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ABSTRACT 

 

Interfacial compatibility of dissimilar materials was investigated to achieve a better understanding 

of interfacial adhesion in metal/polymer/metal systems. Surface modifications of polymers were 

applied to improve the adhesion. The modified surfaces were characterised by scanning electron 

microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and 

contact angle measurements accompanied by surface free energy evaluations. The pull-off test was 

employed to assess the interfacial adhesion strength. Further, to determine the controlling adhesion 

mechanism, the fracture surfaces exposed in the pull-off test were examined by microscopy. To 

achieve modification of certain bulk properties of one of the evaluated polymers (SU8 epoxy resin), 

new star-shaped oligomers were synthesised and reactively blended with it. Oligomers were 

characterised by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform 

infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and differential scanning 

calorimetry (DSC). Films of the blends were spin coated on a silicon wafer for characterisation of 

the refractive index and a novel non-destructive method was developed to measure selected thermal 

properties of the films. The information concerning interfacial compatibility obtained in this work is 

of great practical as well as theoretical importance. 
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1 INTRODUCTION 

 

1.1 General background 

 

Today’s consumers are demanding highly reliable electronic devices for an increasing number of 

applications. Manufacturers have been meeting the demands by providing compact products with 

ever-more versatile functions. The result has been a significant and continuing miniaturisation of 

electronics, requiring the use of smaller components and a reduction in power consumption. High-

density interconnection (HDI) boards are playing an increasing role, as are modular assembly and 

the utilisation of higher frequencies.1,2 High-density interconnection and packaging technologies are 

becoming available.3-7 The manufacturing of advanced electronics will be truly established, 

however, only through the development and implementation of innovative materials and production 

solutions. One such production solution is to integrate silicon chips and passive components with 

high-density copper wiring into build-up substrates.8 This can be done by fully additive or 

semiadditive techniques utilising photodefinable polymers and chemical metal-deposition 

processes.9,10,11 

Signal integrity problems and other limitations encountered in high-frequency applications, 

demand the use of innovative materials12,13 and optical components and interconnections.14-16 

Technologies tying together the optical and electrical functions into opto/electronic modules appear 

highly attractive and are gaining in importance.17 Adoption of the techniques familiar in 

microlithographic processing together with new optical-grade polymers enables the fabrication of 

embedded optical waveguides and optical interconnections into HDI substrates.18,19 The embedding 

of optical waveguides and interconnections in HDI PWBs in turn demands the use of surface-

mounted optoelectronic components. These can only be realised, however, through the employment 

of expensive, high accuracy alignment processes. Greater focus on interfacial reliability is also 

demanded.20,21 It needs to be underlined, however, that the technological advantages provided by 

highly integrated electronic and opto/electronic build-up modules depend not only on advanced 

materials and fabrication processes but also–and often primarily–on good adhesion between thin 

layers of dissimilar materials.13,22,23, I-V 

Build up of functional electronic devices requires the use of a variety of advanced materials. 

In both electronic components and assemblies, many interfaces will be required between 

chemically, physically and mechanically dissimilar materials. The dissimilar properties of metals, 

polymers, ceramics and composites are likely to give rise to many different failure modes during 
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operation.24 Maintaining of the interfacial adhesion in changing environments and tailoring of 

material properties to provide interfacial compatibility are thus of crucial importance. 

The fabrication of highly miniaturised electronic modules through the embedding of 

integrated circuits, passive components and optical waveguides into PWBs can be expected to lead 

to revolutionary new products in the fields of electronics, welfare technology and the life sciences. 

The conventional prerequisites for good interfacial compatibility are thus being expanded to cover 

the mastery of biointerfaces (living tissue/synthetic material). Every effort made to understand 

interfacial compatibility will thus assist the reliable fabrication of consumer products based on 

novel manufacturing technologies and, advanced and tailor-made materials. The modification and 

characterisation of the properties of surfaces is thus of great practical significance.  

 

1.2 Scope of the study 

 

Novel interconnection techniques have been studied extensively in the Laboratory of Electronics 

Production Technology at the Helsinki University of Technology.8-10,25 As the result of an intensive 

search for reliable, cost-effective and highly miniaturised packaging solutions, the Integrated 

Module Board (IMB) interconnection technology was established at the end of the nineties and is 

now being implemented in production by Imbera Electronics. The technology provides for the 

solderless fabrication of ultra-high density modules using embedded active and passive 

components. The embedding of optical waveguides into opto/electronic build-up modules has been 

intensively studied as well.18,19  

The objective of the present work was to obtain a better understanding of interfacial 

compatibility, which is one of the major reliability-related concerns of advanced electronics. To 

meet this objective, selected interfaces of opto/electronic build-up modules were manipulated and 

investigated. The physical and chemical changes induced by the modifications of various polymer 

and copper surfaces were investigated and, more specifically, the effect of the roughness and 

chemical nature of the surfaces on the interfacial adhesion in copper/polymer systems was clarified. 

Since interfacial adhesion is affected in a major way by the properties of the materials, there is a 

need to modify existing materials to meet interfacial compatibility requirements. With a view to 

tailoring the thermomechanical and optical properties of polymers, novel star-shaped network 

precursors were synthesised, thoroughly characterised and reactively blended with SU8 epoxy resin. 

For in-depth characterisation of films prepared of this blend, a model-free kinetic analysis was 

undertaken and a novel method was introduced to determine, non-destructively and in situ, selected 

thermal properties of polymer films in the range of a few micrometres. 
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The overview that follows provides background information relevant to the work reported in 

the appended Publications I-VII. The most important methods and practices needed to achieve the 

objective of the work are discussed in detail. Chapter 2 deals with polymer characteristics of special 

relevance for the work. In chapter 3, the concept of interfacial adhesion is discussed and chapter 4 

deals with the experimental methods used in the work. The most significant findings and 

conclusions of the work are summarised in a short final chapter. 

 

2 POLYMERIC MATERIALS IN ELECTRONICS 

 

Polymer-based materials have become ubiquitous in a variety of high-tech applications, speciality 

coatings, automotive parts, aerospace materials, semiconductors, composites and optical materials. 

In the field of electronics, there is a growing trend to utilise polymeric materials at various levels in 

the fabrication of advanced devices. Polymers offer a wide variety of chemical and physical 

properties appropriate for numerous applications. Relative to metals and ceramics, polymers are 

also cost-effective, lightweight and easily processable. Most of all, many polymer properties can be 

extensively tailored to meet the specific requirements set by a given application.  

Traditionally polymers have been used in electronics as PWB materials and photo resists in 

microelectronics. Active components fabricated in microelectronics are usually encapsulated in 

polymer packages to hinder moisture ingress and reduce mechanical loads therefore ensuring 

reliable performance of the components assembled on PWBs.26 The use of polymers has established 

technologies that utilise conductive adhesives25,27 and flip-chip assembly. The flip-chip assembly 

requires the employment of polymeric underfill materials that provide mechanical support to the 

solder joints.28-30 Optical waveguides and interconnections can be produced from polymers and can 

be integrated into PWBs utilising e.g. photolithographic processing of polymers adopted from 

microelectronics.17,31 Despite the many uses of polymers in electronics, there are at least two basic 

requirements for the manufacture of all functional assemblies and modules involving polymers. 

These are the controlled adhesion of the polymer to many other materials in build-up layers,5 

adhesive joints,32 solder balls,33,34 solder masks on PWBs,35 the passivation layer of IC,35 lead 

frames,36 dies37 and optical waveguides18,19 and the controlled release of polymers like IC packages 

from encapsulation moulds.38  

For the future, the increasing employment of polymers in the manufacture of electronic 

devices will enable new applications not only in the field of electronics but also in the life sciences 

establishing for example, lab-on-a-chip instruments.39,40 These developments will not take place, 
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however, without in-depth research and technological breakthroughs in many areas, including the 

manipulation of surface properties.41-43  

 

2.1 Structure-property relationship  

 

The constantly expanding use of polymer-based materials has highlighted the need for a better 

understanding of their physical, chemical and mechanical properties. The properties of a polymer 

are primarily defined by its chemical composition and molecular architecture. The size of the 

polymer molecule also affects significantly properties like viscosity, as well as thermal, mechanical 

and chemical stability. The chain mobility or rigidity of a polymer is determined by the monomers 

used in the synthesis, which have, therefore, a direct influence on several properties of the polymer. 

Copolymerisation is a common way to alter the characteristics of polymers.44,45 Recently, however, 

considerable emphasis has been placed on tailoring of the molecular architecture instead of the 

chain chemistry.46-47 The simplest polymer of all is polyethylene, in principle a linear chain 

composed of ethylene monomers. The introduction of branches along the polymer chain has 

significant influence on the processability of a polymer.49 More importantly, the introduction of 

branches increases the number of end-groups, or functional groups as they are often called when 

they differ chemically from the main structure of a the polymer. The functional groups affect 

various properties, and among other things, can be used to tailor surface properties.43 The effect of 

functional groups on properties is more pronounced for low-molecular-weight polymers, which are 

called oligomers. Here, the term star-shaped oligomer is used to describe a polymer architecture that 

has several branches radiating out a core molecule.VI,VII 

The crystallinity of an oligomer decreases as the number of branches increases, evidently 

because the free chain ends disturb the formation of ordered structure. This becomes reflected, in 

particular, in the rheological, mechanical, thermal and surface properties of the polymer. In 

addition, the toughening of inherently brittle polymers through blending with highly branched 

polymers is reported to be especially effective.50  

The technical properties of a thermosetting polymer evolve as a function of crosslinking. 

Crosslinking density is a measure of molecular weight between the covalent bonds that tie together 

the network precursors, i.e. the oligomers of a resin. Hence, the smaller the oligomer and the higher 

its functionality, the higher is the density of crosslinking. It is to be noted that the degree of 

crosslinking is the measure of the conversion of those reactive groups that transform into the 

crosslinks and thus it describes the network differently than the density of crosslinking.  
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Polymeric materials are characterised by two major transition temperatures–crystalline 

melting (Tm) and glass transition (Tg). The Tg is particularly important because it marks the 

temperature at which a number of physical properties of the polymer change. Above Tg the 

amorphous domains of a polymer are said to be in a rubbery state and below it in a glassy state. In 

the transition zone, the free volume of polymer changes significantly and affects various properties. 

Most of the polymeric materials used in electronics are highly amorphous, which means that the 

determination of Tg is important.  

The use of high frequencies places new demands on dielectric materials.51 The relative 

dielectric constant of a polymer should be low to enable fast signal propagation and to minimise 

signal rise times. The dielectric loss should be low to reduce undesired heat formation, and thus to 

reduce power consumption. To provide signal integrity, the interface of a conductor and a dielectric 

material needs to be smooth. Special polymers, e.g. liquid crystalline polymers (LCP), are available 

for electronics; however, the requirement for smooth interfaces causes problems in respect of 

interfacial adhesion.12,V In some applications the problems associated with the use of electrical 

conductors at high frequencies can be overcome by replacing conductors with integrated optical 

waveguides also at PWB level.17,18,21 

 

2.2 Surface chemistry 

 

Despite the versatility of polymeric materials, there are some limitations on their application. Often, 

the surface properties of a polymer will preclude its use, even though its bulk properties are 

eminently suited for a certain application. Surface modifications, achieved by tailoring the surface 

properties while retaining other properties, broaden the usefulness of polymers significantly. 

Examples of modifications are coating applications, where a polymer surface is altered in respect of 

wetting characteristics and topography. The modifications may profoundly affect the success or 

failure of interfacial compatibility, whether this involves strong adhesion (e.g. coatings and 

multilayer PWBs) or inertness (e.g. blood contacting biodevices).  

The most frequently used methods for surface modifications in the manufacturing of 

electronics are presented later in this work and the main effects of the modification treatments are 

described below. These methods mainly involve chemical surface functionalisation but also to some 

extent roughening. Functionalisation is usually done to increase the inherently low surface free 

energy of polymers. This is achieved by the creation of polar functional groups–hydroxyl, carboxyl 

and amine–to make the surface more hydrophilic. Groups that possess an atom with free valence 

electrons or an electronegative atom (e.g. oxygen, nitrogen and halogens) will increase the surface 
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free energy. An exception to the rule comes from symmetry: polytetrafluoroethylene has very low 

surface free energy even though it is mainly composed of electronegative fluorine atoms. Once the 

hydrophilic functional groups are produced on the surface they start embedding themselves in the 

bulk material to minimise the surface free energy.52 Nevertheless, to an adequate extent, the newly 

formed functionalities remain on the surface for relatively long times.III 

 

2.3 Polymer films 

 

While the behaviour of polymeric molecules in the bulk is essentially known, this is not the case for 

macromolecules near interfaces. The research on polymeric thin films is focused on thicknesses 

below 100 nm, though there is also a technological interest in the determination of selected thermal 

properties of polymeric films in the micrometre thickness range since many functional polymeric 

films applied in electronics and optoelectronics lie in this range. The polymers usually exist as 

supported rather than freestanding films and it is often desired that the film characterisation is 

carried out in situ by a non-destructive method.  

One property that has been extensively studied in a variety of polymer films is Tg.53-56 

Usually, Tg decreases as the film thickness decreases, but strong interaction between a substrate and 

the film has the opposite effect on Tg.57-59 The out-of-plane thermal expansion increases with 

decreasing film thickness below Tg, but decreases with decreasing film thickness above Tg.60  

 

3 INTERFACIAL ADHESION    

 

Interfacial adhesion is a basic demand when build-up modules and electronic devices are fabricated. 

The Chapter 3 discusses the fundamentals, measuring and durability of interfacial adhesion. 

 

3.1 Concept of interfacial adhesion 

 

Interfacial adhesion can be described as the force needed to separate two bodies along their 

interface, and it is restricted therefore to the interfacial forces acting across the interface. In practice, 

a value that purely expresses interfacial adhesion strength can seldom be obtained because several 

other factors than interfacial forces affect the fracture of the interface during the measurement, and 

the failure mechanism is of more or less mixed mode. It is nevertheless common to report a value 

for interfacial adhesion if the fracture path does not penetrate deeply into one of the joint materials. 

When it does, the failure mechanism is said to be cohesive. Since the failure mechanism and 
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adhesion strength never depend solely on the forces acting across the interface, the term “practical 

adhesion” is sometimes favoured. In this thesis the term interfacial adhesion is used except where 

there was a clear indication of cohesive failure.  

Often the surfaces forming an interface belong to two distinct phases of dissimilar materials, 

but also successive layers of the same material may form a clear interface. In particular, the surface 

of a crosslinked polymer is chemically different from that of an uncrosslinked resin and the coating 

of successive layers of thermosetting polymers often results in the formation of an interface. If the 

first layer is highly crosslinked and also inert towards the next layer, there may be interfacial 

adhesion problems.  

In general, the adhesion between two bodies is the sum of all the interactions that contribute to 

the holding together of two surfaces. The interactions arise from either mechanical retention or from 

interatomic forces acting across the interface of the given materials. Also encountered are the 

formation of covalent and ionic bonds and complex formation across the interface.61 Mechanical 

retention arises from either mechanical interlocking of phases or interfacial diffusion of matter. It is 

to be noted that interfacial diffusion is rare in the case of polymer/metal interfaces but it does occur 

across a polyimide/copper interface during annealing above the Tg of polyimide62 and when certain 

metals are evaporated or sputtered onto polymeric substrates.63-65 Interfacial adhesion is rarely a 

result of secondary forces, chemical bonding or mechanical retention alone but is a combination of 

these. 

 

3.2 Wetting of a solid polymer surface 

 

In most cases, intimate molecular contact at an interface is a necessary requirement for the 

development of strong interfacial adhesion. This means that the material needs to spread onto the 

substrate and wet it. Wetting will take place when the surface free energy of the solid substrate is 

greater than the sum of the surface tension of the liquid and the interfacial free energy. The surface 

free energy of polymers is comparatively low in relation to that of many other materials and often 

arise problems in the wetting of solid polymer surfaces. In the case of physical retention by 

mechanical interlocking, sufficient adhesion may be provided without good wettability, but such an 

interface is highly susceptible to destructive environmental processes resulting in interfacial 

failures.  

In understanding surface free energy, it is useful to consider a liquid drop resting on a solid 

surface. In equilibrium and in the absence of any external forces, the drop will spontaneously 

assume the form of a sphere. This shape corresponds to the minimum surface-to-volume ratio. It 
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can be assumed that work must be done on the drop to reshape it and therefore increase its surface-

to-volume ratio. Also, the molecules in surface are assumed to be at higher energy state than those 

in the bulk liquid. This can be explained by the fact that a surface molecule has fewer neighbours 

and, as a consequence, less intermolecular interaction than bulk molecules. There is, then a free 

energy change associated with the isothermal reversible formation of a liquid surface and this is 

termed the surface free energy. It must be emphasised that this surface free energy is not the total 

free energy of the surface molecules but rather the excess free energy that the molecules possess by 

virtue of their being in the surface.66-69  

The surface free energy of liquids can be measured directly because the surface formation is 

reversible and the molecules attain equilibrium almost as soon as a new surface is formed. In 

principle, all that has been said above for liquids also applies to solid surfaces. In practice, the 

situation is rather different. When a fresh solid surface is produced, the molecules on the surface 

will normally be unable (owing to their immobility) to assume their equilibrium configuration. The 

solid surface so formed has, therefore, a non-equilibrium structure. In addition, the surface free 

energy of a solid is crucially dependent on the history of the sample including bending of the 

solid.70 The surface free energy of solids has to be evaluated indirectly, for example by measuring 

equilibrium contact angles that a liquid with known surface tension forms with a solid surface.66-

69,71 Contact angle measurements are described in detail in reference 71 and the determination of 

surface free energy thereof is reviewed in reference 72.  

 

3.3 Kinetics of wetting 

 

So far, wetting has been considered from the viewpoint of thermodynamics. Although the 

thermodynamics may indicate possible formation of an intimate contact between two phases, the 

kinetics will more likely be the determining factor for the occurrence of the wetting. We now 

explore the kinetics of wetting. 

 

3.3.1 Role of surface roughness and capillary action 

 

Roughness will affect the contact angle (θ) of a given liquid on a solid. If the equilibrium contact 

angle on a smooth surface is less than 90°, roughening the surface will make θ even smaller. This 

will increase the apparent surface free energy of the solid and thus also the extent of wetting. 

However, if for a smooth surface θ is greater than 90°, roughening the surface will increase θ and 

retard wetting. For spontaneous wetting to take place, the equilibrium contact angle of a liquid on a 
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given smooth surface has to approach zero. Spreading of a liquid on a solid surface may be 

accelerated by capillary action. Capillary forces effectively utilize fine pores, scratches and other 

topographical inhomogeneities when a liquid drop forms a contact angle less than 90°.73-75 

 

3.3.2 Role of chemical surface homogeneity  

 

A chemically heterogeneous surface contains domains of different surface free energy. The 

apparent contact angle on a heterogeneous surface is calculated by the Cassie equation.76 If the 

heterogeneous domains are very small relative to the size of liquid drop used in the measurement of 

the contact angle, which is common, it will be difficult to differentiate the influence of the different 

domains on the contact angle.77 Even microscale surface heterogeneity has been observed, however, 

through the use of a special micro droplet condensation technique.78 In practice, the chemical 

heterogeneity may result in compromised wetting, varying interfacial adhesion, difficulty in 

measuring contact angles reproducibly and severe contact angle hysteresis (i.e. the difference 

between an advancing and a receding contact angle). It has been proposed that the contact angle 

hysteresis originates from chemical and topographical surface heterogeneity. Many processes taking 

place on the surface also have an effect on the contact angle, such as adsorption and desorption of 

the probing liquid, reorientation of functional groups, surface deformation and surface 

contamination.79-82  

Although homogeneity of the surface has so far been the desired state, controlled surface 

heterogeneity may also be of use. Spontaneous orientation and redirection of functional groups can 

be achieved by applying an external control.83-85 Orientated and selectively modified surfaces have 

been utilised to control both the thermodynamics and kinetics of wetting, for example, to enable the 

build up of nanoscale optical wave guides and fluidic microsystems.86-88  

 

3.3.3 Influence of interphasial interactions  

 

Despite the apparent simplicity, the spreading of liquid on solid surfaces may involve many 

complex physical processes including swelling, dissolution, diffusion and reactions. For a solid 

polymer surface, it is fairly difficult to study processes like reactive wetting. In metallurgy, in 

contrast, a great deal has been published on the physical processes that affect the kinetics of 

wetting.89-91 An example relevant to electronics is soldering, where the oxidised copper substrate is 

first reduced by fluxes and then the exposed metal is reactively wetted by a liquid solder that 
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simultaneously engages in mutual dissolution and interdiffusion with the surface.92 In this work, the 

polymer substrates were considered inert towards the probing liquids that were used.  

 

3.3.4 Influence of liquid viscosity  

 

Viscosity describes the flow behaviour of a material. It originates from intermolecular friction, and 

so hinders spontaneous spreading of liquid over solid surfaces. For adequate wetting, liquids should 

possess relatively low viscosity at some stage of the processing. Often the intrinsic viscosity is too 

high and macromolecules are diluted in solvents for viscosity reduction before their use in coating. 

The use of elevated process temperature is another effective way to enhance wettability. Increased 

temperature enhances molecular mobility, separating molecules apart from one another, which in 

turn decreases both viscosity and surface tension of the liquid.68,69 Nevertheless, thermosetting 

polymers such as those used as encapsulation and underfill materials start to crosslink during 

thermal processing, which rapidly increases their viscosity and complicates spreadability.93  

The spreading kinetics of liquids on solid substrates has been studied simply by monitoring 

the areal coverage as a function of time;94 however, theoretical models have been proposed by de 

Gennes,89 Tanner,95 and Seaver and Berg.96 The models assume that the most significant forces 

affecting spreading are the liquid’s surface tension, which is the driving force, and viscosity, which 

is the counterforce. The models have been tested94 and they hold for some cases but not all. In spite 

of the practical importance of understanding surface phenomena and the theoretical foundation laid 

by Young and Laplace almost 200 years ago,69 the surface processes are still poorly understood.97

 

3.4 Measurement of interfacial adhesion 

 

Before starting an adhesion test, it is imperative to gather as much information about the materials 

as possible. False interpretation is likely if careful consideration is not paid to factors like test 

geometry and the measurement technique and their suitability to the particular material. 

The most common methods for measurement of interfacial adhesion can be divided into the 

two major categories of tensile and shear tests. However, for testing the adhesion of coatings to 

substrates, there are a vast number of variations of these basic tests including pull-off, lap joint and 

peel tests.98-103 In addition, qualitative methods such as the tape test can be employed for quick 

evaluation of interfacial adhesion on a fail/pass criterion.104 Indirect methods such as the cavitation 

test, have been employed to estimate the adhesion of TiN and similar hard films to substrates.102,105 

It is recognised that the different methods do not provide comparable values of adhesion strength 
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and sometimes they may even lead to contradictory results.105 The adhesion tests have been 

critically discussed in the literature.23,99-101,106  

The main reason for the selection of the pull-off test in this study was that the stress 

distribution within the specimens is well controlled. The pull-off test resembles an axially loaded 

butt joint test, which in turn is a modification of the tensile test. However, every effort has to be 

made to ensure uniform stress distribution within the pull-off test specimen if the test is to be 

reliably applied. Shear-type tests, it may be argued, represent best the failure mechanisms found in 

field applications, but because of the complex stress distribution within the specimen, the design of 

the test configuration has a pronounced effect on the adhesion strength value obtained.101 Also the 

peel test is often used, but it is affected by several experimental parameters (e.g. angle, rate and 

width of the peel) as well as the bending of flexible foil and friction, all of which dissipate the 

energy intended to separate the two bodies of interest.98 The lap shear and peel methods are usually 

used as comparative tests therefore whereas the pull-off method is used to obtain more 

comprehensive understanding of the interfacial adhesion.  

 

3.5 Durability of interfacial adhesion 

 

So far, the discussion has focused on the essential role of interfacial adhesion in the manufacture of 

reliable electronic devices. Of equally great concern is the durability of the adhesion in the changing 

and often harsh environments to which consumer products are exposed. Destructive processes like 

corrosion, deformation and fatigue are accelerated by environmental factors, and eventually failures 

in one form or another will occur. Materials with physically and chemically different properties are 

frequently combined in electronics, and the interfacial adhesions are thus particularly susceptible to 

changes in temperature, moisture ingress and mechanical shocks. A fundamental understanding of 

the interfacial compatibility of dissimilar materials is even more important for the miniature 

structures of advanced electronics where relatively short times and low stress levels are sufficient to 

cause problems. 

The loss of bulk properties is rarely a reason for the failure of joints attacked by 

environmental factors. Although the locus of failure of well-prepared joints in adhesion tests is 

invariably a cohesive fracture in the polymer layer, the exposure of specimen to environmental 

attacks frequently results in an “apparent” interfacial failure with lowered adhesion strength.101 This 

finding underlines the importance of the interface when considering environmental failure 

mechanisms.  
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3.5.1 Work of adhesion 

 

In the absence of chemisorption and mechanical retention, the thermodynamic work of adhesion 

(W) can be used to predict the durability of interfacial adhesion. Although the total absence of these 

forces is at the interface of metal oxide and a thermosetting polymer unlikely, use of W may still 

help explain the weakening of interfacial adhesion during the environmental attack of liquids. The 

work of adhesion in air (Wa) and in the presence of liquid (Wal) is given in Equations 1 and 2, 

respectively. 

 

abbaaW γγγ −+=        (1) 

 

abblalalW γγγ −+=       (2) 

 

In Equations 1 and 2, the γa and γb are the surface free energies of the two phases in air (subscript l 

denotes the properties in liquid) and γab is the interfacial free energy. Wa usually has a positive value 

indicating thermodynamic stability of the interface. In the presence of liquid, however, the 

thermodynamic work of adhesion, Wal, may well have a negative value indicating that the interface 

is unstable and will dissociate. Indeed, the thermodynamic work of adhesion at metal oxide/epoxy 

interfaces changes from positive to negative in the presence of water.101,107 Evidently a significant 

amount of primary bonds must thus have existed at the copper/epoxy interface studied in 

Publication II because the epoxy did not delaminate during exposure to the atmosphere at elevated 

humidity and temperature. These epoxy coatings were prepared on a relatively smooth CuO2 

substrate and only minor statistically insignificant weakening was observed.   

To predict the environmental stability of an interface involving primary bonding, a term 

representing the hydrolytic and thermal stability of the bond should be included in the equation of 

the work of adhesion. No report of such a model was found in the surveyed literature, however. An 

investigation of the thermodynamic work of adhesion provides but little help therefore. In fact, it is 

established practice to expose specimens to accelerated environmental attacks24 for evaluation of 

the durability of interfacial adhesion like was done in Publication II.  
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3.5.2 Environmental stability assessment of interfacial adhesion 

 

Since the expected operational time of an electronic device is measured in years, accelerated tests 

must be employed to assess the interfacial reliability within a reasonable period of time. Several 

accelerated tests are used to induce failure modes resembling those occurring in normal use.24,108 

The response of polymeric material to the stresses caused by environmental attacks is discussed in 

Publication II and in the literature.32,106,109 The use of accelerated tests in reliability assessment is 

not always straightforward, however, because the environments used to achieve the acceleration 

effect may lead to unrepresentative failure mechanisms and therefore to very misleading 

results.32,110 

 

4 EXPERIMENTAL METHODS 

 

In the Chapter 4, an overview of procedures employed to meet the target of this work is given and 

the most important characterisation and evaluation methods used in the work reported in 

Publications I-VII are discussed. 

 

4.1 Experimental procedures 

 

The sections below describe the procedures used in the present work in the order they appear in 

Publications I-VII. 

 

4.1.1 Surface modifications  

 

Most polymers have low surface free energy and are not amenable to interfacial adhesion without a 

change in their inherent surface chemistry. Modification of polymer surfaces can be carried out 

without altering the bulk properties. However, the affected layer will then differ significantly, in 

both physical and chemical properties, from the bulk material. Often the roughness of the surface is 

increased as well. The thickness of the affected layer varies with the material, but usually the 

modification reaches into the first few micrometres.  

Although are many techniques are available for polymer surface modification, they can 

effectively be divided into the two major categories of wet and dry processing. In wet processes, 

polymers are immersed in chemical solutions, where as in dry processes they are subjected to 

vapour-phase species. Dry processing basically involves a bombardment from above the sample, 
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during which the reactive species travels along the direction of an electric field established between 

electrodes above and beneath the sample. Unlike the wet processing, this results in a mountain-like 

topography without significant creation of cavities. Both wet and dry processes were applied in this 

work.  

Wet processing is composed of three stages: swelling, etching and neutralising. The purpose 

of the swelling is to make the topmost surface layer susceptible towards the etching solution. The 

time used for swelling determines the depth of the resulting modification. The swelling solution 

diffuses into the surface layer and softens it by plasticisation. The KMnO4 component of etching 

solution will then readily diffuse into the swelled layer and attack the material through oxidation of 

the polymer molecules. Oxidation breaks the polymer molecules into small molecular weight 

fragments, which dissolve in the solution. Oxygen is incorporated into the remaining chains through 

the creation of new functional groups like hydroxyl and carboxyl. If, and only if, there is more than 

one phase in the polymer material, a microporous surface can be achieved. The oxidative treatment 

can also be applied without prior swelling to obtain a plain chemical modification of the surface 

with minimised roughening effect. The use of swelling solution accelerates the etching rate even 

with homogeneous polymers, but with heterogeneous polymers an appropriate swelling treatment 

ensures different etching rates in the various phases providing that there is a difference in their 

chemical stability. It needs to be mentioned that prolonging the etching treatment endlessly does not 

have an effect on the modification depth or the degree of oxidation. This is because the redox 

reaction that takes place during etching yields MnO2 deposits on the polymer, which effectively 

inhibit diffusion of the reactive KMnO4 into the polymer and thus prevent the oxidative etch-

reaction from continuing. This MnO2 layer is finally removed in the neutralizing solution.111,112  

Dry processing etches surfaces through the use of chemically reactive gases or through a 

physical bombardment of gaseous atoms that resembles sandblasting. Reactive ion etching (RIE) 

involves both chemically reactive species and physical bombardment to provide anisotropic etching 

with fast rate, whereas plasma etching is based on the use of chemically reactive species alone.113,114 

The detailed process parameters used in this work for RIE are given in Publications I, IV, V. Two 

kinds of plasma etching systems are in use: the barrel (cylindrical) and the parallel plate (planar) 

systems. They operate on the same principles but vary in configuration. The barrel type of reactor 

was used here, and the operating parameters and configuration specifics are given in detail in 

Publications III-V. In barrel plasma reactors, radio frequency (RF) energy ionises the employed gas 

and forms the plasma. The dominant etch mechanism relies on the reactive species of the plasma 

because the ion bombardment can be inhibited by the perforated metal tunnel that provides a shield 

between the plasma source and the sample. Reactive species are absorbed onto the surface where 
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they form volatile etch products that are eventually desorbed from the surface and removed by a 

vacuum pump. Since the energies of ions are relatively low, etch rates in the vertical and lateral 

directions are often similar, resulting in an isotropic etching unless there are several phases in the 

treated material.  

Homogeneous polymers remain reasonably smooth regardless of the method used in their 

modification. Polymer blends in which reaction induced phase separation occurs during a 

crosslinking bake are particularly prone to obtain a microporous surface during treatment if one of 

the separated phases is chemically weaker toward the etching medium than the other(s). The main 

consequences of plasma exposure are the removal of organic material and the oxidation of the 

remaining polymer surface. The same takes place in RIE, but there ion bombardment is usually 

dominant over the chemical etching and the resulting surface is topographically changed rather than 

chemically altered. The difference is illustratively shown in Publication V. 

 

4.1.2 Metallisation methods 

 

Once the polymer surface has been adequately modified, it can be metallised by various techniques. 

Electroless plating and sputter deposition produce thin metallisation layers, whereas electroplating 

results in relatively thick layers. Electroplating follows often electroless plating or sputter 

deposition. In this work, the interfaces of interest were produced by electroless and sputter-

deposited copper metallisation on various polymers. Electroplating was used to achieve adequate 

thickness of the metallisation for preparation of adhesion test specimens.  

In electroless plating, metal deposition occurs by redox reactions from an aqueous metal salt 

solution containing a reducing agent. The sample is immersed into the plating bath and the metal 

ion and reducing agent react on a Pd-catalysed surface. This enables plating on non-conductive 

surfaces, which is not possible in electroplating. One major advantage of electroless plating is the 

ability to plate into deep holes and vias. However, deposition rates are generally much lower than 

for electroplating.115 

Sputter deposition is one of the physical vapour deposition techniques and nowadays the most 

commonly used technique in the fabrication of integrated circuits.116 The process takes place in a 

low pressure chamber in which an RF field is applied to create a plasma discharge. The ions are 

accelerated in the field towards the cathode (Cu target). Metallic atoms are ejected from the target 

and build up layers on any surface they land on. The benefit of RF sputtering is that, because the 

electrons are oscillating with the RF field, no charge accumulation at the target takes place even if it 

is an insulator. Hence, RF sputtering is used for the deposition of insulating materials, as well.  
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Electroplating is a process for metal deposition by electrolysis from an aqueous metal salt 

solution. In the process, two electrodes, being the sample and a counter electrode, are placed in the 

plating solution. Deposition occurs only on electrically conductive areas at the sample, which acts 

as a negatively charged cathode. Current is supplied by an external power supply, and positively 

charged metal ions migrate to the cathode where they are reduced to metal deposits.117  

 

4.1.3 Adhesion tests 

 

The configurations used in the study of interfacial adhesion are presented in Figure 1. The 

interfacial adhesion of successive polymer layers was studied with configuration B (Publication I), 

whereas the influence of the configurations on the obtained adhesion strength values was studied 

with configurations A – D (Publication II). The modified pull-off test that was developed earlier118 

for the study of interfacial adhesion between a polymer substrate and a metal film in miniature 

structures is shown as configuration E (Publication III-V).  
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Figure 1. Adhesion test configurations. 
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4.1.4 Environmental aging procedures 

 

Three test procedures were used to expose the test specimens to environmentally induced stresses. 

A concise review of the major phenomena resulting in the failure of the polymer/metal interfaces 

during the environmental testing can be found in Publication II. The first test combined elevated 

temperature and relative humidity (RH). The test was conducted in a Weiss SB 1180 apparatus 

according to the IEC 68-2-67 standard at 85±2°C and 85±5% RH for 1000 h. For comparison of the 

test with a flowing mixed gas (FMG) exposure, the first test was also carried out at 25±2°C and 

75±5% RH. The second test, the FMG exposure, was carried out in a Weiss WK1 600 

environmental chamber equipped with facilities for controlled dosage of corrosive gases. This test 

combines the effects of relative humidity (75±5%RH), temperature (25±2°C) and corrosive gases. 

The IEC-68-2-60 standard (method 4) is applied for 1000 h and makes use of the following 

corrosive gases: NO2 (200±20ppb), SO2 (200±20ppb), H2S (10±5ppb) and Cl2 (10±5ppb). Copper 

sheets and an analysis of the gas concentrations were used to monitor the performance of the test 

chamber. In a deviation from the standard, the control of the chlorine gas concentration was based 

on the calculated design value instead of actual measurement. The third test, thermal shock, was 

carried out in a Weiss TS 130 apparatus for 1000 h (2000 cycles) according to the IEC 68-2-14N 

standard (+125±2°C/-45±2°C, dwell 15min/15min).  

 

4.1.5 Synthesis of polymer materials 

 

The poly(ε-caprolactone) (PCL) oligomers for blending with SU8 epoxy resin were melt-

polymerised from CL at 150°C in a batch reactor under a nitrogen atmosphere utilising continuous 

stirring. The monomer was fed into the preheated reactor with appropriate amounts of the PGL 

initiator and SnOct2 catalyst. The reaction time was five hours and the batch sizes were 0.5 kg. 

After the polymerisation, the hydroxyl end-functionalities of the oligomers were substituted with 

carboxylic acid in a reaction of hydroxyl group with acid anhydride at 150°C. Reaction time was 

two hours. Oligomer and an equimolar amount of the anhydride in relation to the hydroxyl groups 

were fed to the reactor. No catalyst was used in this stage. The reaction schemes of the syntheses 

are shown in Scheme 1.  

A dual-catalysed mixture of the oligomer and epoxy was spin-coated on a substrate at a speed 

ranging from 1500 to 3000 rpm for 20-60 s. A dual-catalysed mixture was needed to achieve a high 

degree of crosslinking because an excess amount of epoxy groups in relation to the carboxylic acid 
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groups of the oligomers was present in the mixture. The crosslinking reactions of the dual-catalysed 

solution are shown in Scheme 2. In the first bake, the end-functionalised oligomer reacts with epoxy 

groups. After the first bake, the coatings are exposed to ultraviolet light, which releases the acid-

catalyst from the photo initiator. This catalyses the cationic ring-opening crosslinking of the 

residual epoxy groups during the second bake. The preparation of the coatings was carried out in a 

clean room (class 1000) to avoid surface contamination.  
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Scheme 1. Synthesis of the network precursor (A) and the substitution of the hydroxyl groups (B). 
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Scheme 2. Reactions of the dual-catalysed crosslinking of 8-functional epoxy with 4-functional oligomers. 
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4.2 Characterisation methods 

 

The sections below describe in practical detail the most important characterisation methods used in 

the present work. The methods were used for the investigation of surfaces (4.2.1–4.2.4), adhesion 

testing (4.2.5), the characterisation of oligomers and crosslinked networks prepared using the 

oligomers (4.2.6–4.2.10) and the determination of properties of polymeric films (4.2.11–4.2.12). 

 

4.2.1 Scanning electron microscopy and X-ray microanalysis 

 

Scanning electron microscopy (SEM) provides morphological, topographical and elemental 

information about solid surfaces. The specimen is examined by scanning with a focused electron 

beam, which interacts with a thin layer of the specimen. This interaction excites several types of 

emission from the specimen, which can be used to form an image or to obtain elemental 

information. The appearance of the image depends on the interaction involved and the detector as 

well as on the signal processing employed. The spatial resolution is limited by the size of the 

interaction region in the specimen from which the signal is derived and varies considerably, as 

shown in Figure 2.119,120 Backscattered electrons can escape from greater depths than secondary 

electrons and X-rays are produced in an even larger volume and thus have least resolution. 

Backscattered and secondary electrons are important in imaging. The origin of backscattered 

electrons is an elastic scattering of the primary beam electrons by nuclei on the specimen surface. 

This means that they have almost the same energy as the primary electrons, and significantly more 

than that of the secondary electrons. The fraction of backscattered electrons escaping at 20 keV 

varies from 0.06 for carbon to 0.5 for gold.120 Thus, a backscattered electron image (BEI) exhibits 

compositional contrast. Because the high-energy backscattered electrons can escape from a larger 

volume of the specimen than the secondary electrons, resolution is lower at fixed accelerating 

voltages.  

Secondary electrons are produced from the specimen through its interaction with the primary 

beam. Consequently, the energy of the secondary electrons is decreased relative to that of the 

primary beam electrons. Moreover, since the secondary electrons can only come from the top few 

nanometres of the specimen, they are responsible for high-resolution images. A resolution of 

secondary electron images (SEI) is determined by the beam size (see Figure 2). If the beam falls on 

a tilted surface or onto an edge, more secondary electrons will escape from the specimen. A feature 

in the image appears brighter the more secondary electrons are emitted from it. Edges tend to 

become charged and features extending out from the surface emit more secondary electrons. A 
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tilted surface enhances secondary electron emission because larger specimen volume interacts with 

e beam, resulting in increased secondary electron emission. This is shown both schematically and 

Figur

interact

th

experimentally in Figure 3. Likewise, if the beam falls into a pit or a cavity, fewer secondary 

electrons can escape because the specimen reabsorbs the electrons. 

Primary beam electrons 

d(SE) =  ∼5-50nm d(Auger electrons) =

 

e 2. Schematic presentation of the interaction of primary electron beam with a solid surface showing the 

ion depth and volume. Redrawn from Scanning Electron Microscopy and X-ray Microanalysis.120

 

A) 

 
 
Figure 3. (A) A tilted surface produces more secondary emission because more of the interaction volume is under the 

electron beam. (B) In a cavity, some secondary electrons will re-enter the specimen and will not be detected. (C) SEI of 

crystals of a corrosion product on a microporous substrate demonstrating the great depth resolution provided by SEM. 

(D) Cross-sectional image of a mechanically interlocked electroless copper coating prepared on a microporous surface.  

B) C) D) 
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Many polymers are sensitive to the electron beam and exposure can cause artefacts in the 

image. Mass loss and eventual pitting of the surface and decrease in crystallinity have been 

observed120 effects that can change the specimen morphology. The use of low acceleration voltages 

reduces specimen charging, beam damage and beam penetration, giving greater sensitivity to 

surface details. Recently, SEM instruments have been improved to give good SEI performance at 

low voltages (even <1 kV). At low v EI is pretty much the same as that of 

SEI.119 Nonconductive materials, such as most polymers, require conductive coatings or the use of 

very low es to prevent  electron beam. Frequently a 

thin film coating is sputter-deposited on a polymer sample using carbon, gold or chromium.  

The primary beam size is the limiting factor for the resolution. The use of a field emission 

(FE) source instead of the more regular and 6 filaments allows substantial 

reduction of the electron beam size and gre paratively high resolution 

and brightness are maintained at low accelerating voltages in FE-SEM,121 facilitating the 

topographical examination of organic samples of both living and synthetic origin. FE-SEM was 

used to obtain the secondary electron im blications I-V and VII. 

X-rays emitted from the specime  used for elemental analysis because X-ray 

radiation comprises well-defined energies atoms. A characteristic X-ray emission is 

e result of the return to ground state of an excited atom. The excited atom is produced by the 

e core electron. The SEM can be equipped with X-ray detectors for elemental analysis. Two types 

of detectors are used to measure the X-ray intensity, as a function of wavelength or energy. A 

com arison of energy dispersive X-ray spectrometer (EDS) and wavelength dispersive X-ray 

spectrometer (WDS) analyses is shown in Table 1. The greatest advantage of SEM X-ray 

microanalysis over other methods of elemental analysis is that the analysis can be carried out from a 

comparatively small area (diameter of beam 0.002-0.2 µm). Because X-ray microanalysis is a non-

destructive method, the elemental information can be combined with morphology of the specimen. 

These features make SEM one of the most widely used analytical methods today.  

So far, microanalysis has been described as reporting the elemental composition of the very 

small region of the specimen that interacts with the spot of a focused electron beam. However, it is 

often more useful to know the concentration of a specific element as a function of its location on the

en. This is elemental mapping. Instrumentations now available allow simultaneous 

oltage, the resolution of B
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specim

acquisition of maps for several elements. Digital maps with colours assigned for each element are 

obtained and permit facile analysis of elemental distribution. This feature was utilised in Publication 

II. 
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Table 1. Comparison of EDS and WDS microanalyses.119

 

Energy dispersive X-ray spectrometry Wavelength dispersive X-ray spectrometry 

Simultaneous detection of elements Quantitative analysis of one element at a time 

Rapid analysis (~100 s) Slow analysis (from 5 minutes to hours) 

Spatial resolution a few micrometres Spatial resolution 1-5 micrometres 

Background counts from backscattered 

electrons reduce sensitivity 

Peak/background ratio 10 to 50 times better than 

EDS, good sensitivity 

Serious peak overlap problems  Good energy resolution, little peak overlap 

Single detector Several detectors needed to cover a range of elements 

Detection limit Z>5 Detection limit Z>3 

 

 

4.2.2 Atomic force microscopy 

 

Scan

ent of frictional, 

hydro

ple dragging) appears on soft organic materials during scanning in the contact mode, as well as 

ning probe microscopy (SPM) is the general name for the variety of microscopes that have one 

basic thing in common: the image is obtained by scanning with a solid probe on or just above the 

surface of a specimen to detect a signal from the interaction of the probe with the surface. The 

resolution of the image in SPM is limited to the region of interaction, and therefore the probe is 

constructed with a very fine tip. Several forms of SPM provide resolution at the atomic level.119 The 

first SPM to be developed was the scanning tunnelling microscope (STM) where the probe is a 

conductor set at a small bias voltage difference from a conducting sample, and the signal is a 

current that passes between them.122 However, non-conducting samples had to be coated with a thin 

film of conductive material, which is likely to affect the fine structure detail in nanometre scale. The 

study of non-conducting materials was greatly improved by the development of atomic force 

microscopy (AFM).123 The atomic force microscope is often called a scanning force microscope as 

a more general term for all kinds of probe microscopes relying on the measurem

philic, magnetic, and acoustic forces. Atomic force microscopy is currently the most 

important form of SPM for the study of polymers because there is no need for the sample to be 

conductive.124  

Despite the benefits of AFM, it cannot replace traditional electron microscopy. Rather, AFM 

must be regarded as a complementary technique. In addition, the study of soft polymeric materials 

by AFM requires that great care betaken to avoid artefacts. Substantial alteration and damage 

(sam

 22



severe loss of probe quality (dull tip and multi-tip effects).119 To solve these problems, the so-called 

pping mode has been devised, in which the tip oscillates (frequencies 50-500 kHz) at tip 

omet ent contact 

 motion, e and is 

ear or frictional for ublications I, 

ation o l resolution of the 

 and SEM prov ion for topographical studies of 

ovide a qua not always 

 of the roughness (wavy, ne  

ion. Information about e of the AFM never contacts, i.e. 

e cavities of porous surface, cannot, of course, be recovered. SEM can provide an impression of 

ree-dimensionality to a topographical image better than any other microscope. The examination of 

enefits from the combined use of SEM and AFM, as is shown in 

igure 4 for the surface of a heterogeneous photodefinable epoxy modified by wet-chemical 

aet A., Schacht E., van Calster A., Influence of chemical pretreatment of epoxy polymers on the 
gt ectrochemically deposited Cu for use in electronic interconnections, J. Electrochem. Soc., 151, 

C133 (
 

ta

amplitude of about several tens of nan res.125 Since the tip is no longer in perman

with the surface during the scanning  the tip is prevented from sticking to the surfac

not pulled sideways by sh ces.124 This mode of operation is used in P

III-V. Reliable and reproducible oper f tapping mode AFM enables latera

order of a few nanometres and vertical resolu

A combination of AFM

tion less than 1 Å.119,124  

ides valuable informat

roughened surfaces. AFM can pr ntitative value for the roughness, but it does 

reveal the nature edles, spheres, cavities), which in turn can be obtained

from SEM investigat the parts that the prob
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porous surfaces, in particular, b

F

method.  

 

 
 

Figure 4. Comparison of images obtained by a) AFM126 and b) SEM (specimen tilted at 45°) from Probelec 81/7081 
surface roughened by wet-chemical method. Figure 4a is reproduced by permission of The Electrochemical Society, 
Inc. Siau S., Verv
adhesion stren h of el

B A 

2004). 
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4.2.3 X-ray photoelectron spectroscopy 

 

X-ray photoelectron spectroscopy (XPS) is used to obtain information about the elemental 

composition and the oxidation state of the elements being examined. Often the surface composition 

of a solid differs, at least to some degree, from the bulk composition. The high surface sensitivity 

provided by XPS is the greatest asset of the method in comparison with other surface analytical 

methods. Photoelectrons are produced in the interaction of a probe with a specimen and the probe in 

XPS 

rface. The IMFP is the average distance that an electron with a given energy travels 

etween successive inelastic collisions. The constant 3 comes from the intensity attenuation 

according to Equation 3: 

 

      3 

 

where Id is the intensity of a given photoelectron that has escaped from the specimen surface and I0 

is the intensity of a given photoelectron at depth d. When d equals 3λ the intensity ratio Id/I0 is 0.05, 

according to which 95% of the detected photoelectrons must come from the sampling depth. The 

IMFP is a function of the kinetic energy (Ek) of the emitted photoelectron and the material. Ek is a 

nction of the X-ray source employed. For polymers containing aromatic groups, λ obtains values 

round 3 nm.127-129 The influence of take off angle (θt) on the sampling depth is shown in Figure 5. 

ymers is less than 10 nm and thus part of the emitted photoelectrons are attenuated into 

the cavity walls of the “tilted” specimen. The angle of incidence (θ ’) has no significant effect on 

the outcome of the analysis because the X-ray penetrates relatively deep into the specimen, but the 

is an X-ray beam. The use of a low atomic number X-ray source (typically Mg or Al) 

employing a crystal monochromator allows narrow bandwidth of the Kα lines (0.3 eV), which in 

turn enhances resolution, enables a smaller spot to be probed, and decreases background emission. 

Attenuation of the emitted electrons is avoided by carrying out the examination under a pressure of 

10-3 Pa. Often, even better vacuum (10-7 to 10-8 Pa) is required to deadsorb oxygen and water from 

the specimen. 

The sampling depth, d, in XPS is described by d = 3λsinθt, where λ is the inelastic mean free 

path (IMFP) for photoelectrons and θt is the take off angle for photoelectrons with respect to the 

sample su

b

)/(
0

λd
d eII −=

fu

a

The sampling depth is maximised at 90° take off angle. In the analysis of microscale 

roughened surfaces, the use of θt < 90° allows an analysis of the peaks only because the sampling 

depth in pol
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sampling depth is limited by the escaping photoelectrons. Usually the angles of incidence and take 

ff cannot be adjusted independently.64

 
Figure 5.

Eb = hυ – Ek –

 

and h

withdraw electron density from the atom under investigation, the higher the effective nuclear charge 

o
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 Effect of take off angle on the sampling depth. 

 

The XPS analysis is based on the measurement of the kinetic energy (Ek) of the emitted 

electron with a spectrometer. The binding energy of the electron, Eb, can be calculated from 

Equation 4 

 

 w      (4) 

 

where w is the so-called work function of the spectrometer and hυ is the energy provided by the X-

ray beam. The binding energy of an electron is characteristic of the atom and orbital from which the 

electron is emitted. Eb increases with the atomic number of the element. Qualitative elemental 

composition of the specimen is determined from a low-resolution spectrum sometimes called a 

survey or overall spectrum. This spectrum is obtained using Ek in the range 250-1500 eV, which 

correlates with binding energies in the range 0-1250 eV. All elements are detected except hydrogen

elium, providing that the specimen contains more than 0.1% of the element.  

The position of the binding energy peak also depends in some degree on the chemical 

environment of the atom responsible for the peak. These so-called chemical shifts can be 

differentiated under the conditions of a high-resolution examination. A high-resolution study thus 

enables detection of the chemical bonds. The greater the ability of the neighbouring atom to 
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of the atom and, as a consequence, the higher the binding energy is. Chemical bonds can be 

identified by applying curve-fitting routines to the peaks obtained from the high-resolution study. 

The curve fitting and background subtraction procedures are explained in more detail in Publication 

II. Quantitative information about the elemental an l bond proportions is obtained by 

integrating the areas of the identified peaks. High-resolution XPS was used in Publications II-V to 

follow the effects of the surface treatment on the surface chemistry. One of the most important 

applications of XPS has been identification of the oxidation states of elements present in inorganic 

matter. XPS was applied in this way to determine the oxidation state of copper after an oxidative 

treatment, as reported in Publication II. 

 

4.2.4 Contact angle measurements  

 

A liquid forms a sessile drop on a solid surface, which is easy to visualise and enables measurement 

f the contact angle. The contact angle is simply the angle between the surface and a line that is 

ngent to a drop of liquid on the surface at the point where it intersects the surface, as shown in 

Figure 6. But, the quantity on which Young’s equation is based, namely the measurement of the 

equilibrium

 angles. The advancing contact angle was used in this work 

because it best represents the equilibrium state.67

 

d chemica

o

ta

 contact angle (θe), is not always easy. In fact, the value of the experimentally obtainable 

contact angle is not unique for each system; at least two values are commonly measured–the 

advancing and the receding contact

 
Solid 

Liquid 

Vapour 

γSL  
θe 

γSV  

γSV = γSL + γLV cos θ

γSV = γS - π 

π = 0, holds well 
with polymers 

γLV 

Figure 6. Sessile drop at equilibrium with a solid surface and the saturated vapour of the liquid. The surface free 

energies are tied together with Young’s equation. π is spreading pressure, and it is considered negligible in the case of 

polymers, yielding γs to represent the surface free energy of the solid in air. 
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Two approaches are used to measure contact angles: tensiometry and goniometry. 

Tensiometry involves measuring the forces of interaction when a solid is contacted with a probing 

liquid. Goniometry involves the observation of the drop of a probing liquid on the solid surface. 

Goniometry was selected for this study because it is more versatile, and the sample preparation is 

easier for sessile drop observation than for tensiometry. The main elements of the goniometer 

include a light source, sample holder, microsyringe, image capture, and software for analysis of the 

drop shape and contact angle. A drop with either advanced or receded edge is produced with the 

microsyringe. An advancing contact angle is produced by introducing the probing liquid on the 

surface, whereas a receding angle is produced by withdrawing a sufficient amount of liquid from a 

drop resting on a solid surface. Measurements of contact angle were used to follow changes in the 

terials and the hydrophilicity or hydrophobicity as a function of 

arious surface treatments (Publications I, III-V and VI).  

pare adhesion test samples for the examination of 

epoxy adhesion to copper, and vice versa, are presented in detail in Publications II and V, 

respectively. Applications of the pull-off method are described in Publications I-V. Publication I 

reports an evaluation of the interfacial adhesion of successive epoxy coatings. Publication II focuses 

on the evaluation of the pull-off method itself and points out the effect of environmental stresses on 

the durability of interfacial adhesion between copper substrate and epoxy coating. Publications III-

V report the use of a modified pull-off test to study the adhesion of deposited copper to differently 

treated surfaces of various polymer substrates.  

 

4.2.6 1H and 13C Nuclear magnetic resonance spectroscopy 

agnetic resonance (NMR) spectroscopy makes possible the direct observation of atoms. 

 the NMR instrumentation is a 

surface free energy of polymeric ma

v

 

4.2.5 Pull-off test 

 

The pull-off test is a simple method to measure interfacial adhesion. In an ideal case it resembles a 

tensile test, which is described later, and provides the fracture strength of the weakest 

interface/phase. Careful execution of the test is mandatory, however, to obtain reliable and 

meaningful results that are of use in the improvement of the polymer-based interfacial structures 

found in electronics. The procedures used to pre

 

Nuclear m

Both solution and solid-state NMR techniques are available. Here the principle of solution NMR 

spectroscopy of polymers is briefly described. The main part of
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strong magnet that provides an external magnetic field (B0). When an atomic nucleus (which is 

positively charged) spins, it generates an electric current, which has a magnetic moment (µ) 

associated with it. Two processes take place when spinning nuclei are placed in the external 

magnetic field. First, the nuclei start precession about the axis of B0. Second, the spinning nuclei, 

providing that they possess a nuclear spin quantum number (In) ½ or 1, thus being magnetically 

active, become oriented. The nuclei with In = 1 have three allowed (2In +1 ) spin states (IZ = 1, 0 

and -1), and nuclei with In = ½ have only two (IZ = ½ and -½), as shown in Figure 7(a). These states 

are not energetically equal. In the low-energy state the magnetic moment of the nucleus is aligned 

with (IZ = ½) the external magnetic field and in the high-energy state it is against (IZ = -½) the field. 

The two spin states coexist, but because the parallel orientation is favoured it is slightly more 

populated than the antiparallel. This excess results in a net magnetic moment M  aligned with the 

B0 as shown in Figure 7(b). Nuclei having In equal to zero do not possess angular momentum in any 

external magnetic field and thus cannot exhibit nuclear magnetic resonance.   

NMR spectroscopy arises from the use of nuclei that have spin quantum number ½. When the 

 subjected to very brief pulses of suitable radio frequency (RF) (B1), they absorb 

 quantum of energy. The magnetic moments of the nuclei are forced to bend toward the xy-plane 

of interest in the sample. One type of nucleus is 

bserved at a time. An atomic nucleus has In = ½ only when the number of one of the nucleons–

r i include 1H, 13C, 15N, 19F, 29Si and 31P. 

Of these 1H (99.98%) is a very common isotope in nature, while 13C is rare (1.11%). The rarity 

oriented nuclei are

a

and eventually the net magnetisation vector precession commences around B1. The nuclei are then 

in resonance with the applied radiation. Simultaneously an RF current is induced in a coil along the 

y-axis and this is taken as the NMR signal. The events taking place during the irradiation are shown 

in Figure 7(c-f). 

The frequency at which the NMR signal appears depends mainly on the strength of the 

external magnetic field. At 7.04 Tesla, for example, protons resonate with a frequency of 300.03 

MHz. The chemical environment of an active nucleus, however, causes a small shift in the 

resonance frequency–the chemical shift–at the range of ppm deviation off the intrinsic resonance 

frequency of the given atom. By sweeping the frequency, and hence the energy of the pulsed 

electromagnetic radiation (B1), a plot of frequency versus energy absorption can be generated. This 

is the NMR spectrum. The intensity of the signal provides quantitative information about the 

proportion of the chemically different nuclei 

o

proton or neut on–is odd, while the other is even. Such nucle

causes practical problems in sample preparation, and the acquisition time of a 13C NMR spectrum is 

long in comparison with the 1H NMR spectrum. In addition, the proton nucleus has a simpler 
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magnetic field than the 13C nucleus and the sensitivity of proton analysis is thus better. Small 

molecules give a highly accurate proton spectrum, but the analysis of large molecules such as 

polymers results in broad signals because of the random-coil structure that the molecules assume in 

solvent. In polymer analysis, therefore, it is occasionally necessary to use 13C NMR analysis instead 

of proton.130-132 1H and 13C NMR analyses were used in studies described in Publications I, VI and 

VII to verify the structure of network precursors. The interpretation of the spectra of oligomers is 

explained in more detail in Publications VI and VII. 
 

 

Figure 7. Precession of rotating nuclei, having a In = ½, in the B0 (A) and the resulting M  (B). The external RF pulse 

(B1) bends the M  in the case of resonance (C), while the amplitude and applied pulse time determine the resulting 

angle between B0 and M . Once the pulse is shut down, the relaxation of M  starts (E-F). Labelling of the axes is 

given in a different presentation (G) for purposes of clarity. Note: The RF receiver is a coil prepared around the y-axis 

to which the current (I) is induced from xM  during the pulse and taken as the NMR signal.  

 

4.2.7 Fourier transform infrared spectroscopy 

 

Fourier transform infrared (FTIR) spectroscopy provides information about the functional groups of 

an organic molecule and is a valuable complementary method for NMR spectroscopy in the 

elucidation of molecular structure. Functional groups found in polymers include hydroxyl, carboxyl, 

ester, double bond, epoxy, phenol and aromatic ring. The application of electromagnetic radiation in 
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the infrared region, λ = 2.5–50 µm, results in interaction with the covalent bonds of the molecule. 

The FTIR spectrum shows either the absorption or the transmittance of light in percentage as a 

function of wavelength (λ) or often as its inverse, i.e. the wave number.  

The molecule interacts with electromagnetic radiation, the interaction depending on the 

existence of an electric moment across the bond under consideration. Before it can exhibit infrared 

absorbance, a molecule must include polar bonds, though not necessarily permanent dipole 

moments. Quantitatively, the amount of energy abs

Stretching vibrations         

In-plane rocking 

Bending vibrations 

In-plane scissoring Out-of-plane twisting 

Out-of-plane wagging Symmetric Asymmetric 

+ + 

+ - 

- 

orbed at a given frequency depends on both 

olecular concentration and molecular structure.131-133 The possible interactions are shown in 

Figure 8. FTIR spectroscopy was used to identify functional groups in the oligomers and networks 

studied in Publications I and VI.  

 
igure 8. Types of molecular vibrations. Note: + indicates motion from the plane of the paper towards the reader and–

indicates motion away from the reader. 

eth he heart of the SEC 

instrument is a set of columns connected in series and packed with porous beads. Analyte molecules 

ped through the columns at a 

onstant rate. Usually four columns are connected in series and each of them is packed with beads 

m

F

 

4.2.8 Size exclusion chromatography 

 

Size exclusion chromatography (SEC) is used to determine the molecular weight of large 

molecules. It is a proportional m od and does not yield absolute value. T

in a diluted solution diffuse into the pores as the solution is pum

c

of different pore size. The average pore size ranges from 100 to 105 Å. The average residence time 

of the analyte molecule in the pores depends upon the effective size of the molecule. The results are 

thus provided in the form of signal intensity as a function of retention time. The interaction between 
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the beads and the solution is minimised. Molecules larger than the pore size of the beads are 

excluded and suffer essentially no retention. This means that the larger molecules are the first to be 

eluted and detected by the optical detector at the end of the column system. Molecules of 

signi

e tool, therefore, to check peak shape and size of the star-shaped 

oligomers, as reported in Publications VI and VII. The broadness of the peak provides information 

about the molecular weight dis D) and the appe  indicates that 

there are molecules of distinctly different size. 

 

4.2.9 Differ canning calorimetry  

 

Differential scanning calorimetry (DSC) is the most widely used method in the thermal 

characterisation of polymeric materials. In addition, DSC provides a means to measure the heat of 

various reactions (∆Hr), wh  deduce co cular, to evaluate 

reaction kinetics. Two approaches are used to obtain DSC data:  a power compensated DSC and 

heat flux DSC measures differences in heat flow 

 function of sample temperature while the two are subjected to a 

ontrolled temperature–time program. DSC was used in studies described in Publications VI and 

f oligomers and for the evaluation of reaction kinetics. The 

rinciple of model-free kinetic evaluation is presented in section 4.3.3.  

displacement or loading rate. The load cell senses the force developed in the specimen as it 

ficantly smaller size than the pores permeate throughout the pore labyrinth, entrapping into the 

pores for the greatest time. Between these two extremes are intermediate size analyte molecules 

whose average retention time in the columns depends linearly upon their diameter and only to some 

extent on molecular shape. Hence, the calibration is done with use of linear polystyrene standards of 

known molecular weight. However, highly branched molecules can assume significantly different 

shape in relation to the random-coil structure that most linear polymers assume in the solvent.133,134 

SEC was used only as a qualitativ

tribution (MW arance of multiple peaks

ential s

ich can be used to nversion and, in parti
53,135

a heat flux DSC. Here the heat flux was used. The 

into a sample and a reference as a

c

VII for the thermal characterisation o

p

 

4.2.10 Mechanical testing  

 

The mechanical properties determine the range of usefulness of a material and establish the service 

that can be expected. The mechanical properties can be represented by a stress–strain diagram. A 

fundamental method for the determination of stress–strain behaviour of materials is tensile testing.  

In tensile tests, a carefully prepared specimen with a known cross-sectional area is clamped 

between a moving crosshead and a load cell. The crosshead allows for a predetermined 
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elongates, and the output of the load cell is recorded. From the data, a curve of load as a function of 

displacement is generated, which is then converted to an engineering stress–strain curve by dividing 

the load by the original cross-sectional area of the specimen, and dividing the displacement by the 

original gauge length. 

When a load applied to a specimen in a tensile test causes a stress that remains below the yield 

stress of the given material of the specimen, the deformation is said to be elastic and the strain thus 

induced is completely removable upon elimination of the load. Stresses equal to or greater than the 

yield stress of a material result in a plastic deformation, which means that the deformation is no 

longer recoverable. Any stress above the yield stress is referred to as a flow stress. The ratio of 

elastic to plastic deformation provides information about a material’s ductility. The total strain (ε) 

can be broken down into elastic strain (εe), plastic strain (εp) and strain at fracture (εf). The tensile 

strength (δ) is the maximum stress that the specimen can undergo in the test. The elastic modulus 

(E) is obtained from the slope of the stress–strain diagram in an elastic zone where the relation E = 

/εe holds. Toughness (G) can be considered to represent the measure of work needed to achieve the 

 the area between the stress–strain curve and the strain 

xis.136,137

e is applied in between the 

upports from above. The three-point bending test provides information about the specimen’s 

t it yields flexural strength. If the specimen is pre-

racked, this same test mode can be used to determine the fracture toughness (Gc).136,137 Mechanical 

 

δ

fracture; it is obtained, therefore, from

a

In real situations, materials are always under multiaxial loading. Several tensile and shear 

stress components are thus acting on the specimen at the same time. In addition, the mechanical 

properties of materials are highly strain rate dependent. Some ductile polymers, for example, may 

behave like brittle materials at high strain rates. Mechanical properties are, of course, dependent on 

temperature, and dynamic mechanical analysis is a suitable method for the study of 

thermomechanical properties. 

The flexural or three-point bending test is somewhat more complex than the tensile test 

because the distribution of the stress on the sample during the test is non-uniform. In the three-point 

bending test, the specimen is placed on two supports and a bending forc

s

stiffness, and if the specimen is broken in the tes

c

properties of selected oligomer networks are reported in Publication VI.  

 

4.2.11 Dynamic mechanical analysis 

Dynamic mechanical analysis (DMA) provides information about a material’s time and/or 

temperature dependent modules and energy-dissipative mechanisms. The use of DMA in polymer 
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characterisation has proven to be extremely useful in identifying the major molecular relaxation at 

Tg as well as secondary relaxations below Tg. The Tg is attributed to the relaxation of the amorphous 

domain of the material and the secondary relaxations are associated with the motions of specific 

structural units such as the rotation of side chains and the movement of functional groups within the 

polym

n the study of Publication VII to obtain information about both temperature dependent 

respo

The u

rmined layer structure and 

aterial models.139 The material models are dispersion formulas capable of describing the variation 

rial as a function of the wavelength within the measured 

avelength range.139 In the current work, the Cauchy model140,141 was used as dispersion model for 

er molecule.136,138  

In the DMA instrument, the specimen is exposed to a forced vibration and the response of the 

material is followed. The extent of damping to which the cyclic strain lags behind the applied stress 

wave is measured. The use of oscillating force enables the differentiation of the material response to 

elastic and plastic components. The elastic modulus is the part of the applied stress that is in phase 

with the oscillation and for this reason is called the storage modulus, whereas the loss modulus 

represents the part of the applied stress that is out of phase with the oscillation and is completely 

dissipated (mostly in the form of heat). Often the frequency is set at 1 Hz and the experiment is 

conducted over a range of temperatures. This results in the presentation of responding force as a 

function of temperature, which is then converted to a stress/temperature diagram.136,138 Many test 

configurations are possible, including torsion, tension and three-point bending, of which the last 

was used i

nse and the ductility of reactively blended epoxies. 

 

4.2.12 Spectrophotometry 

 

Determination of refractive index 

 

se of two-angle spectrophotometry to determine the refractive index is well established; the 

details of the measurement procedure can be found in reference 134. Briefly, the reflectance 

spectrum is collected from normal and 70° angles of incidence and the absolute reflectance 

spectrum is obtained by comparing the sample data with a previously measured reference spectrum. 

We used a silicon wafer as the reference, which has well-known optical characteristics. In addition 

to a reference, the determination of optical constants demands material modelling software, which 

is used to generate a simulated reflectance spectrum based on a predete

m

in the refractive index of the mate

w

the polymeric films. A regression on the unknown model parameters was then performed to 

minimise the error function of the experimental and simulated reflectance spectra.  
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Determination of film thickness 

 

The wavelengths at which maximum reflectance appears in the reflectance spectrum can be 

obtained from Equation 5, 

 

m
nd )cos(2(max)

'φλ =      (5) 

 

where m = 1, 2, 3, …, n is the refractive index of the film, d is the thickness of the film and φ’ is the 

angle between the normal of the film and the ray of the reflected light in the film. By taking two 

measured wavelengths, both at maximum reflectance, and subtracting one from the other using 

Equation 5, one gets Equation 6 for the film thickness (d),  
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where i = the number of complete cycles from λ0 to λi, the two wavelength peaks that define the i 

ycles. For two adjacent maxima the i is 1. If the refractive index n is known, the determination of 

ard.142 In the present study, however, a new material was characterised 

nd for the simultaneous determination of n and d, the dispersion formulas given above had to be 

es are measured simultaneously, the film thickness and refractive 

dex can be determined independently.139

ractive. 

c

thickness d is straightforw

a

employed.140,141 Because two angl

in

 

Method to determine thermal properties 

 

Calorimetry is the preferred measurement technique for glass transition studies of materials since it 

yields values for thermodynamic properties. Unfortunately, conventional differential scanning 

calorimetry (DSC) systems are of limited use for studies on thin films. The sample size is so small 

that the required level of sensitivity for the measurement is usually beyond the limits of 

conventional DSC instruments.53 A variety of other methods for measuring the Tg of thin films have 

been reported in the literature, among them ellipsometry,143,144 X-ray reflectivity,58,145,146 

interferometry,147 Brillouin light scattering57 and positron annihilation148. A non-destructive method 

that would allow simultaneous characterisation of the optical and thermal properties of films in the 

often encountered thickness range of a few micrometres thus appeared extremely att
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A novel way of utilising spectrophotometry data is to use it to determine a glass transition 

mperature (Tg) and the out-of-plane coefficient of thermal expansion for supported polymeric 

 of the film thickness (d) and the index of refraction (n). The Tg and the 

ut-of-plane coefficient of thermal expansion (CTE) of a polymer film were determined from the 

obtained thermal dependence of the refractive index 

the data with a FilmTek 4000 fibre-optic based 

International with a temperature range of 25–200°C and heating rate of 1°C/min.  

rmine the error of the fit. Temperatures 

ere scanned and the sum of the residuals was calculated at each point of temperature. The point at 

which the change in slope ap

the film. The point itself was the minimised sum of the residuals of the linear fit. The coefficient of 

ut-of-plane thermal expansion (CTE) for the films was calculated both below and above the Tg on 

n of surfaces (4.3.1), the employed adhesion test (4.3.2) 

and reaction kinetics (4.3.3).  

.3.1 Evaluation of solid surface free energy 

culty in 

te

films. To do this, a heating chuck was employed, which enabled the determination of the 

temperature (T) dependence

o

and film thickness, respectively. We collected 

spectrophotometer from Scientific Computing 

It was assumed that the Tg of a film would appear as a change in the slope of the n-T and t-T 

curve.149 A Matlab® code was written to enable automatic calculation of the point of change in the 

slope. The program divided the curve into two parts at each temperature interval and performed a 

linear fit for both parts. The residuals were collected to dete

w

peared was then taken to represent the glass transition temperature of 

o

the basis of the temperature dependence of the film thickness.  

 

4.3 Evaluation methods 

 

The sections below describe briefly the backgrounds of the evaluations methods utilised in the 

present work to obtain essential informatio

 

4

 

Direct measurement of solid surface free energy is impossible except in special circumstances in 

which the molecules of the solid have some mobility, as, for example, in metals at temperatures 

close to their melting points.69 A few indirect methods are presented in the literature, including but 

probably not limited to the use of atomic force microscopy,150 gas chromatography151 and contact 

angle measurements.69 The surface tension of simple fluids can be calculated fairly accurately and 

surface properties of crystals can be estimated theoretically.67,69,152-154 Although significant progress 

has been made in the attempt to calculate surface free energies at 0 K, the calculation approach is 

unlikely to be of practical importance in the foreseeable future. This is because of the diffi
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calcu

ience community 

is stil

mportance and by far the most cited 

odels to evaluate solid surface free energy are based on Young’s equation (Eq. 7), which demands 

t angles. 

 

lating high temperature thermodynamic properties with the required accuracy even for binary 

alloys, not to mention heterogeneous polymers.155 In addition, during the crosslinking of a 

thermosetting polymer its chemistry is changed radically and irreversibly. Indeed, this was 

demonstrated in Publication I.  

Because of the fundamental limitations of the calculation and direct measurement of surface 

free energy of thermosetting polymers, semi-empirical approaches were employed here. By far the 

most widely used method is to evaluate the surface free energy of a solid from its contact angles 

with one or more liquids of known surface tension.156-167 However, the surface sc

l discussing the correct way to measure contact angles168 and to evaluate the surface free 

energy of solids.166,167 All these subjects are of increasing practical importance, but many 

fundamental discoveries have yet to be made. As long as no method for the determination of real 

surface free energy quantities is available, however, even relative values charged with many 

simplified assumptions will be useful in achieving better understanding of the wetting processes.  

Contact angles are a measurable manifestation of the surface free energy, which in turn 

determines the wetting of materials. For a drop to spread on a surface, its surface tension must be 

less than the surface free energy of solid. Therefore, the determination of solid surface free energy 

of solids is important. At present, the approaches of practical i

m

the measurement of contac

slsvlv γγθγ −=cos       (7) 

 

The known parameters in Young’s equation are the surface tension of liquid, γlv, and the contact 

ngle, θ, and it is assumed that the solid–vapour surface free energy (γsv) can be provided by this 

ree energy (γsl) is unknown. If this parameter could be 

xpressed by another equation in terms of γlv and γsv the problem could be solved.  

a

equation. However, the solid–liquid surface f

e

Three basic approaches have been taken to solve the problem just mentioned. The first 

approach seeks to find a mathematical relationship for γsl in terms of γlv and γsv and then evaluate 

the unknown γsv. This approach has led to the formulation of several "equation-of-state" models, the 

latest modification of which has been presented very recently.156 The second approach 

approximates the surface free energy of a solid by using the concept of critical contact angle.157 The 

models based on this approach assume that the surface tension of a liquid that exhibits zero contact 

angle on the solid surface is equal to γsv. These models generally yield values lower than the models 
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based on the other two approaches, however, and require the use of many homologous probing 

liquids, which is time-consuming.158 Because of these drawbacks the second group of models was 

not considered in this study. The approaches belonging to the third group were originally developed 

to provide an explanation for results obtained working within the context of the critical surface 

angle

 

 such as the modulus of elasticity (E) and Poisson’s ratio (ν). 

Here, the material behaviour was assumed to be elastic for all the materials present in the test set-up 

and only the values for 

force is given for each node. Linear elastic theory approximations representing the behaviour of the 

tress distribution 

with 

of the modelling outcome. Knowledge of the stress distribution in a test specimen helps in 

 described above.157 These approaches divide the surface free energy into dispersion, polar and 

acid-base components.159,160 The γsl is then expressed in terms of the components of γlv and γsv. 

Models formulated according to this approach include geometric mean,161,162 harmonic mean158 and 

acid-base163-165 models, and the determination of γsv by these models requires a measurement of 

contact angles of two to three liquids on a given solid with known components of the surface 

tension. Models one and three are discussed in Publication I and all three models in references 156-

167. 

 

4.3.2 Modelling of adhesion test set-up using a finite element method 

A finite element method (FEM) divides a problem domain into a collection of sub-domains 

(elements) of significantly small size and standard shapes (triangle, tetrahedral etc.) with a fixed 

number of nodes at the corners of the given shape. When a linear square element is used, four nodes 

define the element. FEM calculations are based on the imposed boundary conditions and on the 

inserted parameters of the materials

E and ν were inserted. As the boundary condition, either displacement or 

material are done using polynomial functions within each element to generate a local solution. The 

linear elastic theory is assumed to be valid for highly crosslinked epoxy in the glassy state. In fact, 

the materials, especially epoxy, do not behave in completely elastic manner, but after thoughtful 

consideration it was concluded that an elastic model would reveal the studied s

adequate accuracy. Moreover, utilising a linear elastic model instead of a viscoelastic model 

for the polymer saves considerable calculation time. Tying together the local elemental solutions 

yields a global system whose solution produces the model of an existing stress distribution in the 

problem domain.  

FEM calculations were used in Publication II to determine the stress distribution in the 

vicinity of interfaces of materials of interest in the interfacial adhesion tests. Various adhesion test 

configurations were studied to obtain better understanding of the test and to improve it on the basis 
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interpreting the interfacial adhesion results and, in particular, provides essential information about 

the validity of a given test configuration.  

 

4.3.3 Model-free evaluation of crosslinking kinetics  

 

The study of reaction rates and their dependence on temperature provides essential information 

about the practical and fundamental aspects of reactions. This information can be obtained by 

various methods including thermogravimetry and differential scanning calorimetry (DSC). The 

reason why DSC is so widely used is that most phase transitions, be they melting, glass 

transformation or chemical reactions, are accompanied by a change in heat. While the kinetic 

analysis of simple reactions on the basis of DSC data is well established, Galwey,135 at least, notes 

that he is “distinctly disappointed” by the lack of proper methods for the study of complex 

At the moment, a model-free kinetic approach provides a route to obtain useful information, 

reactions.  

although not complete understanding of the reaction kinetics of multi-step reactions. With very few 

exceptions the rate of a reaction increases with the temperature. The relation between rate constant, 

k, and temperature, T, was first proposed by Arrhenius: 

 

k = Ae -E/RT.       (8) 

 

The constant A is called the pre-exponential factor, E is the activation energy and R is the gas 

constant. Kinetic analysis of an epoxy crosslinking reaction, i.e. cure, is usually based on heat flow 

measurement by DSC, which is proportional to both overall heat release and cure rate according to 

Equation 9:169,170 

 

)()( αα fTkQ
dt
dQ

dt
dQ

curecure == ,    (9) 

 

where dQ/dt is the heat flow, t is the time, Q  is the total heat released when an uncured sample is 

brought to comple

cure

te cure, dα/dt is the cure rate, α is the extent of monomer conversion to a 

crosslinked network, k(T) is the Arrhenius rate constant and f(α) is the reaction model. The extent 

of cure, α, is determined by integrating the heat flow curve. The temperature dependence of the rate 

constant is introduced by replacing k(T) with the Arrhenius equation, which gives 
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)(
)(

αα fAe
dt
d RT

E−

= .      (10) 

e ergy, E, are traditionally determined from 

othermal experiments, converting Equation 10 to logarithmic form Equation 11 to solve A and E: 

 

The pre-exponential factor, A, and the activation n

is

 

RT
EAk

303.2
loglog 1010 −= .     (11) 

 

The determination of activation energy is an important objective of any kinetic investigation. 

However, if activation energy is determined according to the procedure presented above, the result 

is a single set of global Arrhenius parameters for the whole process. This means that the simulation 

of multi-step reactions is problematic. The model-free approach allows the apparent activation 

energy

 

 to be determined as a function of the extent of conversion and/or temperature without 

assuming a particular form of the reaction model. For nonisothermal conditions, when the 

temperature varies with time with a constant heating rate, β=dT/dt, Equation 10 can be rewritten as 

in Equation 12: 

)(
)(

αα fAd T
E−

= .       (12) 
β

e R

 evaluation.172 For the epoxy cure, the reaction order model, (1-α)n, and the 

utocatalytic cure model, αm(1-α)n, are the most frequently used. However, it is generally accepted 

that the epoxy cure is a multi-step rea r 

reaction rate limiting stages with different sets of Arrhenius parameters.  

Conventional isoconversional methods assume that the reaction rate at constant extent of 

ods proposed by 

zawa,174 and Flynn and Wall175 is preferred, therefore.176 However, the integral methods also 

dT

 

Too often the data is forced to fit to the single-step kinetic taking f(α) in one of its various 

reported forms.171 Unfortunately, the use of an improper model can seriously violate the outcome of 

a reaction kinetic

a

ction that likely involves several reaction mechanisms and/o

conversion is only a function of the temperature. This holds for single-step reactions providing that 

the heating rates are not extreme. For multi-step reactions, activation energy can vary depending on 

the heating rate and the subsequent reaction path, thus leading to different extent of conversion. The 

differential method proposed by Friedmann173 may result in erroneous values of activation energies 

because of poor resistance to experimental noise. The use of the integral meth

O
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require corrections.177 To overcome the inaccuracies of the conventional approximation routines 

associated with the isoconversional m

pproximation method for the temperature integral. Vyazovkin and Sbirrazzuoli176 calculated for a 

ethods,173-175 Vyazovkin178 developed a non-linear 

a

set of n experiments, carried out at different but constant heating rates, the minimum of the function 
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),( ,     (14) 

 

which must be evaluated numerically. In Equation 13, the indexes i and j denote different heating 

rates, n is the total number of heating rates, α is the conversion and I is the temperature integral. 

With this empirical method, the activation energy can be evaluated at any given value of α for 

ulti-step kinetics.  

The conversion-dependent apparent activation energies are obtained, by assuming a simple 

superposition of the ind

at at the end of the reaction all the reactants have been converted to products with full conversion 

(α =

and the avoidance of the erroneous choice of a kinetic model, can be put to use. Despite the evident 

benefits of the model-free analysis, there is an ongoing debate about the theoretical justification.

al 

analys

m

ividual reactions for a possible multi-step mechanism. It is also assumed 

th

 1). The process should not include simultaneously occurring exothermic and endothermic 

reactions or competing reactions, and it should not be partially diffusion controlled. With these 

boundary conditions taken into account, the advantages of the model-free analysis, i.e. simplicity 

179-

184 Although there is no agreement about the exact physical foundation of the approach, application 

has produced viable results and model-free analysis is gaining increasing acceptance as the therm

is community actively debates the best way to determine the reaction kinetics of complex 

systems.135,179-185  
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5 SUMMARY OF THE THESIS 

 

The objective of the present work was to obtain a better understanding of interfacial compatibility, 

which is one of the major reliability-related concerns of advanced electronics. Materials were 

modified and characterised, and test specimens with representative interfaces were built up, tested 

and investigated. Both surface and bulk modifications of materials were carried out. The modified 

surfaces were investigated

dhesion of coating/substrate systems composed of copper/polymer, polymer/copper or 

er/polymer was investigated in carefully designed adhesion tests. A critical assessment was 

ade of the pull-off adhesion test and surface free energy evaluation methods to ensure the validity 

of the results. In addition, a novel method for polymer film characterisation was introduced and 

novel star-shaped poly(ε-cap

odification of certain bulk properties of the SU8.  

In Publication I, entitled “Evaluation of the surface free energy of spin-coated photodefinable 

gy of solid polymers. Surface free energy was calculated by these 

models for the photodefinable epoxy (SU8), which was 

d. 

Th

5e1 sta ard. The standard does not require a rigid support or photodefinition. By 

ombining mechanical modelling with careful experimental adhesion testing, we were able to show 

the influence of the properties of substrate on the measured adhesion strength. We demonstrated 

that if a flexible substrate is used rather than a rigid one, the adhesion strength is severely 

underestimated. In addition, the test area should be prepared to match in size the stud area of the test 

 by means of topographical and chemical analyses. The interfacial 

a

polym

m

rolactone) oligomers were synthesised for reactive blending with SU8 

epoxy to achieve the m

This thesis consists of seven publications. The main results of each publication are 

summarised as follows: 

epoxy“, we critically assessed models based on Young’s equation, which are commonly used in the 

calculation of the surface free ener

later studied in Publications II and VII. The 

geometric mean model was found to have the most solid theoretical foundation and it was used in 

all later work. The interfacial adhesion between successive SU8 layers was determined by a pull-off 

method. Although it was later noticed that careful optimisation is needed for the reliable 

determination of interfacial adhesion, relative values of the adhesion strength provided useful 

information about the interfacial adhesion at the polymer/polymer interface. 

Publication II, entitled “Pull-off test in the assessment of adhesion at printed wiring board 

metallisation/epoxy interface“, sought a detailed understanding of the pull-off adhesion test metho

e hypothesis of the study was that the use of a rigid support together with photodefinition of an 

adhesion test pad onto the coating to be studied would result in a more uniform stress distribution 

within the specimen than that provided by direct application of the method according to the ASTM 

D4541-9 nd

c
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equipment. This is not made clear in the literature, and often the test is carried out from an arbitrary 

place on the coating. If the test pad is not defined, however, the load applied to the set-up during the 

pper to different polymer 

subst

 topographical investigations of modified polymer surfaces before the 

adhes

ately modified surface 

chem

adhesion test will cause the stress concentration to appear at the wrong interface. With the help of 

these observations, we were able explain contradictory results reported in the literature. Moreover, 

we observed interfacial fractures, rather than cohesive bulk fractures, at higher values of the 

adhesion strength than have been reported earlier for the bulk fracture of the copper/SU8 system. 

Finally, we used the pull-off test to obtain information about differently aged samples and found 

that adhesion promoter enhanced the durability of the interfacial adhesion in environmental 

exposures and that properly pre-treated copper is relatively reliable without any other treatment. 

In publications III-V, entitled “Surface modification and characterisation of photodefinable 

epoxy/copper systems”, “Effects of surface treatments on adhesion of copper to a hybrid polymer 

material” and “Surface modification of a liquid crystalline polymer for copper metallization”, we 

studied the interfacial adhesion of electroless and sputter-deposited co

rates. By employing contact angle measurements and surface free energy evaluations along 

with XPS analyses and

ion test, and after it carrying out SEM examination of the fracture surface, we were able to 

deduce the adhesion mechanisms at the coating/substrate interfaces. The improvement of interfacial 

adhesion was experimentally verified by a modified pull-off test. The increase in surface free 

energy correlated well with the increase in adhesion strength of sputter-deposited copper. 

Nevertheless, there was poor correlation between the surface free energy of a polymer and the 

achieved adhesion strength with electroless copper. We concluded that electroless copper demands 

an effectively roughened surface with a sufficient number of microcavities for the formation of 

mechanical interlocking between the polymer and copper. Sputter-deposited copper, in turn, showed 

better interfacial adhesion to a relatively smooth surface with an appropri

istry, i.e. rich in oxygen or nitrogen functional groups. The studies did not, however, include 

experiments to determine if the sputter-deposited copper had penetrated into the polymer during the 

deposition process. The possibility of diffusion as an adhesion mechanism that provided the 

improved adhesion strength, when using sputter-deposition, cannot therefore be excluded. 

Publication VI, entitled “Synthesis, characterisation and crosslinking of functional star-shaped 

poly(ε-caprolactone)”, describes the synthesis of novel star-shaped low-molecular-weight polymer 

modifiers. With the help of controlled polymer structure tailoring we were able to synthesise 

reactive, i.e. crosslinkable, oligomers with different functional groups. Characterisation of the 

oligomers was carried out by 1H/13C nuclear magnetic resonance (NMR) spectroscopy, size 

exclusion chromatography (SEC), Fourier transform infrared (FTIR) spectroscopy and differential 
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scanning calorimetry (DSC). Among other things, the six-armed star-shaped structure was 

established. The polymer was further functionalised to contain a carbon-carbon double bond at the 

end of each branch to enable crosslinking without the need of a crosslinking agent. The crosslinking 

was induced either thermally with the use of peroxides or photochemically with the use of 

photosensitive initiator. The crosslinked polymer networks were characterised by Soxhlet 

extraction, DSC and FTIR, which showed that a high degree of crosslinking was achieved and that 

an itaconic double bond was much more reactive than the maleic double bond. 

In Publication VII, entitled “Reactive blending approach to modify spin-coated epoxy film” 

we applied the knowledge obtained in the synthesis of the star-shaped polymer.VI Now we used 

saturated carboxylic acid functionalisation and prepared an oligomeric network precursor with a 

four-armed structure. This modification enabled reactive blending with epoxy by a dual-catalysed 

reaction, and various bulk as well as surface properties could be tailored simultaneously. With the 

help of model-free kinetic analysis we were able to adjust the crosslinking conditions to ensure 

dense crosslinking. This minimised the reaction induced phase separation while maximising the 

amount of incorporated oligomer. Finally, we demonstrated the use of a novel non-destructive 

method, spectrophotometry, in the determination of glass transition temperature and the out-of-

plane thermal expansion of polymer films in-situ from silicon wafers. In addition, the 

spectrophotometry provided information about the optical properties of the modified polymers, 

which strongly suggested that the materials could be used in the manufacturing of optical 

waveguides. 
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