical value of the bifurcation parameter for a Turing
bifurcation �T

C above which unstable wave numbers are obtained, can be solved
as a function of other parameters from the inequality

(DV fU + DU gV )2 > 4DU DV ( fU gV − fV gU ). (3.8)

Further conditions for the Turing instability can be derived based on stability con-
siderations (Murray, 1989; Kapral, 1995) and the Turing spaceconsisting of para-
meters resulting in Turing instability is widely known to be bounded by the in-
equalities given by

fU + gV < 0

fU gV − fV gU > 0

DV fU + DU gV > 0. (3.9)

The Hopf instability or bifurcation is another important instability in reaction-
diffusion systems for which the conditions resulting in a stable limit cycle (os-
cillations) were first formulated by Andronov. In terms of the linearized prob-
lem (Eq. (3.4)) the onset of Hopf instability corresponds to the case, when a pair
of imaginary eigenvalues crosses the real axis from the negative to the positive
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side, i.e., Re{λ(kc)} > 0 and Im{λ(kc)} �= 0, whereas Im{λ(kc)} = 0 for Turing
instability by definition. The critical value of bifurcation parameter for a Hopf
bifurcation �H

c can be solved from Re{λ(kc)} = 0, which with help of the char-
acteristic equation (Eq. (3.6)) can be written as

(DU + DV)k2 − fU − gV = 0. (3.10)

The so called co-dimension-two Turing-Hopf point is defined by the parameter
values that yield �H

c = �T
c . As discussed in Sec. 2.1.3 the co-dimension of the

bifurcations refers to the number of parameters that one has to adjust in order to
find the bifurcation point. The interaction between Turing and Hopf instabilities
will be studied in Section 5.6.

To summarize, linear stability analysis can be used for predicting the para-
meter values that result in the Turing instability in a particular reaction-diffusion
system. Based on the linear approximation one can also effectively predict the
characteristic length of the resulting pattern. In Section 4.2 linear analysis is ap-
plied in the context of a Turing model. Linear analysis cannot, however, predict
the spatial characteristics of the resulting patterns, since the pattern selection is
governed by complex nonlinear dynamics. Thus some more general tools as non-
linear bifurcation analysis are needed.

3.1.2 Pattern selection problem

The linear analysis predicts which wave numbers become unstable in the sys-
tem, but does not give any insight into symmetries that might arise as a result
of nonlinear coupling of the unstable wave modes. Typically, Turing systems
(and also many other physical systems) exhibit stripes and hexagonally arranged
spots, but also other morphologies such as rhombic arrays and labyrinthine pat-
terns have been observed in two dimensions (Kapral and Showalter, 1995). In
three dimensions pattern selection becomes even more complex since there are
numerous structures with a characteristic length that can fill a three-dimensional
space (Callahan and Knobloch, 1999). The use of amplitude equation formalism
makes the analysis of a Turing system universal in the sense that the presentation
in terms of the amplitude equations does not capture the dynamics and charac-
teristics of the original chemical system, but only those of the related symmetry
groups (Newell et al., 1993; De Wit, 1999).

The study of pattern selection requires nonlinear analysis instead of linear.
Typically the concentration fields w = (U, V) are presented as a superposition of
the active Fourier modes that are permitted by the studied symmetry and corres-
pond to the N unstable wave vectors with |�k| = kc, i.e.,

w = w0

∑
�kj

(Wj e
i �kj ·�r + W∗

j e−i �kj ·�r ), (3.11)
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where w0 is the an eigenvector of the linear matrix A in Eq. (3.5). Wj and W∗
j

are the time-dependent amplitudes of the corresponding modes +�kj and −�kj . No-
tice that the sum of complex conjugates is real. The unstable modes have slow
dynamics, whereas the stable modes relax quickly and are said to be slaved to
the unstable modes. Typically the bifurcation analysis is carried out by observing
changes in the stability of the amplitude equation system as a function of the bi-
furcation parameter, which adjusts the distance to the onset of the instability.

The time variation of the amplitudes Wj and W∗
j is described by a system of

ordinary differential equations of the form

dWj

dt
= λcWj + f j (W1, . . . , Wn), (3.12)

where λc = λ(kc) is the linear growth rate and the exact form of the nonlinear
term f j is defined by the normal form of the symmetry under study (Crawford,
1991). The parameters for the amplitude equations can be obtained by various
techniques, e.g. multiscale expansion (see De Wit (1993)) or center manifold
reduction (see Callahan and Knobloch (1999)). The stability of different sym-
metries can be studied by linear analysis of the amplitude equation system. One
must, however, remember that the nonlinear analysis is qualitative in nature and
the approximation works only for relatively low nonlinearities in the vicinity of
the onset. Linear and nonlinear analysis of the BVAM model will be presented in
Chapter 4.

3.1.3 Degeneracies

There are two kinds of degeneracies related to the Turing instability. The first one
is the orientational degeneracy, which is due to isotropy, i.e., there are many wave
vectors �k having the same wave number k = |�k|. The linear stability analysis
predicts only the wavenumber associated with the instability and does not give
any information concerning the direction of the unstable wave vectors. It can be
thought that the two-dimensional wave vectors corresponding to the wavenumber
kc are vectors pointing from the center of a circle with radius kc to the circum-
ference. This follows that the number of linear combinations of unstable wave
vectors (Eq. (3.11)) is infinite. Which of these wavevectors is chosen depends on
the phase induced by the random initial conditions and the boundary conditions.

The second degeneracy is due to the unstable sideband. The width of the
unstable wave window associated with a Turing instability (see Fig. 3.1) allows
more than one unstable mode, i.e., there are some ki �= kc with Re{λ(ki )} > 0.
The unstable modes that differ from kc, the highest point of the dispersion relation
curve are said to form the sideband. The sideband widens (the peak of the dis-
persion curve rises) with the distance to onset ac − a as the bifurcation parameter
a is varied. The linear analysis does not tell, which of these unstable modes will
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grow, although it is typically safe to assume that the modes dominating the pat-
tern selection are not far away from kc. In large systems there may be numerous
unstable modes forming a quasi-continuous ensemble of modes affecting greatly
the dynamics of the model. This effect can be studied analytically by introducing
spatial dependence to the amplitudes Wj of the modes. The resulting envelope
equations for amplitudes are of the form (cf. Eq. (3.12))

dWj

dt
= λcWj + f j (W1, . . . , Wn) + ξ 2

0 �

2Wj , (3.13)

where ξ0 ∼ k−1
c is the coherence length and � is a spatial operator describing the

modulation of the pattern by the modes on the sideband. Envelope equation form-
alism allows general studies of the mechanisms of pattern formation (Manneville,
1990; Newell et al., 1993; Cross and Hohenberg, 1993).

A third factor affecting the pattern selection is not exactly due to intrinsic de-
generacy, but due to the numerical methods that are often employed while study-
ing pattern formation in Turing systems. In a discrete three-dimensional system
the wave numbers are defined by

|�k| = 2π

√(
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Lx

)2

+
(

ny

L y

)2

+
(

nz

Lz

)2

, (3.14)

where Lx, L y and Lz denote the system size in respective directions, and nx, ny

and nz the respective wave number indices. For a one-dimensional system we
would have ny = nz = 0 and for a two-dimensional system nz = 0. Since
the system is discrete it is not precisely isotropic and thus the underlying lattice
may bias the pattern selection. For example, simulations carried out in a square
lattice might favor the formation of patterns with square symmetry. In addition,
the number of modes on the sideband is reduced by the discrete lattice, which
does not allow all the modes of the continuous spectrum. The degeneracy due
to numerical methods is usually not a big problem and it can be attenuated by
choosing small enough discretization length, using alternative lattice symmetries
or non-lattice based methods (Madzvamuse, 2000).

3.2 Examples of Turing models

There is a variety of Turing models with different reaction kinetics and their
own specific characteristics. In the studies presented in this thesis we use the
BVAM model. To get a general idea of Turing models, we will next review
three other well-known models, namely the Brusselator, Gray-Scott and Lengyel-
Epstein models. Other important Turing models that are not introduced here
include the Gierer-Meindhardt model (Gierer and Meinhardt, 1972; Bose and
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Chaudhuri, 1997), Selkov model (Hunding, 1980; Hunding and Engelhardt, 1995;
Vance and Ross, 1999), and Schnackenberg model (Dufiet and Boissonade, 1991,
1992).

3.2.1 The Brusselator model

The Brusselator model was developed by Ilya Prigogine among others in the late
1960s at the University of Brussels and it is one of the simplest chemical models
exhibiting Turing instability (Nicolis and Prigogine, 1977). In the case of the
Brusselator model the phenomenological chemical reaction formulae are given
by

A → U (3.15)

B + U → V (3.16)

2U + V → 3U (3.17)

U → E, (3.18)

where U and V are spatially and temporally varying chemical concentrations,
whereas the concentrations of the chemicals A, B and E are kept constant. The
law of mass action states that the rate of a reaction is proportional to the product
of the concentrations of the reactants (Murray, 1989). Thus based on Eqs. (3.15)-
(3.18) one can find out the changes in the concentrations of chemicals U and V .
The first reaction (Eq. (3.15)) results in contributions +A and 0 to concentra-
tions U and V , respectively. Similarly, the second reaction (Eq. (3.16)) results
in contributions −BU and +BU to U and V . In addition, Eq. (3.16) yields the
contributions −2U 2V + 3U 2V and −U 2V and Eq. (3.16) gives −U and 0. By
summarizing the above considerations, the Brusselator model can be written as
(Nicolis and Prigogine, 1977)

Ut = DU∇2U + A − (B + 1)U + U 2V

Vt = DV∇2V + BU − U 2V, (3.19)

where A denotes the value of the source term and B is the bifurcation parameter
setting the distance to the onset of instability. The chemical U is the activator and
V is the inhibitor such that always DV > DU . The stationary state of the model
is given by (U0, V0) = (A, B/A). The threshold for the Turing instability is
BT

c = [1+A
√

DU/DV ]2, whereas a Hopf instability occurs for B > BH
c = 1+A2.

The wave number corresponding to the most unstable Turing mode is given by
k2

c = A/
√

DU DV . The full nonlinear analysis of the Brusselator model has been
carried out by De Wit (1993) (see also Walgraef (1997)).

In the absence of the Turing instability the Brusselator model shows temporal
behavior similar to the Belousov-Zhabotinsky reaction. This was an important
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Figure 3.2: Stripes and spots in a two-dimensional numerical simulation of the Brus-
selator model (Eq. (3.19)). Parameters were A = 4.5, DV/DU = 8 resulting in
BT

c = 6.71. Thus B = 7.5 for stripes and B = 6.75 for spots. The initial configura-
tion was random perturbations around the uniform stationary state.

finding in 1968, since it implied that there is a connection between the mechan-
ism of these two chemical instabilities, which subsequently facilitated the first
experimental observation of a Turing pattern in a chemical reactor over 20 years
later (see Section 3.3). Figure 3.2 shows two typical patterns generated by the
Brusselator model from a random initial configuration.

The Brusselator model has been studied extensively both theoretically and
numerically. Some of the first studies were concerned with theoretical concepts
such as symmetry-breaking and bifurcations (Nicolis and Prigogine, 1977; Wal-
graef et al., 1980). Later studies employed the computational approach and ad-
dressed the problem of pattern selection as a function of system parameters in two-
dimensional (Verdasca et al., 1992; Borckmans et al., 1992) and three-dimensional
systems (De Wit et al., 1992, 1997). Most recently temporal dynamics of the
Brusselator model, i.e., Turing-Hopf interaction (De Wit et al., 1996) and spatial
resonances (Yang et al., 2002) have been studied. Callahan (2003) has studied
Hopf bifurcations in three-dimensional systems using amplitude equations.

3.2.2 Gray-Scott model1

The Gray-Scott model was developed by P. Gray and S. K. Scott at the Univer-
sity of Leeds in the 1980s. The model was of great importance since it describes
an experimentally observable auto-catalytic reaction in an isothermal continuous-

1This subsection is based on Leppänen et al. (2002).
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flow stirred tank reactor (CSTR). The Gray-Scott model could be said to be the
simplest chemical model, which shows oscillations in the same type of reactor,
where the first experimental evidence of Turing patterns was found later (see Sec-
tion 3.3). The Gray-Scott model corresponds to two irreversible chemical reac-
tions Gray and Scott (1983, 1984, 1985)

U + 2V →1 3V

V →K P, (3.20)

where U and V are the reacting chemicals, and 1 and K define the reaction rates.
Due to the irreversible nature of the reactions, the chemical P is an inert product
and thus two equations of motion are sufficient for describing the system. In
addition, it is assumed that the chemical U is in contact with a reservoir and the
chemical V is removed from the system at constant rate F . Using the law of mass
action one obtains in dimensionless units

∂tU = DU∇2U − U V2 + F(1 − U )

∂t V = DV∇2V + U V2 − (F + K )V, (3.21)

where F and K are reaction parameters and DU and DV are the diffusion coeffi-
cients of the inhibitor and activator chemicals, respectively. The stationary states
of the model are defined as

U0 = 1 ± √
1 − 4(F + K )2/F

2
, V0 = F(1 − U0)

F + K
, (3.22)

where by fixing U0 = 1 one obtains the trivial stationary state (U0, V0) = (1, 0).
In chemical experiments of the Gray-Scott reaction the difference of diffusion
coefficient has not been established and thus Turing patterns have been observed
only in numerical simulations of the Gray-Scott reaction.

The Gray-Scott model has been studied analytically and numerically in two di-
mensions by John Pearson, who mapped the phase diagram of the system in terms
of the two rate constants F and K Pearson (1993). The model exhibits a very rich
behavior ranging from time-independent stationary solutions to oscillatory and
time-dependent phase turbulent behavior. The dynamics of self-replicating spotty
patterns have been studied in the Gray-Scott model (Reynolds et al., 1994, 1997).
Furthermore, Vastano et al. (1987) have shown that a one-dimensional Gray-Scott
system can exhibit stable stationary patterns as a response to finite amplitude per-
turbations even when the two diffusion constants are equal. These patterns cannot,
however, arise spontaneously due to the Turing instability. Nonlinear analysis of
the model has been carried out by Ipsen et al. (2000).

We have studied numerically the pattern formation in the Gray-Scott model in
the presence of chemical sources (Leppänen et al., 2002). In this study we added
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Figure 3.3: Left: Pattern obtained in a two-dimensional 120 × 120 lattice with peri-
odic boundary conditions using the Gray-Scott model in the presence of eight sources
of morphogen V with parameters F = 0.065, K = 0.0625, Du = 0.125, Dv = 0.05.
The sources appear as “cross-like” patterns. Right: Pattern obtained using the three-
dimensional Gray-Scott model with four sources of V , F = 0.045, K = 0.065,
Du = 0.125, Dv = 0.05.

a small number of sources of the chemical V to random positions and otherwise
initialized the system randomly. The sources were set to feed the chemical V at a
constant rate (+0.01). The motivation for adding the sources was to investigate the
formation of connections between the sources, thus attempting to mimic the form-
ation of synaptic contacts between neurons. We used the Gray-Scott model since
it produces labyrinthine or tubular patterns more easily than the other reaction-
diffusion models. Here the chemical sources can be thought of as representing
neurons whereas the growing dendrites must connect them. Our numerical sim-
ulations show that the Gray-Scott model produces robust tubular patterns in both
two and three dimensions (see Fig. 3.3).

The concepts of positional information and chemical signaling present in the
Turing systems could play an important role as an inductive mechanism for neur-
onal connections by acting as chemical pathways for other biochemical factors.
We are particularly interested in pursuing this idea, but it should be remembered
that any specific mechanism for Turing patterning in a real tissue has to happen in
three dimensions. Neurons do not always form connections with the nearest neur-
ons, but also with neurons far away, behind other cells. We believe that Turing
patterns could explain this spatial selectivity by providing the signaling pathways
for neurotrophic factors. Simple diffusion of these substances cannot explain the
complexity of neuronal patterning.

Previous studies have often employed highly elaborate random walk models,
which include neurophysiological data (Segev and Ben-Jacob, 2000; van Ooyen,
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2001). Our idea is that a chemical Turing pattern forms a pre-pattern for the
randomly growing dendrites describing the neurotrophic factors (see Leppänen
(2001) for details). By using Hoshen-Kopelman algorithm (Hoshen and Ko-
pelman, 1976) it was confirmed that also in the three-dimensional structure the
sources are connected by the chemical dendrites. Currently, it is unclear whether
Turing systems could act as an inductive signaling mechanism for neural pattern-
ing, but we have shown that simple reaction and diffusion can generate connected
patterns spontaneously, which makes the idea plausible.

3.2.3 The Lengyel-Epstein model

After the first experimental observation of a Turing pattern in 1989 in the chlorite-
iodide-malonic acid (CIMA) reaction (see Section 3.3), Istvan Lengyel, Gyula
Rabai and Irving Epstein proposed a model for the oscillations in the chlorine
dioxide-iodine-malonic acid (CDIMA) reaction after the initial chlorite and iodide
ions were consumed (Lengyel et al., 1990a,b). The reactions that CDIMA reaction
are given by

M A + I2 → I M A + I − + H+

ClO2 + I − → ClO−
2 + 1

2
I2

ClO−
2 + 4I − + 4H+ → 2I2 + Cl− + 2H2O

(3.23)

Later Lengyel and Epstein showed that in the presence of starch and the sub-
sequent complexation of the iodide ions, i.e., S + I2 + I −

� SI−3 the pattern
formation phenomena in the CIMA system could be approximated by only two
kinetic equations corresponding to the dominant components, that is iodide ions
(I −, the activator) and chlorite ions (ClO−

2 , the inhibitor). The Lengyel-Epstein
model is given by the normalized equations of motion (Lengyel and Epstein, 1991,
1992; Lengyel et al., 1992)

Ut = 1

σ
(∇2U + a − U − 4

U V

1 + U 2
)

Vt = d∇2V + b(U − U V

1 + U 2
), (3.24)

where a, b, d and σ are parameters, which can be adjusted based on experimental
reaction rates. U is the normalized iodide ion concentration and V is the nor-
malized chlorite ion concentration. The stationary state is given by (U0, V0) =
(a/5, 1 + a2/25). For more details on the analytical treatment of the Lengyel-
Epstein model we refer the reader to Rudovics et al. (1999) (see also Callahan
and Knobloch (1999)). For a more profound review of chemical modeling and the
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experimental background of the Lengyel-Epstein model the reader is referred to
Lengyel and Epstein (1995) and Lengyel et al. (1996).

The Lengyel-Epstein model is important in the sense that it captures the es-
sential features of the CIMA reaction, where experimental Turing structures are
observed. The Lengyel-Epstein model has been studied by employing theoretical
approaches and numerical simulations (e.g. Rovinsky and Menzinger (1992) or
Jensen et al. (1993)). In these studies chemical experiments and numerical simu-
lations have also often been used in parallel. For more details of the experimental
studies the reader is guided to Section 3.3.2.

3.3 Experimental Turing structures

The confirmation of Turing’s ideas turned out to be challenging since the existence
of chemical spatial patterns as predicted by his mathematical formulations could
not be confirmed experimentally. The first unambiguous experimental observation
of a stationary Turing pattern was preceded by theoretical studies Vastano et al.
(1987, 1988) and the practical development of a new kind of continuously stirred
tank reactors (see e.g. (Lengyel and Epstein, 1995)). It was not until 1989, when
Patrick De Kepper’s group observed a stationary spotty pattern in a chemical sys-
tem involving the reactions of chlorite ions, iodide ions and malonic acid (CIMA
reaction) (Castets et al., 1990).

3.3.1 CIMA reaction

It was mostly the required difference in the diffusion rates of the chemical sub-
stances that delayed the first experimental observation of chemical Turing pat-
terns. In aqueous solutions all small molecules have approximately same diffu-
sion coefficients (∝ 10−5 cm2/s) and thus the realization of an activator-inhibitor
mechanism with a difference in diffusion coefficients seemed extremely difficult.
The Gray-Scott reaction showing oscillations in a continuously fed reactor (see
Sec. 3.2.2) was an important intermediate step in the experimental observation of
a real chemical Turing pattern.

There are numerous chemical systems exhibiting oscillations (see e.g. Ep-
stein and Showalter (1996)) and De Kepper et al. happened to be studying os-
cillations in the chlorine dioxide-iodine-malonic acid (CDIMA) reaction in 1989
(see Eq. (3.23) above). In order to increase the color contrast of their results, they
introduced starch to the slab of gel, where fresh reagents were fed from the side.
This addition resulted in the reversible complexation of the iodine ions by large
starch molecules thus reducing their diffusion rate in the gel significantly. Due to
the difference in the diffusion coefficients and other appropriate conditions Turing
patterns were observed with respect to the iodine and chlorite ion concentrations
(Castets et al., 1990). The results by Castets et al. (1990) are shown in Figure 3.4.
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Figure 3.4: a) The reactor is fed from the both sides with fresh reagents, b) Turing pattern
in the gel, c) Enlarged pattern (scales in mm). The figure is reproduced from Castets et al.
(1990).

There were many facts that made the chemical pattern that Castets et al. (1990)
observed unambiguously a Turing pattern. Firstly, the symmetry-breaking took
place to a direction not imposed by feeding gradients. Secondly, the gel dampened
out any convective motion of molecules and thus the pattern was known to arise
solely due to reaction and diffusion. Thirdly, the pattern remained stationary as
long as the system parameters stayed the same, i.e., a constant feeding rate of
reagents was provided (∼ 20 hours). Fourthly, the characteristic wavelength of
the pattern λ ≈ 0.2 mm was different from any external length scale and thus it
seemed to be intrinsic. In addition, similar patterns were observed repeatedly for
the same feed concentrations in the reactor and the pattern could be destroyed by
a perturbation (e.g. intense light) only momentarily (Boissonade et al., 1995).

A year later Qi Ouyang and Harry L. Swinney observed also stripes in the
CIMA reaction by using different feeding rates for the reagents and in addition
showed using a new kind of visualization technique that experimental Turing pat-
terns can be grown also over large domains (Ouyang and Swinney, 1991). The
complexation step in the CIMA reaction scheme has received a lot of attention
due to its importance in chemical Turing pattern formation. Agladze et al. (1992)
have shown that Turing patterns can exist even in gel-free media, i.e., the use of
gel for slowing down the starch complex is not necessary for obtaining Turing
patterns. On the other hand, Noszticzius et al. (1992) have found out that the
complexation agent affects exclusively on the iodide-complex formation, which
results in unequal diffusion coefficients, and it has no effect on the dynamics of
the CIMA reaction. It should be noted that both Turing and Hopf instabilities
can be observed in the CIMA reaction by varying the concentration of the color
indicator in the reactor (Perraud et al., 1992; De Wit, 1999).
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3.3.2 Recent experimental work

After the first experimental observation of a Turing pattern, the studies of the
pattern formation in CIMA reaction have been extended to the spatio-temporal
regime, where the system exhibits for example traveling waves and chemical flip-
flops (Perraud et al., 1992; Dewel et al., 1995; Rudovics et al., 1996). Some
studies have also addressed the problem of dimensionality and studied the pattern
formation on different depths in the reactor gel (Ouyang et al., 1992) or in ramped
systems (Dulos et al., 1996) (see also Section 5.5). Most of the experimental
research, however, has been carried out with the photosensitive CDIMA reaction
in the presence of forcing.

The effect of temporally (Horváth et al., 1999) and spatially periodic illumin-
ation (Dolnik et al., 2001b,a; Berenstein et al., 2003) on the pattern formation in
the CDIMA reaction has been investigated. Also the problem of spatially correl-
ated forcing of varying intensity has been addressed in the context of both spotty
(Sanz-Anchelergues et al., 2001) and stripe (Pena et al., 2003) patterns. In addi-
tion, Petrov et al. (1997) have interestingly observed a transition from a spiral pat-
tern to a Turing-like labyrinthine pattern as a result of temporally periodic forcing
of the Belousov-Zhabotinsky reaction. For a more extensive review of relevant
experimental work the reader is referred to other sources (Kapral and Showalter,
1995; De Kepper et al., 2000; Borckmans et al., 2002).

3.4 Summary

This chapter focused on specific kind of reaction-diffusion systems, namely Tur-
ing systems, and introduced the typically employed research methodology. Turing
instability, which results in chemical concentration patterns with a characteristic
wave length, was illustrated with help of hungry cannibals and biking missionaries
on an island. More formal introduction of the topic was done by discussing the
strengths of linear stability analysis and pattern selection theory. Degeneracies
that affect the pattern formation are the orientational degeneracy and sideband
degeneracy. Also the discretization due to numerical simulations causes some de-
generacy. The characteristics of the Brusselator, Gray-Scott, and Lengyel-Epstein
models were discussed in order to illustrate the general features of Turing models.
The chapter was concluded with an introduction to experimental research and the
CIMA reaction, which is the most important chemical system exhibiting a Turing
instability.





Chapter 4

Mathematical analysis of
Barrio-Varea-Aragon-Maini
model

The study of any given Turing model starts with a mathematical analysis of the
model. As outlined in the previous chapter, one first carries out a linear stability
analysis, which is typically followed by a nonlinear bifurcation analysis. The
linear analysis is an effective tool for finding the suitable parameter values for
the Turing instability and analyzing the onset of the instability. The nonlinear
analysis, on the other hand, is required for analyzing the stability of different
symmetries or morphologiesin the system.

In this chapter we will carry out the full mathematical analysis of the Barrio-
Varea-Aragon-Maini (BVAM) model introduced by Barrio et al. (1999). In the
first section, we will derive and normalize the model. Then, we will analyze
the model by using a linear approximation and discuss our findings. Since the
presentation of the nonlinear bifurcation analysis has often been somewhat vague
in the literature, this chapter is concluded with a meticulous report of the nonlinear
analysis of the BVAM model. The algebra involved in the nonlinear analysis is
rather lengthy and thus some details are left to the appendices A.1 and A.2.

4.1 Derivation of BVAM model

The BVAM model is a formal or phenomenological Turing model and it is not
based on any real chemical reactions. The model was introduced by Barrio et al.
(1999) as a general model, which could be applied for imitating the pattern form-
ation on the skins of various fish species. The general form of a Turing model
describing the spatial and temporal variations of the concentrations U and V is
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defined as (see Sec. 2.3)

Ut = DU∇2U + f (U, V)

Vt = DV∇2V + g(U, V). (4.1)

The BVAM model is obtained by Taylor expanding the reaction kinetics (the non-
linear functions f and g in Eq. (4.1)) around a stationary solution of the system
denoted by (Uc, Vc). If the terms of the fourth and higher order are neglected, the
reaction-diffusion equations can be written as (Barrio et al., 1999)

ut = Dδ∇2u + αu(1 − r1v
2) + v(1 − r2u)

vt = δ∇2v + v(β + αr1uv) + u(γ + r2v), (4.2)

where u = U − Uc and v = V − Vc, which makes (u0, v0) = (0, 0) a stationary
state. The terms uv and uv2 describe the nonlinear inhibition of the activator
chemical u by the inhibitor chemical v. The nonlinear term u2v cannot be included
since it would describe reverse behavior. The parameters r1, r2, α, β and γ are
scalars defining the reaction kinetics. The diffusion coefficients are written in
terms of a scaling factor δ and ratio of the diffusion coefficients D. Since the
chemical u is the activator and the chemical v is the inhibitor, we must always
have D < 1 for Turing instability to occur.

To reduce the number of parameters and simplify the analysis we carry out
non-dimensionalization (Murray, 1989) of the Eq. (4.2) by rescaling the concen-
trations, and the time and length scales with constants such that u = Uu, v = Vv,
t = Tt , and x = Lx. The substitution of these new notations into Eq. (4.2) yields

U

T
ut = δDU

L2
∇2u + αUu − αr1U V2uv2 + Vv − r2U Vuv

V

T
vt = δV

L2
∇2v + βVv + αr1U V2uv2 + γUu + r2U Vuv, (4.3)

which can be written as

ut = δDT

L2
∇2u + αTu − αr1V2Tuv2 + T V

U
v − r2V Tuv

vt = δT

L2
∇2v + βTv + αr1U V Tuv2 + γ

UT

V
u + r2UTuv. (4.4)

This system can be further simplified by fixing T = L2/δ, U = V = 1/
√

r1 and
introducing the new parameters

a = 1/α, (4.5)

b = β/α, (4.6)

h = γ /α, (4.7)

C = r2/(α
√

r1), (4.8)

η = L2α/δ. (4.9)
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This yields the dimensionless model

ut = D∇2u + η(u + av − Cuv − uv2)

vt = ∇2v + η(bv + hu + Cuv + uv2), (4.10)

where the time-space relation is given by T = L2/δ (we have used L = 1 for
simplicity). The term C adjusts the relative strength of the quadratic and cubic
nonlinearities favoring spotty and striped patterns, respectively. From now on we
shall omit the overlines for simplicity.

One can easily see that the normalized system of Eq. (4.10) has a unique
stationary state at (u0

0, v
0
0) = (0, 0) for h = −1. For h �= −1 the system has also

two other stationary states defined by f (u0, v0) = g(u0, v0) = 0 given by

v
j
0 = −C + (−1) j + √

C2 − 4(h − bK)

2
(4.11)

and
u j

0 = −v
j
0/K , (4.12)

where K = 1+h
a+b and j = 1, 2. The behavior of the system around these stationary

states can be studied by using linear analysis, which we will carry out next.

4.2 Linear stability analysis

As discussed in Section 3.1.1, linear analysis is an effective method for studying
the response of the a Turing system to perturbations in the vicinity of a stationary
state. Next we apply linear analysis in the context of the BVAM model to de-
termine the appropriate parameter values resulting in the Turing instability and to
study the stability of the stationary states.

Substituting a trial solution into a Turing model (Eq. (4.1)) one obtains the
eigenvalue problem (see Sec. 3.1.1)

|A − Dk2 − λI | = 0, (4.13)

where the matrix A is defined by the partial derivatives of the reaction kinetics
evaluated at the stationary state (u0, v0), the stability of which one is to study. For
the BVAM model the matrix D is defined by D11 = D, D22 = 1, D12 = D21 = 0,
I is the identity matrix and A is given by

A =
(

fu fv
gu gv

)
(u0,v0)

= η

(
1 − v2

0 − Cv0 −2u0v0 + a − Cu0

v2
0 + h + Cv0 b + 2u0v0 + Cu0

)
, (4.14)

where u0 and v0 are defined by (u0, v0) = (0, 0) or Eqs. (4.11) and (4.12). The
determinant defined by Eq. (4.13) gives the characteristic equation (cf. Eq. (3.6)).
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Around the primary stationary solution (u0, v0) = (0, 0), which is the only solu-
tion if h = −1, the characteristic equation for the BVAM model reads as

λ2 + [
(1 + D)k2 − η(1 + b)

]
λ +

Dk4 − ηk2(Db + 1) + η2(b − ah) = 0. (4.15)

The dispersion relations λ(k) for the BVAM model are defined by the eigenvalues
defined by the characteristic equation. Now Re{λ(k)}, which predicts the unstable
wave modes can be obtained from Eq. (4.15). One can estimate the most unstable
wave number and the critical value of the bifurcation parameter by noticing that
at the onset of the instability λ(kc) = 0. Thus the constant term in Eq. (4.15) must
be zero at kc. In the case of the BVAM model this condition is a second order
equation on k2

c , i.e.,

Dk4
c − k2

cη(Db + 1) + η2(b − ah) = 0. (4.16)

and as a result the most unstable wave number is given by k2
c = η(Db+ 1)/(2D).

The critical bifurcation parameter value, which corresponds to the onset of the
instability is defined by Eq. (4.16). In the BVAM model a is the bifurcation
parameter adjusting the distance to the onset of the instability. The discrimin-
ant of Eq. (4.16) equals zero for ac and an instability takes place for a < ac =
(Db − 1)2/(4D). To confirm that this instability is, indeed, a Turing instability
more conditions must be satisfied.

The Turing space is the region of the parameter space in which the conditions
for the Turing instability are met. In the case of the BVAM model with h = −1 the
conditions for the Turing space (see Eqs. (3.9)) yield the constraints −b < a < ac

and −1/D < b < −1. Based on this one can sketch the phase space diagram
for the BVAM model and it is presented in Fig. 4.1. From the stability diagram
one can notice that the number of the parameter combinations exhibiting Turing
instability, i.e., the size of the Turing space (shaded region) is relatively small.
Other regions in the diagram correspond to a stable stationary state, oscillatory
Hopf instability (see Sec. 3.1.1) and complex spatio-temporal instabilities.

Based on the stability diagram one can choose parameters that result in the
Turing instability and plot the corresponding dispersion relations. In the studies
presented in this thesis we have mostly used two sets of parameters defined by
D = 0.516, a = 1.112, b = −1.01 and η = 0.450 for kc = 0.46 (ac = 1.121)
and D = 0.122, a = 2.513, b = −1.005 and η = 0.199 for kc = 0.85 (ac =
2.583). The dispersion relation is obtained by solving Eq. (4.15) with respect
to λ and plotting the real part of the solution as a function of the wave number
k. The dispersion relations corresponding to the onset of the instability (at a =
ac) and the above parameter sets resulting in the instability around the stationary
state (u0, v0) = (0, 0) are shown in Fig. 4.2. As discussed in Sec. 3.1.1, the
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Figure 4.1: The phase space diagram of the BVAM model (Eq. (4.10)). The Turing
space (shaded region) is bounded by lines b = −1/D, b = −1, b = −a and the curve
a = (Db− 1)2/(4D). For the plot the ratio of the diffusion coefficients was fixed to D =
0.516. The other regions: stable state (2), other complex spatio-temporal instabilities (3)
and Hopf instability (4).

wave numbers k with Re{λ(k)} < 0 are stable, whereas the wave numbers with
Re{λ(k)} > 0 correspond to the growing unstable modes.

The real part of the dispersion relation depicts the growth rate of the unstable
wave modes. The imaginary part, on the other hand, describes the frequency of the
temporal behavior. The real and imaginary parts of the eigenvalues correspond-
ing to the stationary state (u0, v0) = (0, 0) are shown in Figure 4.3 for two sets
of parameters corresponding to a Turing bifurcation (a kc unstable) and a Hopf
bifurcation (k0 unstable) in a monostable system. The parameters used in Fig. 4.3
were the ones derived above for the Turing instability around (0, 0) with critical
wave number kc = 0.85 and the same except b = −0.8 for the Hopf instability.

From Fig. 4.3 one can observe that a Turing bifurcation corresponds to the
case, where there is some ki such that Re{λ(ki )} > 0 and Im{λ(ki )} = 0. On
the other hand, a Hopf bifurcation corresponds to the situation, where a pair
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Figure 4.2: The real part of the dispersion relation λ(k) corresponding to two different
parameter sets with kc = 0.46 and kc = 0.85, respectively. Left: At the onset of instability
a = ac and there are no unstable modes. Right: For a < ac there is a finite wave length
Turing instability corresponding to the wave numbers k for which Re{λ(k)} > 0.
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Figure 4.3: The largest eigenvalue of the linearized system corresponding to a Turing
(left) and Hopf bifurcation (right). The real and imaginary parts of the eigenvalues cor-
respond to solid and dashed lines, respectively.

of imaginary eigenvalues crosses the imaginary axis, i.e., there is some ki with
Re{λ(ki )} > 0 and Im{λ(ki )} �= 0. The parameters of the BVAM model can
also be adjusted such that kc = 0 for Turing instability (corresponding to a char-
acteristic length of system-size) or so that there is a combined Turing-Hopf bi-
furcation from one stationary state. Interaction between Turing and Hopf in-
stabilities will be studied numerically in Sec. 5.6, in particular in the presence
of multiple stationary states. The critical parameter value for the Hopf bifurcation
in the BVAM model with h = −1 is bH

c = −1 and for the Turing bifurcation
bT

c = (1 − √
4Da)/D.

From the results of the linear analysis we can identify the parameter domain,



4.3 Nonlinear bifurcation analysis 53

which results in the Turing instability and approximate the characteristic wave
lengths of the patterns. The BVAM model has been devised in such a way that by
adjusting the parameter C one can favor either stripes or spots (Barrio et al., 1999).
Striped pattern and hexagonally arranged spots are typical for reaction-diffusion
systems in two dimensions (Boissonade et al., 1995). To find out which morpho-
logy will be chosen in the BVAM system, one needs the nonlinear bifurcation
analysis and it is the subject of next section.

4.3 Nonlinear bifurcation analysis1

Bifurcation theory is a mathematical tool that is generally used for studying
the dynamics of nonlinear systems (Crawford, 1991; Newell et al., 1993; Man-
neville, 1990). The result of bifurcation analysis or weakly nonlinear analysis
describes the changes taking place in the dynamics of the system as an outcome
of changing the system parameters. In the case of Turing systems the bifurcation
analysis answers the question concerning the changes in the stability of different
morphologies as the bifurcation parameter is varied. Bifurcation analysis has pre-
viously been applied in the cases of the Brusselator model (Walgraef, 1997) and
the Lengyel-Epstein model (Rovinsky and Menzinger, 1992). The published ana-
lyses and text books often omit many mathematical details, which are necessary
for fully understanding the technique. Here special attention will be paid to the
details.

As discussed in Sec. 3.1.2, the idea of bifurcation analysis is to find a present-
ation for the concentration field �w = (u, v) in terms of the active Fourier modes,
i.e.,

�w = �w0

∑
�kj

(Wj e
i �kj ·�r + W∗

j e−i �kj ·�r ), (4.17)

where Wj and W∗
j are the amplitudes corresponding to the modes +�kj and −�kj .

By using bifurcation analysis one obtains the amplitude equations that describe
the time evolution of the amplitudes Wj . The BVAM model of Eq. (4.10) has
been devised in such a way that one can adjust the relative strength of the quad-
ratic and cubic nonlinearities. Thus the parameter C dominates the instability by
imposing symmetry requirements to the system and governs the pattern selection.
This parameter controls the morphology selection between linear (stripe) and ra-
dial (spot) structures instead of the bifurcation parameter. Thus some additional
algebraic manipulations must be carried out at the end of the bifurcation analysis.
In this way the BVAM model is different from the Brusselator (Nicolis and Prigo-
gine, 1977) and the Lengyel-Epstein (Lengyel and Epstein, 1992) models, which

1Most of the work presented in this section has been published in Leppänen (2004).
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have only one nonlinear term and the morphology of the resulting pattern is de-
termined by the value of the bifurcation parameter, i. e., the distance to the onset
of instability.

The main idea of the bifurcation analysis is to get insight into the the chem-
ical system by mapping the chemical dynamics to the center manifold, where
the reduced dynamics captured by the amplitude equations can be studied more
easily. Here I have divided the bifurcation analysis for pedagogical reasons into
three parts: derivation of the normal form for the amplitude equations in a partic-
ular symmetry, determining the parameters of the amplitude equations, and finally
analyzing the stability of different morphologies by applying linear analysis to the
system of amplitude equations. These three phases will be the respective topics of
the following subsections.

4.3.1 Derivation of amplitude equations

The time variation of the amplitudes Wj of the unstable modes �kj ( j = 1, . . . , n)
can be described with a system of n coupled amplitude equations. Amplitude
equations have a linear part, which describes the linear growth predicted by the
positive eigenvalue of the linearized system defined by Eq. (4.15) and a nonlinear
part describing the nonlinear coupling of the unstable modes. Thus in the most
general form of an amplitude equation is given by

dWj

dt
= λcWj + f j (W1, . . . , Wn). (4.18)

The eigenvalue may be approximated from Eq. (4.15) in the vicinity of the onset
by a linear approximation given by

λc = d λ

da

∣∣∣∣
a=ac

(a − ac) = η2(η − 2R)

(η(1 + b) − 2R)(η − R)
(a − ac), (4.19)

where R = η(Db+1)/2 with notations of the BVAM model (Eq. (4.10)). The ex-
act form of the term f (W1, . . . , Wn) in Eq. (4.18) depends on the symmetry under
study and the generic form of it for a particular symmetry can be constructed by
geometrical arguments. Typically one approximates the dynamics of the system
by writing down the amplitude equations only for the most unstable mode kc. The
effects of the unstable modes on the sideband can be evaluated by using envelope
amplitude equations as discussed in Sec. 3.1.3.

In two dimensions, reaction-diffusion systems typically exhibit either stripes
or hexagonally arranged spots (see e.g. Fig. 3.2). If one considers the chemical
concentration wave forming a pattern of spots, the maxima of the inhibitor (or
minima of the activator) correspond to a triangular lattice. On the other hand,
the minima (or maxima) form the dual lattice of the triangular lattice, namely the
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Figure 4.4: The vectors describing the set of nearest neighbors in two-dimensional
hexagonal lattice are not linearly independent and thus there are resonant modes.

hexagonal lattice. In three dimensions there are various possibilities for arrange-
ment: One can study the simple cubic lattice (SC), body-centered cubic lattice
(BCC) or face-centered cubic lattice (FCC) (for illustrations of the lattice struc-
tures see e.g. Ashcroft and Mermin (1976)). Callahan and Knobloch have been
among the first to address the problem of bifurcations in three-dimensional Tur-
ing systems (Callahan and Knobloch, 1996, 1997, 1999, 2001; Callahan, 2004).
In the following we will derive the general form for the amplitude equations of the
two-dimensional hexagonal lattice and three-dimensional SC-, FCC-, and BCC-
lattices.

Two-dimensional hexagonal lattice

As for symmetries, one must differentiate between the real (concentration) space
and the Fourier (wave vector) space. The symmetries of the concentration patterns
correspond to the symmetries of the reciprocal lattice in the wave vector space
(see e.g. Ashcroft and Mermin (1976)). For example, the reciprocal lattice of
the two-dimensional hexagonal lattice is another hexagonal lattice translated by
π/6 with respect to the original lattice. The vectors forming a two-dimensional
hexagonal lattice can be chosen to be �k1 = kc(1, 0), �k2 = kc(−1/2,

√
3/2) and

�k3 = kc(−1/2,−√
3/2) with |�k1,2,3| = kc. Since for example −�k1 − �k2 = �k3,

we can say that a hexagonal lattice exhibits resonant modes. Resonant modes
are described by a quadratic coupling term and must be taken into account, while
deriving the amplitude equations. In a simple square lattice there would not be any
resonant modes, since any subset of the vectors capturing the symmetry operations
does not sum up to another vector. The vectors constructing a hexagonal lattice
and the idea of resonant modes is illustrated in Fig. 4.4.

The set of wave vectors presented in Fig. 4.4 defines the wave vectors that
form the chemical concentration pattern. The alignment of the triad is irrelevant
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Figure 4.5: The symmetries enabled by the three basis vectors of a hexagonal lattice are
striped patterns, rhombic arrays and hexagonal lattices.

to the pattern selection problem since one is only interested in the symmetry.
One unstable wave vector (�k2 = �k3 = 0) would result in an essentially one-
dimensional period pattern, namely rolls or stripes. Two unstable wave vectors
(�k3 = 0) would be able to form a rhombic pattern, whereas three non-zero wave
vectors are sufficient to describe the two-dimensional hexagonal lattice. The two-
dimensional symmetries that are observed in a variety of physical systems (Cross
and Hohenberg, 1993; Walgraef, 1997) can be generated from the basis vectors of
a hexagonal lattice of Fig. 4.4 as illustrated in Fig. 4.5.

Since there are resonant modes, one would expect that there is a quadratic
coupling term in the amplitude equations. In a hexagonal lattice the negative sum
of two modes may contribute to a third mode and thus there must be a term of the
form Wj +1, j +2eikj ·r = (−W∗

j +1ei (−kj +1)·r )(−W∗
j +2ei (−kj +2)·r ) in f j (W1, W2, W3) of

Eq. (4.18) ( j = 1, 2, 3 (mod3)). The combinations of wave vectors that sum up to
�kj in addition to the resonant pair are �kj −�kj +�kj , �kj +1−�kj +1+�kj , and �kj +2−�kj +2+�kj . The respective contributions to f j (W1, W2, W3) are −|Wj |2Wj , −|Wj +1|2Wj

and −|Wj +2|2Wj . We assume that the saturation occurs at the third order and
thus take into account only the sums of maximum three vectors. Now the full
amplitude equation for the two-dimensional hexagonal lattice can be written as

dWj

dt
= λcWj + �W∗

j +1W∗
j +2 − g[|Wj |2 + κ(|Wj +1|2 + |Wj +2|2)]Wj , (4.20)

where j = 1, 2, 3 (mod3), the λc is given by Eq. (4.19) and the coefficients �, g
and κ can be presented in terms of the parameters of the original reaction-diffusion
system (Eq. (4.10)). The coefficients are obtained via complicated mathematical
techniques, which will be discussed next.

Three-dimensional SC-lattice

The reciprocal lattice of a three-dimensional simple cubic (SC) lattice is of the
same symmetry. The three wave vectors describing the symmetry of the SC-
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lattice can be chosen to be �k1 = kc(1, 0, 0), �k2 = kc(0, 1, 0) and �k3 = kc(0, 0, 1)

with |�k1,2,3| = kc. Now the vectors are linearly independent and thus there are
no resonant modes. The combinations of wave vectors that sum up to �kj are
�kj −�kj +�kj , �kj +1−�kj +1+�kj , and �kj +2−�kj +2+�kj . By considering the contributions
of these combinations as in the case of the two-dimensional hexagonal lattice, one
can deduce the form of the amplitude equations to be

dWj

dt
= λcWj − g[|Wj |2 + κ(|Wj +1|2 + |Wj +2|2)]Wj , (4.21)

where j = 1, 2, 3 (mod 3), again λc is given by Eq. (4.19), and g and κ are
parameter dependent coefficients.

Three-dimensional FCC-lattice

The three-dimensional face-centered cubic (FCC) lattice is not as simple. The
reciprocal lattice of the FCC-lattice is the body-centered cubic (BCC) lattice de-
scribed by a set of four vectors given by

�k1 = kc(1, 1, 1)/
√

3, �k2 = kc(1, 1,−1)/
√

3,

�k3 = kc(1,−1, 1)/
√

3, �k4 = kc(1,−1,−1)/
√

3

with |�k1,2,3,4| = kc. These are not linearly independent and there are resonant
modes since e.g. �k2 + �k3 − �k4 = �k1. Thus there is a cubic resonant coupling term
and in addition there are the other nonlinear terms that can be derived as in the
previous cases. The amplitude equations are given by

dWj

dt
= λcWj −�Wj +1Wj +2W∗

j +3−g[|Wj |2+κ(|Wj +1|2+|Wj +2|2+|Wj +3|2)]Wj ,

(4.22)
where j = 1, 2, 3, 4 (mod4), again λc is given by Eq. (4.19), and �, g and κ are
parameter dependent coefficients.

Three-dimensional BCC-lattice

The reciprocal lattice of the three-dimensional BCC-lattice is the FCC-lattice with
the corresponding symmetry group defined by six vectors

�k1 = kc(1, 1, 0)/
√

2, �k2 = kc(0, 1, 1)/
√

2, �k3 = kc(1, 0, 1)/
√

2,

�k4 = kc(1,−1, 0)/
√

2, �k5 = kc(0, 1,−1)/
√

2, �k6 = kc(1, 0,−1)/
√

2

with |�k1,2,3,4,5,6| = kc. Again the vectors are not linearly independent, but there is
both quadratic and cubic resonant coupling. For example the resonant modes of
k1 are defined by �k2 + �k6 = �k1, �k3 + �k5 = �k1, �k2 + �k4 + �k5 = �k1, and �k3 − �k4 + �k6 =
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�k1. Notice that since kj and kj +3 are in the same plane, their coupling must be
treated separately. Combining the contributions of resonant and other modes to
the amplitude Wj yields the following general form

dWj

dt
= λcWj + ϒ(Wj +1Wj +5 + Wj +2Wj +4) +

�(Wj +1Wj +3Wj +4 + Wj +2W∗
j +3Wj +5) − g|Wj |2 −

g[χ |Wj +3|2 + κ(|Wj +1|2 + |Wj +2|2 + |Wj +4|2 + |Wj +5|2)]Wj ,

(4.23)

where j = 1, 2, 3, 4, 5, 6 (mod 6), again λc is given by Eq. (4.19), and ϒ , �, g,
χ and κ are coefficients dependent on the model parameters.

4.3.2 Center manifold reduction

There are various methods for determining the parameters for the above amplitude
equations. Often one uses the multiscale expansion, where the bifurcation para-
meter and the chemical concentrations are expanded around a small parameter
(e.g. a − ac = εa1 + ε2a2 + . . .). The coefficients for the amplitude equations
are obtained based on the solvability conditions of the resulting linear differen-
tial equations at different degrees of ε (see e.g. Newell et al. (1993) or Walgraef
(1997)). In our studies we have employed another method called the center mani-
fold reduction.

The amplitude equations derived in the previous section can be expressed in
terms of the reaction-diffusion parameters (Eq. 4.10) by devising a mapping from
the concentration space to the center manifold of the wave vector space. The map-
ping from the concentration space (Eq. (4.10)) to a high-dimensional equivariant
amplitude space (Eq. (4.18)) can be found by employing center manifold theorem
(see Sec. 2.1.3). The center manifold reduction confines the nonlinear effects in
the system to the center manifold and thus one can obtain good approximations
for the stability of different structures. In the following, we will sketch the gen-
eral procedure for mapping the dynamics of a Turing model to the center manifold
(see Callahan and Knobloch (1999)).

In general, we can write the component h of a Turing system with n chemical
species (h ∈ {1, ..., n}) as

d Xh

dt
= Dh ∇2 Xh +

n∑
i=1

Ah,i Xi +
n∑

i=1

n∑
j =1

Ah,i j Xi X j +
n∑

i=1

n∑
j =1

n∑
k=1

Ah,i jk Xi X j Xk + . . . (4.24)
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where Xh = Xh(�x, t) is the spatially varying concentration of one chemical spe-
cies such that Xh = 0 in the uniform stationary state. The tensors Ah,i , Ah,i j and
Ah,i jk define the parameters for the component h and are symmetric with respect
to permutations of the indices. In a discrete system we can write the concentration
field as

Xh(�x, t) =
∑
l∈L

X̃h
l (t)ei �kl ·�x, (4.25)

where L is the set of all lattice points. From now on we write species indices
(e.g. h) as superscripts and lattice point indices (e.g. l ) as subscripts. Substituting
Eq. (4.25) into Eq. (4.24) yields

d Xh
l

dt
= −Dh|�kl |2 Xh

l + Ah,i Xi
l + Ah,i j

∑
l1+l2=l

Xi
l1

X j
l2

+ Ah,i jk
∑

l1+l2+l3=l

Xi
l1

X j
l2

Xk
l3
,

(4.26)
where we have used the Einstein summation convention for the indices i , j and
k, and included only the terms up to cubic order. The linear part the previous
equation defines the unstable modes (see Sec. 4.2) and the linear matrix can be
written in the form

Jh,i
l = −Dhk2

l δ
h,i + Ah,i , (4.27)

where it is assumed that there is no cross-diffusion (δh,i = 1 only when h = i ).
For each lattice point we may now choose a matrix

Sl =



α11
l . . . α1n

l
...

. . .
...

αn1
l . . . αnn

l


 , (4.28)

with det(Sl ) = 1. In addition, we require that it has an inverse matrix S−1
l = {β i j

l }
such that

S−1
l Jl Sl =




λ1
l

. . .

λn
l


 . (4.29)

The conditions for this similarity transformation are widely known (Kreyszig,
1993). Now we can map the original concentrations to a new basis defined by
Xl = Sl Wl . In this new basis Eq. (4.26) reads as

dWg
l

dt
= λ

g
l Wg

l + β
gh
l Ah,i j

∑
l1+l2=l

αi i ′
l1

Wi ′
l1
α

j j ′
l2

W j ′
l2

+

β
gh
l Ah,i jk

∑
l1+l2+l3=l

αi i ′
l1

Wi ′
l1
α

j j ′
l2

W j ′
l2

αkk′
l3

Wk′
l3

, (4.30)

where the coefficient of the linear term is defined by Eq. (4.19). The center mani-
fold and coefficients of the amplitude equations can be found at the onset (a = ac)
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by noticing that the contributions to the modes on the stable manifold come from
nonlinear coupling of the unstable modes. By using this condition one can derive
the amplitude equations for the modes on the center manifold (see Callahan and
Knobloch (1999) for details). Further simplification of Eq. (4.30) for a critical
wave vector m at the onset (λg

l = 0) yields

dW1
m

dt
= β1h Ah,i j αi 1α j 1

∑
m1+m2=m

W1
m1

W1
m2

+
∑

m1+m2+m3=m

F(m2 + m3)W
1
m1

W1
m2

W1
m3

, (4.31)

where

F(l ) ≡ −2 β1h Ah,i j αi 1(J−1
l ) ja Aa,bcαb1αc1 + β1h Ah,i jkαi 1α j 1αk1. (4.32)

One should notice that the coefficient F(l ) depends on the argument l only through
the square of its length (see Eq. 4.27)). Thus the previous treatment is general and
not specific to any particular symmetry. For the calculation of the coefficients
of the amplitude equations (e.g. Eq. (4.20)) using the center manifold reduction,
we follow a computational procedure that has been used earlier by Callahan and
Knobloch (1999). The derivation of the coefficients is based on finding the num-
ber and type of resonant modes that contribute to the amplitude of a particular
mode as shown in Eq. (4.31). Because of symmetry, the coefficients of all the
amplitude equations (all j ) in a particular amplitude system (cf. Eq. (4.20)) are
the same. The coefficients for the two-dimensional hexagonal lattice and three-
dimensional SC-, FCC-, and BCC-lattices are derived in the Appendix A.1.

4.3.3 Stability analysis of amplitude equation systems

After we have obtained the system of coupled amplitude equations written with
respect to the parameters of the original reaction-diffusion equations, we may em-
ploy linear analysis to study its stability around the stationary states corresponding
to different symmetries. First one has to determine the stationary states Wc of the
amplitude system and then one can linearize the system (as in Eq. (3.5)) and con-
struct the corresponding Jacobian matrix A with the elements defined as

{A}i j =
∣∣∣∣ d fi
d|Wj |

∣∣∣∣
(Wc

1 ,Wc
2 ,Wc

3 )

, (4.33)

where fi denotes the right-hand side of the corresponding amplitude equation i
and the derivative is evaluated at the stationary state Wc = (Wc

1 , Wc
2 , Wc

3 ). Based
on this one can plot the bifurcation diagram, i.e., the eigenvalues of the linear-
ized system dW/dt = AW as a function of the parameter C of the BVAM model
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(Eq. (4.10)), which contributes to the morphology selection in the BVAM model.
In the following, we will present the bifurcation diagrams and the results con-
cerning the stability of different symmetries for the two-dimensional hexagonal
lattices and three-dimensional SC-, FCC-, and BCC-lattices. Most of the details
are left to Appendix A.2.

Two-dimensional hexagonal lattice

In the case of two-dimensional patterns we are interested in the stability of stripes
(Wc = (Wc

1 , 0, 0)T ), rhombic patterns (Wc = (Wc
1 , Wc

2 , 0)T ) with Wc
1 = Wc

2 ),
and hexagonally arranged spots (Wc = (Wc

1 , Wc
2 , Wc

3 )T with Wc
1 = Wc

2 = Wc
3

or Wc
1 = Wc

2 �= Wc
3 ). The system of amplitude equations for a two-dimensional

hexagonal lattice can be written based on Eq. (4.20).
By carrying out the linearization of the complete amplitude system around the

stationary states corresponding to different symmetries one can study the stability
of patterns by calculating the eigenvalues of the linear system (see Appendix A.2
for details). For stripes the eigenvalues of the linearized matrix are given by µs

1 =
−2λc, µs

2 = −�
√

λc/g + λc(1 − κ) and µs
3 = �

√
λc/g + λc(1 − κ). Noticing

that µs
1 < 0 and µs

3 > µ2 follows that the stability of stripes is determined solely
by the sign of µs

3. The stripes are unstable for µs
3 > 0 and stable for µs

3 < 0. The
rhombic patterns and mixed modes are always unstable.

In the case of the hexagonally arranged spots the eigenvalues of the system
are given as µh

1,2 = λc − |Wc±|(� + 3g|Wc±|) and µh
3 = λc + |Wc±|(2� − 3g(2κ +

1)|Wc±|), where |Wc±| is defined by Eq. (A.15). Since there are two stationary
states corresponding to the hexagonal symmetry one must analyze the stability
of them both. For stability all the eigenvalues must be negative, i.e., µh

1,2 <

0 and µh
3 < 0. After writing the eigenvalues in terms of the original parameters

of the BVAM model by using Eqs. (4.19), (A.1), (A.2), (A.3) one can plot the
eigenvalues as a function of the nonlinear coefficient C, which is known to adjust
the competition between stripes and spots (Barrio et al., 1999). The result is shown
in Fig. 4.3.3, from where one can determine the parameter regimes for which a
given pattern is stable, i.e., µ(C) < 0.

Fig. 4.3.3 implies that the hexagonal branch corresponding to W+
c is always

unstable. Thus there is only one isotropic hexagonal solution to the equations
that is stable within certain parameter regime. While using the parameters of
mode kc = 0.85 (see Sec. 3.1.1) the analysis predicts that stripes are stable for
C < 0.161. On the other hand, the other hexagonal branch is predicted to be
stable for 0.084 < C < 0.611. The most important information obtained from
Fig. 4.3.3 is the region of bistability, which is predicted to be between 0.084 <

C < 0.161. For the parameters of the mode kc = 0.45 the stripes are predicted
to be stable for C < 0.139 and the hexagons for 0.073 < C < 0.529. This
yields the bistable regime 0.073 < C < 0.139. Since the bifurcation analysis
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Figure 4.6: The real part of the eigenvalues µ(C) of the linearized amplitude system
of the two-dimensional hexagonal symmetry as a function of the parameter C for the
parameters corresponding to the wave mode kc = 0.85. Eigenvalue µs

3 determines the
stability of the stripes, µh+

1,2 and µh+
3 determine the stability of one hexagonal branch, and

µh−
1,2 and µh−

3 determine the stability of the other hexagonal branch. The morphology is
stable if the corresponding µ(C) < 0.

is based on weakly nonlinear approximation of the dynamics, it can be expected
that it fails, when a strong nonlinear action is present. For example, based on the
result of the numerical simulation presented in the next chapter one notices that
the hexagonal spot pattern exists for C = 1.57. However, the bifurcation analysis
predicts that hexagons are unstable for all C > 0.611. This discrepancy is due to
the approximations made in the bifurcation analysis, the predictions of which are
more precise for weak nonlinearities.

Three-dimensional SC-lattice

In the case of three-dimensional simple cubic lattice there are three possibilit-
ies for the structure. One may get planar structures (Wc = (Wc

1 , 0, 0)T ), cyl-
indrical structures (Wc = (Wc

1 , Wc
2 , 0)T ) or spherical droplet structures (Wc =

(Wc
1 , Wc

2 , Wc
3 )T ). The amplitude equations of the three-dimensional SC-lattice

are defined by Eq. (4.21).
The linearization of the amplitude equation system corresponding to the SC-

lattice is explained in detail in the Appendix A.2. For the planar lamellae the
eigenvalues of the linearized matrix are given by µLam

1 = −2λc and µLam
2,3 =
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Figure 4.7: The real part of the eigenvalues µ(C) of the linearized amplitude system of
the three-dimensional SC-lattice as a function of the parameter C for the parameters cor-
responding to the wave mode kc = 0.85. Eigenvalue µLam determines the stability of the
planar lamellae, µCyl determines the stability of cylindrical structures, and µSc determ-
ines the stability of the spherical droplets organized in a SC-lattice. The morphology is
stable if µ(C) < 0.

λc(1 − κ). Noticing that µLam
1 < 0 follows that the stability of the planar struc-

tures is determined by µLam
2,3 . By repeating the same treatment for the cylindrical

structures we find that the real part of the dominant eigenvalue is µ
Cyl
2,3 = λc −

3g|Wc|2. For the SC-droplets the stability determining eigenvalue is given by
µSc

2,3 = λc − 3g|Wc|2. The real parts of the eigenvalues are presented in Fig. 4.3.3.

Based on Fig. 4.3.3 it can be reasoned that the bifurcation analysis does not
predict a bistability between planes and spherical shapes in three dimensions, but
the stability of those structures is exclusive for kc = 0.85. The planes are predicted
to be stable for C < 0.361 and the spherical shapes stable for 0.361 < C <

0.589. The square packed cylinders, however, are predicted to be stable for all
C < 0.650. For kc = 0.45 the planar lamellae is stable for C < 0.241, the
spherical droplets for 0.241 < C < 0.375, and the cylinders for all C < 0.402.
It should again be noticed that the bifurcation analysis fails for strong nonlinear
interaction, i.e., high values of parameter C.
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Figure 4.8: The real part of the eigenvalues µ(C) of the linearized amplitude system of
the three-dimensional FCC-lattice as a function of the parameter C for the parameters
corresponding to the wave mode kc = 0.85. Eigenvalue µLam determines the stability of
the planar lamellae and µFcc determines the stability of the spherical droplets organized
in a FCC-lattice. The morphology is stable if µ(C) < 0.

Three-dimensional FCC-lattice

In the case of three-dimensional FCC-lattice there are numerous possibilities for
the structure (Callahan and Knobloch, 1999). Here we analyze only the stability
of lamellar structures (Wc = (Wc

1 , 0, 0, 0)T ) and spherical droplets organized in a
FCC-lattice (Wc = (Wc

1 , Wc
2 , Wc

3 , Wc
4 )T ). The amplitude equations of the three-

dimensional FCC-lattice are defined by Eq. (4.22).
For the planar lamellae the eigenvalues the linearized matrix (Appendix A.2)

are given by µLam
1 = −2λc and µLam

2,3,4 = λc(1 − κ). Noticing that µLam
1 < 0

follows that the stability of the planar structures is again determined by µLam
2,3,4.

For the FCC-droplets, on the other hand, the stability determining eigenvalue is
given by µSc

2,3,4 = λc − 3(� + g(K + 3))W2
c . The real parts of these eigenvalues

are presented in Fig. 4.3.3 as a function of C.
From Fig. 4.3.3 one can see that there is a bistability between planes and

FCC-droplet structures for 0.181 < C < 0.204 with kc = 0.85. The planes
are predicted to be stable for C < 0.204 and the spherical shapes stable for
0.181 < C < 0.255. Again it can be observed that the bifurcation analysis
fails already at a reasonable low nonlinear interaction predicting that the spherical
structures become unstable at C = 0.255. On the other hand, for the parameters
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of the wave mode kc = 0.45, the planes are stable for C < 0.133 and the FCC-
droplets for 0.118 < C < 0.164 yielding in a bistability for 0.118 < C < 0.133.
Most probably, there is a multistability of various FCC-symmetries. The stability
of the other possible structures in FCC-lattice has been studied by Callahan and
Knobloch (1999).

Three-dimensional BCC-lattice

As in a three-dimensional FCC-lattice, also in BCC-lattice there are numerous
possibilities for the structure (Callahan and Knobloch, 1999). Here we analyze
only the stability of lamellar structures (Wc = (Wc

1 , 0, 0, 0, 0, 0)T ) and spherical
droplets organized in a FCC-lattice (Wc = (Wc

1 , Wc
2 , Wc

3 , Wc
4 , Wc

5 , Wc
6 )T ). The

amplitude equations of a three-dimensional BCC-lattice are defined by Eq. (4.23).
For the planar lamellae the eigenvalues of the linearized matrix (see Appendix

A.2 for details) are given by µLam
1 = −2λc, µLam

2,3,5,6 = λc(1 − κ), and µLam
4 =

λc(1−χ). Noticing that µLam
1 < 0 follows that the stability of the planar structures

is determined by the greater eigenvalue from µLam
2,3,5,6 and µLam

4 . For the FCC-
droplets, on the other hand, the stability determining eigenvalue cannot be solved
in closed form, but only numerically due to the complexity of the stability matrix.
The real parts of these eigenvalues are presented in Fig. 4.3.3 as a function of C.

From Fig. 4.3.3 one can see that there is a bistability between planes and BCC-
droplet structures for 0.264 < C < 0.355 for kc = 0.85. The planes are predicted
to be stable for C < 0.355 and the spherical shapes stable for 0.264 < C < 0.450.
Again it can be observed that the bifurcation analysis fails already at a reasonable
low nonlinear interaction predicting that the spherical structures become unstable
at C = 0.450. The analysis of FCC-symmetries required further approximations
due to the discontinuity of F(l ) (Eq. 4.32) at the onset (l = 1) to obtain the
center manifold dynamics (see (Callahan and Knobloch, 1999)) and our ad hoc
approximation failed in the case of kc = 0.45. The stability of structures other
than planes or droplets in the BCC-lattice remains to be studied in the context of
the BVAM model.

4.4 Summary

In this chapter it was shown how the BVAM model can be derived and studied
from basic principles. Based on the mathematical analysis one can select para-
meters for the numerical simulations and obtain predictions for the results numer-
ical simulations (see Chapter 5). In this way the mathematical analysis provides
some additional confirmation to the results of the numerical simulations. Based
on the analysis of the linearized system one could predict the parameters corres-
ponding to an onset of Turing instability and determine the characteristic length of
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Figure 4.9: The real part of the eigenvalues µ(C) of the linearized amplitude system of
the three-dimensional BCC-lattice as a function of the parameter C for the parameters
corresponding to the wave mode kc = 0.85. Eigenvalue µLam determines the stability of
the planar lamellae and µBcc determines the stability of the spherical droplets organized
in a BCC-lattice. The morphology is stable if µ(C) < 0.

the resulting concentration patterns by finding the unstable wave modes. In order
to understand the pattern selection in the system one had to carry out a mathemat-
ically demanding nonlinear bifurcation analysis. The bifurcation analysis enabled
the study of the full system dynamics by studying only the reduced dynamics at
the center manifold described by the amplitude equations. As a result the bifurca-
tion analysis gave the parameter regimes that correspond to particular symmetries
in two- and three-dimensional systems.



Chapter 5

Numerical studies of
Barrio-Varea-Aragon-Maini
model

In general, reaction-diffusion equations describe the time evolution of the spatial
distribution of chemical concentrations. The non-uniform stationary states of a
model that corresponds to spatial patterns cannot be found analytically, but iterat-
ive computer simulations are required. If the model parameters are chosen appro-
priately the computer simulations give rise to beautiful two-dimensional patterns
and three-dimensional structures. The analytical studies presented in the previous
chapter confirm the results of the numerical simulations. The characteristic length
of the patterns is predicted by linear analysis, and based on bifurcation analysis
one knows, which structures could appear while using a certain parameter set.
The analytical methods are not sufficient to fully understand the system, which is
a reason for using computer simulations.

This chapter begins with an introduction to the computational method, which
is followed by the results of the numerical simulations using the BVAM model
introduced and analyzed in the previous chapter. First, I will present typical res-
ults of simulations carried out in two- and three-dimensional domains and study
the effect of parameters and initial conditions on the resulting patterns. Then I
will present results concerning the robustness of Turing patterns against Gaussian
noise. After that we will discuss morphological transitions due to changing para-
meters, and pattern selection in a bistable system, in which both striped and spotty
patterns are possible states. Then I will present results showing morphological
changes while moving continuously from a quasi-two-dimensional system to a
three-dimensional system in BVAM and Lengyel-Epstein models. This chapter is
concluded with some results of complex spatio-temporal dynamics in the BVAM
model.
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5.1 Methods

To solve differential equations by computer one has to discretize the space and
time of the problem, i.e., to transform it from an infinite dimensional (continuous)
to a finite dimensional (discrete) form. In practice the continuous problem defined
by the reaction-diffusion system is solved in a discrete domain with M × N lattice
sites (in 2D). When the problem is solved in three dimensions, the size of the fixed
domain is M × N × P grid points. For simplicity, the equations are usually solved
in a square or cubic mesh, but one can use also, e.g., triangular mesh. The spacing
between the lattice points is defined by the lattice constant dx. In the discrete
system the Laplacian describing diffusion is calculated using finite differences,
i.e., the derivatives are approximated by differences over dx. For dx → 0 the
differences approach the derivatives. The time evolution is also discrete, i.e., the
time goes in steps of dt. The time evolution can be solved for example by using
the so-called Euler method (Press et al., 1995), which means approximating the
value of the concentration at the next time step based on the change rate (slope)
of the concentration at the previous time step.

Details of the discretization and stability analysis of the numerical scheme
are presented in appendix A.3. By employing the von Neumann stability ana-
lysis (Press et al., 1995) we found the discretization values dx = 1 and dt = 0.05
suitable for the BVAM model (see appendix A.3). In these types of problems the
finite difference scheme and Euler method (Harris and Stocker, 1998) are often
employed (Karttunen et al., 1998; Barrio et al., 1999; Dolnik et al., 2001a). It is
possible, and sometimes even desirable, to use the Euler method since it is fast
and stable under appropriate conditions, which can be checked by simple linear
stability analysis. The Euler scheme has been shown to be stable for the BVAM
model even in a radial disc domain, where step control was needed (Aragon et al.,
2002). The resolution of the spatial discretization does not affect the pattern selec-
tion provided that the characteristic wave length of the pattern is a multiple times
the lattice constant (dx). We have performed extensive simulations for system
sizes up to 5 × 105 lattice cells and let the system to evolve up to 2 × 106 time
steps in order to reach a stationary state.

5.2 General results1

In numerical simulations Turing systems are often solved in a two-dimensional
square domain of fixed size, but also the effect of domain symmetry (Barrio et al.,
2002) and growing domains have been studied (Madzvamuse et al., 2003). We
have extended the study of Turing pattern formation to three-dimensional sys-

1The work presented in this section has been published in Leppänen et al. (2002) and Leppänen
et al. (2004a).
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tems. The initial concentration distribution corresponds to random perturbations
around the trivial stationary state ((u0, v0) = (0, 0) in the BVAM model) with a
variance significantly lower than the amplitude of the final patterns. The bound-
ary conditions can be chosen to be either periodic or zero-flux. If not otherwise
stated, we have used periodic boundary conditions. The parameters were chosen
based on the mathematical analysis carried out in the previous chapter.

5.2.1 Simulations in two dimensions

The most often observed patterns in two-dimensional Turing systems include par-
allel stripes and hexagonally arranged spotty patterns as discussed in the previous
chapter. While selecting parameters for the simulation, one must first determine
the linearly most unstable mode by fixing the coefficients of the linear terms in
the model. In the previous chapter we found two parameter sets that correspond
to the most unstable wave numbers, kc = 0.45 and kc = 0.85. The higher the
wave number, the shorter the characteristic length λc = 2π/kc of the pattern. On
the other hand, the nonlinear parameter C adjusts morphology selection. In the
previous chapter we found out that small values of C result in stripes, whereas
with C > 0.084 one may obtain spots.

Figure 5.1 shows results from a numerical simulation in a two-dimensional
128 × 128 domain. The spotty pattern was obtained by using kc = 0.45 and
C = 1.57. The striped pattern, on the other hand, corresponds to kc = 0.84 and
C = 0. Based on these results we can also notice the failure of the weakly non-
linear approximation, which predicted none of the patterns to be stable for high
nonlinearities (C > 0.611). Both systems were simulated for 1 000 000 iterations
starting from an initial state with Gaussian perturbations with zero-mean and a
variance of 0.01. From Fig. 5.1 one can easily notice that the characteristic length
of the spotty pattern (λc = 14.0, about 9 spots fit to the box with side length 128)
is approximately twice the characteristic length of the striped pattern (λc = 7.4,
about 17 stripes).

The final Turing patterns are stationary, i.e., they do not change as a function
of time. In the presence of a Turing instability the chemical evolution approaches
the final stationary state asymptotically, which is why one observes imperfections
in the patterns obtained from numerical simulations. Concerning the patterns in
Fig. 5.1, the stripes would most probably become straight and arrange in paral-
lel if one continued the simulation indefinitely long. In the hexagonal lattice of
spots the imperfections manifest in the form of topological defects or disloca-
tions (Karttunen et al., 1999). Since one cannot simulate indefinitely, one can, for
example, measure the change in the concentration at a particular site and stop the
simulation as the time derivative of the concentration becomes sufficiently small.

Figure 5.2 shows how a two-dimensional pattern changes as the nonlinear
parameter is gradually changed. One should notice that there is a very narrow
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Figure 5.1: The stationary concentration patterns obtained in simulations of a two-
dimensional system of size 128 × 128. The patterns arise due to instability of inhomo-
geneous infitesimal perturbations around the stationary state during the evolution lasting
up to 1 000 000 iteration steps.

parameter regime, where the pattern changes from predominantly spotty to pre-
dominantly striped. The bottom row of Fig. 5.2 shows the diffraction patterns or
structure factors defined with help of the Fourier transforms of the concentration
field w given by

S(�k) =
∫ ∞

0
(w(�x) − w)ei �k·�r d�r , (5.1)

where w is the average concentration of the stationary distribution w obtained
from the computer simulation. The diffraction patterns shown in Fig. 5.2 describe
the magnitude |S(�k)|2 of the unstable wave vectors with respect to their orientation
(see also Sec. 5.3). The morphological transitions taking place in the bistable
region are discussed in more length in Sec. 5.4.

5.2.2 Simulations in three dimensions

In three dimensions there are more possible morphologies. Previously three-
dimensional Turing structures have been studied by initializing an appropriate
symmetry to the system to guide the chemical mechanism (De Wit et al., 1992,
1997), whereas we study spontaneous formations of structures from random ini-
tial configurations. From the structures visualized in Fig. 5.3 it is clear that the
competition between the modes in the three-dimensional Turing system can lead
to very interesting morphologies, when starting from an random initial state. The
structures on to the top row of Fig. 5.3 were obtained by using the parameters
corresponding to stripes in two dimensions (C = 0), whereas the structures on



5.2 General results 71

k

k

y

x

A B C D

Figure 5.2: Transition from spots to stripes in the real space (top row) and the corres-
ponding diffraction patterns in wave vector (kx, ky)-space (bottom row). The patterns
have been obtained from random initial conditions after 500 000 iterations in a 200 × 200
system with kc = 0.45. The nonlinear parameter was from left to right C = 0.289,
C = 0.131, C = 0.127 and C = 0. In the real space black corresponds to areas
dominated by chemical U and the lighter color by chemical V . In the reciprocal space
(kx, ky) = (0, 0) is in the middle of the diffraction pattern.

the bottom row correspond two-dimensional spotty patterns (C = 1.57). The
columns in Fig. 5.3 correspond to the most unstable mode, which is kc = 0.45 on
the left column and kc = 0.85 for the right column.

The straightforward extension of two-dimensional stripes in three dimensions
would be lamellar planes with periodicity to only one direction. The results in
Fig. 5.3a-b, however, do not show this kind of ordering, but instead one observes
complex aligned lamellae, which is characterized to have both positive and neg-
ative local principal curvature. One can think of it as a superposition of plane
waves, i.e., aligned planes crossing each other forming a continuous minimal sur-
face. The system dynamics is unable to organize the three-dimensional structure
into a more regular shape due to increased degeneracy of the three-dimensional
system (see Sec. 3.1.3). In the case of enhanced quadratic nonlinear interaction
(Fig. 5.3c-d) one obtains three-dimensional spherical droplets as one would ex-
pect, but their packing is not SC, BCC or FCC.

In two dimensions it seems that all the patterns combining stripes and spots
(see Fig. 5.2) are transient, i.e., only one symmetry will eventually dominate in a
system as the simulation is continued long enough. In three dimensions it does not
seem to be so. Fig. 5.4 shows a structure that was obtained after 2 000 000 time
steps. The unstable wave mode corresponds to the structures in Fig. 5.3a and c
(k = 0.45). The control parameter C is, however, between those resulting in pure
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Figure 5.3: The stationary concentration structures obtained in simulations of a three-
dimensional system of size 50 × 50 × 50. The patterns arise due to instability of inhomo-
geneous infitesimal perturbations around the stationary state during the evolution lasting
up to 500 000 iteration steps. The parameters were a) C = 0, kc = 0.45, b) C = 0,
kc = 0.85, c) C = 1.57, kc = 0.45, d) C = 1.57, kc = 0.85.

lamellae or pure droplets (C = 0.119) and one can easily notice that the resulting
structure is different from any of the structures presented in Fig. 5.3.

If one uses spatially inhomogeneous initial conditions favoring particular struc-
ture, the system dynamics may be confined to only a small part of the phase space
and one can obtain the chemical concentration patterns that one would expect to
be optimal. For example, by introducing the chemical U only to the mid-plane
and V everywhere as random perturbations one obtains lamellar planes that are
aligned according to the symmetry imposed by the initial condition (see Fig. 5.5).
By introducing an initial concentration distribution close to hexagonally packed
cylinders, one obtains the HPC structure as shown in Fig. 5.5. Similarly, a BCC
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Figure 5.4: The concentration surface obtained in simulations of a three-dimensional
system of size 50×50×50 with the control parameter between those resulting in lamellae
and droplets (C = 0.119). One can see that both the linear and radial characteristics are
combined in the final structure.

Figure 5.5: Starting from non-random initial conditions simulations of a three-
dimensional system (50 × 50 × 50) may result in planar lamellae (kc = 0.84, C = 0),
hexagonally packed cylinders (kc = 0.84, C = 0.754) or BCC droplets (kc = 0.45,
C = 1.57) after 400 000 iterations.

symmetry in the initial conditions results in a droplet structure with BCC sym-
metry. These structures resemble those that have been predicted and simulated in
diblock copolymer melts (Matsen and Bates, 1996; Groot et al., 1999) and also
those obtained by De Wit et al. (1992) using the Brusselator model.

The pattern selection can be understood by considering the phase space of the
system. The dynamics and evolution of a particular morphology is governed by
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the parameters of the model. For dominating cubic nonlinearities (low C) the sys-
tem favors linear symmetry (planes), whereas dominating quadratic nonlinearity
(high C) should result in radial symmetry (droplets). There are numerous possible
three-dimensional structures that satisfy the symmetry requirements imposed by
the nonlinearities. The planar lamellae correspond to the case, where there is
only one growing (unstable) wave vector �kc = (kc, 0, 0) and no degeneracy. This
situation can be made more likely by using initial conditions that have this sym-
metry instead of random initial configuration, which does not favor any symmetry
and enables all possible superpositions of plane waves such that |�kc| = kc. The
closer the initial structure is to a state that satisfies the symmetry requirements, the
smaller is the phase space that the system explores. It should be noticed that the
system may find states shown in Fig. 5.5 also from random initial configuration.
The probability of this happening, however, is very small. Nevertheless, we have
observed the formation of the HPC structure from a random initial configuration
in our computer simulations.

The complex three-dimensional lamellar surfaces generated by the Turing
mechanism (see top row of Fig. 5.3) are interesting, since their existence is dif-
ficult to study analytically and the grounds of the state selection are not known.
Most probably the system is trying to form some kind of minimal surface with re-
spect to curvature. Numerous surfaces of this kind have been observed and char-
acterized for example in the context of amphiphilic systems and block co-polymer
melts (Matsen and Bates, 1996). Ball (2001) offers very clear illustrations of the
so-called D-, G-, and P-surfaces.

There is an optimal minimal surface for connecting perpendicular planes such
that the local principal curvatures (c1 and c2) have opposite signs yielding zero
local mean curvature (H = (c1 + c2)/2 = 0). This surface is called a Scherk
surface, which is a well-known minimal surface solution for twisted lamellar sur-
faces (Thomas et al., 1988). A stable Scherk surface has previously been observed
in the case of the Brusselator model by initializing the minimal surface into the
system (De Wit et al., 1997). In Fig. 5.6 we show the final structure obtained in
a simulation by initializing the chemicals into two perpendicular planar domains.
It is more favorable for the system to connect the perpendicular domains with a
minimal surface than to align one half of the system to match with the orientation
of the other. Based on the close-up of one of the connections we notice that also
spontaneous formation of the Scherk surface is possible in the BVAM model.

5.3 Effect of noise2

The stability and robustness of Turing patterns can be studied by randomly
varying the chemical concentration in the system. If one thinks of the possible

2The work presented in this section has been published in Leppänen et al. (2003a).
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Figure 5.6: A minimal isoconcentration surface connects two crosswise planar structures
in a three-dimensional 50 × 50 × 50 system with kc = 0.84 and C = 0. The close-up
reveals the morphology of the Scherk surface.

biological applications of Turing systems, the robustness of patterns and structures
is of great importance. Morphogenesis must be stable against random excitations
to some extent and thus the mathematical models describing it must possess the
same property. We will study the effect of Gaussian noise in the BVAM model
and present results for both two- and three-dimensional systems.

Previously, the Brandeis group has extensively studied the effects of periodic
forcing to Turing pattern formation experimentally in the photosensitive CDIMA
reaction (see Sec. 3.3) (Horváth et al., 1999; Dolnik et al., 2001b,a; Berenstein
et al., 2003). The robustness of the Turing mechanism has also been studied by
introducing spatially inhomogeneous or defective reaction-diffusion mechanism
(Bose and Chaudhuri, 1997). In addition, Sanz-Anchelergues et al. (2001) have
shown both experimentally and numerically that Turing structures may still appear
under spatially correlated external forcing provided that the correlation length of
the forcing is not too small. This would imply that Turing structures possess some
kind of error-correcting property.

In order to study the effect of noise we introduce a Gaussian noise source
ξ = ξ(�x, t) such that

ut = D∇2u + f (u, v) + ξu

vt = ∇2v + g(u, v) + ξv, (5.2)
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where the first and second moments of ξ are defined as

〈ξ(�x, t)〉 = 0

〈ξ(�x, t)ξ(�x′, t ′)〉 = A2δ(�x − �x′)δ(t − t ′). (5.3)

The angular brackets denote an average and A is the intensity of the noise. Noise
is added at every time step to each lattice site of the system. Because of the
discretization, the noise has to be normalized such that

ξ = A(dx)d/2/
√

dt, (5.4)

where d is the dimension of the system, dx the lattice constant and dt the time
step. As discussed in Sec. 5.1, we have used the values dx = 1 and dt = 0.05 in
the simulations. We used periodic boundary conditions and initially both chemic-
als were introduced randomly over the whole system.

Figure 5.7 shows a two-dimensional spotted pattern under noise for four dif-
ferent intensities with system parameters kc = 0.45 and C = 1.57. Here we
have used spots in a two-dimensional square lattice as a special initial condition
to create a metastable state in the system. The pattern shown in top-left corner
of Figure 5.7 is in accord with system dynamics, but it is not the optimal state
for spotty structures. If no noise is applied, the initial condition will persist and
the system will remain indefinitely long in this metastable state. On the other
hand, if any non-zero amount of noise is applied, a change from the simple square
symmetry to a hexagonally symmetric lattice is observed (top row of Fig. 5.7),
which is the optimal structure for two-dimensional spots. As the noise amplitude
is further increased (bottom row of Fig. 5.7) to about 20% of the amplitude of
the concentration wave, the spots still persist and the interfaces are clearly visible
although they are noisy and not round.

In materials science the structure factor is commonly used to describe the
structural properties of a material (see e.g. (Ashcroft and Mermin, 1976)). Ac-
cording to Braggs’ idea of constructive and destructive interference of scattered
X-rays, characteristics of the structure can be concluded based on the distribu-
tion of scattered X-rays. For an atomistic system the structure factor is defined
by the Fourier transform of the pair correlation function. In the context of Tur-
ing systems we do not have atoms but a uniform scalar field defined over the
domain. In this case, the static structure factor is just a straightforward Fourier
transform of the stationary concentration field (see Eq. (5.1)). Often one is inter-
ested in the magnitude of the structure factor, i.e., the power spectrum defined as
S(�k, t)S∗(�k, t) = |S(�k, t)|2. The power spectrum is typically not examined with
respect to the wave vector �k, but wave number k, which gives the characteristic
length of the pattern.

Figure 5.8 shows the power spectrum |S(k)|2 for three different noise intens-
ities in the case of spots. The solid line represents the case of a hexagonal lattice
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Figure 5.7: Two-dimensional spotty pattern in a 128 × 128 system. The amplitude of the
noise A was A) 0, B) 0.01, C) 1.0 and D) 2.0, corresponding to 0 − 20% of the amplitude
of the modulated concentration wave.

without noise. There are two peaks, the higher one corresponding to the separ-
ation between spots and the lower one to their diameter. As the intensity of the
noise is increased, the lower peak is not present anymore since the spots are no
longer spherical (bottom right corner of Fig. 5.7). For very high noise intensity
the spectrum becomes uniform for k < kc = 0.45.

The three-dimensional droplet structures corresponding to the parameters of
two-dimensional spotty patterns proved to be extremely robust against noise. Fig-
ure 5.9 shows a droplet structure without noise and in the presence of noise with
intensity of 30%. The domains between the spheres become noisy and interfaces
deformed. However, even when the relative noise intensity exceeds 50% one can
still locate the domain boundaries. By comparing Figs. 5.8 and 5.10 one can see
that the three-dimensional structures are more robust against additive Gaussian
noise than the two-dimensional patterns. The characteristic length is present in
the power spectrum of the three-dimensional system (Fig. 5.10) for much higher
noise intensities, although the peak is very broad due imperfections in the struc-
ture (the distances between the droplets are not constant) and finite-size effects.
The peak near zero in Fig. 5.10 describes system-sized correlations in the noisy
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Figure 5.8: The power spectrums for three different noise intensities in two-dimensional,
A = 0 (solid), A = 2 (dotted) and A = 4 (dashed line). The pattern (kc = 0.45) fades
into noise.

system.
When the quadratic interaction favoring spots is dominant (large C) the amp-

litude is always almost two decades larger in comparison to the case when the cu-
bic interaction favoring stripes prevails (small C), i.e., the spotty pattern sustains
over 100 times higher noise intensity as compared to the stripes or lamellae. We
have also studied the effect of noise to stripes in two dimensions and planar lamel-
lae in three dimensions. Figure 5.11 shows the expected results of the melting of
a two-dimensional striped pattern as the amplitude of the noise is increased. The
use of the conditions for the three-dimensional planar structure (see Sec. 5.2.2)
results in perforated lamellae in the presence of noise as shown in Fig. 5.12.

The studies showed that Turing patterns are robust irrespective of the dimen-
sionality of the system. The three-dimensional structures remain more ordered
under intensive noise than two-dimensional patterns. This is what one would
expect based on statistical mechanics, where the robustness of the system often
increases as the dimension increases. The fact that the patterns evolve and persist
under signal to noise ratio of 2 to 1 is remarkable. An additional effect of the noise
is that the simulation time for finding the final structure decreases exponentially as
a function of the noise amplitude even in the presence of very weak noise, because
the noise facilitates overcoming metastable states during the evolution. One can
decrease the simulation time to one fifth by applying a noise that does not affect
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Figure 5.9: Three-dimensional droplet structure in a 50×50×50 system. Left: No noise;
Right: A = 3 corresponding approximately to 30% of the amplitude of the modulated
concentration wave.
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Figure 5.10: The power spectrums corresponding to three-dimensional droplet structures
with noise amplitudes A = 0 (solid line), A = 6 (dotted) and A = 10 (dashed). The
pattern (kc = 0.45) is extremely robust.
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Figure 5.11: Two-dimensional striped pattern in a system of size 64×64 with parameters
kc = 0.45 and C = 0. The amplitude of the noise is A) A = 0, B) A = 0.02, C)
A = 0.04 and D) A = 0.06 corresponding approximately to 0 − 40% of the amplitude of
the modulated concentration wave.

Figure 5.12: Three-dimensional planar structure in a system of size 50 × 50 × 50 with
kc = 0.85 and C = 0. The structure on the left is without noise and the one on the
right with the noise amplitude A = 0.02, which corresponds approximately to 10% of the
amplitude of the modulated concentration wave.
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the morphology in any noticeable way. The method is very effective while applied
to numerical integration of reaction-diffusion equations (Press et al., 1995).

5.4 Morphological transitions and bistability3

The studies of Turing systems have typically concentrated on reaction kin-
etics and stability aspects (see e.g. Lengyel and Epstein (1992), Szili and Tóth
(1993), Rudovics et al. (1999) and Judd and Silber (2000)), while the issues of
pattern structure and connectivity have received less attention. In this section we
focus on the connectivity of Turing patterns and its dependence on the paramet-
ers of the system. We present a simple way to quantitatively characterize Turing
structures and their connectivity based on statistical analysis of the patterns ob-
tained from simulations. The connectivity of a pattern with given parameters
cannot be predicted analytically in the presence of bistability of both striped and
spotty patterns. We also study the “connectivity transition”, which occurs when
the parameters of the system are between those giving rise to either spots or stripes
in two dimensions (monostable regime) or lamellae and droplets in three dimen-
sions. We will first discuss the concept of connectivity in these systems and the
methods for characterizing the transition between different patterns and structures.
We then present results of our extensive numerical simulations and discuss their
importance.

The state selection is a fundamental problem in non-equilibrium physics and
appears in very different contexts ranging from driven superconductivity (Tarlie
and Elder, 1998) to chemical systems (Landauer, 1975; Nicolis and Prigogine,
1977). In this paper we address this problem in the context of reaction-diffusion
systems (Metens et al., 1997) and characterize the pattern selection in the pres-
ence of a bistability by analyzing the statistical properties of the resulting patterns
in systems with different sizes. The transition between monostable patterns can
occur only through a bistable regime, where the pattern selection will be shown
to be probabilistic. This non-equilibrium transition bears some resemblance to
a first order equilibrium phase transition: the system exhibits hysteresis. This
phenomenon has been addressed previously in the context of reaction-diffusion
systems. Hysteresis has been observed in experimental (Ouyang et al., 1992) as
well as numerical (Dufiet and Boissonade, 1992) studies of Turing systems, but
the transition mechanisms have not been studied in great detail.

In the numerical simulations of the BVAM model (Eq. (4.10)) one deals with
two concentration fields with characteristic wave lengths. In order to visualize
this, the concentration of only one of the chemicals is typically plotted with a
gray scale, since in these system the fields are in anti-phase, i. e., if there is a
large amount of chemical U in some sub-domain, the concentration of chemical

3The work presented in this section has been published in Leppänen et al. (2004b).
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V would be low there. These concentration fields vary continuously having dif-
fuse boundaries. Now, the connectivity of chemicals in the system can be studied
by defining sub-domains dominated by either chemical U or V , provided that the
amplitude of the pattern is large enough. If we define the boundary as the inter-
face between sub-domains dominated by different chemicals, we can easily locate
the boundaries, where the concentrations change rapidly, typically within one or
two lattice sites of the discretized system. Now, if two points belong to the same
domain, i. e., are not separated by a boundary, they are considered to be connec-
ted. This definition of the boundaries is only conceptual in the sense that in the
U -dominated domains the concentration of V does not have to be zero, only much
less than the concentration of U .

In Fig. 5.13 we show changes in a two-dimensional concentration field for
different values of the quadratic nonlinear coefficient C of the BVAM model.
The patterns in Fig. 5.13 are snapshots taken after 50 000 iterations in order to
make the transition more gradual and visible within a wider parameter range. This
causes the patterns not being perfectly symmetric and leads to distortions. If one
continued simulations for an indefinitely long time, Figs. 5.13A-E would most
likely evolve towards aligned stripes, whereas Figs. 5.13F-I would evolve towards
a hexagonal lattice of spots, i.e., the presented patterns are transient.

When the cubic term dominates (small C), the resulting stationary pattern is
striped with a small number of imperfections, see Fig. 5.13A. These imperfec-
tions can be considered as topological defects, or dislocations, which could serve
as nucleation sites for spots. More dislocations appear (see Figs 5.13B-C) when
the relative strength of the quadratic term is made larger. As the quadratic term
grows, more spots nucleate and they arrange themselves to hexagonal structure,
and at the same time getting rid of the remaining stripes (see Figs. 5.13F-H).
Similar nucleation processes have earlier been observed in numerical simulations
of a reaction-diffusion system generating dissipative quasi-particles (Liehr et al.,
2001). Finally, when the quadratic term is enhanced even further, only spots re-
main (Fig. 5.13I). As the present discussion concerning the nucleation of structure
is purely qualitative it should be mentioned that, e.g., Hagberg and Meron (1997)
have previously employed a more rigorous approach. They studied the dynam-
ics of curved fronts in bistable two-dimensional media using a set of kinematic
equations.

In this sequence of simulations the transition from stripes to spots was en-
forced by using a single control parameter C. Nevertheless, the transition from
striped to spotty pattern seems to occur quite abruptly with respect to C. Note
that the difference in parameters between the figures is not constant: From A to
I, C = 0.007, 0.091, 0.116, 0.124, 0.129, 0.135, 0.169, 0.258, 1.000. In this
context for kc = 0.45 the bistability is predicted to occur for 0.073 < C < 0.139,
as discussed in Sec. 4.3. This corresponds to Figs. 5.13B-F.

Now, let us discuss the patterns in Fig. 5.13 from the clustering point of view.
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Figure 5.13: Transition from stripes to spots. The patterns obtained after 50 000 iterations
in a 100×100 system with kc = 0.45. Black corresponds to areas dominated by chemical
U (zeros) and the lighter color chemical V (ones). C varies from 0.007 to 1.000 from A
to I)

Since the interfaces are sharp, the situation can be simplified without loss of gen-
erality by assigning zeros and ones to the whole lattice based on the chemical that
dominates a given domain. With this mapping we consider the number of clusters,
which is calculated using the well-known Hoshen-Kopelman algorithm (Hoshen
and Kopelman, 1976) as in typical percolation problems. In Fig. 5.13A one can
see that in the case of stripes the number of U - and V-dominated clusters is almost
the same, and both types are extended dominantly in one of the dimensions (both
chemicals have percolated). However, in the case of a spotty structure (Fig. 5.13I),
chemical U appears as separate round clusters or spots, whereas chemical V forms
one connected cluster (V has percolated). Between these two limiting cases there
is the transition region, depicted in Figs. 5.13D-F, where U -dominated clusters
appear as spots and stripes in the form of a “string-of-pearls”.

In order to compare the number of clusters N(C) for systems of different
size, we normalize it by dividing with Nd

c , where Nc = kcL/2π , L denotes the
linear system size (square or cube in 2D or 3D), and d the spatial dimension.
Nd

c is the maximum number of spherically symmetric clusters in a d-dimensional
system as if the clusters were uniformly distributed and the effect of boundaries
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was neglected. Due to the periodicity of the chemical structure, the number of
clusters in the d-dimensional system can be estimated to be Nd = (Nc + 1/2)d.
However, an additional correction is required to take into account the effect of
boundaries. Now, one can estimate the number of additional partial clusters due to
boundaries by approximating the length (area) of the boundary and the number of
clusters within this domain (d Nd−1). As a result we propose the scaling function
for the number of clusters to be

Fd(N(C), Nc) = N(C)

Nd
c

(
1 − d

Nc + 1
2

)
, (5.5)

where N(C) is the calculated number of clusters for control parameter C.
We studied the connectivity, or the number of clusters, in the patterns as

a function of the control parameter C, which adjusts the morphology selection
between stripes and spots. The first result is shown in Fig. 5.14, where we have
plotted the number of U clusters, calculated using the Hoshen-Kopelman algorithm
as a function of the nonlinear parameter C. Here we did not start from a random
initial configuration, but instead started from a pattern corresponding to some
value Ci , fixed Ci+1 = Ci + dC, and let the pattern stabilize for 250 000 itera-
tions. These three steps were carried out repeatedly. In this way we could change
the control parameter C in steps and observe hysteresis (the direction is shown by
the arrows in Fig. 5.14) characterized by the number of clusters. The bifurcation
analysis discussed before predicts bistability for 0.084 < C < 0.161. Numerical
results shown in Fig. 5.14 do not match precisely, because as the control para-
meter is changed during the simulation, the present symmetry tends to persist.
For longer stabilization times the hysteresis loop tends to become even wider,
i. e., the bistability region widens.

Hysteresis has recently been observed while studying the space-averaged dens-
ity of one substance in a one-dimensional reaction-diffusion system as a function
of a feeding parameter (Rakos et al., 2003). We observe similar behavior also
with respect to the amplitude of the concentration wave in the Turing system
as earlier (Ouyang et al., 1992; Dufiet and Boissonade, 1991). We suggest that
a transition exhibiting hysteresis can be further characterized by measuring the
number of clusters in the case of reaction-diffusion systems forming spatial pat-
terns. In addition to the hysteresis effect we have also observed a slowing down of
the dynamics while the parameter C approaches the parameter region correspond-
ing to morphological changes. For bistable C values the system requires more
simulation steps to achieve the final steady-state. The scaling law is not easy to
find since the transition point is not well-defined and the characteristic time is hard
to measure exactly. Critical slowing down has been studied earlier both numer-
ically (Reyes de Rueda et al., 1999) and experimentally (Ganapathisubramanian
and Showalter, 1983; Ouyang et al., 1992) in bistable chemical systems.
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Figure 5.14: The number of U clusters as a function of the nonlinear parameter C,
which was varied continuously throughout the sweep in a single simulation. The two-
dimensional 100×100 pattern was given 250 000 iterations for stabilization at each value
of C (kc = 0.86). The arrow heads describe the direction of the sweep implying hyster-
esis.

The competition between hexagonal spotty patterns and stripe patterns has
previously been addressed in the field of pattern formation both experimentally
(Ouyang and Swinney, 1991; Ouyang et al., 1992) and numerically (Verdasca
et al., 1992; Borckmans et al., 1992; Dufiet and Boissonade, 1992; Jensen et al.,
1993). These studies do not, however, provide a method to investigate the morpho-
logical changes, but only corroborate the analytically predicted existence of both
symmetries. In the following, we will try to find some insight into the morpho-
logical transition resulting in from the bistability of stripes and hexagonal spots.
In order to study the transition we employ extensive numerical simulations and
measure the number of clusters. The results were averaged over up to 20 simula-
tions for each value of C. We carried out studies for several system sizes in order
to guarantee the general nature of our results.

In Fig. 5.15 we plot the averaged scaling function F2(N(C), Nc) for U -clusters
against C for several different system sizes. The simulations were started from
random initial configurations of the chemicals for each value of C. Neglecting the
number of V-clusters does not affect our conclusions, since the curves would be
symmetrical (number of V clusters goes to 1 for high C). From Fig. 5.15 one can
clearly see that the transition takes place at those values of the parameter C for
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Figure 5.15: The normalized number of U clusters as a function of C in two-dimensional
systems. System sizes are L = 75, L = 100, L = 175, L = 250 and L = 500. The
results were averaged up to 20 simulations and they match with the analytical prediction
for the bistable regime given by 0.084 < C < 0.161.

which bifurcation analysis predicted the system to be bistable. In addition, it can
be seen that the normalization function of Eq. (5.5) scales the number of clusters
in such a way that the results for different system sizes agree within reasonable
deviations.

The smoothness of the curve in Fig. 5.15, as compared to the data plotted in
Fig. 5.14, is due to averaging. The boundaries of the hysteresis loop in Fig. 5.14
are not well-defined and the transition in a single simulation may take place for
any value of C within the region of bistability. Thus Fig. 5.15 can be thought
of as a normalized sum of step-like functions. In a system exhibiting bistability
one cannot predict the exact transition value for a particular control parameter C.
However, based on Fig. 5.15 it can be proposed that the predictions of the bi-
furcation analysis have the power to approximate the dynamics of bistable pattern
formation in a probabilistic manner. For example, for C = 0.15 the bifurcation
analysis predicts a bistability, but based on our simulation results, we suggest that
when the system is initialized to a random state it will tend to evolve towards a
hexagonal spotty pattern.

If one carries out the simulations for very small system sizes, finite-size effects
can be observed. For small system sizes the F2(N(C), Nc) curves become more
steep in the transition region and the value C for which the transition takes place
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seems to be affected by the finite size of the system. This would suggest that
in the limit of small systems, the transition would become almost discontinuous.
However, the system cannot be made infinitely small since the (periodic) boundary
conditions start to affect the behavior of the system. As discussed earlier, the spots
tend to nucleate from topological defects, or dislocations, of the striped pattern
(Fig. 5.13). In the case of a small system even one dislocation can affect the
morphology of the whole system and thus quickly transform stripes into a lattice
of spots. In a larger system many dislocations have to appear at various sites to
give rise to spots which in turn make the appearance of more spots favorable.

So far we have discussed our simulation results only in two-dimensional sys-
tems. We have also studied the connectivity transition extensively in three di-
mensions. In this case stripes and spots become lamellae and spherical droplets,
respectively. Figure 5.16 shows the concentration isosurfaces obtained in com-
puter simulations with random initial configuration for four different values of
C. From Fig. 5.16 one observes that in three dimensions one cannot obtain pure
planar lamellae or organized spherical structures (FCC, BCC or HPC) spontan-
eously from random initial conditions. The linear structure we obtain in three
dimensions is a continuous lamellae resembling a minimal surface solution (see
Fig. 5.16A). The characterization of the various surfaces is difficult, but luckily
the specific organization of qualitatively similar structures does not significantly
affect the measured clustering in the structures. The fact that the cylindrical phase
is predicted to be stable in SC-lattice for all parameter values C makes the struc-
ture selection even more complicated, especially in the transition region.

One would expect that in 3D the transition does not occur at the same point
with respect to C as in 2D since the third dimension gives one more degree of
freedom to the clustering process. This is indeed what one finds. Figure 5.17 de-
picts the normalized number of clusters for four different system sizes. One can
see that the behavior of the system is different from that in two dimensions. Now,
the transition occurs at a higher value of C, since a relatively smaller cubic nonlin-
ear coupling favoring lamellar structures is sufficient for increasing connectivity
in three-dimensional space.

The bifurcation analysis is not able to predict the transition domain in the
three-dimensional case. The stable lamellae was predicted to change to stable
spherical droplets at C = 0.355 corresponding to the border of the transition re-
gion in Fig. 5.17. The cylindrical structures were predicted to be stable for all
C, which results in a bistability. The insufficient nature of the bifurcation ana-
lysis may further be due to the SC-lattice approximation. On the other hand, the
stability of twisted lamellar surfaces could not be analyzed under any symmetry
condition.



88 Numerical studies of Barrio-Varea-Aragon-Maini model

A B

DC

Figure 5.16: Transition from a twisted minimal surface to spherical shapes in a three-
dimensional system of size 50 × 50 × 50. The structures were obtained after 500 000
iterations with kc = 0.86. The visualization was carried out by plotting the middle con-
centration isosurface. Parameter values: A) C = 0, B) C = 0.44, C) C = 0.53 and D)
C = 1.0

Conclusions

In this section, we have investigated the connectivity of spatial patterns generated
by the reaction-diffusion mechanism both in two- and three-dimensions. This was
done by applying clustering analysis for the dominating chemical. The numer-
ical simulations were consistent with the predictions drawn from the bifurcation
analysis, and the system showed a transition in the proximity of the predicted
C-value irrespective of the individual system size. The agreement with theory
turned out to be better in the two-dimensional case than in three dimensions,
since in two dimensions there is a simple transition between monostable patterns
through a bistable regime. In three dimensions the analytical approximation of the
changes in connectivity was more difficult, since the system was predicted to be
bistable for all parameter values and no bistability was implied between lamellar
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Figure 5.17: The averaged normalized number of U clusters as a function of C in a
three-dimensional systems. System sizes are L = 30, L = 40, L = 50, and L = 75.
The bifurcation analysis predicts unstable lamellar structures and stable SC-droplets for
C > 0.361, whereas stable cylindrical structures are predicted for all C < 0.65.

and spherical structures in the SC-lattice. On the other hand, for the BCC-lattice
the bifurcation analysis did predict a bistability, but the bistable values of the con-
trol parameter did not agree with the results of the numerical simulations as well
as the predictions for an SC-lattice. Although the BCC-structures are stable in
Turing systems, it seems that the system cannot find them when the simulation is
started from a random initial configuration. In large systems of dissipative quasi-
particles this kind of behavior has been hypothesized to be due to an instability of
transient structures (Liehr et al., 2001).

The bistability of two different patterns is observed in a variety of chem-
ical (Kapral and Showalter, 1995) and biological systems (Nagorcka and Mooney,
1985; Murray, 1989). The approach of this study brought more insight into the
pattern selection in Turing systems. We have shown that at least in the context
of Turing systems the pattern selection of a bistable system can be predicted
probabilistically. We have also shown that the non-equilibrium morphological
transition has characteristics similar to first order phase transitions, i. e., hyster-
esis is observed. Hysteresis can be seen not only with respect to the amplitude of
the chemical concentration as earlier, but also with respect to the morphological
changes, i. e., the averaged number of clusters. The fact that the system size does
not affect clustering and pattern selection at all (given that system is not too small)
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implies that the Turing mechanism is very general and it is applicable to systems
of various sizes.

5.5 Dimensionality effects4

The study of the transition from two-dimensional patterns to three-dimensional
structures is a more challenging than the direct comparison of the final results
(Figs. 5.1 and 5.3). It has been shown that an experimental gel reactor with CIMA
reaction may exhibit bistability, i.e., both spot and stripe patterns may appear into
the gel on different heights (Ouyang et al., 1992). This has been explained by a
concentration gradient that is imposed by the reactor (Ouyang et al., 1992). Tur-
ing patterns have also been studied in ramped systems, where the thickness of the
gel is increased gradually and one observes qualitatively different patterns corres-
ponding to different thicknesses (Dulos et al., 1996).

The problem has also been addressed more quantitatively by Dufiet and Bois-
sonade (1996), who modeled pattern formation in a three-dimensional experi-
mental reactor by imposing a permanent gradient on one of the bifurcation para-
meters in their model. This corresponds to the situation in an experimental reactor,
where the concentrations are kept constant only on the feed surfaces, whereas the
concentration inside the gel is governed solely by reaction and diffusion. Dufiet
and Boissonade (1996) conclude that the patterns in quasi-2D reactors can, to a
certain extent, be interpreted as two-dimensional patterns when the thickness of
the gel Lz is less than the characteristic wavelength λc = 2π/kc of the pattern.

As for the effect of dimensionality in the BVAM model we have observed that
the transition from a two-dimensional to a three-dimensional system is not at all
simple. The structure selection is not deterministically governed by the thickness
of the system. As one increases the thickness of the discrete system from a plane
(with thickness dx), it will lose the correlation between the bottom and top plates
gradually, but the transition thickness is not well-defined, i.e., thickness larger
than the characteristic wave length (Lz > λc) does not seem to guarantee that
the structure becomes truly three-dimensional. Figure 5.18 shows the resulting
structures for two systems of nearly the same thickness Lz > λc as one starts
from different random initial conditions. One can easily observe that the leftmost
structures is three-dimensional, whereas the rightmost is quasi-two-dimensional,
although the latter structure grows in a thicker domain. The preliminary results
presented in Fig. 5.18 were obtained by straightforward simulation of the Lengyel-
Epstein model (see Sec. 3.2.3) with σ = 50, d = 1.07, a = 8.8 and b = 0.09,
which is known to correspond to hexagonal patterns (Rudovics et al., 1999).

Based on our numerical studies using both the BVAM model (Eq. (4.10))
and the Lengyel-Epstein model (Eq. (3.24)) it seems that the probability that the

4The work presented in this section has been published in Leppänen et al. (2003b).
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Figure 5.18: Structures obtained in a numerical simulation of the Lengyel-Epstein model
in a domain of size 100x100x Lz. The dimensionality of the pattern is not determined
by the thickness Lz of the system alone. Left: Lz = 12. Right: Lz = 13. The sys-
tem parameters are the same for both (λc = 6.86), but the random initial conditions are
different.

pattern is quasi-two-dimensional is proportional to the number of linearly unstable
wave vectors �k with nz �= 0. Our simulations show that the number of three-
dimensional final structures does not change monotonically as a function of the
system thickness, but due to increasing degeneracy the dependence becomes very
complicated. There is not any unique transition thickness, but the system chooses
between a quasi-2D and 3D structure based on the unstable wave window, initial
conditions and system thickness. The unstable wave modes, which are excited
by the initial random perturbations and fit the simulation box the best form the
structure.

From the numerical simulations one can measure characteristics of the mor-
phologies (e.g. correlations, structure factors), which are difficult to measure from
chemical patterns in a gel. In addition visualization of numerical results makes
it possible to see into the structure. We have used the Lengyel-Epstein model
reaction to analyze further the structures that have been reported from experi-
ments in ramped systems (Dulos et al., 1996). Fig. 5.19 shows results of solv-
ing the Lengyel-Epstein model in a ramped system and there is some agreement
with experimental results. One should note that both stripes and spots gradually
change into complex three-dimensional tubular structures. It seems that three-
dimensional experimental chemical patterns can be easily misinterpreted, because
the depth information is lost in the 2D projection made for visualization. What
seems to be a non-harmonic modulation may be just an aligned lamellae, and what
seems to be a combination of stripes and spots may as well be tubes appearing to
the observer as stripes if seen from the side and as spots if seen from the end.

As discussed above an important feature of experiments, which is absent in
the numerical simulations is the gradients in the reactor. In a computer a given
model can be solved to the computational precision, from which it follows that
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Figure 5.19: Simulations in a ramped system with dimensions 200 × 420. The thickness
of the slab increases from Lz = 1 on the left to Lz = 30 on the right causing transition
from clear quasi-two-dimensional to complex three-dimensional structures. Parameter for
the Lengyel-Epstein model were σ = 50, d = 1.07 and b = 0.39 with a = 12 (top) and
a = 12.5 (bottom).

if a model captures the phenomenon accurately, the results are accurate and there
are no such artifacts as concentration gradients. If one thinks of applying Turing
system in biological modeling, it is of great importance that the models imitate
the real processes and there is nothing that skews the results. In biological tissue
the sources controlling the parameters of the reaction would in part be in the cells
and not always in the boundaries. Thus the gradients are not always present in
biological morphogenesis. Hence the patterns obtained from numerical simula-
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tions may in fact be better imitations of natural patterns than the patterns arising
in experimental reactors.

5.6 Time-dependent behavior5

In this section we present results of studies of the BVAM model in the pres-
ence of a Hopf instability or more than one stationary state. Simultaneous in-
stability of many stationary states results in competition between the bifurcations
and the system can exhibit spatial, temporal and spatio-temporal pattern formation
depending on the system parameters. We are interested in the coupling of Turing
and Hopf bifurcations producing spatial patterns and temporal oscillations.

Although Turing instability leads to spatially periodic patterns that are sta-
tionary in time, in general a reaction-diffusion system can also exhibit a variety of
spatio-temporal phenomena (Kapral and Showalter, 1995; De Wit, 1999). Hopf
instability produces spatially homogeneous temporal oscillations and its relation
to Turing instability is of great interest. This is because both instabilities can be
observed experimentally in the CIMA reaction by varying the concentration of the
color indicator in the reactor (De Wit, 1999; Perraud et al., 1992). The interaction
between these instabilities (Rovinsky and Menzinger, 1992; Dewel et al., 1995)
may take place either through a co-dimension-two Turing-Hopf bifurcation, when
the corresponding bifurcation parameter threshold values are equal (De Wit et al.,
1996; Rudovics et al., 1996) or due to different competing bifurcations of multiple
stationary states (De Wit, 1999; Dewel et al., 1996). Both the situations lead to
interesting spatio-temporal dynamics. In addition, Yang et al. (2002) and Yang
and Epstein (2003) have recently obtained a variety of stationary and oscillating
structures in the numerical simulations of a system with interacting modes

We have performed numerical simulations of the BVAM model (Eq. (4.10))
in two-dimensional domains of size 100 × 100 by using parameter values corres-
ponding to different bifurcation and stability scenarios. On one hand, we have
studied the interaction of Turing and Hopf bifurcations in a monostable system,
and on the other hand, a tristable system with a coupled Turing-Hopf-Turing
or Turing-Turing bifurcation. These conditions are able to produce a variety of
spatio-temporal dynamics, whose characterization is very challenging. To en-
hance the temporal resolution of our simulations we used decreased the time step
to dt = 0.01.

By using the parameters D = 0.122, a = 2.513, h = −1, b = −.95,
ν = 0.199 and C = 1.57 one can adjust the system in such a way that there
is only one stationary state (0, 0), which is both Turing unstable with kc = 0.85
and characteristic length L = 2π/kc ≈ 7.4, and Hopf unstable with oscillation
period of Tc = 2π/Im{λ(k0)} ≈ 25.40 = 2540 × dt (kc = 0). Eventually, the

5The work presented in this section has been published in Leppänen et al. (2004c).
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Figure 5.20: A two-dimensional concentration patterns obtained in a system with a
coupled Turing-Hopf bifurcation as the simulation is started from a random initial con-
figuration. White and gray domains correspond to areas dominated by chemical u and v,
respectively. The time evolution goes from left to right and from top to bottom.

oscillations fade away and a stationary hexagonal spotty pattern is established.
Fig. 5.20 shows snapshots of the behavior of the system at appropriate moments
of time. The homogeneous domains changing color correspond to oscillations.

For h �= −1 the BVAM model has three stationary states instead of only the
trivial state (0, 0). For h < −1 the stationary state (0, 0) goes through a sub-
critical pitchfork bifurcation, i.e., it becomes stable, whereas two new unstable
stationary states are established. For h > −1 a tri-instability is established, i.e.,
there are three (Turing) unstable stationary states. We fixed h = −0.97, which
yields two additional stationary states and studied the pattern formation with other
parameters D = 0.516, a = 1.112, b = −0.96 and ν = 0.450, which correspond
to a Turing-Hopf bifurcation of the state (0, 0) with kc = 0.46 and Turing bifurc-
ation of the stationary states (−2.01, 0.40) and (9.97,−1.97), both with kc = 0.
The Turing-Hopf modes growing from (0, 0) excite the former of these two states,
which results in a coupling between Turing-Hopf and Turing instabilities. From
random initial configuration the parameter selection C = 1.57, which corres-
ponds to spotty patterns resulted in a hexagonal lattice with a few twinkling spots
at dislocation sites. Twinkling hexagonal lattices of spots have previously been
obtained in numerical simulations of a four-component Turing model (Yang et al.,
2002) and of a nonlinear optical system (Logvin et al., 1997). Our results show
that "twinkling-eye" behavior can also be observed in a two-component model
without any special preparations.

Using the same parameters as above, except choosing b = −1.01 one still



5.6 Time-dependent behavior 95

Figure 5.21: The two-dimensional concentration patterns obtained in a tristable system
with a coupled Turing-Hopf-Turing bifurcation as the simulation is started from a random
initial configuration. The time evolution goes from left to right and from top to bottom.

obtains a tristable system, although the stationary state (0, 0) is no longer Turing-
Hopf unstable, but Turing unstable with kc = 0.46. The two other stationary states
(−1.191, 0.350) and (6.529,−1.920) are unstable with kc = 0 as in the previous
case. Again the Turing modes growing from (0, 0) excite another nearest sta-
tionary state, which results in an interesting competition between growing modes.
Although there is no straightforward Turing-Hopf bifurcation, the modes growing
from the state (−1.191, 0.350) with Re{λ(k0)} > 0 are coupled with the damped
Hopf modes ∝ eiω0t of the state (0, 0), which results in oscillatory behavior with
period Tc ≈ 3765 × dt. This dynamics is described by a series of snapshots in
Fig. 5.21, where the homogeneous oscillations sweep out spots with period Tc,
and then the spots are again nucleated at the centers of concentric target pattern
waves. The competition continues for long times of up to 106 × dt, although the
oscillations gradually fade out.

One should mention that for C = 0, which corresponds to striped patterns, the
system showed a straightforward Turing bifurcation of the state (0, 0) without any
oscillatory competition. This happened because the Turing modes growing from
the state (0, 0) and resulting in stripes did not excite the other stationary states,
i.e., the amplitude of the striped concentration pattern was not large enough for
the modes to interact with other stationary states. Based on this observation, one
can state that in multistable systems the parameter selection might have drastic
effects on the dynamical behavior of the system.

Most of the earlier studies of spatio-temporal dynamics have been carried out
in one-dimensional systems, since they make it feasible to study the Turing-Hopf
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interaction by using amplitude equation formalism (De Wit, 1999; De Wit et al.,
1996). In the two-dimensional case (not to talk about three dimensions) the stud-
ies of spatio-temporal behavior have typically, although not always (Dewel et al.,
1995), been more or less qualitative. By considering stability and bifurcation
aspects one can understand the behavior of the systems to some extent, but other-
wise two-dimensional spatio-temporal dynamics is often too complex to be stud-
ied analytically.

Turing instability is not only relevant in reaction-diffusion systems, but also
in describing other dissipative structures, which can be understood in terms of
diffusion-driven instability (see Chaper 1). The studies of temporal and spatial
pattern formation in Turing system are important, since they may be of great
interest also in biological context, e.g. skin hair follicle formation, which is
closely related to skin pigmentation, occurs in cycles (Nagorcka, 1989). Recently,
spatio-temporal traveling wave pattern has been observed on the skin of a mutant
mouse (Suzuki et al., 2003), which might perhaps be the result of a misconfigured
Turing mechanism with competing instabilities, i.e., the pattern becomes temporal
instead of stationary due to a shift in the values of the reaction and diffusion rates
of morphogens.



Chapter 6

Conclusions

The first experimental observation of chemical Turing patterns some 15 years ago
confirmed that the theoretical ideas hypothesized by Alan Turing almost 40 years
earlier were not only mathematical formulations, but a pioneering contribution
to the theory of nonlinear dynamics, non-equilibrium physics and mathematical
biology. After 1990, Turing’s seminal article has received more citations per year
than it received in total during the first twenty years after its publication. In gen-
eral, Turing systems can be defined as simple mathematical models, such as the
BVAM model studied in this thesis, that can generate stationary concentration
patterns and structures with a characteristic length from random initial configura-
tions. A special feature of the Turing mechanism is that the characteristics of the
resulting patterns are determined intrinsically by the reaction and diffusion rates
of the chemicals involved in the process and not by any external control mech-
anism. In mathematical Turing models the length scale and morphology of the
resulting patterns can each be adjusted with only one parameter. This means that
for a fixed model the information of the morphology we wish to generate (stripes
or spots) can be expressed by one number.

Turing’s original motivation for studying pattern-forming properties of chem-
ical systems was biological and it seems plausible that the spontaneous processes
that occur in nature might be governed by some Turing-like mechanism. It would
mean that the genome holds only the information required for describing spe-
cific structures, whereas the construction itself occurs due to fundamental phys-
ical laws. Of course, the model of a real biological mechanism would require
possibly hundreds or even thousands of coupled partial differential equations and
it would be impossible to solve. This was not, however, Turing’s main point. The
contribution of Alan Turing to mathematical biology is unequivocal in the sense
that he was the first to show, how an amazingly simple mechanism can generate
complex behavior and describe a wide variety of natural systems in a very generic
way.
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Although the work presented in this thesis might seem as having no self-
evident applications in biology, especially the results of the structures generated
by the Turing mechanism in three dimensions might be important in the biological
context. Two-dimensional systems can be treated analytically and they are com-
putationally fast to solve. The bifurcation analysis applied to three-dimensional
pattern formation does not, however, capture the characteristics of the process as
easily and due to increased wave number degeneracy one cannot predict the res-
ults of numerical simulations very well. As we saw in Chapter 5, already our
two-component model could generate very complex three-dimensional twisted
lamellar surfaces beyond the reach of quantitative measures. Thus, understand-
ing the richness of spatial information that could be expressed by Turing systems
consisting of possibly hundreds of morphogens calls for imagination.

In addition to the biological relevance of Turing systems, their ability to gen-
erate structure is of great interest from the point of view of physics. There are
various physical systems that show similar phenomena, although the underlying
mechanisms can be very different. Thus making fundamental theoretical contri-
butions to the theory of pattern formation has proved out to be extremely challen-
ging. Thus, most of the research in the field relies on experiments and numerical
simulations justified by an analytical examination. The numerical simulations ap-
proach employed in this thesis seems promising since carrying out computations
is much less cumbersome than carrying out experiments. In addition, in simula-
tions one may study pattern formation under constraints that are beyond the reach
of experiments and the numerical data is also easier to analyze.

In this thesis, I have presented the results of our studies of pattern formation
in Turing systems. The main findings may be listed as follows:

1. The addition of morphogen sources into the Gray-Scott model gives rise
to labyrinthine networks, which connect the sources in both two and three
dimensions. It was proposed that Turing models could provide a plausible
mechanism for the generation of chemical signaling pathways in biological
systems, for example, in the context of neuronal growth (Sec. 3.2.2).

2. The stability regions of the BVAM model corresponding to different two-
and three-dimensional symmetries were derived by applying nonlinear bi-
furcation analysis and the center manifold reduction technique (Chapter 4).

3. The initial configuration (random or almost random) and the parameters
affect the formation of three-dimensional structures significantly due to in-
creased degeneracy as compared to two-dimensional systems. In three di-
mensions one can observe, for example, minimal surfaces (Sec. 5.2.2).

4. Additive Gaussian noise does not inhibit Turing instability. The resulting
morphologies are very robust against noise, although the effect of noise
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is evident in the structure factor. The three-dimensional structures proved
to be significantly more robust than the two-dimensional patterns, and the
radial symmetries more robust than the linear symmetries (Sec. 5.3).

5. A quantitative cluster-based method devised for characterizing morpholo-
gical transitions statistically as a function of the control parameter offers a
probabilistic way for studying pattern selection in bistable systems, which
are beyond the reach of analytical methods. Interestingly, it was observed
that the system exhibits hysteresis with respect to the devised measure and a
slowing down of the chemical dynamics is evident as the control parameter
approaches the bistable (transition) regime (Sec. 5.4).

6. Studies with the Lengyel-Epstein model in domains growing to one direc-
tion revealed that the pattern selection in quasi-two-dimensional systems is
strongly dependent on the aspect ratio of the domain and initial conditions.
The condition that the shortest dimension of the system must be larger than
the unstable wave length (Lz > λc) was found to be necessary but not suf-
ficientfor the formation of three-dimensional structures (Sec. 5.5).

7. The coupling of Turing and Hopf bifurcations combined with multistabil-
ity results in complex spatio-temporal dynamics proving that a reaction-
diffusion scheme can generically account for the basic processes present in
many biological systems (spatial information and oscillations) (Sec. 5.6).

Perhaps the two most important results of this thesis deal with the conditions
for the morphology selection of three-dimensional Turing structures (item 3) and
the pattern selection in bistable two-dimensional Turing systems (item 5). We
specified the conditions for the spontaneous formation of three-dimensional Tur-
ing structures from random or almost random initial configurations, whereas the
earlier studies had mostly relied on numerical confirmation theoretically justified
assumptions of the stable morphologies. Our study on the two-dimensional pat-
tern selection in the BVAM model was the first effort made towards characterizing
morphological transitions and pattern formation in bistable systems.

As a whole, our findings on the effect of the initial configuration, random
noise, changes in the system parameters, bistability, thickening domain and com-
peting bifurcations complement the knowledge concerning Turing pattern forma-
tion from their part. The theory of pattern formation has a close connection to the
fundamental problems of non-equilibrium thermodynamics, which remain to be
solved both in the context of Turing systems and also in the more general frame-
work of non-equilibrium physics.





Appendix A

A.1 Derivation of coefficients for amplitude equations

In the following we will present the derivation of the parameters for the amplitude
equations by employing the center manifold reduction explained in Sec. 4.3.2.
The idea is to find out combinations of the wave modes and their contribution to
the amplitude equations of a particular symmetry.

Two-dimensional hexagonal lattice

In the hexagonal lattice two wave vectors sum up to another wave vector. The vec-
tors for the hexagonal lattice are given by �k1 = kc(1, 0), �k2 = kc(−1/2,

√
3/2)

and �k3 = kc(−1/2,−√
3/2). The strength of the quadratic coupling term is de-

termined by the first term in Eq. (4.31). Since there are two possible selections
(permutations) of m1 and m2, i.e., −�k3 − �k2 = −�k2 − �k3 = �k1 one has to take
into account both of them. Thus the quadratic coupling parameter of the corres-
ponding amplitude equation (Eq. (4.20)) is given by � = 2β1h Ah,i j αi 1α j 1. The
strength of the cubic coupling terms can be found by similar arguments. However,
there are two cases that have to be treated separately, case 1: m1 = m2 �= m3 and
case 2: m1 = m2 = m3.

In the first case the coupling is of the type k1 + k2 − k2 = k1. There are three
different combinations of m2 and m3 with two corresponding permutations. The
combinations are

1. m2 = k2 and m3 = −k2 with |m2 + m3|2 = 0,

2. m2 = k1 and m3 = k2 with |m2 + m3|2 = 1,

3. m2 = k1 and m3 = −k2 with |m2 + m3|2 = 3,

which defines the coefficient gκ in Eq. (4.20) to have the value gκ = −2F(0) −
2F(1) − 2F(3).

In the second case the coupling is of the type k1 + k1 − k1 = k1. There are
three possible permutations with

1. m2 = k1 and m3 = −k1 with |m2 + m3|2 = 0,
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2. m2 = −k1 and m3 = k1 with |m2 + m3|2 = 0,

3. m2 = k1 and m3 = k1 with |m2 + m3|2 = 4,

which results in g = −2F(0) − F(4) for Eq. (4.20).
Based on the above reasoning and Eq. (4.32) one may calculate the exact form

of the coefficient in Eq. (4.20) with respect to the parameters of the BVAM model
of Eq. (4.10). The parameters of the amplitude equations are given by

� = −2bCηR
√

η(η − 2R)

(η + b η − 2R)
√

(η + bη − 2R)(η − R)
, (A.1)

g = 3bη2(η − 2R)R

(η + bη − 2R)2(η − R)
, (A.2)

κ = 2, (A.3)

where we have denoted R = Dk2
c = η(Db + 1)/2. The linear coefficient of

Eq. (4.20) is given by Eq. (4.19).

Three-dimensional SC-lattice

In the SC-lattice the vectors are independent and given as �k1 = kc(1, 0, 0), �k2 =
kc(0, 1, 0) and �k3 = kc(0, 0, 1). There are no resonant modes. Following the ideas
above in the first case we find

1. m2 = k2 and m3 = −k2 with |m2 + m3|2 = 0,

2. m2 = k1 and m3 = k2 with |m2 + m3|2 = 2,

3. m2 = k1 and m3 = −k2 with |m2 + m3|2 = 2,

which defines the coefficient gκ = −2F(0) − 4F(2) in Eq. (4.20). The second
case yields the permutations

1. m2 = k1 and m3 = −k1 with |m2 + m3|2 = 0,

2. m2 = −k1 and m3 = k1 with |m2 + m3|2 = 0,

3. m2 = k1 and m3 = k1 with |m2 + m3|2 = 4,

which gives g = −2F(0) − F(4) for Eq. (4.20).
For the amplitude equations of the three-dimensional SC-lattice (Eq. (4.21))

the coefficients are given by

g = −b η2(C2(8η − 23R) − 27R)(η − 2R)

9(η + bη − 2R)2(η − R)
, (A.4)

κ = 18(C2(8η − 7R) − 3R)

C2(8η − 23R) − 27R
, (A.5)

where we have again denoted R = Dk2
c = η(Db+ 1)/2 and the linear coefficient

of Eq. (4.21) is given by Eq. (4.19).
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Three-dimensional FCC-lattice

For the FCC-lattice the vectors of BCC-lattice are given by �k1 = kc(1, 1, 1)/
√

3,
�k2 = kc(1, 1,−1)/

√
3, �k3 = kc(1,−1, 1)/

√
3 and �k4 = kc(1,−1,−1)/

√
3 are

not linearly independent. To find the coefficient of the resonant contribution to
Eq. (4.22) one must considers the possible combinations of the two last terms
within the sum k2 + k3 − k4 = k1. These are given by

1. m2 = k3 and m3 = −k4 with |m2 + m3|2 = 4
3 ,

2. m2 = −k4 and m3 = k2 with |m2 + m3|2 = 4
3 ,

3. m2 = k2 and m3 = k3 with |m2 + m3|2 = 4
3 ,

which yields the resonant coupling coefficient � = 6F( 4
3) for the Eq. (4.22).

The two other coefficients are determined using the same reasoning as above.
In the first case one gets

1. m2 = k2 and m3 = −k2 with |m2 + m3|2 = 0,

2. m2 = k1 and m3 = −k2 with |m2 + m3|2 = 4
3 ,

3. m2 = k1 and m3 = k2 with |m2 + m3|2 = 8
3 ,

which results in the coefficient gκ = −2F(0)−2F( 4
3)−2F( 8

3) for the Eq. (4.22).
In the second case we get the permutations

1. m2 = k1 and m3 = −k1 with |m2 + m3|2 = 0,

2. m2 = −k1 and m3 = k1 with |m2 + m3|2 = 0,

3. m2 = k1 and m3 = k1 with |m2 + m3|2 = 4,

which yields g = −2F(0) − F(4) for the Eq. (4.22).
The coefficients of the amplitude equations of the three-dimensional FCC-

lattice (Eq. (4.22)) can be written as

� = 6bη2(η − 2R)(3C2(8η − 7R) − R)

(η + bη − 2R)2(η − R)
, (A.6)

g = −b η2(C2(8η − 23R) − 27R)(η − 2R)

9(η + bη − 2R)2(η − R)
, (A.7)

κ = 18(C2(648η − 583R) − 75R)

25(C2(8η − 23R) − 27R)
, (A.8)

where R = η(Db + 1)/2 and the linear coefficient λc of Eq. (4.22) is defined by
Eq. (4.19).
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Three-dimensional BCC-lattice

For the BCC-lattice the vectors of FCC-lattice are given by �k1 = kc(1, 1, 0)/
√

2,
�k2 = kc(0, 1, 1)/

√
2, �k3 = kc(1, 0, 1)/

√
2, �k4 = kc(1,−1, 0)/

√
2,

�k5 = kc(0, 1,−1)/
√

2 and �k6 = kc(1, 0,−1)/
√

2. In the BCC-lattice there is both
quadratic and cubic resonant coupling of the modes. The quadratic coupling is due
to k2 + k6 = k3 + k5 = k1 with the coupling coefficient ϒ = 2β1h Ah,i j αi 1α j 1.
The cubic coupling is due to k2 + k4 + k5 = k3 − k4 + k6 = k1 and defined by

1. m2 = k5 and m3 = k4 with |m2 + m3|2 = 1,

2. m2 = k2 and m3 = k4 with |m2 + m3|2 = 1,

3. m2 = k5 and m3 = k2 with |m2 + m3|2 = 2,

which gives � = 2F(2) + 4F(1) for the Eq. (4.23). The other coefficients are
given by wave vector pairs

1. m2 = k2 and m3 = −k2 with |m2 + m3|2 = 0,

2. m2 = k1 and m3 = k3 with |m2 + m3|2 = 1,

3. m2 = k3 and m3 = k1 with |m2 + m3|2 = 3,

which gives gκ = −2F(0) − 2F(1) − 2F(3),

1. m2 = k4 and m3 = −k4 with |m2 + m3|2 = 0,

2. m2 = k1 and m3 = −k4 with |m2 + m3|2 = 2,

3. m2 = k1 and m3 = k4 with |m2 + m3|2 = 2,

which gives gχ = −2F(0) − 2F(1) − 2F(3), and

1. m2 = k1 and m3 = −k1 with |m2 + m3|2 = 0,

2. m2 = −k1 and m3 = k1 with |m2 + m3|2 = 0,

3. m2 = k1 and m3 = k1 with |m2 + m3|2 = 4,
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which gives g = 2F(0) + F(4) for Eq. (4.23). The coefficients of the amplitude
equations of the three-dimensional BCC-lattice (Eq. (4.23)) can be written as

ϒ = −bCηR
√

η(η − 2R)

(η + b η − 2R)
√

(η + bη − 2R)(η − R)
, (A.9)

� = b η2(R(12R − 6η) + C2(40η2 − 118η ∗ R + 76R2))

(η + bη − 2R)2(η − R)
, (A.10)

g = −bη2(C2(8η − 23R) − 27R)(η − 2R)

9(η + bη − 2R)2(η − R)
, (A.11)

gκ = −bη2((6η − 12R)R − C2(19η2 − 58ηR + 40R2))

(η + bη − 2R)2(η − R)
, (A.12)

gχ = 2bη2(C2(8η − 7R) − 3R)(η − 2R)

(η + bη − 2R)2(η − R)
, (A.13)

where R = η(Db + 1)/2 and the linear coefficient λc of Eq. (4.23) is defined by
Eq. (4.19).
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A.2 Details on stability analysis of amplitude equation
systems

After one has derived the amplitude equation systems, one can study the stability
of patterns with different symmetries by employing linear analysis to the system
of amplitude equations around the interesting stationary states. In the following,
we will present how this is carried out for the amplitude equation systems for
the two-dimensional hexagonal lattice and the three-dimensional SC-, FCC-, and
BCC-lattices.

Two-dimensional hexagonal lattice

The system of amplitude equations for a two-dimensional hexagonal lattice can
be written based on Eq. (4.20) as

dW1

dt
= λcW1 + �W∗

2 W∗
3 − g[|W1|2 + κ(|W2|2 + |W3|2)]W1,

dW2

dt
= λcW2 + �W∗

1 W∗
3 − g[|W2|2 + κ(|W1|2 + |W3|2)]W2,

dW3

dt
= λcW3 + �W∗

1 W∗
2 − g[|W3|2 + κ(|W1|2 + |W2|2)]W3, (A.14)

where λc is given by Eq. (4.19) and the coefficients �, g and κ derived in the
appendix A.1 are defined by Eqs. (A.1), (A.2) and (A.3), respectively.

The system of Eq. (A.14) has numerous stationary states. In the case of stripes
W2 = W3 = 0 and the system reduces to only one equation. Now the stationary
state defined by the zero of the right-hand side of Eqs. (A.14) can easily be shown
to be Wc

1 = √
λc/geiφ1 . For the rhombic patterns (W3 = 0), the stationary state

is given by Wc
j = √

λc/(g(1 + κ))eiφj ( j = 1, 2). In the case of hexagonally
arranged spots we have three equations and by choosing an isotropic solution
such that Wc = Wc

1 = Wc
2 = Wc

3 we obtain two stationary states defined by

|Wc
±| = |�| ± √

�2 + 4λcg[1 + 2κ]
2g(1 + 2κ)

. (A.15)

An other non-isotropic stationary solution of hexagonal spots is defined by Wc
3 =

|�|/(g(κ + 1)) and Wc
1 = Wc

2 = √
λc − g|W3|2/(g(κ + 1)).

The elements of the linearized amplitude matrix can be calculated based on
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Eq. (4.33)) and are given by

∣∣∣∣ ∂ fi

∂|Wi |
∣∣∣∣
Wc

= λc − gκ(|Wc
i−1|2 + |Wc

i+1|2) − 3g|Wc
i |2,∣∣∣∣ ∂ fi

∂|Wi−1|
∣∣∣∣
Wc

= �|Wc
i+1| − 2gκ |Wc

i−1| |Wc
i |,∣∣∣∣ ∂ fi

∂|Wi+1|
∣∣∣∣
Wc

= �|Wc
i−1| − 2gκ |Wc

i+1| |Wc
i |, (A.16)

where i = 1, 2, 3 (mod3) and the partial derivatives are evaluated at the stationary
state. Based on these equations one can construct the 3 × 3 Jacobian matrices
for the different symmetries. By substituting the values of the stationary states
and coefficients (Eqs. (A.1), (A.2) and (A.3)) to the Jacobians and calculating the
eigenvalues, one obtains conditions for the stability of symmetries as a function
of the original reaction-diffusion parameters. The parameter values for, which
the even one of the eigenvalues is positive, the pattern is unstable. For negative
eigenvalues the pattern is stable. The eigenvalues and the bifurcation diagrams
are presented in Sec. 4.3.3.

Three-dimensional SC-lattice

The amplitude equations of a three-dimensional SC-lattice are based on Eq. (4.21)
and the system is given as

dW1

dt
= λcW1 − g[|W1|2 + κ(|W2|2 + |W3|2)]W1,

dW2

dt
= λcW2 − g[|W2|2 + κ(|W1|2 + |W3|2)]W2,

dW3

dt
= λcW3 − g[|W3|2 + κ(|W1|2 + |W2|2)]W3, (A.19)

where the λc, g is defined by Eq. (4.19), and coefficients g and κ are given by
Eqs. (A.4) and (A.5) in the appendix A.1.

Next, we will consider only the isotropic stationary states of the amplitude
system in Eq. (A.19). The stationary state corresponding to the planar lamel-
lae is given by |Wc

1 | = √
λc/g. For the cylindrical structure we get |Wc

1 | =
|Wc

2 | = √
λc/(g(κ + 1)) and for the isotropic stationary state of SC-droplets

|Wc
1 | = |Wc

2 | = |Wc
3 | = √

λc/(g(2κ + 1)).
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For the SC-lattice, the elements of the linearized matrix (Eq. (4.33)) are given
by

∣∣∣∣ ∂ fi

∂|Wi |
∣∣∣∣
Wc

= λc − gκ(|Wc
i−1|2 + |Wc

i+1|2) − 3g|Wc
i |2,∣∣∣∣ ∂ fi

∂|Wi−1|
∣∣∣∣
Wc

= −2gκ |Wc
i−1| |Wc

i |,∣∣∣∣ ∂ fi

∂|Wi+1|
∣∣∣∣
Wc

= −2gκ |Wc
i+1| |Wc

i |, (A.20)

where i = 1, 2, 3 (mod3). By substituting the values of the stationary states and
coefficients defined by Eqs. (A.4) and (A.5) to the 3 × 3 matrix defined above one
can study stability of different symmetries. The eigenvalues and the bifurcation
diagrams are presented in Sec. 4.3.3.

Three-dimensional FCC-lattice

The amplitude equations of the three-dimensional FCC-lattice are defined by
Eq. (4.22) and the system is given by

dW1

dt
= λcW1 + �W∗

2 W∗
3 W∗

4 − g[|W1|2 + κ(|W2|2 + |W3|2) + |W4|2)]W1,

dW2

dt
= λcW2 + �W∗

1 W∗
3 W∗

4 − g[|W2|2 + κ(|W1|2 + |W3|2) + |W4|2)]W2,

dW3

dt
= λcW3 + �W∗

1 W∗
2 W∗

4 − g[|W3|2 + κ(|W1|2 + |W2|2) + |W4|2)]W3,

dW4

dt
= λcW4 + �W∗

1 W∗
2 W∗

3 − g[|W4|2 + κ(|W1|2 + |W2|2) + |W3|2)]W4,

(A.21)

where λc is given by Eq. (4.19), and the coefficients �, g and κ are defined by
Eqs. (A.6), (A.7) and (A.8) in the appendix A.1.

We will consider only the isotropic stationary states corresponding to lamellar
planes and FCC-droplet structure. The stationary state corresponding to the planar
lamellae is defined by |Wc

1 | = √
λc/g, with |Wc

2 | = |Wc
3 | = |Wc

4 | = 0. For the
stationary state of FCC-droplets with constraint |Wc

1 | = |Wc
2 | = |Wc

3 | = |Wc
4 | we

get |Wc
i | = √

λc/(g(3κ + 1) − �).

For the FCC-lattice, the elements of the linearized matrix (Eq. (4.33)) are
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defined by

∣∣∣∣ ∂ fi

∂|Wi |
∣∣∣∣
Wc

= λc − gκ(|Wc
i−1|2 + |Wc

i+1|2 + |Wc
i+2|2) − 3g|Wc

i |2,∣∣∣∣ ∂ fi

∂|Wi−1|
∣∣∣∣
Wc

= −2gκ |Wc
i−1| |Wc

i | + �|Wc
i+1| |Wc

i+2|,∣∣∣∣ ∂ fi

∂|Wi+1|
∣∣∣∣
Wc

= −2gκ |Wc
i+1| |Wc

i | + �|Wc
i−1| |Wc

i+2|,∣∣∣∣ ∂ fi

∂|Wi+2|
∣∣∣∣
Wc

= −2gκ |Wc
j +1| |Wc

j | + �|Wc
i−1| |Wc

i+1|, (A.22)

where i = 1, 2, 3, 4 (mod 4). By substituting the values of the above calculated
stationary states and coefficients defined by Eqs. (A.7), (A.6) and (A.8) to the
4 × 4 matrix defined above one can study stability of different symmetries. The
eigenvalues and the bifurcation diagrams are presented in Sec. 4.3.3.

Three-dimensional BCC-lattice

The amplitude equations of a three-dimensional BCC-lattice are defined by
Eq. (4.23) and the system is given by

dW1

dt
= λcW1 + ϒ(W2W6 + W3W5) + �(W2W4W5 + W3W∗

4 W6) −
g[|W1|2 + χ |W4|2 + κ(|W2|2 + |W3|2 + |W5|2 + |W6|2]W1,

dW2

dt
= λcW2 + ϒ(W1W3 + W3W6) + �(W3W5W6 + W1W4W∗

5 ) −
g[|W2|2 + χ |W5|2 + κ(|W1|2 + |W3|2 + |W4|2 + |W6|2]W2,

dW3

dt
= λcW3 + ϒ(W2W4 + W1W5) + �(W1W4W6 + W2W5W∗

6 ) −
g[|W3|2 + χ |W6|2 + κ(|W1|2 + |W2|2 + |W4|2 + |W5|2]W3,

dW4

dt
= λcW4 + ϒ(W3W5 + W2W6) + �(W1W2W5 + W∗

1 W3W6) −
g[|W4|2 + χ |W1|2 + κ(|W2|2 + |W3|2 + |W5|2 + |W6|2]W4,

dW5

dt
= λcW5 + ϒ(W4W6 + W1W3) + �(W2W3W6 + W1W∗

2 W4) −
g[|W5|2 + χ |W2|2 + κ(|W6|2 + |W1|2 + |W3|2 + |W4|2]W5,

dW6

dt
= λcW6 + ϒ(W1W5 + W2W4) + �(W1W3W4 + W2W∗

3 W5) −
g[|W6|2 + χ |W3|2 + κ(|W1|2 + |W2|2 + |W4|2 + |W5|2]W6,

(A.23)
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where the λc is defined by Eq. (4.19) and the coefficients ϒ , �, g, χ and κ are
given by Eqs. (A.9), (A.10), (A.11), (A.13), and (A.12) in the Appendix A.1.

Again we will consider only the two most important cases, namely planar
lamellae and isotropic BCC-droplets. The stationary state corresponding to planar
lamellae is defined by |Wc

1 | = √
λc/g, with |Wc

2 | = |Wc
3 | = |Wc

4 | = |Wc
5 | =

|Wc
6 | = 0. For the stationary state of BCC-droplets with constraint |Wc

1 | =
|Wc

2 | = |Wc
3 | = |Wc

4 | = |Wc
5 | = |Wc

6 | we get

|Wc
i | = −2ϒ ± √

4ϒ2 + 4λc(g(1 + χ + 4κ) − 2�)

2(g(1 + χ + 4κ))
. (A.24)

For the BCC-lattice, the elements of the linearized matrix (Eq. (4.33)) are
defined as∣∣∣∣ ∂ fi

∂|Wi |
∣∣∣∣
Wc

= λc − gκ(|Wc
i+1|2 + |Wc

i+2|2 + |Wc
i+4|2 + |Wc

i+5|2) −

gχ |Wc
i+3| − 3g|Wc

i |2,∣∣∣∣ ∂ fi

∂|Wi+1|
∣∣∣∣
Wc

= −2gκ |Wc
i+1| |Wc

i | + �|Wc
i+3| |Wc

i+4| + ϒ |Wc
i+5|,∣∣∣∣ ∂ fi

∂|Wi+2|
∣∣∣∣
Wc

= −2gκ |Wc
i+2| |Wc

i | + �|Wc
i+3| |Wc

i+5| + ϒ |Wc
i+4|,∣∣∣∣ ∂ fi

∂|Wi+3|
∣∣∣∣
Wc

= −2gχ |Wc
i+3| |Wc

i | + �(|Wc
i+1| |Wc

i+4| + |Wc
i+2| |Wc

i+5|),∣∣∣∣ ∂ fi

∂|Wi+4|
∣∣∣∣
Wc

= −2gκ |Wc
i+3| |Wc

i | + �|Wc
i+1| |Wc

i+3| + ϒ |Wc
i+2|,∣∣∣∣ ∂ fi

∂|Wi+5|
∣∣∣∣
Wc

= −2gκ |Wc
i+5| |Wc

i | + �|Wc
i+2| |Wc

i+3| + ϒ |Wc
i+1|,

(A.25)

where i = 1, 2, 3, 4, 5, 6 (mod 6). By substituting the values of the stationary
states and coefficients defined by Eqs. (A.9), (A.10), (A.11), (A.13), and (A.12)
to the 6 × 6 matrix defined above one can study stability of different symmetries.
The eigenvalues and the bifurcation diagrams are presented in Sec. 4.3.3.



A.3 Details on discretization and numerical simulations 111

A.3 Details on discretization and numerical simulations

In the case of a Turing system in two dimensions we have to discretize equations
of the following form


yt = D�y + f (x1, x2, t) in � = [0, Lx] × [0, L y]
y(x1, 0, t) = y(x1, L y, t)
y(0, x2, t) = y(Lx, x2, t)
y(x1, x2, 0) = g(x1, x2),

(A.26)

where the topmost equation defines the problem and the domain where has to be
solved. The next two equations express the periodic boundary conditions, and the
last equation fixes the initial conditions with help of function g(x1, x2) defined on
the domain. In the case of Turing systems the function g is usually replaced by an
homogeneous distribution of random numbers rather than a function in the usual
sense.

For simplicity the lattice constant (h or dx) is chosen to be isotropic, i.e.,
h = h1 = h2. Now the notation yi j is used for the approximation of y(ih1, jh2, t),
the value of y at the lattice site (i, j ) at time t . Using this, we get the matrix

yh(t) =



y11 . . . y1L y

...
. . .

...

yLx1 . . . yLx L y


 .

Next we discretize the function f over the domain matrix by setting

fh(t) =



f (h, h, t) . . . f (h, L yh, t)
...

. . .
...

f (Lxh, h, t) . . . f (Lxh, L yh, t)


 .

and the initial conditions analogously

gh(t) =



g(h, h, t) . . . g(h, L yh, t)
...

. . .
...

g(Lxh, h, t) . . . g(Lxh, L yh, t)


 .

Using these matrix notations we may formulate the Euler method, which is well-
known and simple method for solving differential equations citepharris98a. The
method is based on numerical integration of differential equations. In our case,
we use it for the integration over the time step.

In the general case, Euler method is used for solving simple first order differ-
ential equation of the form y′(t) = f (t, y(t)). As the derivative y′ is approxim-
ated by a difference quotient, we obtain the equation

y(ti + δ) − y(ti ) = f (ti , y(ti )) · δ + o(δ2), (A.27)
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where o(δ2) is an error term of the second order, such that

lim
δ→0

o(δ2)

δ
= 0.

By dropping the error term, Eq. (A.27) can be further reduced to

y(ti + δ) ≈ y(ti ) + f (ti , y(ti )) · δ. (A.28)

In our discrete Turing system the time step is given by δ (or dt). By setting
yk

h = yh(kδ), we obtain for Euler method{
yk+1

h = yk
h + δ(D�hyk

h + f k
h )

y0
h = gh,

(A.29)

where �h denotes the discretized Laplacian. In our two-dimensional study, the
discretized Laplacian of the function y(x1, x2) can be written out as follows

�y = ∂2y

∂x2
1

+ ∂2y

∂x2
2

. (A.30)

In the three-dimensional case, the operator would contain second derivative also
in the third direction. By approximating the derivatives twice in the same way as
in the previous section and using the notation yi, j for y(hi, hj) we obtain

∂2y

∂x2
1

≈ yi+1, j − 2yi, j + yi−1, j

h2
. (A.31)

By repeating the above procedure for derivatives with respect to y, we can write
the discretized Laplacian operator for Eq. (A.29) as �h = I ⊗ �h1 + �h2 ⊗ I ,
where

�hp = 1

h2
p




−2 1 . . . 0 1
1 −2 . . . 0 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1
1 . . . 0 1 −2


 .

for p = 1, 2. Notice that periodic boundary conditions are properly taken into
account in this formulation.

Appropriate values for the discretization parameters dx = h and dt = δ can
be found by using the von Neumann stability analysis (Press et al., 1995). In three
dimensions the discretized difference equation would be given by

yt+1
mnp − yt

mnp

δ
= D

h2
(ym+1,n,p + ym−1,n,p + ym,n+1,p + ym,n−1,p + ym,n,p+1 +

+ ym,n,p−1 − 6ymnp) + f t
mnp(y), (A.32)
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where h denotes the lattice constant and δ the time step.
Let us now consider that the difference equation varies so slowly that we can

try independent solutions of the form

yt
m,n,p = ξ teikxmheikynheikz ph, (A.33)

where i is the imaginary unit, and kx, ky and kz the wave numbers in x-, y- and z-
directions, respectively. When we substitute Eq. (A.33) to Eq. (A.32) and simplify
we get

ξ = Dδ

h2
(eikxh+e−ikxh+eikyh+e−ikyh+eikzh+e−ikzh−6)+1+ δ f t

h(y)

ξn(emkx enkyepkz)ih
,

(A.34)
We can further approximate ξ(k) by transforming complex numbers to trigo-
nometric functions using Euler formula and by approximating the cosines with
minus one. This yields

|ξ(k)| ≤
∣∣∣∣1 − 12Dδ

h2
+ δ f t

h(y)

ξn(emkx enkyepkz)ih

∣∣∣∣ , (A.35)

We are interested in the modulus of ξ , which is called the amplification factor.
Condition |ξ(k)| < 1 for all k, implies that the difference equation is stable, i.e.,
no mode is exponentially growing. The last term on the right side of Eq. (A.35) is
dependent on the reaction kinetics of the BVAM model given by

f (u, v) = η(u + av − Cuv − uv2),

g(u, v) = η(bv + hu + Cuv + uv2), (A.36)

As we linearize the above equations, we are left with f (u, v) = η(u + av) and
g(u, v) = η(bv + hu). To make the approximation reasonable we use the same
trial solution for both u and v in the form of Eq. (A.33), except that we make a
phase shift of π radians between u and v. This is due to the fact that the activator
and inhibitor are in anti-phase. Substitution of the linearized kinetics to Eq. (A.35)
and simplifying yields

max |ξu(k)| = |1 − δu(
12D

h2
− η(1 + a))|

max |ξv(k)| = |1 − δv(
12

h2
− η(b + h))|. (A.37)

The suitable values of δ are the ones where max |ξ(δ)| is below the unity. For
two-dimensional systems the conditions are also given by an equation similar to
Eq. A.37 with the difference that the constant is 8 instead of 12. Fixing the lattice
constant to h = 1 and using the parameter values corresponding to the modes
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kc = 0.45 and kc = 0.86 (see Sec. 4.2) yields the condition δ < 0.225 for two-
dimensional and δ < 0.155 for three-dimensional systems. In practise also the
nonlinear effects and the coupling of the equations stabilizes the iteration. Based
on this analysis and some trial simulations we found the parameter values h = 1
and δ = 0.05 suitable for the BVAM model.

The simulation programs were built using the C programming language. The
FFTW library (see http://www.fftw.org) was used in the calculation of the Fourier
transform. The random numbers needed for the initial configurations and random
noise were generated using RANMAR. The visualization of two-dimensional data
was the easiest to carry out by using the surface plots of Matlab. The visualization
of three-dimensional data was first carried out using FUNCS (the figures with a
black background, e.g. Fig. 5.3) developed by a Finnish company Centre for Sci-
entific Computing (CSC). Most of the three-dimensional data, however, was visu-
alized using a more advanced program named OpenDX, which is an open source
visualization environment originally developed by IBM (see www.opendx.org).
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