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Abstract

Instrumentation and methods for positron annihilation spectroscopy of point defects

in semiconductors have been developed. In particular, techniques to enhance the stability of

positron lifetime spectrometers have been investigated. The ageing of the photomultiplier

tubes (PMT) of the scintillation detectors can be slowed down by lowering the operating

voltages over the PMTs and by compensating the lower gain with fast preampli�ers. The

timing characteristics of the apparatus are preserved if the voltages in the input electron

optics of the PMTs are high enough and the pulse amplitudes above some tens of millivolts.

A positron lifetime spectrometer stabilized against fast inherent drifts in time zero is con-

structed. An arti�cial time reference peak in the lifetime spectrum is produced by feeding

light pulses from a light-emitting diode onto the photomultipliers via optical �bers of dif-

ferent lengths. The reference peak serves as a basis of stabilization in a digitally stabilized

multichannel analyzer.

Positron thermalization in Si and GaAs at low temperatures (8-100 K) is investigated

both by experiments and theoretical calculations. Thermalization in GaAs is observed to be

noticeably slower than in Si. The mass density of a material is found to play an important

role in thermalization since the positron scattering rate o� longitudinal-acoustic phonons is

inversely proportional to it.

Point defects have been investigated by positron annihilation spectroscopy in Si and

CdF2. V-As and V-P pairs are observed in electron-irradiated silicon. Native V-As3 com-

plexes are found to be formed when the As-concentration exceeds 1020 cm�3. The ionization

level V
�2=�
2 of the silicon divacancy is detected at Ec� 0:40 eV by measurements under illu-

mination with monochromatic light. An open-volume defect is observed to be a constituent

of the deep-state atomic con�gurations of the bistable donors In and Ga in CdF2. The size

of the open volume is at least half of a Cd monovacancy.
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1 Introduction

The famous Moore's law states that the number of transistors in a microprocessor

doubles every two years. This trend has already manifested itself for decades. Now that

the dimensions of the components are approaching the scale of the lattice constant, the con-

tinuation of the trend is threatened. Namely, with decreasing dimensions, the conductivity

and thereby the active carrier concentrations should increase. In silicon, the increase has,

however, been prevented by the formation of deactivating point defect complexes [1]. For

the industry to be able to overcome these problems, identi�cation of the defects is essential.

The investigation of the defects appearing in heavily-doped Si is also one of the subjects of

this thesis.

Point defects in
uence the electrical and optical properties of semiconductors. This

is due to the localized states that they create in the energy gap of the material. Point

defects play an essential role also in the di�usion of dopant atoms. In many cases, they are

very useful (e.g. doping), but they may also be detrimental by acting as recombination or

scattering centers.

Positron annihilation spectroscopy (PAS) is a technique that has been used to investi-

gate defects in semiconductors for two decades [2, 3, 4]. It is a nondestructive method which

is able to yield unambiguous information about open-volume type defects. In contrast with

many common defect spectroscopies, like infra-red absorption spectroscopy (IR), deep level

transient spectroscopy (DLTS), etc., a signal attributable to a vacancy cannot arise from any

other type of point defects, like antisites or interstitials. This is the asset of PAS. Another

advantage of the method is that it can be applied to specimens of any type of conductivity.

The weakness of the technique is that positive defects escape detection.

In this thesis, positron annihilation spectroscopies have further been developed for de-

fect studies in semiconductors. In semiconductors, the annihilation characteristics in di�erent

defects are often rather similar [2, 3, 4]. To improve the chances of succesfully resolving the

experimental data, good statistics is of utmost importance. Therefore, eÆcient spectrome-

ters with good stability are desired. Publications I and II of this thesis are devoted to the

enhancement of the stability of the lifetime spectrometers. Two aspects of instability were

treated. Firstly, it was found that the ageing of the photomultiplier tubes (PMT) in the

detectors can be slowed down by lowering the supply voltage over the tubes and by compen-

sating the reduced gain with fast preampli�ers. With this action, the average anode current

in the PMTs causing the degradation of the gain can be lowered by a factor of 20 without

impairment of the time resolution.

In Publication II a scheme to stabilize the drifts of the time zero of the lifetime spec-

trometer is presented. An arti�cial reference peak is produced to serve as a basis of sta-

bilization in a digitally stabilized multi-channel analyzer. The reference peak is created

by feeding fast light pulses from a light-emitting diode along two optical �bers of di�erent

lengths onto the photomultipliers. With this system, even the fastest drifts observed in the

lifetime spectrometer can be eliminated.

The shape of the annihilation line re
ects the electronic structure of the annihilation

site [2, 4]. Particularly, in case of vacancies decorated with impurity atoms, it contains

information on their chemical identity. This information can be extracted by the so-called

two-detector Doppler-broadening technique with which the background level in the spectra
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can substantially be lowered [5, 6, 7, 8, 9]. In this work, a system with two high-resolution Ge

detectors was taken into use. This provides the ultimate way of background reduction and

improves the resolution of the system. In addition, the resolution function can be measured

which enables an accurate comparison to theoretical calculations.

In semiconductors, measurements as a function of sample temperature often reveal

information on the charge states of the trapping defects. The trapping rate of thermalized

positrons at neutral defects is constant whereas for negative ones it is known to increase

strongly with decreasing temperature [10, 11, 12, 13, 14]. The theory suggests that the

positron trapping rate at negative defects would increase at least as rapidly as T�0:5 towards

low temperatures [10]. This would enable the detection of very small vacancy concentrations

near zero temperature. This was one of the main motives to construct two new cryostats

which enable measurements even below 10 K.

The prerequisite of strongly increasing sensitivity to negative defects is rapid positron

thermalization. In Publication III, positron trapping at negative vacancy-type defects was

investigated in GaAs and Si down to 8 K. The positron trapping rate in Si was observed to

increase strongly even at 8 K. In GaAs, it was found that the trapping rate does not increase

as rapidly as predicted for thermalized positrons below 20 K. The di�erences between Si

and GaAs can be assigned to slower positron thermalization in GaAs than in Si. This is

supported by theoretical calculations. They indicate that positron thermalization down to

10 K in heavier materials (like GaAs) may take even hundreds of picoseconds whereas in

lighter hosts (like Si) thermalization may occur much faster.

In Publications IV-VI, investigations in which positron lifetime and Doppler-broadening

measurements were combined to study various defects in Si and CdF2, are described. In Pub-

lication IV, vacancies complexed with a single impurity, V-P and V-As, were identi�ed in

electron-irradiated Si. In heavily As-doped n-type Si, native vacancies decorated with three

As atoms were observed. The observation of these V-As3 centers is consistent with recent

theoretical descriptions of As di�usion and electrical deactivation in highly As-doped Si [15].

In Publication V, a study of the optical properties of silicon divacancies is reported.

Illumination with 0.70-1.30 eV photons was observed to a�ect the positron annihilation

characteristics signi�cantly. Illumination has an in
uence on the occupations of the di�erent

electron levels of the divacancies. The positron trapping rate again depends on the charge

states of the defects. The spectral shape of the trapping rate at divacancies reveals an

ionization level at 0.75 eV above the top of the valence band which is attributed to the

V 2�=� level [16].

CdF2 is a technologically interesting material as a candidate for being used in holo-

graphic memories [17]. This application would be based on Ga and In atoms forming bistable

centers in the material. Illumination with visible light and heating can be used to induce

transitions of the dopant atoms between two stable positions in the lattice. The atomic struc-

ture of the bistable centers was for a long time unknown. In Publication VI, it is shown that

an open-volume defect is a constituent of the deep-state atomic con�guration of In and Ga

in CdF2. This is in perfect agreement with recent theoretical calculations suggesting a jump

of the dopant atom from an interstitial to a substitutional site in the deep-shallow transition

[18]. The results indicate that an asymmetric lattice relaxation is much more universal than

previously thought, appearing from highly covalent to highly ionic compounds.
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2 Positron annihilation experiments

2.1 Positrons in solids

Positron annihilation spectroscopy (PAS) is based on introducing positrons into the

solid sample in which they eventually annihilate with electrons, their antiparticles [2, 3,

4]. The electronic properties of the annihilation site, which, of course, re
ect the atomic

structure of the lattice, leave a �ngerprint in the annihilation radiation. In the annihilation,

energy and momentum are conserved leading in most cases to the emission of two 
-quanta

with energies of about 511 keV. There are three physical variables which contain information

about the annihilation: positron lifetime, shape of the annihilation line (Doppler-broadening)

and the angular distribution of the 
-quanta. In this thesis, positron-lifetime and Doppler-

broadening measurements have been performed and their measurement principles are shortly

described in this section.

There are two principal ways of implanting positrons in the material the choice of which

depends on the depth pro�le under interest. When one is willing to probe the bulk properties

of the lattice (in the depth of tens of micrometers), radioactive positron emitting nuclei are

typically used. Positrons penetrate into the sample with a continuous energy distribution

characteristic of �-decay. Therefore, the depth range at which positrons annihilate is rather

wide. Investigation of thin layers again requires a controlled positron energy distribution.

This is feasible by using slow-positron beams with which moderated (thermal) positrons are

accelerated to a tuneable energy and a corresponding depth into the sample.

Upon entering the solid, the positron slows down quickly as a result of various electronic

interactions with the host: core-electron ionization, conduction-electron scattering, etc. [19].

These processes dominate for a couple of picoseconds after which the positron mean energy

is of the order of eVs. Thermal equilibrium with the material is �nally achieved via phonon

scattering [19, 20, 21]. At 300 K this is also rather fast in most cases, taking at the maximum

some tens of ps. This is a short time compared to the positron lifetime, and therefore

the nonthermal period of the positrons in the specimen is usually regarded as insigni�cant.

However, as shown in Publication III and Sec. 3 of this overview, at low temperatures in heavy

materials, thermalization may take even hundreds of ps. In such cases, the thermalization

stage has an in
uence on the measured data and it has to be kept in mind in data analysis.

After reaching thermal equilibrium with the material, the positron di�uses around the

lattice. As a thermal particle, the positron density can be described with a fully delocalized

wave function. The wave function amplitude is at its highest in the interstitial volume of

the lattice due to the Coulombic repulsion between the positron and the positive ion cores.

Before annihilation, the positron may also get trapped at some localized level. Particularly,

vacancies or larger open-volume-type defects are attractive centers to the positron due to

absence of the positive nuclei. The positrons also get trapped at Rydberg levels of negative

ions. The annihilation properties in a vacancy are di�erent from those in the lattice which

makes possible the identi�cation of the defect. The intensity of the defect signal, again,

is proportional to the defect concentration. Positron trapping at open-volume type defects

enables positrons to be used as a point defect probe.
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2.2 Positron trapping in semiconductors

In semiconductors, point defects appear in di�erent charge states. Positrons get

trapped at neutral and negative vacancies and negative ion-type centers without an open vol-

ume [10]. Positive defects repel the positron due to the long-range Coulomb interaction, and

the trapping rate at them is very low compared to the annihilation rate. The trapping rate

� is proportional to the defect concentration c as � = �c. The defect speci�c proportionality

coeÆcient � is called the trapping coeÆcient.

The trapping rate of thermalized positrons at negative defects increases strongly with

decreasing temperature. This has well been demonstrated both experimentally and theo-

retically. The delocalized positron wave-function in the presence of a negative vacancy is a

Coulomb wave. The amplitude of the Coulomb wave at the center of the vacancy increases

with decreasing positron energy. This results in an increase in the overlap between the initial

state and the �nal state wave functions, which further leads to an increase in the trapping

rate. Theoretically, the trapping rate increases at least as rapidly as T�0:5.

Negative defects induce weakly bound Rydberg states for the positron. For negative

vacancies, the dominant mechanism of positron trapping at the vacancy ground state is via

these Rydberg states. Since the positron binding energy at them is only of the order of tens

of meVs, thermally aided detrapping can also take place at higher temperatures [22]. The

overall trapping rate at negative vacancies can be written as

� =

�0cvT�0:5

Nat

1 + �0T�0:5

Nat�R
(2�m

�mekB
h2

)1:5T 1:5exp(�Eb

kBT
)
; (1)

where �0T
�0:5 is the trapping coeÆcient at the Rydberg state, cv the vacancy concentration

and Nat the atomic density of the material. m� represents the positron e�ective mass, �R

the transition rate from the Rydberg state to the ground state at the vacancy, and Eb the

positron binding energy at the Rydberg state. Eq. 1 holds for thermalized positrons. As

shown in Publication III of this thesis, imperfect positron thermalization at low temperatures

results in a temperature dependance T�� with � < 0:5.

In case of neutral vacancies the positron trapping rate is constant as a function of the

sample temperature. Typically, � = 1015 s�1. No positron trapping at positive vacancies

has been observed due to the Coulombic repulsion.

2.3 Lifetime experiments

The positron annihilation rate is proportional to the overlap between the positron and

electron densities as follows:

� = �r20c

Z
drj	+(r)j2n(r)
[n(r)]: (2)

Here, r0 is the classical radius of the electron, c the velocity of light, 	+ the positron wave

function, n(r) represents the electron density and 
(n) is the enhancement factor of the

electron density at the positron.
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As mentioned above, the positron may make a number of transitions between di�erent

states during its lifetime. The annihilation rate at di�erent positron states (denoted as �i)

varies. In open-volume defects, the electron density seen by the positron is lower than in

the ideal lattice. This results in a characteristic lifetime, �i = 1=�i, which is longer than the

lifetime in the bulk crystal, �B. As a rule of thumb, the vacancy lifetime is a measure of the

open volume in which the positron is trapped.

The positron lifetime spectrum, i.e., the annihilation rate at time t, is the negative

time derivative of the number of positrons alive at time t, n(t). In practice, the measured

spectrum is the convolution between the ideal spectrum and the time resolution function of

the spectrometer. The ideal spectrum is always of the form

�
dn(t)

dt
=

N+1X
i=1

Ii�iexp[��it] (3)

with the sum of relative intensities
P

i Ii = 1. In a simple case where no detrapping takes

place, the decay constants �i are directly the characteristic annihilation rates at the defects.

Due to the proximity of the characteristic lifetimes in semiconductors, decompositions into

more than two components are seldom possible. In a two-component analysis of a spectrum

with a larger number of components, merging of components occurs.

In case of more than one positron trap, the decomposition of the spectrum often yields

nonphysical results. Assuming that the �t goes through the experimental data points, the

center of mass (COM) of the spectrum is, however, always a reliable parameter. It coincides

with the average lifetime �ave:

�ave =

Z
dtt
�
�
dn(t)

dt

�
=
X
i

Ii�i: (4)

If the average lifetime is longer than the lifetime in the bulk, it is an unambiguous sign

of positron trapping at open-volume type defects. An interesting opportunity to analyze

positron lifetime data would be to calculate the COM directly from the raw data without

any �tting. In a conventional apparatus, this kind of evaluation of the �ave has not been

very accurate because of drifts in the peak position. One of the aims of this thesis work was

to improve the stability of the apparatus in such a way that the COM could be used as a

measure of changes in the annihilation characteristics without any multiexponential �tting.

The stabilization is treated in Secs. 2.3.2 and 2.3.3.

2.3.1 Conventional experimental setup

In the studies of this thesis, the positrons were obtained from a 22Na source. This

isotope emits positrons with a mean energy of about 300 keV. A 1275 keV 
�quantum
is emitted simultaneously with the positron. This photon serves as the birth mark of the

positron. The radioactive 22NaCl is enclosed between thin Al-foils forming an easy-to-handle

closed source. In the measurement, the source is sandwiched between two identical speci-

mens.

5



DELAY

TAC CFDCFD

MCA

START PMT STOP PMT

SOURCE+SAMPLES

Figure 1: Conventional positron lifetime spectrometer.

In practice, the positron lifetime is measured as a time di�erence between two 
�quanta:
the 1275-keV photon and one of the 511-keV photons released in the annihilation. The life-

time spectrum is acquired using a coincidence spectrometer with fast scintillation detectors

(Fig. 1). One of the detectors is set to detect the 1275-keV 
-quantum (start-detector)

and the other the annihilation 
-quantum (stop-detector). The detector pulses are fed to

di�erential constant-fraction discriminators (CFD) which compose uniform timing signals

from the detector pulses variable in amplitude. The timing signals are further led to a

time-to-amplitude converter (TAC). It forms an analogue pulse whose amplitude is propor-

tional to the time di�erence. Finally, the distribution of time di�erences is recorded with a

multichannel analyzer (MCA).

The performance of a lifetime spectrometer can be quanti�ed by its time resolution

function, eÆciency and stability. The time resolution and the eÆciency are to some extent

complementary properties; when the eÆciency is increased by some means, the resolution

typically worsens.

The eÆciency of a scintillation detector is determined by the properties of the scin-

tillating material and the size of the crystal. It increases with increasing mass attenuation

coeÆcient for 
�quanta and with increasing scintillator size. The time resolution of the

spectrometer arises from various parts of the apparatus. When using reasonably sized scin-

tillators, the majority of the time spread originates from them, as a result of lengthy light

production and collection times. The role of the photomultiplier tubes and the timing elec-

tronics is usually substantially smaller.

The ultimate goal of the lifetime measurement is a rapid acquisition of a spectrum from

which all the physical components can be resolved. This is furthered by a narrow gaussian

time resolution function, good statistics and peak-to-background ratio in the spectrum, low

intensity of annihilations in the source materials and good stability of the apparatus. Usually,

a good statistical accuracy is more important than an excellent time resolution [25, 26, 27].

To achieve a suÆcient statistics in a reasonable time, good counting rate is desirable.

It can be improved by increasing either the eÆciency of the detectors or the activity of

the positron source. Of these two, it is clearly wiser to enhance the eÆciency. Firstly, the

peak-to-background ratio is inversely proportional to the activity. The decomposibility again

improves with increasing peak-to-background ratio. Secondly, the fraction of annihilations
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in the source materials decreases with decreasing activity.

In this thesis, an eÆcient spectrometer with a suÆciently good time resolution was

assembled. For this, the relation between the eÆciency and the time resolution was inves-

tigated in some degree. The outcome was a spectrometer with a time resolution of 195 ps.

At a face-to-face distance of 14 mm of the detectors, the counting rate is 10 cps/�Ci. These

�gures together are very competitive with reported values [28].

Instabilities of a positron lifetime spectrometer appear e.g. as drifts of the time zero

and changes in the width and form of the resolution function. These problems make the

accurate analysis of the data at least diÆcult, if not impossible. When aiming at more

accurate results by improving the statistics of the spectra, the instabilities eventually set the

limits to the attainable accuracy. Therefore, enhancement of the stability is highly desirable.

An example of the evident advantages would be the possibility to analyze changes in the

average lifetime simply as shifts in the centroid of the spectrum. Thereby uncertainties

related to multiexponential �tting could be eliminated. The measures taken in this thesis to

improve the stability of the lifetime spectrometer are described in the next two sections.

2.3.2 Implementation of fast preampli�ers

An apparent problem concerning the long-term stability of the lifetime spectrometer

is ageing of the PMTs. Aiming at high counting rates easily results in excessive average

anode currents which lead to nonreversible degradation of the gain. Typically, a counting

rate of 500 cps corresponds to an average anode current of 10{20 �A, and is known to lead

to an inconvenient rate of deterioration. According to Photonis, an average current of 30 �A

leads to a decrease of gain by a factor of two in about 5000 hours [29]. To achieve high

stability, manufacturers recommend the average anode current to be maintained below 1 �A

[29, 30, 23, 31]. With conventional apparatus and typical pulse amplitudes, this corresponds

to a coincidence counting rate of the order of 50 cps which leads to very long measurement

times.

The degradation of gain results in a changing pulse height distribution in the energy

window. Concerning the stability of the data, this leads to changes in the resolution function

and creep of the time zero of the spectrum. This is due to the nonideal amplitude-walk

originating from the CFDs. In addition, the counting rate becomes lower.

In Publication I we investigated the possibility to slow down the degradation of the

gain by decreasing the anode current by lowering the supply voltage over the PMT and

by compensating the loss in gain by implementing fast preampli�ers at the anodes. Fast

preampli�ers have been used to boost photomultiplier signals for years in various applica-

tions. In fast timing, like positron lifetime spectroscopy, the natural question that arises is

whether the operating voltage over the PMTs can be decreased without impairing the time

resolution of the apparatus. Typically, PMTs are driven with as high voltage as convenient,

rather than a lower one. This is done because the timing properties of the PMT generally

improve with increasing voltage [23, 24]. In positron lifetime spectrometers, however, the

time spread related to the light production and collection in the reasonably sized scintillators

is believed to be the dominating factor of the resolution. Therefore, the resolution may not

necessarily worsen very rapidly with decreasing PMT voltage. Furthermore, the linearity of

the PMT pulses, which is essential for the timing electronics, improves with decreasing sup-

7



ply voltage [29]. Hence, it is not evident what happens when the supply voltage is lowered

moderately. It is, however, clear that with decreasing voltage the transit time spread of the

PMT eventually diverges leading to a nonacceptable degradation of the resolution. Also, the

ampli�er noise may become a limiting factor with too low signal levels.

As photomultipliers we used variants of the classic XP2020 manufactured by Photonis.

Plastic scintillators of size �25� 15mm3 were mounted in both detectors. Three fast pream-

pli�ers were used: VT120A (gain 200) and VT120C (gain 20) from Ortec, and VV100B (gain

10) from LeCroy.

Concerning the timing properties of a PMT, the most essential part of the tube is the

input electron optics, i.e. the region between the photocathode (pc) and the �rst dynode

(d1) [24, 32]. We performed a series of measurements to investigate the e�ect of lowering the

voltage Upc�d1 and found that to preserve the time resolution, Upc�d1 has to be maintained

above 300 V. (Below 300 V the photoelectron collection on the �rst dynode degrades [33].)

When lowering the supply voltage over the whole tube driven with a voltage divider recom-

mended by the manufacturer, this condition (Upc�d1 > 300 V) does not allow a substantial

decrease. Hence, we designed a new divider, with which Upc�d1 is 33% of the supply voltage

instead of 19% with the recommended divider.

In Fig. 2, the time resolution (FWHM) of the test spectrometer as a function of the

high voltage over the test tube is presented. The di�erent markers in the �gure indicate the

ampli�cation used at each point. The anode pulse amplitudes at the lower limit of the energy

window have been marked in the �gure. It can be seen that the time resolution is practically
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Figure 2: The time resolution of a test spectrometer as a function of the high voltage over

one photomultiplier [Publ. I]. The nonampli�ed anode pulse amplitudes into 50 ohm are

given next to the points.
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independent of the high voltage in a very wide range, between 1250 V and 2000 V.

Below 1200 V the resolution worsens rapidly from the 160 ps level to a value of 220 ps at

1000 V. Besides the increase of the FWHM also the shape of the resolution function becomes

distorted below 1200 V. One potential reason for the deterioration of the resolution is that

the preampli�er input noise becomes important as the anode signal shrinks to millivolt level.

At 1000 V the anode pulse amplitude at the lower edge of the energy window is 2500 �V

which is only about 100 times larger than the rms noise amplitude at the ampli�er input.

The data in Fig. 2 clearly indicate that the supply voltage of the PMTs in a spectrom-

eter with scintillators in the cm-size range is not an important parameter. This holds on

two conditions. Firstly, the voltage in the input optics of the PMT must be high enough

to enable good photoelectron collection on the �rst dynode. Secondly, the pulse amplitudes

must, of course, be high enough compared with the noise level of the ampli�ers. When using

the Ortec VT120C ampli�er, the adequate anode pulse amplitude is some tens of millivolts.

As a �nal test, we implemented two VT120C preampli�ers in a positron lifetime spectrome-

ter with large scintillators and found that the quality of the data was not in
uenced by the

preampli�ers. A three-year-long test period with the ampli�ers has also shown that the rate

at which the PMT gain decreases, is substantially lower than without the ampli�ers.

As a conclusion, the anode pulse amplitudes and thereby the average anode current

can be lowered at least by a factor of 20 without deterioration of time resolution of the

apparatus. Typically, this corresponds to lowering the average anode current to the �A level

at which the rate of degradation of PMT gain is known to be very low.

2.3.3 Digital stabilization based on a high-accuracy time reference

Instabilities in the lifetime spectrometer can be divided into two groups: the channel

width can change (drift in gain) and the time zero can move (drift in time zero). The time

zero drift can originate in all the components whereas gain changes are possible only in the

TAC and the MCA. Drift in time zero means that the magnitude of the shift in channels

in the MCA is independent of the time interval observed. Drift in gain, again, leads to

shifts which increase with increasing time interval. To reduce the random drifts, a stabilized

lifetime spectrometer was developed. The stabilization is based on an arti�cial time reference

peak near the lifetime spectrum which a digitally stabilized MCA tries to hold in a position

selected by the user. The description of the apparatus is the subject of Publication II in this

thesis.

The stabilized lifetime spectrometer di�ers from a conventional one in two ways.

Firstly, an additional apparatus creating the reference signal is needed, and secondly, the

MCA is a digitally stabilized one. Ortec 919 was chosen as the MCA in this work. It is

a device consisting of four di�erent bu�ers, the �rst of which is digitally stabilized. The

stabilization is based on observations of the movements of one or two reference peaks, and

corresponding corrective actions. An ideal way to eliminate drifts consisting of both drift

in gain and drift in time zero, would be to use two reference peaks. A peak located at the

beginning of the spectrum is susceptible only to drifts in time zero and therefore serves as a

good indicator of those. A peak situated at the end of the spectrum, again, is predominantly

subject to drift in gain. In a modern lifetime spectrometer, the drifts are mainly time zero

drifts (see Publication II). Therefore, we designed a system with one reference peak and

9



located it close to the lifetime spectrum. When detecting drifts in the reference peak, the

MCA adjusts the o�set voltage at the input ampli�er of the ADC appropriately.

To stabilize drifts in all the components of the spectrometer, the reference time dif-

ference signal has to be produced at the point of light pulses entering the photomultiplier

tubes. In our system, the reference peak is created by guiding light pulses from a single

light-emitting diode (LED) via two optical �bers of di�erent lengths to the photomultipliers.

The transit time di�erence in the optical �bers is very stable and the resulting reference

peak enables drifts in all components of the spectrometer to be observed and corrected. An

essential design criterion of the system is, of course, that the reference peak must not move

on its own, i.e. due to the instability of the apparatus creating the peak. All the shifts in its

position must be fully correlated with drifts to which the real lifetime spectrum is exposed

to. To achieve this, we designed a special pulser to drive the LED.

Two methods to stabilize the lifetime spectrometer have been reported in the literature

[34, 35]. In both of them, the observations of the drifts are based on the lifetime spectrum

itself. The accuracy of those observations is, however, not particularly good because of the

low counting rate and statistics. In Publication II, it was reported that the drift rate may be

very fast, even 0.5 ps in a minute. The accuracy attainable with lifetime data is of the order

of 1 ps after a collection time of one minute. Hence, accurate corrections of the fastest drifts

are not possible. With the LED-based system, the accuracy can be increased substantially

simply by increasing the 
ashing frequency. With the present apparatus, the accuracy of the

reference peak position after a one-minute acquisition with frequency of 6500 1/s is 0.12 ps

(FWHM=210 ps). By using fast preampli�ers with gain 20, the accuracy can be enhanced

to a level of 0.03 ps after a one-minute collection. This, of course, enables a much more

accurate correction of the drifts appearing in a positron lifetime spectrometer.

The operation of the stabilized lifetime spectrometer described in Publication II is

demonstrated in Fig. 3. There are two things to be tested in a stabilized positron lifetime

spectrometer. The �rst is the accuracy with which the reference peak follows the real drifts of

the lifetime spectrum. The second is the quality of the stabilization algorithm, i.e. how close

the standard deviation of the centroids is to the theoretical minimum (�/
p
N). Both of these

properties can be studied simultaneously with the experiment described in the following.

The capability of the reference peak to detect the drifts correctly can be investigated

by collecting spectra from the LED-pulser and from a 60Co source at the same time. 60Co

emits two 
-quanta simultaneously. Thus the drifts in the centroids of the 60Co spectra

represent the drifts of the time zero in real positron lifetime experiments with a 22Na source.

To test the performance of the digital stabilizer we record the same pulses from the

TAC in two di�erent multichannel bu�ers, one being stabilized and the other one not. This

can conveniently be done with the Ortec Model 919 MCA consisting of four di�erent bu�ers,

the �rst of which is digitally stabilized.

Fig. 3 (a) presents the centroids of the 60Co peak and the reference peak in a one-

week-long measurement in the nonstabilized MCA (MCB 2). Each symbol corresponds to

a 20-minute measurement. The circles represent the 60Co peaks and the triangles the LED

peaks. The drifts of the two peaks are identical. The overall drift of 12 ps in a week is

typical for a combination of fast scintillation detectors and commercial timing electronics.

The results of stabilization can be seen in Fig. 3 (b) which shows the centroids of the spectra
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Figure 3: (a) The centroids of the reference peak and a peak resulting from the two 
�quanta
from a 60Co source in a one-week-long measurement [Publ. II]. As seen, the reference peak

moves identically with the 
�peak and therefore properly reveals the drifts in the spectrom-
eter. (b) The stabilized centroids of the reference peak and the 60Co peak [Publ. II]. These

data originate from the same pulses which lead to the data shown in (a).

collected in the digitally stabilized MCA (MCB1). As explained, these spectra originate

from the same pulses as in Fig. 3 (a). The standard deviation of the reference peak centroids

equals 0.17 ps whereas the theoretical STDV is about 0.03 ps. The di�erence probably

results from the inherent delay in the correction (up to 60 s) and the rather large size of the

minimum correction (0.125 ps). The centroids of the 60Co spectra are within 0.6 ps (STDV)

from the preset position. The theoretical standard deviation calculated from the FWHM

and the number of counts is slightly lower, 0.3 ps. The residual drift in the 60Co data in

Fig. 3 (b) (� 0.5 ps) can be attributed to the temperature dependence of the LED-peak

position.

The results of Fig. 3 indicate that the reference peak follows well those drifts that are

present in the lifetime measurement. Hence, it seems that within the accuracy achieved in

this work, one reference peak located close to the lifetime spectrum is a suÆcient indicator of

the drifts to which the spectrum is exposed to. The data in Fig. 3 show that the apparatus

presented in Publication II can be used to enhance the quality of positron lifetime data. A

further improvement can evidently be attained by using software stabilization and higher

reference peak frequencies.
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2.4 Doppler-broadening experiments

The momentum distribution of the annihilating electron-positron pair is of the form

�(p) =
�r20c

V

X
j

Z
dre�ip�r	+(r)	j(r)

p

[n(r)]; (5)

where p is the total momentum of the annihilating pair, 	+ represents the positron wave

function and 	j the electron wave function at state j. The distribution re
ects mainly the

electron momenta since the thermalized positrons are practically at rest. In the annihila-

tion, the momentum and energy of the positron-electron pair is transferred to the pair of

annihilation 
�quanta. As a result, the energies of the photons deviate from 511 keV by

�E
 = cpL=2, where c denotes the velocity of light and pL the momentum of the positron-

electron pair in the direction of 
�emission. The measurement of this Doppler broadening
(DB) of the annihilation line reveals information about the distribution described by Eq. 5.

In detail, the shape of the annihilation line is obtained by integrating the distribution over

the directions perpendicular to the line of observation:

L(E
) =

Z
1

�1

Z
1

�1

dpxdpy�(px; py; pz); (6)

pz =
2

c
(E
 �m0c

2): (7)

A complementary way to obtain information about the momentum distribution is to

investigate the deviation of the annihilation photons from collinearity. The advantage of

these angular-correlation of annihilation radiation (ACAR) measurements is a considerably

better resolution than achievable in DB measurements. They are plagued, however, by a

notable slowness compared to DB studies.

The momentum distribution consists of the characteristic distributions of valence elec-

trons and di�erent core electrons. The relative intensities of the di�erent distributions are

determined by the overlap of the wave functions of positrons and each type of electrons.

Annihilations with low-momentum valence electrons constitute most of the central part of

the spectrum, whereas only core electrons have enough momentum to contribute to the

high-momentum wings.

The core electron momentum distributions are speci�c to di�erent elements. Therefore,

measurement of the high-momentum region of the annihilation line may reveal the chem-

ical identity of the atoms at the annihilation site. Comparison to theoretically calculated

distributions plays an essential role in the analysis.

In vacancies, the momentum distribution is narrower than in the ideal lattice because

of lower valence-electron density. In addition, the probability of an annihilation with core

electrons is smaller since the positron wave function is localized further from the ion cores.

Vacancies surrounded by impurities can be identi�ed by studying the high-momentum region.
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2.4.1 Conventional DB measurements

The Doppler-broadening of the annihilation line is usually measured with a high-purity

Ge detector. To eliminate instabilities in the measurement electronics, digitally stabilized

MCAs are routinely utilized. In the most common simple setup, only one detector is used.

The energy resolution of a usual Ge detector at 511 keV is around 1.2 keV (FWHM). This

is of the same order of magnitude as the Doppler broadening itself. Therefore, the measured

spectrum, which is a convolution between the resolution function and the physical spectrum,

is strongly in
uenced by the energy spread. Deconvolution of the spectrum can in principle

be performed, but usually the spectra are characterized with two parameters, S and W .

The low-momentum parameter S is calculated as the fraction of counts in the cen-

tral part of the annihilation line compared to the total number of counts. Typically, it

is calculated in the range jE
 � 511 keVj < 0:7 keV. The high-momentum parameter W ,

again, is de�ned as the relative number of counts in the wing part of the spectrum, e.g. at

2.5 keV< jE
 � 511 keVj < 4:2 keV. The ranges at which the parameters S and W are

calculated are chosen so that they measure annihilations with valence electrons and core

electrons, respectively.

In a usual setup with 22Na as a positron source, all the pulses observed by the Ge

detector, including those arising from 1275�keV photons, are included in the spectrum.

This leads to a rather poor peak-to-background ratio of about 200. This means that the

high-momentum part of the spectrum is distorted by background events already at 15 mrad

(4 keV). Therefore, conventional single-detector measurements are not very well suited for

identi�cation of the chemical nature of the annihilation sites. The techniques to reduce the

background are treated in the following.

2.4.2 Two-detector DB measurements

The background of the Doppler-broadening spectrum measured with a single detector

consists of various undesired events. First, pulses originating from the nuclear 
-quanta or

other high-energy photons via Compton-scattering are observed in the energy range of the

annihilation photons. Second, pulses from di�erent simultaneous photons may be piled up

leading to a background event. Additionally, the spectrum gets distorted on the low-energy

side due to incomplete charge collection in the detector.

The ultimate background reduction can be realized by requiring that both annihilation

photons emitted collinearly are detected simultaneously, and that the observed sum energy

equals to 2m0c
2�Eb. Here, m0c

2 is the rest energy of the positron and the electron, and Eb

the binding energy of the positron and the electron in the solid.

A simple and inexpensive way of reducing the background in the high-energy side is

to use a NaI detector (or equivalent) collinearly with the Ge detector to observe the other

annihilation photon [6]. With this technique the peak-to-background ratio can be improved

to 10 � 20; 000 [5]. This corresponds to extending the background-free momentum region

up to 40 mrad. Due to the rather poor energy resolution of the typical NaI detectors, the

energy-conservation rule cannot be exploited. Therefore, some residual pile-up events are

inevitably accepted in the recorded Ge-detector spectrum. This distorts the high-momentum

region of the spectrum leading to problems in the analysis of the data. Some numerical pile-
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up reduction algorithm can be used but they are unavoidably approximative. However,

core-electron momentum spectroscopy using the two-detector coincidence measurements has

been succesful in the identi�cation of various defects in semiconductors.

The best practical approach towards the ideal background-reduction scheme presented

above is to use two collinearly set Ge detectors and a multiparameter analyzer (MPA) [7,

8, 9]. The MPA records the detector pulses in a two-dimensional map thereby retaining the

information on the energies of both annihilation photons. The electron-momentum spectrum

is resolved from the raw data as pz = (E1 � E2)=c where E1 and E2 are the energies of the

individual photons. With this system, the peak-to-background ratio is enhanced up to

2; 000; 000. This is simply based on the fact that since the resolution of both detectors is

good, wrong events can be ruled out eÆciently by the requirement of energy conservation.

With two Ge detectors, the utilizable momentum range extends even up to 70-80 mrad.

A further advantage of the Ge-Ge system is an improvement of the energy resolution.

Since the experimental signal for the momentum is twice that obtained with a single detector,

but the uncertainty increases only quadratically, the energy resolution of the instrument is

better by a factor of
p
2. With usual Ge detectors this corresponds to an improvement from

1.2 to 0.9 keV (FWHM). The resolution function of the system is obtained as a by-product

of the measurement. It is the distribution of the counts as a function of E1 + E2. Since the

resolution function is accurately known, comparison of the electron-momentum distributions

with theoretical distributions is on a sound basis.

Due to the eÆcient reduction of pile-up pulses, data acquired with the Ge-Ge system

can be used as a reference for composing the numerical pile-up-reduction algorithms for

spectra collected with NaI-Ge systems. Fig. 4 shows the momentum-distribution measured in

(100)-Si with both two-detector systems. A single exponential function has been subtracted

from the raw data of the NaI-Ge system such that the data in the high-momentum regions

are identical. This same functional form can then be used for other measurements in Si with

the NaI-Ge apparatus. The di�erence in the resolution of the systems can be seen in the

low-momentum part of the spectrum. In the course of this thesis work, a two-Ge-detector

Doppler-broadening apparatus was taken into use for the defect studies in Laboratory of

Physics. In the investigations presented in Publication IV, it was utilized to obtain the

correct pile-up-reduction for the data actually measured with a NaI-Ge coincidence system.

2.5 Sample treatment

Variation of the sample temperature is most useful in the investigations of point defects

in semiconductors since, for instance, the states of the defects often depend strongly on

it. From the point of view of positron spectroscopy, measurements as a function of the

temperature may reveal the charge state of the positron traps. During this thesis work, two

cryostats based on closed-cycle He-cryocoolers have been constructed, one operating in the

range 6.5-350 K and the other in 12-350 K. All the measurements presented in publications

III-VI were done with these apparatuses.

Illumination of the specimen is another way of varying the occupations of the defect

levels. In our setups, monochromatic light is obtained from a halogen lamp via a monochro-

mator. The sample sandwich is illuminated on both sides using a trifurcated optical �ber.

One of the branches of the �ber is for the photon 
ux monitoring with a Si/Ge detector.

14



10
-5

10
-4

10
-3

10
-2

10
-1

In
te

ns
ity

 (
ar

b.
un

its
)

403020100

Angular correlation θz (mrad)

 FZ Si NaI+Ge
 FZ Si Ge+Ge

Figure 4: The electron-momentum distribution in (100)-Si measured with NaI-Ge and Ge-Ge
coincidence techniques.

The photon-energy range in our system is h� = 0:6 � 3:0 eV and the photon-
ux range

� = 1012 � 1016 cm�2 s�1.

The sample treatment as well as the positron measurements are fully automated under

the control of a personal computer (program Datcd) [36].
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3 Positron thermalization in Si and GaAs

Positron thermalization in solids is generally believed to occur quickly compared to

the positron lifetime in the lattice [4]. ACAR-measurements performed in simple metals

suggest that the positron is in thermal equilibrium with the host at the time of annihilation

even at 10 K [37]. Even neutral positronium atoms were found to thermalize to 10 K in

quartz within the average lifetime of 125 ps [38]. The rapidity of thermalization is supported

by theoretical calculations in aluminum [21]. Both experiments and calculations indicate

that when considering low temperatures, phonon scattering is the dominating energy-loss

mechanism [19, 20, 21, 38].

Generally, the rapidity of thermalization has been accepted to be true irrespective of

the material. However, from the classical point of view, positron-phonon scattering in a

heavy material could be expected to be less eÆcient than in a light host. In Publication

III, this side of the thermalization problem is addressed with both calculations and a new

experimental approach.

3.1 Experiments

ACAR experiments probe the positron momentum distribution at the time of anni-

hilation. A more sensitive way to investigate thermalization could be the measurement of

the temperature dependence of positron trapping rate at negative vacancies. Namely, it

measures the positron energy distribution at the time when the positron escapes from the

delocalized state either by annihilation or trapping. This time is, of course, earlier than

annihilation. The sensitivity to positron energy comes from the energy-dependent trapping

rate.

The positron trapping rate at negative vacancies is known to increase strongly towards

low temperatures [10, 11, 12, 13, 14]. For fully thermalized positrons, the theory predicts

a dependence of T�� with � � 0:5 [10]. The increase results from the enhancement of the

delocalized positron wave function at the vacancy with decreasing positron energy. This

again leads to the increase of the overlap between the delocalized state wave function and

the wave function at the vacancy ground state, and thus to an increasing trapping rate at

the vacancy. For a positron with an energy E, the trapping rate is proportional to 1=
p
E.

If the positron thermalization is incomplete or slow, the positron energy does not attain

the equilibrium distribution soon enough after the implantation. The e�ective trapping rate

thus cannot increase as rapidly as in the ideal situation. If it is observed to increase with

decreasing host temperature according to T�� with � < 0:5, this can be attributed to

incomplete thermalization.

Positron trapping at negative vacancies in GaAs was studied in a commercial undoped

sample. In darkness, negative Ga vacancies act as the only positron traps. The lifetime

spectra were decomposed with a second component of 260 ps in agreement with earlier

investigations. The average lifetime at 300 K is 231 ps, and it increases rapidly down to

25 K, reaching a value of 239 ps. In Fig. 5, the average positron lifetime is presented from

8 to 50 K. From 50 to 25 K it increases about 2 ps, but from 25 to 8 K, at the most, 1 ps.

From previous studies, it is known that the model described by Eq. (1) in Sect. 2.2 is

very well compatible with the positron trapping data related to the VGa from 300 K down
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Figure 5: The average positron lifetime vs sample temperature in undoped GaAs [Publ. III].
The dashed line shows the lowest lifetimes explainable by the theory which assumes the
positrons to thermalize instantly after the implantation.

to about 30 K[2, 11]. When trying to extend the �t to lower temperatures with the present

data (Fig. 5), we �nd that the best �t follows the data nicely down to 20 K below which the

�t gradually rises above the data. This is seen in Fig. 5 in which the dashed line represents

the best �t. This fact is qualitatively in agreement with the idea that imperfect positron

thermalization plays a role at low temperatures.

In electron-irradiated pure Si, in a sample containing negative divacancies, we observed

that the positron lifetime increases strongly from 20 to 8 K (see Publication III, Fig. 4). This

can be interpreted as an evidence on rapid positron thermalization in Si. Our experimental

data in GaAs and Si indicate that positron thermalization in Si is faster than in GaAs.

To lay the experimental observations and interpretations on a stronger basis, we performed

theoretical calculations on positron thermalization in Si and GaAs.

3.2 Theoretical calculations

The time evolution of the positron momentum distribution is given by the Boltzmann

equation [21, 39]. The rate of change in the occupation n(q; t) of momentum state q is

calculated as the di�erence between the rate at which positrons from all other states make

transitions to the state q, and the rate at which positrons at state q make transitions to all

the other possible states. In a homogenous medium the Boltzmann equation reads:

d

dt
n(q; t) =

Z
d3q0[W (q0;q)n(q0; t)�W (q;q0)n(q; t)]� [�+ �(q)]n(q; t) + ninit(q; t): (8)
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Here n(q; t)d3 qdt is the probability of �nding the positron in a momentum element �h3d3q

around �hq within time interval [t; t+dt]. W (q;q0)d3 q 0 is the transition rate from momentum

�hq to momenta in the volume d3q0 at �hq0, which is to be calculated with Fermi Golden

Rule. Further, � denotes the annihilation rate in the delocalized state, �(q) the momentum

dependent trapping rate, and ninit(q; t) represents the initial positron source.

In semiconductors, the role of positron-electron scattering in the thermalization to low

temperatures is negligible due to the band-gap. In addition, in Si and GaAs, all the other

types of phonons except longitudinal-acoustic phonons play a minor role when considering

thermalization to temperatures below 100 K [40, 41]. Hence, in our calculations, we only

took into account positron scattering o� longitudinal-acoustic phonons. The scattering rate

can be expressed as:

Wph(q
0;q) =


2

4�2
kf[fB(�hcsk) + 1]Æ(E+(q

0)� E+(q)� �hcsk)Æq0;q+k�(!D � csk)

+ fB(�hcsk)Æ(E+(q
0)� E+(q) + �hcsk)Æq0;q�k�(!D � csk)g: (9)

Here we use the Debye approximation for the phonon dispersion relation, ! = csk, where

cs is the velocity of the acoustic waves in the material and k the length of the phonon

wave vector k. !D denotes the Debye cut-o� frequency which is calculated from the Debye

temperature �D as !D = kB�D=�h. In the deformation-potential approximation the square

of the positron-phonon coupling constant is 
2 = E2
def=2NMcs. N is the ion density and M

the ion mass, fB(E) denotes the Bose-Einstein distribution (fB(E) = [exp(E=kBT )� 1]�1)

and E+(q) = �h2q2=2m� the energy of a positron with an e�ective mass m�.

A FORTRAN program code was written to solve the Boltzmann equation numerically.

The results for Si and GaAs are illustrated in Fig. 6. The curves present the times that are

required by the positrons to reach the mean energies of 2�Eth and 1:1�Eth. After reaching

the latter energy, the positrons appear as fully thermalized particles from the experimental

point of view. In Si, thermalization even down to 10 K seems to be rather fast: positrons

get within 10 % of the �nal thermal energy in 70 ps. Below 10 K, complete thermalization,

however, takes a time which is comparable to the mean lifetime in the lattice (�Si = 218 ps).

In GaAs, thermalization times are considerably longer than in Si at all temperatures. At

10 K it takes about 80 ps for the positrons to reach a mean energy of 2 � Eth, and about

180 ps for 1:1�Eth. At 4 K it takes nearly 400 ps for the thermalization within 10 % of the

sample temperature.

The calculations indicate that depending on the temperature (4{100 K), the thermal-

ization times in GaAs are 2{4 times longer than in Si. A more careful investigation points

out that the di�erence is mainly due to the di�erence in the mass densities � of the materials

(see Publication III). The scattering rate is inversely proportional to the mass density, and

since the ratio �GaAs=�Si = 2:5, the mass density can be regarded as the main reason for the

di�erence.

The main question is, of course, if the results of the calculations can explain the exper-

imental data at low temperatures. The e�ect of incomplete thermalization on the positron

trapping properties can be evaluated by calculating a time-dependent trapping rate �(t) from

the theoretical positron-mean-energy data. The calculations indicate that the positron mo-

mentum distribution during thermalization is close to a MB distribution at all stages. Then,
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Figure 6: The positron thermalization time vs sample temperature in Si and GaAs [Publ. III].
The solid curves indicate the time needed for the positrons to reach the mean energy equalling
twice the thermal energy. The dashed lines again represent the level of 1:1� Eth.

the trapping rate �(t) is proportional to �E(t)�0:5. From �(t) one can proceed to calculate

the trapping fraction which can be directly compared to the experimental results. Fig. 7

presents the experimental data with circles. The solid line, again, shows the best �t which

takes the calculated �E(t) into account. As can be seen, the agreement is rather good over the

whole temperature range. To illustrate the e�ect of imperfect thermalization on the trapping

fraction, the dashed line shows how the trapping fraction would behave if the positrons were

thermal at the time of implantation. The same defect-related parameters were used with

both lines, and therefore the di�erence stems purely from the di�erent thermalization.

Due to the complicated nature of our experimental Si data, a similar comparison was

not attempted. Nevertheless, the lifetime data obtained in the Si samples support the

calculations predicting faster thermalization in Si compared to GaAs.

As a conclusion, the experiments and calculations indicate that positron thermalization

to low temperatures, like 10 K, may take a considerable time compared to the lifetime in the

lattice. The mass density of the material plays an essential role in the thermalization process

via acoustic-phonon scattering. In heavy materials, positron thermalization takes a longer

time than in lighter hosts. As a consequence of the possible slow thermalization, some care

should be taken when interpreting experimental positron data at the lowest temperatures.
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4 Applications to semiconductors

4.1 Vacancy-impurity complexes in Si

In the As and Sb doping of Si the concentration of free electrons saturates at the level

� 5 � 1020 cm�3 when the impurity concentration is increased [1]. This is indicative of

the formation of inactive impurity clusters or compensating defects that trap free electrons.

Experimental evidence on various defects has been obtained in heavily doped Si. Dopant

precipitates and di�erent Vndm complexes have been observed [15, 42, 43]. There is, however,

no consensus on the structure of the dominating deactivating defects. To gain insight into

this question, we investigated several Czochralski-grown Si samples doped with P and As.

Doppler-broadening measurements aided by lifetime studies were performed.

We studied Czochralski-grown (CZ) Si(111) bulk crystals doped with As ([As]=1019

and 1020 cm�3) and P ([P]=1020 cm�3). Experiments were done in as-grown samples as

well as after electron irradiation with 2-MeV electrons at 300 K. Investigations with other

techniques have indicated that electron-irradiated samples contain V-As and V-P pairs [44].

These irradiated samples thus provide us a possibility to measure the positron annihilation

characteristics of the simple complexes.

The lifetime measurements show that there are no vacancies trapping positrons in

the as-grown samples Si([As]=1019 cm�3) and Si([P]=1020 cm�3). In the heavily As-doped

sample ([As]=1020 cm�3), the average lifetime at 300 K is 232 ps. This is clearly higher

than the lifetime in the lattice (220 ps) indicating the presence of vacancy-type defects. The

spectrum has two components with �2 = 250 � 3 ps. This is the characteristic positron

lifetime at a monovacancy in Si.

In all electron-irradiated samples the average positron lifetime is longer than in as-

grown samples, indicating that irradiation-induced vacancies are observed. The average

lifetime is also independent of the irradiation 
uence which can be attributed to saturation

trapping. The lifetime values 247� 2 ps show that the vacancies are monovacancies.

To identify the monovacancies in more detail, Doppler-broadening spectra were recorded

using the two-detector coincidence technique. In case of one type of a vacancy, the spectrum

is of the form �(p) = (1 � �)�B(p) + ��V (p), where �B(p) and �V (p) are the momentum

distributions in the lattice and at the vacancy, respectively. � is the fraction of positrons

annihilating in the monovacancy. Since the momentum distribution in the lattice �B(p) can

be measured in the reference sample, and the trapping fraction � can be calculated from

the lifetime data, the distributions �V (p) can be resolved from the measured spectrum �(p).

They are shown in Fig. 8 for the monovacancies observed in as-grown Si([As]=1020 cm�3) as

well as in irradiated Si([As]=1020 cm�3) and Si([P]=1020 cm�3).

The momentum distributions �(p) at vacancies indicate large di�erences in the higher

momenta (p > 12 � 10�3m0c), where annihilations with core electrons contribute most

(Fig. 8). Since the core electron momentum distribution is characteristic for a given atom,

the di�erences between the spectra in Fig. 8 indicate di�erent atomic environments of the

vacancy in each of the three cases. Because in both Si (Z=14) and P (Z=15) the 2p electrons

constitute the outermost core electron shell, the core electron momentum distributions of

these elements are very similar. The crucial di�erence in the core electron structures of Si, P,

and As is the presence of 3d electrons in As. The overlap of positrons with the As 3d electrons
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is much stronger than with the more localized Si or P 2p electrons. The large intensity of

the core electron momentum distribution is thus a clear sign of As atoms surrounding the

vacancy.

In the electron-irradiated samples all the positrons annihilate at vacancies according

to the lifetime measurements. Since the irradiation is known to produce V-P and V-As

complexes in P and As doped Si, respectively, the core electron momentum distributions

can be attributed to these defects. The in
uence of As next to the vacancy is clearly visible

as an enhanced intensity in the high-momentum region. Since an even stronger signal from

As is seen in the as-grown Si([As]=1020 cm�3), we can conclude that this monovacancy is

surrounded by at least two As atoms. Quantitative analysis on the number of As atoms can

be done by calculating the conventional W parameter in the momentum range 20� 10�3 <

p=m0c < 25 � 10�3. Because of the similar core electron structure of Si and P, the value

WV =WB = 0:71 measured for the V-P pair is expected to be close to that of an isolated

monovacancy. The value WV =WB increases by 0.28 to 0:99 � 0:03 in the V-As complex as

a result of 3d electron annihilations of a single As atom. In Si([As]=1020 cm�3), WV =WB =

1:49, corresponding to an increase of 0.78. This is exactly three times the contribution of

a single As atom suggesting that the dominating defect in the as-grown sample is V-As3

complex.

To put the above experimental interpretations on a �rmer basis, theoretical ab initio

calculations were performed for both the positron lifetime and momentum distributions. The
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Figure 8: The high-momentum part of the positron-electron momentum distribution at the
various vacancy-impurity pairs, identi�ed in electron-irradiated Si([P]=1020 cm�3), and in
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lifetime values for monovacancies decorated with P and As atoms are in very good agree-

ment with the experimentally observed lifetimes. The calculated core-electron momentum

distributions for V-As, V-P and V-As3 are shown in Fig. 8. As seen, the agreement is ex-

cellent. Also the valence-electron part of the distribution reproduces the experimental curve

very well. The calculated distributions for V �As2 and V �As4 are in strong disagreement

with the observations. Thus, supported by the theoretical calculations, we identify V-As3 in

as-grown Si([As]=1020 cm�3). This defect may play a role in the electrical deactivation in

highly As-doped Si.

4.2 Optical properties of the divacancy in Si

Point defects in semiconductors possess localized electron states in the band gap. The

occupation of these levels can be controlled by, e.g., photoexcitation. This technique has been

used extensively to study the properties of point defects with various spectroscopies. Positron

annihilation accompanied with photoexcitation has been utilized to study, for instance, As

vacancies in GaAs [45]. In Publication V of this thesis, we investigate the optical properties

of divacancies in Si.

A controlled way of introducing divacancies in Si is electron-irradiation at room tem-

perature [44]. Together with divacancies, also vacancy-impurity complexes are formed. Their

contribution to the positron signal can in many cases, however, be distinguished by combin-

ing positron-lifetime and Doppler-broadening measurements.

Four samples were irradiated at room temperature with 2-MeV electrons. One of them

(F1) was p-type undoped FZ Si which was irradiated to a 
uence of 1 � 1018 e�=cm�2.

Three others (C1, C2 and C3) were of p-type CZ material and were subjected to 
uences of

3� 1017, 1� 1018 and 5� 1018 e�=cm�2, respectively. After the irradiation, divacancies and

vacancy-oxygen pairs (A-centers) were observed by combining positron-lifetime and Doppler-

broadening measurements as a function of temperature.

The positron results were found to be strongly in
uenced by illumination with (0.70{

1.30 eV) photons. The average positron lifetime measured under illumination exhibits

changes of about 15 ps with the values around the levels measured in darkness. The com-

bination of lifetime and DB-results indicates that the light-induced changes can be fully

attributed to changes in the positron trapping rate at the divacancies, not at the V{O pairs.

Fig. 9 shows the positron trapping rate �V2 at the divacancies measured under illumi-

nation at 15 K as a function of the photon energy. The trapping rates in darkness are also

shown in the �gure with dotted lines. Under illumination with photons of 0:70 � 0:75 eV

energies, the trapping rate is lower than in darkness in all CZ-grown samples. The di�erence

between �V2 in the dark and under illumination is the larger the higher the irradiation 
uence

had been. In all samples, the trapping rate increases strongly above 0:75 eV and levels o� at

about 0:90 eV. The shape of the curve between 0.70 and 0.90 eV is similar in each sample.

Above 1.0 eV, �V2 decreases in all samples in a way which seems to depend on the sample.

With divacancies in di�erent charge states q, the total trapping rate �V2 equals �V2 =P
q �V q

2
[V q]. The changes in �V2 demonstrate that the occupation of the di�erent charge

states of the divacancies depends on the photon energy. The photon 
ux in the measurements

described in Fig. 9 is 1� 1016 cm�2 s�1. This 
ux was observed to be high enough such that

the occupations of the di�erent electron levels of the divacancies are fully determined by
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the electron and hole emission cross sections from di�erent electron levels of the divacancies.

Carrier capture rates do not play any role (for the discussion, see Publication V). This

means that the occupation of di�erent levels is the same for all samples irrespective of the

irradiation 
uence.

EPR measurements reveal three ionization levels of the divacancy in the band gap [16].

The acceptor level V
2�=�
2 is located at Ec�0:40 eV and the donor level V

0=+
2 at Ev+0:23 eV,

where Ec and Ev are the energies at the bottom of the conduction band and at the top of the

valence band, respectively. The V
�=0
2 level is between these two, probably near the midgap.

The photon-energy dependence of the positron trapping rate �V2 under illumination is in

agreement with this level scheme as explained in the following.

In darkness, the Fermi level is located at about midgap. Part of the divacancies are

in the neutral and part in the singly negative charge state. EPR measurements show that

the V �=0 level gets �lled with increasing irradiation 
uence [16]. Below 0.75 eV photon

energies, the only possible transitions are electron excitation from the valence band to the

V �=0 level, and from this level up to the conduction band. The decrease in the trapping rate

shows that the V �=0 becomes less occupied under illumination. The fact that the decrease

in �V2 is larger for the more heavily irradiated samples is understandable based on the EPR

observations.

The rapid increase in �V2 above 0.75 eV can be ascribed to the onset of electron

excitations from the valence band to the double acceptor level V 2�=�. With these transitions

the divacancies become more negative leading to an increase in �V2 .
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4.3 Bistable centers in CdF2

Bistable centers are some of the most fascinating point defects appearing in semicon-

ductors. The charge carriers are captured at these either on localized orbits or in e�ective

mass bound states. The purpose of of the studies presented in Publication VI was to inves-

tigate if positron annihilation spectroscopy can produce new information on the structure

of the bistable centers in CdF2. Positron lifetime and Doppler-broadening measurements

in four di�erent CdF2 samples are reported. One In-doped sample and two Ga-doped ones

were known to contain bistable centers. An Y-doped sample was used as a reference since

Y is a simple e�ective-mass donor in CdF2 [46].

Positron measurements in darkness reveal the existence of some native vacancies and

negative ions. Combining the results with theoretical formation energy calculations [47] let

us infer that these defects are most probably Cd-vacancies and F-interstitials.

The key experiment concerning defect bistability is to study whether illumination has

an in
uence upon positron trapping. Illumination is known to induce deep-shallow transition

of the bistable centers. A most pronounced e�ect is observed in both In and Ga doped crystals

at 15K: the mean positron lifetime decreases with increasing photon 
uence and saturates to

a value of 1-4 ps lower than obtained before illumination. The changes are persistent at 15

K: after an illumination the average lifetime remains constant for days. In contrast to these

e�ects, the illumination has no in
uence on the positron lifetime in the Y doped sample.

To study the thermal stability of the observed persistent change in the average lifetime

we performed an isochronal annealing experiment (Fig. 10). The samples were �rst illumi-

nated with 1.95 eV (In-doped) or 3.0 eV (Ga-doped) photons whereafter the measurements

and the heat treatments were performed in the dark. In In-doped CdF2, annealing in the

range from 60 K to 75 K restores the lifetime at the initial level before illumination. In case

of the Ga doped CdF2, the recovery occurs between 200 K and 250 K. These temperatures

are the same at which the bistable centers make the transition from the shallow state to the

deep state [46].

We also investigated the correlation between the optical absorption properties and

the positron lifetime. In the experiment, we illuminated the samples to a constant 
uence

with variable photon energies and measured the positron lifetime in darkness after each

illumination. With increasing photon energy, the lifetime and the optical absorption start

to increase at the same energy. This data together with that presented in Fig. 10 show that

the average lifetime is sensitive to the state of the bistable centers. Positron trapping at

open-volume defects is enhanced, i.e. more vacancies are detected, when the deep state is

occupied.

Combining the results of positron lifetime and Doppler-broadening measurements re-

veals that there are two di�erent types of vacancies in the samples, the Cd-vacancies and

some others. The latter ones cease to trap positrons when In and Ga are converted to the

shallow state by illumination. We can thus deduce that the vacancy defect is a constituent of

the deep state atomic structure of the bistable centers in CdF2. This conclusion is supported

quantitatively by the concentration estimates obtained from the positron results which are

of the same order of magnitude as those from electrical and optical measurements.

By comparing the lifetime results and theoretical lifetime calculations one can further

infer that the size of the open volume related to the deep state is at least half of a Cd-
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monovacancy.

Most excitingly, the positron annihilation results on the DX center in AlxGa1�xAs

[2, 48] are qualitatively very similar to those in CdF2. In AlxGa1�xAs, the donor atom is

believed to make a substitutional-interstitial jump leaving an open volume behind which

positrons detect [2, 48]. In the transition the sp3-type bonding changes to a sp2-type one.

Very recent calculations by Park and Chadi [18] suggest that also in CdF2 In and Ga atoms

can move from the substitutional site to an interstitial site in the neighbouring lattice cell.

The donor atom is stabilized to the interstitial site as a result of hybridization of the d-

electrons of the donor and Cd-atoms. This model is fully compatible with our positron data.

As a conclusion, our positron results imply that the bond-breaking mechanism resulting in

asymmetric lattice relaxations is of much more general validity than previously thought; it

applies from covalent to predominantly ionic systems.
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5 Summary

In this thesis, instrumentation and methods for positron annihilation spectroscopy of

defects in semiconductors have been developed. In addition, positron-lifetime and Doppler-

broadening measurements were applied to various point defect structures in Si, GaAs and

CdF2.

In semiconductors, the annihilation characteristics in di�erent defect structures are

often rather similar. Therefore, the quality of data is of utmost importance for a succesful

analysis. In this work, the stability of the positron lifetime spectrometer was improved in

two ways. Techniques to counteract both the random electronic drifts, and the long-term

creep related to photomultiplier ageing were developed.

It was found that ageing of the photomultiplier tubes, i.e. nonreversible degradation

of the gain, can be slowed down by lowering the operating voltages over the tubes and by

compensating the lower gain with fast preampli�ers. This can be done without sacri�cing

the time resolution on two conditions. First, the voltages in the input electron optics of the

tubes must be high enough, and second, the pulse amplitudes at the anodes have to be at

least some tens of millivolts. With this method, the lifetimes of the PMTs can be increased

at the minimum by a factor of 20.

A scheme to reduce even the fastest drifts of the time zero in the lifetime spectrometer

was designed on the basis of a digitally stabilized multichannel analyzer. An arti�cial refer-

ence peak into the spectrum was produced by feeding fast light pulses from a light-emitting

diode via two optical �bers of di�erent lengths onto the photomultipliers. In a one-week-long

test measurement, drifts of 12 ps were reduced below a level of 0.5 ps.

Positron thermalization at low temperatures was studied in Si and GaAs both exper-

imentally and theoretically. The experiments were based on investigating the temperature

dependence of the positron trapping rate at negative vacancy-type defects. In the calcula-

tions, the Maxwell-Boltzmann equation was solved for the evolution of the positron momen-

tum distribution. Both experiments and calculations indicate that positron thermalization

in GaAs is clearly slower than in Si. According to the calculations, at 10 K in GaAs, the

time needed by the positrons to reach twice the thermal energy is 80 ps, whereas in Si it is

only 25 ps. The underlying reason for the di�erence in the thermalization times was found

to be in the mass densities of the materials. The positron scattering o� longitudinal-acoustic

phonons is weaker in heavier hosts than in lighter ones. As a consequence, when analyzing

positron annihilation data measured at very low temperatures, the incomplete thermalization

may have to be taken into account in some materials.

Vacancy-impurity complexes were investigated in highly n-type silicon by combin-

ing positron-lifetime and core-electron momentum distribution measurements. In electron-

irradiated As- and P-doped samples, V-As and V-P pairs were observed, respectively. The

formation of native V-As3 complexes was detected when the dopant concentration exceeds

1020 cm�3. This is consistent with recent theoretical descriptions of As di�usion [15] and

with the idea that V-As3 plays an important role in the electrical deactivation in heavily

As-doped Si.

The optical ionization of the silicon divacancy was studied under illumination with

monochromatic light. The positron trapping rate at the divacancies was found to be very

sensitive to the photon energy in the range 0.70-1.30 eV. The observations could be explained
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in terms of electron and hole emission from the V
�2=�
2 and V

�=0
2 levels of the divacancy. The

spectral shape of the trapping rate reveals an ionization level at 0.75 eV above the top of

the valence band. This was assigned to the V
�2=�
2 level [16].

In CdF2, an open-volume defect was observed to be a constituent of the deep-state

atomic con�guration of the bistable centers, Ga and In. The size of the open volume is at

least half of a Cd monovacancy. The positron results are in perfect agreement with recent

theoretical calculations predicting two stable con�gurations for the defects: in the deep state

the dopant is in an interstitial position and in the shallow state in a substitutional site [18].
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