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1  Introduction 

This theses describes an integrated urban pollution modelling system, discusses 

predicted concentration distributions of nitrogen oxides in the Helsinki metropolitan 

area. and addresses the testing of the model against the results of an air quality 

monitoring network. 

 

The integrated atmospheric dispersion modelling system developed at FMI is based on 

a combined application of the Urban Dispersion Modelling system for stationary 

sources (UDM-FMI) and the road network dispersion model CAR-FMI (Contaminants 

in the Air from a Road). Both dispersion models include a treatment of the chemical 

transformation of nitrogen oxides. The dispersion modelling system was refined to take 

into account the chemical interaction of pollutants from a large number of individual 

sources. 

 

This theses also describes and revises the method (FMI-MPP) used to estimate the 

turbulence parameters from surface meteorological observation and compares some 

basic physical properties of the method against other commonly used similar methods. 

Special emphasis is taken to study the stable conditions and the different turbulence 

characteristics of rural and urban conditions.  
 

 

2 Aims of the study 

The aims of this thesis were: 

 

1) to describe the method used to estimate the turbulence parameters from surface 

meteorological observation and to compare some basic physical properties of the 

method against other commonly used similar methods. 

 

2) to study the potential errors of the meteorological pre-processing system when 

applied in urban environment and to revise the parameterisation method accordingly 

 

3) to examine the behaviour of the stable mixing height calculation scheme routinely 
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used at FMI, by comparing the mixing height results calculated using rural 

meteorological profile data (Jokioinen) vs. urban meteorological profile data 

(Kivenlahti)  

 

4) to refine the stable mixing height calculation scheme to better suit the conditions in a 

heterogeneous environment   

 

5) to combine the meteorological modelling system, traffic flow and emission 

modelling systems together with the urban dispersion modelling system for assessing 

the air quality in Helsinki Metropolitan area 

 

6) to evaluate the performance of the modelling system by comparing the calculation 

results with available experimental data in the Helsinki Metropolitan area 

 

 

3 Background 

Air pollution models are valuable tools for regulatory purposes, policymaking and 

research applications. The most efficient method in air pollution research is commonly 

the combined use of measurements and modeling.  

 

Atmospheric dispersion models can be used for a wide variety of purposes, for instance: 

 

− establishing source-receptor relationships, 

− evaluation of the contribution to pollutant concentrations from various sources, 

− estimating spatial concentration distributions and population exposure to pollution, 

− optimisation for emission reduction strategies and analysis of emission scenarios, 

− predicting the pollutant concentrations in time and 

− analysing the representativity of measurement stations. 

 

The models need as input parameters meteorological and geographical information, 

together with source and emission data. Errors in the predictions of the models are 

caused by: 
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− inaccuracies in estimating the model input values, 

− deficiencies in modelling the physical and chemical phenomena,  

− numerical inaccuracies of the models and 

− random variability in the atmosphere. 

 

A high priority should be given to evaluation of models, and their validation against 

good-quality databases in order to control the inaccuracies of the modelling methods. 

 

The main objective of local scale dispersion models is quantifying of the concentrations 

of pollutants, which can cause adverse health effects for the population. In some cases, 

the objectives include also the deposition of pollutants and the influence of air pollution 

on the vegetation. Most of the local scale models have been developed for regulatory 

purposes.  

 

Models based on Gaussian concentration distributions have been very widely used for 

regulatory purposes. Traditionally, these models have been based on Pasquill-Gifford 

stability categories and the dispersion parameterisations have been very straightforward. 

However, the models should be able to allow for the structure of the atmospheric 

boundary layer and the various local scale effects, for instance, the influence of 

buildings and obstacles, downwash phenomena and plume rise.  

 

The latest generation of local scale models is used in combination with meteorological 

pre-processing models, which are based on scaling theories of the atmospheric boundary 

layer (ABL). In this case, the dispersion processes are described in terms of ABL 

scaling parameters and the boundary layer height. Some of these models include 

treatment of chemical transformation and deposition, plume rise, downwash phenomena 

and dispersion of particles (for more detailed discussion, see Kukkonen, 2000).  
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4 Influence of meteorology on the air quality 

4.1 The meteorological pre-processing model  

Meteorological factors have a substantial influence on the atmospheric dispersion of air 

pollution. Dispersion is particularly affected by the wind speed and direction, 

atmospheric turbulence and the occurrence of inversion layers, ambient temperature and 

the mixing height (e.g. Kukkonen et al., 1999). The turbulence parameters and mixing 

heights are not routinely measured so they have to be inferred from the available 

measurements, activity which is often referred as pre-processing the meteorological 

data. 

 

The parameterisation schemes used in the dispersion models of the Finnish 

Meteorological Institute (FMI) are based on the energy flux method of van Ulden and 

Holtslag (1985), while the parameterisation of the boundary layer height is based on 

classical boundary layer models with a separate treatment for convective and stable 

conditions. 

 

In the van Ulden-Holtslag's scheme, the turbulent heat and momentum fluxes in the 

boundary layer are estimated from synoptic weather observations. The original method 

has been slightly modified, as at high latitudes the net radiation at the surface correlates 

better with the sunshine duration than with the cloud cover. 

 

The present method divides the net radiation into three parts: solar short-wave radiation, 

blackbody radiation from clouds and ground, and long-wave radiation of (isothermal) 

atmosphere. Short-wave radiation is approximated by a regression equation, which uses 

observed hourly sunshine time as the explaining variable in the regression model. The 

radiation from clouds is modelled by another regression equation, which uses the total 

cloudiness and cloud height as explaining parameters. 

 

Energy partition in the FMI-model utilises the modified Priestley-Taylor model (van 

Ulden and Holtslag, 1985), which divides the evaporation into two parts. Consequently, 

there are only two empirical parameters to be evaluated in the FMI-model. These 
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parameters depend on surface moisture conditions, which are estimated using synoptic 

weather codes and the amount of rain. 

 

The parameterisation of the mixing height (MH) uses actual radio soundings and the 

previously calculated surface turbulence parameters. The summer MH parameterisation 

is based on a slab model for daytime and modelling the integral heat flux at night. For 

wintertime the MH evolution is driven by mechanical turbulence.  

 

 

4.2 Intercomparison of meteorological pre-processing models 

A comparison of the FMI model predictions with those of the corresponding model 

(OML, see Olesen et al., 1992) applied in National Environmental Research Institute of 

Denmark (NERI) is done, using the same synoptic input data for both models. The 

meteorological data has been collected from southern Finland for year 1983. The data 

was interpolated from 3-hourly measurements to hourly values.  

 

 
Figure 1. The quantile-quantile plot of estimates of the sensible heat flux. 
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The net radiation estimates, by the OML model and FMI-MPP model agree very well 

[I], except for a slight difference for net radiation values in the range from 200 to 400 

W/m2. However, there are substantial differences in the computed turbulent heat flux 

estimates shown in Figure 1. 

 

The ratio of stable to unstable situations as evaluated by these two models is almost the 

same. In stable conditions, the OML-model produces more negative energy flux values 

than the FMI- model. In unstable conditions, the FMI model produces larger turbulent 

heat flux values than the OML model. The results indicate that the two parameterisation 

schemes divide the available energy between the latent and sensible heat fluxes 

differently. 

 

 

4.3 Modifications of the pre-processor in order to allow for urban conditions  

The FMI meteorological pre-processor applied in combination with the regulatory 

atmospheric dispersion models in Finland was originally designed for non-urban areas 

only. In order to account for the urban conditions, the meteorological pre-processor has 

to be modified [II]. 

 

The atmospheric surface layer is divided into two parts: a roughness sublayer of height 

z* and an inertial sublayer. Monin-Obukhov similarity laws are expected to be valid 

only in the inertial sublayer. Close to the ground surface, the local Reynolds stress 

profile is used to recalculate the relevant turbulence parameters. In order to allow for 

the influence of urban conditions, we have evaluated the roughness length zo and 

introduced the zero-displacement height d for the Helsinki metropolitan area, using a 

computational method discussed by Rotach (1997).  

 

In stable conditions, the height of the urban roughness sublayer z* is used as a lower 

limit for the Monin-Obukhov length L, as L can be interpreted as the depth of the 

mechanically well-mixed layer. It is therefore plausible to assume that the Monin-

Obukhov length L ≥ z*≡ Lmin, since the roughness sublayer height z* is the height, at 
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which the urban roughness elements are by definition generating a more intense 

turbulence field.  

 

The influence of these modifications has been analysed by computing the dispersion 

parameters used in the FMI dispersion modelling system, and comparing the revised 

parameters with the previous "non-urban" model computations. 

 

In unstable conditions, the urban vertical dispersion parameters are approximately half 

of the corresponding rural values, at an effective dispersion height near the zero-plane 

of displacement. Clearly, the urban roughness elements give rise to enhanced 

turbulence above the roof top level and one would therefore expect the urban dispersion 

parameters to be larger within this layer, compared with the corresponding non-urban 

parameters.  

 

However, the introduction of the displacement height and the exponentially decreasing 

Reynolds stress results in clearly smaller numerical values of turbulence parameters in 

the layer between roof top level and displacement height. This effect can be seen to be 

consistent with the generally accepted picture of turbulent flow changing to laminar 

flow close to a surface. In this case we can consider the urban roughness sublayer as a 

layer within which the spatial average of Reynolds stress increases from zero to its 

value in the inertial sublayer (Rotach, 1993). 

 

In neutral conditions, the variation of the dispersion parameters with height is similar, 

compared with the unstable cases. However, in stable conditions the imposed limit of 

the Monin-Obukhov length substantially changes the situation. In extremely stable 

conditions, the urban dispersion parameters exceed the corresponding rural values with 

a large margin; the key factors influencing this ratio are stability and height of the 

roughness sublayer.   

 

The modifications can have a substantial influence on the computed concentrations  

(Figure 2) for the ground level or near the ground level sources (e.g., traffic). The re-

evaluated friction velocity and dispersion parameters result in clearly lower 
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concentrations in stable atmospheric stratification, and slightly higher concentrations in 

neutral and unstable atmospheric stratification, respectively.  

 

Figure 2. The cumulative distributions of calculated NO2 concentrations (old vs. new) 

at the monitoring station of Töölö, Helsinki in 1993. 

 

 

4.4 Inversion strengths and mixing heights during stable stratification  

In Northern European conditions, the formation of a severe air pollution episode 

requires a strong ground-based inversion, by which cold air near the ground surface is 

blocked under the warmer air layer above. Particularly emissions from road traffic are 

then poorly dispersed. Emissions from tall stacks of e.g. heating plants may be emitted 
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above the inversion height, and therefore these do not influence substantially pollution 

near the ground level. 

 

Paper [III] discusses the results from a climatological study of surface inversions based 

on an experimental dataset from three Finnish sounding stations. The inversions were 

characterised according to their total depth and the stability of the boundary layer, 

which was straightforwardly estimated directly from the temperature gradient in the 

layer from the ground up to 100 meters. The persistence of the inversions as well as the 

influence of cloudiness and wind speed on the temperature gradient was studied. 

 

Furthermore, the measurements from a meteorological mast situated in the Helsinki 

metropolitan area; particularly temperature inversions with a potential temperature 

gradient larger than 0.1 oC/m, were selected for further analysis.  

 

The behaviour of the meteorological pre-processing model [I], particularly the stable 

mixing height scheme, is analysed utilising this experimental database. The observed 

weak correlation between FMI-Jokioinen and FMI-Kivenlahti (FMI’s stable mixing 

height calculation scheme using radiosonde profiles at Jokioinen and mast profiles at 

Kivenlahti respectively) calculations is further studied by dividing the data according to 

wind direction into 12 sectors. 

 

Figure 3 presents the partial correlations of calculated mixing heights in each wind 

sector. It is observed, that in nearly all wind sectors the correlation is very weak, 

indicating that the meteorological profiles measured at Jokioinen are significantly 

different compared to the suburban profiles measured at Kivenlahti. To get a reliable 

estimate of the mixing height at Helsinki area, it would be important to use local 

meteorological profile measurements instead of the rural meteorological profiles. 
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Figure 3. Partial correlations between the calculated mixing heights. The results of 

FMI-mixing height calculation scheme using rural (Jokioinen) data are compared 

against the results of FMI-mixing height calculation scheme using urban (Kivenlahti) 

data. 

 

The correlation of the calculated mixing heights is weakest for southerly (from the sea) 

winds. This is quite an expected result, as the effect of the sea is not observed on the 

mixing heights calculated using the soundings at Jokioinen, which is located 100 km 

north from the Helsinki area. 

 

The best correlation was obtained for the NE direction, which is one of the most “non-

urban” directions around Kivenlahti mast. However, before any final conclusions can 

be made, a more detailed study on the possible local screening effects of the mast 

structure for this wind direction must be performed.  
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Other commonly used schemes for determining the height of the stable boundary layer, 

reported by Fisher et al. (1998), were also tested against the FMI-method and against 

each other. Based on this analysis a modification is suggested to the FMI-MPP method. 

 

 

5 Dispersion modelling in the Helsinki Metropolitan Area 

Short-range atmospheric dispersion models have been developed and applied at the 

Finnish Meteorological Institute since the early 1970’s. The following regulatory 

models are available: the urban dispersion modelling system (Karppinen et al, 1998), 

various models for local dispersion of vehicular pollution (e.g. CAR-FMI), the air 

pollution information system, the dispersion model of odorous compounds and a hybrid 

plume model for local-scale dispersion (Nikmo et al, 1999). All of these models are 

routinely used in connection with a meteorological pre-processing model. Some of 

these models have been reviewed by Kukkonen et al. (1997). 

 

Similar urban scale modelling systems have also been developed in other European 

countries. Examples of these are the Danish OML model (Olesen, 1995a) and the UK-

ADMS system of the United Kingdom (Carruthers et al., 1995). These models, as the 

UDM-FMI system, also apply ABL scaling with the surface layer similarity theory. On 

the other hand, various local scale Gaussian models using the Pasquill (or equivalent) 

stability classes are still widely used in practical applications in many European 

countries (see: Moussiopoulos et al., 1996).  

 

A detailed description for the CAR-FMI model can be found in Härkönen et al., (1995), 

(1996) and (1997a). The predictions of the CAR-FMI model have been compared 

against experimental roadside datasets in Härkönen et al., (1997b) and Kukkonen et al. 

(2000). 
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5.1 Emission and atmospheric dispersion modelling system for an urban area 

Paper [IV] presents an overview of the structure of the integrated modelling system 

developed and used at FMI, including the dispersion models and the meteorological pre-

processor model.  

 

The dispersion models are based on Gaussian plume equations for various source 

categories. The meteorological pre-processor [I], includes a mathematical 

parameterisation of the atmospheric boundary layer (ABL), based on the surface layer 

similarity theory.  

 

The modelling system describes the dispersion processes in terms of ABL scaling 

parameters (the Monin-Obukhov length scale, the friction velocity and the convective 

velocity scale) and the boundary layer height. For instance, the dispersion parameters 

are written explicitly as a function of these quantities (Karppinen et al., 1998). The 

application of ABL scaling is physically a better approach than the use of the traditional 

discrete stability categories (e.g., the Pasquill classes). Clearly, the diffusion properties 

of the ABL are continuous functions of the atmospheric stratification.  

 

Both experimental and theoretical investigations have shown that dry and wet 

deposition processes, chemical transformation, plume rise and downwash can 

substantially influence atmospheric concentrations.  All these processes are included 

into the model framework, including a treatment of the chemical transformation of 

nitrogen oxides. A new model has been developed for evaluating the chemical 

interaction of pollution from a large number of individual sources. This model allows 

for the interdependence of urban background NO, NO2 and O3 concentrations and NO 

and NO2 emissions from various source categories. 

  

The model also allows for the influence of a finite mixing height and inversion layers, 

as this can be of crucial importance especially in stable atmospheric conditions.  

 

The mathematical structure of the modelling system is based on state-of-the-art 

methodology. Results of domestic investigations have been used for evaluating some 
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climate-dependent parameters. The numerical procedures and the computer codes have 

been developed at the FMI.  

 

The UDM-FMI system has been tested and validated against national urban air quality 

measurements (e.g., Nordlund and Rantakrans, 1987) and the experimental data of the 

Kincaid, Copenhagen and Lilleström field dispersion trials (these datasets are described 

in detail in Olesen, 1995b).  

 

The integrated modelling system includes emission models for stationary and vehicular 

sources and a statistical analysis of the computed time series of concentrations. The 

modelling system is depicted in Figure 4.  

 

EMME LIISA MPP-FMI
Traffic volumes Traffic emissions Meteorological 

pre-processing

UDM-FMI
Dispersion 

from stationary sources

CAR-FMI
Dispersion 

from mobile sources

Statistical analysis and 
graphical presentation 

 
Figure 4. An overview of the modelling system. 
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The concentrations of nitrogen oxides and nitrogen dioxide have been computed in the 

Helsinki metropolitan area for one year, 1993. The concentration time series were 

computed on a receptor grid, which contains approximately 10000 receptor points. The 

receptor point network covers the whole Helsinki metropolitan area (approx. 900 km2), 

and the largest grid intervals are 500 m. A more densely spaced grid was applied in the 

Helsinki downtown area, the grid interval being 100 m. In the vicinity of the major 

roads in the area, the smallest grid interval was 50 m. The variable receptor grid is 

required in order to evaluate isoconcentration curves with adequate accuracy from the 

computed data. 

 

The NO2 concentrations in Helsinki are generally comparable with those in the major 

Central European cities (Jol and Kielland, 1997, Kukkonen et al., 1999). In other 

Finnish cities the NO2 concentration levels are usually somewhat lower than those in the 

capital (Kukkonen et al., 1999).  

 

Figures 5a-b show the computed annual means of NOx and NO2 concentrations at the 

ground level in the Helsinki metropolitan area in 1993. The legend in the top left-hand 

corner shows the absolute values of the pollutant concentration.  
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Figures 5a-b. Predicted spatial distribution of the yearly means of NOx (upper) and 

NO2 (lower) concentrations (µg m-3) in the Helsinki metropolitan area in 1993. 
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5.2 Comparison of model predictions with the data of a measurement network  

Paper [V] discusses the comparison of model predictions and the results of the air 

quality monitoring network in the Helsinki metropolitan area (YTV) in 1993. Hourly 

NO and NO2 concentration data has been utilized from two urban, two suburban and 

one rural measurement station operated by the Helsinki Metropolitan Area Council.  

 

There are no empirical factors in the applied modelling system, except for the chemical 

transformation coefficients in the model UDM-FMI, for which we have applied the 

values reported by Janssen et al. (1988). The original modelling system, without any 

adjustments or calibration based on the data considered here has been utilized in this 

study.  

 

The data for this study is selected from the permanent multicomponent stations (Aarnio 

et. al., 1995, Hämekoski and Koskentalo, 1998). These represent urban traffic (Töölö 

and Vallila), suburban traffic (Leppävaara and Tikkurila) and regional background 

conditions (Luukki).  

 

Two urban monitoring stations, Töölö and Vallila, are located in the Helsinki downtown 

area. The station of Töölö is situated in a small square in a busy crossing area, 

surrounded by several buildings. The station of Vallila is situated in a small park, at the 

distance of about 20 metres from a busy street.   

 

The two suburban stations are located in the cities of Espoo and Vantaa. The station of 

Leppävaara in Espoo is situated in a shopping and residential area; the distance of the 

station to two major roads is approximately 200 m. The station of Tikkurila in Vantaa is 

located in a residential area, about 200 metres from the nearest busy street. The 

monitoring height is 4.0 m at the stations of Töölö, Vallila and Leppävaara, and 6.0 m at 

the station of Tikkurila. Regional background concentrations were monitored in a rural 

environment in Luukki, approximately 20 km to the northwest of downtown Helsinki. 
 

As discussed in  [IV], the regional background concentrations are based on data from 

the monitoring station of Luukki, situated in the Northeastern part of the Helsinki 

metropolitan area. The predicted regional background NOx concentration varies from a 
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minimum of 3 % in the urban area to a maximum of 34 % in the suburban area, of the 

total measured concentration.  

 

At three stations (Vallila, Leppävaara and Tikkurila), the predicted NOx concentrations 

agree well with the measured data, although the model slightly under predicts the 

concentrations. However, the modelling system clearly underpredicts the measured NOx 

concentrations at the station of Töölö. This may be caused by the underprediction of 

emissions near a busy junction, the influence on dispersion of surrounding major 

buildings and street canyons, and uncertainties in the representativeness and pre-

processing of meteorological data. 

 

At all the stations, the predicted NO2 concentrations agree well with the measured data. 

The variation in time of the predicted and observed NO2 concentrations is also similar, 

except for some deviations at the urban station of Vallila. At the station of Töölö the 

predicted NO2 concentrations agree clearly better with the measured values, compared 

with the corresponding results of NOx. The formation of NO2 from NO is in most cases 

limited by the availability of ozone at Töölö, and the O3 concentration is in some cases 

completely depleted. The predicted NO2 concentrations can therefore be realistic, if the 

urban background concentrations of NO2 and O3 are predicted right, although the 

predicted NOx concentration would be under predicted. 

 

The predicted statistical parameters corresponding to the national guidelines agree well 

with the measurements, except for some of the highest measured values, which are 

slightly underpredicted. The agreement of the model predictions and measurements was 

better for the two suburban measurement stations, compared with the two stations 

located in downtown Helsinki. This was expected, taking into account the limitations of 

the modelling system. 

 

 

6 Discussion 

The basic physical ideas of the FMI pre-processor (FMI-MPP) and the corresponding 

model applied in Sweden and Denmark (Berkowicz and Prahm, 1982) are similar, while 
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the measurements required by the models are somewhat different. In FMI-MPP model 

the short wave radiation is estimated by a regression equation, which uses observed 

hourly sunshine duration as the regression model variable. The radiation from clouds is 

modelled by another regression equation, which uses the total cloudiness and the cloud 

height as parameters. The method of Berkowicz and Prahm uses two regression models, 

one for daytime and one for nighttime, which apply synoptic measurements of 

cloudiness as the most important variable. 

 

The modelling of the net radiation differs substantially in these two models, but the 

numerical results are nearly the same. The partitioning schemes for the turbulent 

sensible and latent heat are clearly different in the models. The Berkowicz/Prahm-

model evaluates the surface resistances and the humidity deficit in a fairly complicated 

way. The FMI model utilises the modified Priestley-Taylor model (van Ulden and 

Holtslag, 1985), which divides the evaporation into two components. Consequently, in 

the FMI model only two empirical surface moisture parameters have to be evaluated. 

The numerical results of these two partitioning schemes also differ substantially, but the 

ratio of stable to unstable situations as evaluated by the two models is almost the same.  

 

The meteorological pre-processor has been modified in order to better represent urban 

conditions. We have re-evaluated the roughness length, introduced the zero-

displacement height and divided the surface layer into a roughness sublayer and an 

inertial sublayer.  The friction velocity and Monin-Obukhov length are re-evaluated 

using an empirically developed exponential Reynolds-stress profile in the roughness 

sublayer. 

 

The influence of the urban modifications of the FMI-MPP were investigated, by 

computing the dispersion parameters used in the UDM-FMI dispersion modelling 

system, and comparing the revised parameters with the corresponding previous "non-

urban" parameters. These modifications have a substantial influence on the computed 

concentrations for the ground level or near the ground level sources (e.g., traffic). The 

re-evaluated friction velocity and dispersion parameters result in lower concentrations 

in very stable atmospheric stratification, and raised concentrations in neutral and 

unstable atmospheric stratification, respectively.  
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Based on the analysis utilizing rural and urban meteorological profile data a 

modification was made to the FMI-MPP stable mixing height calculation method. The 

modified FMI–scheme gives physically resonable stable mixing heights and also the 

correlation of the time-series of calculated mixing heights with the widely used 

Zilitinkevich interpolation  scheme is good.  

 

The urban dispersion modelling system described in [IV] is based on Gaussian plume 

equations for various source categories. The modelling system describes the dispersion 

processes in terms of ABL scaling parameters (the Monin-Obukhov length scale, the 

friction velocity and the convective velocity scale) and the boundary layer height.  

 

Our modelling system contains a novel method, which allows for the chemical 

interaction of pollutants, originating from a large number of urban sources. The system 

properly takes into account, for instance, the depletion of O3 in the urban area. This 

phenomenon can have a substantial influence on the computed results particularly in 

episodic conditions, in which the atmospheric diffusion conditions are unfavourable.  

 

The system presented is based on so-called quasi-steady state assumptions, i.e., it is 

assumed that pollutant concentrations can be treated as though they resulted from a time 

sequence of different steady states. This assumption is not valid e.g. during peak 

concentration episodes, caused by accumulation of air pollution, and in the presence of 

complex photochemical reactions. In the future, the results of the presented 

computations will be compared with the ones obtained using Eulerian grid (for instance, 

Yamartino et al., 1992) or Lagrangian models (for instance, Williams and Yamada, 

1990). In these modelling systems the interactions of meteorology and chemistry can be 

accounted for dynamically, and at least in principle in real-time.  

 

The modelling approach adopted has certain inherent limitations, both concerning the 

evaluation of emissions and atmospheric dispersion. Gaussian dispersion modelling 

does not allow for the detailed structure of buildings and obstacles. However, the terrain 

in the area is flat and the average height of the buildings is fairly low (most buildings 

are lower than 15 - 20 m). The computed concentrations should be interpreted as 
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spatially averaged values (on the scale of the grid spacing, varying from 50 to 500 m), 

while for instance, inside a street canyon the actual concentrations can vary 

substantially on the scale of tens of meters. 

 

On the other hand, the use of fairly simple dispersion models facilitates the evaluation 

of the hourly time series of meteorological and emission conditions for one year, which 

is required for the computation of statistical concentration parameters, defined in 

national health-based air quality guidelines.  

 

It was also possible to include emissions from a large number of sources (this study 

included 5000 line sources, 169 point sources and area sources), a substantial number of 

receptor points  (10000), and to use a sufficiently dense computational grid.  

 

Estimation of emissions also contains inherent limitations. Near the junctions of roads 

and streets there is acceleration and deceleration of the traffic flow, as well as stops and 

occasional congestion, which causes increased emissions. The emission modelling takes 

properly into account the influence of vehicle acceleration and deceleration on the 

emissions. The emissions, however, are assumed to be distributed evenly along each 

line source in the numerical computations, although these can be strongly concentrated 

in the immediate vicinity of the junctions. This effect can cause an underprediction of 

traffic emissions near major junctions.  

 

The predicted statistical parameters corresponding to the national guidelines agree well 

with the measurements, except for some of the highest measured values, which are 

underpredicted [V]. The agreement of the model predictions and measurements was 

better for the two suburban measurement stations, compared with the two stations 

located in downtown Helsinki. This was expected, taking into account the limitations of 

the modelling system. 

 

The modelling system, as presented in this theses, does not explicitly allow for the 

influence of individual buildings and other obstructions. However, the system has 

recently been extended to include also the street canyon dispersion model OSPM 

(Hertel and Berkowicz, 1989; Niittymäki et al., 1999; Granberg et al., 2000). More 
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detailed nested computations, allowing also for the influence of buildings and detailed 

traffic conditions can be performed for a smaller part of the modelling area.  

 

 

7 Conclusions 

The basic mathematical structure of the FMI pre-processor is described and the model 

predictions are compared with those of the corresponding model applied in Sweden and 

Denmark. The meteorological pre-processor is modified in order to better represent 

urban conditions. We re-evaluated the roughness length, introduced the zero-

displacement height and divided the surface layer into a roughness sublayer and an 

inertial sublayer. The friction velocity and Monin-Obukhov length are re-evaluated 

using an empirically developed exponential Reynolds-stress profile in the roughness 

sub layer.  

 

These modifications can have a substantial influence on the computed concentrations 

for the ground level or near the ground level sources. The re-evaluated friction velocity 

and dispersion parameters result in clearly lower concentrations in stable atmospheric 

stratification, and slightly higher concentrations in neutral and unstable atmospheric 

stratification, respectively 

 

A modification is suggested to the FMI-MPP stable mixing height calculation method. 

The modified FMI–scheme gives very similar results for the stable mixingh heights as 

the Zilitinkevich interpolation scheme. The study also clearly showed the importance of  

using urban meteorological profile data as input for the meteorological preprocessor 

instead of the routinely used rural profile data.  

 

An overview of the other components (emissions, dispersion, atmospheric chemistry) of 

the modelling system is accompanied with computational results of the nitrogen oxides 

(NOx) and nitrogen dioxide (NO2) concentrations in the Helsinki metropolitan area in 

1993. A comparison of model predictions with the results of an urban measurement 

network is also presented.  
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The modelling system was fairly successful in predicting the urban NOx concentrations, 

and successful in predicting the urban NO2 concentrations. The integrated dispersion 

modelling system (UDM-FMI and CAR-FMI) has also been applied nationally in 

numerous other cities. The model predictions and results from an urban measurement 

network have been compared in several other cities, e.g. in the city of Turku (Pietarila 

et al., 1997). The agreement of predicted and measured NO2 concentrations was very 

similar to the results presented in this theses. 

 

The modelling system developed has been an important assessment tool for the local 

environmental authorities, and the municipal authorities have utilized the results of 

these computational methods in urban planning. For instance, we have assessed 

emissions, NO2 concentrations and potential NO2 exposures in the Transportation 

System Plan for the Helsinki Metropolitan Area (Helsinki Metropolitan Area Board, 

1999). This study evaluated environmental impacts for future traffic planning and land 

use scenarios in the area. Three alternate scenarios for the year 2020 were considered: 

(i) a “business-as-usual” scenario, (ii) a scenario, which emphasizes the use of private 

cars and widely dispersed land-use, and (iii) a scenario, which assumes a transportation 

system based on mainly public transport and compact land-use. The results can be 

utilized, e.g. in order to check the contingency of air quality with national and European 

Union air quality guidelines and limit values. 
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