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ABSTRACT

The aim of this thesis was to evaluate the usability of self-organizing maps and some other
methods of computational intelligence in analysing and modelling problems of environmental
informatics and bioinformatics. The concepts of environmental informatics, bioinformatics,
computational intelligence and data mining are first defined. There follows an introduction to
the data processing chain of knowledge discovery and the methods used in this thesis, namely
linear regression, self-organizing maps (SOM), Sammon’s mapping, U-matrix representation,
fuzzy logic, c-means and fuzzy c-means clustering, multi-layer perceptron (MLP), and regular-
ization and Bayesian techniques. The challenges posed by environmental processes and
bioprocesses are then identified, including missing data problems, complex lagged dependen-
cies among variables, non-linear chaotic dynamics, ill-defined inverse problems, and large search
space in optimization tasks.

The works included in this thesis are then evaluated and discussed. The results show that the
combination of SOM and Sammon’s mapping has great potential in data exploration, and can
be used to reveal important features of the measurement techniques (e.g. separability of com-
pounds), reveal new information about already studied phenomena, speed up research work,
act as a hypothesis generator for traditional research, and supply clear and intuitive visualiza-
tion of the environmental phenomenon studied. The results of regression studies show, as ex-
pected, that the MLP network yields better estimates in predicting future values of airborne
pollutant concentration of NO, compared with SOM based regression or the least squares ap-
proach using periodic components. Additionally, the use of local MLP models is shown to be
slightly better for estimating future values of episodes compared with one MLP model only.
However, it can be concluded in general that the architectural issues tested are not able to solve
solely model performance problems.

Finally, recommendations for future work are laid out. Firstly, the data exploration solution
should be enhanced with methods from signal processing to enable the handling of measure-
ments with different time scale and lagged multivariate time-series. The main suggestion, how-
ever, is to create an integrated environment for testing different hybrid schemes of computa-
tional intelligence for better time-series forecasting in environmental informatics and
bioinformatics.
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National Library of Medicine Classification: WA 26.5, WA 754

INSPEC Thesaurus: environmental science computing; biology computing;

data analysis; data mining; knowledge acquisition; self-organising feature maps; neural nets
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GLOSSARY

Dissolved oxygen

Evolutionary Computation

Exploratory Data Analysis

Feature selection

Fermentation

Functional state model

Fuzzy logic

Genetic Algorithm

Hidden layer

Ion Mobility Spectrometry

IMCELL™

Knowledge Discovery

Input layer

Linear regression

Metabolism

MGD-1

Multi-Layer Perceptron

Neurocomputing

Concentration of oxygen dissolved in the medium.

Techniques mimicking nature’s evolutionary principles to
drive its search towards an optimal solution (Deb, 2001).

Data analysis based on visualizing and exploring data
without a clear idea of what to look for.

An algorithm that selects the most useful variables to be
used in the feature vector.

In broad terms, use of micro-organisms to carry out
enzyme-catalyzed transformations of organic matter (Ward,
1989).

A modeling concept that divides a process into upper level
of process states and lower level of local models.

A form of logic that handles uncertainty by using
intermediate values between true and false.

An evolutionary algorithm which generates each individual
from some encoded form known as a “chromosome” or
4¢gene’7'

A layer in a neural network that is not directly connected to
the outside world.

A collection of principles, practice and instrumentation used
for characterizing chemical substances using their ion
mobilities in gas phase (Eiceman and Karpas, 1994).

An advanced form of traditional IMS technique;
a proprietary technology of Environics Oy (Mikkeli,
Finland).

Process of extracting information from data.

A buffer in a neural network that distributes the input
signals to hidden layers.

A technique of fitting an equation to data points with the
parameters to be determined being in a linear position.

Chemical processes occurring in cells: includes anabolic
(synthetizing) and catabolic (degrading) processes.

A commercial gas detector (Environics Oy) based on the
IMCELL™ technique.

A neural network model consisting of input, hidden and
output layers, with forward connections between them.

A way of computing that is able to learn from examples: it
imitates neuron models found in the brain.



Output layer

Phase

Radial Basis Function Network

Sammon’s mapping

Self-Organizing Map

Stationary process

Support Vector Machines

The layer in a neural network that outputs the computed
result of the network.

A perceptile period of time when a process or culture
expresses certain typical properties such as growth of
biomass.

Neural networks based on Cover’s theorem about linear
separability in higher dimensions.

A gradient search method, which aims at representing points
in p-dimensional space in 2 dimensions, conserving as much
as possible of the original information.

Type of neurocomputing based on an unsupervised
learning algorithm and a special type of map-like neural
network.

A process in which the statistics of any subset of measured
data accurately describe the statistics of the entire data.

Neural networks, based on the idea of constructing a hy
perplane as a decision surface so that the margin of separa
tion between positive and negative examples is maximized.
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Dissolved Oxygen

Evolutionary Computation
Exploratory Data Analysis

Genetic Algorithm

Ion Mobility Spectrometry
Knowledge Discovery in Databases
Multi-Layer Perceptron

Radial Basis Function Network
Self-Organizing Map

Support Vector Machines

random variables

constants

error residual

general indexes

time

estimate of variable z

data matrix

kth input vector

weight vector of the neural network with ¢ as a counter for iterations
number of dimensions (variables)

number of input vectors (data lines)
distance according to metrics xx

stress or error function to be minimized
learning rate factor as a function of time
width of the kernel as a function of time
index for the Best Matching Unit (neuron)
neighbourhood function according to location vectors r_and r_|
location vector for the BMU neuron
location vector for the neighbouring neuron
set of Nearest Neighbour neurons

fuzzy set for the base set A

membership function for fuzzy set

cluster centre

within-cluster distance (deviation) for cluster /
gradient

Jacobian matrix

identity matrix

weighting constant

ith predicted value

ith observed value

probability

probability function
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Introduction

1. INTRODUCTION

The problem encountered frequently in
today’s world is that of information overflow.
To be precise, there is a lot of data available
but too sparse information or knowledge about
the subject inspected often in a limited time.
Therefore, the enrichment process where the
measured data is first turned into problem spe-
cific information and then into more general
knowledge is a very important subject of study.
This was also the starting point of this thesis
with focus on environmental and bioprocesses.

Nowadays, there is an increasing amount of
data available from our environment. Meteo-
rological data is one of the oldest sources of
this kind. During the last two decades, urban
air quality measurements have been carried
out routinely in most of the cities or even
towns. Together, these two create an excel-
lent opportunity to monitor the workings of
the nature and human activities mixed in com-
plex ways. Moreover, as the datasets are now
reaching many years back in time it is pos-
sible to use computational models for atmo-
spheric phenomena described through these
time-series.

Another important trend in this century has
been the advancement of medicine and bio-
chemistry. This has culminated to the innova-
tions of being able to monitor the genes using
so called micro-array technology. Thus, based
on those and more traditional measurements,
the complex behaviour of living creatures can
be analysed and modelled enabling even in-
dividual medication. This opens remarkable
prospects also in environmental sciences
where the monitoring of environmental pro-
cesses could be brought into a new level of
accuracy.

The large amounts of (on-line) data requires
automated data processing schemes to be de-
veloped, which can then deliver information
for planning, maintenance and exception han-
dling (alarm) activities. The first attempts of
this kind were carried out in the 70’s and 80°s
when a computational scheme called artificial

intelligence (AI) was developed and applied
in many sectors. The basic approach of Al was
to capture human knowledge in the form of
objects and rules in order to create an expert
system for the data processing tasks required.
However, it turned out that this approach is
not able to capture the true nature of the phe-
nomena in a sufficient way. Starting from the
80’s a new brand of computation was devel-
oped and it is nowadays called computational
intelligence (CI). The basic approach of Cl is
to create the data processing system by utiliz-
ing measurements of the study subjects and
then constructing more abstracted objects
algorithmically mimicking the processes
found in the brain (e.g. neural networks) or in
the nature (e.g. evolutionary computation).

During the last two decades, the methods of
CI have been successfully applied in many
industrial and everyday applications includ-
ing process control and consumer electronics
like intelligent washing machines for example.
Meanwhile, it has become clear that these
methods are useful only in limited areas of
application, due to the fact that they are not
really intelligent in the human sense. How-
ever, each method can be seen to dominate its
own dimension of intelligence, which makes
them complementary rather than competitive
in respect to each other. Naturally, this has led
to attempts to combine two or several meth-
ods of CI in a co-operative way, leading to
active research in hybrid computational intel-
ligence in recent years.

Multi-disciplinary research is becoming in-
creasingly common in science and this is re-
flected in education at the university level,
especially in environmental sciences and bio-
sciences. New disciplines are being created,
and the most exciting ones are usually based
on applying the new information sciences to
other fields of research. Among them are en-
vironmental informatics and bioinformatics.
This thesis is the result of studies in the field
of environmental informatics and
bioinformatics. It is hoped that this disserta-
tion will serve as an introduction to those who

Kuopio Univ. Publ. C. Nat. and Environ. Sci. 167: 1-73 (2004) 19



Mikko T. Kolehmainen: Data exploration with self-organizing maps
in environmental informatics and bioinformatics

want to enlarge their knowledge of scientific
methods in those fields.

Our research group has decided to focus our
research and teaching in environmental
informatics at the University of Kuopio on the
following themes: (i) using computational in-
telligence for analyzing and modelling envi-
ronmental data; (ii) developing methods for
continuous monitoring of the environment; and
(iii) utilizing software engineering for deliv-
ering the solutions to end-users. As discussed
later, this approach can also be applied to the
field of bioinformatics. The central theme of
this work is the first, which implies the need
to understand how data can be utilized by re-
fining them into information and knowledge.
On the other hand, continuous monitoring adds
tools and devices which can be used to yield
data continuously and in real time, for example
the applications based on the ‘electronic nose’
in two of the studies of this thesis. Finally, the
solutions thus created can be delivered to end-
users by utilizing the best of modern software
engineering to package the solutions in an ef-
fective and user-friendly way. This approach
has led to three commercial Visipoint Ltd.
softwares called Visual Data, Visual Gene and
Visual Nose (based on the NDA library). Their
development was initiated in the studies for
this thesis, and the design and guidance of their
implementation were carried out by the author.

The aim of this thesis was to evaluate self-or-
ganizing maps (SOMs) and other related meth-
ods for analysing and modelling environmen-
tal and bioinformatics problems, using a num-
ber of selected case studies. For analysing the
data, SOM was selected as the main method
because of its properties, which are suited for
both clustering and visualization. The natural
choice for regression was multi-layer
perceptron (MLP), which has already been
applied in numerous applications. Other meth-
ods were then added, to complement the other
two. The domains of application (air quality
and bioinformatics) were selected because
these areas had suitable data available, as well
as experts in the field who could participate in

guiding the work. These case studies are cov-
ered in detail in the publications and also re-
ferred to in the introductory part of the thesis.

The introductory part of the thesis is divided
as follows. Chapter 1 is a short introduction to
the themes to be discussed. Chapter 2 intro-
duces environmental informatics and
bioinformatics together with the challenges
posed by data collected from the processes of
those fields. This is followed in Chapter 3 by
a presentation of computational intelligence
and other important concepts needed for un-
derstanding the discussion in the rest of the
thesis. Chapter 4 describes the methods used
in the studies, enabling a reader new to CI to
follow the discussion and the articles. Chapter
5 goes into the heart of the topic, discussing
the results of the practical works in the thesis
and also introducing the software created. Fi-
nally, Chapter 6 draws everything together with
concluding remarks.

In addition to the novel applications covered
in the publications, the main innovation of the
thesis was to show how the performance of
self-organizing maps can be enhanced by com-
bining them with Sammon’s mapping. Even
though this idea has been presented earlier (e.g.
Chang and Lee, 1973), it has not been previ-
ously studied to this extent with real world
problems and datasets. Additionally, the Visual
Data software developed and tested in these
studies takes the approach to a practical level,
where end-users who are not familiar with the
computational methods can produce results in
their own disciplines.

20 Kuopio Univ. Publ. C. Nat. and Environ. Sci. 167: 1-73 (2004)



The domain of application

2. THE DOMAIN OF
APPLICATION

2.1. Environmental informatics

Environmental informatics (EI) is a new dis-
cipline which has been defined by Page and
Hilty (1995) as follows:

Environmental Informatics is a special sub-
discipline of Applied Informatics dealing with
the methods and tools of computer sciences
for analyzing, supporting and setting up those
information processing procedures which are
contributing to the investigation, removal,
avoidance and minimization of environmen-
tal burden and damages.

Another definition has been proposed by Green
and Klomp (1998), focusing more on the inte-
gration of global data sources and even on as-
pects of life sciences:

The application of information technology to
environmental issues is changing both theory
and practice. The idea of “natural computa-
tion” provides new ways to understand envi-
ronmental complexity across the entire range
of scales, from individual phenotype to bioge-
ography. Understanding the ways in which
local interactions affect the global composi-
tion and dynamics of whole communities is

Bayesian techniques

Requirements for

Databases Usability _ .
Communications environmental Soil Air Water
Software engineering problems Landscape Radiation
Hardware Noise Waste
Information Environmental | Environmental
Technology Informatics Sciences
Neural Networks _> Management Economy
LG Administration Law
Fuzzy Logic Problem solving Engineering Ecology

crucial to the viability of strategies to man-
age ecosystems, especially in landscapes al-
tered by human activity. Also environmental
planning and management are increasingly
dependent on accurate, up-to-date informa-
tion that sets local decisions within a global
context. The Internet makes it possible to com-
bine environmental data from many different
sources, raising the prospect of creating a glo-
bal information warehouse that is distributed
amongst many contributing sites.

It can thus be seen that there are different in-
terpretations and points of view concerning
what is included in environmental informatics.
For the practical purposes of this thesis, this is
my own definition:

Environmental informatics is based on apply-
ing information technology to environmental
issues using data-driven methods.

On the other hand, environmental informatics
can be seen as a mediator between environ-
mental sciences and modern informatics, of-
fering novel solutions based on collected data
and processing them into the information and
knowledge needed for problem solving in that
domain. This is illustrated in Figure 1.

Naturally, such a problem domain is impos-
sible to solve in its general form, so represen-

Figure 1. The role of environmental informatics as a mediator between environmental sciences
and modern informatics (modified from Page and Rautenstrauch, 2001).

Kuopio Univ. Publ. C. Nat. and Environ. Sci. 167: 1-73 (2004) 21
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tative examples are needed in the form of case
studies. In this thesis, they were found in the
fields of urban air quality and bioinformatics.
This is mostly due to the research work that
has been carried out in the University of
Kuopio in various research groups, which
meant that representative data and trained ex-
perts in the discipline were available, and the
experts were able to spot the most important
targets for multi-disciplinary studies of this
kind.

2.2. Urban air quality

In recent years, urban pollution has emerged
as the most acute problem in environmental
health, because of its negative effects on health
and living conditions. To prevent the further
decline of air quality, scientific planning of
analysis methods and pollution control are re-
quired. Within this framework it is necessary
to (i) analyse and specify all pollution sources
and their contribution to air quality; (ii) study
the different factors which cause the pollution;
and (iii) develop tools to reduce pollution by
introducing control measures and alternatives
to existing practices (Kolehmainen et al.,
2000).

The research carried out thus aims at attaining
a better understanding of the phenomena as-
sociated with gaseous atmospheric pollutants,
aerosol particles and meteorological param-
eters. The specific goal is to develop air qual-
ity models which can forecast the next day’s
urban air quality. The modelling is typically
based on the historical data concerning air
pollutants and predicted meteorological vari-
ables.

Air quality forecasting is a typical problem
domain of environmental informatics in many
respects. Firstly, ample data have been mea-
sured and collected for both the air quality
parameters (concentrations of gaseous and
particle pollutants) and the closely related
meteorological parameters. This enables the
use of data-driven methods such as neural net-

works. Secondly, the data originate from open
processes which render the chaotic and noisy
characteristics of nature. This is different from
the more limited and controllable circum-
stances of industrial processes, which can, of
course, also exhibit complex behaviour.
Thirdly, urban air quality is also connected to
the main themes of environmental sciences,
namely to the consequences of human activi-
ties for nature, and also for humans themselves
in the form of deteriorating health and living
conditions.

2.3. Challenges with environmental data

Environmental datasets are usually comprised
of time series measured over several years. The
primary factors influencing the modelling thus
originate from the cycles of nature (seasonal-
ity and daily variations) and from human ac-
tivity, e.g. daily and weekly variations
(Kolehmainen et al., 2000). Seasonality usu-
ally leads to the requirement of having at least
3-5 years of measured data for the modelling.
In this way at least 1-2 years can be used for
validating the modelling results. Consequently,
urban air quality is a prominent object for such
studies, as air quality data have been moni-
tored for one or two decades in many western
cities.

The objective of urban air quality modelling,
for example, is usually to forecast the concen-
trations of pollutants for the next day, in order
to make recommendations and issue warnings
about bad air quality episodes (see review by
Gardner and Dorling, 1998). In this case, the
sampling time needed is usually hours or days,
even though the measurements may be carried
out in two- or three-minute sampling intervals.
Thus, the number of data points available is
usually tens of thousands, which is enough for
most of the methods used in computational
intelligence.

Consequently, the quality of the data is usu-
ally of more concern. The most often encoun-
tered problem is missing data, due to measure-
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ment device failures or human errors. In case
of time-series data, most CI methods require
complete datasets, which leads to imputation
ofthe missing values (Bishop, 1995). Another
typical quality problem is outliers, which are
due to measurement errors either by devices
or human operators. Severe challenges can also
be caused by systematic errors originating from
erroneous calibration of measurement devices,
for example.

The most often encountered environmental
datasets (Gunther, 1998) can be characterized
as multivariate time series (MTS). This means
that there are several variables measured at the
same sampling sites or that they can be treated
as such by calculating hourly averages, for
example. This leads to a data matrix, where
the columns represent different variables of the
same process and the rows correspond to dif-
ferent time points. Even if there is only one
variable (time series) directly available, aux-
iliary variables can often be generated from
other sources of information. The most obvi-
ous one is to create new variables based on
the time of the measurements. This is because
most environmental processes are subject to
the changes of nature (seasonality) and also
human activities (Kolehmainen et al., 2000).
Thus, variables such as hour of the day, day of
the week and day of the year can be utilized to
connect the periodicity of these affecting fac-
tors to the process inspected. For the same rea-
sons, it is often helpful to consider meteoro-
logical variables to be added to the dataset,
whenever available from the same geographi-
cal region.

On the other hand, the multitude of variables
can also cause problems, due to the correla-
tions between variables, which lead to the same
information being presented to the learning
algorithm (see Chapter 4) several times. This
in turn can mislead the algorithm to pay more
attention to some features than to others. A
natural solution to this is to apply feature se-
lection in the pre-processing stage in one way
or another (Tucker et al., 2001). Secondly,
some variables may contain noise, which can

hamper the performance of the learning meth-
ods.

Additionally, seasonal components in time se-
ries can burden or prevent the working of the
learning algorithm by introducing non-
stationarity into the data (Dorftner, 1996). They
should be handled explicitly, for example by
differencing or by fitting linear regression
models to the data in the pre-processing stage.
An example of this can be found in one of the
works included in this thesis (Kolehmainen et
al., 2001).

The processes themselves usually have an in-
ner structure, where different parts of the pro-
cess influence each other (Haykin and Principe,
1998). These complex interactions usually in-
clude lags, i.e. the changes in one part of the
system affect some other part of it with a de-
lay. This in turn is reflected in the correspond-
ing measured time series as lagged values.
Complexity in many natural phenomena arises
from massive interactions among different
parts of a non-linear dynamical system (Haykin
and Principe, 1998). If the system is addition-
ally sensitive to initial conditions, it can ex-
press chaotic behaviour. In such a system,
nearby states of the system are separated rap-
idly. This leads to diminished ability to fore-
cast the future evolution of the system, thus
effectively preventing the accomplishment of
the short time goals of time-series forecasting.
Chaos is also expressed in the time-series in a
similar fashion as random noise, making it dif-
ficult to distinguish the former from the latter.
Therefore, it is important to identify the na-
ture of the time series early in the data pro-
cessing chain, since it can determine which
models can effectively be used in that context.

A problem is defined to be an inverse problem
of another problem if the formulation of the
former requires full or partial knowledge of
the latter (Kirsch, 1996). On the other hand,
Hadamard (1902) has introduced the concept
of well-posed problem; problem is said to be
well-posed in the sense of Hadamard if it sat-
isfies three conditions, namely existence,
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uniqueness and continuity. If any of these con-
ditions is not satisfied, the problem is called
ill-posed. Consequently, a dynamic reconstruc-
tion problem (such as weather-related prob-
lems in environmental sciences) is in reality
an ill-posed inverse problem (Haykin and
Principe, 1998). In order to be able solve such
problems, some prior knowledge is usually
imported to the model.

The challenges and their possible solutions
presented above lead easily to a situation where
the model to be created is very complex. To
summarize, the following properties of envi-
ronmental processes and the corresponding
time series can be found to create this com-
plexity:

e The seasonal and other cyclic
dependencies in them require that the
model can adapt to changing conditions,
i.e. the processes are not stationary.

e The functions to be modelled with CI
methods are complex, and the
corresponding model requires a large
number of free parameters to fit it.

e The processes are described through
multitudes of variables, which leads to
large input space.

e There are lagged interactions between
variables, which makes the input space
larger by one or two orders of magnitude
in the worst case.

e The environmental processes are often
non-linear and potentially chaotic, which
needs special attention.

e The processes can be ill-defined inverse
problems, which require prior
knowledge to be imported to the model.

A large part of the modelling process can thus
be seen as an optimization problem, where the
most effective variables and their combinations
are selected and the model parameters are set
to optimal values. However, this optimization
can potentially create a large search space and
lead to unacceptable execution times for the
algorithms. Therefore, the optimization pro-
cess must be somehow divided so that the

search space can be split into manageable
pieces. Basically, this could be done in sev-
eral ways, which are examined in more detail
in Chapter 5.3.

2.4. Bioinformatics

Bioinformatics is a new discipline based on
the same driving forces of development as en-
vironmental informatics, namely the advent of
computing power, software engineering and
utilization of computational intelligence. Ad-
ditionally, the breakthrough in gene technol-
ogy gives it a flavour of its own. Bioinformatics
can be defined as follows (Nilges and Linge,
2003):

Bioinformatics derives knowledge from com-
puter analysis of biological data. These can
consist of the information stored in the genetic
code, but also experimental results from vari-
ous sources, patient statistics, and scientific
literature. Research in bioinformatics includes
method development for storage, retrieval, and
analysis of the data. Bioinformatics is a rap-
idly developing branch of biology and is highly
interdisciplinary, using techniques and con-
cepts from informatics, statistics, mathemat-
ics, chemistry, biochemistry, physics, and lin-
guistics. It has many practical applications in
different areas of biology and medicine.

This practical approach to bioinformatics can
be deepened in the following way.

In the search for unravelling the organization
of life, the crucial factor is understanding tem-
poral and spatiotemporal dynamics of biologi-
cal processes. Traditionally, this has been tack-
led by the reductionist approach, which means
assuming that once the individual molecules
have been identified, the complete function of
the whole system or organism can be derived
from the sum of individual molecular actions.
Despite of the success so far, however, the
consensus is growing that the reductionist para-
digm cannot answer to the following three
questions namely i) how living systems func-
tion as a whole, ii) how they transduce and
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process dynamical information and iii) how
they respond to external perturbations
(Walleczek, 2000).

The central concept in these fundamental ques-
tions is self-organization, which refers to emer-
gent features possessed by a dynamical sys-
tem as a whole but not by its constituent parts.
The features in biological systems that enable
self-organization are openness and
nonlinearity. Openness is due to the fact that
the living systems are in the state of perma-
nent flux and they are continuously interchang-
ing matter and energy with their environment.
Respectively, nonlinearity results from a com-
plex organization of a vast network of molecu-
lar interactions. Therefore, Walleczek (2000)
suggests that biomedical scientists should
adopt an information-based and whole-systems
approach to biological understanding in order
to develop advanced biomedical technology.

The main ideas here are clearly in the last sen-
tence, namely information-based and whole-
system approaches. This was also the starting
point for the bioinformatics-related studies of
this thesis. Hence, the analysis was based on
measured data and the target was to describe
the possible configurations of whole systems,
namely human beings, yeast or biotechnical
processes. The following definition describes
and summarizes the bioinformatics-related
goals of this thesis:

Bioinformatics applies information technology
to biological issues using data-driven meth-
ods in order to reveal the working of different
abstraction and complexity levels of the entity
studied.

2.5. The nature of bioinformatics data

When we are considering datasets originating
from living nature, i.e. vegetation, animals or
human beings, the structure of the data is dif-
ferent from that of data found in the environ-
ment. Firstly, the time-series properties are
practically absent, since usually only a few
points of time are available. This naturally re-

stricts the number of methods applicable, and
the model reflects only a static state of the sys-
tem. Also, the number of individuals and vari-
ables is often limited. However, in the datasets
used in two of the works of this thesis, the num-
ber of genes available for gene expression
analysis (Toronen et al., 1999) was over 6000,
and the number of subjects available from the
epidemiological survey (Valkonen et al., 2002)
was 1650. Consequently, the use of methods
of CI, such as neural networks, was valid still.
For the third study (Kolehmainen et al., 2003)
the data originating from the electronic nose
(MGD-1) are time-series data, which makes it
possible to account for the dynamical aspects
of'the process. However, the measurements of
more traditional variables such as glucose and
ethanol concentrations were carried out by
sampling the medium, which leads to a sparse
data matrix.

The restrictions in bioinformatics are mostly
due to limitations of the corresponding mea-
surement techniques, which rely on costly and
labour-oriented laboratory practise. Unfortu-
nately, this also holds for micro-array data,
which are gathered using expensive chip tech-
nology. However, it can be anticipated that the
development which has led to cheap micro-
computer technology will also enable cost-ef-
fective measurements of gene expression in the
future. This would make it possible to mea-
sure and analyse the time-series properties of
biological phenomena.

During the last decade, a vast amount of
bioinformatics data has been collected in nu-
merous databases, which can be utilized using
web technology. Most of the data are related
to gene sequences, but data related to gene
expression and protein expression of various
species are also accumulating. However, the
data are in various formats in different data-
bases, which makes it tedious to aggregate data
from various sources (Stein, 2002), so it is
necessary to find ways to manage these data
in coherent ways that permit the modelling of
biological phenomena using the best available
measurements.
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2.6. The link between environmental
informatics and bioinformatics

Environmental informatics and bioinformatics
are similar in their methods in many respects.
Firstly, both use methods of computational in-
telligence as well as statistics for yielding in-
formation and knowledge from measured data
of the phenomenon studied. Secondly, the role
of software engineering is important in the form
of database management, modelling tool de-
velopment and user interface design, for ex-
ample. Additionally, both disciplines study
phenomena which are often based on biology,
i.e living things. The similarity of these new
disciplines is illustrated in Figure 2.

It should be noted that besides common meth-
ods, new ways of problem solving can also be
found by utilizing bioinformatics as a tool in
the environmental domain (Geer et al., 2001).
This leads to new definitions or even sub-dis-
ciplines in the form of environmental
bioinformatics and genomics.

Environmental - :
Sciences Biochemistry
Computational

l / Intelligence \
Environmental — .
Informatics +—___ | Software _—" | Bioinformatics

Engineering
Environmental
Bioinformatics
and Genomics

Figure 2. Environmental informatics and bioinformatics are basically similar. Both disciplines
use software engineering and computational intelligence as their building blocks. By combining
these two, interesting combinations can be created for monitoring environmental processes and

finding solutions for environmental problems.
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3. COMPUTATIONAL
INTELLIGENCE

3.1. What is computational intelligence?

One of the earliest definitions of computational
intelligence (CI) can be found in Bezdek
(1994):

A system is computationally intelligent when
it deals with only numerical (low-level) data,
has pattern recognition components, and does
not use knowledge in the Al sense; and addi-
tionally when it (begins to) exhibit (i) compu-
tational adaptivity, (ii) computational fault
tolerance; (iii) speed approaching human-like
turnaround,; and (iv) error rates that approxi-
mate human performance.

This may seem a rather complex definition and
it also leans on the traditional definition of ar-
tificial intelligence (Al) of symbolic represen-
tation in an exclusionary way. Fogel (1995)
offers another definition:

...a relatively new term offered to generally
describe methods of computation that can be
used to adapt solutions to new problems and
do not rely on explicit human knowledge.

The most common element in these two defi-
nitions seems to be adaptivity. A link to hu-
man knowledge is also made in a sense, which
implies use of measured data instead of ex-
plicit rules constructed by human operators.
Pal and Pal (2002) combine these definitions
by requiring the following characteristics of a
CI component (neural network, fuzzy logic
etc.):

o Considerable potential in solving real
world problems

o Ability to learn from experience

o Capability of self-organizing

¢ Ability to adapt in response to
dynamically changing conditions and
constraints

They summarize this by requiring the compo-
nent to display intelligent behaviour as ob-
served in humans. Interestingly, this last defi-

nition refers to the same attributes of intelli-
gence that Feigenbaum (2003) considers in his
article. He starts by reminding readers of
Turing’s test (Turing, 1950), where judgements
about the intelligent behaviour of artificial sys-
tems should be based on the extent to which
their behaviour resembles that of humans.
However, Feigenbaum points out that human
behaviour is very multidimensional, and that
most of the achievements of Al and CI result
from the study of different dimensions sepa-
rately. Thus, the label “partially intelligent”
could be justified when considering the meth-
ods of CI.

Another perspective to CI and intelligent
behaviour can be found in King (1998), who
starts by defining an intelligent system as hav-
ing the attributes of intelligence, namely the
capability for any of the following: compre-
hension, reasoning, perception, communica-
tion and learning. However, King focuses on
knowledge representation, which is the pro-
cess through which any intelligent system
stores knowledge about the problem domain.
In this way the following definition (King,
1998) can be seen as distinguishing between
symbolic Al and computation- oriented CI:

Symbolic approaches focus on representing
how the brain reasons, irrespective of how this
is accomplished biologically, whereas the
computationally intelligent system focuses on
mimicking the brain’s biological processes for
accomplishing learning, memory, and pattern
recognition.

The difficulty in defining CI in a short and yet
comprehensive way is probably the reason why
it is frequently defined in terms of its compo-
nents. The most often encountered list includes
artificial neural networks (ANN), fuzzy logic,
genetic algorithms (GA) and Bayesian net-
works.

This also brings up another concept, soft com-
puting (SC). It has been defined, by for ex-
ample Pal and Pal (2002), Dote and Ovaska
(2001), and Zadeh (1994), as a consortium of
different computing tools that can exploit tol-
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erance for imprecision, uncertainty, and par-
tial truth to achieve robustness, tractability, and
low cost. Its core methods are fuzzy logic, (ar-
tificial) neural networks, and evolutionary
computation (EC). It should be noted that the
role of these methods is not competitive but
synergistic and complementary. Interestingly,
the same idea is also a central issue of this
work, namely that of combining several meth-
ods of CI.

3.2. Hybrid computational intelligence

Hybrid computational intelligence is defined
by Tsakonas and Dounias (2002) as any effec-
tive combination of intelligent techniques that
performs better than or as well as simple stan-
dard intelligent techniques. In their review, the
following hybrid computational intelligence
schemes are acknowledged:

e Neural networks and fuzzy logic

e Neural networks and evolutionary
computation

e Fuzzy logic and evolutionary algorithms

e Machine learning and fuzzy logic

e Machine learning and evolutionary
algorithms

e Hybrid neural network systems

e Hybrid genetic algorithms

The first of these (neural networks and fuzzy
logic) is probably the most successful example
of hybrid CI (Tsakonas and Dounias, 2002):
another term used is neuro-fuzzy systems and
techniques. The most frequently encountered
principles of the combination of these two are
use of fuzzy functions in neural network nodes
and application of neural-like training for the
fuzzy membership functions in fuzzy systems.

It has also been pointed out (Tsakonas and
Dounias, 2002) that the increasing computa-
tion power and technology make it possible to
use increasingly complex intelligent architec-
tures. It should also be noted that the list of
methods included in CI varies from author to
author. This can be seen in another review of

hybrid soft computing systems applications by
Bonissone et al. (1999), where they include
Bayesian belief networks instead of machine
learning. In this thesis, several combinations
of CI methods as well as traditional methods
such as linear regression were used together:

e SOM and Sammon’s mapping (gradient
search)

SOM, MLP and fuzzy logic

MLP and linear regression

SOM and linear regression

SOM, MLP and traditional clustering
algorithms

However, it should be noted that hybrid meth-
ods are generally understood to work together,
either simultaneously or performing the same
function. In this sense, Yao (1999) has re-
viewed different combinations of ANNs and
evolutionary algorithms, which is a very im-
portant subtopic of hybrid CI. He concluded
that the two forms of adaptation, namely evo-
lution and learning, make the adaptation of
systems using both of these much more effec-
tive in a dynamic environment. However, as
Beliakov and Abraham (2002) reminded us,
deterministic approaches can yield near opti-
mal results much faster than EC.

3.3. Data-mining

A more practical perspective to CI can be found
under the term data-mining. It stems from an
important problem of the age, information
overflow. Humans today find themselves in a
situation where there is too much data and too
sparse information (Adriaans and Zantinge,
1996). This creates a challenge for finding
methods and tools for enriching information
from the large amounts of data. Data-mining
has been defined by Hand et al. (2001) as fol-
lows:

Data-mining is the analysis of (often large)
observational data sets to find unsuspected
relationships and to summarize the data in
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novel ways that are both understandable and
useful for the data owner.

It is usually regarded as being the key element
in a more elaborate process known as knowl-
edge discovery in databases (KDD). KDD is
linked to another important development, data
warehousing. A data warehouse is a central
store of data that has been extracted from an
operational database (Adriaans and Zantinge,
1996). The term KDD has been used by Fayyad
(1996) to denote the overall process of extract-
ing high-level knowledge from low-level data.
He presents this in detail, including data-min-
ing as part of this process. This is explained in
more detail at the beginning of Chapter 4.
However, he also points out that data-mining
and KDD are often used interchangeably.

According to Hand et al. (2001), the data-min-
ing process can be regarded as consisting of
the following steps:

1) Exploratory data analysis (EDA)

2) Descriptive modelling

3) Predictive modelling: classification and
regression

4) Discovering patterns and rules

5) Retrieval by content.

The first three steps are concerned with model
building, which is the focus of this thesis. They
are briefly introduced below, to help in under-
standing the different aspects of data analysis
and modelling. The last two, on the other hand,
are outside the scope of this thesis.

3.3.1. Exploratory data analysis

The goal of EDA is to visualize and explore
data without a clear idea of what to look for. It
has also been called data-driven hypothesis
generation (Hand et al., 2001). The basic idea
is to use the strong image processing capabili-
ties of the human being to detect novel pat-
terns in the data. The tools for EDA include
simple plotting of one or two variables, histo-
grams and box plots. However, as the dimen-
sion of the data increases, multivariate meth-

ods are needed to reduce the dimensionality,
usually to 2 dimensions. Suitable methods for
this include principal components analysis
(PCA), self-organizing maps (SOM) and
Sammon’s mapping (see Chapter 4 for detailed
discussion).

3.3.2. Descriptive modelling

In descriptive modelling some intrinsic prop-
erties of the data are uncovered by algorith-
mic techniques. The most common ways to
describe the data are density estimation and
cluster analysis.

Density estimation can basically be achieved
with two types of methods, parametric and non-
parametric (Bishop, 1995). The parametric
methods are based on using some probability
distribution such as the normal distribution.
Once the form of the model has been decided
on, the goal is then to set the parameters, based
on observed data. The best known method is
expectation maximization (EM), which is one
of the maximum-likelihood techniques
(Dempster et al., 1977). Another well-known
approach is Bayesian inference (Gelman,
2003), where the parameters are described
using a distribution set initially to some prior.
This is then converted to a posterior distribu-
tion using Bayes’ theorem, which links the
prior beliefs and measured data together.

The non-parametric methods for density esti-
mation do not assume any prior form for the
distribution function (Bishop, 1995). Histo-
grams can be considered one way of achiev-
ing the density estimation but their represen-
tation becomes awkward when the number of
dimensions grows. Other well-known ex-
amples of this class are kernel-based methods
and K-nearest-neighbours.

The SOM also describes the underlying den-
sity to some extent, but the representation is
not exact. In other words, the SOM under-
samples regions of high probability and over-
samples those of low probability (van Hulle,
2000). Algorithmic ways to respond to this
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have been suggested, but a practical way is to
apply Sammon’s mapping to the weight vec-
tors of the SOM, which is an important topic
of this thesis.

The aim of cluster analysis is to decompose or
partition data into groups where the items in
one group are as similar as possible to each
other while being as dissimilar as possible to
those in other groups (Hand et al., 2001). The
traditional methods for this include c-means
clustering (MacQueen, 1967), hierarchical
clustering (Johnson, 1967) and fuzzy c-means
clustering (Bezdek, 1981). Note that the SOM
algorithm can also be used for this purpose.
One problem often encountered here is to de-
termine the number of clusters. This is due to
the fact that most methods require the number
of clusters to be preset. Another problem is
due to difficulties in constructing a validity
criterion for the partitioning of the data
achieved. Thus, it is difficult to compare dif-
ferent methods against each other and the fi-
nal criterion is often determined by visual in-
spection. This has led to the situation where
numerous algorithms have been developed for
different kinds of data (Hand et al., 2001).

Basically, there are two kinds of clustering al-
gorithms: partition-based and agglomerative
(Hand et al., 2001). The former methods (in-
cluding c-means and fuzzy c-means clustering)
minimize or maximize the so-called score func-
tion, which is calculated using centres of the
clusters as reference points. Consequently, a
distance measure has to be defined between
input points according to some metric (e.g.
Euclidean metric). The agglomerative cluster-
ing methods (including hierarchical clustering)
are based on measures of distance between
clusters. Given the initial clustering, they merge
those clusters which are nearest to each other,
in order to reach a reduced number of clus-
ters. In this thesis, clustering methods were
applied in one of the studies (Niska et al.,
2003b) in order to split the problem space into
local domains.

3.3.3. Classification

The aim of predictive modelling is to build a
model which is able to estimate a value of (usu-
ally) one variable from other variables. In dis-
criminative classification, the model outputs a
class label stating membership of the given
sample. Well-known examples of this are near-
est neighbour classification and learning vec-
tor quantization (LVQ), the latter being a su-
pervised version the SOM algorithm. The ear-
liest formal approach to classification can be
found in Fisher (1936), who introduced the
idea of seeking a linear combination of vari-
ables that are able to discriminate between two
classes. This kind of discriminative classifica-
tion is thus based on finding decision bound-
aries between the classes.

In contrast to this, a probabilistic model for
classification outputs a probability that the
sample belongs to a certain class (Hand et al.,
2001). The objects belonging to a class are
supposed to have measurement vectors that are
distributed according to some density function.
Once the functional form and its parameters
have been estimated, the posterior probability
that a sample belongs to a certain class can be
calculated using Bayes’ theorem.

Besides the theoretical viewpoint described
above, a prescriptive framework can be cre-
ated by dividing the building of classifiers into
three approaches (Hand et al., 2001). The dis-
criminate approach tries to model the decision
boundaries directly. Examples of this approach
include perceptrons (Rosenblatt, 1958) and
Support Vector Machines (SVM) (Boser et al.,
1992). The regression approach models the
posterior class probabilities explicitly. Logis-
tic regression (Press and Wilson, 1978) and
decision trees (Breiman et al., 1984) are ex-
amples of this approach. The classifiers cre-
ated using the class-conditional approach are
usually called Bayesian, but they are not nec-
essarily Bayesian in the formal sense of pa-
rameter estimation. The main difference be-
tween these approaches is that the first two
focus on the differences between classes while
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the last one focuses on the distributions of
measurement vectors for the classes.

3.3.4. Regression

In regression the model outputs a numeric
value or values. The simplest and most widely
used approach is linear regression (Draper and
Smith, 1981), where the parameters in linear
position are estimated with the least squares
technique, for example. This is discussed in
more detail in Chapter 4.4.

One method that is important nowadays for
non-linear regression is the feed-forward neu-
ral network. It is able to learn the relationships
between input and output variables using non-
linear elements and their weights to capture
the essential features of the data. Sequential
parameter estimation, which is based on itera-
tion, is normally used for this purpose (Bishop,
1995). Multi-layer perceptron (MLP) and its
learning algorithms are described below in
Chapter 4.

Besides the problem of effective parameter
estimation with non-linear regression models,
the main concern more universally is gener-
alization, i.e. whether the constructed model
can estimate values based on data not used in
training it. Linked to this, it is also important
to use proper statistical parameters to describe
the goodness of the model as well as creating
error estimates for them. These issues are dis-
cussed in more detail in Chapter 4 and they
have also been addressed in the publications
included in this thesis.

3.3.5. Predictive modelling for time-series
data

Environmental processes are usually described
through time-series which has been measured
over some interval of time. Even though time-
series processing can be dealt with as a classi-
fication or regression problem to a large ex-

tent (Dorffner, 1996), the temporal dimension
usually requires special attention.

A time-series is a series of values of a variable
at successive times, x(1) = (x(¢)), x(¢,), x(¢,),
... (Papoulis, 2002). This means that the
samples of the variable (or data of several vari-
ables) are ordered in time. Usually the vari-
ables are sampled uniformly so that the time
interval #,—¢,_ between any two samples is the
same. In this case, we are using a so-called
implicit representation of time (Haykin, 1999).
The opposite is explicit representation, where
the sampling period can be non-uniform.

Time-series analysis and processing is a tradi-
tional and developed field of its own, having
many elements in common with the signal pro-
cessing field (Dorffner, 1996). The classical
methods include the autoregressive (AR) and
moving average (MA) models, as well as en-
hanced versions and combination of them (Box
and Jenkins, 1976). However, they are outside
the scope of this thesis.

One of the most important things to bear in
mind in time-series modelling is that what is
actually modelled is (or should be) the pro-
cess we are inspecting. Thus, the data avail-
able describe that process only in some lim-
ited way, so, knowledge about the process is
important. Operational use of time-series mod-
elling aims at producing practically usable in-
formation about the value of some variable in
the future. Thus, the words most often encoun-
tered in that context are forecasting and pre-
diction. Despite differences in definition, they
are used as synonyms in the context of time-
series modelling.

In general, time-series analysis has three goals:
forecasting (predicting), modelling, and char-
acterization (Weigend and Gershenfeld, 1994).
The aim of forecasting is to accurately predict
the short-term evolution of the system. For
example: if we know the concentration of NO,
now and what is has been during the several
past years, is it possible to forecast the con-
centration for tomorrow morning?
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On the other hand, the goal of modelling is to
find a description that accurately captures fea-
tures of the long-term behaviour of the sys-
tem. This could be exemplified by the follow-
ing procedure: using the least squares tech-
nique and sine and cosine functions, one can
fit the NO, data of the past several years to
show the seasonal, weekly and daily variations
in the time-series due to meteorological con-
ditions and human activities.

Note that the goals of forecasting and model-
ling are not necessarily identical. Thus, find-
ing governing equations with proper long-term
properties may not be the most reliable way to
determine parameters for good short-term fore-
casts. Correspondingly, a model that has good
short-term properties may have incorrect long-
term ones.

The third part of time-series analysis is time
series characterization. This attempts, with
little or no a priori knowledge, to determine
fundamental properties such as degrees of free-
dom of a system or the amount of randomness.

3.4. Learning and understanding

One viewpoint of modelling using CI meth-
ods is to consider strong models and weak
models (Weigend and Gershenfeld, 1994).
Thus, the concepts of learning and understand-
ing can also be sharpened and given a practi-
cal meaning for modelling different kinds of
phenomena.

Strong models are based on strong assumptions
about the phenomenon inspected. The process
is thus usually described with few equations
(such as partial differential equations) with few
parameters. Such models are able to explain
the phenomenon and are thus related to under-
standing.

On the other hand, weak models make only a
few domain-specific assumptions, which leads
to more parameters. Thus, clear interpretation
of the phenomenon is difficult because the
parameter set learned is not usually connected

directly to the phenomenon inspected. In that
case we can be learning but not understand-
ing.

The neural network-based models used exten-
sively in this work are weak models and thus
include a lot of tuneable parameters. This can
cause another side effect, memorization
(Weigend and Gershenfeld, 1994). In practise
this means that the training examples are
learned by heart. This is one form of
overfitting, where the model captures noise in
addition to the real function to be learned.
Overfitting is thus possible if the model is too
complex, i.e. it has a lot of tuneable param-
eters. On the other hand, if the model is too
simple it cannot capture all the characteristics
of the target function.

Therefore, the real goal of learning is gener-
alization (Bishop, 1995). In practise this means
that the model can be successfully applied to
new data. Thus, the following undesirable
chain action is of most concern when trying to
make good forecast models for time-series
data: weak models => many parameters =>
overfitting => no generalization. The tradi-
tional way to avoid overfitting with neural net-
works is early stopping, where the original data
are usually split into the three datasets of train-
ing, testing and validating. The training set is
used to construct the model, whereas the test-
ing set sets the limit for stopping the training
before overfitting occurs. Finally, the valida-
tion set is used to check the generalization
properties of the model. However, during re-
cent years, regularization has been used in-
creasingly for the same purpose. It is covered
in more detail in Chapter 4.11.
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4. METHODS FOR
INTELLIGENT DATA
PROCESSING

The data processing chain in knowledge dis-
covery (Fayyad, 1996) consists of several
steps, illustrated in Figure 3. The process is
initiated by selecting the data from the data-
base. Cleaned data are achieved by pre-pro-
cessing the target data using several optional
methods, which are described below. The
cleaned data are then prepared for the data-
mining step by transforming the variables or
data-rows into more suitable scales of repre-
sentation. The data can also be reduced to
fewer variables using feature-selection tech-
niques. The data-mining stage can then utilize

has led to similarities between the methods
parts in the articles.

4.1. Pre-processing the data

The target data are usually given as a data
matrix X, consisting of data rows and columns.
The columns correspond to measurement vari-
ables and are also called attributes or feature
values. The rows correspond to units of mea-
surement (e.g. gene or study subject) or to dif-
ferent points of time. They are also called
samples or data lines. The format of the data
matrix is described in Equation 1.

P
Cl methods as well as traditional methods such X X x x

. . 2 21 2 2p
as linear regression. The stages before data- X = = M
mining are briefly described below, followed
by a description of the methods in the data- X, X, X, X,

mining stage used in this thesis. Note that the
articles in this thesis contain descriptions of
the corresponding methods used. In most cases,
however, the methods are described in general
terms, because it was thought that the editors
and readers would prefer to have results of the
discipline itself rather than formal mathemati-
cal descriptions. Moreover, the journals se-
lected for publishing the articles are in differ-
ent disciplines and it was thus necessary to
provide some details of the methods, and this

where X is the data matrix, » is the number of
samples and p is the number of variables. Miss-
ing or erroneous data complicate the model-
ling of large data sets, because most data pro-
cessing applications require complete data
matrices before analysis (Bishop, 1995). For
this reason, imputation techniques are widely
needed but it can be very difficult to select a
suitable imputation method and using wrong

Transfor-
Data Pre- mation / Data- Evaluation /
selection processing reduction mining Conclusions
Database Target Cleaned Trans- Patterns/ Know-
data data formed Model ledge
data

Figure 3. The data processing chain in knowledge discovery. Note that for simplification any
possible loopbacks in the chain have been omitted (modified from Fayyad, 1996).
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methods will lead to defective interpretations.
The problem of missing data in most environ-
mental and bioinformatics data sets is thus
complicated by the large amount of missing
values caused by measurement errors, break-
downs and human mistakes.

Tens of different types of imputing techniques
have been developed since 1980 (Little and
Rubin, 1987; Schafer, 1997). The two main
ways to handle missing data are case deletion
and imputing. In case deletion, all incomplete
rows (cases) of the data matrix are discarded,
whereas in imputing they are filled in by some
technique. One commonly used method for
imputing missing data is to fill in the missing
values by setting them to the mean value or
other statistical parameter. However, these
simple techniques are not recommended since
using them can severely alter the data distri-
bution (Ghahramani and Jordan, 1994). More
advanced imputing techniques are based on
history data or a model such as density esti-
mation, regression or neural networks. This is
discussed in more detail in Kolehmainen et al.
(2002) and Junninen et al. (2002) in the con-
text of air quality data.

4.2. Data transformation and
dimensionality reduction

Data transformations are usually needed be-
fore applying the methods themselves, for the
following reasons:

® The magnitudes of the variables differ so
the variables with largest numeric values
tend to dominate the learning process.

e The variable is cyclic, so it includes
discontinuities.

® The data distribution does not enable the
algorithm to recover important features.

® There are outliers, which suppress
important features.

Note that by applying the transformations, dif-
ferent aspects of the data can be recovered.
The transformations can be applied to differ-

ent pieces of the data. The most often encoun-
tered are:

e Transformation of one value only (e.g.
logarithmic transformation and
transformations using sine and cosine
functions for handling cyclic variables).

e Transformation of one variable
(column), usually based on statistical
properties of the variable such as min,
max, mean and variance.

e Transformation of one vector (row),
usually based on the length of the vector
or on its statistical properties.

® More advanced transformations such as
data whitening, taking the correlations of
the variables also into account.

The most often encountered types of transfor-
mations are the ones for one variable or for
one vector. In the first case, either of the fol-
lowing two transformations is usually applied.
In the equalization of variables, each column
is scaled linearly so that its minimum is zero
and maximum is one. It is defined as
c, —c

! i min
= e @
Cmax ~ Crmin

where ¢, is the original value, ¢ is the trans-
formed value, ¢ is the minimum element of
the column vector ¢ and ¢, ,_is the maximum
element of the column vector c. Note that it is
assumed here thatc . # c_ . Equalization of
variables is used to transform the original val-
ues of several variables into a comparable
range, thus preventing any from dominating
the learning process. It keeps all the values in
arange where they have an effect on learning.
Therefore, if there are bad outliers, variance
scaling of variables should be used instead. It
is defined as follows:

¢, = 3)
¢
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where ¢ is the mean of the values in vector ¢
and c_ is the standard deviation of the values
in it. Note that it is assumed here that ¢_ = 0.
Variance scaling of a variable is thus an im-
portant tool for diminishing the effect of outli-
ers in the data while also equalizing the effect
of all variables transformed. However, it is
sometimes necessary to suppress the magni-
tude of individual variables and focus on the
relative values of variables in each data vector
(row). This can be achieved by normalizing
each row of data, i.e. the length of the vector
is scaled to one. It is defined as:

, 7
r,=o
1
el
where 7, is an original element of the vector r,

r, is the transformed element and ||r|| is length
of vector r.

“

It is often the case that some of the measured
data are not useful for the information process-
ing being carried out: some of them can even
be misleading. This can happen basically in
two ways. First, some variables or sensors are
not needed at all. On the other hand, some of
the feature vectors may be outliers so that they
are not part of any cluster formed by the rest
of the vectors. Feature selection and feature
extraction aim at reducing the dimensionality
of the data in order to solve the previously
mentioned problems (Bishop, 1995). It can be
achieved by several algorithms based on mul-
tivariate statistical analysis or using the con-
structed model itself iteratively with GA, for
example.

4.3. Metrics

The metric used for comparing two vectors x,
and x; has a crucial effect on the learning algo-
rithm due to its ability to account for different
aspects of the data. Most of the time, Euclid-
ean distance metric can be used:

dewe (x,.%,) = J(x, —x )" (x, -x)) Q)

On other occasions other alternatives must be
considered (Diday and Simon, 1980). Note
also that the transformations used in the pre-
processing stage can have the same or similar
effects as changing the metric used. Euclidean
distance metric assumes some commensurabil-
ity between the variables and this must usu-
ally be assured by pre-processing using some
suitable transformation, typically by variance
scaling. Note that Euclidean distance metric
is a special case of Minkowski L, metric with
A =2. Correspondingly, other commonly used
metric is city-block or Manhattan distance
namely L,.

Pearson’s product moment correlation coeffi-
cient (Diday and Simon, 1980) can be used
instead of Euclidean metric. It is a measure of
the linear association between two variables.
Given vectors x, and X, defined as above, it
can be defined as

S (0 50y —3,) 1 p

chc(szXj) =4

Q)

0,0,

where X, is the mean and o, the standard de-
viation of the values in the vector x; and p is
the number of elements in the vector.

Moreover, in order to compensate for differ-
ent variances of the variables and for correla-
tions between variables, the Mahalanobis dis-
tance (Diday and Simon, 1980) can be used. It
is based on using the covariance matrix X as
part of the equation for calculating the distance
between two vectors:

dMH(Xi’Xj)z\/(Xi _XJ)TE_l(Xi _Xj) (7)

4.4. Linear regression

Linear regression aims at fitting an equation
to some data (Berthouex and Brown, 2002).
An example of such equation is as follows:

z=a+bxtcex*tdeyte

®
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where z is the dependent variable, x and y are
independent variables, a, b, ¢ and d are the
parameters to be estimated and e is the residual
error. Thus, even though there are non-linear
terms (x? and xy) their values can be calcu-
lated from measurements and therefore they
pose no problem in fitting. In contrast, the pa-
rameters to be estimated must be in linear po-
sitions and thus justify the term “linear regres-
sion”. Note that regression in general is also
called curve fitting or parameter estimation.

Another example, used in one of the author’s
articles (Kolehmainen et al., 2001), fits a ba-
sic level, line (trend) and several sine and co-
sine functions of different multifolds to the sig-
nal consisting of NO, concentration levels
measured with an interval of one hour:

n
z, =Y (a, Snkayt + b, coskat)
k=1

q
+Y et +e, ©)
/=0

where z, is NO, concentration level, 7 is maxi-
mum multifold of the sine and cosine terms, ¢
is maximum multifold of curve fitting, @, is
basic frequency (e.g. D, = 2 *m /(365 *24),
since the resolution of measurement is 1 hour),
a,, b and c, are coefficients to be resolved by
fitting and ¢ is time.

The most commonly used approach in estimat-
ing the parameters is the method of least
squares (LS). It is based on minimizing the sum
of squared residuals:

S:i(el)z =i(zr _Er)z

where z, areAthe measured values of » measure-
ments and Z, are the computed values from the
model. Note that in order for the parameter
estimates to be unbiased, the residual errors
should be random, have a zero mean and be
independent with constant variance. Conse-
quently, this leads to normal equations, which
have an algebraic solution. However, as the
number of parameters increases, it is custom-

(10)

ary to use matrix algebra in handling the data
and the parameters. Using matrix notation, the
model can be written as follows:

z=Hp+e (1D

where z includes the values for dependent vari-
able, H includes the independent variables, B
includes the parameters and e includes the re-
sidual errors. Consequently, the least squares
estimate for the parameters is (Berthouex and
Brown, 2002):

B=(H"H)'H'z (12)
For non-linear equations no algebraic solution
exists and parameter estimation is usually car-
ried out using iterative methods such as Gauss-
Newton iteration (Berthouex and Brown,
2002).

4.5. Self-organizing map
4.5.1. The basic SOM

The self-organizing map (SOM) is one of the
best known unsupervised learning methods
(Kohonen, 1997). It can be defined as follows.

Let X be the data matrix of p measured vari-
ables for n samples as defined in Equation 1.
The self-organizing map consists of M neu-
rons organized as a 2-dimensional lattice, each
having in its weight vector, w_= (w,,
W, o, .,wmp), (m=1,...,M) as many weights as
there are measured variables. The weight vec-
tors of the SOM are first initialized to random
values. With each vector x, the winning neu-
ron (Best-Matching Unit, BMU) is first found.
The Best-Matching Unit is the neuron which
is closest, or most similar, to the input vector.
The Best-Matching Unit for the ith input vec-
tor is found by comparing the input vector x,
and weight vectors w,_of M neurons by the
Euclidean distance metric defined in Equation
5.
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The Best Matching Unit (BMU) is thus the
neuron being at the smallest Euclidean distance
from the input vector:

(13)

c(x,, W) =argmin
J

X; —W]H

where W includes the weight vectors of the
SOM. The weights of the BMU and the
neighbouring neurons (according to the
neighbourhood function) are corrected towards
the input vector using equation 14 (update
rule).

W+ =w, (O)+h, O -w, (0] (14
where ¢ is a counter for iterations, ¢ is the in-
dex for the BMU and m is the index for the
neuron to be updated. The neighbourhood
function can be defined as follows for a
Gaussian function (Kohonen, 1997):

2
r. _rmH

i (1) = () XP(=" 0

) (15)
where r_and r, are the location vectors for the
corresponding nodes, o(f) defines the width of
the kernel and «(f) is a learning rate factor.
The learning rate factor and kernel width de-
crease monotonically towards the end of learn-
ing as a function of time. Note that in practical
implementations of up to hundreds of neurons,
the selection of these parameters is not crucial
(Kohonen, 1997). Also, a simple
neighbourhood function consisting of just a set
of neurons around the BMU can be used in
those cases instead of the Gaussian function.

However, the neighbourhood radius must be
large enough at the beginning of the learning
process to enable global ordering to take place.
A value larger than half of the radius of the
network is suggested (Kohonen, 1997). Addi-
tionally, it is suggested as a general procedure
that the learning is split into two phases, with
the first consisting of 1000 steps. During this
phase, both the neighbourhood radius and
learning rate factor shrink, with the latter start-

ing from a value near 1. During the second
phase, fine adjustment takes place with a learn-
ing rate factor of the order 0.02 or less, and
the neighbourhood consisting only of the near-
est neighbours of the BMU. The convergence
typically needs a step number of at least 500
times the number of neurons in the network.

To summarize, the SOM algorithm proceeds
as follows:

1) Find the BMU for one input vector
according to the minimum Euclidean
distance.

2) Move the weight vector of the BMU
towards that input vector, using the
update rule.

3) Move the weight vectors of
neighbouring neurons (according to the
neighbourhood function) towards that
input vector, using the update rule.

4) Repeat steps 1-3 for the next input
vector until all input vectors have been
used.

5) Repeat steps 1-4 until convergence.

6) Find the final BMU (the neuron which
the individual belongs to) for each input
vector according to the Euclidean
distance.

4.5.2. Examples of the SOM

Most CI methods work in p-dimensional space,
which consists of the measured variables in the
data. Thus, one variable (such as wind speed)
represents one dimension. As the dimension-
ality (number of variables in the data) grows
beyond three up to tens or hundreds of vari-
ables, it is more appropriate to think of each
data row (all the variables measured at the same
time, for example) as a vector of p components.
Figure 4 shows how a gene expression data
set consisting of two time points is transformed
into vectors in two dimensions, and how the
weight vectors of the self-organizing map sta-
bilize from originally random locations to rep-
resent the density of the data. Consequently,
the mental action needed for understanding the
working of most CI methods is to be able to
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imagine the data as vectors of this kind but
now in p dimensions instead of the normal two
or three.

The basic idea behind the SOM algorithm is
that the weight vectors of neurons gradually,
during the learning process, come to represent
anumber of original measurement vectors (see
Figure 5). They can then be used as a basis of
further analysis more easily than the original
measurement vectors. This is because of the
reduced number of data. Also, the weight vec-
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tors represent the centre-of-mass points of the
clusters of measurement data and they can thus
be used to find the grouping of the data.

An example of a SOM is illustrated in Figure
6, where the study subjects (1650 participants)
of the Kuopio Ischemic Heart Disease Risk
Factor Study (KIHD) were grouped accord-
ing to 25 biochemical and physiological vari-
ables. The bar graph represents six central vari-
ables of the study and it can be seen that their
distribution on the SOM map varies consider-
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Figure 4. A simple representation of a gene-expression profile with two time points as coordi-
nate vectors. (a) Eight genes are labelled A-H. The bar graphs correspond to expression levels
measured at time points of 1 and 8 hours. (b) The expression levels have been transformed into
vectors. A vector (line) which has a length and a direction now represents each gene. (c¢) The
weight vectors of the SOM (bold lines numbered 1, 2 and 3) are first assigned to random values.
(d) The weight vectors are moved towards the input vectors using an iteration process. The weight
vectors stabilize themselves into configurations where they each represent a group of the origi-
nal measured vectors, i.e. gene profiles A-H (modified from an original idea of Garry Wong,

University of Kuopio).
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ably. Note especially, how the SOM is able to
create a continuous mapping where different
combinations of high and low values of the
variables presented have been spread smoothly
around the map.

4.5.3. The tree-structured SOM

A variation of the SOM, the tree-structured
SOM, has also been constructed
(Koikkalainen, 1994). The software implemen-
tation consists of several SOMs organized hi-
erarchically in a pyramid-like fashion in sev-
eral layers. The number of neurons at a lower
level is four times the number at the previous
level. However, visual inspection of the mea-
surement data is directed to one level at a time
and it can thus be used for data exploration
similarly to a “standard” SOM.

The learning rule of the TS-SOM has been
modified and is described in Equation 16.

w (t+1)=w, (6)+a)x, —w,, )] (16)
Thus, its neighbourhood function has been re-
duced to a fixed form where the neighbourhood
is always defined to be the four adjacent neu-
rons of the BMU. This is possible since the
role of the altering neighbourhood radius is
handled by the previous (more coarse) levels
of the pyramid-like structure of several SOMs.
This structure is illustrated in Figure 7.
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As found by Koikkalainen (1994), there is no
difference in the topological ordering of a well
trained “standard” SOM and TS-SOM. The
vector quantization performance (i.e. how well
the weights of the network represent the origi-
nal data), however, is worse to some degree
with the TS-SOM, but this can be compensated
for with the full search for assigning the data
to the neurons after training. The discriminant
surfaces of the TS-SOM are convexes that are
similar to the “standard” SOM and, again, the
full search can be applied after training to pro-
duce true Voronoi convexes, i.e. areas in the
input space for which the weight vector is the
BMU.

4.6. Sammons’s mapping

Sammon’s mapping (Sammon Jr, 1969), is a
non-linear mapping algorithm, which is closely
related to the metric version of multi-dimen-
sional scaling (MDS) (Torgerson, 1952). The
aim of the algorithm is to represent points of
p-dimensional space in 2-dimensions. The al-
gorithm tries to find the locations in the 2-di-
mensional target space so that the conserva-
tion of the original structure of the measure-
ment vectors in p-dimensional space is maxi-
mized. The error of the structure conservation
is measured as follows:

1 n-1 n (dz/ — d;j)z
g idg =1 j=i+1 dU

i=1 j=i+1

E=

a7

Intermediate weights Stabilized weights

Figure 5. The learning procedure of the self-organizing map. Initially randomly distributed weight
vectors (marked by +) are driven into a stable configuration defined by the input sample vectors
(marked by o) (modified from Kolehmainen et al., 2003).
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z

Figure 6. Self-organizing map with bar graphs showing the distribution of the central physi-
ological variables: blood glucose (1 bar), serum insulin (2" bar), triglycerides (3" bar), HDL
cholesterol (4" bar), systolic blood pressure (5" bar) and waist-to-hip ratio (6" bar) (modified
from Valkonen et al., 2002).

Figure 7. The pyramid-like structure of sev-
eral SOMs in the TS-SOM implementation.

Each node represents one neuron so that the
SOM in level 1 consists of 4 neurons and that
in level 2 consists of 16 neurons. Addition-

i

] S ally, there is level 0, which consists of only
e G L one neuron (modified from the NDA user’s
guide).
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where 7 is the number of data points, d, is the
(Euclidean) distance between two points x, and
X, in the original space, and a’,.'j is the (Euclid-
ean) distance between the corresponding points
x, and X, in the lower dimensional target
space. Minimization is usually based on
pseudo-Newton minimization (Becker and Le
Cun, 1989), which is also called steepest de-
scent in some publications (e.g. Kohonen,
1997). The positions in the target space are
thus updated as follows:

OE (1)1 9x,, (1)

, 1: ’ - 192 7/ 1 72|
D = O s, 0]

(18)

where x;p is the pth coordinate of the position
of the point in the target space. The factor «
must be set experimentally and has an effect
on the convergence of the algorithm. A value
of 0.3-0.4 is usually suggested for it even
though this value is not suitable for all data
sets (de Ridder and Duin, 1997). The problem
with the update rule is the second derivative
in areas of low curvature with a small value of
the derivative. Thus, other minimization tech-
niques, such as normal gradient descent, could
be used (de Ridder and Duin, 1997).

Sammon’s mapping is able to represent the
relative distances of vectors in a measurement
space and is thus useful in determining the
shape of clusters and the relative distances
between them. However, due to the normal-
ization of distance preservation errors, small
errors are slightly emphasized (Kaski, 1997).
Even though the SOM and Sammon’s mapping
work somewhat similarly, the numerical cal-
culation of the latter is more time consuming.
As this can be a problem with a massive data
set, it is of benefit to combine these two algo-
rithms. This is discussed in more detail in
Chapter 5.

The initialization of Sammon’s mapping has
been studied by Lerner et al. (2000). They used
a neural network implementation of the algo-
rithm, as explained in Chapter 5.2. The results
of their study showed that principal compo-
nents (PCs) based initialization of the algo-

rithm can yield shorter training period, lower
mapping error and higher classification accu-
racy. However, in the implementation used in
this thesis, the starting point of Sammon’s
mapping algorithm is the weights of the SOM,
which essentially results in similar initializa-
tion as in Lerner et al. (2000).

4.7. U-matrix representation

The U-matrix representation (Ultsch and
Siemon, 1990) is a way of describing the rela-
tive distances between the neurons in a SOM
map. It is calculated by taking the mean of the
distances between the p-dimensional weight
vectors of neighbouring neurons of the target
neuron w, as follows:

1 N
ot (W) :N,Z;HW‘ -w | (19)

5 J€ Sw
where N is the number of nearest neighbour
neurons for w and S is the set of nearest
neighbour neurons of w.

The result of the calculation is a number as-
signed to each neuron on the map. These num-
bers can then be used as grey level values or
as a z-axis dimension in visualization, for ex-
ample. Use of the U-matrix is illustrated in Fig-
ure 8, where different phases of a bio-process
have been presented using the SOM and U-
matrix representation.

4.8. Fuzzy logic

Fuzzy logic and fuzzy set theory are a math-
ematical way to handle uncertainty
(Zimmermann, 1991). The basic difference
between fuzzy logic and ordinary logic is based
on taking into account more truth values than
just ‘true’ or ‘false’. This can be understood as
a kind of grey-scale property instead of using
just black and white. The background for for-
mally handling this comes from the basic prop-
erty of fuzzy sets. Fuzzy sets include their ele-
ments wholly or just partially. This makes it
possible to model the uncertainty and vague-
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ness that is confronted in real life (Niemi,
1996). It should also be noted that fuzziness
and probability are different concepts even
though they sometimes seem similar and are
often confused with each other.

Formally, a fuzzy set is defined as

A ={x,15(x))l xe S} (20)

where x is an object, S is a set, and Uz isa
membership function (see also Figure 10),
which for a normal fuzzy set maps object x in
set S into interval [0,1]:

i :S—[01] @21
The use of fuzzy logic in practical implemen-
tations can easily be understood in process
control. The basic structure of such a fuzzy
system is illustrated in Figure 9. The
fuzzification module takes the crisp (non-
fuzzy) values measured from the process and
transforms them into fuzzy values. The
rulebase module includes the knowledge that
is needed to handle the process. This is in the

form of if-then rules and is usually formed from
the expertise of a human operator. The infer-
ence engine takes the fuzzified input values,
and calculates the output using a rulebase. This
output is then transformed back to a crisp value
that is used to initiate a control action to the
process.

The fuzzification process is based on the two
concepts of linguistic variable and member-
ship function. A linguistic variable tries to
model terms used in everyday language. It is
further divided into adjectives that are de-
scribed by membership functions. This struc-
ture is illustrated in Figure 10. The linguistic
variable presented here as an example is “tem-
perature”. It consists of the adjectives “cold”,
“cool”, “warm”, “hot” and “very hot”. The
membership functions give the degree of mem-
bership of each adjective in the base set.

Fuzzy system applications can be found in a
variety of different areas ranging from trans-
portation and industrial applications to those
in consumer electronics (Bonissone et al.,
1999). In these applications, fuzzy logic is
normally used as an expert system, implement-
ing human operators or process engineer’s

Figure 8. Phases of a bio-process
illustrated using the SOM and U-
matrix representation. The regions
numbered 1-5 each represent one
process phase where the measure-
ment device signal varies less than
between the phases. Thus, the
“valleys” of the U-matrix represen-
tation are coherent areas of the
SOM where the neighboring neu-
rons are similar in their content
(modified from Kolehmainen et
al.. 2003).
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expertise. This is expressed in the form of if-
then rules.

If there are a large number of input variables,
it is not always feasible to create membership
functions for each input variable separately.
Instead, the input space can first be trans-
formed into a low dimensional space (Jang et
al., 1997). In this work the transformation was
accomplished by calculating the Euclidean dis-
tance between an input vector and the refer-
ence vectors forming the kernel of the set.
Thus, the use of fuzzy logic was in the form of
fuzzy group membership evaluation. This is
illustrated in Figure 11. The kernels of the sets
are areas of the input space where a certain
phenomenon was supposed to be true (e.g. an
air quality episode where the pollutant con-
centrations are above certain limit). For a de-
tailed example of this, see Kolehmainen et al.
(2000) (included in this thesis).

4.9. C-means and fuzzy c-means
clustering

C-means (MacQueen, 1967) is an algorithm
for partitioning (clustering) » data points into
C disjoint subsets S, containing n, data points
so as to minimize the sum-of-squares criterion:

C
E=X3x-u @2)
ffffff

|
|
|
|
|
nonfuzzy
|
|
|
|
|
|
|

where x, is a vector representing the ith data
point and u, is the centroid of the data points
in SJ. The algorithm consists of a simple re-
estimation procedure, as follows (Bishop,
1995). First, the data points are assigned at
random to the C sets. Then the centroid is com-
puted for each set. These two steps are alter-
nated until a stopping criterion is met, i.e.,
when there is no further change in the assign-
ment of the data points. An example of the re-
sult of applying the c-means algorithm to air
quality data is shown in Figure 12. Note that
the c-means algorithm is also called k-means
in some sources. However, the term c-means
underlines the connection between this algo-
rithm and fuzzy c-means clustering (see be-
low), which is a fuzzy extension of c-means
clustering.

Fuzzy c-means (FCM) is a data clustering tech-
nique wherein each data point belongs to a
cluster to some degree specified by a mem-
bership grade. This technique was originally
introduced by Bezdek (1981) as an improve-
ment on earlier clustering methods such as c-
means. The algorithm is initiated by assigning
the cluster centres to random locations. The
number of clusters and the degree of fuzziness
are decided by the user. Next, the membership
values for each data point to each of the clus-
ter centres are calculated. New locations for
the cluster centres are then calculated as a mean

fuzzy control

nonfuzzy

process output and status

Figure 9. General structure of fuzzy system (modified from Fool & Fox, 1999).
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Figure 10. A linguistic variable and membership functions (modified from Niemi, 1996).

Group Membership
1

Figure 11. A general illustration of multi-dimensional kernels and their membership functions.
The kernels can be seen as plateaus, and the membership value of each data vector diminishes as
its distance from the kernel grows. Note how the different membership functions can overlap
with each other (modified from the NDA user’s guide).

value of data points, weighting it with the mem-
bership values. These two steps are iterated
until the change of partition is under a preset
value. The algorithm thus corresponds to the
minimization of the following problem
(Zimmermann, 1991):

-

i=l k=1

n

(luzk )m ka - V1

2

(23)
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v, = n Z(ﬂlk) Xk;m>1

k=1
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k=1

where 1, is the membership value of data point
k to cluster centre i, x, is a data point, v, is a
cluster centre, C is the number of clusters, m
is the degree of fuzziness, and » is the number
of data points.

24

Measuring the goodness of the clustering
achieved is essential for at least two reasons:
to permit the selection of the right number of
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clusters, and the comparison of different mod-
els. For c-means clustering, the Davies-
Bouldin index (Davies and Bouldin, 1979) can
be used. It is calculated according to the fol-
lowing equation:

< s, +s
¢ ; l#k{ dkl }

where s, is the within-cluster distance for clus-
ter &, and dkl is the between cluster distance
for clusters k£ and /. For fuzzy c-means cluster-
ing, the PC index (Bezdek, 1981) can be used.
It is defined as follows:

(25)

n

PC=23S (u, (x))

(==

(26)

where /1, is the membership function for clus-
ter j.

Different indexes are used for these two clus-
tering algorithms due to their different con-
struction, i.e. in c-means clustering a vector
belongs to only one cluster, whereas in fuzzy
clustering all the vectors belong to all clusters

according to some membership value. Conse-
quently, it is not possible to compare c-means
and fuzzy c-means clustering directly, but it
is, however, possible indirectly if some model
is based on the clustering and the goodness of
the model is used instead. An example of this
can be found in one study of this thesis (Niska
et al., 2003b).

4.10. Neurocomputing

We already saw an example of an artificial
neural network in the SOM algorithm. It pro-
vides one way of neurocomputing, which is a
new way of computing that does not require
constructing algorithms or explicit rules. In
principle, it is a fundamentally different ap-
proach to information processing and the first
alternative to programmed computing. Neural
networks are the primary information process-
ing structures used in neurocomputing. The
processing capabilities are developed by ex-
posing the neural network to an information
environment, in contrast to explicit program-
ming (Hecht-Nielsen, 1991).

ool
A 4
EEl o]
A cd

& Ch

Figure 12. Example of c-means clustering. The data consist of 43 air quality variables measured
over one year in Kuopio, Finland, clustered into six clusters named cl-c6. Note that the 43-
dimensional cluster structure was reduced to a 2-dimensional surface using Sammon’s mapping

in order visualize it (unpublished results).
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4.10.1. The multi-layer perceptron

Multi-layer perceptrons (MLP), which are one
type of feed-forward neural networks, consist
of processing elements and connections
(Haykin, 1999). Processing elements are usu-
ally called neurons, and are arranged as lay-
ers. There are three kinds of layers: input lay-
ers, hidden layers and output layers (see Fig-
ure 13). The input layer serves as a buffer that
distributes the input signals to the hidden layer.
Each unit in the hidden layer sums its input,
handles it with a transfer function and distrib-
utes the result to the next layer, which is usu-
ally the output layer. The units in the output
layer compute their output similarly. Note also
that there can be more than one hidden layer.
The connections have weights associated to
them, which are adjusted during learning us-
ing a learning rule (e.g. Equation 33) which
states the adjustments of the weights to be done
at that instant.

An introduction and overview of MLP appli-
cations in the atmospheric sciences can be
found in Gardner and Dorling (1998).

4.10.2. Training the MLP

The most common supervised learning algo-
rithm is the back-propagation (BP) algorithm,
also called the generalized (Widrow-Hoff)
delta rule (Haykin, 1999). Firstly, the error of
the network is defined as follows:

€ = HYI _dzH 27
where, y, is the network output with input / and
d, is the corresponding desired network out-
put.

The performance index (error function to be
minimized) of the MLP network then can be
written as follows (Hagan and Menhaj, 1994):

E= ieﬁ(w) (28)

where n is the number of data input rows, vec-
tor w contains the weights and biases of the
network, and e¢(w) contains the error of the
network for input row /. By partial differentia-
tion of the performance index in respect of the
weights and biases we get Equation 29:

E de,(w)
-V ge,(w)
ow 12:1’ e (W) ow

. 29)

m m

The corresponding Jacobian matrix contains
the first derivatives of these network errors
with respect to the weights and biases, as fol-
lows:

[9a 9 Oa |
ow, ow, owy
J=|ow, ow, ow, (30)
de, Do, 2,
[ow, ow,  Owy |

where N is the number of weights and biases
in the network. Thus, by denoting e = [e,,
e,,...€ |"and by J the m:th column of the Ja-
cobian matrix we get Equation 31:

OE ety .
ow,,

(€2))

Consequently, omitting the constant factor 2,
the gradient (vector giving the steepest descent
of'the error) of the performance function E can

Output layer
. —
Hidden layer

Imput layer

Figure 13. The principle of the MLP network
(modified from Pham, 1995).
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be calculated (Hagan and Menhaj, 1994) us-
ing Equation 32.

g=JTe (32)
Using the equations above, the back-propaga-
tion algorithm updates the current weights as
follows, in Equation 33:

w(t+1) = w(r) — ot)g() (33)
where a(t) is a learning rate factor, w(t) is a
vector of current weights and biases, g(t)is the
current gradient for the weights and biases, and
t is a counter for iterations.

To summarize the above, the back-propaga-
tion algorithm works in two phases, with the
first consisting of evaluating the derivatives of
the error function in respect to the weights and
biases (Bishop, 1995). In the second phase,
the adjustments to the weights are calculated
using the derivates. The BP algorithm solves
the credit assignment problem by propagating
the errors backwards in the network. This is
possible because the sum-of-squares error
function (Equation 28) is a differentiable func-
tion of the network outputs, and therefore the
error itself is a differentiable function of the
network weights (Bishop, 1995).

A major problem with the BP algorithm is that
the suitable learning rate and number of nodes
in the hidden layer(s) must be determined ex-
perimentally. Other issues that have been ad-
dressed with a number of variations of BP are
poor generalization, slow learning, and local
minima (Tsaptsinos, 1995). To overcome these
problems, enhanced versions of the BP algo-
rithm have been developed. The simplest ones
are based on adding a momentum term to the
steepest descent learning rule, which then uses
the previous value of the gradient to guide the
search (Haykin, 1999). Another method is
based on an adaptive learning rate for differ-
ent parts of the network. Both of these meth-

ods try to avoid local minima, which can slow
down the learning rate.

More enhanced methods are based on numeri-
cal optimization (Haykin, 1999). They usually
utilize Hessian matrices, where the Hessian
matrix contains the second derivatives of the
network errors with respect to the weights and
biases. In the conjugate gradient algorithms
(Charalambous, 1992), a search is performed
along conjugate directions, which produces
generally faster convergence than steepest de-
scent directions. Each of the conjugate gradi-
ent algorithms requires a line search at each
iteration, which is computationally expensive
since it requires that the network response to
all training inputs be computed several times
for each search. The scaled conjugate gradi-
ent algorithm (SCG), developed by Moller
(1993), was designed to avoid the time-con-
suming line search. Newton’s method is an al-
ternative to the conjugate gradient methods for
fast optimization (Battiti, 1992), as it often
converges faster than conjugate gradient meth-
ods. Unfortunately, it is complex and expen-
sive to compute the Hessian matrix for feed-
forward neural networks. A class of algorithms
based on Newton’s method, called quasi-New-
ton (or secant) methods, have been developed
which do not require the calculation of second
derivatives.

The Levenberg-Marquardt (LM) algorithm
(Hagan and Menhaj, 1994), used in the com-
prising works of this thesis, was also designed
to approach a second-order training speed
without requiring computation of the Hessian
matrix. The Levenberg-Marquardt algorithm
uses an approximation to the Hessian matrix
in the following Newton-like update shown in
Equation 34:

w(t+1) =w(t)—[J* T+ ul] I e(t) (34)
where s a scalar and I is the identity matrix.
The parameter y is multiplied by some factor
S when a step would increase the network per-
formance index and divided by it when a step
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decreases the performance index. Conse-
quently, with low g, the LM becomes Gauss-
Newton, and with high « it becomes steepest
descent with a step 1/ Suitable starting point
values could be ¢ = 0.01 and =10, as sug-
gested by Hagan and Menhaj (1994). Thus, the
LM algorithm can be considered as a model-
trust modification of the Gauss-Newton algo-
rithm (Battiti, 1992).

4.10.3. Other types of neural networks

Radial-Basis Function Networks (RBFN) are
based on Cover’s theorem (Cover, 1965), ac-
cording to which a pattern-recognition prob-
lem cast into a high dimensional space is more
likely to be linearly separable. RBFNs have
three layers: input layer, hidden layer with non-
linear functions, and linear output layer. The
non-linear hidden layer differs from the MLP
in using radial basis functions not used with
the MLP. Despite the differences between the
MLP and RBFN, it is always possible to find a
MLP capable of mimicking the corresponding
RBFN and vice versa (Haykin, 1999).

A standard way of utilizing past values with
neural networks is to supply them as inputs to
the network, as with the MLP. In contrast, re-
current neural networks (RNN) have connec-
tions from output or hidden layers to the pre-
vious ones. This creates a context memory for
the network, which helps it to distinguish be-
tween different operating conditions. Several
authors have claimed that RNNs are superior
to standard ones in time-series processing, for
example Gan (2002), who argues that there is
a relationship between recurrent and regular-
ized neuro-fuzzy networks. Ulbricht (1994)
based his judgment on real-world applications
using multi-recurrent networks.

Dorftner (1996) presented an overview of dif-
ferent neural network types for time-series pro-
cessing, identifying the following RNN types:

e Jordan networks, which have
connections from the output layer to an
additional input layer (context layer).

o Elman networks, which have an
additional input layer called the state
layer. It receives connections from the
hidden layer.

® Multi-recurrent networks (MRN), which
can have connections from both the
output and hidden layer into an
additional input layer (state layer).
Additionally, self-recurrent loops at the
state layer can be used.

The dynamic behaviour of MRN poses chal-
lenges concerning whether the network is con-
trollable, i.e. can be driven to a certain state
with a finite number of steps (Haykin, 1999).
Also, the training algorithm of all the recur-
rent networks must be at least modified (e.g.
BPTT = Back-Propagation-Through-Time) or
be different from the ones for static networks
(e.g. RTRL = Real-Time-Recurrent-Learning).

Support vector machines (SVM) are based on
the idea of constructing a hyperplane as a de-
cision surface so that the margin of separation
between positive and negative examples is
maximized (Boser et al., 1992). This is called
structured risk minimization. RBFN and two-
layer MLP can be handled as special cases of
the SVM. SVMs have good generalization
capabilities despite missing domain-specific
knowledge (Haykin, 1999).

The use of the SVM for regression has been
studied by several authors. Muller et al. (1997)
compared them with the RBF networks in time-
series prediction, and found the SVM to ex-
ceed the performance of RBFN clearly. Lu et
al. (2002) made a similar comparison between
SVM and RBFN in predicting air pollutant
concentrations, and their results agree with
those of Muller et al. (1997). Mukherjee et al.
(1997) included the chaotic behaviour of time-
series in their study, and their results confirm
the good performance of the SVM compared
with polynomial approximation techniques,
RBFN and neural networks.
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4.11. Regularization and Bayesian
techniques

To understand the basic principle of regular-
ization, some additional concepts are needed.
Consider a regression model fitted to a set of
points. Firstly, if a model has a high bias (av-
erage error), it implies that the model function
is on the average different from the actual func-
tion. On the other hand, if the model has high
variance, it means that the model function is
very sensitive to different data sets originating
from the actual function. The importance of
these concepts can be seen by considering their
connection to minimizing the generalization
error, which is the main goal in forecast mod-
elling. The generalization error can be decom-
posed as follows (Haykin, 1999):

. 2 .
E goreraizaion = N Bias® +variance (35)

Consequently, for any given size of data set,
there is some optimal balance between bias and
variance, which gives the smallest average
generalization error. In other words, one must
use some method to control the effective com-
plexity of the model (Bishop, 1995).

One way of controlling the effective complex-
ity of the model (the bias part) is to compare a
range of models with different numbers of free
parameters (hidden units with neural net-
works). This is called structural stabilization.
The variance part (with neural networks) is
usually handled with a technique called early
stopping, in which a separate test set is used to
detect the point when overfitting begins
(Bishop, 1995).

An alternative approach for reducing both bias
and variance is to use some additional infor-
mation about the problem domain (Bishop,
1995). This is called regularization. With neu-
ral networks, this is based on adding a penalty
term to the error function, thus importing some
additional information to the model, e.g. that
the actual function modelled is smooth (Fore-
see and Hagan, 1997). The effective complex-
ity of the model can be controlled by an ad-

justable parameter which regulates the balance
between the training error function and the
regularization term. Weight decay is one way
to implement regularization with neural net-
works. It is based on the idea that large weight
values correspond to the possibility of
overfitting (Bishop, 1995).

Bayes’ theorem (Gelman, 2003) gives a for-
mula for calculating the posterior probability
for a model, given a prior probability and evi-
dence. Thus, for classifying the measurement
vector x into one of the C classes, minimizing
the probability of misclassification, the poste-
rior probability for class C, can be written as
follows (Bishop, 1995):

P(x) (36)

where p(x|C, ) is the class-conditional probabil-
ity density function for class C,, P(C)) is the
(prior) probability of class C, , and p(x) is the
unconditional probability function for x.

The prior probability corresponds to our be-
liefs before making any measurements, and can
therefore be used to import domain knowledge
into the model. The evidence corresponds to
the measurements been made of the phenom-
enon. Thus, Bayes’ theorem provides a practi-
cal guide for combining data-driven ap-
proaches to information expressed at a sym-
bolic level, such as rules.

A Bayesian approach can be utilized as such
Bayesian belief networks (BBN) (e.g. Singh
and Valtorta, 1995). The advantage of these
compared with many computational methods
is that the use of prior knowledge compensates
for the need for large amounts of training data
for the model.

Bayesian techniques can also be used with
neural networks, including the MLP network.,
This can be done in two ways. Firstly, the net-
work can be regularized by setting the network
parameters to some prior distribution (see
Liang et al., 2002). Secondly, the Bayesian
approach can be used in developing the train-
ing algorithms for the MLP. Neal (1996) de-
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scribes such learning in detail. Note that learn-
ing algorithms of this kind can diminish the
amount of data needed for training and thus
enable applications where only limited mea-
surements have been made or are possible.

4.12. Measuring the goodness of the
estimate

Measuring the goodness of the estimate is an
important part of model development, and it
can be achieved by visual or by numerical
methods. Visual methods make it possible to
get an intuitive hold of the model performance,
whereas numerical methods provide a more
solid ground for comparing and enhancing the
models in a scientific way. The visual meth-
ods include simple plotting of time-series (pre-
dicted vs. observed), histograms of observed-
predicted and scatter plots of observed vs. pre-
dicted. Examples of these visualizations can
be found in the studies included in this thesis
(e.g. Kolehmainen et al., 2001) so they are not
discussed here. Numerical performance indi-
cators and the procedure for calculating a stan-
dard error for them are discussed in detail be-
low.

4.12.1. Numerical performance indicators

The use of different operational performance
indicators for evaluating and comparing mod-
els has been discussed in Willmott (1982) and
Willmott et al. (1985). Their recommendations
were followed in our studies and the indica-
tors adapted are explained below. Here we
consider prediction models and denote by O,
an observed data point whose prediction by
the model is P..

Mean Absolute Error (MAE) is the simplest
ofthe numerical goodness measures. It is sim-
ply the mean of the absolute errors taken over
the set of the estimates. It is calculated accord-
ing to equation 37:

1 7
MAE_;Z\P, -0,

i=1

(37

where n is number of data points. The benefits
of MAE are that it is less sensitive than squared
errors to extreme values and it also reports the
error in the original magnitude and scale. Bias
is similar to that in MAE but omits the taking
of the absolute value (Equation 38). It de-
scribes how much the model underestimates
or overestimates the situation.

Bias =}Z[PI -0]

i=1

(39%)

The Coefficient of Determination (R?) tells us
how much of the observed variability is ac-
counted for by the estimate model. Even
though it has defects in certain situations
(Comrie, 1997), this measure is usually used
in order to maintain compatibility with other
studies. The R? is calculated according to Equa-
tion 39:

_gh—ﬁf
é[@ of

R2

(39

where O is the average of observed data. The
Root Mean Square Error (RMSE) is one of the
most common indicators used with neural net-
works. The RMSE is calculated according to
Equation 40:

n

RMSEz(lZ[P,.—O,.]Z);

[r=

(40)

Note that this also preserves the original units.
However, extreme error values have more ef-
fect than small errors due to the exponentia-
tion. Note additionally that RMSE is usually
used in the error function guiding the learning
of a MLP network. The RMSE can be divided
into systematic and unsystematic components
using LS fitting and decomposing the RMSE,
using the following two equations:

NI

RMSE, = 3. (7 -0)") 1)
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NI

RMSE, =(%i(ﬁ,—zz)2)

i=1

(42)

where P is the least squares estimate for P,
yielded by regression of predicted values on
observed values.

RMSE; (systematic) describes the part of the
error due to the model (linear bias). Thus, a
low value implies a good model. RMSE | (un-
systematic) describes the part of the error
which is due to random noise and cannot be
captured by the model.

The Proportion of Systematic Error (PSE)
gives the ratio of the squared systematic and
unsystematic errors. Thus, a lower value im-
plies a better model. It can be used to compare
models of different levels of accuracy. It is
calculated according to Equation 43:

RMSE?

PSE = :
RMSE,

43)

Index-of-Agreement (/4) is a relative measure
limited to the range 0..1. It is thus dimension-
less, giving a relative size of the difference.
Therefore, it is ideal for making cross-com-
parisons between models. It is calculated us-
ing the following equations:

n

Y (P-0)
A=1-—1=
3 (7]+|0)? “9
i=1
where
P=P-0 (45)
and
0=0-0 (46)

The basic step in determining the goodness
indicators for episodes (e.g. periods of time
with extreme values occurring in air quality
data) is to calculate all the indicators needed

for a limited data set, i.e. take all the values
above a certain limit. On the other hand, there
are indicators based on calculating the num-
ber of times that a given episode has occurred
or been predicted. Note that an episode can
here be defined as exceeding a given limit
value for health effects, for example. Thus, the
following indicators can be determined:

® The number of episodes that occurred

® The number of episodes predicted

® The number of correctly predicted
episodes

® The number of false alarms

® The number of episodes not found

The natural question arising is, what consti-
tutes an episode? The (computationally) easi-
est way to answer is to look at every time point
separately. A more complicated method would
be to construct the episodes by tracking the
change above the limit value.

Furthermore, the previous indicators can be
unified into a single indicator called the Suc-
cess-index (Si). It is calculated according to
Equation 47:

(47)

where e is the number of actual episodes, e, is
the number of predicted episodes, e_is the
number of correctly predicted episodes, and n
is the number of rows.

In general, IA is the best operational measure,
i.e. if it is not good then it is unlikely that the
model can be used in practise. Systematic and
unsystematic components of the RMSE tell us
about the condition of the model compared
with the noise level. Then, if the other indica-
tors are good, the R? should be high. From the
other perspective, a high R? value usually im-
plies low RMSE and high /4, but does not
guarantee it. An example of the use of these
indicators is shown in Table 1. It can be seen
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that the MLP model yielded the best results in
terms of /4, RMSE (both systematic and un-
systematic) and PSE. However, the SOM
model had the lowest bias, and the
Periodic+MLP the highest R? value. Thus, it
could be concluded that the MLP model would
most probably provide the best operational
performance of these models.

4.12.2. Estimating the standard error

Bootstrapping (Efron and Tibshirani, 1993;
Mooney and Duval, 1993) is a way of calcu-
lating whether we can trust the indicator(s).
This is especially important with methods such
as neural networks, where the outcome depends
on the random initializations of weights.
Bootstrapping is a non-parametric method and
does not need any strong assumptions. It is
evaluated by resampling the validation set with
replacement and calculating the indicator(s) for
each set separately. Thus, the model itself is
trained only once. A graphical example of the
use of bootstrapping in estimating the standard

Table 1.

error of the IA parameter is shown in Figure
14.

Using the bootstrapping algorithm, the stan-
dard error for the estimated parameter (e.g.
index-of-agreement) is now the standard de-
viation of the separate estimates calculated by
resampling with replacements. If the histogram
of the bootstrap estimates is approximately
normal in shape, normal theory for finding
confidence intervals for the unknown param-
eter can be used.

The use of bootstrapping to estimate the stan-
dard error for a neural network model is ex-
emplified in Figure 14. The original outcome
of'the model validation process gave the value
0.9063 for the IA parameter. The uncertainty
of this result was estimated using the
bootstrapping algorithm, and the distribution
of'the re-sampling process is illustrated in Fig-
ure 14. The standard error was determined
from this distribution and the results could be
given as A = 0.9063 + 0.0021

Estimators for five models for the validation data (modified from Kolehmainen et al., 2001).

ESTIMATOR  Periodic Periodic+tSOM  SOM PeriodictMLP MLP
R? 0.61 0.77 0.72 1.00 0.96
Bias 3.93 3.93 2.17 4.05 3.28
1A 0.73 0.77 0.85 0.89 0.90
RMSE 15.38 15.21 12.45 11.41 10.72
RMSE; 10.86 9.34 7.16 5.43 4.72
RMSE, 10.88 12.00 10.19 10.03 9.45
PSE 0.50 0.38 0.33 0.23 0.19
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Figure 14. Histogram based on the bootstrapping algorithm. The his-
togram shows the variation around the estimated index-of-agreement
value d = A =0.9063. The standard error can now be estimated and
IA =0.9063 + 0.0021.
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5. CASE STUDIES
5.1. Method Selection

The work carried out in this thesis involved
approaches which cover the first three steps
of'the data-mining process (Hand et al., 2001).
The goal of the first series of studies was to
test methods which might be suitable for visu-
alizing the structures of the measured data in
order to reveal the relationships within the pro-
cess modelled. In practise, this means explor-
ing the dependencies among the variables and
related cluster structures. The importance of
visualization in real-world decision making
environments, especially in multi-objective
cases, is acknowledged by, among others,
Parmee (2001).

A natural choice for data exploration is the
SOM. An important feature of the SOM is the
continuity of the lattice, which enables natural
visualization of the data. This is in contrast to
some other methods such as c-means and hier-
archical clustering, in which the relationship
between clusters remains unclear to some ex-
tent. As a SOM is not strictly a faithful repre-
sentation (van Hulle, 2000), some regions of
the data space are under-sampled and some
over-sampled. A comprehensive way to cor-
rect this would be to modify the SOM algo-
rithm itself. However, a more practical imple-
mentation is to use the weight vectors of the
SOM as a starting point for Sammon’s map-
ping algorithm, which is able to clarify the ini-
tial cluster structure created. This speeds up
the calculation of the Sammon’s mapping al-
gorithm, enabling fast and user-oriented work-
ing.

The other part of the thesis aimed at covering
the modelling phase of the data-mining pro-
cess. The MLP neural network was chosen as
a backbone algorithm because of its wide range
of known applications. However, it soon be-
came clear that auxiliary algorithms are needed
for handling the challenges posed by environ-
mental data (see 2.3 for details). The main aim
in these extensions was to test methods that

can simplify the modelling process by split-
ting it into phases. One approach selected was
to model the time-series using linear regres-
sion and then to apply the neural networks to
the residual of the first step. The second ap-
proach was to simplify the function to be mod-
elled by clustering the problem space for local
models. This leads naturally to testing the us-
ability of well-known algorithms such as c-
means and fuzzy c-means clustering as well as
application of fuzzy group membership evalu-
ation in this simplification process.

5.2. Visualization using SOM and
Sammon’s mapping

The basic aim behind four of the studies of
this thesis (Toronen et al., 1999; Kolehmainen
et al., 2001b; Valkonen et al., 2002;
Kolehmainen et al., 2003) was to test the ap-
plicability of SOMs and Sammon’s mapping
in visualizing the multivariate cluster structure
of different environmental and bioinformatics
datasets. This idea was also used in the fifth
study (Kolehmainen et al., 2000). Sammon‘s
mapping was thus applied in the stage where
the SOM algorithm has already achieved a
substantial data reduction by replacing the
original data vectors with fewer representative
prototype vectors. This chain of action is il-
lustrated in Figure 15. A literature survey of
related approaches will be given at the end of
this Section.

In the first study of this kind (Kolehmainen et
al., 2001), the data exploration procedure by
SOM and Sammon’s mapping was applied to
ion mobility spectrometry (IMS) data mea-
sured from a pulp mill process. The calibra-
tion measurements were carried out in a labo-
ratory to determine the connection between
them and field conditions. The results show
that the datasets are comparable to a certain
extent in the sense of what is known about the
overall development of the process, i.e. sul-
phur compounds first dominate the IMS mea-
surement and then, as concentrations of such
compounds decrease, terpene compounds can
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1) Initialize the N-dimensional array with SOM weight vectors
2) Calculate the 2-dimensional Sammon's mapping as usual

BENEFIT: The calculation is less time consuming because the

SOM algorithm has already made substantial data reduction

be detected. More importantly, the method of
applying CI methods to measurement data of
this kind was shown to reveal important fea-
tures of the measurement technique itself, e.g.
the separability of different sulphur com-
pounds, and their concentrations, as well as
provide a clear and intuitive view of the com-
plex and multivariate problem domain of IMS
in general.

The same measurement technique (IMS) and
computation methods were also applied to
monitor yeast fermentation process
(Kolehmainen et al., 2003). CI methods have
been applied earlier in process discovery, e.g.
in die-casting machines (Cass and DePietro,
1998). However, we extended the domain of
application to biochemical processes, which
created an extra layer of complexity. The re-
sults show that different phases of one fermen-
tation batch and different batches can be dis-
tinguished by their distinct IMS profile. Inter-
estingly, the phases detected by this method
and those found in standard textbooks differed

data structure (interme-
diate grid). Sammon’s
mapping algorithm is
then applied, which re-
sults in a final visualiza-
tion (last grid). Note
how the 2-dimensional
result can still resemble
the SOM grid in some
ways.

substantially in the early phases of the process:
our method was able to detect two phases in-
stead of the known one. This shows how an
innovative application of CI methods can re-
veal new information in a way that is novel to
the whole discipline of bioprocess engineer-
ing, for example.

The combination of SOM and Sammon’s map-
ping was also applied to gene expression data
(Toronen et al., 1999). In this study, we were
able to show how these methods can be used
to find and identify the most interesting genes
of a certain phenomenon from thousands or
potentially tens of thousands of genes. The use
of such software in screening potential genes
speeds up the research work at the laboratory
level, enabling a faster cycle of experiments.
The study was one of the most important start-
ing points for gene expression based
bioinformatics research, which has become a
very active field of research recently. Fuzzy
clustering (e.g. Futschik and Kasabov, 2002)
and Bayesian neural networks (e.g. Liang et
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al., 2002) have also been used recently for this
purpose, and these two studies focused espe-
cially on handling the noise component of the
detected gene expression levels. However, the
frontier of gene expression-based
bioinformatics is currently moving from data
exploration to reverse engineering of gene net-
works, which introduces ill-defined inverse
problems into this field (e.g. Wahde and Hertz,
2000; Chen et al., 2001)

The same method was then applied to epide-
miological data of 1650 subjects (Valkonen et
al., 2002). Using 25 biochemical and physi-

ological variables alone, we were able to show
how the inspection of multivariate data of this
kind can lead to identification of important
cluster structures consisting of healthy indi-
viduals, groups of individuals with severe
symptoms, and two intermediate groups (see
Figure 16). In this way, it was demonstrated
how this method can act as a hypothesis gen-
erator by finding new groupings and unidenti-
fied groups from multivariate research data.
These findings can then act as a starting point
for more focused research with traditional sta-
tistical tools, for example. Kusiak et al. (2000)

Figure 16. An example clustering revealed by the Sammon’s mapping algorithm. Each circle
corresponds to one neuron in the SOM map. Relative distances between neurons describe the
distance in the original 25-dimensional space of the training variables. The diameter of each
neuron corresponds to the number of subjects included in the neuron. The labels correspond to
groups identified from the study cohort: C1 comprises healthy study subjects, C4 corresponds to
characteristic phenomena in the insulin resistance syndrome, and C2 and C3 are intermediate
groups, the status of which is still under study (modified from Valkonen et al., 2002).
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have also suggested that research in the future
will be data driven. They acknowledged the
role of data mining as an important area of CI
which offers tools for the analysis of large
datasets.

In the fifth study (Kolehmainen et al., 2000),
SOM and Sammon’s mapping were used to
cluster air quality data. The results show that
data exploration provides clear and intuitive
visualization about the air quality episodes (in-
tervals of bad air quality) for the area inspected.
Moreover, it was shown how the episodes can
be detected from the rest of the measurement
data, identified using standard statistical indi-
cators and assigned a textual description for
later use (e.g. in communication).

All the previously mentioned studies intro-
duced new methods to the fields of their ap-
plication. Consequently, comparative works
are not easy to find yet, even though linear
methods, such as the factor analysis and PCA,
have been applied earlier in some cases, e.g.
Edwards et al. (1994) and Lempidinen et al.
(1999) in epidemiology, Paterson et al. (1999)
and Nagendra and Khare (2003) in air quality,
and Yeung and Ruzzo (2001) in gene expres-
sion data analysis. In bioprocess engineering
(Kolehmainen et al., 2003) at least one previ-
ous study can be found where supervised learn-
ing using feed-forward neural networks were
used to detect the phases of a bioprocess
(Simon et al., 1998). However, such an ap-
proach skips the crucial step of data explora-
tion, in which novel patterns and phenomena
can be found. The most direct comparison can
be found in gene expression data analysis,
where a similar study by Tamayo et al. (1999)
was published almost at the same time as our
study. Their results agree with ours in general,
but their implementation was less enhanced as
they excluded genes with less activity from the
SOM analysis with a preset limit value. Addi-
tionally, traditional clustering algorithms (such
as the hierarchical clustering) have been used
to cluster genes according to their gene expres-
sion profile (e.g. Eisen et al., 1998). However,
such approaches miss the crucial feature of the

SOM, which enables the creation of a continu-
ous visualization of different clusters in respect
to each other.

Consequently, it is appropriate to look for the
results achieved by combining the SOM and
Sammon’s mapping in other disciplines, as well
as other characteristics studied by other re-
search groups. At a theoretical level, Dzemyda
(2001) tested and discussed the benefits of
combining the SOM and Sammons’ mapping
as compared with using them separately. The
thesis of Kaski (1997) is mentioned as a source
for the idea itself by Dzemyda but he also re-
marks that Kaski does not supply theoretical
or experimental support for his claim. More
generally, the original idea of reducing the
computational complexity of Sammon’s map-
ping by applying it to only a representative
subset of the data can be traced to Chang and
Lee (1973). This creates, however, the prob-
lem of how to map the rest of the data to the
lower dimensional space for visualization, for
example.

One solution to this problem has been sug-
gested by Mao and Jain (1995), who intro-
duced a neural network replicating the
Sammon’s mapping functionality in an unsu-
pervised form. More specifically, the back-
propagation algorithm is extended to include
the stress term of Sammon’s mapping and it
does not need any categorical information as
in supervised learning. However, this approach
was questioned by de Ridder and Duin (1997)
because of the convergence characteristics of
the unsupervised method. Similarly, Pal et al.
(2002) suggest the use of fuzzy clustering and
fuzzy rule base to capture the essential part of
Sammon’s mapping, thus enabling new data
to be visualized in respect to the original train-
ing data. However, these approaches do not
include the use of the SOM in data reduction.

Schemes for structure preserving dimension-
ality reduction have been suggested by Pal and
Eluri (1998). Firstly, they selected a represen-
tative sample from the data by simple random
sampling without replacement, followed by
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Sammon’s mapping algorithm. Secondly, the
SOM was used to generate representative pro-
totypes for the Sammon’s mapping algorithm.
Both schemes then included the use of the MLP
to create a mapping for new points of data.
Comparing these two approaches with each
other and with that of Mao and Jain (1995)
and the original Sammon’s mapping, they con-
cluded that their approaches reduced compu-
tation time and exhibit good prediction capa-
bility for new data points. The work of Pal and
Eluri was later enhanced by Kénig (2000), who
suggested the use of a recall mechanism in the
Sammon’s mapping phase and also the use of
an additional neural network as a final phase.
Konig concluded that the enhancements pro-
vide reliability, more general applicability and
better performance for various data sets.

It can thus be concluded that the idea of com-
bining the SOM and Sammon’s mapping is not
new and involves important topics not ac-
counted for in this thesis. However, the com-
bination in data visualization has not been ap-
plied to this extent to real world problems.
Moreover, the results achieved in this thesis
had novelty in the respective disciplines and
yielded significant results for those areas,
showing the usefulness of the approach in real
applications. Additionally, software was cre-
ated, which implements the ideas in a user-
friendly way, as explained in detail in Chapter
5.4. Consequently, it can be assumed that the
method tested could also be applied in several
other areas in a straightforward fashion.

5.3. Regression of time-series data

The aim of the rest of the studies (three alto-
gether) was to test the applicability of differ-
ent CI methods in the modelling phase of data
mining. The central modelling tool in all the
cases was the MLP. Additionally, a compari-
son was also made with SOM, even though it
is basically an unsupervised method.

Firstly, the use of traditional methods combined
with CI methods was investigated in
Kolehmainen et al. (2001). In that study we

tested an idea found in textbooks (e.g. Haykin,
1999): that of capturing and subtracting the
cyclic dependencies from time-series data be-
fore applying methods such as neural networks.
Additionally, we tested the performance of the
SOM in this regression problem. The simula-
tion studies showed, contrary to expectations
that direct application of the MLP performed
better that the corresponding hybrid method,
where the cyclic structures were first sup-
pressed with linear regression. However, it was
confirmed that a supervised method such as
the MLP is indeed superior to unsupervised
methods as well as to linear regression alone.
Additionally, the use of linear regression for
inspecting the seasonal components in a time-
series was clearly demonstrated. More impor-
tantly, it was also demonstrated that even
though the forecasting accuracy was good in
general, the models were not able not account
for episodes of the air quality phenomenon
studied. This is due to the inability of empiri-
cal models to capture extreme values, which
are usually under-represented in training data.

Comparison of the prediction accuracy of the
models used in our study with those of others
can be performed to a certain extent. The lim-
iting factor here is the fact that several authors
apply only one or two methods for calculating
the success of the forecast model. We have used
several statistical parameters (Willmott, 1982;
Willmott et al., 1985; see 4.13 for details), as
well as descriptive graphics to describe and
compare the goodness of the models. When
comparison has been possible, our results have
been on the same level as those of others, i.e.
superior results have not been achieved yet in
our studies. Such a comparison was most di-
rectly possible in two publications (Kukkonen
et al., 2003 ; Schlink et al., 2003) which are
the result of the APPETISE EU project
(Appetise, 2004), in which we also partici-
pated. The publications reported rigorous in-
ter-comparison of different forecasting mod-
els for NO,, PM, (particles) and ozone, in-
cluding our model.
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The controversial issue of the relative perfor-
mance of direct applications of the MLP ver-
sus a two phase model where the MLP is ap-
plied to the residual of the linear regression
using sine and cosine components needs fur-
ther clarification. Unfortunately, there appears
to be no study that would permit direct com-
parison, so we must content ourselves here with
the opinions of the authors of general textbooks
such as Masters (1995), who discusses topics
relevant to this question. Firstly, he notes that
the use of linear regression with sine and co-
sine functions in time-series regression is not
recommended, because of the large number of
terms required for exact coverage. On the other
hand, he acknowledges the usability of the two
phase approach applied in our study, not nam-
ing the exact implementation, however. Finally,
the use of seasonal differencing (e.g. subtract-
ing the value exactly one year before from the
current value) is recommended as a more fea-
sible solution to this kind of problems. Thus,
it can be concluded that our study had weak-
nesses that could have been removed with re-
peated simulations, and its validity remains to
be confirmed with new and more comprehen-
sive studies.

The last two studies (Kolehmainen et al., 2000
; Niska et al., 2003b) focused on investigating
the possibilities of dividing the search space
into regions, which could then be modelled
with simpler models. The basic idea was to use
different clustering methods: the SOM, c-
means clustering and fuzzy c-means cluster-
ing. Note that this was done by first reducing
the data with the SOM in order to make the
other clustering algorithms work in a feasible
time. Fuzzy group membership evaluation was
used to describe the non-crisp features of the
cluster borders. The results show that c-means
clustering had some advantages in forecasting
episode concentrations. The model based on
fuzzy c-means clustering achieved best accu-
racy concerning overall performance. The re-
sults in general, however, showed that only
marginal benefit can be gained by applying this
multi-model structure to air quality data. It was

thus concluded that the application of one
method alone cannot compensate for other
possible weaknesses of the whole data process-
ing chain.

The problem domain of these two studies has
also been investigated by others. Several au-
thors have shown the usefulness of voting clas-
sification algorithms (Breiman, 1996; Freund
and Schapire, 1996; Quinlan, 1996). Bauer and
Kohavi (1999) compared these algorithms
(bagging and boosting), where several
submodels compete with each other. Kim et
al. (2002) proposed a two-level evolutionary
environment called meta-evolutionary en-
sembles. Besides the ensembles (groups of
classifiers) competing with each other, the in-
dividual classifiers compete and are rewarded
especially for getting difficult data items clas-
sified correctly. Guerra-Salcedo and Whitley
(1999) broaden this discussion into feature
selection and they claim that this optimization
of the classifiers leads to better performance.
One approach to optimizing the model has also
been studied by our team but it is not included
in this thesis (Niska et al., 2003).

A different approach to this model simplifica-
tion, called variable grouping, has been sys-
tematically studied by Tucker et al. (2001). The
basic idea is to divide the input space into
groups, where the dependency between vari-
ables within the same group is high, but the
dependencies between groups are as low as
possible. Note that this inspection is ranged to
lag values of the MTS. As a result of that study,
two approaches have been suggested, that of
hill climb strategy and the grouping genetic
algorithm by Falkenauer (1998). A separate
model for each variable group is created and
the results are unified at the later stage of the
model application.

5.4. Visual Data Software

To enable data exploration of the studies in
this thesis in an efficient and user-friendly way,
software for this purpose was developed. The
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prototype of the software (called DANA) was
developed in our research group during the
years 1997-1999 as a result of the author’s ini-
tial programming work and then Teri Hiltunen
as the main software developer and the author
as a designer and supervisor of the work. In
1999 Visipoint Ltd. (http://www.visipoint.fi)
was founded and the final software was cre-
ated there under the name Visual Data. Two
limited versions of the software were also de-
veloped, Visual Gene (called GenePoint ini-
tially) and Visual Nose. As founders of the
company, the author and Teri Hiltunen were
also mainly responsible for the software engi-
neering efforts on the commercial side. The
Visual Data software was then created in its
current form using Visual Basic programming
in the MS Windows environment.

The software was based on the Neural Data
Analysis (NDA) package (http://erin.mit.jyu.fi)
utilizing its central functionality which enables
the use of the SOM and Sammon’s mapping
algorithm. The NDA package is described in
detail in the thesis by Hékkinen (2001).

# Yisual Data - Load and Train

Visual Data software has two very strong prop-
erties. Firstly, it is possible to use large data
sets (at least millions of data lines) for interac-
tive analysis. This a direct consequence of the
TS-SOM approach used in the NDA library.
Secondly, the software is extremely easy to use
even by a person who is not familiar with the
concepts of neural networks. The typical time
for learning the basic operations under guid-
ance is 4-8 hours. This is a consequence of
successful user-interface design, described
below in more detail.

The starting point for data analysis is to select
the variables used for training the SOM. This
has been streamlined in the form of a dialog
shown in Figure 17. The approach enables the
user to quickly test different SOM models
trained with different sets of variables.

Thereafter, the data needs to be pre-processed
using suitable transformations or a combina-
tion of them, and a separate dialog box was
designed, enabling the user to select the trans-
formation for each variable or any combina-

Select Fieldz fFor Training

Preprocess Data

Preproceszing |

Imputation |

Sum Add Binary Fields |

SCCell

E:?::h Max Aesolution

Series 256 ﬁ
Train Data

Figure 17. The dialog for se-
lecting the training variables
for the SOM in Visual Data
software. The six channels
of the MGD-1 artificial nose
were selected in this case.
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Yisual Data - Preprocessing
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none

Dummy ¥alue for Missing Dalal

Add new Field

Figure 18. Transformations for the training variables can be selected using a dedicated dialog
box in Visual Data software. In this case, a constant of +300 is first added to all the channel
values. The learning vector is then normalized by its length.

tion of them in a clear and concise way. This is
illustrated in Figure 18.

After pre-processing the data, the SOM is cre-
ated by just pressing the “Train Data” button.
Only the level and thus the number of neurones
for the network need to be defined. This is a
result of the properties of the TS-SOM
(Koikkalainen, 1994), which enables default
parameter values to be used in most cases. For
advanced users, however, the parameters can
also be set using a separate dialog box. The
result of the SOM calculation is presented in
the main window of Visual Data, as illustrated
in Figure 19. The main window contains the
controls in the left panel for setting the prop-
erties of the SOM, i.e. selecting the variable
for grey tone and z-axis, resolution of the SOM,
dimension of the graphics and zooming fac-
tor. The bottom panel can be set to present
more detailed data about the selected neuron
or cluster. The bottom left panel allows the user
to select the variables for this detailed presen-
tation and its format.

Using a menu bar selection of the main win-
dow, an auxiliary window for Sammon’s map-
ping (see Figure 20) can be created. The start-
ing point of this computation is the weight vec-
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tors of the SOM. This makes the computation
time feasible even for very large datasets.
Moreover, it permits a direct connection be-
tween both windows, allowing the user to in-
spect and select (cluster) neurons using either
window. Thus, the software supports the
complementary use of these two modelling
algorithms, as also suggested by, for example,
Dzemuda (2001), in an extremely user friendly
way.

5.5. Outlook

Although the results of using SOM and
Sammon’s mapping in data exploration have
been promising with static data (e.g. gene ex-
pression and epidemiologic datasets), time-
series properties have not been taken into ac-
count in an adequate way. This can be done by
adapting methods from signal processing,
which is another field very closely related to
time-series processing (Dorffner, 1996). More
specifically, methods for integrating continu-
ous, on-line data with off-line laboratory mea-
surements for data exploration purposes should
be developed. The signal processing methods
could also be used to compensate for lagged
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Figure 19. The main window of the Visual Data software. The graphics area presents the SOM in
three dimensional format, where the z-axis corresponds to the U-matrix value in this example.
Two phases of yeast fermentation process measured using the MGD-1 artificial nose have been
clustered and marked according to a trajectory which shows the time development of the mea-
surement data. The left panel of the window contains the control buttons for setting the graphics
properties. The bottom panel allows the user to inspect any neuron or cluster of the SOM in more
detail, in either numeric and/or diagram format.
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Figure 20. Sammon’s mapping in an
auxiliary window of the Visual Data
software. Each neuron of the SOM is
shown as a circle. The radius of the
neurons corresponds to the number of
original data vectors in each neuron.
This enables rough density estimation
of the original p-dimensional space in
respect to the phenomenon inspected.
The trajectory shows the time devel-
opment from the lag phase of the yeast
fermentation to the next phase, expo-
nential growth.
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values in multivariate time-series of process
data. However, even bigger challenges can be
found if the spatial dimensions are added in
the form of location information. This would
require the use of different kinds of statistics
as a basis of the algorithms.

The elements used in time-series prediction for
air quality data need to be tested more com-
prehensively. This can be done by creating a
software environment where all the aspects
inspected are available for testing together. At
least the elements described below should be
taken into account.

Optimization of the inputs and (neural net-
work) model parameters should be tested.
Given the limitations caused by large search
spaces, it should be divided into subtasks both
by variable grouping (Tucker et al., 2001) and
by clustering the problem space into local do-
mains. The optimization should focus more on
the episodes (i.e. periods of bad air quality),
which can be done by developing the fitness
function. This could also be boosted by dupli-
cating the data representing the episodes in a
systematic way. Moreover, our latest results
(not published) show that multi-objective op-
timization (e.g. prediction accuracy as the first
objective and minimizing the number of vari-
ables as the other) can lead to better perform-
ing models.

The model itself could also be developed fur-
ther. Firstly, the initialization of the weights of
the MLP should be investigated. Possible so-
lutions include clustering the problem space
and the use of the GA. Secondly, regulariza-
tion techniques should be tested in order to
include additional knowledge in the model.
The most promising solutions for this are based
on Bayesian techniques. Finally, replacing the
MLP with recurrent neural networks or with
the SVM could enhance the capabilities of the
model to account for the non-stationary and
cyclic nature of the environmental data.

As already discussed, modelling of environ-
mental and related data easily leads to ill-de-
fined inverse problems. Their solution usually

requires that domain-specific knowledge is
incorporated into the model, which is usually
based on Bayes theorem. An example of such
a development can be found in bioinformatics,
where data exploration studies of gene expres-
sion data have inspired active research on re-
verse engineering the gene regulatory net-
works (Wahde and Hetrtz, 2000; Chen et al.,
2001). Interestingly, recurrent neural networks,
GA and simulated annealing have been pro-
posed as suitable methods in these studies.
Thus, the solutions suggested in bioinformatics
could also be tested in environmental
informatics.
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6. SUMMARY AND
CONCLUSIONS

The aim of this thesis was to evaluate self-or-
ganizing maps together with other related
methods of computational intelligence for
analysing and modelling environmental and
bioinformatics problems, using a number of
selected case studies. The thesis comprises
seven studies which have been published as
six peer-reviewed articles and one extended
abstract in conference proceedings. All of the
studies were based on using more than one tra-
ditional or computationally intelligent method,
with the SOM as the central modelling tool.
The main contribution of this thesis was test-
ing the applicability of data exploration meth-
ods using the SOM and Sammon’s mapping in
real world problems and showing how signifi-
cant results in the corresponding discipline
could be yielded. Overall, it can be concluded
that if the method tested is implemented as
user-friendly software (Visual Data), excellent
results can be achieved, as explained in more
detail below.

Firstly, environmental informatics and
bioinformatics were defined and their connec-
tion with each other discussed. The challenges
posed by environmental informatics and
bioinformatics data were then identified. It was
found that the quantity of data is usually ad-
equate but the quality can be a problem, espe-
cially in the form of missing values. The mul-
tivariate nature of time-series data requires that
dependencies among variables be accounted
for in order to prevent similar variables domi-
nating the learning algorithms. On the other
hand, the multivariate aspect can also be used
in compensating for missing values or unreli-
able variables. The complex behaviour of natu-
ral processes induces additional characteris-
tics, including non-linear and potentially cha-
otic phenomena, ill-defined inverse problems
and multitudes of lagged dependencies among
the variables. It is concluded that the above
issues often lead to large search spaces in mod-

elling and optimizing the complicated func-
tions corresponding to these processes.

CI has been defined in several ways in differ-
ent sources but the common elements of these
definitions include adaptivity to changing con-
ditions and the ability to learn from experience.
It is also often required that the behaviour of
the system can be described at least partly as
intelligent in respect to human behaviour. On
the basis of this, hybrid CI can then be defined
as any effective combination of intelligent tech-
niques that performs better or in a competitive
way to simple standard intelligent techniques.
As a practical implementation for CI, the con-
cept of data-mining was introduced and its
main steps relevant to this work were identi-
fied as exploratory data analysis, descriptive
modelling and regression modelling. The spe-
cial characteristics of time-series data need-
ing special attention in predictive modelling
were explained. This discussion was then con-
cluded by focusing attention on the central
topic of modelling, that of generalization.

The methods needed in intelligent data pro-
cessing were then described in detail. Firstly,
the data processing chain in knowledge dis-
covery was described. The first steps (pre-pro-
cessing, transformation and dimensionality
reduction) were briefly described. Linear re-
gression was also briefly introduced, followed
by a more detailed introduction to the central
methods of data mining, i.e. SOM, Sammon’s
mapping, c-means and fuzzy c-means cluster-
ing, U-matrix, fuzzy logic, and
neurocomputing, including the MLP. Regular-
ization and Bayesian techniques were ex-
plained as a means of enhancing the previously
mentioned methods, and finally the measur-
ing of the goodness of the estimates was de-
scribed.

The studies comprising this thesis were then
evaluated and discussed. The large potential
of combining SOM and Sammon’s mapping
were demonstrated in several applications. The
results show that such hybrid use can (i) re-
veal important features of the measurement
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technique itself, such as separability of com-
pounds and their concentrations, (ii) reveal new
information in a way that is novel to the whole
discipline, (iii) speed up the research work at
the laboratory level, and so enabling a faster
cycle of experiments, (iv) act as a hypothesis
generator for more focused research with tra-
ditional statistical tools, and (v) supply clear
and intuitive visualization about environmen-
tal phenomena, such as air quality episodes,
for the area inspected.

In time-series processing the use of traditional
methods combined with CI methods was in-
vestigated. Contrary to expectations, direct
application of the MLP performed better in our
study than the corresponding hybrid method,
where the cyclic structures were first sup-
pressed with linear regression. It was demon-
strated, however, that the hybrid use of the
above methods leads to better understanding
of the process modelled (e.g. by visualization
ofthe seasonal components of the time-series),
which is an important goal of time-series mod-
elling. The two other studies focused on in-
vestigating the possibilities of dividing the
search space into regions, which could then
be modelled with simpler models. The results
in general, however, show that only marginal
benefit can be gained by applying this multi-
model structure to air quality data.

As a recommendation for future work it was
suggested that the data exploration solution
should be enhanced with methods from signal
processing to enable the handling of measure-
ments with different time scales and lagged
multivariate time-series. For the regression
modelling of time-series data, it was suggested
that an integrated environment be created for
testing all the methods discussed in a coherent
way and simultaneously. The list of most po-
tential issues includes optimization of the in-
puts and model parameters by variable group-
ing and clustering, boosting by duplicating the
data representing the episodes, applying recur-
rent neural networks or SVM instead of MLP,
and applying regularization techniques to im-
port prior knowledge into the model. Account-

ing for non-linear chaotic behaviour and prob-
lems of'ill-defined inverse problems also needs
further investigation
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