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Abstract

In array signal processing a group of sensors located at distinct spatial locations is deployed

to measure a propagating wave�eld. The multichannel output is then processed to provide

information about parameters of interest. Application areas include smart antennas in

communications, radar, sonar and biomedicine.

When deriving array signal processing algorithms the noise is typically modeled as

a white Gaussian random process. A shortcoming of the estimation procedures derived

under Gaussian assumption is that they are extremely sensitive to deviations from the

assumed model, i.e. they are not robust. In real-world applications the assumption of

white Gaussian noise is not always valid. Consequently, there has been a growing interest

in estimation methods which work reliably in both Gaussian and non-Gaussian noise.

In this thesis, new statistical procedures for array and multichannel signal processing are

developed. In the area of array signal processing, the work concentrates on high-resolution

subspace-based Direction Of Arrival (DOA) estimation and estimation of the number of

source signals. Robust methods for DOA estimation and estimation of the number of

source signals are derived. Spatial-smoothing based extensions of the techniques to deal

with coherent signals are also derived. The methods developed are based on multivariate

nonparametric statistics, in particular sign and rank covariance matrices. It is shown that

these statistics may be used to obtain convergent estimates of the signal and noise subspaces

for a large family of symmetric noise distributions. Simulations reveal that the techniques

developed exhibit near-optimal performance when the noise distribution is Gaussian and

are highly reliable if the noise is non-Gaussian.

Multivariate nonparametric statistics are also applied to frequency estimation and es-

timation of the eigenvectors of the covariance matrix. Theoretical justi�cation for the

techniques is shown and their robust performance is illustrated in simulations.
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Chapter 1

Introduction

1.1 Motivation

In array signal processing a group of sensors located at distinct spatial locations is deployed

to measure a propagating wave�eld. The multichannel output is then processed to provide

information about parameters of interest. The use of antenna arrays is one of the key

features of future wireless communication systems. For example, an adaptive array (smart

antenna) may be used to provide high gain in the direction of a desired transmitter while

steering nulls in the direction of interferers. The bene�t obtained is an increase in signal-

to-inference-and-noise-ratio resulting to higher system capacity. In radar applications an

array of active sensors radiates electromagnetic pulses and measures return signals. The

radar returns enable estimation of velocity (Doppler frequency), range and Direction Of

Arrival (DOA). In sonar, arrays of hydrophones measure acoustic signals in order to detect

and locate distant sources. In biomedicine array signal processing methods are used, for

example, to localize brain activity using biomagnetic sensor arrays.

The physical measurements collected by a sensor array contain noise. When deriving

array signal processing algorithms the noise is conventionally modeled as a white Gaussian

random process. The Gaussian (normal) distribution is the most often used probability

distribution in statistical signal processing. The distribution is related to the Least-Squares

(LS) estimation method introduced by Legendre and Gauss in the 19th century. It is the

1



error distribution for which the LS method is optimal.

One reason for the popularity of the Gaussian assumption is of course that its use can

be motivated by the central limit theorem. Another reason is undoubtedly the fact that

under a Gaussian assumption, the derivation of optimal estimators and analysis of their

properties are straightforward, as was noted by Gauss himself:

This idea, however, from its nature, involves something vague : : : and clearly

innumerably di�erent principles can be proposed : : : But of all these prin-

ciples ours is the most simple; by the others we shall be led into the most

complicated calculations.

Gauss in 1809, on the least squares criterion1

The weakness of the optimal estimation procedures derived under Gaussian assumption

is that they are extremely sensitive to deviations from the assumed model, i.e. they are not

robust. In many signal processing applications the assumption of white Gaussian noise is

not always completely satis�ed. For example, it has been observed through experimental

measurements that the ambient noise in indoor and urban radio channels is decidedly

non-Gaussian (c.f. [69]). Consequently, there has been a growing interest in estimation

algorithms which work properly both in Gaussian and non-Gaussian noise environments

[47, 81, 115, 54].

In most of the array signal processing applications the �rst task is to estimate the

DOAs of the incoming signals. All DOA estimation algorithms need information about the

number of source signals. If this information is not provided, it has to be estimated from

the data. Most DOA estimation algorithms and methods for estimating the number of

signals are based on the array output covariance matrix. In the algorithms the covariance

matrix or its eigenvalues or eigenvectors are used to provide the information needed for

the estimation task. The standard estimator for the array output covariance matrix is the

sample covariance matrix. Use of the sample covariance matrix may cause the estimation

methods to produce unreliable estimates if the noise is non-Gaussian. This is because the

sample covariance matrix is an optimal estimator for Gaussian data and hence not a robust

1Quotation taken from [92].
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estimator. If the necessary information (covariance matrix or its eigenvectors or eigenval-

ues) could be estimated robustly, it could be used in various DOA estimation algorithms

as well as in estimation of the number of signals. In other words, the conventional meth-

ods may be made more robust by replacing the sample covariance matrix with an robust

estimator of the covariance matrix, or by estimating the eigenvectors or eigenvalues of the

array output covariance matrix in a robust manner.

Also a large number of signal processing applications which are not explicitly based on

arrays require processing of multichannel data and consequently estimation of covariance

matrices. The application domains include biomedical signal processing such as EEG,

image analysis and color image processing. Robust covariance matrix estimators may also

be used in these applications when the Gaussian assumption of the data does not hold. In

addition, robust covariance matrix estimators may be applied to conventional multivariate

statistical analysis.

1.2 Scope of the thesis

The scope of this thesis is to develop new procedures for array and multichannel signal pro-

cessing and develop tools for characterizing robustness of matrix valued statistics. In array

signal processing the work is limited to subspace-based DOA estimation and estimation of

the number of source signals.

The design goal of the estimation techniques is robustness against heavy-tailed non-

Gaussian noise of the type appearing in many real world applications. In case of DOA

estimation the methods should have high resolution, i.e. they should be able to distinguish

between one source and two sources with close DOAs. The computational complexity

of the resulting algorithms should not be too high when compared to existing algorithms

developed for Gaussian noise. Also the performance of the methods should be near-optimal

when the noise distribution is Gaussian. Rigorous mathematical theory should buttress the

derived methods.

The characterization of robustness of a covariance matrix estimator is conventionally

3



done by using only its eigenvalues. Since the eigenvectors of a covariance matrix are

crucial in many applications there is a need to develop tools that take into account also the

eigenvectors. These tools may then be used in describing both quantitative and qualitative

robustness.

1.3 Contributions of the thesis

The new estimation techniques developed in this thesis are based on multivariate nonpara-

metric statistics, in particular spatial sign and rank covariance matrices. It is shown that

the Sign Covariance Matrix (SCM) and the Tau Covariance Matrix (TCM) contain enough

information to estimate the eigenvectors of the covariance matrix for a large family of sym-

metric distributions. Moreover, it is shown that the estimates of the SCM and the TCM

are convergent, i.e. they converge to the correct values when the number of data samples

N tends to in�nity. New tools for analyzing robustness of covariance matrix estimators are

developed. The tools are based on the eigendecomposition of a covariance matrix [5].

Robust algorithms for DOA estimation and estimation of the number of source signals

are derived. Spatial-smoothing based extensions of the algorithms to deal with coherent

signals are derived as well. Theoretical motivation of the algorithms is shown for a large

family of noise distributions. It is shown using simulations that the resulting techniques

perform reliably regardless of the heavy-tailed nature of the noise distribution.

Multivariate nonparametric statistics are also applied to estimate the frequencies of

complex exponentials from time-series data. It is shown that for Gaussian noise the meth-

ods produce convergent estimates. The eÆciency and robust performance of the techniques

in non-Gaussian noise is shown using simulations. The use of spatial sign and rank covari-

ance matrices is demonstrated in several multichannel signal processing problems including

RGB color image �ltering.
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1.4 Summary of publications

The remainder of this thesis is organized as follows. Chapter 2 introduces the common

signal model and the basic concepts employed in array signal processing. A brief review of

widely used direction of arrival estimation techniques is given and the problem of estimat-

ing the number of signals is addressed. Chapter 3 contains a review of robust covariance

matrix estimation techniques and introduces covariance matrix estimation techniques based

on multivariate nonparametric statistics. In addition, perturbation analysis of covariance

matrix estimators is discussed. In chapter 4, robust DOA estimation techniques are re-

viewed and new robust methods are introduced. The estimation of the number of source

signals is considered as well. The closely related problem of frequency estimation is in-

troduced and robust methods developed. The techniques considered are robust against

heavy-tailed or impulsive non-Gaussian noise. Finally, chapter 5 concludes the thesis.

This thesis consists of 6 publications on robust DOA estimation, robust estimation of

the number of sources, and multichannel signal processing. In paper I, tools analyzing

the distinct properties of covariance matrix estimators are introduced. These tools in-

clude sensitivity plots that characterize qualitative robustness in a fashion similar to that

of the inuence function. Three di�erent concepts of sign and rank covariance matrices

are discussed and their use in covariance matrix estimation is proposed. Qualitative and

quantitative robustness as well as �nite sample eÆciencies of the two proposed methods

are studied. A signal processing example where robust covariance matrix estimates are

needed is considered as well. Paper II demonstrates the use of spatial rank covariance

matrices in di�erent multichannel signal processing tasks. Robust covariance matrix esti-

mates obtained from the sample Rank Covariance Matrix (RCM) and the sample TCM are

used in RGB color image �ltering, principal component analysis, discrete Karhunen-Lo�eve

transform and Blind Source Separation (BSS). In addition, it is shown how methods based

on the sample covariance matrix give strongly misleading results in the face of outliers.

In paper III, the de�nitions of the RCM and the TCM are extended for complex-

valued data. The use of the sample RCM and the sample TCM is proposed in the DOA

estimation. The algorithms are based on estimating the signal or noise subspace from these
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nonparametric statistics. Reliable performance of the methods is shown using simulations

of Gaussian and non-Gaussian noise conditions. DOA estimation of coherent signals is

addressed in paper IV . The techniques are based on the SCM and the TCM. Spatial

smoothing is employed as a preprocessing step in order to deal with coherent sources.

Theoretical motivation for the resulting algorithms is shown. The performance of the

algorithms is studied using simulations. The results show that near-optimal performance

is obtained in a wide variety of di�erent noise conditions.

Paper V is the main publication of this thesis. A proof is presented that the sample SCM

and the sample TCM can be used to obtain convergent estimates of the signal and noise

subspaces. These estimates are then used in DOA estimation. It also proves that the sample

SCM and TCM converge with probability one to the corresponding theoretical matrices.

In addition, the important problem of estimating the number of signals is considered and

various simulation results are reported.

Paper V I introduces sample Sign Autocovariance Matrix (SAM) and discusses its use

in frequency estimation. It is proven that when the noise is circular Gaussian, the sample

SAM can be used to estimate the signal and noise subspaces spanned by the eigenvectors

of the autocovariance matrix. A robust method for estimating the number of complex

exponentials is proposed.

All of the simulation software for all of the original papers of this dissertation was

written by the author, with the exception of that of the BSS algorithm used in I and

II. The author participated in writing and planning experiments for paper I. The author

derived the analytical results and the algorithms in and did most of the writing of papers II-

V I. The coauthors collaborated in experiment design, provided guidance for the author's

proofs, and contributed to the �nal version of each paper.
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Chapter 2

Array signal processing

In array signal processing a group of sensors located at distinct spatial locations is de-

ployed to measure a propagating wave�eld. The multivariate output is then processed

to provide information about parameters of interest. Application areas which use arrays

include communications, radar, sonar, seismology, biomedicine and astronomy.

In most of the applications the �rst task is to estimate the Directions Of Arrival (DOAs)

of the incoming signals. This information can then be used to localize the signal sources,

form high gains to the desired DOAs or to steer nulls into direction of interferers. All

DOA estimation algorithms need information about the number of source signals. If this

information is not provided, it has to be estimated from the data. DOA estimation and

estimation of the number of signals are key issues of array signal processing. This chapter

focuses on these concepts and discusses di�erences among the reviewed estimation methods.

There are several ways to compare di�erent estimators. The methods should be con-

sistent, i.e. the estimates should converge to the correct values when the number of obser-

vations tends to in�nity. The eÆciency of an estimator is measured by its variance. For

unbiased estimators the Cram�er-Rao bound can be used to compare eÆciency of di�erent

estimators. Resolution, ability to distinguish between one source and two sources with close

DOAs, is also an important property. A desirable estimator should be able to distinguish

between sources with arbitrarily close DOAs. Also computational complexity is a concern.

A goal of estimator design is to have high resolution and eÆciency at low computational

7



cost.

The chapter introduces the common signal model and the basic concepts employed in

array signal processing. A brief review of widely used DOA estimation techniques is given

and estimation of the number of signals is addressed. The chapter ends with discussion.

2.1 Signal model

The development of the signal model is based on the number of simplifying assumptions.

The sources are assumed to be narrow band and situated in the far �eld of the array.

Furthermore, we assume that both the sources and the sensors in the array are in the

same plane and that the sources are point emitters. In addition, it is assumed that the

propagation medium is homogeneous (i.e. not dispersive). Consequently, the waves arriving

at the array can be considered to be planar. Under these assumptions, the only parameter

that characterizes the source location is the DOA [102].

Suppose there are K signals present at an array of M sensors, K < M . The DOAs

of the signals are �1; �2; : : : ; �K . The sensor outputs are appropriately pre-processed and

sampled at arbitrary time instants n, n = 1; : : : ; N . Based on the simplifying assumptions

above, the array output vector x(n), also called a snapshot, may be modeled as [102, 75]

x(n) = A(�)s(n) + v(n): (2.1)

Here � = [�1; �2; : : : ; �K]
T , s(n) = [s1(n); s2(n); : : : ; sK(n)]

T is the K-vector of signal wave-

forms, A(�) = [a(�1);a(�2); : : : ;a(�K)] is an M �K matrix of steering vectors related to

the DOAs and v(n) is an M � 1 noise vector. The noise is assumed to be independent of

the signals, zero mean and spatially and temporally white, with variance �2. The signal

vector s(n) is modeled as either stochastic or deterministic, depending on the application.

For notational convenience we simply write A instead of A(�) when there is no possibility

of confusion. If �̂ is an estimate of �, then we also write Â instead of A(�̂).

The vector a(�) is given as

a(�) = [g1(�)e
�j!c�1(�); g2(�)e

�j!c�2(�); : : : ; gM(�)e
�j!c�M (�)]T

8



where !c is the center frequency, gk(�) represents the sensitivity of the kth sensor to the

DOA � and �k(�) is the time delay of the signal coming from DOA � at the kth sensor

relative to some reference point. We assume that the transfer characteristics and positions

of the sensors are known, i.e. a(�) is function of � only, as indicated by notation.

The collection of steering vectors over the parameter space of interest, �, is the array

manifold, A,

A = fa(�) j � 2 �g:

It is assumed that the mapping from � to the steering vectors is one-to-one and for K +1

distinct DOAs �1; : : : ; �K; �K+1 the corresponding steering vectors are linearly independent.

The functions fgk(�)gMk=1 depend on the type of sensors being used. If the sensors

are omnidirectional, the sensors have equal sensitivity to all directions, implying that

fgk(�)gMk=1 are independent of �. Sometimes the sensors may also be considered identi-

cal. By taking the �rst sensor as a reference element and rede�ning the signal vector in an

appropriate manner (gk(�k)sk(n) is rede�ned as sk(n); k = 1; : : : ; K), we can write

a(�) = [1; e�j!c�2(�); : : : ; e�j!c�M (�)]T :

We now consider the array of M identical sensors uniformly spaced on a line. Such

an array is commonly referred to as a Uniform Linear Array (ULA). The array scheme is

presented in Figure 2.1. The DOAs are measured counterclockwise from the line joining

the sensors. In this case � = [0; �] and a(�) is given by [102]

a(�) = [1; e2�j(d=�) cos(�); : : : ; e2�j(M�1)(d=�) cos(�)]T

where d denotes the element spacing and � denotes the wavelength. Note that we have

to assume d � �=2 to make a(�) uniquely de�ned (i.e., to avoid \spatial aliasing"). The

restriction � = [0; �] is needed because two sources at locations symmetric with respect

to the array line yield identical set of delays and hence cannot be distinguished from one

another. In practice this ambiguity of ULAs is eliminated by using sensors that only pass

signals whose DOAs are in [0; �] [102].

If the assumptions made so far cannot be satis�ed, signi�cant changes in the signal

9
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Figure 2.1: A uniform linear array of M sensors receiving plane waves from K far-�eld

point sources.

model result. For example, if the signals are wide-band or located at the near �eld, the

derived signal model is generally not valid.

2.2 Review of DOA estimation methods

In this section the most well-known DOA estimation techniques are addressed. We start

by introducing the conventional beamformer and Capon's minimum variance method. The

classical subspace-methods MUSIC and ESPRIT and their modi�cations are then reviewed.

An important special case of estimating DOAs of coherent signals is considered as well. The

remainder of the section considers maximum likelihood and subspace �tting methods. The

performance of the reviewed techniques is considered in terms of resolution, large sample

properties and computational complexity.
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2.2.1 The Conventional beamformer

The conventional beamformer is one of the older techniques for localizing signal sources.

The idea is to \steer" the array in one direction at a time and measure the output power.

The steering directions which result in maximum power at the output provide the DOA

estimates [55]. Steering is done by forming a linear combination of the sensor outputs

y(n) = w
H
x(n):

Suppose there is only one wide sense stationary signal present in the array's �eld of

view and the signal is arriving from direction �1. The optimal beamforming weight vector

wBF is derived by maximizing the power of the output y(n), subject to wH
w = 1. Using

the signal model (2.1), the array output vector is given as

x(n) = a(�1)s1(n) + v(n):

Recalling that the noise was assumed to be spatially and temporally white and independent

of the signals, the power of y(n) is given as

Efy(n)y�(n)g = w
H�w = �2

sw
H
a(�1)a

H(�1)w + �2
vw

H
w; (2.2)

where � = Efx(n)xH(n)g is the array output covariance matrix, �2
s = Efs1(n)s1(n)�g

is the signal power and �2 is the noise variance. The problem of maximizing the output

power may now be formulated as

max
w

�
w

H
a(�1)a

H(�1)w
	
= max

w

jwH
a(�1)j2; subject to w

H
w = 1;

where j � j is the modulus. The Cauchy-Schwarz inequality [102, p. 273] and the condition

w
H
w = 1 then imply that

jjwH
a(�1)jj2 � jjwjj2jja(�1)jj2 = jja(�)jj2;

where jj � jj is the Euclidean vector norm. The equality is obtained by choosing

wBF =
a(�1)p

aH(�1)a(�1)
:

Hence wBF is the optimal weighting vector.

11



Inserting the optimal weighting vector in (2.2), we obtain the spatial spectrum

VBF (�1) =
a
H(�1)�a(�1)

aH(�1)a(�1)
: (2.3)

Note that among the all possible DOAs the correct DOA �1 gives the maximum of the

above expression. Therefore when �1 is not known, it can be found by maximizing the

above expression with respect to �.

In practice, the covariance matrix � has to be estimated from the observed data

x(1); : : : ;x(N) and the usual estimate of � is the sample covariance matrix

S =
1

N

NX
n=1

x(n)xH(n):

Finally, the DOA estimate is chosen to be the angle of the highest peak in the estimated

spatial spectrum

V̂BF (�) =
a
H(�)Sa(�)

aH(�)a(�)
: (2.4)

The estimate obtained is consistent.

When K > 1 signals are present VBF (�) should give a good indication of the energy

coming from the direction �. Hence VBF (�) should peak at the correct DOAs. In this

general case the conventional beamforming DOA estimates are chosen to be the angles of

the K highest peaks in (2.4). Naturally the estimates obtained are not consistent.

The conventional beamformer can not resolve two signals with close angles of arrival

regardless of the available data quality or amount, i.e. its resolution is limited. It can be

shown that for a ULA of M sensors, the beamforming resolution limit is approximately

�
Md

[102]. For example, for a ULA of 6 sensors of half-wavelength inter-element spacing,

the approximate resolution limit equals 1=3 rad � 19Æ. Note that the low resolution also

limits the number of DOAs that can be estimated.

2.2.2 Capon's method

Capon's minimum variance method [15] is a beamforming technique that attempts to over-

come the poor resolution problems associated with the conventional beamformer. Intuitive

idea of this method is based on the notion that when multiple sources are present, the

12



power measured by the spatial spectrum (2.3) is not only due to the power of the source at

that direction, but also to power of other sources in other directions. This property limits

the resolution of the conventional beamformer. Capon's method attempts to overcome

the contribution of the undesired interferences by minimizing the total output power of

y(n) = w
H
x(n) while maintaining a constant gain in the look direction �.

Assume that x(n) given in (2.1) is a wide sense stationary random process and let

Efx(n)xH(n)g = �. The constrained minimization problem can be given mathematically

as follows

min
w

w
H�w subject to w

H
a(�) = 1: (2.5)

Using elementary analysis and linear algebra [102, p. 283], the solution to (2.5) is

wCAP =
��1

a(�)

aH(�)��1a(�)
:

The weights obtained are often called the Minimum Variance Distortionless Response

(MVDR) beamformer weights. In practice, an estimate for wCAP is formed from the

snapshots x(1); : : : ;x(N) by

ŵCAP =
S�1

a(�)

aH(�)S�1a(�)
:

Using the weights ŵCAP , the DOA estimates obtained from the Capon's method are

chosen to be the K highest peaks in the spectrum

V̂CAP (�) =
1

a(�)HS�1a(�)
: (2.6)

Capon's method has been found empirically to possess superior performance to that of the

conventional beamformer. See Fig. 2.2 for comparison of the conventional beamformer

and Capon's method in the situation where two independent random 4-QAM signals of

equal power (SNR is 20 dB) from directions 81Æ and 99Æ arrive to a 6-element ULA with

interelement spacing equal to half a wavelength. In this example the number of snapshots

is N = 300 and the marginals of the noise are i.i.d. circular complex Gaussian.

The resolution of the Capon's method is, however, still dependent upon the number of

sensors and on the SNR. It has also been shown that performance of the method severely
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Figure 2.2: Comparison of the conventional beamformer and Capon's method. Two inde-

pendent random 4-QAM signals of equal power (SNR is 20 dB) from directions 81Æ and

99Æ arrive at a 6-element ULA with interelement spacing equal to half a wavelength.

degrades in the case of correlated signals because Capon's method couples the correlated

signals ine�ectively to reduce the output variance [52]. Note that the conventional beam-

former and Capon's method can be derived without using the parametric signal model

(2.1) as was done in [102]. Therefore these methods are sometimes called as nonparametric

DOA estimation methods.

2.2.3 Subspace methods

So-called subspace DOA estimation methods have been the focus of much research since

Schmidt [96] introduced the MUSIC algorithm in 1979. The reason for their popularity

is that the subspace methods can, in theory, resolve sources with arbitrarily close DOAs.

Prior to introducing these methods, we discuss some basic assumptions and terminology.

Consider the signal model given in (2.1). Assume that the K-dimensional signal vec-
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tor s(n) is a wide sense stationary process and the K � K signal covariance matrix

�s = Efs(n)sH(n)g is of rank K, i.e. the signals are incoherent. The signals are in-

coherent unless one of them is a scaled version of the other i.e. their correlation coeÆcient

� = �1. When � = �1 the signals are said to be coherent. Alternatively one could con-

sider deterministic signals and assume that the limiting sample signal covariance matrix

limN!1N�1
PN

i=1 s(i)s
H(i) is a constant matrix of rank K. In this section we, however,

model the signals as stochastic and wide sense stationary. The covariance matrix of x(n)

is

� = E[x(n)xH(n)] = A�sA
H + �2I (2.7)

where �2 is the noise variance. Consequently the M � K smallest eigenvalues of � are

equal to �2 and the corresponding eigenvectors are orthogonal to the columns of A. These

eigenvectors span the noise subspace and the eigenvectors corresponding to the K largest

eigenvalues span the signal subspace.

Let �1 � �2 � � � � � �K > �K+1 = � � � = �M = �2 be the eigenvalues of � and let

u1; : : : ;uM be the corresponding eigenvectors. Denote the M � K matrix of the signal

subspace eigenvectors by Us = [u1; : : : ;uK] and the M � (M �K) matrix of the noise sub-

space eigenvectors by Un = [uK+1; : : : ;uM ]. The projection matrix to the signal subspace

is �A = Us(U
H
s Us)

�1UH
s = UsU

H
s . Because the columns of A also span the signal subspace,

�A = AAy, where Ay = (AHA)�1AH . The projection matrix to the noise subspace is given

by �?

A = UnU
H
n = I � �A. Note that the covariance matrix � may also be given as

� = [Us Un] diagf�1; : : : ; �Mg [Us Un]H ;

where

diagf�1; : : : ; �Mg =

2
66666664

�1 0

�2

. . .

0 �M

3
77777775
:
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MUSIC

The MUSIC (MUltiple SIgnal Classi�cation) algorithm proposed by Schmidt [96] is a noise

subspace algorithm. The technique is an extension of the Pisarenko harmonic decomposi-

tion for estimating the frequencies of a sum of complex exponentials in white noise [80]. It

exploits the orthogonality of the noise subspace eigenvectors and the columns of the matrix

A.

Because of the orthogonality of the signal and noise subspace,

a
H(�i)UnU

H
n a(�i) = 0

at the DOAs �i; i = 1; : : : ; K. Furthermore, by using the assumption that the steering

vectors corresponding to K +1 di�erent DOAs are linearly independent, it is easy to show

that the above relation holds only at these points (see [102, p. 157]). When Un is estimated

using the matrix of the eigenvectors corresponding to the M � K smallest eigenvalues of

the sample covariance matrix S, say Ûn, the pseudo-spectrum

V̂M(�) =
1

aH(�)ÛnÛH
n a(�)

will exhibit large peaks at the correct DOAs due to the orthogonality. In the MUSIC

algorithm, the estimates of the DOAs are chosen to be the K largest peaks in this pseudo-

spectrum.

MUSIC can, in theory, resolve sources with arbitrary close DOAs. The maximum

number of DOAs that can be estimated with an M element array is M � 1. In contrast

to the beamforming techniques, the MUSIC algorithm provides consistent estimates [103].

Figure 2.3 represents a comparison of Capon's method and MUSIC in the situation where

two independent random 4-QAM signals of equal power (SNR is 20 dB) from directions 88Æ

and 92Æ arrive to a 6-element ULA with interelement spacing equal to half a wavelength.

As in the previous example the number of snapshots is N = 300 and the marginals of the

noise are i.i.d. circular complex Gaussian.

Statistical properties of the MUSIC estimation technique have been widely studied.

Stoica and Nehorai [103] derived the asymptotic covariance matrix of the MUSIC estimates
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Figure 2.3: Comparison of Capon's method and MUSIC. Two independent random 4-QAM

signals of equal power (SNR is 20 dB) from directions 88Æ and 92Æ arrive to a 6-element

ULA with interelement spacing equal to half a wavelength

assuming deterministic signals and Gaussian noise. They also derived the Cram�er-Rao

bound for DOA estimates and showed that the MUSIC estimator does not asymptotically

achieve it for �nite M . Their analysis also shows that the best asymptotic performance of

MUSIC is obtained when the signals are uncorrelated. When the signals become correlated,

the performance of the MUSIC estimator degrades. See also [103, 105, 48, 128, 125, 82].

There are plenty of modi�cations of MUSIC. So-called weighted MUSIC applies weights

to the noise subspace eigenvectors used in the MUSIC algorithm. It includes as a special

case the Min-Norm [57] method. Root-MUSIC algorithm [4] is based on polynomial root-

ing. It reduces the computational requirements of MUSIC and provides higher resolution

than MUSIC for small sample sizes, but is applicable only to uniform linear arrays. An ap-

proach where MUSIC algorithm is applied to spatially pre�ltered observations (beamspace

MUSIC) is presented in [10].
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Figure 2.4: Illustration of ESPRIT array geometry: three pairs of sensors forming two

subarrays.

ESPRIT

ESPRIT (Estimation of Signal Parameters via Rotation Invariant Techniques) [76, 94]

is a signal subspace technique. It dramatically reduces the computational and storage

requirements of MUSIC and does not involve an exhaustive search through all possible

steering vectors to estimate the DOAs. Moreover, ESPRIT does not require that the

matrix A is precisely known.

ESPRIT requires that the sensor array can be decomposed into two identical subarrays

separated by some �xed displacement vector. The subarrays can also overlap. See Fig. 2.4

for illustration of required array geometry.

Consider again the signal model (2.1). Denote the dimension of the twin subarrays by P .

Let J1 be the P�M matrix that selects the leftmost subarray from the array output vector

and denote the corresponding matrix for rightmost subarray by J2. In the case of ULAs,

for instance, it is common to form the �rst subarray from the sensors labeled 1; : : : ;M � 1

and the second subarray from the sensors labeled 2; : : : ;M , so that the selection matrices

J1 and J2 are given as J1 = [IM�1 0] and J2 = [0 IM�1].
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The basis of the ESPRIT algorithm is the observation that

J2A = J1A�; (2.8)

where � is a diagonal matrix with diagonal elements �i given by

�i = expfj2�(d=�) cos(�i)g; i = 1; : : : ; K: (2.9)

Note that � is a unitary matrix. By assuming that d � �=2 and � = [0; 2�], the DOA �i

is related to �i by

�i = acos(�j �

2�d
argf�ig): (2.10)

Let Us be the matrix of signal subspace eigenvectors. Because Us and A span the same

column space, there has to be a unique non-singular K �K matrix C such that Us = AC.

We now form a set of equations 8<
: J1Us = J1AC

J2Us = J2AC:
(2.11)

Using (2.8) in (2.11), the following relation is obtained

J2Us = J1Us	; (2.12)

where 	 is given by 	 = C�1�C. A standard result from matrix algebra states that 	

and � have the same eigenvalues [37, p. 525] (matrices are similar), i.e. the eigenvalues of

	 are equal to the diagonal elements of �. In theory, the DOAs can therefore be solved by

�nding 	 such that the relation (2.12) is true and then applying inverse mapping (2.10) to

the eigenvalues of 	.

In practice, an estimate Ûs for Us has to be formed from �nite number of noisy obser-

vations and �nding 	 such that

J2Ûs = J1Ûs	

is not possible. Therefore some approximation method must be used. First solution was to

use the Least Squares method and the resulting algorithm is called LS-ESPRIT. Because

both sides of the above equation contain similar \error", the Total Least Squares (TLS)

method suits better for this purpose. An algorithm where TLS method is used is called
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TLS-ESPRIT. TLS-ESPRIT method needs more computation than LS-ESPRIT because

the TLS solution requires calculation of singular value decomposition.

The number of DOAs that can be estimated depends on the array structure. By us-

ing overlapping subarrays of size M � 1, it is possible to estimate up to M � 1 DOAs.

Swindlehurst et al. [108] discuss the optimal choice of the two subarrays when the choice

is not unique. Similarly to MUSIC, the estimates obtained using ESPRIT are consistent

(under some general assumptions) and the resolution of ESPRIT is not limited. Stoica and

Nehorai [106] derived the asymptotic covariance matrix of the ESPRIT estimates (under

Gaussian signal and noise assumption). They also showed that the asymptotic variance of

the ESPRIT estimates is always larger than the asymptotic variance of the MUSIC esti-

mators and the di�erence is notable for large arrays and small number of signals. See also

[83, 73, 127].

The ESPRIT technique is theoretically equivalent to the Toeplitz ApproximationMethod

[3, 58]. The Unitary ESPRIT algorithm [33] is based on transformation of the complex data

matrix to the real matrix of the same size and involves only real calculations. ESPRIT-type

algorithms based on fourth order cumulants are discussed in [18, 26].

Coherent signals

If some of the signal sources are completely coherent, i.e. their correlation is equal to

�1, the signal covariance matrix is singular and the conventional subspace methods do

not work anymore. Coherent signals can arise from multipath propagation where, due to

reections, the same signal arrives to an array from multiple directions. Smart jammers

can also create coherent signals.

In the case of ULA, the DOAs can, however, be estimated by using spatial smoothing

preprocessing. In the following we briey describe this technique. For simplicity, we will

drop the time index from x, s and v from this point onward.

The idea in the spatial smoothing scheme is to divide a linear uniform array with M

identical sensors into overlapping forward and backward subarrays of size P , M � P > K.
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Figure 2.5: The forward/backward spatial smoothing scheme.

See Figure 2.5, [77, 78]. Let x
f
l denote the received signals at the lth forward subarray i.e.

x
f
l = (xl; : : : ; xl+P�1)

T : (2.13)

Moreover, let xbl denote the complex conjugate of the received signals at the lth backward

subarray

x
b
l = (x�M�l+1; : : : ; x

�

M�P�l+2)
T ; (2.14)

and let Dl denote the lth power of the diagonal matrix

D = diagfe�j2�(d=�) cos(�1); : : : ; e�j2�(d=�) cos(�K)g: (2.15)

Adapting the same notation as before, we can model x
f
l as

x
f
l = AD(l�1)

s+ v
f
l

and

x
b
l = AD(l�1)

�
D(M�1)

s
��
+ vbl

where A = [a(�1); : : : ;a(�K)] with a(�k) being the P � 1 (P > K) array steering vector

corresponding to the DOA of the kth signal component, and v
f
l and v

b
l are noise vectors.

The forward-averaged spatially-smoothed covariance matrix �f is de�ned as the average
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of the subarray covariance matrices

�f =
1

L

LX
l=1

�
f
l ;

where �
f
l = Efxfl x

f
l

Hg and L =M � P +1. In addition, the backward averaged spatially

smoothed covariance matrix is

�b =
1

L

LX
l=1

�b
l ;

where �
f
l = Efxblxbl

Hg. Finally, the forward/backward spatial smoothed covariance matrix
�� is de�ned as

�� =
�f + �b

2
: (2.16)

Assume M � 3K=2. It has been shown that under mild restrictions on s, it is possible to

choose P such that the P �K smallest eigenvalues of �� are equal and the corresponding

eigenvectors are orthogonal to the columns of the matrix A [77]. Therefore the DOAs of

the coherent signals can be estimated using any subspace algorithm and an estimate of ��.

If L � K, the restriction on s is not needed.

The number of DOAs that can be estimated with a ULA of M sensors and using for-

ward/backward spatial smoothing preprocessing is b2M=3c, under some general assump-

tions. The e�ect of forward/backward spatial smoothing on the performance of subspace

methods has been studied in [79, 86, 87, 84, 85, 109].

The forward only spatial smoothing is a special case of a preprocessing technique called

Autocorrelation Matrix Smoothing (AMS). The AMS can be viewed as a general framework

for techniques reducing the cross-correlations between the arriving signals. See [53] and

references therein.

2.2.4 Maximum likelihood methods

Probably the most popular technique for parameter estimation is the Maximum Likelihood

(ML) method. In this section we consider two ML techniques for DOA estimation which

are derived under Gaussian assumption on the array output vector. The two techniques are

Stochastic Maximum Likelihood (SML) and Deterministic Maximum Likelihood (DML).
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The SML technique models the signal and noise as Gaussian and the DML method is based

on deterministic signal and Gaussian noise assumptions. In the literature, also the terms

\unconditional ML" and \conditional ML" are used for SML and DML respectively [104].

In the SML approach, the signal vector is modeled as a zero mean and temporally white

circular Gaussian random process, i.e. its second order moments are given by

Efs(l)sH(k)g = �sÆlk and Efs(l)sT (k)g = 0

where Ælk is the Kronecker delta. This condition implies that the real and imaginary parts

of any marginal component of s(n) are independent and identically distributed. The rank

of �s is K
0 � K. It is assumed that K < (M +K 0)=2 to ensure parameter identi�ability

(see [75, 120, 72]). The noise v(n) is assumed to be zero mean spatially and temporally

white circular Gaussian process, i.e.

Efv(l)vH(k)g = �2IÆlk and Efv(l)vT (k)g = 0:

Moreover, the signal and noise are assumed to be mutually independent. The Gaus-

sian assumption implies that the negative log likelihood function of the snapshot data

x(1); : : : ;x(n) is proportional to [75]

D(�;�s; �
2) = log[detf�g]+Trf��1Sg = log[detfA�sA

H+�2Ig]+Trf(A�sA
H+�2I)�1Sg

(2.17)

where det stands for the determinant, Tr denotes the trace, and � = [�1; : : : ; �K]
T . This

criterion allows explicit separation of some of the parameters. For �xed �, the minimum

with respect to �2 and �s can be shown to be [6, 8, 44]

�̂2(�) =
1

M �K
Trf�?

ASg (2.18)

�̂s(�) = Ay(S � �̂2(�))I)AyH : (2.19)

By substituting these estimates into (2.17), the stochastic maximum likelihood estimate of

� is of the form

�̂SML = argfmin
�

log[detfA�̂s(�)A
H + �̂2(�)Ig]g: (2.20)
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The estimate for the signal covariance matrix is not guaranteed to be positive semide�nite

[74]. This is because the equations (2.18)-(2.20) are derived considering the minimization

of the criterion function (2.17) with respect to �s over the set of Hermitian matrices, and

not over the set of Hermitian positive semide�nite matrices. The estimates obtained from

(2.18)-(2.20) are correctly termed as a large-sample realizations of the ML estimates of

�;�s and �
2. For further details, see [107].

The DML technique models the emitter signals as unknown deterministic waveforms

and the noise as a zero mean spatially and temporally white circular Gaussian random

process. The deterministic ML estimate for the DOAs is of the form

�̂ = argfmin
�

Trf�?

ASgg: (2.21)

In the one source signal case the DML technique is equivalent to the conventional beam-

former if jja(�)jj is independent of �. After �nding the estimate �, the ML estimates for

the signal waveforms and noise variance can be calculated by

�̂2 =
1

M �K
Trf�?

ASg; ŝ(n) = Ay
x(n):

Note that the SML and DML can also deal with coherent signals. The large sample

properties of the two ML methods are well reported. It has been shown that under some

\regularity conditions", the SML DOA estimation method achieves the Cramer-Rao bound

as the number of observations tends to in�nity [74, 104]. This means that the SML method

is asymptotically eÆcient. The asymptotic covariance matrix of �̂SML is unchanged if the

signals are modeled as deterministic, i.e. the limiting performance of the SML method is

the same for Gaussian and deterministic waveforms [74, 104]. The DML method does not

achieve the Cramer-Rao bound when N !1 for �nite M [103]. Similar to the results for

SML, the asymptotic covariance matrix of �̂DML is the same for deterministic and Gaussian

signals.

The criterion functions (2.17)-(2.21) are highly nonlinear functions of � and a multidi-

mensional numerical search with suÆciently accurate initial estimates has to be applied.

This makes the computational cost much higher than for the techniques introduced earlier

in this chapter. The optimization techniques applied include the Expectation Maximization
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(EM) algorithm [31, 70], alternative projection [132], the Iterative quadratic ML (IQML)

method [9, 41] and Newton-type techniques [7, 12, 100, 75].

The DOA estimates obtained from ML techniques are usually more accurate than the

estimates obtained from beamforming or subspace methods, especially for scenarios in-

volving highly correlated or even coherent signals. For example, the MUSIC and DML

are asymptotically equivalent if the signals are uncorrelated but for correlated signals the

DML usually performs better [103, 106].

2.2.5 Subspace �tting methods

As discussed earlier, the SML and DML DOA estimates can be more accurate than the

estimates obtained from subspace methods (under Gaussian assumption). On the other

hand the ML methods require a multidimensional search and therefore a high computa-

tional cost. The weighted subspace �tting method has the same asymptotic behavior as

the SML under the Gaussian assumption. Moreover, the computational load needed is less

than for the SML. In this subsection we review some basic ideas of a general subspace

�tting principle and discuss the asymptotic properties of resulting techniques.

Assume that the signal and noise vectors are distributed as given in the case of the

SML method. Consider the array output covariance matrix given in (2.7)

� = A�sA
H + �2I:

Let the rank of the signal covariance matrix �s be K
0 � K and denote the eigenvalues and

the corresponding eigenvectors of � by �1 � �2 � � � � � �K0 > �K0+1 = � � � = �M = �2

and u1; : : : ;uM , respectively. Assume K < (M +K 0)=2 as in the case of the SML method.

Introduce the notation

�s = diag[�1; : : : ; �K0]; Us = [u1; : : : ;uK0]; Un = [uK0+1; : : : ;uM ]

Recall that if the signal covariance matrix �s is of full rank, i.e. K
0 = K, A and Us span

the same column space. If K 0 < K, the K 0-dimensional column space of Us is contained in

the K-dimensional column space of A. This then implies that for K 0 � K, there exists a
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unique K �K 0 matrix T such that

Us = AT:

Using this relation, the signal subspace �tting criterion is given by

[�̂; T̂ ] = argmin
�;T

jjÛs � AT jj2W (2.22)

where jjXjj2W = TrfXWXHg and W is a K 0 �K 0 positive de�nite weighting matrix. The

solution with respect to T is given by T̂ = AyÛs [75] and substituting it to (2.22) we get

�̂ = argmin
�

DSSF (�)

where

DSSF (�) = jjÛs � AAyjj2W = Trf�?

AÛsWÛH
s g: (2.23)

The above equations de�ne the class of Signal Subspace Fitting (SSF) methods. Natu-

rally, di�erent choices of W lead to di�erent estimates. The multidimensional MUSIC

(MD-MUSIC) [12] estimates are obtained by choosing W = I. The optimal choice of W

minimizing the estimation error variance can be shown to be [114]

Wopt = (�s � �2I)2��1
s :

Because Wopt depends on unknown parameters, an estimate of Wopt has to be used. This

estimate is given by

Ŵopt = (�̂s � �̂2I)2�̂�1
s ;

where �̂2 is a consistent estimate of the noise variance, for example the average of the

M �K 0 smallest eigenvalues of S, and

�̂s = diagf�̂1; �̂2; : : : ; �̂K0g

where �̂1 � �̂2 � � � � � �̂K0 are the K 0 largest eigenvalues of S. The estimates obtained

from minimizing (2.23) with weighting Ŵopt are called Weighted Subspace Fitting (WSF)

estimates. The WSF method has been shown to posses the same large sample properties as

the SML method (for Gaussian signal and noise) at a lower computational cost provided a

fast method for computing the eigendecomposition is used [55]. Also for ULAs a Root-WSF
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algorithm [105] can be used to obtain a closed form solution. The limiting performance of

WSF estimates is the same for Gaussian and deterministic signals [74].

Assume now that K = K 0. Recall that in this case the columns of Un are orthogonal

to the columns of A. The Noise Subspace Fitting (NSF) criterion is obtained using this

property, i.e.

UH
n A = 0:

A natural estimate for � is obtained by minimizing the following criterion

DNSF (�) = jjÛH
n A(�)jj2Q = TrfQA(�)HÛnÛH

n A(�)g

where Q is a K �K positive semide�nite weighting matrix. Di�erent choices of Q lead to

estimates with di�erent asymptotic properties. If Q = I, the NSF method reduces to the

MUSIC method. It can be shown [75] that the estimates obtained from the above noise

subspace �tting criterion and the estimates obtained from SSF criterion are asymptotically

equivalent for weights

Q = AyÛsWÛH
s A

y�:

The NSF method can not deal with coherent signals and the optimal weighting matrix

depends on �. Therefore the WSF method is preferred.

2.3 Estimation of the number of signals

All the DOA estimation methods require the knowledge of the number of signals K. If

this information is not provided a priori, it has to estimated from the available data. The

�rst techniques proposed for estimation of the number of signals were based on statistical

hypotheses testing. Under the assumptions made in the case of the SML technique, the

snapshots x(1); : : : ;x(N) are i.i.d. circular Gaussian with covariance matrix �. As before,

let �1 � : : : � �M denote the eigenvalues of �. The likelihood ratio test criterion for testing

hypotheses

H0 : �k+1 = �k+2 = � � � = �M = �2

H1 : � is arbitrary
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assuming �2 is unknown is [77]

L1(k) =

1
M�k

PM
i=k+1 �̂i�QM

i=k+1 �̂i

�1=(M�k)
;

where �̂i; i = 1; : : : ;M are the eigenvalues of the sample covariance matrix S. Standard

likelihood ratio testing theory states that, under H0, 2N(M�k) logL1(k) is asymptotically

�2 distributed with (M � k)2 � 1 degrees of freedom [77]. The estimate of the number of

signals can then be formed by calculating 2N(M � k) logL1(k) for k = 0; 1; 2; : : : and

choosing the estimate to be the �rst value for k that is smaller than some threshold value

obtained from �2 distribution with appropriate degrees of freedom. Note that in the case of

coherent signals the estimate obtained is the estimate of the rank of the signal covariance

matrix K 0.

Another possibility is to test between the hypotheses

H0 : � = A(�)�sA
H(�) + �2I; where A is M � k

H1 : � is arbitrary

as discussed in [75]. The structured estimate for the covariance matrix under H0 is given

by

�̂(�̂) = A(�̂)�̂s(�̂)A
H(�̂) + �̂2I

where �̂s, �̂
2 and �̂ are the SML estimates obtained from equations (2.18)-(2.20). The

likelihood ratio test criterion in this case is given by

L2(k) =
detf�̂(�̂)g
detfSg :

Under H0, 2N log(L2(k)) is asymptotically �
2 distributed with M2 � k2� k� 1 degrees of

freedom [75]. The estimate of the number of signals can be obtained similarly as explained

in the case of L1(k) (with remarkably higher computational cost due to the need for SML

estimates). Note that the estimate obtained is always an estimate for the number of

signals regardless of the coherence of the signals. The authors of [114] suggest a similar

test procedure which is based on the WSF criterion.
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A drawback for the estimation methods based on statistical hypothesis testing is the

need for subjective threshold values. In the techniques proposed by Wax and Kailath [118]

such threshold values are not needed. The proposed methods are based on information

theoretic criteria, namely Akaike Information Criterion (AIC) [2] and MinimumDescription

Length (MDL) [88].

In the MDL based approach, the estimate of the number of signals is an integer k 2

f0; 1; : : : ;M � 1g which minimizes the criterion

MDL(k) = � log

0
B@
�QM

i=k+1 �̂i

�1=(M�k)

1
M�k

PM
i=k+1 �̂i

1
CA

(M�k)N

+
1

2
k(2M � k) logN; (2.24)

where �̂i; i = 1; : : : ;M are the eigenvalues of the sample covariance matrix. In the case of

AIC, the criterion function is

AIC(k) = � log

0
B@
�QM

i=k+1 �̂i

�1=(M�k)

1
M�k

PM
i=k+1 �̂i

1
CA

(M�k)N

+ k(2M � k):

The methods were �rst derived by assuming that the signal and noise are mutually inde-

pendent i.i.d. Gaussian processes [118]. The authors proved that, under this assumption,

the MDL method gives a strongly consistent estimate of the number of signals. The AIC

criterion was shown to overestimate the number of signals. Later Zhao et. al. [129] proved

that strong consistency of the MDL method is obtained also when the assumption of i.i.d.

Gaussian observations is violated. They also corrected the original consistency proof.

When forward/backward spatial smoothing is performed as a preprocessing step, the

number of signals can be estimated by using a modi�ed MDL criterion [124]. The estimate

of the number of signals is an integer k 2 f0; 1; : : : ;M � 1g which minimizes the criterion

MDLf=b(k) = � log

0
B@
�QM

i=k+1 �̂i

�1=(M�k)

1
M�k

PM

i=k+1 �̂i

1
CA

(M�k)N

+
1

4
k(2M � k + 1) logN; (2.25)

where �̂i; i = 1; : : : ;M are the eigenvalues of the forward/backward averaged sample co-

variance matrix.

Other types of methods appear in the literature. Wax and Ziskind [119] have used

combined DOA and number of signals estimation based on the DML assumptions and the
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MDL principle. A similar technique based on the SML assumption and MDL is presented

in [116]. These methods can be more accurate than the MDL method but need multidimen-

sional search for DOA estimation and thus have a high computational cost. An approach

based on transformed Gerschgorin radii is presented in [123]. Also neural networks have

been applied to number of signals estimation, see [20]. Techniques for colored noise are

presented in [117, 131, 130].

2.4 Discussion

The bene�t of the beamforming techniques is low computational complexity. However the

estimates obtained are not generally consistent which is a serious drawback. The subspace

methods have relatively low computational complexity and in the case of uncorrelated

signals they have good performance. The limitation of the subspace methods is their

performance reduction for correlated or even coherent signals. For ULAs, of course, the

spatial smoothing preprocessing technique can be applied.

The ML methods can deal with coherent signals without any modi�cations. The SML

method is more accurate than the DML method in Gaussian noise. The problem of the ML

methods is the multidimensional search needed. WSF has the same asymptotic behavior

as the SML but with a reduced computational complexity.

Note that the properties have been generally discussed under Gaussian assumptions.

Gaussian noise is crucial for eÆcient methods such as SML or WSF. On the other hand

the beamforming and subspace methods which are less eÆcient should be more robust to

deviations from Gaussian noise.

In all the reviewed methods the sample covariance matrix is used for estimating DOAs.

It is well known that the sample covariance matrix is extremely sensitive to deviations

from Gaussian noise. If the data are non-Gaussian it may be a poor estimator of the true

covariance matrix resulting in unreliable DOA estimates. The next chapter deals with

robust estimation of the covariance matrix.
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Chapter 3

Robust estimation of the covariance

matrix

The mean vector � and the covariance matrix � are natural parameters in the general

M -variate Gaussian case. If the observations x1; ::;xN come from a NM(�;�)-distribution

(real or complex), the sample mean vector

�x =
1

N

NX
i=1

xi

and the sample covariance matrix

S =
1

N

NX
i=1

(xi � �x)(xi � �x)H

are maximum likelihood estimators of � and �. Unfortunately, these estimators are ex-

tremely sensitive to deviations from the Gaussian assumption. This sensitivity is demon-

strated in Fig. 3.1 where 50% tolerance ellipses obtained from these estimates are drawn

for original and contaminated data. The ellipses enclose half of the data samples and their

orientation and shape provide information about the covariance structure of the underly-

ing distribution. The contaminated data is obtained by replacing one observation of the

original data by an outlier. The outlying observation inuences the sample covariance ma-

trix signi�cantly. As a consequence the shape and the orientation of the tolerance ellipse

change.
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Figure 3.1: a) 50% tolerance ellipse from the original data. b) Tolerance ellipse after one

observation is replaced by an outlier.

When data are non-Gaussian, robust estimators should be considered. In this chapter

we focus on robust estimators of the covariance matrix. The chapter starts with an in-

troduction to tools for measuring robustness and proceeds to a review of existing robust

covariance matrix estimators. The remainder of the chapter deals with covariance matrix

estimation techniques based on multivariate sign and rank concepts.

3.1 Tools for measuring robustness

An estimator is robust if it is insensitive to deviations from assumed conditions. The

deviations may take the form of outliers, observations that do not follow the pattern of

the majority of the data. Other sources of deviations are model class selection errors and

incorrect assumptions on the measurement noise distribution. In this section we discuss two

important tools for measuring robustness: the breakdown point and the inuence function.

Roughly speaking, the breakdown point gives the maximum fraction of bad outliers the

estimator can cope with [42]. It therefore reects quantitative robustness of an estimator.

The inuence function describes qualitative robustness. Its importance lies in a heuristic

interpretation: it measures the e�ect of an in�nitesimal contamination on the estimate.
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3.1.1 Breakdown point

The concept of the breakdown point was introduced by Hodges [40] in the context of

one-dimensional location estimation. A more general de�nition was given by Hampel [34].

The de�nition given by Donoho and Huber [28] will now be considered. Let X0 =

fx1; : : : ;xNg be a set of M -variate data with TN an estimator. The estimate given data

X0 is TN(X0). Let TN(Xk) denote an estimate from data where k observations of X0 are

replaced by arbitrary values. The �nite sample replacement breakdown point ��(TN ; X0; N)

is the smallest fraction k
N
that causes an estimator to break down. For location estimator,

a formal de�nition can be given by

��(TN ; X0; N) = min
1�k�N

�
k

N
j sup
Xk

fjjTN(X0)� TN (Xk))jjg =1
�

(3.1)

where the supremum is taken over all possible Xk and jj�jj is the Euclidean distance. In this

case the breakdown occurs when the Euclidean distance of the di�erence of the estimates

(the bias caused by the replaced observations) tends to in�nity. For the sample mean, for

example, the breakdown point is equal to 1
N
.

For covariance matrix estimator, the concept of breakdown may be considered using its

eigenvalue decomposition. Let �̂ be an estimator of the covariance matrix � of full rank.

Let u1; : : : ;uM denote the eigenvectors of � ordered by its eigenvalues �1 � �2 � � � � � �M .

Similarly let �̂1 � �̂2 � � � � � �̂M be the eigenvalues of �̂ and û1; : : : ; ûM the corresponding

eigenvalues. The covariance matrix � may now be given as

� = U�UH = �UCUH ; (3.2)

where U = [u1; : : : ;uM ] is the unitary matrix of eigenvectors, � = diag(�1; : : : ; �M) is the

diagonal matrix of the corresponding eigenvalues, C is a diagonal matrix of the normalized

eigenvalues ci (
QM

i=1 ci = det(C) = 1) and �M = det(�) is the Wilks generalized variance.

Note that � = �C. As Bensmail and Celeux [5], we use the terms scale, shape and

orientation for the items �, C and U respectively.

As discussed in paper I, the decomposition (3.2) allows description of the breakdown

of �̂ in several di�erent ways:
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1. The scale measured by the Wilks generalized variance det(�̂) or by the trace Trf�̂g

may increase over all bounds.

2. The condition number (shape),

Cond(�̂) =
�̂1

�̂M

i.e, the ratio of the largest and smallest eigenvalue, may grow very large in the

presence of outliers.

3. Inuential observations may change the \ordered" eigenvectors and consequently

drastically change the subspace spanned by the s �rst or s last columns of Û =

[û1; : : : ; ûM ].

4. The coordinate system for independent coordinates (given by orientation Û) may

change.

Lopuha�a and Rousseeuw [63] de�ne the �nite sample replacement breakdown point for

covariance matrix estimators as

��(TN ; X0; N) = min
1�k�N

�
k

N
j sup
Xk

D(TN(X0); TN(Xk)) =1
�

(3.3)

where the supremum is taken over all possible Xk,

D(T (X0); T (Xk)) = max
�
j�1(T (X0))� �1(T (Xk))j; j�M(T (X0))

�1 � �M(T (Xk))
�1j
	
;

(3.4)

and �1(T (�)) and �M(T (�)) denote the largest and smallest eigenvalue, respectively. This

de�nition is related to the items 1 and 2 above. For simultaneous de�nition of breakdown

of multivariate location and covariance matrix estimates, see [113]. It should be noted that

all the existing de�nitions for the breakdown point of covariance matrix estimators use only

the eigenvalues to determine breakdown. However, the direction of eigenvectors is crucial

in many multivariate procedures such as subspace estimation and principal component

analysis.

Another frequently used robustness measure is the (asymptotic) contamination break-

down point. It is related to a contamination model F = (1 � �)F0 + �G where F0 is the
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nominal distribution, � 2 [0; 1) and contamination distribution G ranges over all distri-

butions. If TN is a consistent estimator denote by T (F ) its limit when the underlying

distribution is F . The contamination breakdown point is then de�ned as a smallest con-

tamination probability � that makes T (F ) to break down. In case of covariance matrices

the breakdown is usually de�ned using the condition number. See e.g. [36, 67].

3.1.2 Inuence function

The inuence function [35, 36] is a standard tool for characterizing the qualitative ro-

bustness of an estimator. The inuence function is essentially the �rst derivative of the

functional version of an estimator. Let F be an M -variate distribution function and T (F )

a statistical functional corresponding to a consistent estimator TN (the limit of TN when

the underlying distribution is F ). The inuence function of T at F is de�ned as

IF (x; T ;F ) = lim
�!0

T ((1� �)F + ��x)� T (F )

�

for those x where the limit exists. �x is a probability measure which puts mass 1 at

the point x. A robust estimator should have an inuence function that is bounded and

continuous. When the inuence function is bounded, an outlier cannot have an arbitrarily

large inuence on the estimate. Continuity guarantees that small changes in data cause

only small changes in the parameter estimate. The empirical inuence function is obtained

by using an empirical distribution and contaminating it with an outlier whose location is

varied in an M -dimensional space.

A covariance matrix estimator given by functional T (x) (x � F ) is said to be aÆne

equivariant if T (Bx + b) = BT (x)BH (B is an M �M matrix of full rank and b is an

M -vector). Note that in case of location estimator T the aÆne equivariance is de�ned as

T (Bx + b) = BT (x) + b. For real valued aÆne equivariant covariance matrix estimators

the inuence function of eigenvalues or eigenvectors can be obtained from the inuence

function of the covariance matrix estimator [23].

It is often desirable to describe the e�ect of an outlier to a covariance matrix estimator

with a scalar quantity instead of a matrix function. In paper I, various di�erent tools for
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this kind of comparisons are introduced. Let �̂ be a covariance matrix estimate obtained

from the uncontaminated data and let ~� be an estimate obtained from the contaminated

data. Denote the eigenvalues of �̂ by �̂1 � � � � � �̂M and the corresponding eigenvectors

by û1; : : : ; ûM . Similarly let ~�1 � � � � � ~�M be the eigenvalues of ~� and let ~u1; : : : ; ~uM be

the corresponding eigenvectors. The eigenvector matrices of �̂ and ~� are Û = [û1; : : : ; ûM ]

and ~U = [~u1; : : : ; ~uM ], respectively.

As stated earlier, deviations caused by outliers to the estimated covariance matrix are

conveniently described using eigenvalue decomposition. Changes in scale and shape may be

described using product or the sum of the eigenvalues, for instance with det(~�)=det(�̂) or

traces Tr(~�)=Tr(�̂). Perturbations in the shape may be captured using the whole spectrum

of eigenvalues and the matching distance metric (see [101]):

md(�̂; ~�) = min
�

max
i
(j~��i � �̂ij)

where � = (�1; : : : ; �M) is taken over all permutations of (1; 2; :::;M) . If the perturbation

is small the matching distance will be small and matching pairs of eigenvalues are clearly

found.

Change in the condition number indicates change in the eigenvalue spread and how

ill-conditioned the covariance matrix has become due to contamination. Also the change

in the ratio of the geometric and arithmetic mean of the eigenvalues could be considered.

Perturbation of the orientation may be described in terms of the directions of the

eigenvectors. One may investigate the perturbation e�ects on all the eigenvectors or on a

subspace spanned by a subset of eigenvectors. Typically interesting eigenvectors are those

corresponding to either the s largest or s smallest eigenvalues of �̂. Let Ûs be a subset of

eigenvectors from Û and ~Us the corresponding matrix from ~U . Then jdet( ~UH
s Ûs)j may be

used to quantify the change in the subspace spanned by s columns of Û . This quantity

approaches unity when the subspaces come perfectly aligned. A more intuitive quantity is

perhaps obtained by describing the change in the basis vectors of the subspace in terms of

singular values of ~UH
s Ûs. The canonical angles between the eigenvectors are obtained by

cos�1(�i) where �i are the singular values of ~U
H
s Ûs. Subspace Ûs and perturbed subspace

~Us are close if the largest canonical angle is small.
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In paper I, sensitivity plots for covariance matrix estimators were introduced based on

the tools considered above. The concept of the sensitivity plot may be illustrated by using

the concept of shape (the eigenvalue spread) as an example. Let �̂ be the estimate of the

covariance matrix calculated from the original data X = fx1;x2; : : : ;xNg. The change

in the condition number of the covariance matrix estimate calculated from the perturbed

data may be illustrated by plotting

SP (x; X; �̂) =
Cond(~�)

Cond(�̂)

where ~� is the covariance matrix estimate calculated from the perturbed data X 0 =

fx1; : : : ;xN ;xg. Similarly, the changes in orientation and scale may be plotted using

either the di�erence between the true and perturbed values or their ratios, depending on

which is more appropriate for the quantity of interest.

Examples of this type of sensitivity plots (averages over 50 samples) for the sample

covariance matrix are provided in Fig. 3.2. The plots were created in the following way.

Independent samples of sizes 100 were drawn from the real-valued bivariate Gaussian dis-

tribution with symmetry center � = (0; 0)T and covariance matrix

� =

0
@ 4 0

0 1

1
A :

Each of the samples was perturbed with the same multivariate outlier. The changes be-

tween the original and perturbed estimate were quanti�ed using two criteria, the propor-

tional change in the condition numbers (shape) and the change in the direction of the

�rst eigenvector (orientation). As seen from the �gure, the inuence of one additional

observation on the sample covariance matrix is unbounded.

3.2 A review of robust estimators of the covariance

matrix

In this section a review of robust covariance matrix estimation techniques is given (for

another recent review, see [67]). The methods considered are M -estimators, S-estimators,
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Figure 3.2: Sensitivity plots for the sample covariance matrix. Used criteria are the di�er-

ence in the direction of the �rst eigenvector (left) and the ratio of the condition numbers

(right). The inuence of one additional observation on the sample covariance matrix is

unbounded.

Minimum Volume Ellipsoid (MVE), Minimum Covariance Determinant (MCD) and es-

timates based on projections. Properties of the estimators discussed are the breakdown

point, inuence function and eÆciency. In this section it is assumed that theM -dimensional

observations are in general position, which means that no more than M points of the data

lie in any (M � 1)-dimensional subspace. This assumption is made for theoretical reasons.

The methods introduced are for real-valued data. For complex valued M -dimensional

observations, the covariance matrix can be estimated by combining the real and imaginary

parts of the observations into 2M -dimensional real observation vectors, and then estimating

the covariance matrix for these pseudo observations. A �nal estimate can be formed from

the elements of the real matrix as described in paper V .
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3.2.1 M-estimation

M -estimation is a generalization of Maximum Likelihood estimation principle. Here the

M -estimates for multivariate location and scatter are considered. The reason why the term

scatter is used instead of covariance matrix will be evident later. We start from an M -

variate random variable y which has a spherically symmetric distribution [45, 30, 29] for

which a density function exists. The density function of y is of the form g(yTy) for some

nonnegative function g(�) of scalar variable, i.e. it depends only on the Euclidean distance

of y from the origin. Let B be an M �M matrix of full rank and � an M -vector. The

density function of the linearly transformed variable x = By + � can be given as

f(x;�;�) = det(�)�1=2g((x� �)T��1(x� �)); (3.5)

where � = BBT . Distributions of this form belong to the family of elliptically symmetric

distributions. The matrix � is the ordinary covariance matrix only if y has a covariance

matrix and it is equal to I. Therefore � is called a scatter matrix or pseudo covariance

matrix.

M -estimators are closely related to the elliptically symmetric density given in (3.5).

Let x1; : : : ;xN be a data set in RM and let �(s) be a given function of s. Denote the set

of positive de�nite symmetric M �M matrices by PDS(M). The goal is to �nd �̂ 2 R
M

and �̂ 2 PDS(M) minimizing the objective function

L(�;�) =

NX
i=1

�[(xi � �)T��1(xi � �)] +
1

2
log[det(�)]: (3.6)

When expf�(xTx)g is integrable over RM , (3.6) can be considered as a negative log like-

lihood function for elliptically symmetric distribution. If � is di�erentiable, then setting

derivative of (3.6) with respect to � and � to 0 yields the estimation equations

�̂ =

PN

i=1 w(si)xiPN
i=1w(si)

(3.7)

�̂ =

NX
i=1

w(si)(xi � �̂)T (xi � �̂) (3.8)

where w(s) = 2�0(s) and si = (xi � �̂)T �̂�1(xi � �̂).
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M -estimates for� and � are de�ned as a generalization of (3.7) and (3.8). The estimates

are de�ned to satisfy

�̂ =

PN
i=1w1(si)xiPN

i=1w1(si)
(3.9)

�̂ =

PN

i=1w2(si)(xi � �̂)(xi � �̂)TPN

i=1w3(si)
: (3.10)

where w1, w2 and w3 are functions from [0;1) to [0;1).

M -estimators are aÆne equivariant. For sample versions this means that if �̂ and �̂ are

M -estimates for original observations, the M -estimates for aÆne transformed observations

Bxi+b (B is anM�M matrix of full rank, b anM -vector) are given by B�̂+b and B�̂BT .

The existence and uniqueness of the solutions to (3.9)-(3.10) depends on the weighting

functions and the data available. Assuming the location parameter � known, Huber [43]

proved the existence and uniqueness of solutions for suitable weighting functions. Kent and

Tyler [49] discussed the same issues forM -estimates de�ned directly to maximize (3.6) and

included discussion of joint estimation of � and �. For existence results see also [112, 36].

When unique solutions exist, the resulting estimates are consistent and asymptotically

normal [43, 68]. The theoretical conditions for the proofs are somewhat complicated and

will not be discussed here.

Equations (3.9)-(3.10) can be used as the basis of iterative algorithms for numerical

computation of M -estimates. More sophisticated ideas are discussed in [68, 43]. Con-

vergence of iterative algorithms was considered in [49]. An example of weight functions

can be given by w3(s) = 1 and wi(s) =  i(s)=s, for i = 1; 2, where  1(s) =  H(
p
s; k)

and  2(s) =  H(s; k
2). The function  H(s; k) = minfs;maxfs;�kgg is known as Hu-

ber's psi-function. Discussion of various weighting functions can be found, for example, in

[43, 13].

The inuence function of the M -estimators is bounded for suitably chosen weight func-

tions [43]. Unfortunately the asymptotic contamination breakdown point of M -estimators

is shown to be at most 1=(M + 1) [68] (for the de�nition of breakdown given in the refer-

ence). This means thatM -estimates become more sensitive to the outlying observations as

the dimension of the data grows. To overcome this problem, Kent and Tyler [50] introduced
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an additional constraint to the estimation equations (3.7)-(3.8). The resulting estimates

are called constrained M -estimates and can attain a highest contamination breakdown

point of 1=2.

3.2.2 MVE and MCD

Rousseeuw [89] introduced two extremely robust aÆne equivariant methods for multivariate

location and covariance matrix estimation: the Minimum Volume Ellipsoid (MVE) and the

Minimum Covariance Determinant (MCD). These estimators are based on the idea of using

only a fraction of the available data in estimation task.

The MVE estimate for location is the center of the ellipsoid covering at least h points

of data. The scatter estimate is the shape matrix determining this ellipsoid. Mathematical

derivation can be given as follows [63]. Let x1; : : : ;xN be M -variate data. The MVE

estimates �̂ and �̂ 2 PDS(M) for location and scatter minimize the determinant of �

subject to

#fij(xi � �)T��1(xi � �) � c2g = h:

The number c is a �xed constant and has no inuence on the value of �̂. However, the

choice of c determines the magnitude of �̂. The value of c can be chosen with agreement of

the underlying distribution in order to obtain a consistent covariance estimate. For exam-

ple, if h = b(n + p+ 1)=2c and the data are assumed to come from Gaussian distribution,

c2 should be the median of a �2 distribution with M degrees of freedom.

The breakdown point of MVE estimates depends naturally on the choice of h. If h =

b(n+p+1)=2c, the �nite sample replacement breakdown point (as de�ned in equations (3.1)-

(3.3) will attain the maximum value for aÆne equivariant estimators of b(N�M +1)=2c=2

[63]. The inuence function of MVE estimates has not been considered in statistical litera-

ture. The main weakness of the MVE estimator is its poor eÆciency when h is close to 1=2

[25]. Therefore the MVE estimates are usually used to obtain robust initial estimates. The

�nal estimates for location and covariance are then obtained applying one step reweighting.

The weighting is done by using robust Mahalanobis{type distances obtained from the MVE

estimates. It has been shown that with an appropriate weighting function the breakdown
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point of the �nal estimate is the same as the breakdown point of the initial estimates [63].

Several algorithms exist for computation of MVE estimates [93, 38, 122, 19, 46, 1, 21].

The most commonly used are probabilistic algorithms based on drawing a large number of

small subsamples from the data.

For M -variate data x1; : : : ;xN the MCD estimate for location is the arithmetic mean

of h points for which the determinant of the sample covariance matrix is minimal [89, 92].

The covariance matrix estimate is the sample covariance matrix of these points. MCD

estimators are more eÆcient than MVE estimators and have the same high robustness

[11, 22]. Therefore MCD estimates are preferred over MVE estimates. The inuence

function of an MCD estimator is naturally bounded [22]. Recently a fast algorithm for

numerical computation of MCD estimates was developed [91]. For other algorithms see

[51, 39, 122]. As in the case of the MVE estimators the MCD estimates are usually used

to obtain robust Mahalanobis-type distances. These distances are then used to form a

weighted mean and a weighted sample covariance matrix of the data.

3.2.3 S-estimates

For data x1; : : : ;xN in RM the S estimates for multivariate location and scatter are de�ned

as a pair (�̂; �̂) 2 R
M � PDS(M) minimizing det(�̂) subject to

1

N

NX
i=1

�
h
f(xi � �̂)T �̂�1(xi � �̂)g1=2

i
= b:

The MVE estimator can be obtained as a special case of an S-estimator by letting Nb =

N�h and �(�) = 1�1f[�c;c]g, where 1f[�c;c]g is the indicator function over [�c; c]. To ensure

asymptotic normality and a high breakdown point the following conditions are usually

assumed of �:

� � is symmetric, twice continuously di�erentiable, and �(0) = 0.

� there exists a constant c > 0 such that � is strictly increasing on [0; c] and constant

on [c; 0).
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A typical example of such a � function is given by

�(y) =

8<
:

y2

2
� y4

2c2
+ y6

6c4
; for jyj � c;

c2
0

6
; for jyj > c:

The constant 0 < b < supf�g can be chosen in agreement of the underlying probability

distribution. If the data x1; : : : ;xN is assumed to be a random sample from elliptically

symmetric distribution with density (3.5), it is natural to choose b = Ef�((x��)��1(x�

�))g, where x is distributed according to assumed density. The choice of the constant c

e�ects both the breakdown point and asymptotic variance of the S-estimates. By choosing

c depending on the number of observations and supremum of � it is possible to obtain the

maximal �nite sample replacement breakdown point of aÆne equivariant estimators [62,

63]. However, it is not possible to combine small asymptotic variance and high breakdown

point [62]. The inuence function of S-estimators with � function satisfying the conditions

above is bounded [62].

The S-estimators are closely related to theM -estimates. In fact the S-estimates satisfy

the M -estimation equations (3.9)-(3.10) for weights w1(s) = �0(s1=2)=s1=2, w2(s) = w1(s)

and w3(x) = M�1s1=2�0(s1=2)� �(s1=2) + b0 [62]. The S-estimates, however, have a break-

down point which is independent of the dimension of the data. This di�erence is due

to the fact that S-estimates found by the minimization problem, which is not equivalent

to solving estimation equations (3.9)-(3.10) with these weights. Algorithms for numerical

computation of the S-estimators appear in [95, 14].

3.2.4 Estimates based on projections

The Stahel-Donoho estimate

The estimator de�ned independently by Stahel [99] and Donoho [27] was the �rst robust

aÆne equivariant estimator for multivariate location and scatter having a high breakdown

point for any dimension. Estimators use an idea that an multivariate outlier should also

be an outlier at least in one univariate projection of the data. Robust univariate scale

and location statistics are used to measure \outlyingness" of an observation in all possible
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directions. The outlyingness measure is then used to form a weighted mean and a weighted

sample covariance matrix for the data.

Let �(�) and �(�) be univariate aÆne equivariant location and scale statistics1. Let

X = fx1; : : : ;xNg be a data set of N observations in R
M . De�ne for any y 2 R

M the

\outlyingness" r:

r(y; X) = sup
a

�
jaTy � �(aTX)j

�(aTX)

�

where the supremum is over a : jjajj = 1. Usually �(�) is taken to be the median and �(�)

is taken to be the Median Absolute Deviation (MAD). For a univariate data x1; : : : ; xN ,

the MAD is de�ned as

MAD(X) = c med
i=1;:::;N

fjxi �medfx1; : : : ; xNgjg

where c is a consistency correction constant (for the Gaussian distribution c � 1:4826

makes the MAD consistent towards the standard deviation). See, for example, [43]. Let

w(�) be a positive weighting function. The Stahel-Donoho estimator of location and scatter

(�̂; �̂) is de�ned as

�̂ =

PN
i=1wixiPN

i=1wi

and

�̂ =

PN

i=1wi(xi � �̂)(xi � �̂)TPN
i=1wi

;

with wi = w(r(xi;X)). If w is continuous and w(r) and r2w(r) are bounded for r � 0

and if � and � have asymptotic breakdown points of 1/2, the asymptotic contamination

breakdown point of (�̂; �̂) is 1/2 in continuous multivariate models [36]. The �nite sample

breakdown point of these estimators was considered in [113]. The estimates are consistent

(of order
p
N) under some general conditions [66]. The numerical computation of the

Stahel-Donoho estimates is complex. An approximative algorithm based on subsampling

was proposed by Stahel [99].

1For univariate data X = fx1; : : : ; xNg and a; b 2 R �(aX + b) = a�(X) + b, �(aX + b) = jaj�(X).
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P -estimates

Another aÆne equivariant estimator based on projections was proposed by Maronna et al.

[65]. Let B be an M �M matrix satisfying BTB = ��1 2 PDS(M) and x a random

variable with covariance matrix �. The estimator is based on the idea that for any a 2 RM

with jjajj = 1, one has var(aTBx) = 1. That is, B induces a transformation of the data

such that the variance is the same in all directions. The proposed method is based on

replacing the variance by a robust univariate dispersion estimate �(�) such as the MAD. A

P-estimate of scatter is de�ned as �̂ = (BTB)�1 where B minimizes

sup
a
�(aTBx)

infa �(aTBx)

with a 6= 0. The numerical computation of P -estimates is especially diÆcult and therefore

the estimator has not drawn much attention.

For still another projection pursuit based approach see [43, 61]. These methods �rst

compute a robust estimate of the �rst eigenvector by �nding the direction which yields the

maximum univariate robust estimate of variance. The direction of the second eigenvector

is orthogonal to the �rst one and again yields the maximum robust univariate variance

estimate. The remaining eigenvalues and eigenvectors are found sequentially in similar

fashion. This estimator is called the PPS estimator. The PPS estimator can obtain an

asymptotic breakdown point of 1/2 if the robust estimate of the variance has an asymptotic

breakdown point of 1/2 [61].

Let �̂ denote the PPS estimate computed from data X = fx1; : : : ;xNg. The PPS

estimate is orthogonal equivariant. That is, for any M �M orthogonal matrix U , the PPS

estimate from data UX is U�̂UT . In general, PPS estimates are not aÆne equivariant.

However, if the underlying distribution is an elliptic one, then in the asymptotic sense they

are [61]. An approximative algorithm for PPS estimates is given in [24].

3.3 Robust estimation using nonparametric statistics

In this section, techniques for estimating the covariance matrix using spatial signs and ranks

are considered. First, recall the univariate sign and rank concepts. Let x1; :::; xN be an
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univariate real-valued data set. The univariate sign function S(x) = sign(x) is 1; 0;�1 as

x > 0;= 0; < 0 and the centered rank function is R(x) = 1
N

PN

i=1 S(x�xi). Note that R(x)

is the derivative function of the criterion function for the median D(x) = 1
N

PN
i=1 jx� xij.

For a real M -vector x, the spatial sign function [16, 71] is de�ned as

S(x) =

8<
:

x

jjxjj
; x 6= 0

0; x = 0;

where jjxjj = (xTx)1=2. The spatial sign of x is a unit length vector to the direction of x

and hence a natural generalization of the univariate sign function.

Let now x1; : : : ;xN be a real valued M -variate data set. The spatial rank function is

de�ned as

R(x) =
1

N

NX
i=1

S(x� xi):

Note that R(x) is the gradient of the criterion function D(x) = 1
N

PN
i=1 jjx � xijj: The

spatial median M(X) minimizes D(x) or is the solution of equation R(x) = 0. See

[16, 17, 71]. For complex valued data the spatial sign and rank functions and spatial

median are de�ned by using jjxjj = (xHx)1=2 in above. In what follows we discuss the

covariance properties of the spatial sign and rank in the general complex case.

The sample Sign Covariance Matrix (SCM) denoted by S1, the sample Tau Covariance

Matrix (TCM) denoted by S2 and the sample Rank Covariance Matrix (RCM) denoted by

S3 are de�ned as

S1 =
1

N

NX
i=1

S(xi)S
H(xi); S2 =

1

N(N � 1)

NX
i=1

NX
j=1

S(xi � xj)SH(xi � xj)

and

S3 =
1

N

NX
i=1

R(xi)R
H(xi);

respectively.

To de�ne the corresponding theoretical concepts, let x1, x2 and x3 be i.i.d. M -variate

random variables with the distribution F . Then the SCM, TCM and RCM for the distri-

bution F are

�1 = EFfS(x1)S
H(x1)g; �2 = EFfS(x1 � x2)S

H(x1 � x2)g
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and

�3 = EFfS(x1 � x2)S
H(x1 � x3)g;

respectively. For i.i.d. observations the sample versions converge w.p.1 (with probability

1) to the theoretical matrices. This result is proven for the SCM and the TCM in paper V .

The technique used in these proofs can also be applied to obtain the result for the RCM.

Because the Euclidean distance is invariant under unitary transformations, the spatial

sign function is rotation equivariant, i.e. S(Ux) = US(x) for any unitary matrix U .

Therefore, if the SCM, TCM and RCM for the distribution of x are �1, �2 and �3, then

the SCM, TCM and RCM for the distribution of Ux are U�1U
H U�2U

H and U�3U
H .

These properties naturally hold also for the sample versions. The spatial sign function,

however, is not scale equivariant, i.e. it is not true that S(Dx) = DS(x) for all diagonal

matrices D.

There is a close connection between the eigenvectors of the covariance matrix and the

eigenvectors of the SCM, TCM and RCM for a large class of multivariate distributions. In

order to show this relation, we start by giving de�nitions for reection and permutation

invariance of multivariate distributions. We say that an M �M matrix G is a reection

matrix if it is a diagonal matrix with diagonal elements �1. Moreover, an M �M matrix

Q is a permutation matrix if it is obtained by permuting the rows (or columns) of the

M �M identity matrix. A distribution of z is said to be reection invariant if Gz � z

(Gz and z have identical distributions) for all reection matrices G and is permutation

invariant if Qz � z for all permutation matrices Q.

Theorem 1 Let z be an M-variate random variable with a reection and permutation

invariant distribution. Consider a random variable

x = UDz

where D = diagfd1; : : : ; dMg, jd1j � � � � � jdM j > 0 and U is a unitary matrix. Let the

covariance matrix and SCM of x be � and �1, respectively. Then

� = U�UH and �1 = U�1U
H
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where � = diagf�1; : : : ; �Mg �1 � �2 � � � � � �M > 0, and �1 = diagf�1;1; : : : ; �1;Mg,

�1;1 � �1;2 � � � � � �1;M > 0. Moreover �i = �i+1 if and only if �1;i = �1;i+1, or in other

words the eigenvectors of � and �1 ordered by their respective eigenvalues can be chosen

to be the same.

Proof. See appendix A.

Let z1 and z2 be i.i.d. random variables with a reection and permutation invariant

distribution. Then also the random variable z1 � z2 has a reection and permutation

invariant distribution and we get the following corollary.

Corollary 1 Let z be a M-variate random variable with a reection and permutation

invariant distribution. Consider a random variable

x = UDz + b

where U and D are as in Theorem 1 and b is a complex M-vector. Let the covariance

matrix and the TCM of x be � and �2, respectively. Then

� = U�UH and �2 = U�2U
H

where � = diagf�1; : : : ; �Mg; �1 � �2 � � � � � �M > 0, and �2 = diagf�2;1; : : : ; �2;Mg,

�2;1 � �2;2 � � � � � �2;M > 0. Moreover �i = �i+1 if and only if �1;i = �1;i+1.

Let now z, U , D and b be as in Corollary 1. It is straightforward to show that the

RCM of the distribution UDz + b is U�3U
H , where �3 is a diagonal matrix of eigenvalues

(for real valued random variables, see [64]). Unfortunately, showing that the order of the

eigenvectors is preserved is more complicated.

The class of distributions introduced in Corollary 1 is large and includes the circular

complex Gaussian distribution and all complex elliptically symmetric distributions consid-

ered in [56] (with existing second order moments). It is, however, larger than the family

considered in [56]. Real valued distributions belonging to the family introduced in Corol-

lary 1 include all elliptically symmetric distributions with existing second order moments.

In Theorem 1 and Corollary 1 the covariance matrix of x was assumed to exist just to show
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the relation between the eigenvectors. Because the spatial sign function is bounded, the

SCM TCM and RCM exist for all multivariate distributions. Therefore, the results stated

for the SCM, TCM and RCM are also valid for the constructions where the second order

moments of z are not de�ned, such as the multivariate Cauchy distribution.

The above results suggest that the sample TCM or RCM may be used to �nd estimates

for the eigenvectors of the covariance matrix. An estimate of the covariance matrix can

be constructed by combining these estimates with a robust estimate of the variance. The

estimation strategy may be as follows:

1. Calculate the sample TCM or the sample RCM from the data x1; : : : ;xN . Find the

corresponding eigenvector estimates, that is, a matrix Û .

2. Estimate the marginal variances (eigenvalues, principal values) of

ÛH
x1; Û

H
x2; :::; Û

H
xN

using any scale equivariant univariate robust scale estimate (MAD, etc.). Write

�̂ = diag(�̂1; :::; �̂M) for the estimates (�̂1 corresponds to the �rst marginal etc.).

3. The covariance matrix estimate is

�̂ = Û�̂ÛH :

If the sample SCM is employed in covariance matrix estimation, the data has to be �rst

centered with respect to the spatial median of the data (see paper I). The estimates

constructed using the sample SCM, TCM or RCM are rotation (orthogonal) equivariant,

but not aÆne equivariant. Simulation results indicate that the eigenvector estimates based

on the sample SCM, TCM or RCM have good eÆciency and robustness properties. In

paper I, simulation results concerning the sample TCM are presented. For SCM and

RCM based methods, see [64]. Note that results regarding the breakdown properties for

projection based methods introduced in [113, 61] are also valid for the estimators obtained

using the steps above.

In paper II the use of TCM and RCM is demonstrated in di�erent multichannel signal

processing tasks. Robust covariance matrix estimates obtained from the sample RCM or
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the sample TCM are used in RGB color image �ltering, principal component analysis,

discrete Karhunen-Lo�eve transform and blind source separation problem.

3.4 Discussion

Probably the most applied robust estimates of the covariance matrix are the MVE and

MCD estimates. One of the main reasons for their popularity is that algorithms for their

numerical calculation are easily available. For example the S-PLUS software [98] has func-

tions for both MVE and MCD based covariance matrix estimates. Examples where these

estimates are used in various applications can be found from [90]. The major drawback of

the MVE estimate is poor eÆciency when compared to other methods. The MCD estimator

has better eÆciency and therefore it is preferred over MVE estimator.

The properties of the M , S, and reweighted MCD estimators are compared in [23].

The M -estimator and S-estimator are based on the weight functions given as an example

when introducing the estimation methods in section 3.2. The results in [23] show that

the eÆciency of the reweighted MCD estimator is lower than the eÆciency of M - or S-

estimators. The authors recommend use of the S-estimator because it seems to be both

eÆcient and robust. Their recommendation is motivated by both theoretical and simulation

results.

The estimates based on projections have not received much attention in the research

literature. A simulation study comparing the Stahel-Donoho estimates to MVE, S, andM -

estimates is presented in [66]. The results of this study are extremely diÆcult to interpret,

but the authors' conclusion is that the Stahel-Donoho estimator is preferable to the others.

The weakness of the Stahel-Donoho estimates is in numerical computation.

Numerical computation of estimates based on spatial sign and rank concepts is straight-

forward. This is a bene�t of these estimators when compared to methods already discussed

in this section. When a whole covariance matrix estimate is formed, the lack of aÆne

equivariance is a disadvantage. However, the eigenvector estimates obtained are rotation

equivariant, which is the only natural requirement for such estimates. Note that the dis-
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tribution family introduced in Theorem 1 and Corollary 1 does not generally cover the

signal model (2.1) used in array signal processing. In the next chapter we show that the

sample SCM and the sample TCM can, however, be used to estimate the signal and noise

subspaces for a large family of symmetric noise distributions.
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Chapter 4

Robust DOA estimation

Measurements of real-world channels reveal that noise appearing in many indoor and out-

door mobile communication channels is non-Gaussian. See [69, 60, 110, 126, 115, 54] and

references therein. The array processing techniques introduced in chapter 2 rely heavily on

the sample covariance matrix. Therefore these techniques often perform poorly when the

Gaussian assumption is not valid.

In this chapter we consider robust DOA estimation and robust estimation of the number

of signals. The techniques addressed are robust against heavy-tailed non-Gaussian noise.

The chapter starts with a review of common noise models and robust DOA estimation

algorithms. The remainder of the chapter states the main result of this dissertation. We

show that the sample SCM and the sample TCM can be used to obtain convergent estimates

for the signal and noise subspace basis vectors. These estimates can then be applied to

construct robust estimates of DOAs and the number of signals. We also discuss how

nonparametric statistics may be applied to frequency estimation, and show the theoretical

motivation for the resulting techniques. The chapter ends with discussion.

4.1 Noise distribution families

Experimental measurements show that man-made interference has an impulsive nature

that can not be modeled well by a Gaussian distribution [115]. Thus actual channel noise

can deviate greatly from the typical Gaussian assumption. For example, measurements of
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outdoor urban radio channels indicate that automobile ignition noise levels exceed those of

typical thermal (Gaussian) noise, see [54] and references therein. Impulsive noise may be

modeled with heavy-tailed distributions. In what follows we introduce noise distribution

families that are used in robust statistical signal processing.

Probably the most common distribution family applied in robust estimation is

�-contamination family. This family contains distributions given by

y = (1� b)x + bh;

where b � Bin(1; �), x is distributed according to a nominal noise distribution and h is

distributed according to an arbitrary contaminating distribution. When y is used to model

noise, x and h are usually assumed to zero mean Gaussian random variables with covariance

matrices �2
1I and �2

2I, �
2
1 � �2

2. This is a special case of Gaussian mixture noise-model.

Univariate complex-valued random variable belonging to this family has density

f(y) =

LX
l=1

�l

��2
l

expf�yy
�

�2
l

g (4.1)

with
PL

l=1 �l = 1.

The family of �-stable distributions [97] is also widely used. The characteristic function

of a univariate complex isotropic symmetric �-stable (S�S) distribution is

�(!) = exp(�j!j�):

The smaller the characteristic exponent � 2 [0; 2], the heavier the tails of the density. The

case of � = 2 corresponds to the univariate complex circular Gaussian distribution and

the case of � = 1 corresponds to the univariate complex Cauchy distribution. The positive

valued scalar  is the dispersion of the distribution. The dispersion plays a role analogous

to that of the variance for second order processes.

Finally we consider the family of complex spherically symmetric distributions. A

complex-valued M -variate random variable y is said to have a complex spherically sym-

metric distribution if the distribution of the 2M real vector

~y =

0
@ Refyg

Imfyg

1
A
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is spherically symmetric [29], i.e.

G~y � ~y

for any 2M � 2M orthogonal matrix G. This implies that Hy � y for any M �M unitary

matrix H. Consequently the covariance matrix of y is a constant times identity matrix, if

the second-order moments of the distribution exist.

4.2 Review of robust DOA estimation methods

One of the �rst papers considering robust DOA estimation was [60]. In the approach

proposed by the authors the array output vector is modeled as a multivariate AR process.

The parameters of the AR process are then estimated using univariate M -estimation and

an estimate for the array output covariance matrix is formed from these parameters. The

method also requires estimation of model order. In [59] another method based on univariate

M -estimation was proposed. The authors considered real-valued data model and assumed

the signal vector to be known and constant. The DOAs were estimated using univariate

M -estimation.

Williams and Johnson [121] assumed that the signals are circular Gaussian and derived

an M -estimator of the covariance matrix based on the least informative noise distribution

in the �-contamination model. They also discussed ML estimation of the covariance matrix

when the array output covariance matrix has a Toeplitz structure.

DOA estimation based on �-stable processes [97] was considered in [110, 111]. In [110],

the authors derived pseudo ML-estimates for DOAs when the signals are modeled as deter-

ministic and the marginal components of the noise are assumed to be i.i.d. from univariate

complex-valued Cauchy distribution. In [111] the marginal components of signal and noise

vector were modelled as complex isotropic S�S random variables. The authors proposed an

algorithm wherein the noise subspace is estimated using a covariation matrix and the DOAs

are estimated using the MUSIC algorithm applied on obtained noise subspace estimate.

The covariation matrix is identical to the covariance matrix when the signal and noise are

modeled as Gaussian, i.e. � = 2. When � < 2, the covariation matrix is based on fractional
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lower order moments. The resulting algorithm is called RObust Covariation-based MUSIC

(ROC-MUSIC).

Yardimci et al. [126] used a generalization of least-squares estimation in order to achieve

robustness. In their approach the signals are modeled as deterministic and DOA estimates

and estimates for the signal amplitudes are obtained by minimizing the criterion

NX
n=1

 [jjx(n)� A(�)s(n)jj2]

where  (�) is a weighting function de�ned on the positive real axis. Note that DML

estimates (or LS-estimates) are obtained by setting �(x) = x. The authors discussed

optimal choice of weighting functions for speci�c noise models including complex spherically

symmetric distributed noise and the �-contamination model.

Kozick and Sadler [54] considered ML estimation when the noise is modeled as Gaussian

mixture noise. They assumed that the marginal components of the noise are i.i.d. accord-

ing to the distribution (4.1) and used the SAGE algorithm [32]. Signals were modeled as

deterministic. They also derived the Cram�er-Rao bound for noise with i.i.d. complex spher-

ically symmetric marginal components, and discussed estimation of the number of sources.

In their simulation study they compared their algorithms to MUSIC and ROC-MUSIC

algorithms and concluded that ROC-MUSIC algorithm has poor performance unless the

sample size N is very large (N � 2000).

4.3 Robust estimation using nonparametric statistics

All the robust DOA estimation methods mentioned in the previous section assume either

knowledge of the pdf or the number of mixtures. Furthermore, user-de�ned threshold

values or weighting functions are often required. In this section we introduce techniques

that are based on the sign covariance matrix (SCM) or the tau covariance matrix (TCM).

These nonparametric statistics were introduced in section 3.3. The resulting estimation

methods require no user-de�ned tuning parameters.

56



4.3.1 DOA estimation

Recall the signal model (2.1)

x(n) = A(�)s(n) + v(n): (4.2)

In this section we assume that the M -variate noise v(n) is from a complex spherically

symmetric distribution and i.i.d. between the successive time-instants.

Assume �rst that the signal vector s(n) is i.i.d. between the successive time-instants,

signals and noise are mutually independent and that the signal covariance matrix

Efs(n)sH(n)g is of full rank. Denote the SCM of x(n) by �1 and the TCM of x(n)

by �2. Under the assumptions made, the M �K smallest eigenvalues of �1 are equal and

the corresponding eigenvectors span the noise subspace. The same property holds for �2.

Recall that M is the number of sensors and K is the number of signals. Proofs for these

results are given in paper V . Moreover, the following theorem is true.

Theorem 2 Let x(n) be as given in (4.2) with random s(n) and v(n). The distribution

of v(n) is spherically symmetric, v(n) and s(n) are independent and Efs(n)sH(n)g is of

rank K. Let x(1); : : : ;x(N) be a random sample from the distribution of x(n). Denote the

sample SCM and TCM of the data by S1 and S2, respectively. Let Û1 to be theM�(M�K)

matrix of eigenvectors of S1 corresponding to the M �K smallest eigenvalues. De�ne Û2

to be the corresponding matrix for S2. Then, as N !1,

AHÛ1
wp1�! 0 and AHÛ2

wp1�! 0:

Proof. See Theorem 3 in paper V .

If the signal and noise between the successive time instants can be modeled as i.i.d., Theo-

rem 2 implies that convergent estimates of the noise and signal subspaces can be obtained

from the eigenvectors of the sample SCM or the sample TCM of the snapshot data. Con-

sequently these estimates can be used in any subspace DOA estimation method.

The i.i.d. assumption of the signal vector can be relaxed in the case of the SCM by

modeling the signal vector s(n) as a deterministic sequence.
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Theorem 3 Let x(n) = As(n) + v(n); n = 1; : : : ; N be as in (2.1) with random v(n) but

deterministic s(n). Let v(1); :::; v(N) be i.i.d. from a spherically symmetric distribution

and let s(1); :::; s(N) span a K-dimensional subspace. Denote the sample SCM of the data

by S1. Then the M � K smallest eigenvalues of EfS1g are equal and the corresponding

eigenvectors are orthogonal to the columns of A. Moreover, as N !1,

S1 � EfS1g
wp1�! 0:

Proof. See Theorem 4 in paper V .

The convergence of the subspace basis vectors can be shown by making an additional

assumption about the signal sequence.

Theorem 4 Let x(n), n = 1; : : :N be as in (2.1) with v(1); :::; v(N) i.i.d. from a spheri-

cally symmetric distribution. Denote the sample SCM of the data by S1 and let �1 � � � � �

�M be the eigenvalues of EfS1g. Assume that that there exist N0 and c > 0 such that, for

N > N0, s(1); : : : ; s(N) span a K-dimensional subspace and �K � �K+1 > c. Set Û1 to

be the M � (M � K) matrix of eigenvectors of S1 corresponding to the M � K smallest

eigenvalues. Then, as N !1,

AÛ1
wp1�! 0:

Proof. See Theorem 5 in paper V .

After showing the theoretical motivation for SCM and TCM based subspace estimation

methods, we are ready to give an algorithm illustrating the usage of the SCM and TCM in

DOA estimation. The algorithm is presented for the SCM but the SCM can be replaced

by the TCM without any additional modi�cations.

Algorithm SCM-TLS-ESPRIT

1. Calculate the sample SCM S1 for the snapshots x(1); : : : ;x(N).

2. Apply the TLS-ESPRIT [94] algorithm to the eigenvectors of S1 corresponding to

the K largest eigenvalues.
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An algorithm where the sample SCM is replaced by the sample TCM is called TCM-TLS-

ESPRIT later in the examples.

4.3.2 Estimating the number of sources

The SCM and the TCM have also proven useful in estimating the number of sources. The

following theorem has been proven in paper V .

Theorem 5 Assume x(n) is distributed as given in Theorem 2. Let x(1); : : : ;x(N) be a

random sample from the distribution of x(n). De�ne

I1(k) = � log

0
B@
�QM

i=k+1 �̂1;i

�1=(M�k)

1
M�k

PM

i=k+1 �̂1;i

1
CA

(M�k)N

+
1

2
k(2M � k) logN;

I2(k) = � log

0
B@
�QM

i=k+1 �̂2;i

�1=(M�k)

1
M�k

PM
i=k+1 �̂2;i

1
CA

(M�k)N

+
1

2
k(2M � k) logN;

where �̂1;i and �̂2;i, i = k+1; : : : ;M are the M�k smallest eigenvalues of the sample SCM

and TCM of the data. Let K̂1 and K̂2 be the values of k minimizing the above expressions.

Then K̂1 and K̂1 are strongly consistent estimates of K.

Proof. See Theorem 6 in paper V .

Thus if we can assume that the signals and noise are i.i.d. between the successive time

instants and the noise is spherically symmetric, the number of signals can be estimated

by replacing the sample covariance matrix eigenvalues by the eigenvalues of the sample

SCM or TCM in (2.24). Because the eigenvalues of the sample SCM or sample TCM are

not estimates of the variance, whereas in the original criterion the �̂i are, the following

technique is proposed in paper V .

1. For snapshots X = [x(1); : : : ;x(N)], calculate the sample SCM (TCM) and use its

eigenvectors �̂1 (�̂2) to form the transformed observations �̂H1 X (�̂H2 X).

2. Estimate the marginal variances of �̂H1 X (�̂H2 X) using the sum of the squared MADs

of the real and imaginary part.
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3. Use the MDL criterion to estimate the number of signals from these estimates.

Note that the estimation result does not depend on the consistency correction term for the

MAD.

4.3.3 Coherent signals

When some of the signals are completely coherent, the SCM and TCM can not be used in

estimation of the noise or signal subspace basis vectors directly. When the array is a ULA,

spatial smoothing preprocessing can be used.

The case when all the signals are completely coherent is considered in paper IV . If

all the signal sources are completely coherent, they are phase-delayed amplitude-weighted

replicas of one signal s(n). In this situation, the signal vector may be given as

s(n) = �s(n);

where � = [�1; : : : ; �K]
T is a K-vector of the complex attenuations of the signal components

corresponding to the di�erent DOAs. As in subsection 2.2.3, divide a linear uniform array

with M identical sensors into overlapping forward and backward subarrays of size P (K <

P < M). Let x
f
l denote the received signals at the lth forward subarray and let xbl denote

the complex conjugate of the received signals at the lth backward subarray, l = 1; : : : ; L =

M � P + 1. See formulas (2.13)-(2.14). We can model x
f
l as

x
f
l = AD(l�1)

�s+ v
f
l

and

x
b
l = AD(l�1)

�
D(M�1)

�s
��
+ vbl

where A = [a(�1); : : : ;a(�K)] with a(�k) being the P � 1 (P > K) array steering vector

corresponding to the DOA of the kth coherent signal component, Dl is given in (2.15) and

v
f
l and v

b
l are noise vectors with spherically symmetric distribution.

Now let ��1 (��2) be the average of the SCMs (TCMs) of the forward and backward

subarrays and assume M � 3K=2. Paper IV showed that under mild restrictions on the

vector �, it is possible to choose P such that P � K smallest eigenvalues of ��1 (��2) are
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equal and the corresponding eigenvalues are orthogonal to the columns of the matrix A.

If L � K, the restriction on � is not needed. Therefore the DOAs of the coherent signals

can be estimated using any subspace algorithm and an estimate of ��1 or ��2.

The following algorithm is proposed in paper IV .

Algorithm SS-SCM-MUSIC:

1. For the snapshots x(1); : : : ;x(N), calculate the sample SCM for each forward and

backward subarray of size P . Denote the sample SCM of the lth forward and back-

ward subarray by S
f
1l
and Sb1l , respectively.

2. Form the matrix

�S1 =
1
L

PL

l=1 S
f
1l
+ 1

L

PL

l=1 S
b
1l

2
:

3. Choose the DOA estimates to be the K highest peaks in the pseudospectrum

V (�) =
1

aH(�)Û1Û
H
1 a(�)

;

where Û1 is the matrix of the eigenvectors of �S1 corresponding to the P �K smallest

eigenvalues.

An algorithm where the SCM is replaced by the TCM is SS-TCM-MUSIC later in the

examples.

The number of signals may be estimated using the following technique proposed in

paper V .

1. For the snapshots x(1); : : : ;x(N), calculate the sample SCM for each forward and

backward subarray of size P . Denote the eigenvector matrices of the sample SCM of

the lth forward and backward subarrays by �̂
f
1l
and �̂b1l , respectively.

2. Let X
f
l and Xb

l denote the data from the lth forward and backward subarrays. Esti-

mate the marginal variances of �̂
fH

1l
X

f
l by using the sum of the squared MADs of the

real and imaginary part (use the consistency correction term c = 1:4826) and form

a P � P diagonal matrix �̂
f
1l
from the obtained estimates. Do the same for the lth

backward subarray to obtain a matrix �̂b
1l
.
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3. Estimate the number of signals by using the eigenvalues of the matrix

1

2L

LX
i=1

(�̂
f
1l
�̂
f
1l
�̂
fH

1l
+ �̂b1l�̂

b
1l
�̂b

H

1l
)

in the modi�ed MDL criterion given in (2.25).

Naturally the estimation can use TCMs instead of SCMs. Recall that the correction term

c = 1:4826 ensures the MAD to be consistent when the underlying distribution is Gaussian.

4.4 Simulation results

In this section, we present various simulation results illustrating the performance of SCM

and TCM based algorithms and comparing the performance to that of conventional sub-

space algorithms. In order to study robustness, "-contamination and complex isotropic

symmetric �-stable noise models are considered. In the sequel we use the term �-stable

noise to refer to the M -variate noise distribution with i.i.d. complex isotropic symmetric

�-stable margins. Note that the distribution of the resulting noise vector is spherically

symmetric only when � = 2.

In the �-contaminated noise model, the M -dimensional noise is given by

v = (1� b)v1 + bv2 (4.3)

where b � Bin(1; �), v1 � NC(0; �
2
1I), v2 � NC(0; �

2
2I) (M -dimensional complex circular

normal distributions). The resulting distribution is always spherically symmetric.

4.4.1 Non-coherent signals in noise

In our �rst simulation we use an 8 element ULA with interelement spacing equal to half

a wavelength. Two independent 4-QAM communication signals of power 100 come to the

array from directions �1 = 90Æ and �2 = 95Æ. The TLS-ESPRIT, TCM-TLS-ESPRIT and

SCM-TLS-ESPRIT algorithms are used to estimate the DOAs. The number of signals is

assumed to be known here. The noise is modeled as �-stable noise. The values used for

the characteristic exponent are � = 2, � = 1:4 and � = 1. The value for the dispersion

62



is  = 1 (in the Gaussian case the SNR is 14 dB). The number of snapshots used is 300.

In the algorithms, the sensors indexed from 1 to M � 1 form the �rst subarray and the

sensors indexed from 2 to M form the second subarray. Figure 4.1 shows histograms of

the estimation results obtained from 200 Monte-Carlo realizations. In the Gaussian case,

all the algorithms exhibit similar good performance. When the characteristic exponent

� = 1:4, the behavior of the conventional TLS-ESPRIT degrades and in the case of noise

with extremely heavy tails (� = 1), the TLS-ESPRIT algorithm fails to estimate the DOAs.

On the other hand, the TCM-TLS-ESPRIT and SCM-TLS-ESPRIT algorithms perform

reliably in the heavy-tailed noise.

Next we compare the ability of three di�erent MDL based methods to estimate the

number of signals. The methods are:

1. Standard MDL using the eigenvalues of the sample covariance matrix.

2. The estimation method introduced in 4.3.2 using the eigenvectors of the sample TCM.

3. The estimation method introduced in 4.3.2 using the eigenvectors of the sample SCM.

We use �-stable ( = 1) and �-contaminated (�2
1 = 1; �2

2 = 1000) noise distributions.

The performance criterion is the relative proportion of correct estimation results and the

simulation parameters are otherwise the same as in the previous simulation.

For the �-stable noise, the characteristic exponent is varied from 1 to 2 and for �-

contaminated noise the contamination probability is varied from 0 to 0.7. The number of

independent Monte Carlo runs used is 200. The results are presented in Fig. 4.2. In the

case of �-stable noise, the methods based on the SCM or TCM combined with the MAD

estimate the number of signals reliably. On the other hand the conventional method fails

if � < 2. There is a di�erence in the robustness of the SCM- and TCM-based methods for

noise from �-contaminated distribution. The SCM-based method seems to be extremely

robust, whereas the TCM based method is more sensitive to the contamination. The

nonmonotone behavior of the curve for the standard estimation procedure is due to the

fact that large contamination causes the obtained estimates to go to zero, whereas small

contamination allows all possible estimation results.
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Figure 4.1: Histograms of the estimation results from 200 Monte-Carlo realizations for

TLS-ESPRIT, TCM-TLS-ESPRIT and SCM-TLS-ESPRIT algorithms. The size of the

ULA is 8. The DOAs are 90Æ and 95Æ.

4.4.2 Coherent signals in noise

We now compare the performance of SS-SCM-MUSIC, SS-TCM-MUSIC and

forward/backward averaging with MUSIC (see [78]). We use an eight sensor ULA with

interelement spacing equal to half a wavelength. The subarray size is 6. A 4-QAM com-

munication signal of power 100 coming from 70Æ undergoes multipath reection, resulting

in three additional coherent arrivals from 65Æ, 115Æ and 127Æ. The number of signals (or
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Figure 4.2: Estimating the number of signals using MDL: relative proportion of correct

estimation results for a) �-stable noise as a function of � and b) �-contaminated noise as

a function of the contamination level �.

directions) is known. The noise is �-stable noise with dispersion  = 1. The number of

snapshots is 300.

Figure 4.3 shows �ve estimation results for the cases � = 2 and � = 1. With Gaussian

noise, the performance of all algorithms is almost identical. The SS-SCM-MUSIC also

estimate the arrival directions well in extremely heavy-tailed noise whereas the standard

spatial smoothing MUSIC algorithm fails for � = 1. The resolution property of the SS-

TCM-MUSIC does not seem to be good enough to solve the two close DOAs when � = 1.

Next we compare the ability of three di�erent MDL based methods to estimate the

number of coherent signals. The three methods are

1. The estimation method based on a modi�ed MDL criterion (2.25) and the eigenvalues

of the forward/backward averaged sample covariance matrix.

2. The estimation method introduced in 4.3.3 using the sample TCM.

3. The estimation method introduced in 4.3.3 using the sample SCM.

We use �-stable noise with dispersion  = 1 and �-contaminated noise (�2
1 = 1; �2

2 = 1000).

The simulation parameters are otherwise as in the previous simulation. For the �-stable

noise, the characteristic exponent � is varied from 1 to 2 and in the case of �-contaminated

noise model, the contamination probability is varied from 0 to 0.7. The simulation results

from 200 Monte Carlo realizations are presented in Figure 4.4. The results imply that the
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Figure 4.3: Estimating the DOAs of completely coherent sources in �-stable noise. Five

results using SS-MUSIC (left column), SS-TCM-MUSIC (middle column) and SS-SCM-

MUSIC (right column). First row: � = 2. Second row: � = 1. The size of the ULA is 8

and the subarray size is 6. The DOAs are 65Æ, 70Æ, 115Æ and 127Æ.

method combining the SCM and MAD is more robust than the method based on the TCM

and MAD. The conventional method estimates the number of signals reliably only when

the noise is Gaussian.

4.5 Frequency estimation using nonparametric statis-

tics

The DOA estimation problem employing a ULA is closely related to frequency estimation

of time series data. The observed time-series is given by a model of complex exponentials

in white noise,

x(n) =

KX
k=1

Ake
jn!k + v(n); (4.4)

where !k, k = 1; : : : ; K, are the frequencies (!l 6= !p for l 6= p) and v(n) is the complex-

valued circular white noise. The complex amplitudes Ak are given by

Ak = jAkjej�k ;
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Figure 4.4: Estimating the number of coherent signals using MDL: relative proportion of

correct estimation results for a) �-stable noise as a function of � and b) �-contaminated

noise as a function of the contamination level �.

where �k is the phase. Let z(l) = [x(l); : : : ; x(l +M � 1)]T ; M > K, a = [A1; : : : ; AK ]
T

and v(l) = [v(l); : : : ; v(l +M � 1)]T : We can now write

z(l) = BD(l)a+ v(l);

where

B =

2
66666664

1 1 � � � 1

ej!1 ej!2 � � � ej!K

...
...

. . .
...

ej(M�1)!1 ej(M�1)!2 � � � ej(M�1)!K

3
77777775

and D(l) = diag[ejl!1; : : : ; ejl!p]. It is common practice to assume that the initial phases

�k are independent and uniformly distributed on [��; �]; and independent of the noise. In

this case the M �M autocovariance matrix of x(n) is [102]

� = Efz(k)z(k)Hg = B�aB
H + �2I (4.5)

where �2 is the noise variance and �a = diagfjA1j2; : : : ; jAKj2g. It then follows that the

M � K smallest eigenvalues of the matrix � are equal to the noise variance �2 and the

corresponding eigenvectors are orthogonal to the columns of the matrix B. Therefore the

subspace-methods introduced in chapter 2 can be used to estimate the frequencies !i. As

in the case of DOA estimation, the subspace spanned by the columns of B is called signal

subspace and the orthogonal subspace for it is called noise subspace.
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Let x(1); : : : ; x(N) be an observed time series. A standard estimator for M �M auto-

covariance matrix is the sample autocovariance matrix

R =
1

N �M + 1

N�M+1X
i=1

z(i)zH(i);

where z(i) = [x(i); : : : ; x(i+M � 1)]T ; i = 1; : : : ; N �M + 1. The sample Sign Autoco-

variance Matrix (SAM) of size M �M is de�ned as

RS =
1

N �M + 1

N�M+1X
i=1

S(z(i))SH(z(i)); (4.6)

where S(�) is the complex-valued spatial sign function de�ned in subsection 3.3. The

following result is proven in paper V I.

Theorem 6 Assume fx(1); : : : ; x(N)g (N > M+K�1) distributed as given in (4.4) with

deterministic or stochastic initial phases � = [�1; :::; �K]
T and assume the noise v(n) to

be i.i.d. circular Gaussian and independent of the phases. Denote the M �M (M > K)

sample SAM of the data by RS. Then

(i) The M �K smallest eigenvalues of EfRSj�g are equal and the corresponding eigen-

vectors are orthogonal to the columns of the matrix B.

(ii) As N !1,

RS � EfRSj�g
w:p:1! 0:

Proof. See Theorem 1 in paper V I1.

This theorem shows that the SAM can be used to �nd convergent estimates of the signal

and noise subspace basis vectors, if the noise is assumed to be Gaussian. To illustrate the

eÆciency and robust performance of the SAM-based subspace methods in non-Gaussian

noise, we perform a small simulation study. We compare the performance of the TLS-

ESPRIT algorithm to that of the following algorithm proposed in paper V I.

1In Theorem 1 of paper V I , N > p should be N > M + p� 1 and EfRSg should be EfRSj�g
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Algorithm SAM-TLS-ESPRIT

1. Calculate RS of the sizeM �M for the data x(1); : : : ; x(N). Set Ûs to be the M �K

matrix of the eigenvectors of RS corresponding to the K largest eigenvalues.

2. Calculate the total least squares estimate 	̂ for

J1Ûs	̂ � J2Ûs;

where J1 = [IM�1 0] and J2 = [0 IM�1].

3. The frequency estimates are !̂k = �j arg(�̂k), where �̂k; k = 1 : : : ; K are the eigen-

values of 	̂.

We use the following signal model

x(n) =

4X
i=1

p
50e!in+�i + v(n);

where !1 = 91=72�, !2 = 89=72�, !3 = 14=18�, !4 = 13=18� and �i, i = 1; : : : ; 4 are

uniformly distributed on [��; �]. The number of observations is N = 300 and the size of

the matrices (number of lags) used in the algorithms is M = 30. The noise is generated

from complex isotropic symmetric �-stable noise distribution with dispersion  = 1. The

values used for the characteristic exponent are � = 1 and � = 2.

Figure 4.5 shows histograms for the estimation results obtained from 200 Monte-Carlo

realizations using TLS-ESPRIT and SAM-TLS-ESPRIT algorithms. When the noise is

Gaussian, the performance of the two methods is almost identical. When the noise is non-

Gaussian (� = 1), the SAM-TLS-ESPRIT estimates the frequencies signi�cantly better

than the TLS-ESPRIT.

Note that the number of complex exponentials K is known in the simulations. If K

is not known a priori, it has to be estimated from the data. Common practice is to use

MDL criterion for this task. In paper V I a robust MDL-based method is proposed for

estimation of the number of complex exponentials, and its robust performance is veri�ed

in simulation.
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Figure 4.5: Histograms of the estimation results from 200 Monte-Carlo realizations for

TLS-ESPRIT and SAM-TLS-ESPRIT algorithms. The number of observations is N = 300

and the number of lags is M = 30.

4.6 Discussion

In this chapter we presented the main contributions of the thesis. It was shown that conver-

gent estimates of signal and noise subspace basis vectors can be obtained from the sample

SCM or the sample TCM. Algorithms were proposed based on these nonparametric statis-

tics. Moreover, an extension to frequency estimation was given. The resulting estimation

techniques require no user de�ned tuning parameters. Therefore they are easier to apply

successfully than the other robust estimation methods appearing in the literature.

The simulation results show that DOA estimation algorithms based on nonparametric

statistics have reliable performance and closely spaced sources can be resolved regardless of

the heavy-tailed nature of the noise distribution. Also the robust techniques for estimation

of the number of signals have good performance in Gaussian and non-Gaussian noise. In

general, the behavior (resolution, number of snapshots required, the e�ect of SNR) of these

algorithms is very similar to the standard algorithms when the noise is Gaussian. When

the noise is non-Gaussian, the proposed robust algorithms perform consistently better.
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Chapter 5

Summary

Antenna array signal processing has a remarkable role in future wireless communication

systems. Other application areas include radar, sonar and biomedicine. In most array signal

processing applications the �rst task is to estimate the number of source signals and their

DOAs. The conventional algorithms for these tasks rely heavily on the sample covariance

matrix, and can fail to perform reliably if the noise appearing in the measurements are

non-Gaussian. Real-world measurement noise may deviate signi�cantly from the Gaussian

assumption. Consequently robust estimation methods that have reliable albeit sub-optimal

performance in both Gaussian and non-Gaussian noise have been developed.

The robust estimation methods proposed in this thesis are based on multivariate non-

parametric statistics. The techniques are simple and require no user-de�ned tuning pa-

rameters. Therefore they are easier to apply successfully than the other robust methods

appearing in the literature. In the thesis it is proven that the sample SCM and the sam-

ple TCM can be applied to obtain convergent estimates of the signal and noise subspaces

basis vectors. These estimates may then be used in any subspace-based DOA estimation

method, such as MUSIC or ESPRIT. When the array is a ULA, spatial smoothing pre-

processing can be used to deal with coherent signals. In the proofs it is assumed that the

noise has a complex spherically symmetric distribution. The family of complex spherically

symmetric distributions is large and includes spatially white circular complex Gaussian

distributions. The techniques proposed for estimation of the number of source signals are
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based on combined use of the sample SCM or TCM and a robust estimator of variance.

The use of nonparametric statistics is also proposed in frequency estimation and the the-

oretical motivation of the resulting techniques is proven. Simulation results show that the

proposed methods have reliable performance in Gaussian and non-Gaussian noise.

A large number of signal processing applications other than array processing require

processing of multichannel data and estimation of the covariance matrix. If the data is non-

Gaussian, robust covariance matrix estimators should be used. In the thesis it is proven that

the eigenvectors of the SCM and the TCM are the same as the eigenvectors of the ordinary

covariance matrix for a large family of symmetric distributions. The sample SCM and

TCM may therefore be used to construct robust estimates of the covariance matrix with a

combined use of robust univariate scale estimator such as the MAD. Numerical calculation

of these estimates is straightforward which is a remarkable bene�t when compared to other

robust covariance matrix estimation methods. The weakness of the proposed approach is

the lack of aÆne equivariance.

Future research continuing the work of this thesis might include the use of the SCM and

the TCM in applications other than array signal processing where the low rank signal model

(2.1) is valid. These applications include blind channel estimation, and delay estimation in

communication systems. Further investigation of the asymptotic properties of the proposed

DOA estimation algorithms would be useful. To this end asymptotic distributions of the

eigenvalues and eigenvectors of the sample SCM should be derived. The location scale

family considered in the case of covariance matrix estimation does not generally cover the

low rank signal model used in array signal processing. However when the signal and noise

are complex circular Gaussian or the joint distribution of the signal and noise is complex

elliptically symmetric the model is appropriate for the distribution of the array output

vector. Therefore the covariance matrix estimates based on the sample SCM or the sample

TCM may also be used in the SML or the WSF method. The performance of this kind of

combined methods is an interesting issue to be studied.
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Appendix A

Proof of Theorem 1

Theorem 1 Let z be an M-variate random variable with a reection and permutation

invariant distribution. Consider a random variable

x = UDz

where D = diagfd1; : : : ; dMg, jd1j � � � � � jdM j > 0 and U is a unitary matrix. Let the

covariance matrix and SCM of x be � and �1, respectively. Then

� = U�UH and �1 = U�1U
H

where � = diagf�1; : : : ; �Mg; �1 � �2 � � � � � �M > 0, and �1 = diagf�1;1; : : : ; �1;Mg,

�1;1 � �1;2 � � � � � �1;M > 0. Moreover �i = �i+1 if and only if �1;i = �1;i+1, or in other

words the eigenvectors of � and �1 ordered by their respective eigenvalues can be chosen

to be the same.

Proof. We assume for simplicity that P (zHz = 0) = 0. If it were 0 < P (zHz = 0) < 1, the

expectations below are understood as conditional on z 6= 0. Because the distribution of z

is reection invariant,

EfS(Dz)SH(Dz)g = EfS(DGz)SH(DGz)g

= GEfS(Dz)SH(Dz)gGT
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for any reection matrix G. Therefore EfS(Dz)SH(Dz)g = �1 = diagf�1;1; : : : ; �1;Mg,

where

�1;i = E

(
jdij2jzij2PM

k=1 jdkj2jzkj2

)

= E

�
jzij2P

k(jdkj2=jdij2)jzkj2
�
; i = 1; : : : ;M:

Fix i < M and denote by
P

0
the summation over k excluding k = i; i + 1. Firstly, by

permutation invariance

�1;i = E

�
jzij2

jzij2 + (jdi+1j2=jdij2)jzi+1j2 +
P

0
(jdkj2=jdij2)jzkj2

�

= E

�
jzi+1j2

jzi+1j2 + (jdi+1j2=jdij2)jzij2 +
P

0
(jdkj2=jdij2)jzkj2

�
:

Then, because jdi+1j=jdij � 1 � jdij=jdi+1j and jdkj=jdij � jdkj=jdi+1j for all k, we �nd

E

�
jzi+1j2

jzi+1j2 + (jdi+1j2=jdij2)jzij2 +
P

0
(jdkj2=jdij2)jzkj2

�

� E

�
jzi+1j2

jzi+1j2 + (jdij2=jdi+1j2)jzij2 +
P

0
(jdkj2=jdi+1j2)jzkj2

�

= E

�
jdi+1j2jzi+1j2

jdi+1j2jzi+1j2 + jdij2jzij2 +
P

0 jdkj2jzkj2

�
= �1;i+1:

Thus �1;1 � � � � � �1;M : It is clear that �1;i = �1;i+1 if and only if jdij = jdi+1j. Let U be

an arbitrary unitary matrix. Then

EfS(UDz)SH(UDz)g = U�1U
H :

By reection and permutation invariance E(zzH) = wI. Then the ordinary covariance

matrix is

EfUDzzHDHUHg = U�UH ;

where � = w DHD = w diagfjd1j2; : : : ; jdM j2g with w = E(jzij2). Therefore the same

unitary matrix diagonalizes both the ordinary covariance matrix � and the sign covariance

matrix �1 of x = UDz. Moreover, if UH�U = diagf�1; : : : ; �Mg satisfy �1 � � � � � �M

then also �1;1 � � � � � �1;M from diagf�1;1; : : : ; �1;Mg = UH�1U . Note that �i = �i+1 if

and only if �1;i = �1;i+1.
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