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Chapter 1

Introduction

Performance analysis of modern communication networks is a complex task as the networks
contain phenomena on time scales, which can differ by several orders of magnitude. For
example, the time scale of cell or packet arrivals into a buffer is microseconds and the time
scale of call or session arrivals is seconds or fractions of a second. Modeling all time scales
with a single model would be impossible. Typically, the problem of time scales is handled
by assuming that the processes on the lower time scales are quasi-stationary with respect
to the higher time scales, allowing us to decouple the different time scales from each other
(see, e.g., Hui [16]). In the context of ATM, the division into time scales resulted in the use
of so called cell, burst, and call scale models, which have been extensively studied, e.g., in
Roberts et al. [30].

However, given that one can apply the principle of separation of time scales in modeling to
reduce model complexity, it is still often the case that a precise and accurate model with
known analytical results poses difficult problems in terms of the computability of the per-
formance measures of interest. Thus, approximative models or methods, such as simulation
methods, need to be developed to obtain approximations or estimates of the performance
measures. This is particularly important when the model is used as a basis for performing
network dimensioning (network optimization) or dynamic network control. Then, it is nec-
essary to attain a good balance between two sometimes conflicting criteria: model accuracy
and computability. In this work, the emphasis is on devising models and methods that
enable us quickly and with a sufficient degree of accuracy to compute certain performance
measures. Two different problems have been considered and a different approach has been
applied in each case.

In the first case, the use of efficient simulation techniques to obtain estimates of call blocking
probabilities in loss systems is studied. In particular, two loss systems are considered: the
multiservice loss system, which has been studied in detail, e.g., by Ross in [31], and the
multicast loss system, as studied by Karvo et al. in [17] and Nyberg et al. in [27]. In general,
loss systems are mathematically well understood and analytical expressions for the blocking
probabilities can be easily written down. However, a problem with the exact solution is
the prohibitive size of the state space, which renders a direct calculation computationally
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CHAPTER 1. INTRODUCTION 2

intractable.

In such a case, one can use simulation to estimate the blocking probabilities to the desired
level of accuracy. For the loss systems considered here, the form of the stationary distribution
is known, and static Monte Carlo (MC) simulation techniques can be applied for estimating
the blocking probabilities. To increase the efficiency of the simulation, i.e., to reduce the
variance of the estimator, there are several alternatives available in the literature (see, e.g.,
[32, chap. 4]).

In this work, the methods of conditional expectations and importance sampling (IS) are
applied to obtain novel improved methods of estimating the blocking probabilities. The
published methods represent increasingly efficient solutions to the problem. The first results
in variance reduction techniques can be found in Publications 1 and 2, where the method of
conditional expectations is applied. The results in Publication 3 represent a substantial step
forward in terms of efficiency. In the publication, only IS is applied and a new composite
form IS distribution is defined. Publications 4 and 5 contain the most significant results,
obtained with using only IS. In both publications, a decomposition property of the system is
utilized, allowing the breaking down of the original problem into independent subproblems.
To solve each subproblem, an appropriate conditional IS distribution is defined and a novel
algorithm has been given to generate the samples efficiently. In terms of the variance
reductions obtained with the method, it surpasses all previously reported methods in the
literature.

Instead of using simulations to estimate performance measures, one can develop analytical
approximations to ease the burden of computing performance measures. This approach is
used in the second part of this work. The problem that is investigated deals with Internet
congestion control. In this context, the IETF (Internet Engineering Task Force) has recently
defined in their standards Active Queue Management (AQM) methods that aim to increase
fairness among the flows sharing a congested buffer and to alleviate such problems as the
global synchronization of TCP flows, see [42] (RFC2309). One of the most prominent of
the AQM methods is the Random Early Discard (RED) algorithm proposed by Floyd and
Jacobson in [50]. The RED algorithm was designed to work in cooperation with the TCP
sources such that when congestion starts building up in the buffer (i.e., the load increases),
the RED algorithm begins to drop packets randomly, causing some of the TCP sources to
reduce their sending rates.

The aim in the study of the RED algorithm is to create an analytical dynamic model for the
interaction of the TCP source population and the RED controlled queue. An additional goal
is that the model should be simple enough to be used for exploring the impact of various
system parameters on the stability of the system.

The system can be considered as consisting of two parts: 1) a queue receiving an aggregate
packet arrival stream generated by a population of TCP sources, and 2) the population of
TCP sources reacting dynamically to successful packet transmissions and random packet
losses according to the TCP flow control algorithm. The focus is first on part 1 of the prob-
lem. As studied by Sharma et al. in [71], in modeling the system, even under the simplest
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assumptions regarding the arrival process and packet length distributions, one obtains a
problem for which the direct computation of the performance measures is impossible. Thus,
again a situation is encountered in which exact analytical models and formulas are imprac-
tical from a computational perspective, and approximative methods are required. First
results in this direction were reported in [71]. Most importantly, it introduces the approach
to modeling the time dependent behavior of the system in the “mean” sense by using dif-
ferential equations. This approach is continued in Publication 6, where a model describing
the complete queue dynamics is presented. This model enables us to apply control theoretic
principles for studying the behavior of the system. It is possible, for example, to define
criteria in terms of the parameters of the system such that, upon a load change, the system
reaches the new equilibrium in a controlled manner. In Publication 7, a model is presented
that closes the control loop from the queue back to the TCP sources, i.e., a model for parts
1 and 2 above. The model captures the dynamics of the interaction between an idealized
TCP source population and the RED controlled queue. Finally, the stability of the system
developed in Publication 7 is analyzed in Publication 8.

The thesis is organized as follows. The two problems that have been studied are treated
separately in the two subsequent chapters. Under each chapter, the contributions of the
work have been summarized in a consistent manner using the same notation throughout
(which is not necessarily the case in the publications). In Chapter 4, a summary of each
publication is presented, along with comments on the author’s contributions.



Chapter 2

Fast Simulation Techniques for Loss
Systems

2.1 Introduction

In general, loss systems can be used to model a situation where users establish calls through a
network and associated with each call are the resource (bandwidth) requirements on the links
along the route of the call. Here the term call is used in a sense which does not necessarily
imply the presence of a circuit switched network with advance resource reservations, but it
can also represent a flow in a packet switched network having a certain (fixed) bandwidth
requirement along the route of the flow. When the call is offered but there is not enough
bandwidth on all the links along the requested route, the call is blocked and lost. In this
work, two loss systems have been considered: the multiservice loss system, which has been
studied in detail, e.g., by Ross in [31], and the multicast loss system, as studied by Karvo
et al. in [17] and by Nyberg et al. in [27].

Under certain assumptions, the steady state distribution of the state of the system, the
number of calls in each class, identified by the route and the bandwidth requirements of the
call, has the well known product form. One of the most important performance measures in
these systems is the blocking probability of a call, for which an exact analytical expression
also exists. However, associated with the exact solution is a problem of computability,
namely that the state space grows exponentially with the number of traffic classes; see Kelly
et al. [24] for a complexity theoretic treatment of the problem in the case of algorithms in
multiservice loss systems. Recursive methods can be used to alleviate the problem (see, e.g.,
Kaufman [19], Roberts [29], Ross [31], Nyberg [27]) but they are applicable only in the case
of a small number of links and/or special network topologies.

One approach to the problem is to derive analytical approximations for the blocking prob-
abilities. In the case of the multiservice loss system, the analytical approaches are based
either on using the so called reduced load approximation, which leads to a set of fixed point
equations (see, e.g., Ross and Chung [3], Kelly [21], Mitra et al. [26]), or on mathematical
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CHAPTER 2. FAST SIMULATION TECHNIQUES FOR LOSS SYSTEMS 5

techniques applied to the generating function of the link occupancies (Choudhury et al. [2],
Down and Virtamo [6] and Simonian et al. [35]). Reduced load approximations for the
multicast loss system have been given by Karvo et al. in [18].

An alternative to deriving approximations is to simulate the system to a desired level of
accuracy. In this section of the thesis several methods are given for the efficient estimation
of the blocking probabilities by various simulation techniques. The methods have been
published in Publications 1-5 and they represent the progressively increasing improvements
that have been obtained during the course of the work while tackling the problem.

Traditionally, the simulation approaches have been based on either static Monte Carlo (MC)
techniques or process simulation techniques (using the terminology of [23, chap. 1]). Process
simulation is a method where the temporal stochastic behavior of the system under study
is simulated. For example, in queuing systems this translates to a discrete event simulation
of the arrival and departure of customers to/from the queue. On the other hand, static MC
is by nature a method, where the behavior of the system is not simulated in time. In the
case of the multiservice loss system, one way of performing process simulation is to make
the assumption that the call holding times are exponentially distributed. Then the process
determining the time evolution of the number of calls present in the system is described by
a Markov chain, and its simulation produces positively correlated samples. However, in this
work the focus has been on using static MC methods. This is possible, because the sta-
tionary distribution of the system is known, and it is feasible to, e.g., generate independent
samples directly from the distribution to minimize the effect of positive correlations between
the samples. Nonetheless, this standard static MC still suffers from the problem that the
blocking events are (relatively) rare, and, hence, the simulation is not very efficient.

2.1.1 Review of Efficient Simulation Methods for Queuing Sys-

tems

To increase the efficiency of the simulation, several well known general variance reduc-
tion methods exist: control variables, antithetic variates, conditional expectations and im-
portance sampling (see, e.g., [32, chap. 4] for general reviews on these techniques) and,
more lately in the context of process simulation, the so called RESTART method (or split-
ting method). In the context of simulating queuing systems, importance sampling and
RESTART have been the most commonly used variance reduction techniques.

Typically the efficiency of the proposed methods have been theoretically treated by consid-
ering a so called rare event estimation problem. Then the problem is that to estimate the
probability of the rare event, say p, the number of samples N(p) required to reach a fixed
relative deviation, defined as the ratio of the deviation of the estimator to its expectation,
by using normal simulation is roughly proportional to 1/p (assuming i.i.d. samples). Thus,
when p→ 0, the required number of samples N(p) to reach a fixed relative deviation is not
bounded. In this asymptotic setting, when p → 0 at an exponential rate, also N(p) grows
at an exponential rate, and a method is defined as asymptotically optimal if the number of



CHAPTER 2. FAST SIMULATION TECHNIQUES FOR LOSS SYSTEMS 6

required samples grows at a rate that is less than any exponential [15]. In the context of
importance sampling methods for queuing systems, the theory of large deviations has been
used to identify IS distributions satisfying the criteria of asymptotic optimality (see, e.g.,
Heidelberger [15] for a survey or Cottrell et al. [4], Frater et al. [8], Parekh and Walrand [28]
or Sadowsky [34] for individual results). Loosely speaking, the results in these papers are
based on applying large deviations theory to a rare event problem satisfying a so called
large deviations principle. As a result, one is able find out analytically the form and the
parameters of the IS distribution. However, the problem with this approach is that a) it
requires a considerable amount of prior knowledge of the system under study, b) the nu-
merical solution of the parameters for the IS distribution may not be feasible and, perhaps
most importantly, c) not all rare event problems satisfy a large deviation principle, and
these techniques cannot even be used. From the point of view of the work in this thesis, an
important paper is by Sadowsky and Bucklew [33], where the form of the asymptotically
optimal IS distribution for estimating the probability of multidimensional sets has been
derived to be of the composite type (in certain cases).

The use of process simulation to estimate steady state performance measures via the regen-
erative simulation method has been studied, e.g., by Goyal et al. in [12] (and in a number of
other papers from the same author). There it has been shown that the IS method should,
in this case, be dynamic: During one simulation cycle the process must be quickly driven
to a state where the rare event happens and after that IS should be turned off to allow the
system to “regenerate” again. In this setting, large deviation techniques could be applied
to solve the problem of identifying the asymptotically optimal IS distribution for estimating
the most probable way that the process reaches the rare event.

A practical approach for identifying suitable IS distributions has been proposed by Devet-
sikiokis and Townsend in [5] (and in a number of other papers from the same authors)
that avoids the problem of determining analytically suitable parameters for the IS distrib-
ution(s). Instead, the idea is to use well known stochastic optimization algorithms (for a
review on these, see, e.g., Glynn [11]) to search for the optimal parameter values for the IS
distribution(s) to be used during the simulation. A simulation under this scheme consists
first of a series of short simulations to identify the optimal values of the IS parameters, and,
once the stochastic optimization algorithm has converged, a longer simulation run is made
using these optimal values to derive the final estimate.

As has been noted, the effectiveness of importance sampling depends critically on the ability
to find the right IS distribution. The RESTART method, presented by Villén–Altamirano
and Villén–Altamirano in [37], is based on a known method called splitting, which has been
used, e.g., in particle transmission simulation (e.g., [13, chap. 8.2]). The idea there is to
estimate the probability of a rare event A by using conditioning on some less rare event
C. Then we have by conditioning that P{A} = P{A |C}P{C}. Using simulation it is easy
to estimate the probability P{C} since it is estimated from the whole simulation data and
it is less rare. However, the conditional probability P{A | C} is estimated only from the
portion of the simulation where the event C occurred. Since the occurrence of event C is
still relatively infrequent (although much more frequent than the occurrence of event A), the
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conditional probability P{A |C} does not get estimated very well. In RESTART the idea is
to increase the accuracy of the estimate for the conditional probability P{A |C} by making
several independent replications of those parts of the process where the event C occurred,
i.e., the process evolution is split into several paths when the threshold has been reached.
RESTART can also be used with multiple conditioning events. The decision parameters in
RESTART are then the conditioning events to be used and the number of sub-paths to be
generated. Glasserman et al. [9] consider the parameterization problem and provide results
for these decision parameters such that the method is asymptotically optimal. Akyamaç et
al. [1] have presented a related method, the direct probability redistribution (DPR) method.
Their method is related to RESTART in the sense that in DPR the state space is also divided
into progressively rarer subsets but, unlike in RESTART, the sets do not have to be nested.

2.1.2 Review of Simulation Methods for Loss Systems

The literature dealing specifically on the simulation of loss systems is not as vast as for
queuing systems. In process simulation context, Heegaard [14] has used importance sampling
successfully in a regenerative simulation of the underlying Markov chain of the multiservice
loss system to estimate the blocking probabilities. However, as mentioned earlier, in this
thesis the emphasis is on the use of static MC methods, since the steady state distribution
of the system is known.

The use of static MC with importance sampling has been studied by Ross in [31, chap. 6]
and by Mandjes in [25]. They have considered the use of importance sampling distributions
belonging in the family of so called exponentially twisted distributions. Ross has presented
heuristics which attempt to increase the likelihood of the blocking states while, at the same,
trying to limit the likelihood of generating misses from the allowed state space, resulting in a
rather conservative twist. Mandjes proposes the use of an importance sampling distribution
which twists the mean of the sampling distribution to match the most probable blocking
state. For the efficient simulation of the multicast loss system no prior literature exists as
far as the author is aware.

A related problem has been studied by Fleming et al. in [7], where the system is a loss system
used to model a cell in a cellular network which is divided into a number of sectors sharing a
pool of common speech channels. The model differs from the multiservice loss system only
in how the state space boundaries are defined. The paper uses control variates to obtain
variance reductions. The basic idea is to use as control variables the same variables that
are to be estimated in the system under study, but corresponding to a simplified system for
which the value of the control variable can be computed analytically. This approach could
also be used in estimating the blocking probabilities in the multiservice loss system, but it
has not been pursued in the course of this study.
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2.1.3 Overview of the Chapter

In this chapter a summary is presented of the results obtained by applying the methods
of conditional expectations and importance sampling in the multiservice loss system and
the multicast loss system. To this end, some basic notation is required. The notation will
overlap in the two systems somewhat as both systems share many properties and concepts
but they may have different definitions in each of the systems. Thus, the two loss systems
are treated separately in the following two sections (Section 2.2 and 2.3), and the results
related to each particular loss system are summarized under the section in question.

2.2 Efficient Simulation of Multiservice Loss Systems

2.2.1 The Multiservice Loss System

Consider a network consisting of J links, indexed with j = 1, . . . , J , with link j having a
capacity of Cj resource units. The network supports K classes of calls. Calls of class-k
arrive according to a Poisson process with arrival rate λk. New calls are always accepted
if there is enough capacity and the blocked calls are cleared. The call holding times are
exponentially distributed with mean µk. Associated with a class-k call, k = 1, . . . , K, is
an offered load ρk = λk/µk and a bandwidth requirement of bj

kunits on link j, i.e., bj
k are

assumed to be integer multiples of a basic bandwidth unit. Also, bj
k = 0 when a class-k call

does not use link j. Finally, the vector bj = (bj
1, . . . , b

j
K) denotes the required bandwidths

of different classes on link j.

Let us first assume that the system has infinite link capacities and let X = (X1, . . . , XK)
denote the state of the infinite capacity system, with Xk giving the number of class-k calls
in progress. Then the system behaves as K independent Poisson processes and the state
space is

I = {x | x ≥ 0},
where xk ∈ N, k = 1, . . . , K, with N denoting the set of natural numbers {0, 1, 2, . . .}. The
steady state distribution of X is of the product form

p(x) = P{X = x} =

K∏
k=1

pk(xk), x ∈ I, (2.1)

where pk(x) = (ρx
k/x!) e−ρk denotes the point probabilities of the one-dimensional Poisson

distribution. Note that instead of having the infinite space I any Cartesian product space
could be considered.

For the finite capacity system, the set of allowed states, S, consists of those states for which
the resulting link occupancies of all the links in the network do not exceed the capacity limit
of any link. Formally S is defined as

S =
{
x ∈ I | ∀ j : bj · x ≤ Cj

}
,
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where the scalar product is defined as bj ·x =
∑

k bj
kxk. The process describing the number

of calls in each class is a reversible Markov process satisfying the detailed balance equations.
Thus, the steady state distribution, π(x), of the process X̃ defined in the finite state space
S is given by the truncation of (2.1) to the allowed state space, S,

π(x) = P{X̃ = x} = P{X = x |X ∈ S} =


P{X = x}
P{X ∈ S} , x ∈ S,

0, otherwise.
(2.2)

Additionally, it can be noted that the process X̃ has the steady state distribution (2.2) also
when the call holding times have a general distribution with mean µk due to the well known
insensitivity result (see, e.g., [31, p. 163]).

The set of blocking states for a class-k call, Bk, consists of those states for which an addition
of one more call from class k to a given state results in a link occupancy on some link violating
the link capacity constraint,

Bk =
{
x ∈ S | ∃ j : bj · (x + ek) > Cj

}
,

where ek is a K-component vector with 1 in the kth component and zeros elsewhere. Also,
let Rk denote the set of links that the traffic class k uses, i.e.,

Rk = {j ∈ J | bj
k > 0},

where J = {1, 2, . . . , J} denotes the set of link indexes. The blocking probability of a class-k
call, Bk, can then be expressed in the form of a ratio of two state sums

Bk = P{X̃ ∈ Bk} =
∑
x∈Bk

π(x) =

∑
x∈Bk

p(x)∑
x∈S p(x)

=
P{X ∈ Bk}
P{X ∈ S} =

βk

γ
, (2.3)

where βk = P{X ∈ Bk} and γ = P{X ∈ S}.

The Basic Estimation Problem

The basic simulation problem can now be formulated in two ways. The simplest formulation
is obtained by defining from (2.3) Bk to be an expectation

Bk = E[1X̃∈Bk
], (2.4)

for which the following unbiased estimator can be given

B̂k =
1

N

N∑
n=1

1X̃n∈Bk
, (2.5)

with N denoting the number of samples of X̃ ∈ S.
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Alternatively, by (2.3), Bk can be expressed as a ratio of two expectations

Bk =
E[1X∈Bk

]

E[1X∈S ]
, (2.6)

and the corresponding estimator is given by

B̂k =
(1/N)

∑N
n=1 1Xn∈Bk

(1/N)
∑N

n=1 1Xn∈S
, (2.7)

where N is now the number of samples of X ∈ I. Note that (2.7) is a biased but consistent
estimator, i.e., for a finite N for (2.7), E[B̂k] �= Bk, but E[B̂k]→ Bk when N →∞.

Both formulations have been used as starting points in the publications. Publication 1 and
2 are based on using (2.4) and Publications 3–5 use (2.7).

2.2.2 Decomposition

An important finding in this work is the observation that the problem of estimating βk, i.e.,
the numerator in (2.6), can readily be decomposed into independent simpler sub-problems.
This property is used when developing the most efficient IS based methods for estimating
the blocking probabilities in Publications 4 and 5.

First, the set Dj
k ∈ S is introduced denoting the set of blocking states for link j consisting

of the points
Dj

k =
{
x ∈ I | Cj − bj

k < bj · x ≤ Cj

}
.

This set consists of the set of blocking states of class k in a system where only link j has a
finite capacity and all other links have an infinite capacity. The decomposition is based on
the following observation. The set of blocking states (for traffic class k) can be expressed as

Bk = S ∩
⋃

j∈Rk

Dj
k.

This is illustrated in Figure 2.1 on the left hand side, which shows a two traffic class example
with three links. The grey areas represent the blocking state regions Dj

k of a traffic class k
for each link. The whole set of blocking states Bk is then the area between the solid black
lines.

Now, βk is an expectation of the form E[hk(X)] with hk(·) being the indicator function of
the set Bk. Based on the above, hk(·) can be decomposed as

hk(x) = 1x∈Bk

=
∑
j∈Rk

1

νj
k(x)

1x∈S 1x∈Dj
k
,

=
∑
j∈Rk

hj
k(x),
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where

hj
k(x) =

1

νj
k(x)

1x∈S 1x∈Dj
k
,

and νj
k(x) is a function giving the number of sets Dj

k that the point x belongs to, i.e., it
takes care of weighting appropriately those points that lie in the intersection of two or more
sets Dj

k.

Thus, the computation of the original expectation decomposes into independent subprob-
lems, i.e,

βk = E[1X∈Bk
] =
∑
j∈Rk

E[hj
k(X)].

The value of one of the hj
k(·) functions is illustrated in Figure 2.1 on the right hand side.

Each expectation E[hj
k(X)] can be thought of as the blocking probability contribution due

to link j.

x2

x1

1
kD 2

kD
3
kD

kB

x2

x1

1
kD 2

kD
3
kD

( ) 2/11 =xkh

( ) 11 =xkh

( ) 01 =xkh

Figure 2.1: Decomposition of the set Bk into three subsets in a network with two traffic
classes and three link constraints (left figure) and the values of one of the hj

k(·) functions in
different parts of Dj

k (right figure).

With slight modification the set Bk can be decomposed into non-overlapping regions, whence
there is no need for the 1/νj

k(x) term in the hj
k(x) function. This can be done by attributing

each state that belongs to multiple sets Dj
k uniquely to only one Dj

k. One alternative is to
attribute the state to the link having the smallest link index j. This new set is denoted by
E j

k and it is defined as

E j
k = S ∩

{
x ∈ I : x ∈ Dj

k ∧ x /∈ Dj′
k , ∀j′ < j

}
.

Note that the intersection with S is now included in the definition of the set E j
k . Now, the

E j
k obviously form a partitioning of Bk, i.e.,

Bk =
⋃

j∈Rk

E j
k ,
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and E j
k ∩ E j′

k = ∅, when j �= j′. Thus, the estimation problem of βk can be formulated
entirely in terms of probabilities, instead of expectations,

βk = P{X ∈ Bk} =
∑
j∈Rk

P{X ∈ E j
k}.

Here each probability P{X ∈ E j
k} can be thought of as the blocking probability contribution

due to link j.

The partition of Bk into non-overlapping sets E j
k is illustrated in Figure 2.2 for the same

two traffic class example as in Figure 2.1. In the figure, Bk is represented by the grey area
and it is formed by the union of three disjoint subsets E2

k , E3
k (light grey areas) and E1

k (dark
grey area). Also, note that each E j

k is a subset of the corresponding Dj
k.

x2

x1

1
kD 2

kD
3
kD

kB

1
kE

2
kE

3
kE

Figure 2.2: Decomposition of Bk into sets Dj
k and E j

k .

2.2.3 Sample Generation Methods

The efficient generation of samples having some desired distribution is an essential part of
the simulation problem. In this section, two methods are considered, the rejection method
and the Gibbs sampler. It is shown how they are applied in the multiservice loss system
context to generate samples of X̃, i.e., samples obeying the distribution π(x) as in (2.2).
Note that the methods apply more generally for generating any random variables having
some distribution in a given set.

In the traditional Monte Carlo method the idea is to generate independent samples of
X ∈ S, i.e., samples of X̃. In the case of multiservice loss systems one often uses the
rejection method which consists of generating samples of X in a larger space I, where the
components of X are independent, and rejecting those samples which fall outside the allowed
state space S. Note that the samples can actually be generated in any Cartesian product
space enclosing S. In practice, one would choose the smallest such a space, which is the
space limited by the maximum number of calls allowed for each class. The accepted samples
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then have the distribution π(x) and (2.5) is used to estimate the blocking probabilities. In
most of the work reported here, the Monte Carlo rejection method has been used.

The MC rejection method, described above, allows the generation of independent samples
from a distribution. However, the estimation of the blocking probabilities by simulation
does not require the samples to be independent. Positive correlation between the samples
just makes the estimator less efficient from the point of view of the variance. In the Gibbs
sampler the idea is to generate a Markov chain having the desired stationary distribution,
by using transition probabilities based on conditioning. The states of this chain are then
used as samples.

The idea is based on the following very general property (see Publication 1 or [36] for more
details). Recall that X̃ is a vector random variable with state space S and stationary
distribution π(x). Let A1, . . . ,AI form a partition of the state space and let ι(X̃) denote
the unique index of the set to which the state X̃ belongs to. Then the Markov chain X̃n

with the transition probability

P{X̃n+1 = y |X̃n = x} = P{X̃ = y |X̃ ∈ Aι(x)} (2.8)

has the invariant distribution π(x).

Let P denote the transition probability matrix with the components given by (2.8). The
Markov chain generated by this transition matrix is reducible, because there are no transi-
tions between different sets. However, by defining several partitions 1, . . . , M with transi-
tion matrices P(m) the Markov chain X̃n corresponding to the compound transition matrix
P = P(1) · · ·P(M) is irreducible with a suitable choice of the partitions. Then π(x) will be
the unique stationary distribution of the chain.

For the purpose of estimating the blocking probability of class-k calls in the multiservice loss
system, the partition is defined to consist of sets in the coordinate direction of traffic class
k, which leads to the so called Gibbs sampler. Considering all the traffic classes there are
altogether K partitions. Let us denote by Ai

k the ith set in partition k. Using a two traffic
class example, shown in Figure 2.3 (left picture) for traffic class 2, the partition consists of
the vertical columns. Each set Ai

k consists of states where the number of calls of all other
classes are fixed, but the kth component varies. In general, we refer to sets Ai

k as k-columns.
The set of blocking states Bk for the class-k calls consists of the end points of the k-columns.
The Markov chain X̃n generated by the compound transition matrix P is irreducible since
it is possible to move from any state x in the coordinate convex state space S to any other
state y with at most K steps in alternating directions.

The simulation of the Markov chain X̃n consists of making transitions with the transi-
tion matrices P(k) in cyclical order. This is illustrated for the two traffic class example
in Figure 2.3 (right picture). In transitions generated with P(k) only the component xk

changes. Starting from state X̃n the value of xk of the next state is obtained by draw-
ing it from the one-dimensional truncated Poisson distribution pk(xk)/gk(Lk(Xn)) with
xk ∈ (0, . . . , Lk(X̃n)), Lk(X̃n) denoting the length of the k-column to which the state X̃n
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belongs, and gk(L) denoting the normalization sum

gk(L) =

L∑
l=0

pk(l) =

L∑
l=0

ρl
k

l!
e−ρk .

x2

x1

x2

x1

Figure 2.3: State space partitioning and Gibbs sampler example.

The Gibbs sampler provides a simple way of generating samples with the distribution π(x)
without any misses, which occur with the traditional Monte Carlo rejection method. All the
samples X̃n have directly the correct distribution π(x) and can be used in estimator (2.5).
This property is particularly useful when the traffic loads are high, which would cause a lot
of misses to be generated in the Monte Carlo rejection method. The Gibbs sampler is used
in this thesis in Publication 1 and was also applied by Lassila and Virtamo in [22].

2.2.4 Variance Reduction by Conditional Expectations

The method of conditional expectations is a well known variance reduction technique in
simulations, see [32, chap. 4]. Let X ∈ S denote here temporarily any random variable
with some distribution P and assume that we are interested in the value of the expectation
H = E[h(X)]. The following elementary identity holds always,

H = E[h(X)] = E[E [h(X) |g(X)]],

where g(·) is another function. Assume now that the conditional expectation

η(x) = E [h(X) |g(X) = x]

can be calculated analytically. Then the expectation of h(X) becomes

H = E[h(X)] = E[η(g(X))]. (2.9)

More specifically, of interest here is the case where the state space S has a partitioning into
sets Ai, i = 1, . . . , I. A state X belongs to one and only one of the sets Ai. Let us denote
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the unique index of this set by ι(X). This discrete valued function is used as the function
g(·) in the above formulae. So, finally, the estimator is

Ĥ =
1

N

N∑
n=1

η(ι(Xn)) =
1

N

I∑
i=1

η(i)Ni, (2.10)

where Ni is the count of the samples having ι(Xn) = i or, equivalently, Xn ∈ Ai, and
η(i) = E [h(X) |X ∈ Ai]. Intuitively it is clear that estimator (2.10) has a lower variance
than the basic estimator of H , i.e., Ĥ = (1/N)

∑
n h(Xn), since part of the solution to the

problem is computed analytically, thus eliminating some randomness from the results. In
the i.i.d. case, this can also be shown easily analytically, see Publication 2. However, the
real problem is actually to find a suitable conditioning function η(·) whose value can be
readily computed analytically. The conditional expectations method to be described here
is used in Publications 1 and 2.

Now, let X again denote the state variable in the multiservice loss system. Let us first
assume that the Monte Carlo rejection method (or the Gibbs sampler) is used to generate
samples of X̃ ∈ S. In the case of the multiservice loss system, the same K partitions as with
the Gibbs sampler can be used, i.e., partition k consists of columns in the direction k, and
Ai

k denotes the ith k-column in partition k. The blocking probability, Bk, is an expectation
of the above considered type with h(X̃) = 1X̃∈Bk

(cf. eq. (2.4)). Because of the product

form of the state probabilities (2.2) the conditional expectation ηk(i) = E
[
1X̃∈Bk

|X̃ ∈ Ai
k

]
can be calculated easily. The probability distribution constrained to column i in partition
k (set Ai

k) is a truncated Poisson distribution and the conditional blocking probability is
given by

ηk(i) = E
[
1X̃∈Bk

|X̃ ∈ Ai
k

]
= erl(Li

k, ρk),

where Li
k denotes the length of the k-column i (set Ai

k) and erl(L, ρ) denotes the well known
Erlang loss formula,

erl(L, ρ) =
ρL/L!∑L
n=1 ρn/n!

.

This leads to the estimator

B̂k =
1

N

N∑
n=1

erl(Lk(X̃n), ρk),

where, for clarity, Lk(X̃) has been used for the length of the k-column to which the state X̃

belongs, instead of L
ι(X̃)
k .

In the above, the samples X̃n have to be generated in the state space S from the distribution
(2.2). However, as was shown earlier, from (2.6) the blocking probability can be defined by
considering a random vector X in a larger state space I. The Monte Carlo method can be
applied both for the numerator and the denominator leading to the estimator (2.7). Note
that if the same samples Xn are used in both the numerator and the denominator, this
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estimator, in effect, reduces to the estimator (2.5), where in the denominator one would
have the number of accepted samples from the rejection method.

Something different, however, is obtained by noting that both the numerator and the de-
nominator of (2.6) can be estimated with the conditional expectation method. To this end,
we define first the space Ĩ, which is the Cartesian product space limited by the maximum
number of allowed class-k calls Nk

max. Formally this state space is defined as

Ĩ = {0, . . . , N1
max} × · · · × {0, . . . , NK

max}.

In this space, the distribution (2.1) becomes a product of independent truncated Poisson
distributions, and let X denote here temporarily a random variable having this distribution.
Then, let us define K partitions of the space Ĩ into sets Ãi

k where the sets in the kth partition
consists of k-columns in the space S̃, as illustrated in Figure 2.4. Further, the conditional

x2

x1

Figure 2.4: New partitioning of the state space.

expectations are defined

ηk(i) = E
[
1X∈Bk

|X ∈ Ãi
k

]
,

ϑk(i) = E
[
1X∈S |X ∈ Ãi

k

]
.

Note that the set Bk is still formed by the endpoints of the k-columns Ai
k, not by those of

the Ãi
k. Both of the conditional expectations can be calculated analytically,

ηk(i) =

{
0, Ãi

k ∩ S = ∅,

pk(L
i
k)/gk(N

k
max), Ãi

k ∩ S �= ∅,

ϑk(i) =

{
0, Ãi

k ∩ S = ∅,

gk(L
i
k)/gk(N

k
max), Ãi

k ∩ S �= ∅,

where, again, Li
k is the length of the column Ai

k (⊆ Ãi
k), and gk(L) =

∑L
l=0(ρ

l
k/l!)e

−ρk .

With the aid of these conditional expectations the blocking probability (2.6) can be written
as

Bk =
E[ηk(ιk(X))]

E[ϑk(ιk(X))]
,
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where ιk(X) now denotes the unique index i of set Ãk
i to which X belongs. The corresponding

Monte Carlo estimator becomes

B̂k =

∑N
n=1 ηk(ιk(Xn))∑N
n=1 ϑk(ιk(Xn))

=

∑N
n=1 pk(Lk(Xn))1

X
(k)
n ∈S∑N

n=1 gk(Lk(Xn))1
X

(k)
n ∈S

, (2.11)

where Lk(X) denotes the length of the column Ai
k to which X belongs, X

(k)
n is the K-vector

obtained from Xn by setting its kth component to 0 (the set Ãi
k to which Xn belongs has a

nonempty intersection with S if and only if X
(k)
n ∈ S), and where we have utilized the fact

that gk(N
k
max) is constant for traffic class k and cancels out. Note that in this formulation

even a sample Xn falling outside S can give a contribution to the numerator and denominator
of (2.11). Additionally, (2.11) is a biased but consistent estimator, similarly as (2.7).

2.2.5 Variance Reduction by Importance Sampling

In what follows, the estimation of the blocking probabilities via the importance sampling
simulation method is discussed. The main problem in the simulation is to quickly get a good
estimate for βk, i.e., the numerator in (2.3), especially in the case, when the probabilities
Bk are very small. For completeness, it can be noted that the blocking probability Bk does
not only depend on βk, but also on the state sum γ = P{X ∈ S} given by the denominator
of (2.3). However, this probability is usually close to 1 and it is easy to estimate by using
the previously introduced conditional expectations method (or just the standard Monte
Carlo method). Therefore, in the rest of this section we concentrate on efficient importance
sampling based methods for estimating βk.

Importance sampling is also a well known variance reduction method, see [32, chap. 4],
and it is based on the following property. Consider the general problem of estimating the
expectation H = E[1X∈A], where X ∈ S has distribution p(x). Let X∗ denote another
random variable with distribution P ∗ : p∗(x) = P{X∗ = x} > 0, ∀X∗ ∈ A. With respect to
this distribution the expectation H can be expressed as

H = E[1X∈A] = E[1X∗∈A w(X∗)],

where w(X∗) = p(X∗)/p∗(X∗) is the so called likelihood ratio. This leads to the Monte
Carlo estimator

Ĥ =
1

N

N∑
n=1

1X∗
n∈A w(X∗

n). (2.12)

The distribution p∗(·) is generally referred to as the importance sampling distribution, and
the main difficulty in this method is to identify a distribution p∗(·) such that the variance
of the estimator (2.12) is minimized. A well known result is that the ideal zero variance
estimator for the problem is the original distribution p(x) conditioned on the probability of
the set A, i.e., p(X)/P{X ∈ A}. Unfortunately, this distribution is impractical, because, to
compute the likelihood ratio for each sample requires explicit knowledge of the probability of
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the generated sample. In the case of the ideal distribution, this would require knowledge of
the very quantity being estimated. However, the point is to derive realizable IS distributions,
which approximate the ideal distribution as closely as possible.

2.2.6 Composite Form IS Distribution and Exponential Twisting

Let X denote again the random variable defined in I with distribution (2.1), and consider
estimating βk = E[1X∈Bk

]. Let p∗(x) denote the IS distribution satisfying

P ∗ : p∗(x) = P{X∗ = x} > 0 ∀ X∗ ∈ Bk.

From (2.12) we have the following estimator

β̂k =
1

N

N∑
n=1

1X∗
n∈Bk

w(X∗
n), (2.13)

where N is the number of generated samples of X∗. In Publication 3 it is shown that the
variance of the observed variable 1X∗∈Bk

w(X∗) in (2.13) can be expressed as

V [1X∗∈Bk
w(X∗)] =

β2
k

β∗
k

− β2
k + β∗

kσ
∗2, (2.14)

where β∗
k is the probability of the set Bk under P ∗, β∗

k = E[1X∗∈Bk
], and σ∗2 is the variance of

the observed variable in the set of the blocking states under P ∗, σ∗2 = V[w(X∗) |X∗ ∈ Bk].

By increasing β∗
k , the probability of Bk under p∗(x), the first and most important term in

(2.14) is reduced. Ideally, if one can make β∗ = 1, the first and second term completely
cancel. Furthermore, if the probability of Bk can be increased uniformly, i.e., with w(x)
constant in Bk, then σ∗2 = 0. Thus the samples would have the distribution P{X = x |
X ∈ Bk} and the estimator would have a zero variance. In practice one has to compromise
between the following. It is important to increase the probability of the set Bk but at the
same time it is important to keep w(x) as constant as possible in Bk in order to minimize
σ∗2.

Consider then restricting the whole set of possible IS distributions to the family of expo-
nentially twisted distributions. In this case, p(x) is a Poisson distribution with load ρ. The
exponentially twisted distribution is also a Poisson distribution, but with a different load.
By using a single exponentially twisted distribution one can twist the mean of the sampling
distribution to be, e.g., centered around the most probable blocking state (as is done in [25]).
However, doing so can make the distribution of w(x) in Bk uneven giving rise to a large σ∗2

in (2.14). This may happen, because on the boundaries of all the link constraints, there
can be states that contribute significantly to the state sum βk, implying that an efficient IS
distribution must be capable of producing samples lying on the boundaries of all the links
that the traffic class uses. This can be achieved by using a composite distribution, which is
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a weighted combination of several exponentially twisted distributions. This approach is sup-
ported by the results of Sadowsky and Bucklew in [33], which show that the asymptotically
optimal twisting distribution for Bk indeed is of this composite form.

Now, the basic idea is to derive a distribution for traffic class k which will make all the
blocking states associated with the active link capacity constraints more probable. To this
end, one first needs to identify the most probable blocking states on the links which traffic
class k uses in the network, i.e., on the links belonging in Rk. Let x∗

j denote the most
probable blocking state on link j ∈ Rk. The most probable blocking state x∗

j on link j is
found by maximizing (2.1) on the hyperplane representing the capacity constraint of the
link,

max
x

K∏
k=1

ρxk
k

xk!
e−ρk

subject to x · bj = Cj ,

where the components of x are real valued, i.e., not restricted to integers. This can be
solved numerically, as shown in Publication 3. Then the composite sampling distribution
for traffic class k is expressed as

p∗(x) =
∑
j∈Rk

Pj p∗j (x), (2.15)

where the Pj form a discrete probability distribution. In particular Pj , is the probability of
using the distribution p∗j(·) for generating the sample. Samples are generated from (2.15)
by first drawing the index j of the link distribution p∗j(x) to be used from the discrete
distribution of the Pj . The sample X∗

n is finally generated from the exponentially twisted
distribution determined by the drawn link index and is used in the estimator (2.13).

This is illustrated in Figure 2.5, which depicts a two traffic class system with two link
constraints. The left picture shows the equivalue contours of the original distribution p(x),
together with its maximum ρ and the points at which the equivalue surfaces touch the two
link constraints, representing the most probable blocking states x∗

1 and x∗
2. The right picture

shows the equivalue contours of the resulting composite distribution, which is a weighted
combination of two twisted distributions having their maxima at the points x∗

1 and x∗
2.

Note that this is not exactly what the method described above suggests. The method above
suggested that the points x∗

1 and x∗
2 are used directly as the twisting parameters, which

means that the expected value of the link sampling distributions p∗j(x) are equal to the x∗
j .

This does not imply that the maxima of the p∗j (x) are equal to the x∗
j – the maxima are

close to the x∗
j , but not exactly. However, for presentation purposes the picture has been

obtained in the above mentioned manner, and the figure illustrates the idea behind the use
of the composite distribution. The probabilities P1 and P2 in the composite distribution
have here been obtained by simply using the relative weights of the points x∗

1 and x∗
2, i.e.,

Pj = x∗
j/(x∗

1 + x∗
2) for j = 1, 2.

It remains to find a method to obtain the weights Pj . Again, the used heuristics are based
on the goal of keeping the likelihood ratio as constant as possible in Bk. Let Jk denote
the number of links in the set Rk. With Jk parameters Pj available, w(x) cannot be made
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Figure 2.5: Equivalue contours of the original distribution p(x) with load ρ (left figure) and
the equivalue contours of the composite distribution p∗(x) (right figure) for a two traffic
class example.

constant everywhere in Bk. Instead, one can choose to require w(x) to be constant, α, at
the most probable blocking states x∗

j . This requirement leads to a set of linear equations∑
i∈Rk

Pi p∗i (x
∗
j ) = α p(x∗

j ), ∀j ∈ Rk, (2.16)

where the constant α is chosen such that
∑

j∈Rk
Pj = 1. Unfortunately, there is no guarantee

that the solution always satisfies Pj ≥ 0, ∀j ∈ Rk. This approach is used in the numerical
results given in Publications 3 and 4. If negative values appear, (2.16) may be replaced by a
suitable minimization problem with the constraint, Pj ≥ 0, ∀j ∈ Rk. Alternatively, one may
simply apply the heuristics used in obtaining Figure 2.5, i.e., to use the relative weights of
the points x∗

j as the Pj.

2.2.7 Decomposition and the Inverse Convolution IS Method

In the following, the most efficient importance sampling method, the inverse convolution
method, developed during the course of the work and published in Publication 4, is pre-
sented. As discussed earlier, by using decomposition, it is possible to divide the task of
estimating βk into independent problems of estimating, for each j ∈ Rk, expectations of the
type

ξj
k = E

[
1

νj
k(X)

1X∈S 1X∈Dj
k

]
,

in which case βk =
∑

j ξj
k. Note that when estimating the ξj

k, the number of samples to

be used for each estimate of ξj
k, Nj , are free parameters. The Nj can be chosen optimally

by dividing the total number of samples in proportion to the standard deviations of the
ξj
k. Of course, these standard deviations are not known before the simulation. Thus, a
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dynamic sample allocation scheme is needed. A detailed description of the sample allocation
algorithm is given in Publication 4.

To estimate each ξj
k efficiently importance sampling is applied. Obviously, in this case, the

ideal IS distribution would always generate points that lie in Dj
k, and are always inside

the allowed state space S, i.e., points that are in Bk, with a distribution proportional to
p(x)/ν(x). Consequently, the value of the observed variable w(·)/ν(·) would be a constant.
This conditional distribution is unrealizable, but it can well be approximated by another
conditional distribution

p∗j(x) = P{X = x |X ∈ Dj
k} =


P{X = x}
P{X ∈ Dj

k}
=

p(x)

vj
k

, if x ∈ Dj
k,

0, otherwise,

(2.17)

where vj
k is the probability mass of the set Dj

k. When using (2.17) as the IS distribution,
the likelihood ratio is a constant,

w(x) =
p(x)

p(x)/vj
k

= vj
k,

and the IS estimator for ξj
k becomes

ξ̂j
k =

vj
k

Nj

Nj∑
n=1

1

ν(X∗
n)

1X∗
n∈S , (2.18)

where Nj denotes the number of samples.

This is illustrated in Figure 2.6. With IS distribution (2.17) points are generated in the set
Dj

k (area between the dashed lines) and simulation is needed essentially only to determine
which part of the probability mass of Dj

k is actually inside S (factor 1X∗∈S , grey area in the
figure). Additionally, the factor 1/νj

k(X
∗) compensates for double (or multiple) counting for

such points x that belong to more than one of the sets Dj
k. However, the effect of this is of

minor importance as, in practice, most of the points belong to only one set Dj
k.

The efficiency gain obtained with the above can be shown as follows (where, for clarity, the
effect of the factor 1/νj

k(·) has been omitted). When using standard MC, the samples are
generated from the original distribution p(·), and the task is to estimate the probability
p = E[1X∈S 1X∈Dj

k
]. Each sample is then an independent Bernoulli variable and the relative

error (or relative deviation) of the estimate, given by the ratio of the standard deviation and
the expected value of the estimate, after N samples have drawn, is

√
(1− p)/(pN). Thus,

assuming for instance p = 0.005, almost 80 000 samples are needed to have a relative error
of 5% for the estimate. On the other hand, when using (2.17) as the IS distribution, only
the conditional probability p′ = E

[
1X∈S |X ∈ Dj

k

]
needs to be estimated. This probability

is typically much greater than p. Thus, assuming for example that p′ = 0.9 only about 45
samples are needed to reach the same 5% relative error level, giving a decrease by a factor
of almost 2000 in the required sample size. Numerical experiments in Publications 4 and 5
verify that efficiency gains of this order or even greater can be obtained in practice, as well.
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Figure 2.6: Estimation of ξj
k.

The Inverse Convolution Algorithm

One of the main contributions of this work is the so called inverse convolution method
with which samples can be efficiently generated from the conditional distribution (2.17), as
explained in Publication 4. As the estimation of ξj

k is considered for a fixed j ∈ Rk, the link
index j and the traffic class index k for which the βk is to be estimated are omitted from
the notation. This implies that Cj , bj

k and Dj
k are denoted here by C, b and D, respectively.

To further simplify the notation, it is also assumed, without loss of generality, that the
traffic classes which use link j have the indexes 1, . . . , L. The inverse convolution method
is based on the observation that it is relatively easy to generate points into the set D from
the conditional IS distribution (2.17), i.e., P{X = x |X ∈ D}, by reversing the steps used
to calculate the occupancy distribution of the considered link by convolutions.

Let Y j
k denote the random variable for the occupancy of link j due to the traffic of class k,

i.e Y j
k = bj

kXk. The distribution of Y j
k is

mj
k(y) = P{Y j

k = y} =

{
fk(x), ∃x ∈ N : y = bj

kx,
0, otherwise.

Let Sl, with l = 1, . . . , L, denote the occupancy on the considered link caused by the
superposition of the first l classes, i.e.,

Sl =
∑
l′≤l

Yl′, l = 1, . . . , L.

We can also express Sl = Sl−1 + Yl, where Sl−1 and Yl are independent. The distribution of
Sl, ql(x) = P{Sl = x}, can be obtained recursively from the convolution

ql(x) =
x∑

y=0

ql−1(x− y)ml(y). (2.19)

Thus, the probability mass of the set D, v, is obtained from

v = P{X ∈ D} = P{C − b < SL ≤ C} =

C∑
i=C−b+1

qL(i).
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The event Sl = x is the union of the events {Yl = y, Sl−1 = x − y}, y = 0, . . . , x with
the probabilities ml(y)ql−1(x− y). Conversely, given Sl = x, the conditional probability of
the event Yl = y is ml(y)ql−1(x − y)/ql(x), for y = 0, 1, . . . , x. These probabilities can be
precomputed and stored. Then, given Sl = x, using these probabilities it is easy to draw a
value, say y, for Yl and consequently for Sl−1 = x − y. In fact, it is advantageous to store
directly the values of the cdf

P{Yl ≤ y |Sl = x} =

y∑
y′=0

ml(y
′)ql−1(x− y′)/ql(x). (2.20)

Then the value of Yl ≤ y can be drawn by finding the smallest y such that P{Yl ≤ y |Sl =
x} ≥ U , where U is a random variable drawn from the uniform distribution in (0, 1).

Now, SL is the occupancy of the link, and the set D corresponds to C − b < SL ≤ C. A
point in D can be generated by first drawing a value for SL using the distribution qL(·)
conditioned on C − b < SL ≤ C, which is also precomputed and stored. Then, as described
above, (YL, SL−1) can be drawn from (2.20). Once the value of SL−1 is fixed, (YL−1, SL−2)
can be drawn. This process is continued until the value of the last component Y1 has been
drawn. The most important thing here is to note that the distributions of the conditional
sets (Yl, Sl−1) for a fixed value of Sl are easily precomputed and, hence, to generate each
component Yl, a uniformly distributed random variable is generated and the value of Yl is
obtained as an outcome from a simple table lookup. The other classes not using the link,
i.e., classes L + 1 to K, are independent from classes 1, . . . , L and from each other. Hence,
their values are drawn independently from the distributions fk(·), k = L + 1, . . . , K. In
summary the procedure for generating samples from (2.17) with the inverse convolution
method can be described as follows. First we have the preparatory steps:

1. Compute the distribution of SL recursively from (2.19).

2. Compute the conditional distributions given by (2.20), for l = 1, . . . , L.

To generate a sample from (2.17), the following is performed:

1. Generate a value, say s, for link occupancy SL from P{SL = x |C − bL < SL ≤ C}.
2. For i from L downto 2

- Generate the value of Yi from the distribution P{Yi ≤ y |Si = s} (eq. (2.20)).

- Set Xi ← Yi/bi.

- Set s← s− biXi.

3. Set X1 ← s/b1.

4. For i from L + 1 to K, generate Xi from pi(x) = (ρx
i /x!) e−ρi.
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2.2.8 Decomposition and the Conditional Gaussian IS Method

In this section another IS distribution for estimating ξj
k is presented, which has been pub-

lished in Publication 4. However, now the p∗j(x) will only approximately represent the
conditional distribution (2.17), i.e., P{X = x |X ∈ Dk

j }. On the other hand, the generation
of samples from this distribution can be done without the precomputation and storage of
a large number of probability tables as required in the inverse convolution method. Again,
for ease of notation, the dependence on the traffic class k for which ξj

k is estimated and the
link j ∈ Rk under consideration are omitted.

The idea of the method is briefly as follows (a full description is given in Publication 4). The
distribution P{X = x |X ∈ D} can be approximated by a suitably parameterized conditional
multinormal distribution. Sample points in D can be generated by first generating a value
for the link occupancy from its marginal distribution in the strip C − b < b · X ≤ C
and then generating the other coordinates from a conditional multinormal distribution. As
the normal distribution is a continuous distribution, the values have to be discretized by
rounding them to the closest integers. There is, however, a small technical problem in the
method. As will be explained, in order to be able to make the calculation of the likelihood
ratio practical, the strip C − b < b · X ≤ C needs to be enlarged somewhat, i.e., limits
r ≤ b ·X ≤ s are used, where r < C − b + 1 and s > C.

In more detail the procedure is as follows. First, the point x∗ maximizing p(x) on the con-
straining hyperplane b · x = C is determined (similarly as earlier when using the composite
distribution and twisted distributions). Then, at that most important point x∗ a Gaussian
function g(x),

g(x) =
a

(
√

2π)K |Γ| e
− 1

2
(x−m)TΓ−1(x−m),

is fitted to p(x) (considered as a continuous function of x). The parameters a, m and Γ of
g(x) are obtained by requiring the 0th, 1st and 2nd derivatives of p(x) to match those of g(x)
at x∗. Since p(x) is of the product form, the fitting reduces to k one-dimensional problems.

Let us further assume, without loss of generality, that the traffic class for which ξ is to be
estimated is traffic class K. Next a change of variables is made where xK is replaced by the
occupancy of the link

∑
k bkxk, i.e.,{

zi = xi, ∀i = 1, . . . , K − 1,

zK =
∑K

k=1 bkxk.
.

In matrix notation, this and its inverse can be expressed as, with the components of A−1

obvious from the above equations, {
z = A−1x,
x = Az.

Now it is easy to verify that if X is a random variable with distribution N(m,Γ) then

Z = A−1X is a random variable with distribution N(m̃, Γ̃), where{
m̃ = A−1m,

Γ̃−1 = ATΓ−1A (⇒ Γ̃ = A−1Γ(A−1)T).
(2.21)
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The conditional distribution of X ∼ N(m,Γ) conditioned on r ≤ X · b ≤ s corresponds

to the conditional distribution of Z ∼ N(m̃, Γ̃) conditioned on r ≤ ZK ≤ s. It is easy to
generate Z from this distribution, and then X is obtained from X = AZ.

To generate Z, observe that ZK obeys a univariate normal distribution ZK ∼ N(m̃K , Γ̃KK),
and its value in the range r ≤ ZK ≤ s can be generated by any of the standard methods (e.g.,
by inversion of the cumulative distribution function, or, more efficiently, by the acceptance
rejection method using an exponential majorizing function, see [32, chap. 2] or Publication 4,
Appendix 2). Second, given the value of ZK , the other components of Z, i.e., Z(1) =
[Z1, . . . , ZK−1] again obey a multinormal distribution by Theorem 10.2 in [20, p. 324]

Z(1) ∼ N(m̃(1) −B−1
11 B12(ZK − m̃K),B−1

11 ),

where m̃(1) denotes the first K − 1 components of m̃ and the Bij, i, j = 1, 2, represent

components in the partitioning of Γ̃

Γ̃ =

K−1︷︸︸︷ 1︷︸︸︷(
B11 B12

B21 B22

)
}K − 1

} 1
.

Note that B22 = Γ̃KK. Thus,

Z(1) ∼ m̃(1) −B−1
11 B12(ZK − m̃K) + B

−1/2
11 ·N(1), (2.22)

where N(1) is a vector of K − 1 independent N(0, 1) distributed random variables. In
summary, the procedure for generating samples into D can be described as follows. First
we have the preparatory steps

1. Obtain m and Γ from the fitting procedure.

2. Calculate m̃ and Γ̃ from (2.21).

3. Determine the submatrices Bij and calculate B−1
11 B12 and B

−1/2
11 , needed in (2.22).

Then for each sample the following is performed:

1. Generate ZK from N(m̃K , Γ̃KK) in the interval (r, s).

2. Generate Z(1) using (2.22).

3. X = AZ, where Z = [Z(1), ZK ].

4. Round the components of X to closest integers.
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Let X∗
n denote the samples obtained in the above described manner. In order to use the

samples, it must be possible to calculate the likelihood ratio and therefore the probability
of the generated samples, i.e., the integer lattice points in D. Note that, because of the
rounding operation, the probability of a sample X∗

n equals the probability mass of the
conditional normal distribution within the K-dimensional unit cube with the center X∗

n. If
the cube is totally embedded in the strip defined by the condition r ≤ ZK ≤ s, then the
calculation is easy. Even though a change of variables is made in order to control the values
of ZK , the density in the strip r ≤ ZK ≤ s still is the product of Gaussian densities. Thus,
the probability mass in the cube can be expressed as the product of the probabilities of
the respective intervals of normal variables. On the other hand, if the cube is not wholly
embedded in the strip r ≤ ZK ≤ s, then the calculation of the probability is complicated.

Thus, we have to ensure that for each integer lattice point in D the surrounding unit cube
is wholly embedded in the strip r ≤ ZK ≤ s. This means that the strip must be enlarged by
choosing r = C−b+1−∆, s = C +∆, where ∆ = 1

2

∑
k bk. This is illustrated in Figure 2.7,

where the grey area corresponds to D. Note that ∆ = [1
2
, . . . , 1

2
] · b, where [1

2
, . . . , 1

2
] is the

vector distance of the corner of the cube from the center. By enlarging the strip misses are
inevitably generated from the set D and, to some extent, the performance of the sampling
method is deteriorated.

ZK = C - b + 1 - ∆

ZK = C - b + 1

ZK = C + ∆

ZK = C

D

Figure 2.7: Enlargement of the generation interval of ZK .

Remember that the Gaussian function g(·) is fitted such that it approximates the distribution
p(·) as closely as possible at the point x∗, i.e.,

p(x) ≈ g(x) = a fN(m,Γ)(x),

where fN(m,Γ) denotes the probability density function of a normal distribution with mean
m and covariance Γ. Then, to be explicit, the IS distribution p∗(x) approximating the
conditional probability P{X = x |X ∈ D} is given by

p∗(x) =

∏K
k=1

(
Q(x′

k − 1
2
)−Q(x′

k + 1
2
)
)

v
, x ∈ D,
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where v is the total probability of the extended strip v = Q(r′)−Q(s′), the primes refer to
the normalized variables

x′
k =

xk −mk

σk

, r′ =
r − m̃K√

Γ̃KK

, s′ =
s− m̃K√

Γ̃KK

,

and Q(·) denotes the tail probability function of the standard N(0, 1) distribution

Q(x) =

∫ ∞

x

1√
2π

e−y2/2 dy =
1

2
erfc(x/

√
2).

Finally, the estimator for ξ becomes

ξ̂ =
1

N

N∑
n=1

1

ν(X∗
n)

1X∗
n∈S 1X∗

n∈D
p(X∗

n)

p∗(X∗
n)

=
v

N

N∑
n=1

1

ν(X∗
n)

1X∗
n∈S 1X∗

n∈D
p(X∗

n)∏K
k=1

(
Q(X ′

k − 1
2
)−Q(X ′

k + 1
2
)
) ,

where the X∗
n denote samples obtained with the above described procedure and generated

into the enlarged strip.

2.2.9 Combining IS and Conditional Expectations

The use of exponentially twisted distributions is advantageous, because the generation of
samples is then as simple as in standard MC (recall that an exponentially twisted Poisson
distribution is also a Poisson distribution), and its use does not require a large amount of
precomputed distributions either. The problem, on the other hand, is that the control over
where the samples are generated is somewhat limited. However, it is possible to improve
the “precision” of the sampling by combining the use of exponentially twisted distributions
and the earlier defined method of conditional expectations.

Here the index of the traffic class k and the link index j are again reinstated in the notation.
In [22] some early results were shown in this direction, where the IS heuristics of Ross in
[31, chap. 6] were applied. The combination of IS and conditional expectations is, in this
case, easy as the IS heuristics result in a single twisted IS distribution and the form of the
conditional expectation function becomes such that one can again compute in advance all
the required values of the function. To see this, consider the following. Assume that samples
X∗

n are generated with an IS distribution p∗(x) that is defined in the truncated state space
Ĩ (i.e., the Cartesian product space limited by the maximum number of allowed class-k
calls). When using the Ross heuristics p∗(x) is also a Poisson distribution with a new load,
say γ. Also, assume that we have for traffic class k a partitioning of the state space Ĩ into
subsets Ãi

k and a partitioning of the state space S into subsets Ai
k. Recall that each Ai

k is a
subset of the corresponding Ãi

k, and that the set Bk is still formed by the endpoints of the
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Figure 2.8: The sets Ãi
k and Ai

k with examples of X(Ai
k), Li

k and E j
k for a two traffic class

example.

k-columns Ai
k. Then the conditional expectation function, the value of which needs to be

computed analytically, is

ηk(i) = E
[
w(X∗) 1X∗∈Bk

|X∗ ∈ Ãi
k

]
. (2.23)

To compute this conditional expectation, let Li
k denote the length of the k-column Ai

k (k-
columns Ãi

k have lengths Nk
max) and X(Ai

k) denotes the unique state that is the endpoint
of the k-column Ai

k. The sets Ãi
k and Ai

k, together with examples of X(Ai
k) and Li

k are
depicted in Figure 2.8 for traffic class 2 in a two traffic class example. For future reference
purposes, the picture also shows the set of states forming the set E j

2 for link 1. Additionally,
before proceeding the function q(x, ρ, N) is introduced, which gives the point probability of
x for a Poisson distributed random variable with load ρ truncated at N , i.e.,

q(x, ρ, N) =
ρx

x!

/
N∑

n=0

ρn

n!
.

Continuing with the evaluation of (2.23), one obtains ηk(i) = 0 if Ãi
k ∩ S = ∅ or else

ηk(i) = w(X(Ai
k))E

[
1X∗∈Bk

|X∗ ∈ Ãi
k

]
,

= w(X(Ai
k))q(L

i
k, γk, N

k
max)

where we have utilized the fact that, in this case (thanks to the product form of p∗(x)), the
conditional distribution of the states within each Ãi

k is a simple one dimensional truncated
Poisson distribution. Thus, to reduce the cost of evaluating the contribution of a given sam-
ple, it is also feasible to compute the different possible values of the conditional probability

E
[
1X∗∈Bk

|X∗ ∈ Ãi
k

]
beforehand into tables.

However, the above described approach suffers from the properties of the IS heuristics, which
uses a rather conservative twist. The combination of the composite distribution approach,
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as discussed earlier, and the method of conditional expectations would also be possible,
but the computation of the conditional expectation analytically is not anymore possible
in advance. To be precise, the reason is the following. When X∗ obeys the composite IS
distribution (2.15) (again defined in Ĩ), the IS distribution is not anymore of the product
form. The conditional expectation function, in this case, equals ηk(i) = 0 if Ãi

k ∩ S = ∅ or
else

ηk(i) = w(X(Ai
k))E

[
1X∗∈Bk

|X∗ ∈ Ãi
k

]
= w(X(Ai

k))
p∗(X(Ai

k))∑
x∈Ãi

k
p∗(x)

= w(X(Ai
k))

∑
j∈Rk

p∗j(X(Ai
k))∑

x∈Ãi
k

∑
j∈Rk

p∗j(x)
,

where each p∗j(x) is a product of Poisson distributions with different load parameters. From

this one can observe that the conditional distribution of the points in the set Ãi
k does not have

a simple form depending only on the value of the kth component of X. Instead, it depends
on the values of all the components of the given sample state making the precomputation of
these conditional probabilities infeasible in practice. Note that it is still possible to compute
the above conditional probability for a given generated sample state, but this requires that
the conditional probability is computed on the fly making it somewhat impractical due to
the amount of computations that need to be made.

In the above, the problem is really caused by the fact that the composite IS distribution
(2.15) is not of the product form anymore. However, by using the decomposition result
as discussed earlier, it is possible to decompose the problem of estimating βk into separate
problems of estimating the probabilities

ξj
k = P{X ∈ E j

k}.
The shape of each set E j

k is much simpler than that of the set Bk and no composite distri-
bution is required to sample the states in E j

k . Thus, to estimate each ξj
k a single twisted IS

distribution can be applied and the method of conditional expectations can be used to fur-
ther improve the sampling. To this end, p∗j(x) denotes here the same twisted link sampling

distributions as in (2.15), i.e., p∗j(x) is a Poisson distribution defined in Ĩ with load γj being

equal to the most probable blocking state on link j. The sets Ai
k and Ãi

k are as earlier (see
Figure 2.8). The conditional expectation function is

ηk(i) = E
[
w(X∗) 1X∗∈Ej

k
|X∗ ∈ Ãi

k

]
.

Now, the IS distribution is, again, of the product form and the conditional distribution
within a set Ãi

k is, similarly as earlier, a one dimensional Poisson distribution. Thus, ηk(i)
equals

ηk(i) =

{
0, Ai

k ∩ E j
k = ∅,

w(X(Ai
k)) q(Li

k, γjk, N
k
max), Ai

k ∩ E j
k �= ∅,
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where γjk denotes the kth component of γj . The corresponding estimator for ξj
k can be

expressed as

ξ̂j
k =

1

N

N∑
n=1

1X(Ak(X∗
n))∈Ej

k
w (X(Ak(X

∗
n))) q(Lk(X

∗
n), γjk, N

k
max)

where the notation X(Ak(X
∗
n)) has been used to denote the end point of the k-column Ai

k

to which the state X∗
n belongs and Lk(X

∗
n) denotes the length of the k-column in question.

The estimator for βk is then simply (as earlier) β̂k =
∑

j ξ̂j
k, and it is also possible to allocate

the number of samples to be used for estimating each ξj
k optimally by the same allocation

algorithm as described in Publication 4.

2.2.10 Comparisons between Methods

As mentioned earlier, the conditional expectations method is used in Publications 1–2. In
contrast to the standard Monte Carlo method, where a sample gives a contribution to the
estimator only when it hits Bk, the use of conditional expectations allows the collection of
the state information for an entire k-column to which a sample belongs. Furthermore, the
method is simple and the values of all required functions can be computed analytically in
advance. Thus, there is no extra overhead from using the method. Also, it can be used
to estimate Bk for all k at the same time and it is independent of the method used to
generate the samples. However, while being able to give a considerable variance reduction,
even better results are obtained with the use of importance sampling.

The first steps in this direction were reported in [22], where the heuristics of Ross were used
and, also, the combination of IS and conditional expectations. The use of the heuristics
of Ross results in the same IS distribution parameters for all traffic classes, and, thus, the
same samples can be used for estimating Bk for all traffic classes. Much better variance
reduction results are obtained with the composite distribution approach in Publication 3
with exponentially twisted distributions fitted for sampling states around the most probable
blocking state on each link that the considered traffic class uses. This method differs from
the earlier conditional expectations methods in that the IS distributions are now separate
for each traffic class (unless some traffic class happens to have the same route through the
network). This means that to estimate the Bk for all K traffic classes one needs to perform K
consecutive simulations (in the worst case), whereas with the earlier methods each generated
sample can be used for the estimators of all Bk’s. However, the variance reductions obtained
with the composite approach amply compensate for this slight disadvantage.

Additionally, the method of conditional expectations can be combined with the use of ex-
ponentially twisted IS distributions to provide further variance reductions. As discussed
earlier, this is easy in the case when the IS distribution consists of a single twisted distribu-
tion, but becomes impractical, if a composite of twisted IS distributions is used. Thus, the
best variance reduction results when using exponentially twisted IS distributions would be
obtained by applying the decomposition result, using a single exponentially twisted distrib-
ution combined with the method of conditional expectations to estimate each ξj

k and using
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the optimal sample allocation algorithm to allocate the samples between each sub-problem.
The advantage in using exponentially twisted distributions is that the sample generation is
simple and fast, and requires only a small number of precomputations to be made. In this
case also, when estimating Bk for all traffic classes, each class needs to be treated separately.

The greatest variance reductions are obtained by using the inverse convolution algorithm
(described in Publication 4), which is based on using a suitable conditional distribution of
the original distribution as the IS distribution. The fastest version of the algorithm requires
a number of conditional distributions to be precomputed. However, then the generation of
samples is as fast as in a standard MC method. Furthermore, the memory requirements of
the algorithm, i.e., the number of elements in the arrays, are not prohibitive. The number
of array elements to be stored can be seen to be 1

2
KC(C + 1) for each subproblem (there

are at most J subproblems). It should be noted that the dependence on K is only linear
whereas the size of the state space grows exponentially with K. However, if this memory
requirement grows too large, the minimum requirement is that the distributions of the
recursion (2.19), i.e., those of ql and ml, have been precomputed. In this case, the number
of array elements to be stored is 2K(C+1) (K distributions of length C+1 for ml’s and ql’s,
respectively) for each subproblem. Then the conditional distribution P{Yl ≤ y | Sl = x},
given by (2.20), must be constructed on the fly, making the sample generation somewhat
slower. The Gaussian approximation to the conditional distribution gives remarkably good
results, as well. Although its performance is slightly degraded, as discussed earlier, due
to the requirement of keeping the value of the likelihood ratio analytically computable.
This caused the need to use slightly “looser” bounds for the sample generation, inevitably
resulting in misses to be created from the target set. Still, the Gaussian method gives
better results than the composite IS distribution approach. The Gaussian method does not
require any precomputed distributions to be constructed, but the sample generation is not
as efficient as in the inverse convolution method (or standard MC), where the sample is
generated as an outcome of a table look-up and a random number. Finally, both the inverse
convolution and the Gaussian method require also that each Bk is estimated separately.

2.3 Efficient Simulation of Multicast Loss Systems

In this section the application of the decomposition result and the use of the inverse con-
volution method are summarized in the case of the so called multicast loss system. For the
full description see Publication 5.

2.3.1 The Multicast Loss System

Consider a network consisting of J links, indexed with j = 1, . . . , J , link j having a capacity
of Cj resource units. The set of all links is denoted by J . The network is organized as a
tree, where the root link is denoted by J . The set U denotes the set of user populations,
located at the leaves of the tree. The leaf links and the user populations connected to them
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are indexed with the same index u ∈ U = {1, . . . , U}. The set of links on the route from
user u to the root node is denoted by Ru. The user populations which use link j, i.e., for
which link j ∈ Ru, are denoted by Uj . The size of the set Uj is denoted by Uj. The multicast
network supports I channels, indexed with i ∈ I = {1, . . . , I}. The channels originating
from the root node represent different multicast transmissions, from which the users may
choose. Each channel has a capacity requirement di ∈ d = {di; i ∈ I}. Here the same
capacity requirement is used for all links, but it is trivial to generalize this model to link
dependent capacity requirements.

The state of a link j is defined by the states of the channels i. Each channel may be either
on (1) or off (0), i.e., the state of channel i on link j is Yj,i ∈ {0, 1}. The state of a link is
denoted by the vector Yj = {Yj,i; i ∈ I} ∈ S, where S is the link state space S = {0, 1}I .
A multicast connection is defined by the pair (u, i) of the user u (leaf link) and channel
i. Synonymously, the multicast connection (u, i) is also referred to as a traffic class. The
network state X is defined by the states of the leaf links Yu ∈ S,

X = (Yu; u ∈ U) = (Yu,i; u ∈ U , i ∈ I) ∈ Ω, (2.24)

where Ω = {0, 1}U×I denotes the network state space. The state of link j is determined by
the network state as follows:

Yj =

{
Yu if j = u ∈ U ,⊕
u′∈Uj

Yu′ otherwise, (2.25)

where ⊕ denotes an or-operation between channel states in different links, i.e., channel i is
on on link j if and only if there is a link u ∈ Uj on which the channel is on.

Calls (connections to the root of the tree) are generated at the leaf node u independently
of other leaf nodes according to a Poisson process with intensity λu. Arriving calls select
channel i with a probability αi, the calls are always accepted if there is enough capacity on
the links and the blocked calls are cleared. The holding times of channels can, again due to
the insensitivity result, have a general distribution with a finite mean 1/τi. Thus the offered
load for channel i at leaf node u is ρu,i = αiλu/τi and the on-probability for channel i at
leaf node u, pu,i is

pu,i = P{Yu,1 = 1} = 1− exp(−ρu,i).

Note that this is not the only way of defining the call arrival process (see Nyberg et al. [27]
for other variants).

In an infinite capacity system, all the traffic classes (u, i) are independent from each other.
The steady state distribution of the leaf link u, πu(·), is given by

πu(y) =
∏
i∈I

pyi

u,i(1− pu,i)
1−yi, (2.26)

The probability pj,i of channel i to be in the on state on any link j may be calculated from
the corresponding known probabilities of the leaf links Uj ,

pj,i = 1−
∏
u∈Uj

(1− pu,i).
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The steady state distribution π(x) of the system is then

π(x) = P{X = x} =
∏
u∈U

πu(yu).

The link capacity occupancy (or link occupancy for brevity) of link j is denoted by Sj ,

Sj = d ·Yj =
I∑

i=1

diYj,i.

In a finite capacity network, the state space is truncated by the capacity constraints of the
links,

Ω̃ =
{
x ∈ Ω

∣∣∣Sj ≤ Cj, ∀j ∈ J
}
,

and the steady state distribution of the finite capacity system, π̃(·) is obtained by truncation

π̃(x) = P{X = x |X ∈ Ω̃} =


π(x)

P{X ∈ Ω̃} , x ∈ Ω̃,

0, otherwise.

In a finite capacity network, blocking occurs whenever a user tries to establish a connection
for channel i, and there is at least one link j ∈ Ru where the channel is not already on and
there is not enough spare capacity for setting the channel on. Without loss of generality,
it is assumed that the channels are ordered so that the channel for which the blocking is
calculated has the greatest index I. With this convention, the channel index is unnecessary
and will be omitted for most of the notation. Let S ′

j denote link occupancy due to the
channels {1, . . . , I − 1}, i.e.,

S ′
j =

I−1∑
i=1

diYj,i.

Then, the set of states where there is blocking for traffic class (u, I), Bu is defined as

Bu =
{
x ∈ Ω̃

∣∣∣ ∃j ∈ Ru : S ′
j > Cj − dI ,

}
.

The expression “link j blocks” is used if for link j, S ′
j > Cj − dI . Thus, the set Bu consists

of the states where at least one link blocks. Then the time blocking probability for traffic
class (u, I) is

Bu = P{X ∈ Bu |X ∈ Ω̃} =
P{X ∈ Bu}
P{X ∈ Ω̃} . (2.27)

2.3.2 Decomposition and IS

The idea here is the same as earlier in the case of the multiservice loss system - the estimation
of βu,

βu = P{X ∈ Bu},
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is divided to simpler sub-problems by partitioning Bu into sets E j
u. The set E j

u is defined as
the set of points in Bu where link j blocks but none of the links closer to user u block,

E j
u = Bu ∩

{
x ∈ Ω

∣∣∣S ′
j > Cj − dI ∧ S ′

j′ ≤ Cj′ − dI , ∀j′ ∈ Rj
u

}
,

where Rj
u denotes the set of links on the path from u to j, including link u but not link j.

With this definition the E j
u form a partitioning of Bu, similarly as was possible in the case

of the multiservice loss system. Thus the estimation of P{X ∈ Bu} has been broken down
to estimating the probabilities ξj

u = P{X ∈ E j
u}, j ∈ Ru.

To estimate each P{X ∈ E j
u}, MC simulation with IS is applied. The IS distribution is of

the same form as (2.17), i.e.,

p∗j(x) = P{X = x |X ∈ Dj
u} =


P{X = x}
P{X ∈ Dj

u}
=

π(x)

vj
u

, x ∈ Dj
u,

0, otherwise,

(2.28)

where the set Dj
u corresponds to the set of blocking states for traffic class (u, I) in a network

where only link j has a finite capacity Cj and all other links nave an infinite capacity,

Dj
u =
{
x ∈ Ω

∣∣∣Cj − dI < S ′
j ≤ Cj ∧ Yj,I = 0

}
,

and vj
u is the probability mass of the set Dj

u, vj
u = P{X ∈ Dj

u}.
Let X∗

n denote a sample obeying (2.28). When using (2.28), the value of the likelihood ratio
is a constant, w(x) = π(x)/p∗j(x) = vj

u, and the resulting IS estimator is

ξ̂j
u =

1

Nj

Nj∑
n=1

1X∗
n∈Ej

u
w(X∗

n),

=
vj

u

Nj

Nj∑
n=1

1X∗
n∈Ej

u
. (2.29)

This estimation problem is equivalent to formulating the problem by means of expressing
P{X ∈ E j

u} as a conditional probability,

P{X ∈ E j
u} = P{X ∈ E j

u |X ∈ Dj
u}P{X ∈ Dj

u},
from which vj

u = P{X ∈ Dj
u} can be computed analytically, and estimator (2.29) is used

to estimate the conditional probability P{X ∈ E j
u |X ∈ Dj

u}. The efficiency of this method
compared with standard MC can be justified as earlier in the case of the multiservice loss
system (see the explanations for Figure 2.6).

Finally, the estimator for βu is simply

β̂u =
∑
j∈Ru

ξ̂j
u.

Given the total number of samples N to be used for the estimator, the number of samples Nj

allocated to each sub-problem can be allocated optimally by in a similar fashion as discussed
for the case of the multiservice loss system.
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2.3.3 The Inverse Convolution Method

We are now only considering the estimation of one ξj
u for fixed j ∈ Ru and traffic class (u, I).

Again, as in the case of the multiservice loss system, the following method is based on the
observation that it is relatively easy to generate points from the conditional distribution
p∗j(x) = P{X = x | X ∈ Dj

u} by reversing the steps used to calculate the occupancy
distribution of the considered link. Note that the condition X ∈ Dj

u is a condition expressed
in terms of the occupancy, S ′

j , of the considered link. The idea in the inverse convolution
method is to first generate a sample of Yj such that the occupancy of the link is in the
blocking region. Then, given the state Yj, the state of the network, i.e., states of the
leaf links, is generated. The mapping

⊕
: X → Yj is surjective, having several possible

network states X generating the link state Yj, and one of them is drawn according to their
probabilities.

The main steps of the simulation can be summarized as follows:

1. Generate the states for leaf links u by

(a) Generate a sample state Yj under the condition Cj − dI < S ′
j ≤ Cj ∧Yj,I = 0 for

link j.

(b) Generate the leaf link states Yu, u ∈ Uj , with the condition that link j state
Yj = ⊕u∈Uj

Yu is given.

(c) Generate the states Yu, u ∈ U −Uj for the rest of the leaf links as in the normal
Monte Carlo simulation.

2. The sample state of the network Xn ∈ Dj
u consists of the set of all sample states of

leaf links generated with step 1.

3. To collect the statistics for estimator (2.29), check if Xn ∈ E j
u.

Next, the steps 1a, and 1b above are explained in more detail.

Step 1a: Link State Sample Generation

First, the link occupancy Sj is easily calculated recursively as follows. Let Sj,i denote link
occupancy due to the first i channels,

Sj,i =
∑
i′≤i

di′Yj,i′.

Then Sj = Sj,I and S ′
j = Sj,I−1. The Yj,i are mutually independent, and we can express

Sj,i = Sj,i−1 + diYj,i, where Sj,i−1 and Yj,i are independent. For sample generation, only the
occupancy generated by the first I − 1 channels, S ′

j, is of interest, since a call for a channel
cannot be blocked if it is already in the on state. This is also reflected in the definition of
the set Dj

u.
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Let P{S ′
j,i = x} = qj,i(x) denote the probability distribution of S ′

j,i. The qj,i(x) are obtained
from

qj,i(x) = qj,i−1(x− di)pj,i + qj,i−1(x)(1− pj,i), (2.30)

where the recursion starts with qj,0(x) = 1x=0. The probability mass vj
u of the set Dj

u, can
be calculated as

vj
u = P{X ∈ Dj

u} = (1− pj,I)

Cj∑
i=Cj−di+1

qj,I−1(i).

Note that in (2.30) the event {Sj,i = x} is the union of the events {Yj,i = yj,i, Sj,i−1 =
x − diyj,i}, yj,i ∈ {0, 1}, where yj,i = 0 means that the channel i is in the off state, and
yj,i = 1 means that the channel i is in the on state on link j. The corresponding probabilities
are qj,i′−1(x)(1− pj,i′) and qj,i′−1(x− di′)pj,i′, respectively. Conversely, one can infer what is
the conditional probability of the event {Yj,i = 1, Sj,i−1 = x− di} given that Sj,i = x,

P{Yj,i = 1, Sj,i−1 = x− di |Sj,i = x} =
qj,i−1(x− di)pj,i

qj,i(x)
. (2.31)

The probability of the event {Yj,i = 0, Sj,i−1 = x |Sj,i = x} is then 1 − P{Yj,i = 1, Sj,i−1 =
x− di |Sj,i = x}.
To generate a sample of the link state Yj such that it belongs to Dj

u, that is, having
Cj − dI < S ′

j ≤ Cj and Yj,I = 0, we start by drawing a value for S ′
j = Sj,I−1 using

the distribution qj,I−1(·) with the condition that Cj − dI < S ′
j ≤ Cj. This conditional

distribution can be precomputed and stored. Given the value of Sj,I−1, the state Yj,i of each
channel (i = I−1, . . . , 1) is drawn in turn using the probabilities (2.31). Concurrently with
the state Yj,i, the value of Sj,i−1 becomes determined. This is then used as the conditioning
value in the next step to draw the value of Yj,i−1 (and of Sj,i−2), etc. Drawing a sample for
Yj,i requires just generation of a uniform random number from the interval (0,1) and setting
the channel to on state if the number is smaller or equal than the probability. Note that
for reasonable sizes of links, it is advantageous to store the probabilities for fast generation
of samples.

Step 1b: Generating Leaf Link States from a Given Link State

Having drawn a value for state Yj of link j, it is possible to draw values of the state vectors
Yu, u ∈ U of the leaf links. For u ∈ Uj , states Yu are generated under the condition
Yj = ⊕u∈Uj

Yu using a similar inverse convolution procedure as above. This condition can
be broken down to separate conditions for each channel, i.e., for each i we have a separate
problem of generating the values Yu,i, u ∈ U , under the condition Yj,i = ⊕u∈Uj

Yu,i with a
given Yj,i. Note that only channels i which are in the on state on link j, Yj,i = 1, need to
be considered. If Yj,i = 0, then necessarily Yu,i = 0 for all u ∈ Uj .

Consider first a convolutional approach for generating a link state for channel i and link
j if the states for each link u ∈ Uj are already known. In this section, the index uj ∈
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{1, . . . , Uj} = Uj is used for the subset of leaf links. Let Suj ,i = x denote the event that the
channel is in state x on link j when u′ = 1, . . . , uj leaf links have been counted for, i.e.,

Suj ,i =
⊕
u′≤uj

yu′,i.

Let P{Suj ,i = 1} = quj ,i be the probability that the channel is on in at least one of the links
{1, . . . , uj} ⊂ Uj . These probabilities can be calculated recursively from

quj ,i = 1− (1− puj ,i)(1− quj−1,i) = (1− quj−1,i)puj ,i + quj−1,i. (2.32)

The recursion starts with q0,i = 0. If Suj−1,i = 1, then necessarily Suj ,i = 1. Conversely, to
generate the state for each leaf link, given the value of Yj,i, it is first checked if the channel
would be off after uj − 1 leaf links counted for, since if it is, then it has to be on on leaf
link uj, and off on the rest of the links, which happens with probability

P{Suj−1,i = 0 |Suj ,i = 1} =
(1− quj−1,i)puj ,i

(1− quj−1,i)puj ,i + quj−1,i
=

(1− quj−1,i)puj ,i

quj ,i
. (2.33)

Note that the event Suj−1,i = 0 implies directly that {Yu′,i = 0, ∀u′ < uj}. The probability
P{Suj−1,i = 1 |Suj ,i = 1} is given by 1− P{Suj−1,i = 0 |Suj ,i = 1}. In the case of the event
Suj−1,i = 1, one needs to check if the channel is on on the leaf link u, which happens with
probability

P{Yuj ,i = 1 |Suj−1,i = 1} = puj ,i.

Thus, a uniform random number is generated first to decide if the leaf link is the last one
for which the channel is on. If it is not, yet another uniform random number is generated
to decide if the channel should be set on. This procedure is repeated for each channel. As
a result of this procedure, the state vectors of each leaf link u ∈ Uj are obtained. The rest
of the leaf link states must be generated as in the normal Monte Carlo simulation using
eq. (2.26).

2.4 Conclusions

The work in this chapter presents a series of methods with which the estimation of the
blocking probabilities in multiservice loss systems can be made quicker and/or more accu-
rate. Additionally, in Section 2.3 the application of the decomposition principle and the
inverse convolution algorithm in multicast networks is presented. As mentioned earlier, the
best results are obtained by using IS (the composite distribution approach) and combin-
ing IS with the decomposition principle (the inverse convolution method, and its Gaussian
approximation). Of these, the use of the decomposition result and the inverse convolution
method together with the optimal sample allocation algorithm, as described in this thesis
and Publication 4, represents the most efficient way of performing the simulation. Qualita-
tive reasons for the efficiency of this approach can be listed as follows. The decomposition
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allows us to break the problem into more easily manageable subproblems. For each subprob-
lem, the inverse convolution method produces samples from a nearly optimal IS distribution,
generating typically only few misses. The dynamic optimal sample allocation between dif-
ferent subproblems eliminates the need to know in advance the relative importance of each
subproblem, which is a problem for the composite distribution when fixing the composite
weights.

Numerical results on the relative efficiency of the methods presented in this thesis compared
with results obtained by using standard MC or known heuristics (namely, the heuristics
of Ross and Mandjes) are presented in Publication 4, Table 1, which gives the relative
deviation (ratio of the standard deviation to the mean) of the estimates of β̂k for various
cases. However, in Table 2.1, the results have been converted to give directly the gain
in terms of the required sample size using standard MC as a reference. In Table 2.1,
Cases 1 and 2 correspond to a small network example with Bk of the order of 10−2 and
10−4, respectively, and Cases 3 and 4 to a large network example with Bk of the order of
10−3. For these cases, no results are available corresponding to the use of the conditional
expectation method or its combination with IS. However, as illustrated by the numerical
results in Publication 1, the use of the conditional expectations method gives reductions
slightly better than those obtained by using the Ross heuristics. The combination of IS and
the conditional expectation method, as discussed in Section 2.2.9, has not been tested in
practice, but presumably its performance is comparable to that of the Gaussian method. As
can be seen from Table 2.1, the inverse convolution method gives outstanding efficiency gains
even if the blocking probabilities are in the “normal” range 10−4 . . . 10−2. If the estimated
blocking probabilities were smaller, even greater efficiency gains would be observed.

Table 2.1: The efficiency gain of the different methods in terms of the sample sizes using
the standard MC as a reference.

Case Convolution Gaussian Composite Single twist Ross
1 1853 50 4 3 2
2 1.01 · 106 5700 316 125 16
3 18 418 90 9 9 2
4 669 38 5 3 2

Regarding the generality of the methods described in this thesis, they can be basically used
in loss systems for estimating any performance measure expressed in terms of state sums
consisting of states related to the occupancy levels of the links. On the other hand, all the
methods presented in this thesis rely heavily on the structural properties of loss systems.
Of these, the most important property is the product form of the steady state distribution.
The second property is that the capacity limitations of the system are linear constraints on
the state space expressed in terms of a single variable, the occupancy of a given link. These
are properties that follow directly from the assumptions of the system, i.e., Poisson arrivals,
the bandwidth requirement of each class has a fixed value, the effective bandwidth, on each
link it uses, and the assumption of fixed routing (i.e., there is only one possible route for the
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connection through the network). Of these, perhaps the most restrictive assumption from
the point of view of generality is the assumption of fixed routing. Thus, for instance, it is not
possible to use these simulation methods for comparing the performance of different routing
mechanisms. However, given that the loss system model applies, it is very hard to imagine
any new methods for estimating the blocking probabilities giving better results, without
significantly increasing the computational burden, than the inverse convolution method
combined with the dynamic optimal sample allocation scheme. Thus, future research efforts
could be directed towards finding suitable problem areas, where loss systems or other systems
possessing sufficiently similar properties can be used for modeling, similarly as is done in
this thesis for the multicast network.



Chapter 3

Analysis of the RED Buffer
Management Algorithm

3.1 Introduction

Traffic volumes in the Internet are growing at a rapidly increasing rate. This growth in
traffic creates great challenges for controlling and managing the traffic flows in the network.
In such a situation, one of the most important issues is congestion control, i.e., how the
network should react in situations where the traffic load becomes too high, threatening the
stable operation of the network.

In the Internet, this problem has been traditionally handled by the use of the Transmission
Control Protocol (TCP), which is a reliable packet transfer protocol aiming at providing each
TCP flow a fair share of the limited bandwidth. In the current Internet a vast majority
of the data (e.g., HTML, FTP, e-mail, and telnet traffic) is transmitted by using TCP.
However, it has been discovered that the use of TCP is not enough to guarantee the stable
operation of the network and that TCP alone does not always achieve a fair sharing of
the bandwidth. In addition, the amount of traffic generated by non-responsive sources, e.g.,
UDP sources, has been steadily rising with the increased use of the Internet for transmitting
real time traffic streams, such as real-time audio and video. In general, non-responsive flows
do not react to congestion by cutting down their sending rates and can thus obtain a more
than their fair share of the bandwidth at the expense of the responsive TCP flows.

For these reasons, the Internet Engineering Task Force (IETF) has recommended in their
standards the use of new congestion control mechanisms, so called Active Queue Manage-
ment (AQM) methods that are implemented in the buffers of the routers of the network,
see [42] (RFC2309). Basically, these mechanisms attempt to reduce the unfairness between
responsive and unresponsive flows, and to inhibit the build up of congestion in the buffers
by implicitly signaling the responsive traffic sources to reduce their sending rates already
before the buffer becomes overloaded.

40
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One of the most prominent AQM methods is the Random Early Detection (RED) algorithm
proposed by Floyd and Jacobson in [50]. The algorithm has also been implemented in
commercially available routers. It has been designed to work in cooperation with the TCP
sources (without considering the problem of unresponsive sources), and in [50] it has been
shown by using simulations that the algorithm is able to alleviate the problem of global
synchronization of the TCP sources, which may happen when a congested buffer overflows,
as well as to increase fairness between high speed and low speed TCP flows.

In this part of the thesis the aim is to create an analytical model of the interaction between
a large TCP population and a RED controlled queue such that the impact of the different
system parameters on the performance can be explored. The results have been published
in Publications 6–8. The model for the RED controlled queue is defined in Publication 6
based on earlier work by Sharma et al. in [71] to account for the oscillations observed in the
simulations of [71]. In Publication 7, a dynamic model is derived for the interacting TCP-
RED system. In Publication 8, the stability analysis of the model is performed, where, not
only sufficient, but also necessary conditions are derived for the system to be asymptotically
stable.

3.1.1 Review of TCP-RED Analysis

A considerable amount of research has been devoted to the performance analysis of the RED
algorithm. Primarily the methods used have been simulation based and have been aimed
at solving some of the deficiencies of the original RED algorithm. Feng et al. [47] propose
an adaptive discarding mechanism where the maximum discarding probability parameter of
RED is varied according to the number of flows present in the system. Lin and Morris [62]
showed that RED is not efficient in the presence of non-adaptive (or “non-TCP-friendly”)
flows, such as UDP flows, and for that they propose a per flow version of RED (FRED).
The problem of isolating misbehaving and well-behaved flows and providing specialized
treatment for such circumstances has resulted, besides FRED, in a number of algorithms:
RED+ [76], SRED [67], BRED [40], REM [41] and stochastic fair BLUE [48]. Clark and
Fang [45] have suggested the use of another variant of RED, called RIO, to provide different
classes of services in the Differentiated Services framework.

In addition to modifications just in the packet discarding algorithm, there exists a vast
literature dealing with defining alternatives for the TCP flow control. The purpose is then
to derive new flow control algorithms such that the network resources are shared in a “fair”
manner. One popular framework has been the so called congestion pricing approach (sug-
gested by Kelly in [58]). In this approach, a user’s perceived utility from receiving a given
amount of bandwidth is measured by a utility function. The network provides users with
information about the current congestion state of the network in the form of pricing infor-
mation and the users are free to react to these signals as they please. It turns out that
if the users react “sensibly”, this defines a flow control algorithm that also maximizes the
system’s utility (the sum of the utilities of all users). In this thesis, however, the focus is
not on the different RED variants that exist nor on alternative congestion control strategies.
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Thus, the references mentioned above represent only chosen examples from the literature.

The steady state modeling of TCP under random packet losses has also received a lot of
attention among the research community. Simple models have been developed, e.g., in
Mathis et al. [63], in Padhye et al. [68], and in Floyd [52], where the well known result
has been derived that the steady state throughput of a TCP connection is proportional to
1/(R

√
p), with R denoting the round trip time and p the packet loss probability. More recent

and accurate models (e.g., in terms of the assumptions regarding the packet loss process)
providing results for the distribution of the TCP congestion window in steady state can be
found, for example, in Misra and Ott [65], in Brown [43], and in Altman et al. [38, 39].

Recently, analytical approaches have been also used for the performance analysis of RED
controlled buffers. May et al. [64] have developed a simplified model of the RED algorithm.
However, RED is more complicated and several of its important features (e.g., the average
queue length process) are not captured in this model. A more detailed analysis has been
presented by Peeters and Blondia in [69]. Sharma et al. [71] have analyzed the RED algo-
rithm in complete detail and have also developed asymptotic approximations for easing the
burden of computing the performance indices of interest. By using a similar approach as in
[71], the performance of a RIO controlled queue has been studied by Kuusela and Virtamo
in [60]. Köhler et al. [61] present a discrete time Markovian model for the TCP-RED inter-
action. A fixed point model for a network of AQM routers is given by Bu and Towsley in
[44].

In the work presented here the aim has been to develop a dynamic model for the interaction
between an idealized TCP population and a RED controlled queue. The work builds on
one of the ideas presented in [71], namely the quasi-stationary approximation for modeling
the time dependent behavior of the system in the “mean” sense by differential equations.
Related work has been done by Firoiu and Borden in [49], where a system of difference
equations is derived and some qualitative analysis is given regarding the stability. From the
point of view of the present work, the independent modeling work by Misra et al. in [66] is
similar to the approach used in this thesis. However, the modeling technique in [66] differs
from the present one in some respects, and the work in [66] can be considered complementary
to the one described here. In the present work, a more detailed model for the queue dynamics
is developed (in Publications 6 and 7), while [66] focuses more on the source dynamics. In
the RED buffer model, [66] assumes an infinite and non-emptying buffer and the model
derivation results in an additional modeling parameter to be tuned. On the other hand, the
queue model described here takes overflows and empty queues into account, and does not
have additional parameters. Also, the term describing the increase in the TCP window size
is more accurate in the present model, since the present model takes into account the fact
that the rate of acknowledgments back from the receiver depends on the sending rate at
the time when the packets were sent. Additionally, some of the features (e.g., queue length
dependent RTTs and the network case) of the model in [66] can be incorporated into the
model described here, as well. The stability analysis of the model from [66] is given by
Hollot et al. in [56]. The authors make a simplified linearization of the original system and
are able to give necessary conditions for the system to be asymptotically stable. On the
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other hand, Publication 8 gives, not only necessary, but sufficient conditions for the system
derived in Publication 7 to be asymptotically stable without making any simplifications in
the linearization, albeit an approximation is made in the model of Publication 7 to reduce
its dimensionality. Recently, in [57] the authors of [56] have also presented an alternative
AQM mechanism to replace RED, which has a better convergence speed than RED, by using
a so called PI controller instead of a low pass filter, which the RED algorithm essentially is.

3.1.2 Overview of the Chapter

Short overviews of the TCP congestion control and the RED algorithm are given in Sec-
tions 3.2 and 3.3, respectively. The main results of Publications 6–8 have been summarized
in Sections 3.4 and 3.5. Section 3.4 presents the derivation of the dynamic analytic model
for the TCP-RED interaction, and in Section 3.5 the results on the stability analysis of the
system are reviewed.

3.2 TCP Overview

Originally TCP did not implement any congestion control algorithms. The flow control was
simply based on a maximum allowed window size (i.e., a maximum amount of unacknowl-
edged data in transit) as determined by the receiver side and the transmission policy that
new packets could only be sent when an acknowledgement (ACK) for a sent packet was
received, signaling that a packet has been successfully received and has left the network.
The use of the flow of ACKs to pace the transmission of new packets has been generally
referred to as the self clocking property of TCP.

TCP congestion control was introduced to the Internet in the late 80’s after the occurrence
of so called congestion collapse(s), which can occur when sources are able to send traffic
uncontrollably according to the Go-Back-N retransmission scheme of the original TCP.
During a time of congestion the network is then transmitting mostly retransmitted packets,
which have been lost due to congestion (buffer overflow), resulting in degraded throughput
of the network. For this reason, TCP Tahoe was released in 1988 including three new
algorithms for congestion control: slow start, congestion avoidance and fast retransmit.
TCP Reno was released in 1990 and it added one more algorithm to the previous flow
control algorithms called fast recovery. Next these four algorithms are briefly explained.
More detailed descriptions of these algorithms can be found, e.g., in [72] (RFC2001) and [70,
chap. 6.3]. TCP Tahoe is discussed first (slow start, congestion avoidance, fast retransmit)
and then the effect of the addition of fast recovery in TCP Reno is explained.

In TCP, the receiver can regulate the data transmission rate by using its advertised window
size, awnd, sent in each ACK. Also, before a TCP connection opens (i.e., any data packets
are sent), the receiver advertises the packet size, MSS (maximum segment size), to be used
during the transmission. The TCP congestion control introduced two new state variables
for the connection: the congestion window, cwnd, and the slow start threshold, ssthresh.
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Additionally, the definition of the window size of the sender, w (i.e., the maximum amount
of unacknowledged data that can be in transit), was changed to

w = min(cwnd, awnd),

instead of being equal to awnd as it used to be. This reflects the fact that the TCP flow
control can be either network bandwidth limited (cwnd) or receiver capacity limited (awnd).
The role of the TCP congestion control is, through adjusting cwnd, to try to reach a steady
state as quickly as possible reflecting the available bandwidth in the network, and to react
to the changing load conditions during the lifetime of the connection.

The TCP congestion control uses lost packets as control information and modifies the value
of cwnd upon detecting packet losses. Packet losses can be detected in two ways: either by
a time out mechanism or by so called duplicate ACKs. Duplicate ACKs refer to a situation
where the receiver notices a missing packet but is still receiving a stream of packets. The
receiver then transmits an ACK for each received packet, but the sequence number of the
acknowledged packet is not increased due to the missing packet. Thus, the sender observes
a number of ACKs that are acknowledging the same packet and determines that the packet
following the packet, for which the duplicate ACKs were received, has been lost.

In the following discussion it is assumed that the limitation is always caused by the value
of cwnd, i.e., that w = cwnd. Also, note that in the real TCP, data transmission occurs in
bytes, but the explanations here are given as if the transmission is based on discrete packets
of size MSS bytes. Thus, in the text here, a window of size w corresponds to (w·MSS) bytes
of data. Also, upon receiving a non-duplicate ACK, a connection is allowed to transmit an
amount of bytes equaling the difference between the current window size w and the amount
of unacknowledged bytes that are in transit (which is given, in turn, by the difference
between the sequence number of the last sent byte and the last acknowledged byte).

Slow Start and Congestion Avoidance (TCP Tahoe)

In the original TCP, when a TCP connection started, the source transmitted immediately
a full window of data, i.e., awnd packets, and started to wait for ACKs, resulting in the
flooding of the buffers of low speed links along the route of the TCP connection. To avoid
this the slow start algorithm was introduced.

When a new TCP connection is established, the connection starts with slow start and sets
cwnd = 1 (and ssthresh is given some default value). Then, for each received ACK, cwnd
is updated according to

cwnd← cwnd + 1,

implying roughly a doubling of cwnd (and the sending rate) for each round trip time (ex-
ponential growth). The exponential growth continues until a packet loss is observed, either
via a time-out or duplicate ACKs. At that point, ssthresh is updated to contain the value
of half of the window size just before the loss, i.e.,

ssthresh← cwnd/2,

and the connection falls back to slow start. In a sense, the threshold ssthresh now contains
a rough estimate of the available bandwidth for the connection.
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As mentioned, after the first packet loss, the connection starts from slow start, with cwnd =
1, and starts increasing its window exponentially until the ssthresh is reached. At this point
the connection switches from slow start mode to congestion avoidance. The idea is that
because the connection has now reached the previous estimate of the available bandwidth for
the connection (ssthresh), the connection should not anymore try to increase its sending
rate aggressively, but only moderately to take advantage of the free bandwidth that has
become available since the previous measurement of the available bandwidth. Thus, after
reaching ssthresh the congestion window is updated for each ACK as

cwnd← cwnd + 1/cwnd,

implying an increase by 1 for cwnd successfully transmitted packets, i.e., a linear increase in
time. This is continued until a loss is again detected either by time out or duplicate ACKs,
in which case the connection falls back to slow start.

Fast Retransmit (TCP Tahoe)

The idea in fast retransmit is to speed up the process of retransmissions in TCP. It is based
on the observation that when a source receives duplicate ACKs, they can have two possible
causes: either a packet is missing or the packets have gotten out of order in the network (for
some external reason). The source cannot know which is the case immediately from the first
duplicate ACK. However, if several duplicate ACKs are received, it is reasonable to assume
that the packet has been lost. Then, instead of waiting for a time out to happen (which
occurs at a relatively slow time scale compared to ACK arrivals when dealing with large
windows), the source waits typically for three duplicate ACKs and immediately retransmits
the (presumably) missing packet and goes back to slow start.

Fast Recovery (TCP Reno)

As can be noticed from the above, in TCP Tahoe the connection falls back to slow start
every time there is a packet loss (detected either by a time out or duplicate ACKs). However,
when the transmission windows are large and packet losses relatively infrequent such that
the connection rarely loses many packets in a row, it is better to have the connection stay in
congestion avoidance and not fall back to slow start after packet loss, since when windows
are large it takes some time for the window to grow from 1 to ssthresh.

The idea in fast recovery is exactly to enforce this behavior. This is only done in connection
with fast retransmit, because then, when windows are large and assuming that only, e.g., 1
packet has been lost, the TCP source is still receiving a flow of duplicate ACKs corresponding
to packets that have arrived and have been stored at the receiver. The TCP source can then
use these ACKs to maintain the self clocking of the packet transmissions. Thus, when fast
retransmit performs the retransmission of the (supposedly) missing packet after 3 duplicate
ACKs, the connection does not fall back to slow start, but, after a short transition, the
congestion window has been set to

ssthresh← cwnd/2,

and
cwnd← ssthresh.
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Figure 3.1: Window size behavior as a function of time in TCP Tahoe.
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Figure 3.2: Window size behavior as a function of time in TCP Reno.

What this implies is that when a TCP connection detects a packet loss via duplicate ACKs it
simply halves its congestion window and proceeds from there on as in congestion avoidance,
i.e., increasing its congestion window linearly. This mechanism of avoiding unnecessary
slow starts has been shown to increase the throughput of TCP connections considerably in
the case of rare losses and large windows. The details of how this is achieved are omitted
here and can be found, e.g., in [72]. If the packet loss is detected by a time out, the TCP
connection is considered to be dead (i.e., there are no packets in transit to maintain the self
clocking) and the connection performs a slow start.

An example is shown in Figure 3.1, how the window size behaves as a function of time in
TCP Tahoe. The main observation is that the TCP connection always falls back to slow
start, when there is a packet loss. The amount of time the connection is in the slow start
state (ss in the picture) and the congestion avoidance state (ca in the picture) are also shown
below the horizontal time axis of the picture. The same scenario is depicted for TCP Reno
in Figure 3.2. From the picture it can be noticed how TCP Reno avoids one slow start, in
this example.
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3.3 The RED Algorithm

The idea of the RED algorithm is to provide feedback signals back to the TCP sources
in the form of discarded (or marked) packets. This is done such that when the load of
the queue (measured with an exponentially averaged queue length) starts to increase, the
probabilistic packet dropping of RED will cause some of the TCP sources (but not all) to
back off, resulting in a decrease in the packet arrival rate to the queue. The randomization
of the packet dropping is the main reason why RED eliminates the problem of the so called
global synchronization. The synchronization can occur when a buffer overflow takes place
in a congested buffer, in which case all TCP sources observing a packet loss drop their
sending rates at the same time and start increasing their sending rates at the same time
until overflow occurs again, resulting in oscillations in the load of the queue. Additionally,
RED helps in preventing bursty connections from suffering more packet loss than smoother
behaving connections [50].

The RED algorithm works as follows. Consider a queue with a finite buffer which can
hold up to K packets at a time. Let q be the queue length and avg be the exponentially
averaged queue length (to be defined below) at a packet arrival instant. Also, c is the
counter representing the time (in packet arrivals) since the previous packet discard. The
RED algorithm randomly drops packets with probability p in the following manner.

For each arriving packet, the current averaged queue length avg is computed with{
avg ← (1− β)avg + βq, if q > 0,
avg ← (1− β)mavg, if q = 0,

where 0 < β < 1 is an appropriate constant, and m is the ratio of the time since the
previous packet departure (i.e., the time instant when the system last became idle) and a
typical transmission time for a small packet. The latter update equation is used to correct
for the fact that by only using the first update equation the averaged queue length would
not come down during idle periods, which can even be relatively long. Thus, with the latter
update equation the averaged queue length is decreased by a factor representing how many
small sized packets could have been sent during the idle period. If the buffer is full, the
packet is lost (i.e., p = 1) and c ← 0. If avg < Tmin, the arriving packet is accepted (i.e.,
p = 0) and c← −1. If avg > Tmax the packet is discarded (i.e., p = 1) and c← 0. However,
if Tmin ≤ sn ≤ Tmax, c is incremented by c ← c + 1, and the discarding probability is
determined from

pini = pmax(avg − Tmin)/(Tmax − Tmin),

p = min[1, pini/(1− cpini)].

Then, with probability p, the packet is discarded and c ← 0, otherwise it is accepted into
the queue. The actions of the RED algorithm are summarized in Table 3.1. Typically, β is
chosen to be relatively small, e.g., Floyd and Jacobson [50] propose using β ≥ 0.001 and use
β = 0.002 in their simulations. Recommendations for choosing the other parameters can be
found in Floyd [51], where it is proposed that pmax ≤ 0.1, Tmin ≥ 5 and Tmax ≥ 3 × Tmin.
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avg < Tmin Tmin ≤ avg ≤ Tmax avg > Tmax

q < K accept discard with prob. p discard
q = K discard discard discard

Table 3.1: Actions of the RED algorithm.

The role of the counter c in the RED algorithm is to distribute the packet drops of RED
more evenly. In fact, as shown in [50], the use of the counter results in that the TCP sources
observe a smoother flow of roughly uniformly spaced congestion signals, as opposed to what
would happen if the discarding probability was given by pini.

The RED drop function, as defined by pini, of the original RED algorithm is depicted in
Figure 3.3 (left picture). It consists of a linear increase in the dropping probability from 0
to pmax in the range [Tmin, Tmax]. At Tmax the dropping probability has a discontinuity where
pini jumps from pmax to 1. To avoid strong oscillations from occurring when load increases so
high that the threshold Tmax is reached, Floyd [53] has presented a more “gentle” variant of
the RED algorithm, where the drop function is changed such that instead of the discontinuity
at Tmax the drop probability is linearly increased to 1 in the range [Tmax, 2Tmax], as shown
in Figure 3.3 (right picture).

avgTmin Tmax

pini

pmax

1

0
avgTmin Tmax

pini

pmax

1

0
2Tmax

Figure 3.3: The drop function of the original RED algorithm (left picture) and the “gentle”
variant of RED (right picture).

3.4 System Model for TCP-RED Interaction

RED has been designed to work in cooperation with TCP sources transmitting packets
through the RED controlled buffer. Thus, a full description of the TCP-RED congestion
control system consists of a closed system with two interacting parts (see Figure 3.4):

a) A queue receiving an aggregate flow of packets and reacting dynamically to the changes
in the total flow rate under the control of the RED algorithm.

b) A population of TCP sources, each of which reacts to the packet losses at the queue
as determined by the TCP flow control mechanism.
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Figure 3.4: Interaction between the TCP population and the RED controlled queue.

3.4.1 Idealizations Used in Modeling

For the TCP part the key assumption is that the TCP sources are always in the congestion
avoidance phase and time outs are not taken into account. Thus, for successfully transmitted
packets the congestion window wi(t) of source i at time t is increased linearly and for each
dropped packet wi(t) is halved. This is a standard assumption in TCP literature, see, e.g.,
[63], [52], [59], [65], [38] and [39]. In practice this implies that the model should capture
the essential behavior of TCP Reno, in the case when the packet loss events are relatively
rare and the delay-bandwidth product is high enough such that time outs do not occur [65].
An additional assumption is that the round trip time, denoted by R, is assumed to be a
constant (i.e., the random queuing delays are not modeled) and the same for all sources.

For modeling the RED controlled buffer, a simplified version of the original RED algorithm
is used, which is typical in RED analyzes and also adopted, e.g., in [66]. To be specific,
the following simplifications are made. The case where the exponentially weighted average
(EWA) queue length is computed differently when the arrival occurs into an empty queue
is not considered. However, as the primary interest lies in heavily loaded queues, the effect
of this special handling is of less importance. Additionally, the counter, which measures the
time (in terms of packet arrivals) since the previous packet drop, is not modeled. (Note that
the system with the counter can be approximated by a counterless system with the value
for the RED parameter pmax doubled, see, e.g., [50].)

The simplified RED algorithm works as follows: Consider a queue with a finite buffer which
can hold up to K packets at a time. Let qn be the queue length at the nth arrival. For each
arriving packet, the EWA queue length at the nth arrival, sn, is computed with

sn = (1− β)sn−1 + βqn, (3.1)

where 0 < β < 1 is the weighting parameter (as earlier). If the buffer is full, the packet is
lost. If sn < Tmin, the arriving packet is accepted; if sn > Tmax the packet is discarded. In
the intermediate range Tmin ≤ sn ≤ Tmax, the packet is discarded with probability

p(sn) =
pmax(sn − Tmin)

Tmax − Tmin
,

and accepted otherwise.
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3.4.2 The TCP Model

The TCP model used in the present work in Publication 7 is essentially the same as used
by Kelly in [59], however, its derivation has been altered to get a clearer idea of the ap-
proximations involved. Consider m identical TCP sources with constant round trip time R.
To simplify the notation, the delays in the time arguments are temporarily neglected and
the equations are derived as if the changes to the window sizes occurred instantaneously
at packet transmission epochs. The TCP aggregate has a window W (t) =

∑
i wi(t). The

arrival rate (throughput), λi(t), of source i is

λi(t) =
wi(t)

R
.

Consider a small time interval (t, t + ∆t), or ∆t for brevity. Let Ai(∆t) denote the event
that there is exactly 1 arrival from source i during ∆t. Additionally, given that there is a
packet arrival in ∆t from source i, let Li(t) denote the event that this packet is lost and Lc

i(t)
its complement. The basic assumption on the traffic generated by a TCP source is that it
is periodic with time dependent periods, but for each TCP source the packet transmission
phase is random. This implies that given the current window size wi(t) of source i, the
probability of an arrival in ∆t is

P{Ai(∆t) |wi(t)} = λi(t)∆t = wi(t)∆t/R,

and the probability of having more than 1 arrival in ∆t equals zero. In TCP congestion
avoidance, for each successfully transmitted packet source i increases its transmission win-
dow by 1/wi(t), and for each lost packet the window is halved. The expectation of the change
in the aggregate arrival rate λ(t) =

∑
i λi(t), E[∆λ(t)], can be computed by conditioning on

the set of window sizes {wi(t)} and Ai(∆t) as follows

E[∆λ(t)] =
1

R
E [E [∆W (t) |{wi(t)}]] =

1

R
E

[
E

[∑
i

∆wi(t)
∣∣∣{wi(t)}

]]

=
1

R
E

[∑
i

E [∆wi(t)|{wi(t)}, Ai(∆t)] · P{Ai(∆t) |{wi(t)}}
]

=
1

R
E

[∑
i

(
P{Lc

i(t) |{wi(t)}} 1

wi(t)
− P{Li(t) |{wi(t)}}wi(t)

2

)
wi(t)

R
∆t

]

=
∆t

R2
E

[∑
i

(
P{Lc

i(t) |{wi(t)}} − P{Li(t) |{wi(t)}}w
2
i (t)

2

)]
.

If it is further assumed that the wi(t) processes are independent of each other and that
the number of TCP sources is large, each individual source experiences a packet loss
as determined by the queue receiving the aggregate traffic. The conditional probability
P{Li(t) | {wi(t)}} corresponds then to the loss probability in the queue at time t, which is
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denoted here by PL(t). Proceeding with the derivation, one obtains

E[∆λ(t)] ≈ ∆t

R2
E

[∑
i

(
(1− PL(t))− PL(t)

w2
i (t)

2

)]

=
m∆t

R2

(
(1− PL(t))− PL(t)

E[w2
i (t)]

2

)
.

To evaluate the term E[w2
i (t)] the following approximation is used,

E[w2
i (t)] ≈ E[wi(t)]

2 ≈ E[W (t)]2/m2.

Publication 7 discusses the minor influence of this approximation when compared with a
situation where each wi(t) has a uniform distribution in the range [2w/3, 4w/3]. Thus, one
obtains

E[∆λ(t)] ≈ m∆t

R2

(
(1− PL(t))− PL(t)

E[W (t)]2

2m2

)
,

=
m∆t

R2

(
(1− PL(t))− PL(t)

E[λ(t)]2R2

2m2

)
,

=

(
(1− PL(t))

m

R2
− PL(t)

E[λ(t)]2

2m

)
∆t.

By the linearity of the ∆ operator, E[∆λ(t)] = ∆E[λ(t)], denoting with E[λ(t)] = λ̄(t), and
letting ∆t→ 0, one arrives at the ordinary differential equation (ODE)

d

dt
λ̄(t) = (1− PL(t))

m

R2
− PL(t)

λ̄2(t)

2m
. (3.2)

Note that solving (3.2) for the equilibrium, dλ̄(t)/dt = 0, gives the familiar TCP steady
state relation

λ̄ =
m

R

√
2(1− PL)

PL
≈ m
√

2 · 1

R
√

PL

,

where the last approximation holds for small PL.

3.4.3 The Queue Model

By using the earlier assumptions on a large TCP population and random phases, the aggre-
gate stream can be approximated by a time varying inhomogeneous Poisson process with
rate λ(t). Strictly speaking, λ(t) is itself a stochastic process but it is assumed that the
fluctuations are small and the approximation λ(t) ≈ E[λ(t)] is used. Thus, the queue part
of the model consists of a RED controlled queue receiving an inhomogeneous Poisson ar-
rival stream with a deterministic time varying rate E[λ(t)] = λ̄(t) governed by eq. (3.2).
Additionally, the service times can have a general distribution with mean µ.
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ODE for Averaged Queue Length

The aim is to develop a continuous time model for the transient behavior of the queue. The
discrete time equation governing the time development of sn is obtained from (3.1),

∆sn = sn+1 − sn = β(qn+1 − sn). (3.3)

Eq. (3.3) relates the values of sn+1 and sn to each other at the arrival instants of the packets.
However, the EWA queue length process can be studied in continuous time, i.e., the process
s(t). Consider a short interval of length ∆t. Then by taking expectations of (3.3) and
conditioning on the number of arrival events A(∆t) occurring in the interval (t, t + ∆t) one
obtains

E[∆s(t)] = E [∆s(t) |A(∆t) = 1] P{A(∆t) = 1}+

E [∆s(t) |A(∆t) = 0] P{A(∆t) = 0}+ O((∆t)2)

from which

∆E[s(t)] = βE[q(t)− s(t)]λ̄(t)∆t + O((∆t)2)

= λ̄(t)β (E[q(t)]− E[s(t)]) ∆t + O((∆t)2)

Then, by denoting s̄(t) = E[s(t)] and q̄(t) = E[q(t)] and taking the limit ∆t→ 0 one obtains
the ODE

d

dt
s̄(t) = λ̄(t)β(q̄(t)− s̄(t)) (3.4)

Quasi-stationary Approximation for Averaged Queue Length

The exact dynamics of the term q̄(t) in (3.4) are unknown. To overcome this, in [71]
a quasi-stationarity approximation, which is exact in the limit β → 0, was made. The
approximation is based on the fact that in practice we are interested in evaluating (3.4) for
systems where β is small, say 10−3. Then s(t) changes very slowly compared to q(t) and,
hence, it can be assumed that the term q̄(t) is sufficiently well approximated by the mean
stationary queue length of a hypothetical queue length process where the current value of the
EWA queue length s(t) controlling the access to the queue is fixed. To be precise, consider
the stationary queue length q(s) as a function of the access control parameter s which is
constant. The approximation amounts to q̄(t) = E[q(s)]|s=s̄(t), i.e., the time dependence is
introduced parametrically to the stationary distribution and q̄(t) is thus given by the mean
queue length of a M/G/1/K queue with arrival rate λ̄(t)(1− p(s̄(t))).

ODE for Instantaneous Queue Length

However, the simulation results in [71] showed that even when β = 10−3, the finite time
before the queue length process reaches stationarity has a noticeable effect on the queue
dynamics. Thus, the expectation of the instantaneous queue length q̄(t) is analyzed here in
more detail, and another ODE for q̄(t) is introduced. Therefore, we consider again a short
interval of time ∆t, condition on having 0, 1 or more arrivals and take the limit ∆t → 0.
By using some additional assumptions the following result is obtained,

d

dt
q̄(t) = λ̄(t)

(
1− πK(q̄(t))

)(
1− p(s̄(t))

)
− µ
(
1− π0(q̄(t))

)
, (3.5)



CHAPTER 3. ANALYSIS OF THE RED BUFFER MANAGEMENT ALGORITHM 53

where the first term is the expected rate at which packets are admitted to the queue and
the second term is the expected rate at which packets leave the system.

In order to define the quantities π0(q̄(t)) and πK(q̄(t)) in (3.5) and to see the nature of the
approximations involved, let us examine more closely the first term in (3.5). To correct the
slight inaccuracy and abuse of notation of Publication 6, the justifications given here differ
slightly from the one given in the publication. The queue length process q(t) varies rapidly
on a time scale that is short in comparison with other relevant time scales. Thus, it can be
assumed that q(t) roughly behaves as the stationary queue length of the M/G/1/K queue
with mean m(t), which itself is a random process on a slower time scale. Now, aside for
the factor λ̄(t), the other factors in the first term of (3.5) represent the following expected
acceptance probability Pacc(t) of a packet at time t:

Pacc(t) = E[1q(t)<K ·R(t)],

where R(t) denotes the Bernoulli variable describing whether RED will accept the packet
or not. The expectation can be evaluated by conditioning on the values of m(t) and s(t),

E[1q(t)<K ·R(t)] = E
[
E
[
1q(t)<K · R(t) |m(t), s(t)

]]
,

= E
[(

1− πK(m(t))
)(

1− p(s(t))
)]

,

where use has been made of the facts that the RED drop probability is only a function
of s(t) and that given m(t) the queue length process q(t) is independent of s(t). It is not
unreasonable to assume that the distributions of m(t) and s(t) are narrow and thus these
random variables can approximately be replaced with their means, q̄(t) and s̄(t), in the
above formula

E
[(

1− πK(m(t))
)(

1− p(s(t)
)]
≈
(
1− πK(q̄(t))

)(
1− p(s̄(t))

)
.

In the above, the function πK(q̄(t)) denotes the stationary packet loss probability in an
M/G/1/K queue with mean q̄(t) and a method is needed to efficiently construct this function
(and for π0(q̄(t)), as well). To this end, let π∞

k (ρ) denote the steady state probability of
state k in the infinite capacity M/G/1 system with load ρ. The queue length distribution of
the M/G/1 system is given by the well known Pollaczek-Khintchine formula [54, p. 230] and
the distribution can be computed algorithmically as presented in, e.g., [74, p. 266]. Then
the steady state probability of state k, πk(ρ), in the finite system can be obtained from the
following relations (see [54, p. 230])

πj(ρ) =
π∞

j (ρ)

π∞
0 (ρ) + ρG(K)

, j = 0, . . . , K − 1,

πK(ρ) = 1− G(K)

π∞
0 (ρ) + ρG(K)

,

G(K) =

K−1∑
j=0

π∞
j (ρ).
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Additionally, it holds trivially that

q̄(ρ) =

K∑
j=0

jπj(ρ).

The steady state functions π0(q̄) and πK(q̄) are computed by eliminating ρ from the above
relations. This technique is also similar to the approximations for nonstationary queues
given in [75]. In practice, e.g., the function π0(q̄) is best derived by computing pairs of
values (q̄(ρ), π0(ρ)) for a suitably dense discretization of ρ providing a discretized version of
π0(q̄). Then one can use interpolation between the discretization points to compute π0(q̄)
for any value of q̄.

In Publication 7 the M/D/1/K system is used as an example. In Publication 6, the
M/M/1/K queue is used, in which case the equations for constructing π0(q̄) and πK(q̄)
are simply 

π0 =
1

1 + · · ·+ ρK
,

q̄ =
K∑

n=0

nρn

1 + · · ·+ ρK
,


πK =

ρK

1 + · · ·+ ρK
,

q̄ =

K∑
n=0

nρn

1 + · · ·+ ρK
.

Note that if the buffer is assumed to be infinite, (3.5) becomes

d

dt
q̄(t) = λ̄(t)

(
1− p(s̄(t))

)
− µ
(
1− π0(q̄(t))

)
.

The above approximation then gives in the M/M/1 case{
π0 = 1− ρ,

q̄ =
ρ

1− ρ
,

yielding the result π0(q̄) = 1/(1 + q̄) and

d

dt
q̄(t) = λ̄(t)

(
1− p(s̄(t))

)
− µ

q̄(t)

1 + q̄(t)
.

In the case of the M/G/1 system, one needs to solve
π0 = 1− ρ,

q̄ = ρ +
ρ2(1 + C2)

2(1− ρ)
,

where C2 is the squared coefficient of variation of the packet length, giving

1− π0 =
q̄ + 1−√q̄2 + 2C2q̄ + 1

1− C2
,

and
d

dt
q̄(t) = λ̄(t)

(
1− p(s̄(t))

)
− µ

q̄(t) + 1−√q̄(t)2 + 2C2q̄(t) + 1

1− C2
.
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3.4.4 The TCP-RED System Model

By combining eqs. (3.2), (3.4) and (3.5) one gets a model for the TCP-RED interaction
omitting the effect of link delays,

d

dt
s̄(t) = λ̄(t)β(q̄(t)− s̄(t)),

d

dt
q̄(t) = λ̄(t)

(
1− πK(q̄(t))

)(
1− p(s̄(t))

)
− µ
(
1− π0(q̄(t))

)
,

d

dt
λ̄(t) = (1− PL(t))

m

R2
− PL(t)

λ̄2(t)

2m
,

PL(t) = p(s̄(t)) + πK(q̄(t))− p(s̄(t))πK(q̄(t)).

(3.6)

However, a more accurate model is obtained by including the link delays in the system
(but queuing delays are not modeled and hence the delays are not time dependent). In the
following model λ̄(t) denotes the expected aggregate TCP transmission rate at the source.
The acknowledgments arrive at the source with the delay R causing the update action to the
current sending rate, and the amount of update depends on the current rate. Also, the TCP
population will adjust its current sending rate based on packet losses having taken place
in time R/2 prior to the current time. Similarly, the packets sent by the TCP population
arrive at the queue after the link delay of R/2 and hence the queue will observe the R/2
delayed sending rate. This gives rise to a retarded functional differential equation (RFDE,
or a delay differential equation):

d

dt
s̄(t) = λ̄(t− R/2)β(q̄(t)− s̄(t)),

d

dt
q̄(t) = λ̄(t− R/2)

(
1− πK(q̄(t)))(1− p(s̄(t))

)
− µ
(
1− π0(q̄(t))

)
,

d

dt
λ̄(t) = −PL(t− R/2)

2m
λ̄(t)λ̄(t− R) + (1− PL(t− R/2))

m

R2

λ̄(t− R)

λ̄(t)
,

PL(t) = p(s̄(t)) + πK(q̄(t))− p(s̄(t))πK(q̄(t)).

(3.7)

Here a symmetric delay structure has been used, but any other delay structure can be
handled with obvious modifications. Also, note that in the TCP model, PL denoted the
probability of the packet loss observed by the TCP population. In the above system, packets
may be dropped due to the RED admission control or the buffer overflow. Hence, the packet
loss is approximated by PL = p(s̄) + πK(q̄) − p(s̄)πK(q̄). Additionally, observe that in the
last differential equation in (3.7), λ̄(t) appears with two time arguments: λ̄(t−R) represents
the update rate at time t, whereas λ̄(t) arises from the amount of change to the current
rate.

The initial conditions of (3.7) at time t0 are given by the functions q̄, s̄ : [t0, R/2]→ R and
λ̄ : [t0, R] → R. Also, note that when there are no packet losses, the slope of the linear
increase in the throughput is slightly less than m/R2 due to the term λ̄(t−R)/λ̄(t), a fact
also seen in the simulations.



CHAPTER 3. ANALYSIS OF THE RED BUFFER MANAGEMENT ALGORITHM 56

3.4.5 Model Validation by Simulation

The implementation of the simulator for verifying the accuracy of the TCP-RED model
(3.7) is discussed in Publication 7. Briefly, the simulation is carried out as follows. The
sources model the behavior of a greedy FTP source population transmitting constant length
packets. Hence, each TCP source i has its own congestion window wi (as opposed to the
model), and R is a common constant for all sources. The congestion window of each source
is incremented by 1/wi for each accepted packet and halved for each lost packet (based on
delayed information of the acknowledgement and loss events). The source behaves as a fluid
process with instantaneous rate wi/R, and sends a packet at those instants of time where
the cumulative fluid attains an integer value. Thus, the aggregate traffic into the queue
consists of a superposition of periodic sources with a time varying sending rate.

The biggest difference in the behavior of the fluid sources and “real” TCP sources is that
the fluid sources try to space the packets in a “smooth” manner, as opposed to what may
happen with real TCP. If a real TCP source is able to send packets at a rate comparable
to the link speed of the bottleneck link, the transmission pattern of the real TCP source is
bursty in nature: As long as all transmitted packets go through, in congestion avoidance, the
window is increased linearly and each time the value of the congestion window exceeds a new
integer value, two packets are sent back to back (one for the ACK and one corresponding to
the window size increase). Thus, after the, say, first ACK, a source would send two packets
back to back. The (possible) queuing at the bottle neck will not introduce much extra delay
between the two packets and the ACKs for the two packets will arrive closely spaced at the
sender. It will again send two packets corresponding to the ACKs and one extra packet as a
result of the window size increase, and so on. With the exponential window increase policy of
slow start, the above behavior is even more pronounced. This bursty transmission continues
until there is a packet loss. At that point a real TCP source halves its congestion window
and waits until enough ACKs have been received such that the number of packets in transit
becomes again less than the current congestion window size, and the source will continue
sending new packets at the same rate as with what the ACKs are received. On the other
hand, the fluid source will not stay “silent” for a while upon receiving a packet loss event.
Instead, it continues the transmission but at half rate. The exact relationship between the
behavior of a real TCP source and the fluid source is yet to be determined and remains
as an issue for further study requiring NS2 (Network Simulator 2) based simulations, and
maybe even new models.

3.4.6 Extensions

The above system model can be easily extended to cover the case of a RIO controlled
buffer. Heterogeneous round trip times can be modeled by dividing the TCP population
into subpopulations each having a constant Ri. These extensions have been discussed in
Publication 7. Additionally, queue length dependent queuing delays can be taken into
account in a similar fashion as in [66] by replacing R with a function, which depends on the
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fixed propagation delay(s) R and the queuing delays,

R(q̄) = R + q̄(t)/C,

where C is the service rate.

3.5 Stability Analysis

In this section some results from the general theory of stability analysis of linear systems are
summarized, first for systems that can be described by ODE systems and then for systems
represented by RFDEs. RFDEs are systems, where the time derivative depends on time
lagged values of the system state variables. The results have been used in Publications 6
and 8. In the case of both (3.6) and (3.7) the systems are inherently nonlinear. Thus, the
principle for examining the local stability of the systems is based on making a linearization
of the system around its equilibrium point.

3.5.1 Ordinary Differential Equations

General Theory

Consider a system of linear ODEs of the form, expressed in vector notation,

ẋ(t) = Ax(t). (3.8)

By using a trial ξezt in (3.8) for the time dependence, where ξ denotes a constant vector,
one is lead to the eigenvalue equation

det (zI−A) = 0.

The stability of (3.8) is determined by the roots of the eigenvalue equation. For the stability
of the system, two criteria can be defined:

1. Non-oscillatory requirement: The system (3.8) can be required to have a non-oscillatory
solution, in which case the requirement translates to that all of the eigenvalues must
be real valued and negative.

2. Asymptotic stability: For asymptotic stability imaginary roots are allowed, but it is
required that all the roots have a strictly negative real part (i.e., purely imaginary
solutions are not allowed). The asymptotic stability is then determined by the root
having the greatest, i.e., least negative, real part, and the degree of damping in the
oscillations for each oscillation cycle is described by the absolute value of the ratio of
the real part and the imaginary part.
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Application to TCP-RED

In Publication 6, a system was considered where the time dependent arrival rate λ̄(t) was
given by an exogenous deterministic function, i.e., the system consisted only of eqs. (3.4)
and (3.5), 

d

dt
s̄(t) = λ̄(t)β(q̄(t)− s̄(t)),

d

dt
q̄(t) = λ̄(t)

(
1− πK(q̄(t))

)(
1− p(s̄(t))

)
− µ
(
1− π0(q̄(t))

)
,

(3.9)

The idea is to apply similar concepts as are used in the traditional control theory of deter-
ministic systems. Therein one important consideration is the so called step response, i.e.,
the response of the system when the input changes as a step function. It is often required
that the step response reaches equilibrium nicely, i.e., that the trajectories reach equilib-
rium without any oscillations or that the oscillations are dampened sufficiently quickly, as
discussed above.

For the stability analysis, (3.9) is linearized around the equilibrium, when λ̄(t) is a step
function

λ̄(t) =

{
0, t ≤ 0,
λ̄, t > 0.

Also it is assumed that the system state is q̄ = s̄ = 0 at time 0. The equilibrium is obtained
by equating the right hand side of the ODE system (3.9) to 0,{

f1(s
∗, q∗) = 0,

f2(s
∗, q∗) = 0,

where f1(·, ·) and f2(·, ·) denote the right hand sides of the ODEs for s̄(t) and q̄(t), respec-
tively. From the first equation it immediately follows that s∗ = q∗. Finally, q∗ is determined
by the equation

f2(q
∗, q∗) = 0.

Close to the equilibrium (q∗, q∗), (3.9) can be approximated by its linearized version (ex-
pressed in vector notation)

d

dt
x = J(q∗)x, (3.10)

where x = [s̄, q̄]T and J(q∗) is the Jacobian evaluated at the equilibrium,

J(q∗) =


∂f1(s̄, q̄)

∂s̄

∂f1(s̄, q̄)

∂q̄
∂f2(s̄, q̄)

∂s̄

∂f2(s̄, q̄)

∂q̄


∣∣∣∣∣∣∣∣
s̄=q∗,q̄=q∗

.

The stability of (3.10) is determined by the eigenvalues of J(q∗). By using the following
short hand notation for the elements of J(q∗),

J(q∗) =

(
a1 a2

a3 a4

)
.
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the eigenvalue equation reads

z2 − (a1 + a4)z + a1a4 − a2a3 = 0. (3.11)

The eigenvalues are, in this case, obtained as a solution to a quadratic equation and, hence,
both eigenvalues are at the same time either real or complex. The possible stability criteria
are:

1. Non-oscillatory requirement: Since (3.11) is a quadratic equation, its roots are real
valued if the discriminant of (3.11) is positive.

2. Asymptotic stability: If the roots of (3.11) are imaginary, they are always of the form
x± iy, where i denotes the imaginary part and the degree of damping is governed by
abs(x/y), i.e., the greater the value of abs(x/y) the more the oscillations are damped
for each oscillation cycle.

Note that the above method can also be applied to (3.6). In that case J(λ∗, q∗) is a 3 × 3
matrix and the characteristic equation is a third order polynomial.

3.5.2 Delay Differential Equations

General Theory

Here the stability analysis related to RFDEs is discussed briefly (for details see [46, 55]).
The theory for RFDEs parallels the one for ODEs. Consider a vector equation

ẋ(t) = Ax(t) +
∑

i

Bix(t− τi), τi > 0 ∀i. (3.12)

The role of eigenvalues for ODEs is replaced by the roots of the characteristic equation

det ∆(z) = det

(
zI−A−

∑
i

e−zτiBi

)
= 0

and the solution of (3.12) is asymptotically characterized by ezjt-terms, where det ∆(zj) = 0.
Contrary to polynomial eigenvalue equations for ODEs, the characteristic equation can have
infinitely many roots (but only finitely many in the right half-plane (RHP)). The role of
the initial condition with ODEs is replaced by the initial “history” and hence all stability
results also change accordingly meaning that large oscillations in the initial history around
an equilibrium may not be guaranteed to converge towards the equilibrium value (as would
be with ODEs). Also recall that the methods based on linearizations give only local results.

The asymptotic stability of (3.12) is characterized by the absence of roots in the RHP or
on the imaginary axis. However, in general, the numerical computation of the roots of the
characteristic equation is not a suitable approach to study the stability. Sufficient conditions
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for stability can be obtained using results on roots of certain characteristic equations, see [59,
73], also Lyapunov methods can be generalized to RFDEs to give sufficient conditions for
stability or instability.

The approach used in this work, see [46] for a theoretical discussion, is to look for necessary
and sufficient conditions for stability in a parameter space (α1, α2) ∈ R × R, where α1, α2

are external parameters on which A and B (and possibly the τi) depend. The idea is then to
study when the root of the characteristic equation passes the imaginary axis, causing non-
decaying oscillatory solutions, and then unstable solutions when the root is in the RHP.

Given a characteristic equation F (α1, α2, z) = 0, which is analytic in z, let

G1(α1, α2, x, y) = Re F (α1, α2, x + iy),

G2(α1, α2, x, y) = Im F (α1, α2, x + iy).

Suppose a point (α0
1, α

0
2, 0, y) has been found such that G1(α

0
1, α

0
2, 0, y) = G2(α

0
1, α

0
2, 0, y) = 0,

i.e., there is a root on the imaginary axis. If the matrix

M =

(
∂G1

∂α1

∂G1

∂α2

∂G2

∂α1

∂G2

∂α2

)
(α0

1,α0
2,0,y)

is nonsingular, the equations {
G1(α1, α2, 0, y) = 0,
G2(α1, α2, 0, y) = 0,

have a locally unique solution curve (α1(y), α2(y)). Moreover, the roots with positive real
parts are in the RHP of the parameter space to the left of curve (α1(y), α2(y)), when this
curve is followed in the direction of increasing y, whenever detM < 0 and to the right when
detM > 0. This allows us to detect the stable region in the parameter space in which there
are no critical roots in the RHP.

Application to TCP-RED

To facilitate the stability analysis, (3.7) is simplified. First, the buffer is assumed to have
an infinite size, in which case PL(t) = p(s), i.e., losses are only due to RED drops. This is
reasonable as, in practice, the buffers of modern routers are very large and, moreover, the
operating point of the system should anyway be such that it is the RED algorithm that
performs the congestion control, not the packet drops caused by buffer overflow. Addition-
ally, the quasi-stationarity approximation for q̄(t), introduced earlier, is used, where it is
assumed that q̄(t) is approximated sufficiently well by the mean queue length of an M/G/1
queue receiving an arrival stream thinned by the factor (1 − p(s̄(t)), i.e., the RED packet
non-discard probability. Without loss of generality, assuming deterministic service times of
duration 1, and using the above approximation for q̄(t) together with the assumption of an
infinite queue length, q̄(t) can be related directly to the arrival rate λ(t) via the well known
Pollaczek-Khintchine formula

q̄(λ) = λ +
λ2

2(1− λ)
.
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Hence, the RFDE model becomes
d

dt
s̄(t) = λ̄(t− R/2)β

(
q̄((1− p(s̄(t)))λ̄(t−R/2))− s̄(t)

)
,

d

dt
λ̄(t) = −p(s̄(t−R/2))

2m
λ̄(t)λ̄(t− R) + (1− p(s̄(t− R/2)))

m

R2

λ̄(t−R)

λ̄(t)
.

(3.13)

Let f and g denote the right-hand sides of (3.13) and let (s̄∗, λ̄∗) denote the equilibrium,
i.e., the solution of f(s̄∗, λ̄∗) = g(s̄∗, λ̄∗) = 0. To perform the linearization of (3.13) around
(s̄∗, λ̄∗), let λ̄1 = λ̄(t), λ̄2 = λ̄(t− R/2), λ̄3 = λ̄(t− R), s̄1 = s(t) and s̄2 = s(t− R/2), and
(3.13) can be written as

d

dt
s̄1(t) = λ̄2β

(
q̄((1− p(s̄1))λ2)− s̄1

)
= f(s̄1, λ̄2),

d

dt
λ̄1 = −p(s̄2)

2m
λ̄1λ̄3 + (1− p(s̄2))

m

R2

λ̄3

λ̄1

= g(s̄2, λ̄1, λ̄3).

In vector notation x(t) = [s̄(t), λ̄(t)]T , the linearized system is of the form

ẋ(t) = Ax(t) + Bx(t−R/2) + Cx(t− R),

where A,B and C are the Jacobian matrices

A =

(
∂f

∂s̄1

∂f

∂λ̄1
∂g

∂s̄1

∂g

∂λ̄1

)
(s̄∗,λ̄∗)

=

(
a11 0
0 a22

)
, B =

(
∂f

∂s̄2

∂f

∂λ̄2
∂g

∂s̄2

∂g

∂λ̄2

)
(s̄∗,λ̄∗)

=

(
0 b12

b21 0

)
,

C =

(
0 0

0 ∂g

∂λ̄3

)
(s̄∗,λ̄∗)

=

(
0 0
0 c22

)
.

In this case, at the equilibrium (s̄∗, λ̄∗), the partial derivative c22 = 0 and, thus, the linearized
equation reads

ẋ(t) = Ax(t) + Bx(t−R/2), (3.14)

with the non-zero matrix elements being

a11|(s̄∗,λ̄∗) = λ̄∗β
(
− λ̄∗p′(s̄∗)q̄′(1− p(s̄∗))λ̄∗)− 1

)
≤ 0,

a22|(s̄∗,λ̄∗) = − λ̄∗p(s̄∗)
m

≤ 0,

b12|(s̄∗,λ̄∗) = λ̄∗β(1− p(s̄∗))q̄′((1− p(s̄∗))λ̄∗) ≥ 0,

b21|(s̄∗,λ̄∗) = −p′(s̄∗)
((λ̄∗)2

2m
+

m

R2

)
≤ 0.

The characteristic equation of the linearized system (3.14) is

det
(
A + Be−zR/2 − zI

)
=

∣∣∣∣ a11 − z b12e
−zR/2

b21e
−zR/2 a22 − z

∣∣∣∣ = 0,
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which results in
ezR(a11 − z)(a22 − z)− b12b21 = 0. (3.15)

The requirement for the asymptotic stability is that in the parameter space of (3.15), i.e., the
space consisting of the values of the tuple (a11, a22, b12b21), (3.15) has no roots with positive
real parts. In Publication 8, it is shown how the stable parameter region is determined by
taking a22 as a fixed parameter and then solving the stable region in the parameter space
of (b12b21, a11) and, also, how the results can be used to explore the stability boundaries of
the system as functions of the physical system parameters.

3.6 Conclusions

The work in this chapter contains the main results from Publications 6-8. The publi-
cations constitute a progression where, by employing various stochastic assumptions and
approximations, a dynamic model is derived to describe the interaction between an ideal-
ized homogeneous TCP population and a RED controlled buffer. The model is presented in
Section 3.4 and it consists of a set of coupled differential equations governing the dynamic
evolution of the expected values of the queue length processes (instantaneous and averaged)
and the packet arrival rate. The main idea in the modeling is to derive a system that is
able to capture the oscillations originally seen in the simulations in [71], and which is sim-
ple and accurate enough to be used for analyzing the stability of the system as a function
of the system parameters. As discussed in Section 3.1.1, the modeling approach and the
application of control system theory for examining the stability of the system is similar to
the independent work in [66] and [56].

The derivation of the model is done in two separate parts: in the first part (Publication 6) the
queue is considered alone receiving a packet stream characterized by an exogenous function
giving the average packet arrival rate of packets into the queue, and in the second part
(Publication 7), the interaction between the TCP sources and the queue is introduced along
with the link delays to take into account the effect of the delay in the feedback loop. The
numerical results of Publications 6 and 7 are intended to validate the model by comparing
results obtained from simulations. In particular, the simulations of Publication 7 verify that
the stochastic assumptions made in the model derivation are not so important. Additionally,
Publication 6 provides initial results from applying control theoretic techniques in studying
the stability of a RED controlled queue receiving a load determined by a step function. As
a result, conditions are obtained such that the queue does not exhibit any oscillations.

The stability analysis of the delay differential equation system requires some further sim-
plifications (infinite buffer size, omission of the equation for instantaneous queue length).
With the aid of these, as shown in Publication 8 (and Section 3.5.2), it is possible to define
a method whereby the stable parameter region of the system can be determined numerically
and the stability of the system can be studied directly as a function of the system variables.
This is illustrated by the numerical results in Publication 8.

In conclusion, it can be said that the model developed for the TCP-RED interaction is
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versatile enough to give valuable insight into the many complex issues affecting its dynamics.
Also, requiring stability of the expectations of the queue state variables gives one well defined
and sensible way of solving the parameterization problem of the RED algorithm. However,
a design procedure for ultimately solving the parameterization problem of real life Internet
routers is still a part of future work. Additionally, as part of the future research, some issues
related to the TCP model requiring further study include: The model of Publication 7 is
verified by using sources having a TCP-like behavior. However, the relationship between
the behavior of these and real TCP sources is not entirely clear (as alluded to already in
Section 3.4.5). Also, the model assumes greedy sources that only operate in the congestion
avoidance phase. The impact of stochastically arriving short-lived non-greedy connections
(e.g., connections with finite file sizes or intermittent transmissions) should be investigated.
This requires modeling the slow-start phase, as well. Finally, the model assumes a constant
round trip time for all sources. In practice, the round trip times vary from one connection
to another and the impact of this should be investigated thoroughly.



Chapter 4

Summaries of Publications and
Author’s Contributions

4.1 Publication 1

In Publication 1, the use of the Gibbs sampler is investigated. The first contribution of the
publication is the identification of a suitable partitioning of the state space of the system that
makes the application of the Gibbs sampler easy in the case of the multiservice loss system.
The Gibbs sampler then provides an alternative to the traditional MC rejection method for
generating the samples. Two approaches are considered: one based on generating a Markov
chain with the correct steady state distribution of the system and another by which it is
possible to generate a Markov chain with a uniform steady state distribution. As a second
contribution, the first results in variance reduction methods are given, where the method of
conditional expectations is applied. The method is formulated by using as the conditional
expectation function the contribution that is obtained when making “virtual” transitions
from a given state of the Markov chain generated by the Gibbs sampler, and computing the
conditional expectation of these “virtual” transitions hitting the set of blocking states. The
application of this is shown both in the case of using the correct steady state distribution and
the uniform distribution. The numerical results show that the results obtained by using the
Gibbs sampler combined with the conditional expectations compare favorably with other
known methods (viz., the heuristics of Ross) for estimating the blocking probabilities.

4.2 Publication 2

Publication 2 presents the generalization of the method of conditional expectations to the
case where the samples can be generated with any method, i.e., where the samples are not
necessarily generated with the Gibbs sampler, as is assumed in Publication 1. A general
problem of estimating the expectation of a multidimensional random variable is considered

64
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first. In the case of i.i.d. samples, it is shown analytically that by using the method of con-
ditional expectations and an appropriate conditioning function, the variance of the resulting
estimator is indeed smaller than that of the basic MC estimator. Then the application of the
results in the context of the multiservice loss system is given, where a suitable partitioning
is identified. The amount of variance reduction obtained with this method is demonstrated
with some numerical examples.

4.3 Publication 3

In Publication 3 the first results on applying IS are reported. The main contribution of
the paper is a novel IS distribution to be used for estimating the blocking probabilities
in multiservice loss systems. The IS distribution has a composite form consisting of a
weighted combination of exponentially twisted distributions. In the literature it has been
shown that an asymptotically efficient IS distribution is of the composite form for certain
types of problems suggesting that a composite distribution leads to an efficient sampling
distribution even in the non-asymptotic regime. Further heuristic justification for this choice
is also provided by the analysis of the observed variable when using IS. The result from
the analysis shows that to have a control of the variance of the observed variable, it is
important to keep the value of the likelihood ratio as constant as possible. This heuristics
also provides a rule for fixing the weights of the composite distribution, which are left open
in the asymptotic theory. By using the composite IS distribution, it is possible to efficiently
sample all the blocking states related to the links that the considered traffic class uses. The
numerical experiments confirm the efficiency of the proposed method over other methods
available in the literature.

4.4 Publication 4

The work on efficient IS methods for estimating the blocking probabilities in multiservice
loss systems is continued in Publication 4, where, instead of using exponentially twisted
distributions, a different approach is introduced. The first contribution of the paper is the
derivation of the decomposition result for the multiservice loss system, allowing the original
estimation problem to be decomposed into independent simpler subproblems, each roughly
corresponding to estimating the blocking probability contribution from a single link. The
main contribution of the publication is the derivation of two novel importance sampling
distributions, which very closely approximate the ideal importance sampling distribution
for each subproblem. In both methods, the idea is to try to generate samples directly into
the blocking state region. The difference between the methods is that the first method,
the inverse convolution method, achieves this exactly, while the second one, using a fit-
ted Gaussian distribution, only approximately. Algorithmic presentations of both methods
are also given, and, especially, the algorithm for the inverse convolution method can be
considered to be one of the main contributions of this thesis. Finally, the paper gives a
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dynamic control algorithm for optimally allocating the samples between different subprob-
lems. The numerical results demonstrate that the variance reduction obtained with the
methods, especially with the inverse convolution method, is indeed remarkable surpassing
the efficiency of all previously reported methods, including the results for the composite
distribution approach of Publication 3.

4.5 Publication 5

In Publication 5 the application of the decomposition principle and the inverse convolution
method is shown for estimating the blocking probabilities in a multicast loss system. The
multicast loss system is similar to the multiservice loss system studied in Publications 1–4,
except that the state of the system is defined in a different manner. In the multicast loss
system, the state of a given link does not correspond to a unique global state of the net-
work. Instead, the mapping between a given link state and the network state is surjective,
implying that there are several possible network states resulting in the same link state. The
main contribution of the paper is the derivation of the algorithm for the inverse convolution
method for the multicast loss system. The state representation results in an inverse convo-
lution algorithm with two steps: in the first step the state of a given link is generated under
a suitable conditioning, and in the second step, the global state is generated using a similar
inverse convolution algorithm subject to the condition of the given link state. The numerical
examples demonstrate the outstanding performance of the inverse convolution method also
in this case. Additionally, in the numerical studies, the use of optimal allocation of the
samples is compared with an implementation without optimal sample allocation, allowing
the reuse of samples between the different subproblems.

4.6 Publication 6

Publication 6 considers the performance of a single queue where the simplified RED algo-
rithm is used to control the access to the queue. The packet stream into the queue has been
assumed to be Poisson with a time varying arrival rate, representing the aggregate traffic
generated by a population of TCP sources. In the paper it is assumed that the arrival rate
is determined by an exogenous function that does not depend on the queue variables, i.e.,
the feedback between the sending rate of the TCP population and the queue is not modeled.
The main contribution of the paper is a dynamic model capturing the time dependent be-
havior of the expectations of the instantaneous queue length and the exponentially averaged
queue length. The work builds on one of the ideas presented in Sharma et al. [71], where
a differential equation is derived pertaining to the time evolution of the averaged queue
length process. The simulations in [71], however, revealed oscillations in the instantaneous
queue length which the model could not reproduce. Thus, in the present paper, another
differential equation is introduced for characterizing the time evolution of the expectation of
the instantaneous queue length. Also, new quasi-stationarity approximations are given for
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approximating the unknown time dependent probabilities of the queue to be full and empty,
respectively. Numerical results show that the model is able to capture well the behavior
of the corresponding simulated system under different arrival rate functions. For instance,
when using a step arrival rate function, the oscillations in the expectations are nicely repro-
duced. Note that the derivation of the differential equations is different from [71], since in
the present paper the differential equations describe the expectations of the state variables,
whereas in [71] the averaged queue length process is considered. Finally, initial results are
provided from the application of control theoretic methods to obtain guidelines in choosing
the parameters of the system. The response of the system is analyzed by linearizing the
differential equations around the equilibrium point. By using a step function as an input,
the stability of the system is characterized by the properties of the roots of the eigenvalue
equation and it is possible to determine requirements, e.g., such that the system does not
exhibit oscillations around the equilibrium point.

4.7 Publication 7

Publication 7 extends the work of Publication 6 by presenting a dynamic model for the TCP
source population behavior and combining it with the queue model of Publication 6. The
TCP model, however, represents an idealized version of TCP behavior, where the sources
are assumed to always behave as in congestion avoidance, i.e., slow start (time outs) is not
modeled. The TCP model is essentially the same as the one developed by Kelly (see [58]),
but its derivation is altered to gain a better understanding of the approximations that are
needed. The main contribution of the paper is the system of coupled differential equations
for the population of TCP sources and the RED controlled queue, which also takes into
account the delays in the feedback between the queue and the TCP source population. The
system consists of three RDFEs describing the time evolution of the expectation of the
arrival rate, the expectation of the instantaneous queue length and the expectation of the
exponentially averaged queue length. In the queue model, the quasi-stationarity approxi-
mations of Publication 6 are generalized to the case of generally distributed packet lengths.
The model can be used to explore, for example, parameter settings or stability surfaces
(which are difficult to study by using simulations). Additionally the paper discusses various
extensions of the model, e.g., the possibility to handle differentiated service classes with
simple modifications (a model for a RIO controlled queue) and dealing with inhomogeneous
round trip times. The emphasis of the paper is on a careful derivation of the model and
the verification of its accuracy by simulations. In the simulation, none of the stochastic
approximations of the model are used, and the very good agreement with the model shows
that the stochastic assumptions are not important.
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4.8 Publication 8

Publication 8 presents the stability analysis of the RFDE system, defined in Publication 7,
describing the dynamics between a large TCP population and a RED controlled queue. To
facilitate the analysis some simplifications are made to reduce the dimensionality of the
system. In particular, the queue is assumed to have an infinite size and a quasi stationary
approximation is used, obsoleting the equation for the instantaneous queue length. Thus, the
RFDE system is expressed in terms of the expected values of the aggregate rate of the TCP
population and the exponentially averaged queue length process. The main contribution of
the paper is a technique whereby it is possible to derive, not only sufficient, but also necessary
conditions for the stability. The technique is based on the analysis of the characteristic
equation of the system, linearized around its equilibrium. Instead of searching for the roots
of the characteristic equation, the parameter space of the characteristic equation is analyzed
and the part of the parameter space is solved numerically, where the characteristic equation
has no solutions with positive real parts, thus revealing the stable parameter region. This
can easily be done numerically. Moreover, it is possible to compute numerically stability
boundaries of the system as functions of the RED or TCP parameters. The resulting curves
can be directly used for tuning of the RED queue such that the system is asymptotically
stable.

4.9 Author’s Contributions to Publications

In the publications relating to the fast simulation techniques for multiservice loss systems,
i.e., Publications 1–4, the present author is also the first author. The main ideas and meth-
ods presented in the papers have emerged from an interactive process with Prof. Jorma
Virtamo, where both parties have contributed to the results. The implementation of the
different algorithms and the numerical evaluation of the methods has been done by the
present author, except in Publication 4, where also Prof. Virtamo contributed. Publica-
tions 1–4 were written by the author under the guidance of Prof. Virtamo.

In Publication 5, the present author is the first author. The realization that it is possible
to apply the decomposition result and the inverse convolution method to the multicast loss
system originated from discussions between all three authors. The algorithm for testing the
idea was implemented later by Mr. Jouni Karvo, Lic.Sc. (Tech.), in collaboration with the
present author, who also performed the numerical experiments for verifying the efficiency
of the method. The article itself was written as a joint effort involving all three authors.

In the publications on modeling and analysis of the TCP-RED interaction, i.e., Publica-
tions 6–8, the present author is the first author in Publication 6 and the second author in
Publications 7 and 8. In the work for Publication 6, the oscillations were first observed in
the simulations implemented and performed by the present author. The analytical model
for describing the queue dynamics was developed in close cooperation between the present
author and Prof. Virtamo. The numerical experiments and simulation verifications were



CHAPTER 4. SUMMARIES OF PUBLICATIONS AND ... 69

carried out by the present author. The paper was written by the present author under the
guidance of Prof. Virtamo.

In Publication 7, the idea of applying the approach by Kelly et al. in the modeling of the
TCP population emerged from discussions with Dr. Peter Key from Microsoft Research.
The complete analytical model was developed as a joint group effort involving the present
author, Dr. Pirkko Kuusela and Prof. Virtamo. The algorithms for evaluating the RFDE
system were written by Dr. Kuusela with some support from the present author. The
present author was also responsible for realizing the simulator which was used for validating
the analytical model. The paper was mainly written by the three first authors, with Dr.
Key providing some useful suggestions and comments during the preparation of the paper.
In Publication 8, the used method and the theoretical background were provided by Prof.
Virtamo and Dr. Kuusela. The algorithms were implemented for the most part by the
present author with help from Dr. Pirkko Kuusela. The paper was mainly written by Dr.
Kuusela and the present author.
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[35] A. Simonian, J. W. Roberts, F. Théberge, R. Mazumdar, “Asymptotic Estimates for
Blocking Probabilities”, Advances in Applied Probability, vol. 29, 1997, pp. 806–829.

[36] L. Tierney, “Markov Chains for Exploring Posterior Distributions”, The Annals of
Statistics, vol. 22, No. 4, 1994, pp. 69–100.

[37] M. Villén–Altamirano, J. Villén–Altamirano, “RESTART: A Method for Accelerating
Rare Event Simulations”, in Proceedings of the 13th International Teletraffic Congress,
ITC 13, Copenhagen, Denmark, June 1991, pp. 71–76.



BIBLIOGRAPHY 73

Analysis of the RED Buffer Management Algorithm

[38] E. Altman, K. Avrachenkov, C. Barakat, “A Stochastic Model of TCP/IP with Station-
ary Random Losses”, in Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden,
September 2000, pp. 231–242.

[39] E. Altman, K. Avrachenkov, C. Barakat, R. Núñez-Queija, “State Dependent M/G/1
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Errata

Publication 2

• General: The sets Ai,B,S should appear in a calligraphic font, but apparently IEE
Electronics Letters does not use these fonts. Instead, all sets have been typeset by
using a normal bold faced font.

• p. 1204, first sentence in the paragraph ”Variance Reduction”: the set S in X ∈ S
should read X ∈ S.

• p. 1205, before eq. (5): ρk should appear ρk

Publication 3

• last part of eq. (2), the expectation should have X in the subscript (signifying a random
variable), instead of x

Publication 4

• p. 329, equation for π(x): in the ratio, the X should be X denoting a vector random
variable

• p. 335, below Fig. 2: the equation in the text P{Yl ≤ y |Sl = x ≥ U} should read
P{Yl ≤ y |Sl = x} ≥ U

• p. 335, text explaining Fig. 2: the sentence starting ”The most important . . .” contains
an extra ”Sj

l or”, that is, in the middle of the sentence, the text should read ”. . . for
a fixed value of Sl are . . . ”

• p. 336, equation for p∗(x): in the ratio, the X should be X denoting a vector random
variable; the same mistake appears in the equation for v below

• p. 337, last equations on the page: in the equations on the right hand side for zi, the
subscript of zk is false, i.e., zk should be zK

• p. 338: an ’=’-sign is missing from eq. (11) (it should read Γ̃−1 = ...)

• p. 340, equations after definition of p∗(x): there are some mix-ups in the subscripts
of the variables for r′ and s′. The correct version reads: ”. . . strip v = Q(r′)−Q(s′),
the primes refer to the normalized variables

x′
k =

xk −mk

σk
, r′ =

r − m̃K√
Γ̃KK

, s′ =
s− m̃K√

Γ̃KK

, . . . ”
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• p. 341, sec. 6.1, line 4: β =
∑

j η̂j should be β =
∑

j ηj

• p. 341, first equation in Section 6: η̂(j) = . . . should be η̂j = . . .

• p. 341, sec. 6.1, line 11: ”estimators β̂j are . . . ” should be ”estimators η̂j are . . . ”

• p. 342, first paragraph of Section 6.2: The definition of relative deviation in the
sentence ”To this end, we estimated the relative deviation of the estimator. . . ” should
have brackets around β̂k, i.e., (V[β̂k])

1/2/β̂k

Publication 5

• p. 435, left column, equation for the IS estimator: In the text after the equation, vj

should be vj
u

• p. 436, equation before eq. (8): vj should read vj
u (similarly in the sentence preceding

the equation)

Publication 6

• Section 3: The error terms in the equations appearing between eqs. (2) and (3) should
be O((∆t)2), instead of O(∆t)

• Section 3: The justification of the ODE for q̄(t) contains some inaccuracies and a
corrected version is given in the main text of this thesis, see Section 3.4.3

• Section 5.1: text above Fig. 2: The list of the RED parameters that were used to
obtain the figures is not correct. The correct parameter values should be: K = 100,
Tmin = 40, Tmax = 80, and pmax = 0.2.
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