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ABSTRACT

A crucial problem in exploratory analysis of data is that it is difficult for compu-
tational methods to focus on interesting aspects of data. Traditional methods of
unsupervised learning cannot differentiate between interesting and noninteresting
variation, and hence may model, visualize, or cluster parts of data that are not
interesting to the analyst. This wastes the computational power of the methods
and may mislead the analyst.

In this thesis, a principle called “learning metrics” is used to develop visualization
and clustering methods that automatically focus on the interesting aspects, based on
auxiliary labels supplied with the data samples. The principle yields non-Euclidean
(Riemannian) metrics that are data-driven, widely applicable, versatile, invariant
to many transformations, and in part invariant to noise.

Learning metric methods are introduced for five tasks: nonlinear visualization
by Self-Organizing Maps and Multidimensional Scaling, linear projection, and clus-
tering of discrete data and multinomial distributions. The resulting methods either
explicitly estimate distances in the Riemannian metric, or optimize a tailored cost
function which is implicitly related to such a metric. The methods have rigorous
theoretical relationships to information geometry and probabilistic modeling, and
are empirically shown to yield good practical results in exploratory and information
retrieval tasks.
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1 INTRODUCTION

[-..] it is doubtless to be preferred that a man should make use of his
own eyes to direct his steps, and enjoy by means of the same the beauties
of colour and light, than that he should blindly follow the guidance of
another; though the latter course is certainly better than to have the eyes
closed with no guide except one’s self.

René Descartes, Principles of Philosophy

Science operates by pursuing two basic kinds of tasks: discovering new phenom-
ena, and finding explanations for them. Both are crucial for increasing knowledge;
discovery challenges previous assumptions, and explanation integrates the findings
into a coherent whole. Helping discovery is the focus of the research fields of data
mining and knowledge discovery, and a main goal of this thesis. Explanations can be
found by formulating and testing hypotheses, often by designing new experiments.
The experiments may reveal facts that do not fit the hypotheses; the process of
discovery and explanation then continues iteratively.

The quote above was originally stated by Descartes to describe the study of
philosophy, but it also illustrates one of the main problems in discovery: some
amount of guidance or pre-existing knowledge is necessary to know where to look
for new phenomena, but the use of such knowledge must not limit the search.

Studying a new data set. The first step in studying a new set of measurements
(data set) is to examine the data. However, for large data sets a number-by-
number review would be arduous and interesting properties would be “lost among
the crowd”. For example, a set of gene expression data might have thousands of
genes, and for each gene, hundreds of measurements from different treatments.
Genes are known to have functional similarities (functional classes), but noticing
such similarities from a table of measurement values would be next to impossible.
Instead, overviews and summaries are used to examine the data.

The task of examining or exploring data is called exploratory data analysis. The
term was originally used by Tukey [124] to denote very simple ways to overview data.
In this thesis, however, the term denotes more advanced computational methods
that have become possible as the computational power of modern computers has
increased; these methods aid exploration by creating statistical and visual presen-
tations and summaries of the data.

What is interesting? In exploratory data analysis, the key issue is how to notice
interesting properties among the rest. For example, we might want to study gene
expressions to find a previously unknown functional class of genes. If such a class
exists, hopefully it behaves differently than the known classes. The interesting
properties are then differences between gene behaviours.

All data analysis is based on implicit or explicit assumptions; success depends
on how good they are. In exploratory analysis the crucial assumption is what
differences are interesting, or how interesting a particular set of differences is. We
should make this assumption as good as possible.

12



1 INTRODUCTION

Interest is often associated with surprise; exploration should not be distracted
by known phenomena that are redundant for the analysis. For example, gene ex-
pressions from one treatment might have a larger scale than others, because they
were measured in different conditions. Differences in that treatment would stand
out in the data, even though their larger scale is due to measurement conditions
rather than a real biological effect.

For computational data analysis, it is not enough to have a vague idea about
what is interesting: computational data analysis methods need measures to quantify
exactly how interesting or different a set of observations are compared to others.
A measure of difference is called a distance measure or a metric. Many methods
are implicitly based on such a measure, corresponding to an implicit assumption
about what is interesting. For example, methods that compute angles between gene
expression vectors assume that the length of the vectors is not interesting, and often
that all components of the vectors contribute equally to the angle.

Matching the data and the metric. To perform successful analysis, the data
and the assumptions about important differences (the metric) need to match each
other. Preferably, the metric should be chosen to match the data. However, this
has traditionally been difficult since computational methods contain implicit as-
sumptions which are hard to change. Instead, the data has been chosen to match
the assumptions (metric) through the use of expert knowledge about the problem
domain.

Commonly, expert knowledge is used to choose the data features to be analyzed,
e.g. by selecting interesting variables, or applying heuristic preprocessing transfor-
mations such as vector normalization or scaling. It is hoped that the chosen features
contain the important properties of the data and match the (implicit) assumptions
of the analysis methods. If they do not, the analysis may miss the important prop-
erties or falsely point out unimportant ones. For example, gene expression vectors
may be normalized or thresholded, and some treatments may be left out. Obvi-
ously, values below the threshold or left-out treatments will not be visible in the
analysis, and normalization may amplify noise along with real effects.

Unfortunately, expert knowledge is not always available. Even when it is, ap-
plying it to a large-scale problem might require a significant investment of time
from the experts. Moreover, expert knowledge may be limited or incorrect; this is
natural when the aim is to discover previously unknown phenomena. As a result,
there is a need to develop methods that automatically select good features, or even
better, build good metrics.

1.1 A New Approach

Recently, a principle called learning metrics was developed in our research group.
It is a way to replace implicit assumptions about similarity and distance with an
explicit, versatile assumption that the analyst can specify. The elegance of the prin-
ciple is that the assumption does not need to be stated in terms of a (potentially
complicated) known distance measure; instead, auziliary labels for the data samples
are used to learn a metric. Auxiliary labels are a widely available form of supervi-
sion, extensively used in tasks like classification; with the learning metrics principle,
they can be used to aid data analysis as well. Stated concisely, the importance of

13



1.2 Applications

a difference between data samples is determined by how much it discriminates the
auzxiliary data.

This thesis examines how to apply such supervision to exploration methods.
The learning metrics principle is used as a basis for developing practical methods
that focus on interesting phenomena in a range of different analysis tasks. Five
new methods derived from the principle are introduced. The methods result from
applying learning metrics to statistical data mining tasks such as visualization,
projections, distributional clustering, and co-occurrence clustering.

Part of the strength of the methods comes from their origin, the learning metrics
principle. The principle yields metrics with the following useful properties:

e They are data driven. Importance is specified through data labels; it is not
necessary to know a functional form for the importance of a difference between
data samples.

o They work with original features. No feature extraction or other transforma-
tion is needed; hence the results of analysis are easily interpretable in terms
of the original variables.

e They are widely applicable. The principle can be applied to any “metric” data
such as multivariate vectors, wherever auxiliary labels are available. Unla-
beled data can be analyzed after learning the metric.

e They can ignore noise to some extent. This includes “nuisance parameters”,
fluctuations in data density, and even position-dependent noise directions.
The result is far less vulnerable to noise than unsupervised metrics.

e They are local. Learning metrics can emphasize different data aspects in each
small part of the data; they can assess the importance of each local direction.
This makes the methods more versatile than ones that only use global effects.

e They are invariant. Learning metrics are invariant to a large class of data
transformations. Moreover, learning metrics preserve the topology of data
(aside from possible projective changes).

These properties justify the use of learning metrics-based methods for statistical
data mining.

1.2 Applications

“Learning metrics” is not a single analysis method: it is a principle for constructing
analysis methods. The resulting methods can focus on what is important for a
particular problem domain (data set).

Applying the principle to a real-world problem takes two stages. First, an
analysis method is constructed. The result is a generic method that works for any
problem domain in the learning metrics setting. Second, the method is applied to a
specific domain (data set), where it automatically learns the important properties
from the data. The two stages are discussed below.

14



1 INTRODUCTION

Application to distance-based methods. Learning metrics can in principle
be applied to any distance-based method. If the method does not require a certain
parametric form for the distances, then distances derived from the learning metric
can in principle be simply plugged in, and the method can then proceed as usual. If a
parametric form is required, learning metrics provides a rigorous, explicit definition
that can be used for example to derive gradients. Sections 6.1 and 6.2 discuss two
different ways to construct methods that work in learning metrics.

Learning metrics can be used even with methods that implicitly assume the
metric is simple (for example by using centroids), by learning simple parametric
forms to represent properties like clusters or principal components in the learning
metric.

In principle, distances between samples can be used to derive similarities or
kernels between them. Therefore, learning metrics could in principle be applied
to similarity- or kernel-based methods as well; this is a possible direction of future
work. In this thesis the learning metrics principle is applied directly to distance-
based methods.

Examples of problem domains. Analysis methods derived from the learning
metrics formalism can in principle be used in any domain where supervision (aux-
iliary labels) is available.

In bankruptcy analysis, financial statements from companies provide useful in-
formation for analysis. However, financial indicators derived from such statements
may reflect several (company-specific or general economic) trends that may have
little to do with the bankruptcy risk of the companies. Luckily, historical data is
available for companies that either went bankrupt within a limited time or stayed
in business. These outcomes (bankruptcy or not) could be used as auxiliary data to
learn a metric that focuses on differences that affect bankruptcy risk. The metric
could then be used to analyze the financial statements, both the historical ones
with known outcome and new ones.

In bioinformatics, the behavior of genes can be studied by measuring their so-
called expression levels in a series of treatments, relative to the expression levels
of genes in untreated cells. The aim of such analysis could be to learn about the
function of the genes. However, the expression levels are often very noisy and may
contain e.g. effects caused by the measurement environment or distortions caused by
the measurement process, which are not related to the gene function. Luckily, many
genes have known functional classes (such as “metabolism” or “protein synthesis”);
these could be used to learn a metric for the expression levels that focuses on
differences related to the gene function. This metric could then be used to analyze
genes with or without a known functional class.

In customer profiling, the purchasing behaviour of customers (e.g. histograms
of product purchases) can depend on seasonal variation, time of day, geographical
location of a store, customer age, customer wealth, and other factors. For decision-
making it is useful to focus on one factor, e.g. customer age, and discover which
differences are related to it. If the customers can be grouped by age, learning
metrics could then be used to analyze their purchasing behaviour with a focus on
differences related to age. Similar analyses could be done for the other factors.

In analysis of text corpora, the “bag of words” model is often used to model

15



1.3 Structure of the Thesis

documents. Under the “bag of words” model, documents are described by their word
distributions. However, it is known that not all words are “content words” and hence
word histograms can depend on writing style (verbosity, synonyms), formatting
(headers in newsgroup messages), and other effects unrelated to the underlying
topics of the documents. If labeled documents (e.g. categorized news articles or
categorized abstracts of scientific articles) are available, the word histograms could
be analyzed focusing on differences that discriminate between documents in different
topical categories.
More examples of problem domains are found in the publications.

Not just classification. In the above examples, the aim is not merely to obtain
good classification performance; instead, the relationship between the classification
and the features is to be analyzed. The analysis may reveal subclasses (separate
concentrations of a particular class in the feature space), relationships between
classes (e.g. a subset of classes might occur next to each other, or have some other
hierarchical structure), and relationships between the classes and the features (e.g.
a group of classes might differ mostly along a single feature).

For example, gene expressions might be analyzed with respect to disease classes;
the objective might not be to classify whether an expression profile corresponds to
a disease, but to discover how the disease probabilities vary among the expression
profiles, in order to learn about the diseases and eventually devise cures for them.

Often, methods for such analysis also produce good classification, but this is a
side benefit rather than the main goal: a classification result alone does not tell why
the method succeeded or not. Discoveries made in the analysis may even lead to a
refinement of the classification, e.g., distinguishing between discovered subclasses.
For example, diseases may have variants, and the chosen treatment may also depend
on the overall health of the patient.

Nevertheless, even in fully supervised tasks like classification good features are
necessary for good results; preprocessing strategies like dimensionality reduction
and incorporation of prior knowledge can improve performance for neural networks
[13]. Learning metrics could therefore be used as preprocessing for distance-based
supervised tasks; however, the division of labor between the metric and the method
is then less clear. This thesis focuses on tasks where the final aim is exploration.

1.3 Structure of the Thesis

The introductory part of this thesis starts with a review of necessary background
knowledge (Chapter 2) and overviews of relevant unsupervised exploration methods
(visualization, clustering, and modeling) and supervised methods (Chapters 3 and
4). Readers who are familiar with the reviewed concepts and methods may skip
these chapters at first, and refer to them later if necessary.

Next, the theory of learning metrics is reviewed in Chapter 5. In a nutshell,
distances are defined locally through a quadratic form that depends on the condi-
tional distribution of auxiliary data, and globally through minimal path integrals.
The implications of the definition (e.g., role of the auxiliary data, regularization,
and properties of the metric) are examined, and comparisons to related approaches
are given.

16



1 INTRODUCTION

Practical methods based on the theory are presented in Chapter 6, and two
approaches to constructing practical methods are discussed. In the first approach,
approximate distances are computed in learning metrics; several approximations are
discussed. In the second approach, objective functions are used whose optimization
is related to exploratory tasks in learning metrics; examples for clustering and
projection tasks are discussed.

Lastly, conclusions are drawn in Chapter 7. Chapters 5 through 7 (Chapter
6 in particular), along with this chapter and the publications, contain the main
contributions of the thesis.
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2 BACKGROUND

This chapter provides background knowledge about Bayesian inference, information
theory, information geometry, and optimization techniques. Bayesian inference is
used in a learning metrics clustering method (Section 6.5.2), and intricate Bayesian
inference is one application of a visualization method (Section 6.6.1). Information
theory and information geometry are central foundations behind the definition of
the learning metric which is presented in Chapter 5. The description of optimization
techniques covers techniques used in the various learning metrics methods.

2.1 Bayesian Inference

Bayesian inference refers to fitting a probabilistic (generative) model to a set of
observations so that the result is a probability distribution for the model parameters
and for new data [48].

The central characteristic of Bayesian inference is that the uncertainty related
to a parameter is defined as a probability distribution over its range of values.
Before the model has been fitted, that is, before any data have been observed, the
parameter distribution is called a prior; priors are often fairly noninformative, that
is, they do not emphasize particular values.

For a textbook account of Bayesian data analysis, see [48].

2.1.1 Bayes’ Theorem

When observed data D are shown to the model the model becomes fitted, that is,
parameter probabilities are updated with the new information in the data. The
remaining uncertainty is retained as a posterior probability distribution for the
parameter values. The update is given by Bayes’ theorem: the posterior probability
of a parameter @ given the observed data is

p(DI0, H)p(0|H) _  p(DI0, H)p (9IH)
p(DIH) [, p(DI6", H)p(0'[H)

p(0| D, H) = (1)

where on the right-hand side, the two terms in the numerator are the likelihood
and the prior probability of the parameter, and the denominator is the evidence of
the data. Here H is a hypothesis (model family) for the data, and the value of the
parameter 6 specifies a particular model in the family. For example, D could be
samples of multivariate vectors, H could be the family of normal distributions, and
0 could specify the mean and covariance matrix of the distribution.

The posterior emphasizes parameter values that (i) have a large prior probability
and (ii) describe the training data well. The posterior is often more focused than
the prior.

Comparison to point estimates. The way the model is fitted (adjusting prob-
abilities of parameter values) distinguishes Bayesian methods from methods that
choose a single parameter value, called a point estimate.

The maximum likelihood (ML) and maximum a posteriori (MAP) estimates
are common examples of point estimates. The ML estimate for the parameter
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0 is given by 0y, = argmaxy p(D|f',H), and the MAP estimate is given by
Orrap = argmaxg p(0'| D, H).

Point estimates, such as maximum likelihood and maximum a posteriori esti-
mates, may suffer from overfitting; even if a particular model describes the training
data well it may give bad predictions for new data (see below). This is particularly
likely for complicated models where many alternative parameter values describe the
data well. As noted at the start of Section 2.1, the Bayesian method is to retain the
entire posterior distribution (or at least some statistics) instead of a single point,
through all intermediate stages of the analysis. For final decision-making, a MAP
estimate can be used.

The analysis is not assumption-free. It was noted at the start of this thesis
that all analysis is based on some set of assumptions. For example, we might
assume that data samples are independent and identically distributed, or that they
are generated by a normal distribution. In Bayesian analysis, the assumptions can
be written as an explicit property of a model or a model family.

In principle, the assumptions could be relaxed by choosing a larger family. How-
ever, as the assumptions become weaker, the size of the family (range of possible
models) grows, and specifying a prior and computing the posterior might become
impossible. Therefore, some assumptions (restrictions) are necessary in Bayesian
analysis as well.

2.1.2 Predictive Distribution

A fitted model can be used to predict new data. The posterior probabilities of new
data are called the predictive distribution. The probability of new data x given
training data D is

p(lD, H) = /9 p(]6, D, H)p(6|D, H)db (2)

where H and 0 are again the model family and its parameters, and = is often
assumed independent of D given 6, so that p(z|6, D, H) = p(z|0, H).

The predictive distribution is an expectation over the probabilities p(x|6,H)
given by the individual models. Each model is weighted by its posterior prob-
ability. That is, the distribution of new data is marginalized over the posterior
distributions of the model parameters. This reduces the problem of overfitting: if
several parameter values describe the training data well, the predictive distribution
is affected by all of them instead of a single one.

Other uses of marginalization. Besides the predictive distribution, the tech-
nique of marginalization can also be used to obtain the posterior distribution of
any single parameter from the joint posterior of all parameters. This is especially
useful if the model contains ‘“nuisance parameters” that have no value for analysis.
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2.1 Bayesian Inference

2.1.3 Bayes Factor

The Bayes factor compares two model families (hypotheses) for the data. The Bayes
factor is given by

_ p(al6, H) _ p(i]z, H) p(62|H)
BEOw Ol 1) = 0,0 7) = plGalaH)  p(BilH) ®)

where H is a parent model family (the hypotheses assumed for the data), and 6,
and 6y can be individual subfamilies of H. The first term on the right-hand side
is the ratio of the posterior probabilities of the subfamilies, and the second term
is the (inverse) ratio of their priors. If 6; and 6 are individual models instead of
subfamilies the above expression is denoted a likelihood ratio instead of a Bayes
factor.

The Neyman-Pearson lemma shows that the optimum test for two hypotheses
is of the form BF(6y,02|x,H) > T where T is a nonnegative threshold (see [34]).
Comparisons based on the Bayes factor are especially useful for “nested” models
where one model (family) is a subset of the other. In [48] it is pointed out that
Bayes factors can be helpful for model comparison if the likelihoods are proper,
there are no intermediate models between the compared ones, and both models
make sense scientifically; however, comparing two models out of a continuous range
of models may not be meaningful.

Optimizing the Bayes factor. In some applications the Bayes factor can be
used as an objective function. Suppose that the data x are obtained from a para-
metric transformation such as a clustering. We can study and optimize the behavior
of BF with respect to such parameters.

In such applications, it is important to note that the Bayes factor is not equal
to the posterior probability of either model (subfamily). If the models are mutually
exclusive then BF' is a monotonic function of the posterior of e.g. #;. In general,
however, both posteriors may be large or small simultaneously. In Section 6.5.2 the
Bayes factor is optimized with nonexclusive subfamilies.

2.1.4 Contingency Tables

A contingency table is a useful representation for the observed co-occurrences of
discrete variables, such as words and document indices in a text collection. A con-
tingency table can be represented as a multidimensional matrix with one dimension
for each variable. Each entry denotes the number of co-occurrences for a specific
combination of margin values. For example, in the case of two variables X and
Y, their values are indexed by the row and column indices of a two-dimensional
table (matrix), where the value in entry (z,y) is a positive integer that denotes the
number of observed co-occurrences (X = z,Y = y).

A survey of exact contingency table inference methods for e.g. testing conditional
independence can be found in [1].

In this thesis, a novelty is to use contingency tables for clustering; traditionally
they have been used for other purposes. For clustering, the variables in the table
could be cluster indices and some discrete property of the clustered data.
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A contingency table can be used in two different clustering settings: the data
in the table (such as clusters vs. words) may directly define the clustering, or the
clustering may depend on some features not shown in the table. In the latter case,
the table may compare some properties not used in the clustering itself (such as
clusters vs. categories of data). The learning metric method in Section 6.5.2 uses
the first setting, and some learning metric methods in Section 6.8 use the second
setting.

2.2 Information Theory

Information theory is concerned with the information content in realizations of ran-
dom variables, and with transmission of that information over channels of restricted
capacity, which naturally leads to the concept of data compression. The main con-
cepts of information theory in this thesis are entropy, mutual information, and
the Kullback-Leibler and Jensen-Shannon divergences; all of these are asymptotic
concepts that directly reference the distributions of random variables.

For a textbook presentation on information theory, and references to the con-
cepts in the following, see [34].

2.2.1 Entropy

The entropy of a discrete random variable X with a set of values x; indexed by
i=1,...,Nis HX) = -3, p(X = x;)logp(X = x;), where i ranges from 1 to a
finite number N of values, or goes to infinity if X has a countably infinite number
of values.

The (differential) entropy of a continuous random variable is similarly defined;
instead of a sum an integral over probability density of the values is applied by
h(X) = — [ p(x)logp(x) where p(x) is the probability density at value z.

Entropy measures the expected information content in one observation of a
random variable. The unit of information is called a “bit” if a base two logarithm
is used and a “nat” if a natural logarithm is used.

The differential entropy of a (multidimensional) continuous variable is invariant
to translation, but not to scaling: h(AX) = h(X) + log|A| where A is a matrix
and |A| is the absolute value of its determinant. A delta distribution (only one
possible value) produces the smallest entropy. The largest entropy is produced by a
uniform distribution if the range of the variable is finite, and a normal distribution
if the range is infinite (for a fixed variance).!

IMore generally, consider minimizing the Kullback-Leibler divergence (Section 2.2.4) between
a distribution p and a fixed estimate f, under constraints on p (that specify expected values for a
set of functions). This yields a distribution p in the so-called exponential family which includes,
e.g., Gaussian and multinomial distributions (see [12]). Entropy maximization can be seen as such
optimization in the limit where f approaches uniform. See [12] for more information.
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2.2 Information Theory

2.2.2 Mutual Information

The mutual information of two discrete random variables X and Y is

(X =x;,Y = yj)
X =z)p(Y =yi)

=HX)+HY)-HX,Y) (4)

I(X,)Y)= ZZp(X =x;,Y :yj)logpzz

where z; and y; are values of X and Y indexed respectively by ¢ and j. If X or YV’
are continuous variables instead, similar definitions are obtained by replacing the
respective sums by integrals, similarly to the definition of differential entropy.

Mutual information is always nonnegative. If the variables are independent,
their mutual information is zero, otherwise it is positive, but at most the joint
entropy of the variables. Mutual information is the loss of entropy in Y after
observing X: HY|X)=HY)-I(X,Y) < H(Y).

Mutual information between a continuous (multidimensional) variable X and a
discrete variable Y is invariant to translation and scaling of the continuous variable:

I(AX +b,Y)=I(X,Y) for full-rank matrices A and vectors b.

Relation to classification error. The mutual information between a feature
variable Y and a categorical variable C'is related to classification error (the average
proportion of test samples where an incorrect category is chosen; see Chapter 4).
Torkkola [119] notes that mutual information gives an upper and a lower bound
to the error F of a Bayes-optimal classifier. The upper bound, due to Hellman
and Raviv [56] is E < H(C|Y)/2 where C are classes and Y are features. The
lower bound (Fano’s bound) is given by Fano’s inequality. Stated for classes, it says
H(E)+ Elog(|C| —1) > H(C|Y), where |C| is the number of classes; this can be
weakened to E > (H(C|Y) —1)/log|C|.

2.2.3 Renyi Entropy and Renyi Mutual Information

The Shannon entropy and the mutual information based on it are difficult to com-
pute analytically for complicated distributions (e.g. mixture distributions for contin-
uous variables). A different definition of entropy called Renyi quadratic entropy has
been developed, and has been considered easier to estimate. The Renyi quadratic
entropy of a discrete random variable X is defined as [94]

Hgr(X) = —IOgZP(X = ;) (5)

where the z;,i = 1,..., N, are the values of X. The definition for a continuous vari-
able is the corresponding integral. Shannon entropy and Renyi quadratic entropy
are special cases of a parametric family of so-called Renyi entropies,
Hpo(X) =log(d; p(X = x;)*)/(1 — ), where « is the parameter: the value o = 2
yields the quadratic entropy while the limit o — 1 yields the Shannon entropy [94].

A nonparametric estimate of the Renyi quadratic entropy of continuous variables
can be written through pairwise interactions [94]. Let N(x;x;,o%I) be the value of
a normal distribution (Gaussian function) centered on x;, with covariance matrix
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o?1. Given data {x;}¥ i—1, the quadratic entropy can then be estimated as

1 1
2 ~ v g2 B/
,log/xp(x) dx~—log/x (N g N(x;x;,0 I)) ¥ g N(x;x;,0°T)
7 J

1 1
=3z (/ N(x;x,;,a2I)N(x;xj,azI)dx> = fﬁZN(xi;xjﬂazl). (6)
2,7 x

2%

The approximation on the first line is due to the density estimation. The last
equality follows since either normal distribution is a conjugate prior for the other.

A measure of quadratic mutual information is derived in [120], based on a par-
tially heuristic quadratic divergence derived in [94], to yield

Ir (X4, X5) :/ p(x1, )% dx das —|—/ p(z1)*p(x2)*dr das

T1,T2

—2/ p(x1, z2)p(x1)p(x2)dardre . (7)

2.2.4 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence between two probability distributions p and
q for a discrete variable X is

.’L‘
D 1 8
KL(P: ¢ ZP og q(z) (8)

An equivalent definition for continuous variables is obtained by replacing the sum
with an integral. The KL divergence is always nonnegative and is zero if and only
if p = ¢. In general it is not upper bounded; if p(z) > 0 and ¢(z) = 0 for some z,
the divergence will be infinite. The KL divergence is not a distance measure: it is
not symmetric and does not satisfy the triangle inequality.

Notice that the mutual information (Section 2.2.2) between two variables X
and Y is simply the KL divergence between their joint distribution p(z,y) and
the product p(z)p(y) of their marginal distributions: I(X,Y) = H(X)+ H(Y) —
H(X,Y) = Dxu(p(X,Y),p(X)p(Y)).

Kullback-Leibler divergence is used to define local distances in the learning
metric (see Section 5.3). Its special case, mutual information, is used to define the
objectives of Information Bottleneck (Section 4.3.3) and the learning metric method
in Section 6.5.1, and the asymptotic objective of the learning metric method in
Section 6.5.2.

2.2.5 Jensen-Shannon Divergence

The Jensen-Shannon (JS) divergence [83] is an alternative to the Kullback-Leibler
divergence. The Jensen-Shannon divergence between two probability distributions
p1 and po for a variable X is

Djs(p1,p2) = m1Dkw(p1, mip1 + map2) + ma Dk, (p2, mip1 + m2p2) 9)

23



2.2 Information Theory

where m1p; + mops is a weighted average of p and ¢ with nonnegative weights m;
that sum to one. The Jensen-Shannon divergence is nonnegative and symmetric,
and for positive weights, it is zero if and only if p; = ps.

In a special case for categorical data, the Jensen-Shannon divergence can be
interpreted as a mutual information. If p;(z) = p(z|c;) are distributions of a feature
X given categories ¢;, and the weights are m; = p(¢;)/(p(c1) +p(c2)) where p(c;) are
priors for the categories, then Djs(p1,p2) = I(i, X|c1 Veg) is the mutual information
between the category index ¢ and the feature X.

In Section 6.5.2 and Publication 6, Jensen-Shannon divergence is used in asymp-
totic connections for the learning metric method in Section 6.5.2. In Publication 4,
Jensen-Shannon divergence is used in an asymptotic cost function comparison for
the learning metric method in Section 6.6.1.

2.2.6 Fisher Information

Consider a density function p(x; 6) parameterized by a scalar variable . The Fisher
information of 6 is

The term inside the parentheses is called the score for 0 at x; it is a zero-mean
random variable derived from the random variable x. Pay attention to the use
of the variables: the score is computed for a particular value pair of 6 and x,
based on the -gradient of logp around that pair. The Fisher information takes an
expectation over x, hence the result is a (deterministic) function of 6.

For a multivariate parameter 6, the Fisher information can be generalized to
the Fisher information matrix, which is defined by

J(0) = Ep(x0) {(8%1ng(><; 0)) (a%bgp(X; 0)>T} : (11)

The Fisher information (matrix) in a sense measures how much the distribution
p would change if the parameters were changed slightly. It is related to the Kullback-
Leibler divergence between distributions (Section 2.2.4); it can be shown that

Dxr.(p(x;0),p(x; 8 + d8)) = d8” 3 (0)d6 (12)

for a differentially small change d@.
The Fisher information matrix is used in the definition of the learning metric in
Section 5.3.

2.2.7 Cramér-Rao Inequality

The Cramér-Rao inequality provides a bound on the variance of unbiased estimates
(estimates that on average yield the correct value) for the parameter of a density
function. For an unbiased estimate 6(X) of § we have

var(0(X)) 2 5 (13)
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where J(6) is the Fisher information of 8 (see Section 2.2.6).

The Cramer-Rao inequality provides a relation between estimating the param-
eters of a density function and estimating a function of the parameters. Consider a
density function p(x;6) parameterized by 6 and any function f(#) of the parame-

ters. The Cramer-Rao inequality states that the variance of an unbiased estimator
f(X) of fis bounded by (see [77])

(0f/00)?

var(f(x)) = 8

(14)

Intuitively, the numerator tells how much the function depends on finding the cor-
rect parameters for the density, and the denominator tells how much information a
finite data set tells about the parameter.

The Cramér-Rao inequality is not directly used in learning metrics; it is provided
here to help understand the motivation behind the Fisher information matrix.

2.3 Geometry and Information Geometry

Information geometry studies the concepts used in information theory from a geo-
metric viewpoint; for example, model families can be considered as manifolds in a
parameter space. The geometries of the parameter spaces and the manifolds affect
the properties of learning algorithms. For textbook presentations of information
geometry, see [2, 89].

2.3.1 Metrics

This discussion follows the presentation in [98].

A metric or distance function is a function d defined in a set X, with four properties:
1. d is nonnegative and finite: 0 < d(z1,z2) < oo for all 27 and x5 in X.
2. d(z,y) =0 if and only if z = y.
3. d is symmetric: d(z1,22) = d(z2,21).

4. The triangle inequality holds: d(z1,x2) < d(x1,z3) + d(z3,x2) for all z1, xo
and z3 in X.

A metric in X always defines a topology in X.2 The concept of topology is
important for the discussion of topology preservation in Section 5.5.

2.3.2 Fisher Metric

A Riemannian metric is defined based on an inner product g between tangent
vectors. The length of a tangent vector v is \/g(v,v). If v is a path between any

2Briefly, a topology is a collection 7 of subsets of X, including X and the empty set, such that
the intersection of a finite number of subsets in 7, or the union of an arbitrary collection of subsets
in 7, also belongs to 7. The members of 7 are called the open sets in X. Given a metric, one can
define an open ball with radius r as points closer than r to some centre; arbitrary unions of such
balls constitute the open sets. See, e.g., [98| for more information.
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two points p and ¢ (that is, a continuous function (¢) where v(0) = p and v(1) = q),

its length is
1
length(y) = / oo (). (1))t (15)
0

where g, () is the inner product at the point (¢), and ~/(t) is the tangent of the
path. The distance between p and q is then defined as

4(p-q) {vwm)ig,fw(l):q} tength(?) (16)

The Fisher metric is a Riemannian metric where the inner product between tan-
gent vectors v and w at point p is defined through the score function (see Section
2.2.6): gp(v,w) = E,{score,(v),score,(w)}. The score must be square-integrable
for this construction. Notice that when the tangent vectors v and w are deriva-
tives with respect to variables 6; and 6;, the corresponding inner products are the
elements of the Fisher information matrix (see Section 2.2.6).

Note that much of the formal machinery underlying this definition has been
omitted here. For a more thorough treatment see [89].

The learning metric defined in Section 5.3 is functionally closely related to the
Fisher metric.

2.3.3 Natural Gradient

The natural gradient [4] of a function is the direction of its steepest ascent in
Riemannian metrics. The traditional gradient is insufficient in such metrics since the
change in the function and the distance incurred can both depend on the direction.
The natural gradient of a function is the direction that maximizes the function for
a fixed-length (differentially small) step. It is related to the traditional gradient by

0
—Ix) (a7)

where the matrix J(x) is the local metric near x, that is, the squared distance in a
small step from x is d?(x,x + dx) = dxT J(x)dx.

The natural gradient is used to train the learning metric method in Section
6.4.1.

vnaturalf(x) = Jil(x)

2.3.4 Reproducing Kernel Hilbert Spaces

This discussion follows that of [7].

According to Mercer’s theorem, a kernel K(z,y) between data points = and y
can be interpreted as the inner product ¢(z)% ¢(y) between some high-dimensional
features ¢(x) and ¢(y), if the matrix of kernel values K (z,y) is positive definite for
any collection of data.

In methods like support vector machines ([33]; Section 4.1.5) the actual features
need not be computed—the kernel that implicitly defines the features suffices.

The implicit features of the data can be seen as functions ¢(x) = K(-,z) in a
Hilbert space of functions, called a reproducing kernel Hilbert space (RKHS).? The
choice of kernel defines the functions in the RKHS.

3The kernel is called “reproducing” since < f(-), K(-,x) >= f(x), where f is any function in
the space, and < -,- > is the inner product of the space.
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Gaussian kernels are useful for assessing independence of random variables as
follows. Given two variables x;, i € {1,2}, do the following: first, form a RKHS. In
the RKHS, compute the inner product of each function ¢(x;) with a fixed function
fi- Since the x; are random variables, the inner products are also random (scalar)
variables. The maximal correlation of these new variables (maximized over the
choice of f;) is called F-correlation. Independence of the x; corresponds to zero
value of the F-correlation for Gaussian kernels [7].

Maximizing F-correlation can be interpreted as a ‘find smallest eigenvalue’ prob-
lem [7]. A generalization that considers all eigenvalues yields so-called kernel gen-
eralized variance, which is asymptotically related to an approximation of mutual
information.

Reproducing kernel Hilbert spaces are part of the background knowledge for sev-
eral kernel methods related or alternative to learning metrics, discussed in Section
5.7.

2.4 Optimization Methods

The setting and objective (function) of a method determine many of its theoretical
properties, but the chosen optimization algorithm can have a large effect on practi-
cal performance, e.g., on computational (time and space) complexity, convergence
speed and handling of local minima. Optimization methods related to the methods
introduced in the thesis are discussed in this section.

While some problems can be solved by a single-step approach, most complicated
optimization requires iterative algorithms. They can be divided into batch and
sequential algorithms; batch algorithms process the entire data set for computing
the parameter update, while sequential algorithms update based on a single sample.
Another noteworthy division is between deterministic algorithms and stochastic
algorithms which involve random sampling.

2.4.1 Expectation Maximization Algorithm

The EM algorithm (EM; [37]) is a deterministic batch optimization algorithm that
can be used to optimize generative models with hidden data. Such a model generates
a joint density for both observed and hidden data; the EM algorithm maximizes the
marginal likelihood of the observed data, where the hidden data are marginalized
out. It can be seen as a special case of a variational algorithm [21].

The EM algorithm alternates two steps: expectation (the E-step) and maxi-
mization (the M-step). The E-step optimizes the parameters of the hidden data
given the observations and the rest of the model parameters; the M-step optimizes
the other parameters of the model, given the observations and the values of the
parameters of the hidden data.

The EM algorithm is commonly used with mixture models, where the choice of
which components generate which data samples can be seen as hidden data. For
example, consider fitting a mixture of spherical normal distributions to vectorial
data {x;}. Parameterize the means of the normal distributions by 6, the mixture
weights by 7; and assume constant and equal covariance matrices oI for simplicity.
The hidden data g;; are the indicators of which component generated training
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sample x;. In the E-step, the hidden data are estimated as

m;j exp(—|[xi — 6;|[*/20?)

9ij = 18
1= S exp(—I[xi — 6]2/20%) 18)
and in the M-step, the centers are updated as

g, = iduXi (19)

> ij

It can be shown that the EM algorithm never decreases the marginal likelihood of
the model, and that the algorithm converges. However, the algorithm may converge
to a local maximum of the likelihood instead of the global maximum likelihood
solution.

Amari [3] has shown that the EM algorithm can in most cases* be seen as
alternating minimization of a Kullback-Leibler divergence: in the E-step of the
ith iteration, set Q; = argmingep Dkr.(Q,FP;), and in the M-step, set Py =
argminpepr D1, (Q;, P), where P; is the model at iteration ¢, M is the model
family, @; is the complete-data model, and D is the manifold of complete data
given the observations

The EM algorithm for mixture density estimation can also be seen as a special
case of soft clustering based on the so-called Bregman divergence [§].

In the context of this thesis, the EM algorithm is used for optimizing two clus-
tering models in Section 4.3.2 and a density estimator that can be used as part of
the training for the learning metrics method in Section 6.4.1.

2.4.2 Gradient Methods

Gradient methods update parameters a small amount in the direction that yields
the largest improvement in the objective function, i.e., the gradient direction. An
overview of gradient methods and a reference to the methods below can be found
in [13].

Two methods used in this thesis are stochastic gradient descent and conjugate
gradient descent. The former is used to optimize the two learning metrics methods in
Sections 6.5.1 and 6.6.1. The latter method could also be used there, and moreover,
it will be used for one stage of optimization for the learning metric method in Section
6.4.1.

Stochastic Gradient Descent. Stochastic gradient is a sequential, stochastic
optimization algorithm that is used to optimize the learning metrics methods in
Sections 6.5.1 and 6.6.1.

Stochastic gradient descent is applicable to decomposable objective functions,
that is, functions of the type F(0) = Y, f(x;0), where the f are sample-specific
functions.

Given a training dataset of samples x, the stochastic gradient algorithm repeats
two steps: at each iteration ¢, first pick a sample x(t) at random. Then update 6

4The condition is that the expectation of the sufficient statistics of the hidden data given the
sufficient statistics of the observations must be a linear function of the latter.
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by
001 +1) = 0(1) + (1) o F(x(1):0(1) (20)

where «(t) is a learning rate, usually a monotonically decreasing function of ¢t. The
a(t) should satisfy conditions >, a(t) = co and >, a?(t) < co. On average, the
stochastic gradient update corresponds to the full gradient %F(G).

Given certain conditions on the objective function and the learning rate, the
stochastic gradient converges to a (local) optimum of the objective function. See
[19] for discussion of the theory of stochastic approximation.

Conjugate Gradient. Conjugate gradient is a deterministic batch optimization
technique used to optimize the CMM (conditional mixture model) estimator (see
Section 6.1) in Section 6.4.1, and is also applicable to optimize the discriminative
components in Section 6.6.1.

Conjugate gradient minimizes the cost function F'(0) by line search along several
successive conjugate directions. Let @(n) be the parameters at step n, and denote
r(n) = —O%F(O(n)). The first direction of line search is simply s(0) = r(0). After
the line search the parameters are updated to get 8(n + 1), and a new line search
is started. At each step the direction of search is updated by s(n+1) =r(n+1) +
B(n 4+ 1)s(n) where the scalar 3(n 4 1) is given by the Polak-Ribiére formula as

r’(n+1)(r(n+1) —r(n))
r’(n)r(n)

B(n) = (21)

(An improvement is to ensure [ is at least zero.) For quadratic functions F(0),
conjugate gradient finds the global optimum. Applying conjugate directions to
stochastic gradient descent has been studied in [102].

2.4.3 Markov Chain Monte Carlo Sampling

In Bayesian analysis it is often desired to compute posterior probability distributions
for a variable instead of finding a single optimal value by some criterion.

If a variable has a complicated probability distribution, it often becomes im-
possible to analytically compute expectations (of some function) over the distri-
bution. Instead, sampling is applied to replace the analytical expectation with an
average over sufficiently many samples. So-called Monte Carlo sampling includes
basic methods like importance sampling and rejection sampling, but also meth-
ods based on a random walk through the distribution, called Markov Chain Monte
Carlo (MCMC) sampling (see e.g. [84] for an introduction). The latter methods
produce a chain of samples. They are preferable for high-dimensional problems.
The Metropolis-Hastings and Gibbs algorithms are examples of MCMC sampling
algorithms.

Metropolis-Hastings sampling. In Metropolis-Hastings sampling, a probabil-
ity distribution p(x) is sampled as follows. Let ¢(x'|x) be a jumping kernel, a
(usually simple) distribution over x’ for each value of x. The algorithm starts at
some point x(0), and at each step samples a candidate next point from ¢(x'|x(t)).
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The candidate is accepted with probability

p(x)g(x(t)x)
p(x(t))g(x'|x(t))

(if this value is above one, the candidate is always accepted). If the candidate is
accepted, set x(t + 1) = x/, otherwise x(t + 1) = x(¢). If ¢ is symmetric with
respect to x and x’, the acceptance does not depend on the jumping kernel and the
algorithm reduces to Metropolis sampling.

(22)

Gibbs sampling. In contrast to Metropolis-Hastings sampling, Gibbs sampling
does not use a jumping kernel and never rejects samples. In Gibbs sampling, each
parameter is sampled from the posterior given the newest values of the other pa-
rameters. Denoting 6 = {61, ...,60,}, at iteration ¢ the algorithm first samples 61 (t)
from p(61]02(t—1),...,60,(t—1)), then O2(t) from p(02]6 (t),05(t—1),...,0,(t—1))
and so on until 8,(¢t) is sampled from p(6,]61(¢),...,0,—-1(¢)). The next iteration
then starts, and the sampling begins anew at the first component.

In Publication 4, MCMC sampling is used as an application for the learning met-
rics method in Section 6.6.1; the experiments there are done with Gibbs-sampled
chains. It could also be used as an alternative optimization technique for the meth-
ods in Sections 6.5.1 and 6.6.1.
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3 UNSUPERVISED METHODS

Unsupervised methods summarize, model, describe or visualize data “without a
teacher”, that is, based on unlabeled samples x of a (multivariate) random variable
X, either discrete or continuous.

3.1 Visualization

Visualization is an essential part of data analysis by a human analyst; it can be
used to study the shape of the data distribution and assess what phenomena the
data contains, and to visually check the quality of solutions found by computational
methods, such as cluster borders, projection directions or parameters of generative
models. This section discusses unsupervised visualization; in Chapter 6, supervised
visualizations derived from the learning metrics principle are presented.

Traditional visualization methods include line and pie charts of functions, and
two-or three-dimensional scatter plots of the values of selected variables. Common
to such methods is that they are not learned from the data, but are simple functions
of their inputs. As a consequence, a comprehensive view of the data might require
viewing numerous such visualizations, e.g. scatter plots of each variable pair. This
is not feasible for large-dimensional data sets such as word histograms of documents
in a document collection with a large dictionary. Therefore, more complex methods
that learn visualizations from the data have been developed, where the aim often
is to capture the “shape” of the data in a few visualizations.

Tufte [123] gives several examples of good and bad visualizations and principles
that good ones should follow. According to Tufte, good visualization should not
distort the data (that is, “lie”). Tufte defines a “lie factor” that measures the propor-
tional size of an effect in a graphic compared to the size of the effect in data. In a
good visualization, the sizes should be equal. Visualizations should show variation
from the data, not from the design. Moreover, the number of dimensions on the
graphic should not exceed the number of dimensions in data.

The following sections review a number of visualization methods that learn
visualizations from data.

3.1.1 Self-Organizing Map

The Self-Organizing Map (SOM; [73]) is a well-known method for nonlinear visual-
ization of multivariate data. The SOM is an ordered grid or lattice of computational
units, where each unit is represented as a model vector in the same space as the
data.

The most common SOM lattice is a two-dimensional hexagonal grid where each
unit has six immediate neighbours, except at the edges. Rectangular (four neigh-
bours per unit) and triangular (three neighbours) lattices are also possible. The
units are connected by the grid, with strengths defined by a neighbourhood func-
tion. The corresponding model vectors form a nonlinear submanifold in the data
space.

The SOM can be trained with a data set to make the model vectors (the mani-
fold) follow the data, in an ordered fashion that depends on the lattice. After the
training, the values of the model vectors can be studied on the lattice.
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3.1 Visualization

Training. The SOM can be trained either by an online algorithm or by a batch
algorithm.

The online algorithm for training the SOM iterates two steps: winner selection
and adaptation, as follows.

e At iteration ¢, a sample x(t) is picked from the data.

e The winner selection step selects the unit w whose model vector best matches
the sample. The best match is defined by

w(t) = arg miin d?(x(t), m;(t)) (23)

where d? is usually the Euclidean squared distance, d?(x(t), m;(t)) = ||x(t) —
m; (£)]*.

e In the adaptation step, the model vectors of all units are updated by moving
them towards the sample. The amount of adaptation depends on how close
each unit is to the winner on the lattice; hence the map adapts to the data in
an ordered fashion. The update rule is

m;(t+ 1) = my(t) + a(t)hy),(x — mi(t)) (24)

where a(t) is a learning rate and h,,(),. is the neighbourhood function around
the winner unit w(t) (having values in the interval from 0 to 1). As the
training progresses, the learning rate is decreased and the neighbourhood is
tightened around each unit.

Visualization. The most common SOM visualizations are component planes,
u-matrices, and projections of the model vector grid. Figure 1 shows example
visualizations.

A component plane (see (a) in Figure 1) shows the values of the model vectors
along a selected variable (component of the model vector) on the SOM lattice. The
values are encoded into gray levels or colors, and the area of each unit on the lattice
is filled with the associated color. Alternatively, the number of samples for which
each unit was the best match can be shown.

The U-matrix is a matrix containing the distances of each pair of neighboring
model vectors in the input space. The U-matrix can be visualized together with a
component plane (see (b) in Figure 1), by placing a “distance unit” between each
pair of neighboring units on the lattice, and colouring the area of each distance unit
according to a gray-level or color encoding of the distance values.

The shape of the model vector grid in the input space can be visualized by
a scatter plot of the model vector values projected on a plane (e.g. along some
selected components; see (c¢) in Figure 1). Lines are commonly drawn between
model vectors of neighboring units to visualize the lattice connections. If the input
dimensionality is large, a single linear projection may not visualize the shape of the
grid well. As an alternative, Sammon’s mapping (see Section 3.1.2) has been used
to visualize the grid; see (d) in Figure 1.
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Figure 1: Self-organizing map visualizations. The data are sampled from four
Gaussians at the corners of a tetrahedron, and a 10 x 10 hexagonal SOM is trained
to the data. Visualizations: Z-coordinate plane (a), U-matrix (b), input-space grid
(c; data shown as light dots), Sammon’s mapping (d).

Variants. There are numerous variants of the basic SOM, including many exten-
sions to other types of data like time series or tree-structured data. A full listing is
beyond the scope of this thesis.

An often raised issue with the SOM is whether it has a cost function. Although
the standard training algorithm as such is easy to understand, it has been shown
that it does not perform gradient descent on an energy function [44]. Heskes [57]
has introduced a variant that does.

The cost function in Heskes’ variant is

1
Exfmin 5 > hijlx — my |} (25)
J
which corresponds to the modified winner selection rule

w(t) = argmiinZhinx(t) —m; (1) (26)

A method similar to SOM but based on an energy function has also been pro-
posed, called the Generative Topographic Mapping (GTM; [14]).

A learning metric method based on the SOM is introduced in Publication 1 (see
also Publications 2 and 7), and discussed in Section 6.4.1; Heskes’ SOM variant is
used to analyze the learning metric method.

3.1.2 Multidimensional Scaling

Multidimensional Scaling (MDS) methods seek feature values (locations) for a data
set, such that the locations preserve distances between the data samples. MDS
methods are subdivided into metric MDS methods that preserve the distance values
and nonmetric MDS methods that preserve, e.g., the order of the distances. MDS
methods do not usually construct a general mapping into the feature space but
rather find feature values for the finite set of samples given, although out-of-sample
extensions have been developed [11].

Methods like Stochastic Neighbor Embedding [58], Local Linear Embedding [97]
and pairwise data denoising [96] are related to MDS methods. Various nonlinear

33



3.1 Visualization

projection [55] and manifold modeling [28] methods can also be applied to similar
tasks. For categorical data, a visualization method related to MDS is reviewed in
[86].

Many MDS methods are not bound to a specific metric in the input space;
rather, they are given a distance matrix. In many practical applications the ma-
trix is derived from an Euclidean metric between some original (high-dimensional)
features. MDS methods are one possible application of learning metrics.

Sammon’s Mapping. Sammon’s mapping is a metric MDS method that empha-
sizes representing small distances accurately. Given a matrix of pairwise distances
D, Sammon’s mapping optimizes the cost function

1 (dij — |Ixi — x5]])?
Dijsi dij dij

(27)

©,7>1

with respect to the coordinates x;. Notice that each squared difference is scaled
by 1/d;; which emphasizes representing the small differences d;;. Like most MDS
methods, Sammon’s mapping does not find a generic feature transformation, but
only feature values for the given set of data.

A learning metric method based on Sammon’s mapping is introduced in Publi-
cation 7 and discussed in Section 6.4.2.

3.1.3 Linear Projections

SOM and MDS can be considered nonlinear projections, but linear ones are also
useful due to easy interpretation, and often easier computation. Besides visualiza-
tion, linear projections are often used as preprocessing for other methods, to reduce
noise or computational burden through dimensionality reduction.

Principal Component Analysis. Principal Component Analysis (PCA; see,
e.g., [54]) seeks the eigenvalues and eigenvectors of the covariance matrix of the
data. That is, the principal components are the solutions x of the eigenequation

Cx = Mx (28)

where C is the covariance matrix of the data, and A is the eigenvalue associated
with the component. The component directions are orthogonal, and the components
with largest eigenvalues contain the most variance.

PCA can asymptotically be seen as a generative model [116] where Gaussian
variation is first sampled in a limited amount of principal directions, and Gaussian
noise in all directions is then added. The equivalence becomes exact when the noise
variance approaches zero.

PCA is invariant to rotation and translation but not to scaling: increasing the
scale of the data along a direction will make the direction more prominent in the
principal components (eventually it would become the first principal component).

Nonlinear versions of PCA have been studied in e.g. [17].

A learning metric method related to PCA is introduced in Publication 5 (see
also Publications 4 and 8), and discussed in Section 6.6.1.
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Independent Component Analysis. Independent Component Analysis (ICA;
see [60] for a textbook account) searches for linear components that are maximally
independent. One application of ICA is separating independent sources that have
been mixed, for example voices of different speakers from recordings at several
microphones.

A simple linear transformation® based on the covariance matrix C of data suf-
fices to whiten the data: after whitening, the data is zero-mean and its covariance
matrix is an identity matrix. However, components of whitened data need not be
independent. To find linear independent components, one must determine a rota-
tion matrix for the whitened data: to do this, ICA maximizes a contrast function
that tries to detect non-Gaussianity.

3.2 Density Estimation

Density estimation is not a main focus of this work but is used as part of the opti-
mization of many methods. Most density estimates are built by combining standard
probability distributions such as normal, multinomial or uniform distributions. The
most common way to combine them into a “complex” estimate is mixture modeling,
where each component in the mixture is a simple distribution. Mixture estimates
can be divided into parametric and nonparametric estimates: in the former, a mix-
ture of fixed complexity (fixed number of parameters) is fitted into the data, and in
the latter the complexity grows with the amount of data. Gaussian mixtures (see
Section 3.3.1) and Parzen windowing, discussed below, are respective examples of
the two kinds of estimates.

Density estimation in a supervised setting is discussed in Sections 4.1.3 and
4.3.2.

3.2.1 Parzen Windowing

Parzen windowing gives a non-parametric density estimate for continuous data,
based on a window or kernel function K(x,x’). “Nonparametric” here means that
the density estimate is directly based on the data instead of adjustable parameters
(although the kernel function may have parameters). The probability density at
point x given by the Parzen model is

p(x) =Y K(x,x). (29)

Parzen windowing is used for density estimation for the learning metrics methods
in Sections 6.4.1 and 6.6.1. For these applications, spherical Gaussian windows of
the form K (x,x') = (21n02)~"/? exp(—||x — x'||?/202) have been used.

Given separate Parzen estimates in several classes, an estimator of the condi-
tional class probability can be derived by Bayes’ rule (with priors proportional to
sample size). This is a consistent estimator of the conditional class probabilities
[40].

5Substract the mean and multiply by VD~1/2VT where V and D are the eigenvector and
eigenvalue matrices of C and D~1/2 is D with the diagonals raised to power —1/2.
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3.3 Clustering

Clustering groups the data into subsets that are similar by some criterion, for
example closeness according to some distance measure. Clustering and generative
modeling are related. A generative model where the data are generated from groups
or clusters can be used to cluster the data: simply choose the cluster that is most
likely to have generated each sample, according to the fitted model. However,
clustering methods have also been proposed that are not based on a generative
model, and not all generative models are suited for clustering. Unlike visualization,
a clustering or model does not need to be easily presentable on a low-dimensional
display, although they are often kept simple for easy interpretation.

Besides exploration, clustering is widely used for information retrieval, and is
also applicable to, e.g., data compression. In some cases, clustering the data may
help as preprocessing for a supervised task; see e.g. [10] for the case of text docu-
ments. Generative models can also be used for other tasks besides clustering, e.g.,
for generating new samples distributed according to the model.

Types of clustering methods. There are several ways to categorize clustering
methods. An obvious categorization is whether the methods work on continuous or
discrete data; other categorizations are based on the clustering strategy.

Most clustering methods can be categorized into “hard” clustering, where each
sample is assigned exclusively to one cluster, and “soft” clustering where a sample
may have partial membership in several clusters. In the latter case, memberships
are usually positive and sum to one per sample.

“Soft” clustering could be further divided into “uncertain” soft clustering, where
partial membership denotes uncertainty about which cluster the sample truly be-
longs to, and “true” soft clustering, where the sample may belong to several clusters
even without uncertainty. In generative model-based methods, the latter case could
be considered a component model rather than a clustering. Probabilistic ACM (Sec-
tion 4.3.2) is an example of “uncertain” soft clustering; SMM (Section 4.3.2) and
Latent Dirichlet Allocation [15] are examples of “true” soft clustering.

In most methods the number of clusters is set beforehand, but in some cases e.g.
Bayesian methods can be used to set priors (and derive posteriors) for the number
of clusters; e.g. Dirichlet processes [114] have been used for this purpose. Other
methods create clustering hierarchies by e.g. agglomerative strategies.

This thesis focuses on clustering in the presence of supervision, rather than
unsupervised clustering. Essentials of unsupervised clustering methods are briefly
presented with a simple example method. Clustering methods in a supervised
setting are discussed in Sections 4.3.3 and 4.3.2, and learning metrics methods for
clustering are discussed in Chapter 6.

3.3.1 k-means

The k-means method clusters continuous data vectors into k clusters (Voronoi re-
gions) defined by prototypes m;. The batch training algorithm for “hard” k-means
repeats two steps: first, assign each sample in the data set to the closest prototype.
Next, move each prototype to the centroid of the samples assigned to it. This is
repeated until the centroids (and hence the assignments) converge. Note that the
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3 UNSUPERVISED METHODS

number of samples assigned to each prototype varies, and some prototypes may
even become “dead units” without samples.

Gaussian mixture modeling can be regarded as a “soft” version of k-means. The
likelihood given by the model is

k
Lk—mcans = Z IOg Z N(Xa my, Et) + const. (30)

X t=1

where N is the value at x of a normal distribution with mean m; and covariance
matrix X;; a simplification is to assume a common covariance matrix, and/or re-
strict it into o2l for some constant width o. The mixture model can be trained
by an EM algorithm (Section 2.4.1); as o — 0 the training approaches the “hard”
k-means algorithm.

The training algorithm for hard k-means also resembles the batch training of
the SOM; the difference is that the SOM can be interpreted to assign samples
to the entire neighborhood of the closest model vector with weights given by the
neighborhood function.
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Supervised methods work in a setting where paired data, denoted by two variables
(X, (), is available.

The methods mostly aim to learn some function of the variable X such that it
optimizes an objective that depends on C, based on a set of training data. The
samples of C' in the training data pairs supervise the learning; the process is also
called “learning with a teacher”. The values of C are the “desired response” to the
inputs X that the method tries to achieve. Supervised tasks traditionally refer to
classification and regression.

Some methods are also based on two variables, but neither variable can be con-
sidered a “desired response”. These methods are not best viewed as classification or
regression, but rather as models of the joint distribution or the mutual information
between the two variables. Such methods are reviewed in Section 4.3. Some of
them can be interpreted from both supervised and unsupervised viewpoints.

In supervised methods, the data are often considered instances of two random
variables whose probability distribution is generally unknown. The probability of
a particular value pair (x,¢) is denoted by p(x,c¢) = p(X =x,C = ¢).

This chapter is not a general overview of supervised methods; it only presents
the methods that are needed or cited in later chapters or in the publications.

4.1 Classification

Classification methods assign each sample x to one of several discrete classes (cate-
gories) ¢, for instance sound samples to phoneme categories, customers to customer
categories or genes to functional classes. The training data consists of labeled sam-
ples (x;,¢).

Let f(x;0) be a classification function (classifier) that returns a class label,
where 6 are parameters of the function. In contrast to the random variable C|
the classification function is usually a deterministic function of X. The goodness
of the function is measured by classification error on a test set, given by E(6) =
> (1 = 0¢; f(xi;0)) Where ¢; is the true class label for test sample x;, f(x;; ) is the
classification given by the method, and the function ¢ is one if the classes are equal
and zero otherwise.

The optimal classifier (yielding smallest classification error) would choose the
majority class at each point x, so that f(x;;0) = argmax.p(c|x). This is called
the Bayes classification rule, and classifiers that follow it are called Bayes-optimal.
Since the distributions of X and C' are not usually known, however, the optimal
classifier is also unknown.

Alternatively to the “plain” classification error above, a loss function can be
assigned to weigh the different types of classification errors; this is useful in cases
where e.g. reporting false problems is less harmful than ignoring real ones [13]. In
[127] the loss function is used to derive kernels for the output space. For textbook
accounts of classification methods, see e.g. [13].
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4.1.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a simple linear classifier based on a normality
assumption for the classes. The linear classification directions found by LDA can
be used for projecting data.

LDA finds directions that maximize between-class variance and minimize within-
class variance. The background assumption is that all classes are normally dis-
tributed and have the same within-class covariance matrix. That is, the first LDA
direction w is the solution of R

w' Bw
MAX e (31)
where W is the within-class covariance matrix and B is the between-class covariance
matrix.

It can be shown that the (multi-class) LDA directions are the eigenvectors of
W~IB. The directions are selected in the order of their corresponding eigenval-
ues, the largest first. Note that for N, classes there are at most N, — 1 nonzero
eigenvalues. Unlike the PCA directions, LDA directions are not orthogonal since
the product matrix is not symmetric.

If each class is normally distributed with equal covariance matrices, then choos-
ing all the LDA components will yield Bayes-optimal classification error.

LDA has been generalized to non-equal covariance matrices under the name
Heteroscedastic Discriminant Analysis (HDA; [78, 39, 38, 101]). Various other gen-
eralizations of LDA are discussed in [53].

LDA is used in Publication 4 and is related to the learning metric method in
Publications 4, 5, and 8, discussed in Section 6.6.1.

4.1.2 Likelihood ratio maximization

In [130] LDA has been generalized as a (log) likelihood ratio, comparing a hypothesis
where each class has its own density model with a hypothesis where the data has a
single density model. The log likelihood ratio to be maximized is

K
maxy, [[p_; H.L] €Cy, p;ca)(aij)

K
maxp, —p [ [ ij cc, P (aTz;)

LR(c) = log (32)

where p,(ca) is the density in class k along the directions o, and p(® is the unlabeled

density along . The criterion reduces to LDA under the restriction px o< N (ug, X2).
The method in [130] is closely related to the learning metric method in Section
6.6.1; see Section 5.7 and Publications 5 and 8 for discussion.

4.1.3 Mixture Discriminant Analysis

In Mixture Discriminant Analysis (MDA; [52, 53]) mixtures of Gaussians are used
to model the classes. In the MDA1 variant each class is modeled by a separate
mixture; in the MDA2 variant all classes are modeled by the same components but
with separate weights for each class. The latter yields the following joint density:

Nt
p(X, C) = Z Wtwc\tN(x; 0t7 UQI) . (33)

t=1
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where 7; and 1|, are parametric Multinomial distributions for the component prob-
abilities and class probabilities within each component, and N is the value at x of a
normal distribution with mean 6; and common covariance matrix o?I. The differ-
ence to unsupervised Gaussian mixture modeling is that the the density is written
for the joint samples (x,c) and the data likelihood is optimized for them, rather
than x alone.

In Publications 1, 2, and 7, MDA2 is used as a density estimation method for
the learning metrics method discussed in Section 6.4.1.

4.1.4 Nearest Neighbor Classifiers

A nearest neighbor classifier seeks, for each point x, the closest sample x; in the
training set, that is, the sample that minimizes the distance d(x,x;) which is often
the Euclidean distance ||x — x;||?. The point x is then classified to the same class
as the sample x;.

A generalization of nearest neighbor classification is K nearest neighbor (KNN)
classification, where for each point x, the K closest training samples are found, and
the class of x is chosen by majority vote among the K samples.

Nearest neighbor and KNN classifiers are nonparametric methods that depend
only on the training set and do not involve adjustable parameters. The complexity
of the resulting classification function grows with the size of the training set.

A related parametric technique is Learning Vector Quantization (LVQ); see, e.g.,
[74]) where data are classified to the class of the nearest (adjustable, parameterized)
model vector. The training of LVQ is very similar to the training of SOM (Section
3.1.1), but there are no neighbors to adapt, and the direction of adaptation is
opposite if the classes of the sample and model vector do not match.

KNN classification is used as an evaluation method for the learning metric meth-
ods in Sections 6.4.2 (Publication 7) and 6.6.1 (Publications 5 and 8). KNN classi-
fiers and LVQ are also used in related methods discussed in Section 5.7.

4.1.5 Support Vector Machines

Support Vector Machines (SVMs; [33]) deserve to be mentioned here since many
approaches that are alternative or complimentary to learning metrics, discussed in
Section 5.7, are based on them.

SVMs are motivated by concepts from statistical learning theory, namely that
of structural risk minimization. The data x are implicitly cast into features ¢(x)
in a high-dimensional space where inner products are given by a kernel function:
o(x)Tp(x') = K(x,x'). See Section 2.3.4 for discussion of the space.

A linear classifier is trained in the high-dimensional space to maximize the sep-
arability of the (binary) classes: the value of a one-dimensional linear projection
wT¢(x) should be equal to or greater than some positive margin (e.g. 1) for one
class, and equal to or less than the opposite value (e.g. —1) for the other class. Data
points whose projections are at the separating margin are called support vectors.
Slack variables are added to account for nonseparable points. The quadratic opti-
mization minimizes a weighted sum of the squared length of the projection and the
amount of slack, through a dual problem stated with Lagrange multipliers. The ac-
tual high-dimensional features are never computed; the optimization depends only
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on inner products, that is, kernel values (this is the so-called kernel trick).

4.2 Regression

Regression methods aim at representing a regressed function or random variable Y
as a parametric function of a number of regressors X. The regressed variable Y is
usually continuous and may be multivariate, in contrast to the discrete labels used
in classification. Some error function that compares the output with the true value
of Y is used to optimize the parameters. In a sense, regression can be thought of
as classification with a particular loss function, in the limit where the number of
classes approaches infinity.

The regression methods below are used for supervised dimension reduction,
rather than simply regressing an output variable.

4.2.1 Sliced Inverse Regression

Sliced Inverse Regression (SIR; [82]) is a regression-based tool for dimensionality
reduction.

In SIR, the sample distribution of the inputs x is first whitened, and the range of
the regressed variable y is divided into several slices I,, h =1,..., H. Within each
slice, the sample mean my, of the inputs is computed, and the welghted covariance
matrix V = Zh 1phmhmh, where py, is the proportion of data in slice h, is then
computed. Estimates of the so-called effective dimensionality reduction directions

. N e—1/2
are then obtained as figXxx
whitening matrix.

Notice that if the slices of y correspond to classes of the data, then V is just the
between-class covariance matrix after whitening, and the SIR solution corresponds
to the LDA solution. LDA is used in Publications 4, 5 and 8 as an alternative to
the learning metric method in Section 6.6.1.

where fi, are the eigenvectors of V and o /% is the

4.2.2 Sliced Average Variance Estimation

Like SIR, Sliced Average Variance Estimation (SAVE; [30]) divides the range of the
regressed variable y into slices. The difference is that instead of the within-slice
mean of the inputs, SAVE estimates their within-slice covariance matrix. That is,
after whitening, SAVE computes the eigenvectors of M = Zthl (I —V}5)? where
Vh is the covariance matrix of data within slice h.

A comparison of SIR and SAVE can be found in [31]. Both were found to be
useful, and comparing their solutions is informative. SIR may miss information
provided by the within-slice covariances, while simple structure apparent in the
within-slice means can be harder to detect with SAVE.

In Publication 8, SAVE is used as a comparison method for the learning metric
method in Section 6.6.1.

4.3 Joint Models and Mutual Information-based Models

Four methods that either model the joint distribution or are related to mutual
information are reviewed below. The first is a projection method for continuous
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data; the other three are clustering methods for discrete data. Some of the learning
metrics methods in Chapter 6 are also related to mutual information.
4.3.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA; see [18] for a tutorial) finds projection di-
rections wy, and wy, that maximize correlation between two multidimensional
random variables x; and x5. That is, canonical correlation maximizes

T
le C:12Wx2

T T
\/le Cllwwlwxz C22Wx2

(34)

where Cq, is the cross-covariance matrix between x; and x5, and Cy; and Cog
are the covariance matrices of the individual variables. Successive directions are
found by restricting the projections w,:fixi from each step to be uncorrelated with
projections from other steps.

The CCA directions are the solutions (eigenvectors) of the eigenvalue problem

B 'Aw = \w (35)

where B is a block matrix with covariance matrices C;; on the diagonal and zero
matrices elsewhere, A is a block matrix containing the cross-covariance matrices C;;
on the cross-diagonal elements (i, j) and zero matrices elsewhere, and w = [w7 w17
(up to scalar multipliers of the component projections).

Multivariate and kernel extensions of CCA are given in [7].

CCA is related to the Information Bottleneck (Section 4.3.3) which in turn is

related to learning metrics.

4.3.2 Asymmetric Clustering Model and Separable Mixture Model

Two generative models for co-occurrence data that can be used for clustering are
introduced in [59].

The Asymmetric Clustering Model (ACM) is a generative model for words in
documents. The joint likelihood of data and parameters is given by

Nx N Ny
Lacu = (nm logps + > Tnt (log pr+ D naylog Qy|t>> (36)

=1 t=1 y=1

where I, is an indicator for membership of object z in cluster ¢, g are the distribu-
tions over words in each cluster, and p is the distribution over documents. The ¢
and p are parameters of the model; they are optimized by an EM algorithm where
the I,; are considered unobserved values with priors p;.

The Separable Mixture Model (SMM) yields the following likelihood for data:

NX Ny NT
Lsyy = Y Y naylog (Z ptpx|to|t> (37)

rz=1y=1 t=1

where py ¢, qy)¢ and p; are parameters to be optimized by an EM algorithm.
In Publication 3, ACM and SMM are used as comparison methods for the learn-
ing metric method in Section 6.5.1.
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4.3.3 Information Bottleneck

The Information Bottleneck (IB; [117]) is an information-theoretic formalism for
creating representations of data. IB is based on ideas from rate distortion theory,
where a random variable X is quantized to 7' by minimizing I(X,T) (maximizing
the quantization), while the expected distortion caused by the quantization is con-
strained. However, in IB the distortion is given in terms of another variable Y,
instead of X.

IB minimizes the cost function I(X,T) — SI(T,Y) where X are objects, T' is a
representation (here a clustering) for them, Y are features, and (3 is a parameter.
In document clustering X could be documents and Y words; these terms will be
used here for simplicity.

The IB cost function leads to the following self-consistent equations for the
solution:

pltf) = A4 exp(—ADL (p(yf2). (y11)
p(ylt) = o5 3, Dulte)ole) (38)
p(t) = X, pltle)p(a)

where Z(8, ) is a normalization term. The first equation states that before the
normalization, probability of cluster membership decays exponentially with the
Kullback-Leibler divergence between the word distributions in the document x and
the cluster . The 3 parameter (8 > 0) controls the rate of decay, and the corre-
sponding tradeoff between the two mutual information terms in the cost function.

In the limit 8 — oo the term I(T,Y) becomes dominant in the cost function
and the optimal clusters in the self-consistent equations become “hard” or “crisp”.

In [112], clustering with IB has been related to clustering by maximum likelihood
of a multinomial mixture model, the one-sided or ACM model ([59]; Section 4.3.2).
For equal document lengths (and a particular 3) the iterative IB algorithm matches
the EM algorithm for ACM. Optimizing likelihood is also equivalent to optimizing
the IB at the large data limit for hard clusters (6 — co and N — o0).

There are several variants of IB. Agglomerative IB [110] and Sequential IB [109]
use alternative optimization techniques for IB. Agglomerative IB creates a clustering
hierarchy by merging clusters; the merging criterion is to minimize a weighted
Jensen-Shannon divergence between cluster statistics, equal to maximizing the cost
function. Sequential IB iterates removing an object from its previous cluster and
merging it into a new one (or back into the old one); the merging criterion is the
same as in Agglomerative IB.

Standard IB clusters the X only. Methods for clustering both X and Y have
been studied in, e.g., [111, 42]. In [46] a generalization for several variables is
developed, based on an input probability graph where a generalization of mutual
information called multi-information must be maximized and an output probability
graph where it must be minimized, yielding a tradeoff similar to the IB cost function.
The multi-information of several variables is the KL divergence between their joint
distribution and the product of the marginal distributions.

Recently, quantization based on the Kullback-Leibler divergence has been used
[23]. The setting has paired data: a variable X to be quantized and a feature
variable Y, which is either discrete or has a normal distribution at each sample.
Each sample is mapped to the cluster that minimizes the KL divergence between
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the feature distribution at the sample and the average feature distribution in the
cluster. Although the method is described for continuous X, in practice, a non-
overlapping set of samples of X are just indices, and the clustering is determined
entirely in the space of the feature variable. The setting is similar to IB.

IB has applications outside clustering as well. Sufficient Dimension Reduction
(SDR; [49]) is an application of IB to dimension reduction for discrete data. IB has
also been applied to the case of two continuous, normally distributed variables [25]
where it finds projections related to CCA. Mutual information has been used to
define relevance between a state variable and the decisions of an agent [93], in an
approach related to both IB and learning metrics.

The relationship between IB and learning metrics is studied in Section 5.7.1.
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5 THE LEARNING METRICS PRINCIPLE

The “learning metrics” are so named because they can be directly learned from data,
instead of applying a fixed (manually chosen) metric as is traditionally done. The
learning metrics principle [69, 71] is a way to define an exact, rigorous yet flexible
connection between relevance, auxiliary data and metrics. To this end, information
geometric concepts are used to define first local distances and then global distances.

This chapter starts with a motivational look at problems with traditional Eu-
clidean metrics. The learning metrics setting is then presented, and a formal dis-
tance definition is given. Some notes are given on how to choose the data that the
metric is learned with, and the properties of the metric are discussed. Lastly, the
relation of the metric to unsupervised and supervised methods is discussed, and a
review of specific related approaches is given.

5.1 Motivation: Problems with Euclidean Metrics

The common practice of computing Euclidean distances between feature vectors is
based on the assumption that all feature differences are equally important. In an
Euclidean metric, the squared distance between two D-dimensional vectors x and
x’ is given by

D
a5 (x,x) = (x —x)T(x = x') = (w4 — alp)? (39)
d=1
where x4 and 2/, are the components of x and x’. That is, all numeric differences
between features contribute equally to the squared distance.

The Euclidean assumption is the simplest one; without any further information,
we may as well use it. However, in many cases it is clearly incorrect. For example, if
one geographical coordinate is given in meters and another in kilometers, the plain
numbers are obviously not comparable. Figure 2 illustrates the problem. In such
cases, a metric that de-emphasizes directions with overly large scale would remedy
the problems caused by the scale mismatch.

Non-Euclidean metrics can also result from missing information: for instance,
omitting height information from a geographical landscape yields a non-Euclidean
metric for the remaining coordinates. Figure 3 illustrates this case. Even if all the
information is available, a coordinate system does not imply a metric; for example, a
two-dimensional plane might be described either in Cartesian or polar coordinates,
but they would yield very different distances by (39). Therefore, one should not in
general assume the coordinates (features) provided for the data are suitable for a
Euclidean metric.

In the “toy” examples of Figures 2 and 3 the correct (original) metrics are known.
In practice, however, it is generally not known what the metric should be.

Bad metrics are harmful for unsupervised and supervised methods. Be-
cause Euclidean metrics may not match real-life data domains, they are insufficient
for many supervised and unsupervised tasks. The problem is especially severe in
unsupervised tasks: the learning is often based on statistical properties of the data
which depend on the metric. “Nuisance” or “noise” features are the simplest exam-
ple where an Euclidean metric is not useful: if a feature is completely unrelated to
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256

1 2 4 6 8

Figure 2: Toy examples of problems with Euclidean metrics. Top row: A self-
organizing map trained to data uniformly distributed in the unit square. As the
scale of the vertical coordinates given to the SOM is increased (subfigures shown
in the original scale; scale factor shown beneath the subfigures), the SOM starts
to model the vertical direction only. A similar experiment can be found in [73].
Bottom row: k-means clusterings of data uniformly distributed in the unit square.
As the scale of the vertical coordinates given to the method is increased, the Voronoi
regions approach horizontal stripes.

Figure 3: A non-Euclidean metric from omitted height information. In a height
landscape (heights shown as gray shades) the distance between close-by points de-
pends on height difference as well as difference along the plane. This yields a non-
Euclidean metric for the plane. The local metric is shown as ellipses: distance is
large along the directions where the ellipse is elongated. Here the height differences
are very large and hence the metric is very non-Euclidean.
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the focus of the analysis it should be ignored. Simple unsupervised preprocessing
like whitening can be used to normalize global scales, but at the same time it may
obscure or distort some of the “real” effects in the data. The problem is how to tell
“real” scale differences from artifacts.

In a supervised task, the supervision can to some extent compensate for the de-
ficiencies of the metric, but some metric-based generalizations must be made to use
the trained model for new data; for example, a nearest neighbor classifier must seek
the neighbor in some metric. According to [75], the Euclidean distance measure
is based on a domain model that assumes independent and normally distributed
attributes. In supervised learning, minimizing squared Euclidean error of predic-
tions corresponds to maximizing the likelihood with normally distributed noise in
the output space. Such normality assumptions need not hold.

More flexible metrics. To avoid the problems with Euclidean metrics, more
flexible metrics have been used. There are two questions to answer: what kind of
metric to use, and how to choose or learn the specific metric. The first question is
examined below; the second is answered later in the chapter through the learning
metrics principle.

The simplest improvement to an Euclidean metric is to scale the features first,
or more generally, to apply an affine transformation y = ATx before computing
the distances. This yields a global distance measure

di (x,x') = (x — x)TAAT (x — x/) (40)

A diagonal matrix A performs scaling only; non-diagonal matrices also can rotate
the features. This kind of global metric is able to represent overall importance of
features (differences parallel to an axis) and their combinations (differences in other
directions), and discard nuisance features.

An affine transformation is not able to represent the context of the differences:
the distances do not depend on the feature values but only on their difference.
Suppose that a cost is attached to each movement, e.g. the price of a taxi fare from
one point to another. Even if the geographical length of two movements were the
same, they might have different costs. The cost might depend on the direction of
movement, the start and end points, or more generally the entire path of motion.
This happens e.g. in Figure 3. An affine transformation of features cannot in general
match this complicated cost of motion.

To represent the context of feature differences, the next assumption is to replace
the matrix AAT in the distance measure by a location-dependent matrix M(x).
Since each location has a different matrix, the distance measure (40) must be de-
fined for local differences (close-by start and end points), so that d3;(x,x + dx) =
dxTM(x)dx. This results in a Riemannian metric (see Section 2.3.2).

Would it be feasible to generalize the metric further? In general, no. An affine
transformation suffices for local distances: any function of interest can be locally
linearized, and hence a locally linear metric suffices to study the local changes in the
function. One could apply a feature transformation before computing the distances,
but the resulting metric might destroy the topology of the original data. In many
(but not all) cases, this would harm analysis; see Section 5.5 for more discussion.
Therefore, Riemannian metrics seem sufficiently flexible for the applications in this
thesis. The learning metrics principle, introduced below, yields Riemannian metrics.
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5.2 The Learning Metrics Setting

Assume that the data are pairs (x, ¢) of components, where the x are called primary
data, and the c are called auxiliary data. In the following the ¢ will be assumed to be
values of a discrete variable, but in general ¢ could be continuous. This paired-data
setting is commonly encountered in analysis of labeled (categorized) observations.
For example, x could be indicators (features) of the financial state of a company,
and ¢ could be an indicator whether the company later went bankrupt. As another
example, x could be measurements of the expression level of a gene in a series of
treatments, and ¢ could be a functional classification of the gene.

Relationship between auxiliary data and important differences. The aux-
iliary data ¢ will be used to reveal what is important about the primary data x; the
underlying assumption is that differences in the primary data are important® only
to the extent that they correspond to changes in the auxiliary data. In other words,
the importance of a difference is given by how much it discriminates the auxiliary
data. In the next section, this assumption will be formalized as a metric for the
differences, such that important differences (corresponding to large changes in aux-
iliary data) yield large distance, and unimportant differences yield small distance.

5.3 Formal Definition

This section presents the formal definition of the Learning Metric. The metric is
defined in two stages: first for local distances and then for global distances. Here
“local” denotes distances between pairs of points that are sufficiently (differentially)
close-by according to some simple metric such as the Euclidean metric, and “global”
denotes distances between any pair of points in the data space.

Local distances. As stated above, in the learning metrics setting important dif-
ferences correspond to changes in auxiliary data. Therefore, distances between
close-by points x and x + dx can be defined simply by the amount of change in the
auxiliary data. Since each point in the space of primary data can correspond to
several auxiliary values, the conditional auxiliary distributions p(c|x) at the points
must be compared. The difference between the distributions is measured canoni-
cally by the Kullback-Leibler divergence;’ that is, the local (squared) distances in
the learning metric are defined as

d? (x,x 4 dx) = Dk (p(c|x), p(c|x + dx)) = %dXTJ(X)dX (41)

where J(x) is the Fisher information matrix, here defined as

369 = Byt { (etoerte) (5 1ogp<c|x>)T} . (@

S“Important” and “interesting” are used interchangeably in this thesis; for the purpose of ex-
ploration, differences that are interesting to an analyst are important for the analysis.

"Heuristic alternatives like sum of component-wise squared differences between the distributions
are possible, but would likely not have the theoretical properties and connections that the present
definition has.
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The equivalence of the KL divergence and the quadratic form is shown in [77]. For
convenience, a proof is also provided in Appendix 1.8

Global distances. Distances between far-off points are defined as minimal path
integrals over the local distances. This is intuitively appealing (points are close
if there is a short path between them) and satisfies the symmetry and triangle
inequality requirements of a metric. The definition yields a Riemannian metric.

Note 1: The metric is data-dependent. Although an explicit equation is
given, the metric is not fixed since the equation involves the (data-dependent)
conditional auxiliary distributions. This is in contrast to specifying a completely
fixed hand-picked metric.

Note 2: Role of the Fisher information matrix. Traditionally the Fisher
information matrix has been used for parameters of a generative model, yielding a
so-called Fisher metric for the parameters. Here it is instead used in the (primary)
data space, where the primary data are considered parameters of a conditional
generative model.

Note 3: Local and global dimensionality of the metric. The Fisher in-
formation matrix J(x) performs a local scaling of the n-dimensional primary data
space. Note that the matrix is composed of Ng outer products and therefore it
has at most No — 1 nonzero eigenvalues;® the metric is locally N — 1 dimensional.
Therefore, when n > Ng — 1, the learning metric locally discards redundant dimen-
sions and achieves local dimensionality reduction. However, globally the metric can
have more than N —1 dimensions, since the local directions depend on x. In other
words, the data cannot be transformed into a No — 1 dimensional subspace while
preserving the distances.

Figure 4 illustrates a situation where the metric is locally 1-dimensional but the
data cannot be represented as a line; the metric is globally 2-dimensional.

Especially when there are few categories of auxiliary data, the metric is locally
low-dimensional and there may be connected areas (curves, hypersurfaces) in the
data space where the auxiliary distribution is constant. Distances inside such areas
are zero; in a sense they collapse to a single point. In Figure 4 the circumferences
close to each Gaussian center (constant gray shade) are examples. When the num-
ber of categories grows such areas are less likely, although still possible (the local
dimensionality can be low if, e.g., the probabilities of several categories change along
the same directions).

If there is reason to believe the metric is too low-dimensional (it does not describe
all important differences) it can be regularized; see the next section.

8Note that the constant factor 1/2 has been forgotten in many publications; it does not affect
results.

9The outer products are of gradient vectors which are linearly dependent since p(c|x) sums to
one; hence there are at most No — 1 nonzero eigenvalues instead of N¢.
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Figure 4: A locally 1-dimensional but globally 2-dimensional metric for bivariate
vectors. The metric is derived from two classes; class 1 has a broad Gaussian
centered at the origin and class 2 has three narrow Gaussians with centres at radius
1. The conditional probabilities p(ca|x) are shown as gray levels. The directions of
the local metric are shown as lines.

5.4 Choosing the Auxiliary Data

The learning metrics principle is not a fully automatic method for focusing anal-
ysis, since it requires auxiliary data (the ¢) as supervision. The auxiliary data
should be well chosen since it determines what is considered important about the
primary data: for example, when analyzing customer data, choosing age groups or
spending groups as auxiliary data would emphasize two alternate types of customer
differences. In this sense, the auxiliary data defines the viewpoint of the analysis.

Choosing auxiliary data is often much easier than directly choosing a metric
or feature transformation that would extract the important properties of the pri-
mary data. In many applications auxiliary data related to the analysis is naturally
available; this is likely in the same problem domains where e.g. classification is used.

In most of the current learning metrics methods, the auxiliary data are single
categorical values. Techniques for using more general data by combining or dis-
cretizing auxiliary data are discussed below. Methods for regularizing the metric
in case “optimal” auxiliary data is not available are then discussed.

Combining auxiliary variables. If there are several possible auxiliary data, it
is possible to conduct analyses with each of them separately. If the relationship
between the types of auxiliary data is known, it may be possible to combine the
results rigorously. As a specific example, if the auxiliary variable can be decomposed
into two parts ¢ = (c1,¢2) that are independent given x, then the local learning
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metric corresponding to c is simply

Dxu(p(c[x), p(c[x+dx)) = Dxr(p(c1[x), p(c1[x+dx)) + Dxr(p(cz2[x), p(ca|x +dx)) ,

(43)
that is, the sum of the local metrics corresponding to the component variables ¢y
and co. This results from simple arithmetic and is shown in Appendix 3.

Discretizing continuous auxiliary data. In this thesis learning metrics are
constructed based on a discrete auxiliary variable C'. However, e.g. regression meth-
ods are often used with a continuous regressed variable. Could such continuous
variables be used for learning metrics?

The theoretical form of the metric can be easily written for a continuous auxiliary
variable; simply replace the discrete expectations (weighted sums) with continuous
expectations (integrals over the conditional probability distribution). In practice
such integrals may not be analytically computable (except for the simplest distri-
butions). This makes it difficult to use continuous C' in methods like the one in
Section 6.4.1.

For practical computation, continuous auxiliary data can be discretized, after
which the present learning metric methods can be used. Clustering (partitioning)
the auxiliary data as preprocessing is a simple tool for the discretization; either
normal clustering or the learning metrics-based associative clustering [108] could
be used.

Regularizing the metric. If the auxiliary data does not describe all important
differences, the metric can be regularized by adding a small portion of Euclidean
distance to the local distance definition: the local metric becomes J(x) + €I where
I is the identity matrix and e is some small positive weight.!® The regularization
ensures that all directions have some effect on the distances; it can be useful es-
pecially if J(x) has few nonzero eigenvalues (few important local directions). The
implementation of the regularization in two practical approaches is discussed in
Sections 6.1 and 6.2.

To complement the above kind of regularization, approaches such as the one in
[26] could be used to specify which parts of the auxiliary data are relevant. In brief,
in [26] mutual information with an irrelevance variable is penalized by an additional
cost function term; see Section 5.7.5 for discussion.

5.5 Properties of the Learning Metric

In the introduction to this thesis (Section 1.1), the learning metric was claimed to
have several useful properties. Those properties are discussed in more detail here.

The metric is data-driven. As noted in Section 5.3, the metric is not fixed;
the definition of the metric is directly based on the data. No assumptions are
made about the relationship between the auxiliary data and primary data or how
the data are distributed, and the metric has a flexible Riemannian form. Hence

10Notice that this corresponds to an (implicit) second auxiliary variable as in (43), with a
constant local metric eI. Some conditional distributions can yield such a metric.
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the metric is data-driven and formalizes the importance assumption in Section 5.2.
Two approaches for learning the metric (implicit and explicit) will be discussed in
Sections 6.1 and 6.2.

The metric works with original features. The learning metric is defined
between data in the primary space, and it obeys the topology of that space (see the
discussion on topology preservation later in this section). Therefore, data analysis
methods like the SOM that work in the primary space can be applied in the new
metric. By contrast, if the metric were defined for some new features (as in feature
extraction methods), analysis methods would have to work in the feature space,
and the results of the analysis would have to be somehow transformed back into
the primary space for interpretation.

The metric is widely applicable. Three aspects of the applicability of the
metric are considered here: computability of the distances, assumptions on the
data domain, and use of unlabeled data.

The local distances (41) can be computed whenever the conditional auxiliary
distributions are available. In practice the distances will be approximated based on
a finite sample set, or a tailored cost function will be used, as discussed in Sections
6.1 and 6.2.

The learning metrics methods discussed in this thesis assume that the auxiliary
data is categorical and that the primary data are either multivariate vectors, multi-
nomial distributions, or categorical. Extending the methods to other domains is
a direction of future work. A clustering method that in a sense uses vector-space
auxiliary data has been developed [108]; it is discussed in Section 6.8 along with
other developments in our research group. Chapter 7 includes more discussion on
future work.

Learning metrics methods can be used to analyze unlabeled data. Although the
metric is learned with labeled data, once learned, it applies to the primary features
and does not require labels: (i) If the metric is explicitly learned from data, then
after the metric has been learned, unlabeled data can be analyzed by methods that
work in the metric, such as self-organizing maps. Unlabeled data can naturally be
used also for learning in such unsupervised methods. (ii) If the metric is implicit in
a supervised task, the learned model (e.g. a clustering or projection) can be applied
to unlabeled data. Whether unlabeled data can be used for the learning depends
on the model in the supervised task; methods of semisupervised learning could be
applied here.

Noise tolerance properties of the metric. If the auxiliary probabilities are
constant along a direction, the local distance (Kullback-Leibler divergence) along it
will be zero. If “nuisance” (noise) variables that do not affect the auxiliary proba-
bilities are added, differences along such variables do not affect the learning metric
distance. Since the metric is local, it can ignore noise directions in each local region,
even if the directions are important elsewhere. Therefore, the metric suppresses
noise by dropping irrelevant local directions.!

HThe metric is not invariant to noise along important directions; for example, adding Gaus-
sian noise to primary data effectively applies Gaussian smoothing to the conditional auxiliary
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The metric is local. Since the learning metric is defined with local matrices, it
is able to emphasize different directions at each local point. The resulting geometry
is Riemannian, a direct consequence of the local distance definition.

Topology preservation properties of the metric. Preserving the topology of
the primary features is crucial for analyzing the data; for example, if two separated
clusters of the same class (e.g. two writing styles for the same letter) were trans-
formed into the same features, the difference between the clusters would not be
noticed in the analysis. However, preserving topology does not require preserving
distances: for example, in an Euclidean metric, scaling a data distribution changes
its distances but not its topology. Thus, preserving the topology is not an overly
restrictive constraint for learning a metric.

There are two types of topology violation to consider: (i) tearing and (ii) pro-
jection, discussed below.

(i) It is reasonable to assume that if two points are close-by, then they are
connected by a continuous path where all points are close-by. In Euclidean metrics
this path is simply a line; in learning metrics it is the path corresponding to the
minimal path integral. If such paths do not exist, the topology is “torn”. The local
distance (41) is not suitable for a global distance measure between far-off points,
because it would tear the topology of the primary features x in this manner. By
contrast, the global learning metrics distance does not tear the topology.

(ii) Since the metric J(x) often has less nonzero eigenvalues (important di-
rections) than the number of dimensions, learning metrics will locally perform a
projective transformation. This may cause previously far-away points to become
close-by, but does not “tear” the topology: neighbors remain neighbors and close-by
pairs remain connected by paths of close-by points.

There are two cases where topology preservation is (partially) unnecessary.

Expert knowledge may indicate that a topology-tearing transformation would
be useful. Such transformations can be applied as preprocessing before learning the
metric; if the aim is to analyze the original features, simple transformations should
be preferred. The metric will then preserve the topology of the transformed features.
The transformations must be chosen on a case-by-case basis and are not discussed
further in this thesis; in the following it is assumed that any such transformations
have already been done and the topology of the given primary features is worth
preserving.

In some cases the primary data does not have a topology; e.g. document or
gene indices can be considered unordered (discrete) values without a topology. In
this case there is no need for topology preservation either, and when the metric is
learned the auxiliary variable can directly define the distances.

Invariance properties of the metric. It is easy to show that the local distances
are invariant to any smooth invertible transformations (diffeomorphisms) of the
data [69]; this class includes common linear transformations like translation, scaling
and rotation but also more complicated nonlinear transformations. Intuitively, the
invariance exists because the auxiliary data are attached to the primary data, so
e.g. contracting one direction also contracts the auxiliary distributions along it.

probabilities, which will then produce a “smoother” metric than the noiseless data would.
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However, note that the learning metric is not invariant to changes in the auxil-
iary data, e.g. grouping values together. The auxiliary data should therefore be as
well-chosen as possible; see Section 5.4 for discussion about the choices of auxiliary
data.

Relationship to good visualization. Some principles of good visualization
were discussed at the start of Section 3.1. In brief, according to Tufte [123], ef-
fects on a graphic should be in proportion to effects in data, variation should arise
from data instead of design, and dimensions on a graphic should not exceed the
ones in data.

In the context of this thesis, the above principles roughly say that visualization
should not distort differences in the data. The distance measure for the data should
then match the problem domain and the focus of analysis, which is exactly the
problem learning metrics are aimed at solving. Note, though, that other principles
in [123] are related to an Euclidean assumption (i.e. that the plain numbers are
informative as such) and may not apply well to the settings of this thesis.

5.6 Relationship to Unsupervised and Supervised Methods

Superficially, the learning metrics methods seem close to both unsupervised and
supervised methods (Chapters 3 and 4), and have properties from both families.
This is natural since the principle is intended to fill a gap between the two. However,
neither “extreme” family is sufficient for the statistical data mining tasks described
in Section 1.2. Learning metrics methods have enough common properties that it is
reasonable to consider them a class of their own rather than an extension to either
existing family.

While the difference to unsupervised methods is often clear, the difference be-
tween learning metrics methods and fully supervised methods requires careful ex-
amination.

Difference to fully supervised methods. Both fully supervised methods and
learning metrics methods use auxiliary data, but with different objectives. The
former usually aim at either classification or prediction: the auxiliary data can be
considered a “desired response” (the correct class or function value). By contrast,
in learning metrics methods the auxiliary data define what is important about the
primary data, but are not the focus of interest themselves. As a playful analogy,
although road signs are useful for travel, the traveler is not interested in the signs
themselves but the destinations along the way.

If the auxiliary data were a “desired response”’, any properties of primary data
that do not help prediction or other supervised tasks could be dropped; for example,
there would be no need to preserve the topology.

The learning metric could in principle be used for supervised tasks like classifica-
tion or density estimation, but there would be overlap between (explicit) estimation
of the metric and the final task. While the result could be useful if the final task is
restricted, such applications will not be considered further here.

Although supervised tasks are not considered here, supervised objectives can
be used for learning metrics methods in special cases. Two possible objectives,
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5 THE LEARNING METRICS PRINCIPLE

Method family Properties Example methods
Unsupervised ex- | Data is unlabeled, focus is on | PCA, K-means,
ploration methods properties of primary data SOM, MDS
Supervised explo- | Labels available, focus is on | Learning  metrics
ration methods those properties of primary data | methods, LDA,
that are related to labels IB (when reinter-
preted)
Supervised meth- | Labels available, focus is on | SVM, LVQ
ods labels (selecting or predicting),
primary data used only as covari-
ates

Table 1: Families of methods.

prediction and classification, are discussed below.

Prediction (conditional density estimation) is related to learning metrics. A
conditional density estimate can be used to estimate the learning metric, but this
does not yet define a task to be done in the metric. However, in some cases, mean-
ingfully restricted conditional density estimation may asymptotically correspond to
unsupervised tasks in the learning metric, as discussed in Section 6.2.

Although the auxiliary data are categories (classes), classification has not been
used as an objective for learning metrics methods. Intuitively, classification neglects
changes in the conditional probabilities that do not affect the decision borders (the
majority class). For example, small concentrations of a class inside a larger class
would not affect results. This is not suitable for data analysis.

However, some classifiers may be related to learning metrics. Classification and
conditional estimation are related through the Bayes classification rule: a Bayes-
optimal classifier chooses the majority class in each area. Given any conditional
class estimate, points can be classified by picking the class with maximal estimated
probability. When the estimated probabilities approach the true values, the classi-
fier approaches the Bayes-optimal one. Therefore, good classifiers may be derived
from good conditional density estimates, which in turn may be related to learning
metrics.

Division of labor. One view to the difference between learning metrics meth-
ods and standard supervised and unsupervised methods is the division of labor in
learning metrics methods. The joint distribution of labeled data is p(x, ¢), where x
are data and c are their labels. Unsupervised methods focus only on p(z), or spe-
cific parts thereof, such as major components for PCA. Fully supervised methods
(Sections 4.1 and 4.2) focus only on p(c|x), or specific parts thereof, such as class
borders for classification. In learning metrics methods, the metric is constructed
based on p(c|z) alone, and the analysis method in the resulting metric is based
on p(z) in the new metric. This division of labor differentiates learning metrics
methods from the previous two families, and also from methods that directly model
the joint distribution, since in such methods the two components p(c|z) and p(z)
might not be modeled separately. Table 1 summarizes the method families.
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5.7 Related Approaches

5.7 Related Approaches

There has been much research on methods that extract features, and also some work
on learning of metrics and kernels. A selection of methods related to learning metrics
is considered below, including both supervised methods and some unsupervised
ones.

Below, the methods are grouped by how the knowledge of important differences
is encoded: as a metric, a kernel, a modified cost function or algorithm. In addi-
tion, three special groups of methods, the information bottleneck, semisupervised
learning methods and Fisher kernels, are discussed separately. The methods are
summarized in Tables 2 and 3. Presenting them in detail is beyond the scope of
the thesis, but an brief idea of their aims and a comparison to learning metrics is
given in the following.

5.7.1 Information Bottleneck

Methods for maximizing mutual information have been developed before, includ-
ing the elegant Information Bottleneck formalism [117]; the first learning metrics
methods were developed independently shortly after. In the Information Bottleneck
principle (see Section 4.3.3), the representation (bottleneck) 7' limits the informa-
tion flow between the inputs X and outputs Y. The representation establishes a
criterion of similarity between inputs, which depends on the outputs.

An overview of several variants of IB and related methods is given in Section
4.3.3. In addition to those methods, two recent variants that include a third vari-
able are considered here. Clustering with side information [26] maximizes mutual
information of cluster indices T' with one variable (Y ) and minimizes it with an-
other (Y 7). Intuitively, the latter variable specifies what is non-important about
the former; if Y+ represents data features, then Y~ tells which feature properties
are important. The cost function combines the mutual informations as a weighted
sum: L =1I1(X,T)=B(T,Y*)=~I(T,Y™)]. In [50] a similar extension of informa-
tion bottleneck is presented, based on conditional mutual information instead of a
weighted combination of terms. The objective is to minimize I(X,T) — SI(Y,T|Z)
where Z is side information such as a known classification. Compare these cost
functions with the standard IB cost function in Section 4.3.3. The methods are
applied to discrete data (co-occurrences). These methods use the side information
in an opposite fashion to the auxiliary information in learning metrics methods,
that is, to guide what not to focus on. Arguably, having auxiliary data related to
importance rather than non-importance may be a more common setting.

Relation to learning metrics. In a sense, Information Bottleneck methods can
be seen as learning metrics methods for discrete primary data (where there is no
topology to preserve); conversely, learning metrics methods can be seen as topology-
preserving Information Bottleneck methods for continuous primary data. The fsIB
method (Publication 6; Section 6.5.2) makes the connection explicit; it is a discrete-
data clustering method derived from the Information Bottleneck principle, but uses
the same cost function as continuous-data clustering methods derived from the
learning metrics principle.

Note that the continuous-data setting of many learning metrics methods is very
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5 THE LEARNING METRICS PRINCIPLE

Res-
Super- Repres-  trict- Closest

Group Method Task vision  entation ions Notes method
Inform-  [117, 110, 109] CL C 0 CD 6.5.2
ation [111, 42, 46] CL (C) (0] CD
bottle- [23] CL C A CD 6.5.2
neck [49] FE C O CD

[25] (FE) (0) Oo/M MB

[93] C(0) O CD

26, 50] CL C o) CD 6.5.2

(6.5.1)

Feature [63] FE/R O O H 6.6.1
extract-  [64] FE/C C O EF (H)
ion [45] FE C Oo/M EF

[39] FE C 0 FC AP 66.1

[120, 118, 119] FE C Oo/M AP 6.6.1

[79] FE C A FC 6.6.1

[130] FE C O/M 6.6.1

[47] FE c/0  O/M EF H 6.6.1

[41] FE/CL C O CD
Learn-  [5, 6] CF CF K US
ing [80] - K MB (6]0)
kernels  [35] CF C K IN

[87] CF C (K)

[67] (C) K GM,

FD
[126] DE - K
[24] CF - K

Table 2: A summary of methods related to learning metrics. The first three method
groups are listed here; the rest are listed in Table 3. Tasks: feature extraction (FE),
classification (CF), regression (R), clustering (CL), density estimation (DE), visu-
alization (VI), generic (G). Supervision: none (-), categories (C), target output
(0), similarities (S), classifier (CF), comparisons (CO). Representation: met-
ric (M), kernel (K), objective function (O), algorithm (A). Restrictions: global
metric (GM), Euclidean metric for features (EF), assumptions about feature-class
connection (FC), model-based (MB), fixed data set (FD), uniform scaling (US), cat-
egorical data (CD). Notes: heuristic (H), approximations (AP), topology-tearing
(TT), limited computability (CO), interpretability (IN), semisupervised (SE). In
the table, abbreviations in parentheses require more explanation: see the text.
Closest method: the closest learning metrics method in this thesis, if applicable,
specified by the section number where the method is discussed.
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5.7 Related Approaches

different from the usual setting of the information bottleneck. When the primary
data is discrete (as in most IB applications), several samples may have the same
primary value but different auxiliary values; for example, several words can occur
in the same document. It is then meaningful to consider the document-word data
as a contingency table whose rows or columns must be clustered.

By contrast, when the primary data is continuous, all primary samples are most
likely different; hence each primary value corresponds to at most a single sample
and a single auxiliary value. It is not meaningful to view such data as a contingency
table, or to cluster it without some topological assumptions in the primary space.
Therefore, the preservation of topology in learning metrics methods is a crucial
addition that makes them feasible for continuous data.

5.7.2 Feature Extraction and Variable Selection

Feature extraction and variable selection methods optimize a transformation into
an output space with a fixed metric. For variable or feature selection the trans-
formation is simply to drop the variables (features) that were not selected. If the
distances after transformation are considered as a metric for the input data, feature
extraction and variable selection can be seen as constrained learning of a metric.

In [63] projection pursuit regression is done with an additional unsupervised
term in the cost function. Projection pursuit regression minimizes residuals of the
regressed function'? plus a penalty term for the smoothness of the estimates. The
additional term, presented in [61, 62], measures the interestingness of the projec-
tions, e.g., by measuring multimodality.

Traditional feature extraction methods have been reviewed in [9].

In [64], features were extracted in a supervised manner by training a MLP
classifier and using the hidden layer or layers as a low-dimensional representation, or
by training RBF classifiers and using their basis function layer as the representation.
Topology preservation was observed in the low-dimensional representation, although
no theoretical results were given.

A method for feature extraction by MLPs to maximize mutual information with
classes has been presented in [45], based on comparing the output distribution with
a desired distribution. For maximizing entropy, the desired distribution is uniform.
Since mutual information is a function of two entropy terms (entropy of the inputs
and their conditional entropy given the class variable), manipulating entropy suffices
for maximizing mutual information.

In [39] a linear feature transformation is sought so that the additional mutual
information between original data and classes is minimized, given the transformed
features. The aim is close to the learning metric method in Section 6.6.1. However,
computational approximations are made (the classes are assumed to be distributed
as highly localized Gaussians).

Feature selection strategies for classification have been reviewed in [76]; each
feature set is evaluated with some classifier-based criterion, and different strategies
such as branch and bound are used to optimize the set based on the criterion.

For dimensionality reduction, linear transformations have been sought to maxi-
mize mutual information with classes [120]. Instead of Shannon mutual information,

12The residuals are obtained by sequentially substracting estimates (ridge functions) along each
projection direction.
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5 THE LEARNING METRICS PRINCIPLE

a version based on a quadratic divergence [94] was derived and used; the version
reduces to pairwise interactions between samples. Nonlinear transformations with
radial basis function networks are also considered in [118]. An informative review
of the methods, including recent improvements, can be found in [119]. The learning
metric method in Section 6.6.1 can be seen as a further development of the methods
above; the main differences are that learning metrics are based on the Shannon en-
tropy instead of Renyi’s, and the method in Section 6.6.1 uses a finite-data objective
instead of asymptotic quantities like mutual information.

In [79] independent component analysis is extended to data with binary classes
by proposing that data are mixtures of sources plus a constant bias whose direction
(sign) is opposite for the two classes.

Linear transformations have also been sought to maximize a likelihood ratio
([130]; see Section 4.1.2). The aim is again very similar to the learning metric
method in Section 6.6.1; the main difference is that the former optimizes a ratio of
class-specific and class-independent joint models, while the latter optimizes a single
conditional model. This can cause different behavior.

A supervised method for dimensionality reduction by linear projection has been
proposed in [47]. The kernel generalized variance (see Section 2.3.4) between pro-
jected data and classes (or a regressed variable) is minimized. A problem with this
method is that although the motivation through the reproducing kernel Hilbert
space (RKHS; Section 2.3.4) concept is elegant, the kernel generalized variance
used in practical optimization is obtained by a heuristic analogy and the theoreti-
cal properties are asymptotic only.

For text data, features (words) have been clustered with the aim of preserving
mutual information about classes [41]. Such clustering can be seen as a particular
restricted form of feature extraction.

Feature selection as part of gradient-based optimization of a predictor is studied
in [92].

Relationship to learning metrics. A metric is a more general description of
similarities than feature extraction; distances between extracted features in some
assumed (e.g. Euclidean) metric can always be represented as a metric for the origi-
nal features, but the converse is not true: a metric cannot in general be represented
by feature extraction and an Euclidean metric for the extracted features, if the
feature space is equal or lower-dimensional than the original space.

Complicated feature extraction can make interpretation of analysis results diffi-
cult: the original variables may have known meanings in the problem domain that
are lost in the transformation. In particular, the metric for the transformed features
may not preserve the topology of the original features. These problems are not se-
vere if the transformations are simple, e.g. linear projections. The discriminative
components method that will be introduced in Section 6.6.1 finds such a simple
transformation.

5.7.3 Methods that Learn Kernels

A kernel function that satisfies Mercer’s theorem (see Section 2.3.4) corresponds to
an inner product in an implicit feature space, possibly infinite-dimensional. The
choice of kernel determines the implicit features, and is important for the success of
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kernel methods in both supervised and unsupervised tasks. Several methods that
construct kernels in a data-driven manner have been proposed.

Kernels have been altered with a conformal transformation to enhance resolution
near support vectors of SVM classifiers [5, 6], to improve classification. Roughly
speaking, this emphasizes boundaries where the classification changes. The trans-
formation applies a uniform local scaling near class borders. By contrast, learning
metrics emphasizes all changes in class distribution, depending on the local direc-
tion.

Diffusion kernels have been applied to Fisher metrics [80], which are unsuper-
vised metrics between parameters of generative models for unlabeled data. Intu-
itively, the diffusion kernels give large values for data sample pairs that are on
average generated by similar models. They are derived from a partial differential
heat equation in the model space. They are based on a Fisher information ma-
trix as are learning metrics. However, the differences are that learning metrics are
learned based on auxiliary data (supervision) and apply directly to the primary
data instead of a model family. Also, the diffusion kernel might not be analytically
computable outside limited model families, while learning metrics can be applied
with generic mixture-based estimates or tailored cost functions.

Boosting has been applied to combine kernels [35] for classification. Since boost-
ing involves classifier output the kernel learning is supervised, but the objective is
classification instead of exploration, and the combined kernel may not be easily
interpretable.

Boosting has also been applied to dyadic kernel discriminants (discriminants
in the kernel feature space for a pair of opposite-class points) [87], but the boost-
ing is applied to the discriminants instead of the kernel so there is no immediate
connection to learning a kernel.

Semantic similarity-based kernels have been learned in a partially supervised
manner [67]. The kernel is based on a semantic proximity matrix, corresponding
to a global metric or linear feature transformation. The proximities are mostly
learned in an unsupervised manner, but a decay parameter is chosen with labels. By
contrast, in learning metrics the metric is local and fully based on the conditional
label distribution, and applies to all data, not only a fixed set (some distance
approximations are computed for a fixed set, though).

A manifold version of Parzen windowing [126] has been used, which computes a
new kernel for the data points based on the estimated neighborhood from a simple
kernel. The new kernel is used for better density estimation.

Radial-basis function (RBF) kernels have been altered to enhance cluster struc-
ture for SVMs [24]. The construction of the kernel is unsupervised: it is based
on a transformation of the affinity matrix for a specific sample set. It yields small
distance for points in the same cluster and large for points in different clusters. The
connection to classification is a “cluster assumption” that two points likely have the
same class if they are connected by a path that goes only through regions with
high data density. That is, classification borders should lie in regions with low data
density (compare with [32]).
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5 THE LEARNING METRICS PRINCIPLE

5.7.4 Methods that Learn Distance Measures

Goal-oriented clustering [27] performs maximum a posteriori or maximum likeli-
hood estimation of classes based on clusters. Although the clusters are not here
interpreted through metrics-related concepts, a related clustering method can be
derived from the learning metrics principle (see Section 6.5).

In [75], a somewhat heuristic model-based metric is constructed, where points
are similar if they lead to similar MAP predictions for some target attributes. (KL
divergence between predicted distributions was not used due to its asymmetry and
infinite range.) If the target attribute is a category, the result is similar to using the
local learning metrics distance globally. As discussed in Section 5.5 this may “tear”
the topology of the data. By contrast, learning metrics uses KL divergence locally,
which avoids asymmetry, compares the entire predicted distribution, and yields a
rigorous metric that does not “tear” data topology.

Recently, distance metric learning has been applied to clustering with side in-
formation [128]. The side information is defined in terms of similarity, but the
application is to categorized data as in the learning metrics setting. Metrics from
relative comparisons [103] have also been applied to comparisons derived from cat-
egorized data, although some other constraints are added. Both methods use a
global metric (corresponding to a linear feature transform) whereas the learning
metric is a local metric which provides more flexibility.

Global metrics have also been learned for a generalized LVQ [51] (2002) as part
of optimizing the LVQ objective.

Local metrics have been learned for nearest neighbor classifiers [43] based on a
weighted Chi-squared distance between class distributions at a point and its neigh-
bor. A similar strategy based on an SVM decision hyperplane is presented in [91].

Fully unsupervised feature selection methods include [81], where either feature
saliency (usefulness for mixture modeling) is used as a kind of weighting, or mutual
information with mixture component memberships are used to choose features.
This can be useful if mixture components match true classes, which need not hold
in general; in learning metrics relevance is explicitly specified through the labeling.

5.7.5 Combination of Supervised and Unsupervised Objectives

Several methods are based on a weighted combination of supervised and unsuper-
vised objective functions. The weighting defines how much the method emphasizes
the supervised task and the unsupervised one; when the proportional weight of
either component approaches one, the methods reduce to fully supervised or unsu-
pervised methods.

The Supervised SOM (here denoted SOM-S; [73]) is a simple variant of SOM
(Section 3.1.1) for labeled data. Data and their labels are concatenated to form
input vectors of the type [x c] where c is a 1-out-of-N, encoding of the label. The ¢
or x can be weighted to alter their relative importance. The concatenated vectors
are given as input to the standard SOM algorithm; this makes the model vectors
follow both the data and their classes. After the training, the components corre-
sponding to ¢ are removed from the model vectors, and winners for new (unlabeled)
data are chosen based on the x only. Note that the combination of supervised and
unsupervised learning happens in the winner selection here, not in an overall cost
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Res-
Super- Repres-  trict- Closest,

Group Method Task  vision entation ions Notes  method
Learning  [27] CL C (0]
distance [75] VI O M MB H, TT
measures  [128] CL S (C) M GM

[103] CL CO(C) M GM

[51] CF C M GM

[43] CL C M H

[91] CL C M H

[81] FE - M MB
Combin- SOM-S [73] VI C A H 6.4.1
ation of [29] VI C O H
sup. and  [90] VI C O H 6.4.1
unsuper-
vised
objectives
Semi- [16] CF C O FC
super- [32] DE C O (M) SE
vised [129] CF C 0]
learn- [66] CF (C) O
ing
Fisher [65] CF - K MB
kernels [88] CF - K MB

[122,121] CL - K MB

Table 3: A summary of methods related to learning metrics, continued from Table
2. Tasks: feature extraction (FE), classification (CF), regression (R), clustering
(CL), density estimation (DE), visualization (VI), generic (G). Supervision: none
(-), categories (C), target output (O), similarities (S), classifier (CF), comparisons
(CO). Representation: metric (M), kernel (K), objective function (O), algorithm
(A). Restrictions: global metric (GM), Euclidean metric for features (EF), as-
sumptions about feature-class connection (FC), model-based (MB), fixed data set
(FD), uniform scaling (US), categorical data (CD). Notes: heuristic (H), approxi-
mations (AP), topology-tearing (TT), limited computability (CO), interpretability
(IN), semisupervised (SE). In the table, abbreviations in parentheses require more
explanation: see the text. Closest method: the closest learning metrics method
in this thesis, if applicable, specified by the section number where the method is
discussed.
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function.

Projections have been computed minimizing dispersion of equivalence classes
[29], by starting with the PCA cost function and adding a weighted penalty for
variance around equivalence class means in the projection.

Kernel-based SOMs with a supervised bias have been used for gene expression
data [90].

A problem in these approaches is that weighted combination of objectives may
neglect statistical dependencies between them. By contrast, in learning metrics the
unsupervised task is taken into account either as a separate stage or as a tailored
restriction for the supervised task; there is then no need for an explicit (often
heuristic) tradeoff.

5.7.6 Semisupervised Learning

Some related concepts have appeared in semisupervised learning, where unlabeled
samples are used in addition to labeled ones to improve learning in a supervised
task.

Co-training that combines labeled and unlabeled data has been used [16], based
on an assumption that two separate feature sets can yield the same target classifi-
cation. The learning metrics principle does not make such assumptions.

Information regularization has been applied to learning conditional class prob-
abilities by adding a penalty term: the average trace of the Fisher information
matrix ([32]; extends [113]). Intuitively, this penalizes large local changes of the
class distribution near clusters of data (locations with high data density). This cor-
responds to penalizing learning metrics that have large local distances near data.
The differences to learning metrics are the setting and the task: a direct assumption
of the relationship between primary and auxiliary data is made, and the result is a
penalty for the auxiliary probabilities instead of a metric for primary data.

Regularization by so-called local and global class label consistency has been
applied to classification [129]. Intuitively, the resulting cost function states that
class assignment vectors!? for close-by points should be similar, and the assignments
should not differ much from binary vectors derived from data. The aim and details
are different from learning metrics.

Classification training where each sample has multiple label candidates [66] can
be thought of as partial supervision since the lists of candidates are less informative
than single labels.

In a sense, learning metrics methods are the complement to semisupervised
methods. Semisupervised learning uses unlabeled samples to help a supervised
task such as classification; by contrast, learning metrics methods use labels to help
an unsupervised task. However, learning metrics methods are not simply semisu-
pervised methods used in a reverse direction. In semisupervised methods, abundant
unlabeled data is used to help learn from sparse labeled data; the problem to be
solved is sample sparsity. By contrast, in learning metrics methods, sparse labeled
data is used to choose properties of abundant unlabeled data; the problem to be
solved is which statistical properties to focus on.

13Class assignment vectors in data are binary vectors where element i is one if the sample
belongs to class i. The algorithm yields non-binary, nonnegative vectors, and labels each sample
to the class with the maximal element.
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Generally speaking, semisupervised learning and learning metrics methods are
compatible; the former aims at better conditional estimates and the latter at met-
rics for primary data, derived from conditional estimates. If the assumptions in
semisupervised learning methods are reasonable, the resulting improved conditional
estimates could thus be used in the metric. However, since this would violate the
“division of labor” in learning metrics, care must be taken to ensure the combination
performs a meaningful task.

5.7.7 Fisher Kernels

In an early, influential work, Fisher kernels [65] have been applied to learn kernels
for supervised tasks. Fisher kernels transform data points to the gradient of their
likelihoods under a generative model, with respect to the model parameters. In-
tuitively, each data point receives largest feature values along the parameters that
are most important for modeling it. Alternative approaches [88] assign a separate
model for each parameter and compare the predicted data distributions; the intu-
ition is similar. Fisher kernels were originally applied to discrete data but are also
applicable to continuous data.

For clustering purposes, Fisher kernels have been combined with prediction of
mixture components interpreted as hidden classes [122]. The authors handle “nui-
sance dimensions” through class prediction: in some special cases, linear prediction
from the transformed features suffices for conditional class probabilities'* ([122]; see
also [121]). The method is of course unsupervised, since clusterings are considered
in place of given classes. In general, (true) classes might not be visible as clusterings
of the unlabeled density.

Although Fisher kernels are related to the Fisher information matrix, it is used
in the traditional way (between generative model parameters); the kernel is based on
a generative model assumption for the unlabeled data. The choice of model defines
the kernel. By contrast, learning metrics are based on auxiliary labels, not a specific
generative model; the Fisher information matrix in learning metrics is defined be-
tween primary and auxiliary data and does not involve any model parameters. This
makes the setting crucially different. Approaches based on unsupervised generative
models may not be able to distinguish between relevant and irrelevant variation
since both might be complicated and hence might need to be modeled well.

14To be specific, it suffices if the tangent of the generative model family coincides with that of
a hypothetical mixture where classes have correct shape but varying proportions.

64



6 PRACTICAL LEARNING METRICS METHODS

6 PRACTICAL LEARNING METRICS METH-
oDS

The theoretical form of the learning metric, discussed in Section 5.3, exactly specifies
the interesting properties of the data. Any distance-based task, such as clustering,
can be defined based on the learning metric distances.

However, the definition is not usually useful for practical computation: the
probability distributions used in the definition are not known, and only samples
are available. Even if exact parametric forms of the distributions were known, the
objective of the task might not be analytically computable or directly optimizable;
in particular, the minimal path integrals used to define global distances are difficult
to compute analytically, except in the simplest cases.

Two solutions. Despite the above difficulties, it is possible to apply the learning
metrics principle to real-life applications as well. Two main approaches to construct-
ing practical methods based on the theory of learning metrics have been developed
in our research group.

e In the first approach, an explicit estimate of the metric is constructed, and
the estimated distances are then used within an algorithm. This approach is
discussed in Section 6.1; the methods SOM-L (Section 6.4.1) and Sammon-L
(Section 6.4.2) are examples of the approach.

e In the second approach, a supervised cost function is constructed such that
optimizing the cost corresponds to performing an unsupervised task in the
learning metric, even though the cost can be computed without estimating the
metric. In a sense, this approach combines supervised metric construction and
an unsupervised method into a single supervised method. This approach is
discussed in Section 6.2; the methods DDC (Section 6.5.1), fsIB (Section 6.5.2)
and discriminative components (Section 6.6.1) are examples of the approach.

Comparison of the approaches. Both approaches are useful, with different
strengths and weaknesses that must be weighed before applying them to a method.

The first approach requires a separate estimation stage for the metric, which
usually corresponds to estimating the conditional auxiliary probabilities. A weak-
ness in this approach is that the objective function for estimating the metric can
be different from the objective of the final analysis method (such as clustering),
which could at worst cause the two stages to “work against each other.” From
another viewpoint, the estimator of the conditional probabilities should match the
final analysis task. The strength of this approach is that the estimated metric is a
“generic tool” that is comparatively easy to apply to distance-based methods, and
moreover, it may yield additional information for analysis, such as new visualiza-
tions for SOM-L (Section 6.4.1).

The second approach dispenses with the separate metric estimation, replacing
it by optimization of a tailored cost function. The strength of the approach is that
single-stage optimization is a well-understood and widely researched task and hence
there is much existing theory to draw on, which helps create rigorous methods. The
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Primary Auxiliary

Method Task data data Output
SOM-L nonlinear feature class labels | model
(Section 6.4.1) visualization vectors vectors
Sammon-L nonlinear feature class labels | mapped
(Section 6.4.2) visualization vectors data

locations
discriminative linear feature class labels | linear
components visualization, vectors projection
(Section 6.6.1) component

analysis

DDC distributional feature class labels | cluster
(Section 6.5.1) clustering histograms prototypes
fsIB co-occurrence object in- | feature cluster
(Section 6.5.2) clustering dices histograms | indices

Table 4: Learning metrics methods in this thesis.

weakness of the approach is that it depends on constructing a tailored cost function;
the cost function and algorithms to optimize it must be derived separately for each
task. Also, the connection to learning metrics is usually asymptotic and hence
interpreting the results in terms of metrics (rather than in terms of the tailored
cost function) is more difficult than with an explicitly estimated metric.

In this thesis, unsupervised tasks are considered—projection, clustering and
visualization by SOMs and Sammon’s mappings. Table 4 summarizes the learning
metric methods introduced for the tasks. The following sections describe in detail
the two approaches used to derive the methods, and then the methods themselves.

6.1 Explicit Estimation of Metrics

Since the learning metric is based on conditional probabilities of auxiliary data, the
first step is to estimate them. In principle, any estimator of the conditional density
could be used. Several Gaussian mixture-based estimators have been used in the
publications. They are of the form

Ny
) =3 ui () (44

where Ny is the number of components, and v, is a component-wise distribution
for the auxiliary data. The y; are multinomial component weights at each x, param-
eterized as y;(x) = m; exp(—||x — 0;]|?/20%)/ >, T exp(—||x — 0> /20?) where T;
are constant multinomial weights for the components, 8; are component-wise cen-
ters, and o is a dispersion parameter. For example, Parzen windowing (Section
3.2.1) for categorized data and the MDA2 method in Section 4.1.3 yield conditional
probabilities in this form.
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The above methods are optimized to maximize the joint likelihood; however, it
is also possible to directly maximize the conditional likelihood (44) as is done in
Publication 2. In Publication 2, a product-based estimate was also considered.®
The estimate was

1 N
plel) = s T explus () log ) (45)

where Z(x) is a normalization term. For both kinds of estimates, the conditional
log-likelihood was optimized with respect to their parameters by conjugate gradient
(Section 2.4.2).16

Note that since the aim is to estimate the conditional probabilities, estimators
of the joint density are not optimal since they waste resources on estimating the
primary density. In experiments (Publications 2 and 7) estimators of conditional
density were significantly better than the joint density estimator MDA2.

Consistent estimators (estimators that yield the correct value asymptotically as
the amount of data grows) of the conditional probabilities may be necessary if the
metric needs to be asymptotically correct for the data. Parzen estimators are con-
sistent [40], but evaluating them at a single point takes O(N) time so they may be
inappropriate for tasks where the distances must be evaluated often. Note also that
a consistent estimator of the conditional probabilities is not enough to quarantee
consistent estimates of the distances, since the chosen distance approximation may
break consistency.

Simple distance estimates. After estimating the conditional auxiliary proba-
bilities, the second step is to estimate the metric based on them. The simplest
estimator assumes the shortest path between two points is a line, as in the Eu-
clidean metric, and uses the local distance definition to compute the distance along
the line. This estimator will be called the I-point estimator since it computes the
metric at one point (the starting point). The 1-point distance estimate is not an
upper or lower bound for the true value (it may be smaller or larger).

The next, better estimator still assumes the shortest path is a line, but computes
the distance along the line more accurately. The simplest way to do this is to
divide the line into several equal-length segments and compute the local distance
separately for each segment. The number of segments can be fixed, or it can be
increased iteratively until the total distance converges; in the applications a fixed
number of segments was used. If the line is divided into 7" segments, the resulting
estimator will be called the T-point estimator (since the metric is computed at T
points).7

The 1-point and T-point estimators are presented in more detail in Publication
2.

15Note that there is a mistake in equation (6) of Publication 2: instead of a sum over j, there
should be a product as in (45). The experiments were done with the correct method.

161n the publications, the m; were for historical reasons uniform (7; = 1/Ny) for the direct
conditional estimates.

171f the distance were computed exactly, that is, as an integral over the line, the estimate would
become an upper bound to the true learning metric distance (the line is one of the possible paths
between the points; the true distance is the integral over the minimal path).
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Complex distance estimates. The most complex estimator considered in this
thesis assumes the shortest path is piecewise linear, that is, it is composed of line
segments. The vertices of the segments are here assumed to be locations of data
points. The distance along each segment is estimated with the T-point estima-
tor. Given a particular set of possible vertices (data) the minimal piecewise linear
path can be found by graph search algorithms like Floyd’s algorithm or Dijkstra’s
algorithm.

The piecewise linear estimate is upper bounded by the T-point estimate since
the former considers a larger amount of paths.!® Note that the estimate is most
accurate in regions with the highest data density, which is intuitively desirable for
analysis purposes.

Graph distances have previously been used in the Isomap algorithm [115, 36]
and for clustering in [95], in a different context: the metrics are unsupervised. In
Isomap the graph is not fully connected and paths are forced along a manifold; in
[95] the graph is fully connected, and a local Riemannian metric based on changes of
p(x) is used. Learning metrics are also Riemannian, but are based on the auxiliary
distribution instead of the primary density. The use of graphs arises from the local
distance definition; the graph is fully connected and paths approximate the true
minimal path.

The graph distance is further discussed in Publication 7.

Figure 5 illustrates linear and piecewise linear approximation of the minimal
path.

Sufficiency of linear approximations. The 1-point and T-point distance esti-
mators are linear approximations that do not asymptotically approach the correct
metric (i.e., they are not consistent estimators of the distance). Moreover, the ap-
proximations are not even metrics; they do not satisfy e.g. the triangle inequality.
It is therefore natural to ask whether the approximations are “good enough,” or
whether they distort methods that are based on them.

The answer depends on how the distances are used. In SOM-L applications the
distances are not used as such; given a starting point, only the identity of the closest
end point in a set of candidates is needed. Preserving this identity is a less strict
requirement than preserving the distances; therefore, the linear approximations
may by sufficient. Empirical tests on the applications (SOM-L and Sammon-L; see
Publication 7) have shown improved performance over comparison methods. The
T-point approximation and direct conditional density estimation with the mixture
estimator were crucial for good performance.

Computational complexity. The 1-point estimate computes the metric only at
the starting point, but the T-point estimate computes it at T points for each pair
of start and end points. Therefore, the T-point approximation is computationally
much heavier than the 1-point approximation. One way to reduce the computational
effort is to use the T-point approximation only for a small set of pairs, and an easier

I81f the distance along the segments were computed as an exact integral, the piecewise linear
estimate would also become an upper bound for the true learning metric distance, tighter than
the integral over a line since a larger set of paths is considered. As new data points are added,
the bound never worsens (it either tightens if a better path is found or remains the same).
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6 PRACTICAL LEARNING METRICS METHODS

Figure 5: Distance approximations. Data points are shown as dots and estimates
of the minimal path between two of them are shown as lines. Dashed line: the true
minimal path (the points are at zero distance). Dashdot line: linear approximation.
Solid line: piecewise linear approximation where data points are vertices. The
conditional class probability and local metric are shown in dark shades for clarity.

approximation (such as the 1-point approximation or Euclidean distance) for the
rest. For example, if the task is to find the closest end point for a particular starting
point, a set of candidates can be selected by 1-point distance and the T-point
distance can be used only for the final choice. This strategy was used successfully
in Publications 2 and 7. Computing the piecewise linear estimate between all data
points takes cubic time with respect to the number of data points.

Regularization. As discussed in Section 5.4, the local metric can be regularized
by mixing it with the identity matrix. For the explicit distance estimation, this
simply corresponds to adding a small amount of Euclidean distance to all linear
distance estimates, and to all linear segments in the graph distance.

6.2 Implicit Estimation of Metrics Through Tailored Objec-
tive Functions

The current learning metrics methods that perform implicit estimation are based
on optimizing tailored objective functions with similar properties. In the large data
limit, they can be interpreted in two alternative ways: either as restricted maxi-
mization of the conditional likelihood of the auxiliary data, or as minimization of
a Kullback-Leibler divergence-based distortion. The interpretations are mathemat-
ically equivalent, and help understand the asymptotic behavior of the algorithms.
For finite data, however, only the likelihood interpretation is meaningful, and it
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Figure 6: Conditional generative model for auxiliary data; X are the input (primary
data), Y are constrained versions of the input, such as cluster indices or projected
coordinates, where f (a clustering or projection) defines the constraint based on
parameters 61. The constrained inputs are used to predict the auxiliary data C
with an estimate p based on parameters 5. The model is optimized with respect to
the parameters to find discriminative clusters or linear discriminative components.

|——

should be considered the “primary” interpretation. Both interpretations are dis-
cussed below.

The connection of the objective functions to learning metrics is proven separately
for each method; see Sections 6.5.1, 6.5.2 and 6.6.1 for discussion of the specific
connections.

Maximizing conditional likelihood. At simplest, the tailored objective func-
tions are various versions of the conditional likelihood of the auxiliary data, which
can be written as

L(0) = Ep(x,c){log p(c|x; 8)} (46)

where p is an estimate of the conditional probabilities defined by the method, and
0 are parameters of the estimate. For a finite data set the expectation is replaced
by a sum over samples.

To ensure the learning performs an exploratory task, the optimization is re-
stricted in a task-dependent manner. For clustering, the estimate is constant inside
the Voronoi regions of the clusters, and for projection the estimate is constant or-
thogonal to the projection subspace. In other words, the estimate is of the form
plelx; 0) = p(c|f(x;601); 02) where f is a deterministic, task-dependent feature map-
ping of x such as a cluster index or a projection, 8; are parameters of the mapping,
and 05 are parameters for estimating the class probabilities from f. Figure 6 illus-
trates the setup.

Figure 7 illustrates the conditional probability estimate that corresponds to a
clustering and projection of primary data, in a simple two-dimensional case.

Maximum conditional likelihood is a well-defined and easily interpretable crite-
rion for finite data sets. Moreover, in the large data limit, the conditional likelihood
objective is equivalent to mutual information if consistent estimators such as Parzen
estimators are used (see Publications 5 and 8). Mutual information is another pos-
sible objective for learning metrics methods. However, for finite data, asymptotic
quantities like mutual information must be estimated. In the experiments in Pub-
lications 5 and 8, maximizing conditional likelihood yielded better results than
maximizing an estimate of mutual information. For discrete data, optimizing con-
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a C

Figure 7: Conditional probability estimates for two-dimensional data with two
classes. The primary data are uniformly distributed over a square. (a): condi-
tional probability of class 2, shown as gray shades. (b): conditional probability
estimated from a clustering of the data. The conditional probability inside each
cluster is estimated as the empirical proportion of data from class 2. The clustering
was done with the learning metrics method in [107]. (¢): conditional probability
estimated from a one-dimensional linear projection of the data with a nonparamet-
ric estimator. The projection was found with the method in Publications 5 and
8.

ditional likelihood is equivalent to optimizing mutual information computed from
a maximum likelihood estimate; however, an improvement can be made for sparse
data (see “computational tricks” below).

Maximum likelihood estimation is known to have problems in some applications
(see [85] for an example). However, note that the objective here is the conditional
likelihood of discrete-valued auxiliary data, rather than continuous data; the author
is not aware of “pathological” problem cases for maximizing likelihood of discrete
data.

Minimizing distortion. In the large data limit, the objective function can easily
be written as

L(0) = const. — Ey ) { Dkr(p(c|x), pclf(x; 01);02))} (47)

which is a distortion between data points x and their transformed versions f(x),
measured in terms of the auxiliary data. The distortion is small if the transforma-
tion preserves the conditional distribution p(c|x) well. Maximizing (47) corresponds
to minimizing the distortion.

Recall that Dk, was used to define local distance in the learning metric. Equa-
tion (47) resembles a kind of average (local) quantization error in the learning
metric. However, quantization error is traditionally measured between objects in
the same space, whereas f is in a space of transformed features.

The following hypothetical construction can be used to overcome the problem:
each value of f corresponds to a deterministic set of input points x. This set may
contain a point r whose auxiliary distribution resembles p well, and hence the point
can be used as a prototype for that value of f. Note that this construction is
made only to help interpret the objective; the prototypes are not needed for the
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optimization.!? Given the prototypes, the objective function can be rewritten as
(see Publications 5 and 8)

L(6) = —Epx{ Dxr(p(cx), p(clr(£(x))))}
+ Epe){ Dxr(p(clf), p(c|r(f)))} — Epey{ Dxr(p(clf), pc[f; 02))} + const.  (48)

where r(f) is the mapping that yields the prototypes; the ideal mapping is to set
r(f') = argminy.¢x)—¢ Dxr(p(c|f’), p(c/x)). The first term measures the average
(local) squared distance between x and the prototypes, and the second term mea-
sures goodness of the prototypes in representing f. The third term arises from the
probability estimate p and is the only one that depends on 8. Asymptotically (with
consistent estimators) it becomes zero. The range of the second term depends on
the data and the task; with some assumptions it can be brought to zero. The only
non-constant term is then the distance term (quantization error).

Computational tricks. The parameters 05 of the estimate p are “nuisance pa-
rameters’ since the primary interest is to optimize the transformation f. Ideally,
the optimization should not be affected by the estimate. Optimally (e.g. in the
large data limit for consistent estimators) the estimate becomes

pclf(x;01)) = Eperjexri00)=£(x:00)) 12(c|X) } (49)

which is an averaged version of p(c|x) where the average (expectation) is taken over
regions with the same value of f.

Of course, the asymptotic result does not help estimation with finite data. In
some learning metrics methods (Section 6.5.2) the finite-data likelihood can be
replaced by a Bayes factor whose terms are marginalized over the 05. In the large-
data limit this Bayes factor becomes equivalent to the previous likelihood. In others
(Section 6.6.1) such replacement is not possible, but a consistent nonparametric
estimator is used so that the result will be asymptotically correct.

In some methods (Section 6.5.1) additional smoothing is included into the cost
function for computational reasons; in this case the cost function approaches the
likelihood in the limit of no smoothing.

Regularization. Regularization of the metric, as discussed in Section 5.4, can be
applied by adding a new term to the tailored cost function that favors “regularized”
(closer to Euclidean) solutions. The form of the additional term depends on the
method; see Sections 6.5.1 and 6.6.1 for discussion.

6.3 Performance Evaluation

The aim of the methods must be distinguished from how their performance is eval-
uated. The quality of visualization and analysis methods is often difficult to quan-
tify. Since auxiliary samples are available in the learning metrics setting, supervised
measures like classification performance, conditional likelihood and class purity have

19In some methods these hypothetical prototypes may correspond to real parameters of the
algorithm, such as the prototypes of Voronoi clusters.
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been used in many cases to evaluate the methods. For clustering methods in in-
formation retrieval applications, traditional measures like precision and recall can
be used. For the purpose of exploration, however, all of these these are indirect
measures.

In a real exploration task the main criterion is whether the methods have re-
vealed interesting new information. If the primary or auxiliary data have domain-
specific meanings it is useful to (at some point) collaborate with an expert to verify
and interpret the findings, perhaps by further experiments. Such collaboration does
not negate the usefulness of learning metrics: since the methods are directly focused
on visualizing the interesting differences in the problem domain, there may be less
“red herrings” and less danger of overlooking the real effects than in traditional
exploration.

Learning metrics-based visualizations and clusterings can be interpreted in the
same ways as corresponding unsupervised methods. For example, one can assess
whether two different categories of auxiliary data occur next to each other, or
whether some category is split into distinct subclusters.

Learning metrics-based methods can also be analyzed from the viewpoint of the
metric. In methods based on explicit distance estimation, the estimated (local)
metric can be visualized at points of interest, such as the model vectors of a self-
organizing map. In methods based on implicit estimation, the interpretation may
be harder. In principle, the optimized parameters of the task, such as projection
directions or locations of cluster centroids, are meaningful (if they have human-
understandable roles in the model), since they have been optimized to discriminate
the auxiliary data. Publication 8 includes an experiment where projection directions
are interpreted as discriminative sound filters.

Publications 1, 5, 7 and 8 show various examples of using the methods in ex-
ploration; Publications 1 and 7 use the method in Section 6.4.1 and Publications 5
and 8 use the method in Section 6.6.1.

In some applications, a lack of important differences is the desired result. The
application in Publication 4 is an example where differences between categories
(there MCMC chains) are undesirable: learning metrics based visualization is used
to assess the differences, in order to eventually remove them. More generally, since
the methods aim to reveal the important differences (as defined by the learning
metric distances), if some structure is not visible in the results, it likely is not
present in the data.2°

6.4 Nonlinear Visualization Methods
6.4.1 SOM-L

The SOM-L (Publications 1, 2 and 7) applies learning metrics to the Self-Organizing
Map (Section 3.1.1). The principle is simple: compute the metric by training
an estimator of the conditional auxiliary probabilities. Then train the SOM-L
by an online algorithm very similar to the original SOM algorithm. This allows
the SOM-L to focus on important data variation, and allows new visualizations
about the local importance of input variables at the map model vectors. The main

20The restrictions of the task (such as projection dimensionality or number of clusters) and
possible practical optimization problems of course limit the amount of information in the results.
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disadvantage is increased computation time for training compared to the original
SOM. With the T-point distance estimator, one training iteration of SOM-L takes
O(NDIJMNCNUNSOMT) time, where NDIA47 Nc, NU, and NSOM are the numbers
of dimensions, classes, components in the conditional auxiliary probability estima-
tor, and SOM units, respectively (see Publication 2).

Besides comparisons on standard test data sets, the SOM-L has been applied to
analysis of bankruptcies (Publication 1) and gene expressions [68].

Winner selection. Winners for the SOM-L are selected by smallest distance in
the learning metric, whereas winners for the traditional SOM were selected in the
Euclidean metric. That is, the winners for SOM-L are selected by

w(t) = arg min 42 (x(t), m;(t)) (50)

where x(t) is the sample at iteration ¢, m,(t) are the model vectors, and dy, is an
estimate of the learning metrics distance. We have used two estimates for SOM-L:
the 1-point and T-point distances.

Adaptation. The model vectors are updated in the direction of the natural gra-
dient. It turns out (see Publication 1) that for the local distance definition, this
simply yields the traditional update rule. That is, only the winner selection changes.

Cost function analysis. The method for applying learning metrics to SOM,
which led to SOM-L, can be applied to SOM variants as well. Heskes’ SOM variant
(Section 3.1.1) is of particular interest, since it has a known cost function, and can
yield new insight into what the SOM-L does. In Publication 7 it is shown that
with some approximations, training Heskes’ SOM in learning metrics is equivalent
to maximising

Ep(c.i{log p(clm;)} (51)

where j indexes SOM units, and the expectation is taken over the joint distribution
p(e,j) = [ p(jIx, ¢)p(x, c)dx where p(j|x,c) o< hy(x) ;- Notice that this is a kind
of conditional likelihood criterion, just like the current cost functions of learning
metrics methods based on implicit estimation (see Section 6.2). However, the cost
function references the (true) conditional distributions p(c|m;) in the primary space
at the model vectors m;, and is not applicable for optimization as such.

6.4.2 Sammon-L

Sammon’s mapping (Section 3.1.2) is a metric MDS method that seeks low-dimensional
data coordinates that aim to preserve pairwise distances between the data. As in-
put, Sammon’s mapping requires only a distance matrix between the data samples;
therefore it is an ideal candidate for applying learning metrics. A Sammon’s map-
ping computed based on learning metric distances will be called Sammon-L (see
Publication 7).

In SOM-L, the update is based only on which unit had the closest model vector,
and the distance approximation only needs to preserve that identity. By contrast,
the objective of Sammon’s mapping is to preserve the actual distances. Therefore, a
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better approximation is needed. On the other hand, the mapping is defined only for
the specific points in the data set, and there is no need to compute distances between
arbitrary points. Therefore, the distance approximation can be computationally
complex since it only needs to be computed between the fixed set of points.

Cost function analysis. As a tentative analysis of the cost function, assume
that the local learning metrics distance suffices (in the experiments, more complex
approximations were used). The cost function of Sammon-L then becomes (up to
a constant multiplier)

T (e — %) T I(x5) (xi — %5) — (vi — ;) "Iy — y5))? (52)
52 (xi —x;)TI(x;) (xi — x;)

where x; are the original coordinates and y; are the coordinates after the mapping.
The difference between the two distances is that the local matrix after the mapping
is restricted to the identity matrix (the dimensionalities may also be different).
Therefore, optimally the Sammon-L needs to find a mapping after which the Fisher
information matrix becomes an identity matrix. Note that the aim of learning
metrics is to find a metric with respect to which the Fisher information matrix
becomes an identity matrix: the Sammon-L finds a feature mapping for the same
purpose.

6.5 Clustering Methods

Discriminative clustering (DC; [72, 105, 106, 107]) is a clustering algorithm that
minimizes a distortion between data and their cluster representations. The differ-
ence to traditional clustering algorithms is that although the clustering is a function
of the primary data, the distortion is defined in terms of the paired auxiliary data.

Although DC is not one of the methods presented in this thesis, it is discussed
here since it forms the basis for an extension to distributional clustering introduced
in Publication 3 and discussed in Section 6.5.1.

The first version of DC [105] maximizes the conditional likelihood of classes
within clusters; the cost function is

Nt
Lpc = Z Z vi(x) log Yet (53)

(x,c) t=1

where v:(x) € {0,1} are cluster membership functions (computed at x) that sum
to one, and .; are parameters of the prototype auxiliary distribution in cluster .

Technically, the v; are parameterized as Voronoi regions defined by prototypes
m;. A stochastic gradient algorithm is used to optimize the m; and the prototype
auxiliary distributions .. An improved version ([107]; see Section 6.8) integrates
out the 1. which are “nuisance parameters” for the clustering.

For computational reasons the Voronoi regions (the v;) are softened to allow gra-
dient optimization. For soft v; the cost function is not a conditional log-likelihood
for the data samples, since each cluster returns a separate estimate. However, it can
be seen as an expected log-likelihood, taken over cluster assignments with probabil-
ities v;. It is also a lower bound for the conditional likelihood of a simple mixture
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(where the v, are inside the logarithm; compare to (44)). In the limit of sharp v,
the cost function becomes conditional likelihood.
Regularization can be applied to DC; see [72] and Section 6.8.

Relationship to learning metrics. The relationship between DC and learning
metrics has been studied in [71]. It is shown there that in the limits of large
data, hard clusters and local clusters, optimizing the conditional log-likelihood cost
function of DC is equivalent to optimizing the average squared learning metrics
distance to the cluster centroid?!', and therefore the optimal partitions are Voronoi
regions of the learning metric. It is further shown that the optimal shape of a
Voronoi region is a sphere in the learning metric (that is, the borders are at constant
learning metric distance from the centroid).

Difference between discriminative clustering and classification. Classi-
fication and clustering both construct borders into the data space. For DC the
borders are optimized based on classes. However, instead of classification, DC per-
forms conditional density estimation with a piecewise constant estimate (in the
limit of hard clusters).

The tasks have different solutions. Asymptotically, DC seeks cluster borders in
the learning metric. The metric emphasizes all class-affecting differences, not just
those where the majority class changes.

As a practical example, consider an area with a large change in class density
that does not yet change the classification of the area. The change would be visible
in the metric and a clustering derived therefrom, but not in a metric derived from
the classification. Fig. 8 illustrates the conceptual difference.

6.5.1 Discriminative Distributional Clustering

Discriminative distributional clustering (DDC; Publication 3) is an extension of DC
to the domain of multinomial distributions, such as the word distributions of text
documents under the “bag of words” model.

Under the “bag of words” assumption, text documents are commonly represented
as points in a vector space [100], where each coordinate is the number of occurrences
of a particular word, possibly weighted according to schemes such as term frequency-
inverse document frequency (TF-IDF). However, such vector representation neglects
the properties of the word distributions (probabilities are from zero to one, and
sum to one) and hence Euclidean vector distance is an inappropriate measure of
distortion. Representing documents as multinomial distributions and measuring
their distortion by Kullback-Leibler divergence is a more rigorous choice. However,
unsupervised clustering based on such a measure cannot know which differences in
the distributions are important.

In DDC, the clustering and distortion are determined by two different Kullback-
Leibler divergences. The cost function is

> / vj(@) DxL(p(cla), ¥;)p(a)dq - (54)

J

21This is a special case of the distortion interpretation (48) discussed in Section 6.2.
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Figure 8: Difference between classification and “hard” clustering in the learning
metric. In this example x is uniformly distributed in [0, 1] and there are two classes
with probabilities shown in the figure. Classification places borders where the iden-
tity of the maximal class changes. Clustering in the learning metric emphasizes
places where the conditional probabilities change.

where v;(q) = exp(—xDxkr.(q, m;))/Z(q) determines the clustering in the primary
space, by KL divergence between the sample distributions q and the prototype
distributions m; of the clusters (Z(q) is a normalization term). The second term
inside the integral measures the distortion, by KL divergence between the auxiliary
distributions p(c|q) at the samples and the prototype auxiliary distributions ; of
each cluster.

In practice the observed data are histograms n instead of multinomial distribu-
tions q; the clustering is then computed from maximum likelihood estimates of q,
and the integral is taken over n.

For a finite data set, (54) can be seen as the likelihood of a conditional generative
model for auxiliary data, given the primary data. Note the similarity between the
distortion and the local learning metric distance; the precise relationship is discussed
below.

In principle, regularization could be applied to the DDC cost function with
methods similar to the ones presented in [72].

Relationship to learning metrics. DDC is related to learning metrics in the
same manner as DC (see Section 6.5). The proof is similar to [71]; the difference
is that the primary space is a distribution space instead of a vector space. Assume
large data and hard clusters. As the number of clusters grows the clusters become
close-by in the primary space, as measured by Dkr. The KL divergence between
close-by distributions is asymptotically symmetric and equal to a weighted sum of
their squared differences [104]. Therefore, the KL metric in the distribution space
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is locally an Euclidean metric for scaled features, and hence the space is locally
equivalent to a standard vector space. The proof in [71], derived for vector-space
clustering, then applies with minor changes.

6.5.2 Finite-Data Sequential Information Bottleneck

Motivation: problems with nuisance parameters. Methods that compute
asymptotic quantities like mutual information have a possible problem: they need
an estimate of the distribution and must assume it is correct. The respective anal-
ysis tasks are based on the estimates. However, at least for sparse data it is likely
that the estimates will not be completely accurate. An ideal method should be able
to account for the uncertainty in the estimation.

The DDC clustering method in Section 6.5.1 and the discriminative components
to be presented in Section 6.6.1 optimize a well-defined objective, conditional likeli-
hood. It is then in principle possible to account for uncertain estimates by methods
like validating parameters on a held-out part of the data.

For these methods, the parameters of the estimates are “nuisance parameters”
since the result of analysis, a clustering or projection, does not depend on them.
It would hence be best if, instead of optimizing or validating the parameters, they
could be analytically integrated out of the optimization objective. In the clustering
case this is possible.

The fsIB method: no nuisance parameters. The finite sequential Informa-
tion Bottleneck algorithm (fsIB) introduced in Publication 6 is an improvement of
the sequential Information Bottleneck (sIB) algorithm [109] for sparse data.??

The original sIB optimizes an estimate of mutual information in the contingency
table between clusters and auxiliary data (features). As noted above, mutual infor-
mation is an asymptotic concept defined for distributions instead of data, and the
estimate of the distribution is a “nuisance parameter” for optimizing the clustering.

By contrast, fsIB optimizes a finite-data criterion, a Bayes factor between two
generative models families of the contingency table. The Bayes factor measures the
dependency between the margins of the table; it is given by

(DIH1) ~ [T T(nij + o)
(DIHz2) [I; T(ni + i)

where n;; is the number of occurrences of cluster ¢ and auxiliary value (word) j,
n; is the marginal number of co-occurrences in cluster ¢, and o;; and o; define the
priors within the model families H; and Hy. The margin of the auxiliary data is
constant with respect to the clustering. Note that the Bayes factor compares model
families, not individual models; the parameters of the individual models within the
families are analytically marginalized out. Alternatively, the cost function can also
be interpreted as the marginal likelihood of a third model family.

The Bayes factor and its connection to mutual information were presented in
[107] and it was used in a different clustering setting in [108]; the novelty in fsIB is
the application to the Information Bottleneck.

BF(H,, Hs) = i (55)

22There is a misprint in Publication 6 in the description of the sequential Information Bottleneck:
the word “random” in paragraph 2 of Section 1.2 should be omitted. The experiments were done
with the correct method.
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A note on the merging criterion. The fsIB algorithm sequentially extracts
a document from its cluster and merges it to a new cluster. In the large data
limit, the merging criterion becomes Jensen-Shannon (JS) divergence between word
distributions in the document and the cluster, multiplied by their combined word
count. The weights in the JS divergence are the relative sizes (word counts) of the
document and cluster. This is the merging criterion of the original sIB.

Let us sketch a tentative analogy for the merging criterion in the learning metrics
setting. Assume that each cluster corresponds to a point (small Voronoi region) in
a continuous primary space, and assume that the points are close by (local). Recall
that the local learning metrics distance between two points is Kullback-Leibler
divergence between their conditional auxiliary distributions, which reduces to a
quadratic form with the Fisher information matrix. It is shown in Appendix 2 that
locally, Jensen-Shannon distance between conditional auxiliary distributions also
reduces to a quadratic form as
172

Dis(p(clx), plelx + dx)) = dx"J(x)dx + O(|dx|*) (56)
where 7 and 7y are the weights in the definition of Jensen-Shannon divergence.
For fsIB the Jensen-Shannon weights are m; = p(x|x V x + dx) = p(x)/(p(x) +
p(x + dx)) and ma = 1 — 71, where p(x) is the amount of data at location x.
Neglecting the high-order terms, the cluster merging criterion then becomes

p(x V x + dx) Dys(p(c|x), plc|x + dx)) = p(x V x + dx) - %de(J(x))dx
1
= p(X Vx+ dX) ZEp(x’,x”|x’,x”e{x,x+dx}) {d% (X/, X/,)} . (57)

The expectation on the last line is the within-cluster squared distance in the merged
cluster consisting of the points x and x + dx. That is, the merging criterion tries
to keep average within-cluster squared distance small.

Differences between fsIB and DDC. There are clear differences between fsIB
and the DC and DDC methods; although both fsIB and DDC are applied to text
data, fsIB produces a clustering for the finite set of document indices, while DDC
produces (soft) Voronoi region clusters in the space of multinomial distributions,
which immediately apply to any new distributions (documents).

In DDC the words define the location of the sample in the continuous primary
space, that is, they are part of the primary data, whose topology is preserved.
In fsIB the words are considered auxiliary data for the document indices, which
have no topology. Hence there is no distinction between “local” and “global” dis-
tances; auxiliary data can be directly compared, and they naturally supervise the
co-occurrence clustering. Both are useful but different approaches; see below.

Unlike the document classes in DDC, fsIB uses no additional information on
which word differences are important. If necessary, such information could be in-
cluded by methods such as those in [26].

Similarities between fsIB and DDC. Despite the different settings, the objec-
tives of fsIB and DC (DDC) are very similar. In particular, a marginalized version
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of DC (see Section 6.8) uses a Bayes factor between clusters and auxiliary data as
its cost function.

If one starts from DC or DDC, discards any topology of the primary space and
uses the primary data only as indices, and marginalizes the objective function, one
arrives at fsIB style clustering (the specific optimization algorithm is of course not
defined by these steps). However, the result would not be a meaningful clustering
for the originally continuous data; as noted in Section 5.7.1, topology preservation
is crucial for continuous-data cases.

Therefore, DC solves the same problem as fsIB under the restriction of preserv-
ing topology. In this sense, fsSIB makes the link between the Information Bottleneck
and learning metrics principles explicit.

6.6 Projection Methods

Even though a metric is a more flexible description of important differences than
variable selection or feature extraction, in some cases a simple feature representation
of the differences is desirable for easy visualization or computational savings.

Finding such a representation corresponds to extracting components of the data
such that they contain most of the important variation. The components can be
called “relevant” or “discriminative” components of the data. The task of finding
such components can be called Relevant Component Analysis.

One possible approach to finding such components would be to first estimate the
metric and then apply some unsupervised feature extraction method that aims to
preserve variation. However, since the aim is to find a simple representation of the
important differences, having to first estimate a potentially complicated metric is
undesirable. Therefore, the second approach of constructing a tailored, supervised
objective function directly based on the data is preferred. Below this approach is
applied to finding the simplest kind of components: linear components.

6.6.1 Linear Discriminative Components

Although their representation power is limited, linear components are widely used
due to easy interpretation and often easy computation as well.

Classical method. Linear Discriminant Analysis (LDA; Section 4.1.1) is the
classical method most closely suited for this task. A particular suitable application
of LDA is presented in Publication 4, where it is shown that the cost function that
LDA maximizes is equivalent to a convergence measure (MPSRF; [20]) that has
been used to measure differences between MCMC chains of posterior parameter
samples.

However, LDA has theoretical limitations that make it insufficient in many ap-
plications. In particular, the subspace found by LDA is not optimal for classifi-
cation if the data are not normally distributed (with equal covariance matrices)
or if less than all components are chosen. In the latter case, the data follow the
LDA assumptions; the problem is that the eigendecomposition does not optimize
the discriminative power of the first eigenvectors. Examples of these situations are
shown Fig. 9. Since non-normality, unequal covariance matrices, or the need to find
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Figure 9: Problem cases for Linear Discriminant Analysis. A single LDA direction
is sought in each case. Left: two non-normally distributed classes. In a two-
class case LDA finds only one component; the LDA direction is vertical while the
discriminative direction is horizontal. Right: five normally distributed classes with
the same covariance matrix. In this multi-class case LDA finds two components;
the first one is chosen. The first PCA direction and the discriminative component
direction are given for comparison.

a small set of components occur in many domains, overcoming the limitations of

LDA is desirable.

Improved method. In Publications 5 and 8, an improved method that finds
linear components is presented. Discriminative components are based on the idea
of finding linear components of the data such that they maximize predictability of
the auxiliary data, that is, the conditional log-likelihood

> logp(c[ W) (58)

(%)

where p is an estimator of the auxiliary probabilities, and W is a projection matrix.

Practical details of the optimization include nonparametric Parzen estimation
of the probabilities of ¢ after the projection, parameterization of the projection
by Givens rotation matrices (each of which rotates one pair of dimensions) and
stochastic gradient optimization.

Difference between LDA and the new method. The advantages of the new
method are that it does not involve restrictive distributional assumptions (the non-
parametric estimator is asymptotically consistent) and that it directly optimizes
the subspace for the specific number of components sought. The disadvantage is
the increased computation time, compared to the simple eigendecomposition used
in LDA. Also, gradient-based optimization may get stuck in local optima, but in
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the experiments the new method performed better than the comparison methods
so this may not be a large problem.
An asymptotic comparison of the cost functions is given in Publication 4.

Connection to learning metrics. In a sense, the discriminative components
approximate the learning metric variation of the data with the learning metric
variation in a particular linear subspace. The theoretical connection is that with
some approximations, the discriminative components asymptotically turn out to be
principal components in learning metrics (see Publication 8).

Notice that the Euclidean metric is not involved here; by comparison, the non-
linear projection method Sammon-L (Section 6.4.2) aims to to approximate the
learning metric distances between a finite sample set with Euclidean distances in
a small-dimensional output space. In other words, the discriminative components
find a transformation between two learning metric spaces, whereas Sammon-L finds
a transformation between a learning metric space and an Euclidean metric space.

Regularization. Regularization as discussed in Section 5.4 could in principle be
applied to the cost function by weighted combination with a cost function that
seeks components in an Euclidean metric. The probabilistic PCA model in [116] is
a possible candidate due to the asymptotic interpretation discussed above.

A note on ordering of components. Principal components in Euclidean met-
rics have a distinct ordering. Similarly, discriminative components might be ex-
pected to have an ordering like for instance LDA directions have. However, it
turns out they do not. This is a property of the task itself; in general, a low-
dimensional subspace that discriminates classes need not be embedded in the higher-
dimensional discriminative subspaces. Figure 10 illustrates a toy example where the
one-dimensional discriminative direction and two-dimensional discriminative plane
are orthogonal. Therefore, lack of ordering is actually desirable for best perfor-
mance. If desired, a constrained optimization can be done to force an ordering.
A “bottom-up” approach would be to find all components first, then successively
project to lower-dimensional subspaces, so that one dimension (component) is left
out in each projection. The components are left out in order of least importance. A
“top-down” approach would be to find one component, then find a two-dimensional
subspace, keeping the first component fixed in the optimization, then find a three-
dimensional subspace with the first two components fixed and so on.

A note on variable selection. Linear components are weighted combinations of
original features. A functionally even simpler type of feature extraction is variable
selection where a subgroup of the original variables are chosen. The conditional
likelihood criterion used above can trivially be used to compare the goodness of
particular subgroups (simply “project” the data by dropping the extra variables,
and compute the conditional likelihoods) and hence it can be used for variable
selection. The same applies to feature selection, where a fixed set of candidate
feature transforms are compared. However, if the set of candidates is large, a good
comparison measure alone is not enough to solve the problem: selecting the best
variables or features is still a complex optimization task.
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Figure 10: A toy example with no ordering of components. Two classes with equal
priors are uniformly distributed inside the cylinder and torus respectively. The
optimal one-dimensional discriminative direction (Z axis) and the optimal two-
dimensional discriminative plane (XY plane) are orthogonal.

Application to MCMC chains. In Publication 4, linear discriminative compo-
nents are applied to study convergence and mixing of MCMC chains. The concept
is simple: if the chains have not converged they have different distributions (of
parameters or some predictive quantities), and hence it is possible to predict which
chain a particular sample is from. The chain indices can be used as auxiliary data;
the discriminative components optimize their log-likelihood and thereby find the
projection where the chains are most different in this prediction sense.

The ultimate aim in the MCMC application is to create better sampling chains
that converge (and hence cannot be discriminated). This can be seen as the reverse
of other learning metrics applications; usually the aim is to discover interesting
properties of the data, and it is hoped that the auxiliary variable helps find them.
In the MCMC application it is ultimately hoped that the auxiliary variable does
not help! Of course, this does not mean the analysis method should not be discrim-
inative; if it were not, the analyst could not know whether the auxiliary data truly
does not help or whether the method merely cannot use it well enough.

6.7 Summary of Empirical Comparisons

This section gives an overview of the performance of the learning metrics methods
in the previous sections in small-scale empirical comparisons. The methods have
been applied to several empirical tasks in the publications. The following is a short
summary of the tasks and their results; see the publications for details.

Applications of SOM-L. In Publication 1, SOM-L with the 1-point distance ap-
proximation (and MDA2 and Parzen-based conditional probability estimators) was
applied to toy data, and to bankruptcy analysis on financial statements of Finnish
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enterprises. In both cases, SOM-L was compared with the traditional SOM. For the
bankruptcy analysis case, the SOMs were compared by their accuracy in represent-
ing bankruptcy probability, and by their smoothness and quality of organization.
The former was measured with the conditional likelihood of an estimator of auxil-
iary data; the latter two were compared visually. SOM-L outperformed SOM-E; it
had better accuracy and comparable smoothness.

In Publication 2, SOM-L with the T-point distance approximation and two di-
rect conditional probability estimators was applied to five data sets (the bankruptcy
data and four standard data sets). It was compared with SOM-E and with the
SOM-L that uses the 1-point distance approximation, by the accuracy measure
used in Publication 1. Learning metrics were found to improve SOM accuracy on
all data sets. The mixture of experts estimator was best on three sets. SOM-L with
the T-point distance approximation was on average better than the standard SOM
on all sets, whereas SOM-L with 1-point distance approximation was comparable
or worse on two sets.

In Publication 7, SOM-Ls with the mixture of experts estimator and T-point
and 1-point approximations were compared with the standard SOM and Supervised
SOM (SOM-S) on four data sets. Different combinations of density estimators and
distance approximations were also compared for SOM-L. A heuristically derived
new quality measure was motivated through the cost function (51) discussed in
Section 6.4.1. The mixture of experts estimator and T-point distance approxima-
tion yielded the best SOM-L results according to the new quality measure as well.
SOM-L with T-point distance approximation outperformed SOM-E and SOM-S. A
visual comparison with SOM-E was also given. Experiments were further carried
out to discover whether SOM-L can discover the important data variables in the
presence of increasing amounts of unimportant variation (increasing numbers of
unimportant variables). SOM-L outperformed SOM-E for all numbers of unimpor-
tant variables in the test. Lastly, the complexity-quality tradeoff for approximating
learning metric distances (better distance approximations take longer) was stud-
ied. The values used in the empirical comparisons for the approximation parameter
T and a speedup parameter seemed sufficient. Using the T-point approximation
with computational speedup and the mixture of experts estimator for SOM-L was
recommended as a guideline.

Applications of Sammon-L. In Publication 7, Sammon-L was compared to
standard Sammon’s mapping by the classification accuracy of a k-nearest neighbor
classifier on the feature values given by the mappings. Sammon-L yielded better
accuracy than standard Sammon’s mapping. Sammon-L and a Sammon’s mapping
computed from Kullback-Leibler divergences were also used to demonstrate the
importance of topology preservation. The complexity-quality tradeoff of distance
approximation was also studied for Sammon-L; the values used for the empiri-
cal comparison seemed sufficient for Sammon-L as well. Using T-point or graph
distance approximation and the mixture of experts estimator for Sammon-L was
recommended as a guideline.

Applications of DDC. In Publication 3, DDC was applied to cluster scientific
abstracts from the INSPEC database. Keywords for the documents were used as
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auxiliary data, and DDC was compared to vector-space discriminative clustering,
and to ACM and SMM (see Section 4.3.2) and a vector-space mixture model. The
latter three methods did not use keywords. The results were evaluated by “soft”
empirical mutual information between the clusters and topic categories which were
not used in training. The discriminative methods outperformed unsupervised mod-
els. Two types of preprocessing were used; DDC was the best for the one type and
vector-space discriminative clustering for the other.

Applications of fsIB. In Publication 6, fsIB was applied to cluster text docu-
ments from the Twenty Newsgroups and Reuters-21578 corpora. The goodness of
the clustering was evaluated by micro-averaged precision with respect to a known
classification of the documents, and fsIB was compared to sequential IB. The data
sets were subdivided into smaller and smaller subsets to test the effect of sparseness;
fsIB with so-called consistent priors yielded the best results on sparse data.??

Applications of discriminative components. In Publication 5, discriminative
components were sought for five standard data sets. In each case a known cate-
gorization of the data was used as auxiliary data; the quality of the solution was
measured by the classification error of a k-nearest neighbor classifier on the found
components. The discriminative components were compared to a method in [120]
and LDA, and to PCA which did not use auxiliary data. Discriminative components
achieved the best average result on four of the sets; the difference was significant for
three. In addition, a case study on using the components for exploratory analysis
of yeast gene expression data was given.

In Publication 4, discriminative components were used to analyze convergence
and mixing of MCMC simulations in a textbook example. Two-dimensional projec-
tions based on LDA and discriminative components were qualitatively compared.
With LDA, two visualizations were needed, whereas with discriminative compo-
nents a single visualization displayed all the discovered convergence properties.

Publication 8 includes the same quantitative comparison as Publication 5. In
addition, a qualitative comparison of PCA, LDA, the method in [120] and discrim-
inative components was given on one of the standard data sets (handwritten nu-
merals). Both LDA and PCA separated some classes well but the others were over-
lapping. Discriminative components and the method in [120] had the best results;
discriminative components separated some numerals slightly better. A new test was
carried out on how the performance of discriminative components varies with pro-
jection dimensionality. Discriminative components consistently outperformed LDA
at low dimensionalities, and the results converged for high dimensionalities. Lastly,
a data analysis demonstration on Finnish acoustic phoneme data was given. Classes
were visualized with discriminative components, and the projection directions were
interpreted as linear filters of the logarithmic power spectrum of a sound.

23Publication 6 contains a misprint in the results section (Section 3.3, page 7): the prior in the
denominator of the fsIB 1 cost was relatively weak, not strong. The analysis is otherwise correct.
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6.8 Other Applications of Learning Metrics

The five methods presented in this thesis are part of a wide range of possible learning
metrics methods. Several other methods have been developed in our research group;
an overview is given below.

SOM-L has been applied to visualize posterior parameter distributions [125].
Here the learning and Fisher metrics can be thought to coincide since the “primary
data” to be analyzed are the posterior parameter samples and the auxiliary data
are the predicted samples from the models.

An alternative to SOM-L has been developed [70], based on conditional gener-
ative modeling ideas derived from discriminative clustering.

Theoretical analysis of discriminative clustering suggests that optimal partitions
are Voronoi regions in the learning metric [71] rather than the Euclidean Voronoi
regions in “standard” DC. DC methods in learning metrics have been compared
in [99], where the iteration explicitly computes the learning metric and applies it
to improve the Voronoi region constraints for K-means and DC clustering.?* The
empirical results provide evidence that the learning metric yields better results, as
suggested by the asymptotic theory.

A maximum a posteriori version of DC (MAP-DC; [107]) has been developed
which outperforms the original. It differs from ordinary DC by analytically inte-
grating out the explicit parameters for the within-cluster class distributions (the
et in (53)) based on a Dirichlet prior. The resulting objective function is a Bayes
factor for a contingency table between clusters and classes.

Regularization has been applied to MAP-DC [72]. Two regularization methods
are introduced; the first changes the weighting of the terms of the cost function,
and the second adds a generative mixture model for the primary data. This builds
a continuum between K-means clustering and DC; similar regularization can be
applied to SOM-L (see Publication 1), Sammon-L, and in principle to DDC and
discriminative components.

DC has been extended to a symmetric clustering of two continuous data spaces
called associative clustering (AC; [108]). AC clusters two paired continuous vari-
ables preserving dependencies between them. The clusterings of the variables (fea-
tures) form the margins of a two-dimensional contingency table. The continuous
variables themselves are not visible in the contingency table, and meaningful re-
strictions on their clustering (clusters must be Voronoi regions) are used to prevent
degenerate solutions. In effect, the clusters of one variable are auxiliary data that
guides the clustering of the other variable, and vice versa, although the clustering
process if of course simultaneous for both variables.

The cost functions of MAP-DC and AC are similar to the fsIB cost function
although they are used in different settings; in MAP-DC the contingency table is
between clusters of an originally continuous variable and discrete classes, and in AC
between clusters of two originally continuous variables, while in fsIB the contingency
table is between two originally discrete variables, one of them clustered.

Figure 11 shows a “concept map” of the learning metrics family of methods.

24The resulting DC method is an interesting combination of the two approaches discussed in
Sections 6.1 and 6.2.
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Figure 11: The current learning metrics family of methods. Rounded boxes denote
concepts and non-rounded boxes methods. Methods in this thesis are shown with
bold outline. SOM-L: Publications 1, 2, 7. MI-Map: [70]. Sammon-L: Publication
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7 (CONCLUSIONS

The learning metrics principle is a novel solution to the problem of focusing ex-
ploratory data analysis on important differences in data. It allows the analyst to
easily specify which differences are interesting, and hence which properties of data
the computational analysis methods should focus on, in a versatile, data driven
manner.

The importance of data differences is learned from the data itself, based on
auxiliary labels paired with the primary data, and is formalized as an explicit
metric (distance measure) in the primary data space. Expert knowledge is needed
in learning metrics as well, for choosing good auxiliary data to direct the metric;
this is, however, often a much lighter task than choosing good data features.

In this sense, the learning metrics principle chooses the metric to match the
data. This replaces and/or complements the traditional way of choosing features
by an expert to match the assumptions of fixed analysis methods.

The principle provides a Riemannian (local and hence flexible) metric that is
largely invariant to data distortions and in part to noise. This avoids many common
problems in Euclidean metrics for data features, such as vulnerability to scaling and
distortions.

Learning metrics are widely applicable, both to analysis methods and ultimately
to problem domains. Two different approaches for deriving practical methods have
been used: explicit distance estimation and implicit estimation through a tailored
objective function.

In this thesis, several estimates for the distances were introduced. The tailored
objective functions are interpretable as versions of conditional likelihood (or a Bayes
factor) to be maximized, or as distortions to be minimized.

Five methods based on learning metrics were introduced, for nonlinear visual-
ization (by self-organizing maps and multidimensional scaling), linear projection,
and clustering of discrete data and multinomial distributions. The methods have a
rigorous background in information geometry and probabilistic modeling. Several
relationships between the five methods, their relationships to other learning met-
ric methods, and relationships to other data analysis principles and methods were
discussed.

The methods have not yet been used in large-scale (industrial) applications,
but several small-scale empirical comparisons on real-world data have been made
in the publications. The methods were applied to diverse practical problems such
as bankruptcy analysis, bioinformatics (gene expression analysis), and clustering of
text corpora. The learning metric methods yielded improved performance compared
to alternative methods, many of which either do not use auxiliary information or
make restrictive assumptions about it.

The significance of the results is that the learning metrics formalism has been
shown to yield useful practical methods. Connections to existing methods have been
shown and discussed, and the learning metrics methods have been empirically shown
to improve results in common unsupervised discovery tasks (linear and nonlinear
visualization and clustering). Therefore, learning metrics can now be used also in
practice to focus learning on interesting discoveries.
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Template methods. While useful in their own right, the five methods in this
thesis can also be used as “templates” for how to apply learning metrics to other
similar analysis methods. In many cases, such methods can be derived by simple
modification of the presented methods, or more generally, by following the same
procedure to derive cost functions and/or update algorithms for the new task. For
example, instead of the Self-Organizing Map (SOM), one can start from the Gener-
ative Topographic Mapping (GTM) to derive a learning metrics version (GTM-L);
the results are very similar to the learning metric SOM (SOM-L) aside from the
usual differences between SOM and GTM and are omitted here. Similarly, instead
of the learning metrics version of Sammon’s mapping (Sammon-L), one can consider
any other Multidimensional Scaling (MDS) method. Many variants of the present
methods can also be derived; for example, by using Heskes’ winner selection rule in
SOM-L.

Directions for future research include extending the definition of auxiliary
information. One possibility is to use pairwise similarities instead of pointwise
labels; for example, similarities in the form of links have been shown to be useful for
classifying web pages (see e.g. [22]). One possibility is to use continuous auxiliary
data; there is already a method [108] which can be seen as a step in this direction.

The types of primary data could also be extended to e.g. accommodate variable-
length strings or other structured data.

Many possible extensions of the presented methods also exist; for example, the
linear discriminative components could be extended to nonlinear ones, or the meth-
ods for one-sided contingency table clustering to two-sided clustering.

It may also be worthwhile to apply learning metrics to more complicated analysis
methods in addition to the ones that can be derived from the “templates” mentioned
above.

As mentioned in the introduction, learning metrics could be applied to kernel
methods or similarity-based methods as well. However, care must be taken to
satisfy any assumptions that the methods make about the similarity or kernel. For
example, the kernel might need to be a Mercer kernel.

In conclusion, the number of useful exploratory methods that have been derived
from the learning metrics principle shows its power for aiding the task of discovery.
Recall the quote from Descartes about the good and bad sides of guidance (Chapter
1): in a sense, this thesis has shown that the best way to explore is to keep one’s
eyes open and listen to the guide.
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APPENDIX 1: RELATIONSHIP BETWEEN
KULLBACK-LEIBLER DIVERGENCE AND THE
FISHER INFORMATION MATRIX

This proof follows the one in [104]; it is reproduced here for convenience.

For close-by distributions p and ¢, a Taylor series of the Kullback-Leibler diver-
gence with respect to €; = ¢; — p; around zero yields ([104]; multiplier § added to
the first term)

_ (pi — %‘)2 13

)

Set p = p(c|x), ¢ = p(c|x’) and use a Taylor series for their difference, to yield
0
p(elx’) = plelx) = (%' - X)Tafxp(CIX) +O(|Ix" = x[]?) . (60)

Insert this into (59) to yield

% —x)T (Zp(elx)) (Lpelx))” x —x
Dxw(p(c|x), p(cx)) = Z( /" (s |2;2c(|x))(p( b)) ( )
20(|Ix' — x|*)(x' = x)T (Zp(c]x)) + O(|[x’ — x||?)?

> 2p(c]x)

C

+ O(max [p(clx) — p(c/x)|*)  (61)

where the first term is just the quadratic form §(x’ — x)TJ(x)(x’ —x). The second

term is O(||x’ — x||?) since p(c|x) and its gradient are constants, and the last term
is also O(||x’ — x||?) since p(c|x’) — p(c|x) = O(||x’ — x||) for each c. Therefore

Dxu(p(clx), plelx”)) = %(X’ = %)) —x) + O(|lx" - x[|*) (62)

which yields (41).
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APPENDIX 2: RELATIONSHIP BETWEEN JENSEN-
SHANNON DIVERGENCE AND THE FISHER IN-
FORMATION MATRIX

This proof largely follows along the lines of the proof of the relationship between
Kullback-Leibler divergence and the Fisher information matrix in [104] (the proof
is given in Appendix 1 for convenience).

The Jensen-Shannon divergence between conditional distributions at close-by
points x and x’ is

Djs(p(clx), p(elx”))

- olx p(C|X) . clx’ p(c\x’)
= 126310( | )10g 7r1p(c|x)+7rgp(c\x’) + 2zc:p( | )10g 7r1p(c|x)+7rgp(c|x’) .

= f(X, Xl7771a 772) + f(xl7x, 772’7T1) (63)

where the weighted Kullback-Leibler divergence was denoted by

, _ p(clx)
f(x,x',m,me) =m gp(dx) log e o o pr e (64)

For two close-by distributions p and ¢, a Taylor series-based rewrite of the KL
divergence gives ([104], multiplier 1/2 added)

kL(p, q) = 272]3_ + O(max |p; = g;”) - (65)

%

Applying this to f, we have

o) = T 3 PP O el -plel)) - (6)

Applying p(c|x’) — p(c|x) = (x' — x)Té%p(c\x) + O(||x" — x||?) to the above, we
have

e mm) = RS [(x’ 7 (2t (mpte) ¢ )

+O(|lx" = x[|) +20(|[x" — x[]*)(x’ — X)T(%p(CX)} +m O (max |p(clx) —p(c[x)|*)

= T =TI~ %) + Ol x[*) (67)

where the last equality follows since p(c|x’) — p(c|x) = O(||x" — x]]).
The second term, f(x’,x,m, ), is slightly more complicated. Denoting €. =
p(c|x’) — p(c|x), the term is

p(elx) + e

P(ep) e, (68)

f(x %, ma,m1) = 2 Z(p(c|x) + €c) log
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Denote the terms inside the sum by g.(e.). The first and second derivatives of g.

are

g Plelx) + e
p(c|x) + mae.

sotebre) (s ) (@

0 ge(ee)
a Gcl€e) =
de,” p(cx) +ec  p(ex) + me.
and

82 1 T

— =92 —
e, 9elee) (p<c|x>+ec p(C|X)+7T26c>

-1 77%
+ (p(efx) + €) ((p(clx) + €)? " (p(clx) + 7T26c)2> -1

By induction, the kth derivative (k > 2) is

O ge(ee) = (1)th(k 2 T
re,9o(c) = G+ e (e + mae

1)k — c|lx € L — 77]5
T EDT k= Dip(e >+C’<<p<cx>+ec>k (P(C|X)+7T2€c)k) )

which evaluates at zero to

W (~DFk(k =211 =7y ™) + (=1 (k= 1L — 7))

(=D (k —2)! k=1 _ _k k
:W(k(ﬂ'Q —7T2)+7TQ—1) . (72)
With the above information, we can construct a Taylor series for each term in
f(x/,x,ma,m) with respect to €. (around €, = 0), as

f(x',x, ma,m1) = O(max €?)

1—m € (2 —2my 72 —1
w3 [0 (0 pteb ) 4 5 (% e <c|x>2>}
:%(2—27‘1’2—1—77%—1)20:17(;: )+O(maxe 7T27T1 )

(73)
where ) e, = 0 yields the second equality, and the last follows since 7, + mp = 1.
It remains to apply €. = (x fx)T%p(dx) +O(||x’ —x||?) as before. This yields

7T27T%

(x = %)"I(x)(x = x) + O(|[x" —x|) . (74)

f(X/7 X, 2, 7'('1) =
Adding the results together,
T

Diys(plelx), plelx')) = ==

Notice that the essential difference to the Kullback-Leibler divergence between
conditional distributions at close-by points is the multiplier 775 € [0, 1]. Therefore,
the Jensen-Shannon divergence in this case is always smaller than the corresponding
Kullback-Leibler divergence.

(x' = x)TI(x)(x —x) + O(|[x" —x[J°) . (75)
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APPENDIX 3: ADDITIVE LOCAL METRICS

If we have ¢ = (c¢1, c2) where ¢; and ¢y are independent given x, then

p(c1, ca]x)

Dict(p(elx). p(elx +dx)) = 3 pler,cafx) log == 2 s

C1,C2

- Z p(e1]x)p(cz|x) log

C1,C2

p(e1[x)p(ca|x)
p(er]x + dx)p(ca|x + dx)

= Zp( 1%)p(ca] )(1 gp(cl\x+dx)+1 gp(CQ|X+dX)>

C1,C2

_ plerlx) e (e
=2 pleiblog pleifx + dx) " %:p( 2o plez|x + dx)

C1

= Dki(p(c1]x), p(c1|x + dx)) + Dk (p(c2|x), p(ce|x + dx)) .
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