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1 Introduction

On the microscopic scale of atoms and molecules, all physical systems are characterized

by discrete quantized states. However, the units of quantization are so minute that the

macroscopic world around us is usually perceived as continuous, and the number of

particles is so large that macroscopic systems obey the laws of classical mechanics and

electrodynamics. Between these extremes, there exists an intermediate or mesoscopic

regime, where condensed-matter systems can exhibit quantum mechanical behaviour in

the normal non-condensed state.

The motivation for research on mesoscopic physics is twofold. Firstly, the miniaturiza-

tion of components for microelectronics is rapidly approaching the limit where quantum

mechanical e�ects become important, and conventional device design concepts seize to

function properly. Secondly, recent advances in nanofabrication technologies have opened

a range of new experimental possibilities: semiconductor heterostructures can be grown

with the precision of atomic monolayers [1]; structures can be patterned with lithography

down to linewidths of 10{20 nm and below [2]; metal grains a few nanometers in size [3{6]

and even single molecules [7] can be integrated into electric circuits. In these examples,

the motion of the conduction electrons is con�ned in one or more directions, and e�ective

two-, one-, and even zero-dimensional structures are accomplished. Consequently, the

electronic states are quantized in the direction(s) of the con�ning potential. These kinds

of low-dimensional structures are of fundamental interest in that they enable tunable

realizations of various quantum mechanical models.

The central ideas in this Thesis can be illustrated in terms of a tiny normal-metal or

magnetic grain coupled to an external measurement apparatus. Let us �rst consider a

normal-metal grain coupled to a pair of electric leads via tunnel junctions { Fig. 1 shows

one possible experimental setup employed for this purpose.

Au leads

substrate
nanoparticlestunnel

junctions

Figure 1: Schematic of the device used in Ref. [6] to study electron

transport through CdSe nanoparticles having a diameter of 5.5 nm.

For decreasing size of the grain, the strong on-site Coulomb interaction between the

electrons is enforced. This increases the energy required for changing the number of

electrons in the grain and, hence, that for the electrons to tunnel in or out of the grain.

In suÆciently small grains, this charging energy exceeds the available excitation energies:
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the thermal energy kBT and the bias voltage eV applied between the electrodes. As

a consequence, the number of electrons in the grain becomes �xed and the tunneling

current through the grain is suppressed. This phenomenon is known as the Coulomb

blockade e�ect [8{12] and it forms the basis for the so-called single-electron devices. The

charging energy varies inversely proportionally to the grain surface area and the charging

e�ects have been observed in single atoms [7] and ultrasmall grains [5] even up to room

temperature.

In ultrasmall metal grains, the level spacing between the single-electron quantum states is

large and may exceed the thermal energy kBT . The tunneling current can only traverse

the grain via the available states and hence it directly re
ects the discrete electronic

spectrum. This has been observed for metal particles of diameters < 10 nm [3{6].

Structures displaying a discrete spectrum are denoted arti�cial atoms, owing to their

resemblance with the electronic states in real atoms.

In magnetic grains, the magnetization is composed of a large number of atomic spins and

angular momenta. In ultrasmall grains { with diameters below 10 nm { also the mag-

netization becomes quantized and starts to behave as a single giant spin; nanoparticles

with magnetic moments 90� 6000 �B have been studied experimentally [13]. Recently,

yet smaller magnetic structures have been realized: certain synthetic materials are com-

posed of identical magnetic molecules having spins S � 10 [14{17]. The smallness of

the magnetic moment speeds up the process of magnetization reversal by enhancing the

quantum mechanical tunneling of the magnetization. On the other hand, the discreteness

of the spin states may hinder the tunneling, unless some pairs of states are at resonance.

These phenomena are manifested as a magnetic-�eld dependent series of resonances in

the measured relaxation rates [18{21].

The manipulation of the grains and their coupling to a macroscopic measurement device

is diÆcult and in general is not suited for large-scale applications. At low temperatures,

the quantization e�ects found in small grains can be realized in large structures speci�-

cally designed for this purpose. For example, while only extremely small grains exhibit

charging e�ects at room temperature, lithographically fabricated metal structures with

dimensions of order hundreds of nanometers are suÆcient at sub-Kelvin temperatures.

The larger size combined with convenient materials choices enables improved control and

accuracy in the fabrication process and also makes these devices attractive for potential

nanoelectronics applications.

In order to study and utilize these systems, they have to be coupled to a measuring

device or at least attached to a sample holder. This coupling always involves exchange

of particles (electrons) and/or heat between the structure under investigation and its

surroundings. This is shown schematically in Fig. 2. The environment tends to disturb

the smaller system and, depending on the type and strength of the coupling, the localized

states acquire �nite lifetimes, their coherent time evolution is perturbed, and the small

system may be driven out of equilibrium. A detailed study of the coupling e�ects {

in particular in the strong-coupling regime { is of fundamental physics as well as of
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heat reservoir particle reservoir

Figure 2: All the systems studied in this dissertation are realizations

of the same class of models: a small system, possibly with internal

dynamics (indicated by the double-well potential), is coupled to heat

and/or particle reservoirs.

(nano)technological interest. This constitutes the subject of the present thesis.

Outline of the Thesis

This dissertation covers the author's work in the �elds of single-electron devices and

molecular magnets as presented in Papers I through VI. The overview of the thesis is

organized in three parts; all parts are intended to be self-contained.

In the �rst part, single-electron devices based on lithographically fabricated metal struc-

tures (Paper I) and semiconductor heterostructures (Papers II-V) are introduced. In

Section 2, charging e�ects and single-electron tunneling in these systems are discussed.

The e�ects of quantum 
uctuations on electron transport through metallic double-island

structures (Paper I) and ultrasmall quantum dots (Papers II-V) are presented in Sub-

secs. 2.2 and 2.4, respectively.

In the second part, the magnetization dynamics in the molecular magnet Mn12-acetate

is reviewed (Paper VI). A microscopic model for the magnetic molecules and the rich

quantum dynamics of the magnetization is discussed in Sec. 3. The results for arbitrary

external magnetic �elds are outlined in Subsec. 3.2 (Paper VI).

The third part of the thesis consists of a review of the theoretical methods employed in

Papers I-VI. This order of presentation enables a self-contained account of the theory

without interrupting the other sections. In Section 4, a single theoretical framework

applicable to all the models considered is presented { each model consists of a small

system with a discrete set of states coupled to heat and/or particle reservoirs. The

full nonequilibrium dynamics of the discrete systems is described in terms of a recently

developed diagrammatic technique [22{27].

This overview is concluded with a discussion of the results and the future prospects of

single-electron devices and molecular magnets.
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2 Single-Electron Devices

Single-electron devices (SED's) consist of one or more small electronic islands connected

to each other and to a set of macroscopic electrodes via tunnel junctions. While the tun-

nel junctions enable the transport of electrons through the system, the onsite Coulomb

repulsion may suppress the current by inhibiting any changes in the number of electrons

on the islands. In SED's, one exploits these properties: electron transport is strongly

in
uenced by the discreteness of the electric charge and can be manipulated at the level

of single electrons [10{12].

In Papers I-V, we consider the electronic islands in two limits: �rst, with a continuous

single-particle spectrum and, second, with a discrete spectrum and a large level spacing.

These are realized in metallic and semiconductor devices, respectively. In Subsec. 2.1, we

�rst introduce the Coulomb-blockade e�ects in the context of single and double metal

islands. The additional features arising from the discrete spectrum in semiconductor

quantum dots are the subject of Subsec. 2.3.

The tunneling coupling between the islands and the adjacent electrodes leads to quantum


uctuations of the charge and, in small quantum dots, also of the spin degree of freedom.

Section 2.2 summarizes the main results of strong tunneling in a system of two metal

islands between macroscopic leads. Strong tunneling in small single and double quantum

dots is studied in Papers II-V and the results obtained are summarized in Subsec. 2.4.

2.1 Metal Islands

The Coulomb-blockade e�ects are best illustrated in terms of metal structures owing

to two characteristic properties of metals: 1) due to the eÆcient screening of electric

potentials, the Coulomb interactions between electrons are well described by the classical

electrostatic charging energy [10,11]; and 2) due to the continuous spectrum of electronic

states, the state of the island is fully determined by just two quantities: the charge and

the electrochemical potential. Metallic single-electron devices are typically fabricated

using shadow evaporation techniques [11]; the tunnel junctions are formed between metal

stripes when their connecting surfaces are let oxidize, see Fig. 3a. The islands may be

more than one micron long and a typical junction has an area of 100 nm� 100 nm and

a capacitance of � 10�15 F.

Coulomb-Blockade E�ects

Let us illustrate the e�ect of the charging energy, Ech(n;nx), on electron transport in the

model system known as the single-electron transistor (SET), see Fig. 3b. For n excess

electrons on the central island (added to a neutral con�guration of n0 electrons and the

positive background charge n0e),

Ech(n;nx) = EC(n� nx)
2: (1)
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R
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VLV
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Figure 3: a) Typical fabrication scheme for a metallic single-electron

transistor. b) Equivalent electric circuit of a SET with n electrons

on the central island; the C's denote capacitances, V 's voltages, and

RT tunneling resistances.

Here enx = CLVL + CRVR + CGVG is the total external charge at the junctions and on

the gate capacitor; the capacitances and voltages follow the notation of Fig. 3b. Figure

4a shows the charging energy as a function of the gate charge nx for the charge states

n = �2; :::; 3. Due to the periodicity of Ech(n;nx), it suÆces to consider only the regime

0 � nx � 1, where the states n = 0; 1 have the lowest energy. The energy scale for

single-electron charging e�ects is determined by the prefactor in Eq. (1): EC = e2=2C

with C = CL+CR+CG being the total capacitance of the island. For a typical junction,

EC � 1 K, while experimental temperatures can be routinely extended down to 50{100

mK.

Transport of electrons through the island is only possible if the number of the electrons on

the island, n, can be changed. This requires energy and, in the region around the circled

crossing in Fig. 4a, the relevant excitation energy is given by �0 � Ech(1)�Ech(0) (here

and in what follows, the nx dependence of Ech(n) = Ech(n;nx) is implicitly assumed).

Away from the resonance at nx = 0:5, we have �0 6= 0 and the available excitation

energies may be inadequate for changing n, i.e., kBT; eV � j�0j. In this case, the system

resides in its ground state with n �xed to either 0 or 1. The consequent suppression

of the current is known as Coulomb blockade. Since �0 depends on nx, the linear

conductance G displays oscillations as a function of the gate voltage, see Fig. 4b. This

was �rst measured in Ref. [9]. The single-electron transistor owes its name to this high

sensitivity of the current on the gate voltage/charge and it has found applications in,

e.g., electrometers [11, 28{30].

Figure 5a presents another way of visualizing the SET. In the �gure, two tunnel barriers

separate the island from the leads; the chemical potentials in the leads, �r = �eVr, and

the addition energy �0 (�1) for the �rst (second) electron added to the island are also

shown. The transport of electrons takes place as a sequence of single-electron tunneling

processes (denoted by the solid arrow in the �gure). If initially n = 0, an electron can

tunnel into the island from the left lead provided that �L > �0. The tunneling of a

second electron (dashed arrow) is forbidden for �L < �1 and one electron �rst has to
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0∆

Bk T

n

b)

x

Figure 4: a) Charging energy Ech(n) as a function of the gate charge

nx for the charge states n = �2; :::; 3. At low temperatures and for

0 < nx < 1, the charge states n = 0; 1 dominate electronic transport;

the relevant excitation energy is �0 = Ech(1)� Ech(0). b) Coulomb

oscillations of the linear conductance G as a function of nx. The

orthodox theory yields conductance peaks with constant height and

a thermal broadening. The charge n acquires a well-de�ned integer

value between the current peaks.

0

∆0

µL

µ

b)

RµR

µL
∆

a) ∆1

Figure 5: Energy representation of a single-electron transistor: a

metal island separated by tunnel barriers from two metal leads (the

gray continua denote the continuous spectra). The levels denote the

addition energies �n of the nth electron. a) The solid and dashed ar-

rows denote energetically allowed and forbidden tunneling processes,

respectively. b) In a second-order or cotunneling process, two elec-

trons can tunnel in a single coherent process transferring one electron

from the left to the right lead.
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leave the island { this is possible if the consequent change in the energy, �0, exceeds

�R. Combining these restrictions leads to the condition �L > �0 > �R for the current

to 
ow at low temperatures.

In order to provide a more quantitative account of the Coulomb-blockade e�ects, let us

consider the occupation probabilities of the charge states, p0 and p1 (p0+p1 = 1). These

are governed by the master equations

@p0(t)

@t
=
X
r

[p1(t)�
r

1!0 � p0(t)�
r

0!1] (2)

@p1(t)

@t
=
X
r

[p0(t)�
r

0!1 � p1(t)�
r

1!0]; (3)

where �r

n!n�1 is the rate for tunneling into and out of the island through junction r

(here the rates are assumed time independent). The classical rates [10] are given by

�r

n!n�1 = 2���
r
(�n) with

��
r
(!) = ��r

0

! � eVr

exp[��(! � eVr)]� 1
: (4)

Here � = 1=kBT and �r

0 � RK=(4�
2RTr) is the dimensionless conductance of the junc-

tion; RTr is the tunneling resistance and RK = h=e2 is the quantum of resistance. In the

stationary state, pi(t) = pi, the current from the left to the right lead is attained from

the same probabilities and rates as

I = IR = �e [p0�
R
0!1 � p1�

R
1!0] = �2�e [p0�

+
R
(�0)� p1�

�

R(�0)] (5)

(the current between the electrodes is conserved; hence I = IR = �IL). Note that the

stationary state does not correspond to an equilibrium if �L 6= �R.

The simple approach outlined in this section is known as the orthodox theory of Coulomb

blockade [10] and it explains, e.g., the Coulomb oscillations in Fig. 4b. It predicts the

thermal broadening of the peaks and the constant peak height G� = �L0�
R
0 =(�

L
0 + �R0 )

for the linear conductance at low temperatures.

Microscopic Model

For a more detailed description of the tunneling, let us de�ne the Hamiltonian H =

H0 +HT, where H0 = HL +HR +HI individually describes the left and right reservoirs

and the island, while HT accounts for the tunneling coupling. More speci�cally,

Hr =
X
km

"
rkm

cy
rkm

c
rkm

for r = L;R; (6)

HI =
X
qm

"
qm
cy
qm
c
qm

+ EC(n̂� nx)
2; (7)

HT =
X
rkqm

(T rm

kq
cy
rkm

c
qm
e�i�̂ +H:c:); (8)
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where k and q denote the wave vectors in the leads and on the island, respectively, m is

the transverse channel number (including the spin) which is conserved in the tunneling,

and n̂ =
P

qm
cy
qm
c
qm
. The operator e�i�̂ changes the charge on the island by �e. Here

it is assumed that the charge and the fermionic degrees of freedom can be considered

separately because of the large number of electrons on the metal island. The tunneling

matrix elements T rm (T rm = T rm

kq
is assumed to be independent of the wave vectors) are

related to the tunneling resistance through

1

RTr

=
2�e2

~

X
m

Nm

r
(0)Nm

I (0)jT
rm
j
2; (9)

where Nn

r(I)(0) denote the densities of states in the leads (island).

Double-Island Structures

The single-electron transistor model is readily generalized to a system of two islands,

see Fig. 6a. This system has been extensively studied in Refs. [31{39] and it is also the

subject of Paper I. In this section, we discuss the additional features arising from the fact

that the charge states are now given by two numbers (n1; n2) and can be manipulated

with the two gate voltages VGi.

The charging energy may be de�ned such that the chemical potentials in the islands are

zero, �1 = �2 = 0. It then takes the form

Ech(n1; n2) = ECL(n1 � nx1)
2 + ECR(n2 � nx2)

2 (10)

+ ECM(n1 � nx1)(n2 � nx2);

where the prefactors depend on the various capacitances shown in Fig. 6a and de�ne

the energy scales for charge excitations. The gate charges enx1 = VG1CG1 + VLCL and

enx2 = VG2CG2 + VRCR control the charge on the islands, see Fig. 6b. Due to the

periodicity of the energy, it is suÆcient to only consider gate voltages 0 � nxi � 0:5. In

this interval, the tunneling of electrons is characterized by the states (0,0), (1,0), and

(0,1), and the di�erences in the respective charging energies: �L � Ech(1; 0)�Ech(0; 0),

�R � Ech(0; 1) � Ech(0; 0), and �M � Ech(0; 1) � Ech(1; 0), see the encircled region in

Fig. 6b. Below we denote �b for charge transfer across the barrier b = L;M;R.

Similar to the SET, the electric current through the double-island system is composed of

a sequence of single-electron tunneling processes. Due to the strong intra and interdot

Coulomb interactions, an electron cannot tunnel in from the left lead before the previous

electron leaves the right island into the right lead. Because of this correlation e�ect, the

current can only 
ow close to the nodes in Fig. 6b, rendering the rest of the plane the

Coulomb-blockade regime. This e�ect provides the basis for a new kind of an application,

the single-electron pump, that enables the transfer of electrons through the system one

by one [11] (for an alternative way of achieving this, see Ref. [40]). This is accomplished

by tuning the gate voltages in a cyclic fashion around a node, e.g., along the dashed oval

in Fig. 6b. If the cycle is repeated with the frequency f , the current I = ef is produced.
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Figure 6: a) Schematic of a double-island structure considered in

Paper I. b) The honeycomb in the (VG1; VG2)-plane shows the regions

where di�erent charge con�gurations (n1; n2) minimize the charging

energy. The arrow a (c) denotes the direction in which only n1 (n2)

is changed. The total charge n1+n2 remains constant in direction d.

The special case, VG1 = VG2, studied in Subsec. 2.2, corresponds to

the direction of the arrow b.

Indeed, pumps based on long series of tunnel junctions are so accurate that they have

been adopted in the de�nition of the new current standard [29, 41].

The tunneling rates and the microscopic Hamiltonian for more than a single island are

straightforward generalizations of Eqs. (4){(8) and, for the present system, are presented

in detail in Paper I.

2.2 Strong Tunneling in Double-Island Structures

The simple picture of the metallic single-electron devices outlined in the previous sub-

section is suÆcient in explaining the general features of the Coulomb-blockade e�ects

in double-island structures. However, the orthodox theory, based on the lowest-order

perturbation theory in the tunnel couplings, has turned out inadequate in explaining a

number of recent experiments [31,32]. In several experimentally relevant regimes, higher-

order tunneling processes contribute to the electron transport and give rise to quantum


uctuations of the charge on the island [34{39]. This leads to a nonvanishing current in

the Coulomb-blockade regime and to strong modi�cations of the conductance peaks.

The quantum 
uctuations in metal SED's have been considered, e.g., in Refs. [22{25,

36{39,42{46] using an extensive range of theoretical approaches. The particular system

consisting of two metallic islands (also large semiconductor quantum dots exhibit metallic

properties) has been studied in Refs. [36{39]. In these works, the limiting cases �M0 �

�
L;R
0 and �M0 � �

L;R
0 were considered. In Ref. [47], it was shown that the number of

transverse channels in the junctions, N [indexed with m in Eq. (8)], becomes important

already in second-order perturbation theory. Most of the previous work was focused on

tunnel junctions with one or a few transverse channels, which is a realistic assumption

for certain semiconductor quantum dots. In metal junctions, N is typically on the order
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of 103 or more and quantum 
uctuations lead to distinctly di�erent behaviour.

In Paper I, we extend the previous approaches by allowing arbitrary relative magnitudes

for the tunneling couplings and considering many-channel junctions, with N ! 1,

characteristic to metal SED's. We also present calculations applicable down to zero

temperature and, on the other hand, up to tunneling conductances well in excess of the

conductance quantum e2=h, which is sometimes considered as the limit of validity for

the tunneling Hamiltonian. This task is accomplished within the real-time diagrammatic

approach introduced in Sec. 4 below. In this subsection, we summarize the main results

obtained.

In what follows, let us consider left-right symmetry of the capacitances and tunneling

conductances, and the special case of equal gate voltages/charges, nx1 = nx2 = nx,

corresponding to the direction b in Fig. 6b. In this case, Ech(1; 0) = Ech(0; 1) and

�M = 0. Figure 7a displays the charging energy for the lowest charge states in the

region 0 � nx � 1. The charging energy, Eq. (10), is characterized by two energy scales;

the �rst scale

EC =
@2Ech(n1; n2)

@n2
xi

=
e2

2

1

2(C + Cg)
(11)

describes the overall charging of the double-island system and determines the curvature

of the parabolas in Fig. 7a; the second energy scale

ECM =
@2Ech(n1; n2)

@nx1@nx2
=

e2

2

2CM

(C + Cg)(C + 2CM + Cg)
(12)

re
ects the interisland Coulomb interaction and determines the energy cost for n1 6= n2.

In the weak-coupling limit, the conductance exhibits peaks at the degeneracy points

marked by the vertical dashed lines in the �gure. At low temperatures, the orthodox

theory yields a series of peaks with constant height

G� =
2�

3

e2

~

�L0�
M
0 �

R
0

�L0�
M
0 + �L0�

R
0 + �M0 �

R
0

: (13)

The peak at n�
x
is shown in Fig. 7b for two temperatures (the solid curves). The con-

ductance is rapidly suppressed when nx is tuned o�-resonant and �b exceeds kBT . This

leads to a thermal broadening of the peak.

E�ects of Quantum Fluctuations

The probability for higher-order tunneling processes involvingm electrons is proportional

to (�b

0)
m. Therefore, an increasing coupling strength enhances their relative contribution

to the current and conductance. The dimensionless conductances re
ect the transparency

of the barriers and, for �b

0 ! 1, the islands essentially merge with the leads rendering

the charge states (n1; n2) meaningless. However, for �b

0 � 1, also the higher-order

processes are well described in the basis (n1; n2). These processes lead to two kinds of

e�ects: Firstly, anm-electron tunneling process enables charge transfer throughm tunnel
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Figure 7: a) Charging energies Ech(n1; n2) for the lowest-lying states

when nx1 = nx2 = nx. The linear conductance G displays peaks at

the crossing points marked with dashed lines. b) Linear conductance

as a function of the gate charge nx for three values of the tunnel

coupling �b

0 = 0:001; 0:05; 0:10 (same for all b) as indicated in the

�gure. The two curves for each �b

0 are for ln(T=EC) = �4 (higher)

and �5 (lower).

barriers, despite the Coulomb blockade conditions. The tunneling occurs as a single

coherent process involving virtual intermediate states. Figure 5b shows an example

of a second-order, or cotunneling, process through the two barriers of a SET. These

kind of processes lead to a nonvanishing conductance in the Coulomb-blockade regime.

Secondly, quantum 
uctuations modify the charge states themselves. These changes

can be described in terms of the charging energy. Let us illustrate this idea with two

examples.

(i) For �L;R0 � �M0 , the electronic states of the two islands are more strongly coupled

to their adjacent leads than to each other. Phenomenologically, the charge states may

be visualized to extend across the left and right barriers and to mix with the states

in the leads. This enables the system to lower its ground-state energy, i.e., the overall

charging energy EC, leading to an increase in the curvature of the energy parabolas. As

a consequence, the resonant points and hence the conductance peaks are shifted towards

each other. The upper curve in Fig. 8a illustrates the shifting of the peak position n�
x
as

a function of �L;R0 . The reduction of EC has also another e�ect: it reduces the energy

di�erences �n and, for constant temperature, broadens the peaks. The broadening is

clearly seen in the peaks marked with dotted and dashed lines in Fig. 7b; here the

peak position remains unchanged due to equal �b

0 and the speci�cally chosen relative

magnitudes of the capacitances.

(ii) In the opposite limit, �M0 � �L;R0 , the system consists of a strongly coupled subsys-

tem, the two islands, which is only weakly coupled to the leads. Due to the interisland

Coulomb interaction, the energy of the charge states (1; 0) and (0; 1) is o�set upwards

with respect to the states with n1 = n2, see Fig. 7a. For a large �M0 , the electronic
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Figure 8: a) When the tunneling couplings vary, the positions of

the conductance peaks move. The point n�
x
from a) is plotted for two

cases: the upper curve is for �L;R0 � �M0 � 0, while the lower curve is

for the opposite limit, �M0 � �L;R0 � 0. b) Temperature dependence

of the conductance maximum for equal �b

0 with its value ranging from

0.01 to 0.10 (from top to bottom).

states on the two islands extend through the middle junction, redistributing the charge

between the islands. This enables the system to lower the charging energy for the states

with n1 6= n2, i.e., to lower the curves Ech(1; 0) and Ech(0; 1) in Fig. 7a with respect to

Ech(0; 0) and Ech(1; 1). This has no e�ect on the curvature of the parabolas determined

by EC. As the net e�ect of increasing �M0 , the resonant points and the conductance

peaks are shifted away from each other. The peak position n�
x
as a function of �M0 is

shown in the lower curve of Fig. 8a.

The changes in the charging energies may be parametrized as changes in the junction

capacitances Cb. These are called renormalized: Cb !
~Cb. Similarly, also other quan-

tities characterizing the junctions may be renormalized via quantum 
uctuations. In

particular, the dimensionless conductances �b

0 ! ~�b acquire a temperature and an �b
0

0 -

dependence (b0 = L;M;R), thus leading to a reduction in the otherwise temperature-

independent conduction peak heights G�. Figures 7b and 8b show the resulting reduc-

tion in the maximum conductance for di�erent tunneling strengths. This phenomenon is

intuitively less evident than the energy renormalizations discussed above. The resulting

(logarithmic) temperature dependences of ~�b and the peak conductance resemble the re-

sults obtained for a single metal island [45,47,48]. At low temperatures, the latter model

can be mapped onto the so-called multi-channel Kondo model [49] which describes a lo-

calized spin S = 1
2
coupled to a bath of conduction electrons. A thorough analysis of this

model predicts a logarithmic temperature dependence of the coupling constants [49, 50]

similar to the results of Paper I for double-island structures.

Understanding the higher-order e�ects plays a key role in all SED applications since

quantum 
uctuations pose more severe limitations on the device operation than, e.g.,
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dot
dot

Figure 9: a) Lateral quantum dot de�ned in a two-dimensional elec-

tron gas by applying a negative voltage to the metal gates 1-4 placed

on top of the heterostructure. b) Schematic of a vertical dot fab-

ricated by etching away the surrounding heterostructure. In each

�gure, the quantum dot and the two tunnel junctions are indicated.

thermal 
uctuations. In particular, quantum 
uctuations determine the fundamental ac-

curacy limits for all single-electron applications. A detailed account of these phenomena

in the double-island structures is given in Paper I.

2.3 Semiconductor Quantum Dots

When electrons are con�ned into a small enough volume, their Fermi wavelength becomes

comparable with the system size and the level spacing Æ between the single-particle quan-

tum states becomes observable; such structures are called quantum dots. Quantum dots

have attracted interest mainly for the speci�c properties arising from their discrete energy

spectrum [12,51{53], although they can also be used for the single-electron applications

discussed above.

Quantum dots can be realized in many di�erent ways, ranging from single atoms un-

der a scanning tunneling microscope (STM) [7] and tiny metal grains [3{6] to sophis-

ticated structures with larger dimensions. The most widely used schemes are based

on semiconductor heterostructures, which provide two alternative ways for fabricating

dots with dimensions of hundreds of nanometers. In the more common one, a two-

dimensional electron gas (2DEG) is structured by a negative voltage applied to metallic

�nger gates [12, 54{59], see Fig. 9a. The voltage di�erences between the gates 1 and

2, and 1 and 4 de�ne two tunnel junctions, while the gate 3 serves as a gate electrode

which controls the electric potential on the dot. The second scheme uses vertical pilar-like

quantum dots formed from a larger heterostructure by etching techniques; the principle

is illustrated in Fig. 9b. The electrically conducting layers (gray) serve as the dots and

the leads, while the insulating layers (hatched) act as the tunnel barriers [60{62].
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Figure 10: a) Quantum dot with energetically allowed and forbid-

den single-electron tunneling processes indicated with the solid and

dashed arrows, respectively. b) Example of a higher-order tunneling

process that contributes to the electron transport in the Coulomb-

blockade regime.

Discrete Spectrum

The discrete single-particle spectra of quantum dots resemble those of real atoms, and

quantum dots are often referred to as arti�cial atoms. However, in the case of quantum

dots, one can control a variety of properties that are inaccessible in real atoms; these

include the symmetry of the dot, the single-particle level spacing, and the coupling to

the environment. Furthermore, similar to metal islands, one can tune the electrostatic

potential on the dot and thereby control the number of electrons. Small changes in

the gate voltage { such that n remains constant { can be used to shift the whole level

spectrum relative to �r. Reviews on the various experimental possibilities can be found,

e.g., in Refs. [12, 52].

Similar to metal SED's, the dominant energy scale in quantum dots is usually provided

by the charging energy. For typical dots, it is on the order of 1 K and, for kBT; eV � EC,

only two adjacent charge states, n and n + 1, are involved in the electron transport. In

ultrasmall quantum dots, also the level spacing Æ may be so large that there is e�ectively

just one or at most two levels close to the Fermi energies in the leads { all the lower

(higher) levels are fully occupied (empty).

Electron transport through a quantum dot re
ects the discreteness of the dot density of

states in a characteristic way: the current can only 
ow if at least one dot state ji�i lies

within the window de�ned by the bias voltage, �L > "i� +�n > �R; here i and � denote

the level and spin of the electronic states, respectively, and �n accounts for the change in

the charging energy. Figure 10a illustrates the possible tunneling processes for eV � Æ.

The di�erential conductance through the dot, G = @I=@V , displays a peak whenever

the chemical potentials cross one of the levels "i�. This provides a spectroscopic tool for

investigating the electronic states in quantum dots [57, 59].
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Microscopic Model

The microscopic model for a single energy level coupled to the reservoirs is equivalent to

the Anderson impurity model [63]. Generalized for two levels, the Hamiltonian may be

expressed as H = H0 +HT with H0 = HL +HR +HD and

Hr =
X
kn

"
rki�

cy
rki�

c
rki�

for r = L;R (14)

HD =
X
i�

"
i�
c
y

i�
c
i�
+Hint (15)

HT =
X
rki�

(T rk

i�
c
y

rki�
c
i�
+H:c:): (16)

For the special case of at most two electrons occupying the two levels, n =
P

i�
ni� � 2,

the interaction term may be written as

Hint = U
X

i� 6=j�0

n
i�
n
j�0 : (17)

In ultrasmall dots with just a few electrons in the dots, the energy scale U depends

on n and, in general, cannot be described in terms of the charging energy Ech(n). For

n � 2, however, Hint is equivalent to Ech(n) with U = 2EC and the shifted level positions

"i�+2EC�eVGCG=C ! "0
i�
. In Papers II-V, we focus on the special case n = 0; 1, where

the interaction e�ects can be included in the level energies "0
i�
+ �0 ! ~"i� (below we

omit the tilde and "i� is to be understood to contain the interaction e�ects).

In the tunneling Hamiltonian HT, the level index i is explicitly conserved in tunneling.

This presumably holds for cylinder-shaped vertical structures, where angular momentum

is a good quantum number [61], but not necessarily for lateral structures. In the case

of a single level in the dot, the index i drops out and H applies to both realizations.

Note also that there is no interlevel coupling in HD. This means that, in accordance

with most experimental setups, the tunneling rates are much higher than the rates for

intradot relaxation or activation processes.

The tunneling rates through the tunnel junction r into and out of the dot level "i� can

be obtained by applying the Fermi golden rule: �r

0!i�
= �ri(!)f

+
r
(!) and �r

i�!0 =

�ri(!)f
�

r
(!) with

�ri(!) =
2�

~

X
k

jT rk

i�
j
2Æ(! � "rki�) (18)

and f�
r
= [exp(��(!��r))�1]�1 being the Fermi distribution for reservoir r. A master-

equation description based on these rates constitutes the orthodox theory of electron

transport through quantum dots [64], c.f., the discussion on SET's above.

Double Quantum Dots

Double quantum dots exhibit a number of interesting properties which are found neither

in systems of metal islands nor in single quantum dots. In the weak-tunneling regime,
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a) b)

Figure 11: a) An electron can enter the double quantum dot from

the left via a sequential tunneling processes indicated with the solid

arrow. However, the electron is stuck in the left dot if the states in the

two dots are not on resonance. b) For strong interdot coupling, the

states in the two dots (dotted) form hybridized molecular-like states

(solid) that extend through the central barrier. These extended states

enable electron transport through the system.

for example, the electron transport through the system is only possible when the levels

"di� from both dots (d = 1; 2 denotes the dot) are on resonance, i.e., "1i� � "2j�0 , and

lie between the chemical potentials of the leads, see Fig. 11a. This provides improved

resolution in the spectroscopic measurements of the dot states [62,65]. As another exam-

ple, two dots with a strong interdot coupling form an arti�cial molecule with electronic

states delocalized between the dots, see Fig. 11b. The coherence of such extended states

has been con�rmed in recent experiments [66].

The basic properties of double quantum dots may be understood along the lines of

Subsec. 2.1 on the charging e�ects and the above discussion on the discrete spectrum.

In Papers II-IV, we consider double quantum dots with such a large level spacing that

only a single level in each dot participates in the electron transport. Furthermore, we

assume strong intra and interdot Coulomb interactions and neglect doubly occupied

states: there can be at most one electron in the whole double-dot system. In this case,

we may again include the charging e�ects into the energies "d� (level index i may be

omitted for single-level dots).

In Paper II, we consider a double quantum dot coupled in a series geometry between

two electrodes, see Fig. 12a. The model with the delocalized eigenstates, see Fig. 11b,

is equivalent to a single two-level dot in which the states i = 1; 2 are the symmetric

(bonding) and antisymmetric (antibonding) superpositions of the single-dot states. The

transformation to the single-dot model modi�es the tunneling Hamiltonian such that the

new level index i is not conserved in the tunneling. In Papers III and IV, we consider

another double-dot model with only capacitive coupling between the dots, see Fig. 12b.

We observe that also this Hamiltonian has a single-dot counterpart with two orbital

states in the dot. In this case, the orbital index i corresponds to the spatially separated

dots and is conserved in the tunneling. In this Thesis, the emphasis is on models where

i is conserved.
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Figure 12: a) Tunneling and b) capacitively-coupled double quan-

tum dots considered in Papers II and III-IV, respectively. Tunneling

is possible in junctions denoted by arrows.

2.4 Kondo E�ect in Single and Double Quantum Dots

The limitations of the orthodox theory turn out to be even more severe in the case of small

quantum dots than for the metal islands [31{33,62,67{69]. At low temperatures and/or

for strong coupling to the leads, higher-order tunneling processes give rise to quantum


uctuations of the electrons on the dot. The higher-order processes lead to �nite lifetime

e�ects and, in some cases, even new many-body states known as the Kondo resonances

may emerge [26, 27, 34{38,70{77].

The experimental veri�cation of the Kondo e�ect in a semiconductor quantum dot has

turned out very challenging due to its sensitivity to decoherence. It was �rst achieved

in 1997 [78] followed by observations of Kondo-like physics in various systems. These

accomplishments have triggered an extensive theoretical research, see, e.g., Refs. [79{87].

The low-temperature properties of ultrasmall quantum dot(s) constitute a major part

of this dissertation. The results obtained for the linear and nonlinear response regimes

yield a comprehensive picture of the Kondo e�ect in these systems. This subsection

outlines the results of Papers II-V, while the theoretical approaches are summarized in

Sec. 4.

Single Quantum Dots

Electron transport through a single quantum dot with one spin-degenerate quantum

state has been elaborated in Refs. [70{73] for the linear and in Refs. [26,27,73,74,88] for

the nonlinear response regimes. This also consitutes the main subject of Paper V.

The e�ect of the quantum 
uctuations in quantum dots is best demonstrated in terms

of the spectral density Ai�(!), which is the density of states corresponding to the dot

state ji�i. The current through a quantum dot, for example, is given by [89]

I = e
X
i�

�Li��Ri�

�Li� + �Ri�

Z
1

�1

d![fR(!)� fL(!)]Ai�(!); (19)

making Ai�(!) a central quantity throughout this discussion. The couplings �ri�(!) =

�ri� are assumed independent of energy in the present range of interest. The di�erential
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Figure 13: a) Schematic of the Lorentzian-shaped spectral function

Ai�(!) for a single nondegenerate level " in a small quantum dot. b)

Ai�(!) for a spin-degenerate level at "i�. The spin degeneracy leads

to a renormalization, "i� ! ~"i�, and further broadening of the level.

At low temperatures, a sharp Kondo resonance emerges at �r.

conductance G = @I=@V better re
ects the shape of Ai�(!) (but not directly: also

Ai�(!) is voltage dependent) and in the following we focus on the conductance instead

of the current.

Let us �rst consider a single quantum dot with one non-degenerate level (even spin

degeneracy is lifted) weakly coupled to two reservoirs. In the weak-tunneling regime, the

spectral function Ai�(!) acquires a delta-function form located at "i�, and the electron

transport through the dot is only possible if the level lies between the chemical potentials

of the leads. More precisely, the level needs to lie within the thermally broadened tails of

the Fermi distributions in the leads, and the consequent current and conductance display

thermally broadened peaks.

Increasing tunneling coupling enhances the higher-order tunneling processes, such as the

one shown in Fig. 10b. The resulting quantum 
uctuations of the charge through the

barriers give rise to a �nite lifetime � � 1=� and a broadening � � of the dot states.

This is manifested by the Lorentzian shape of A(!), see Fig. 13a. In experiments, the

larger one of kBT and � determines the width of the observed conductance peaks. The

Lorentzian shape decays only algebraically away from "i� and gives rise to a non-vanishing

current in the Coulomb-blockade regime.

If the level is spin degenerate, the system is equivalent to the Anderson impurity model,

which is known to display richer low-temperature behaviour than just the level broad-

ening, see e.g. Refs. [63, 90, 91]. This is the topic of Paper V. In the temperature

regime, � . kBT � U , the spin degeneracy does not lead to any qualitative di�erences

in the transport properties { the conductance displays a series of peaks broadened by

maxfkBT;�g. Only at temperatures signi�cantly lower than � does the di�erence be-

come evident. Due to the strong onsite Coulomb repulsion, only one electron at a time

{ with the spin pointing either up or down { is allowed into the dot. The second and



{ 19 {

1σ

R

µ
µ

µL
L ∆ε

a) b)

∆ε ε

Rµ

2σε

ω ω

Figure 14: a) A �nite bias voltage eV = �L � �R splits the Kondo

resonance in the spectral function Ai�(!). b) For two spin-degenerate

levels at "i�, i = 1; 2, A1�(!) displays an additional resonance at

! = "1 � "2.

higher-order tunneling processes, such as the one shown in Fig. 10b, may change the

electron in the dot and thereby e�ectively 
ip the spin on the dot. When the dot level

lies deep below the chemical potentials, the average charge on the dot approaches unity

and this model can be mapped onto the (single-channel) Kondo model describing mag-

netic impurities in metals [90]. In this model, the higher-order processes are interpreted

as spin 
uctuations.

The spin 
uctuations are re
ected in the spectral densities in three ways. (i) Firstly, the

level is further broadened and (ii) it is renormalized towards higher energies, i.e., ~"i > "i.

(iii) For kBT � �, the electrons at the Fermi energy in the reservoirs couple with the

localized spin to form a new many-body state that screens the localized spin. This new

state appears as a sharp resonance in Ai�(!) at the position of the chemical potentials

in the leads, see Fig. 13b. This peaked structure is known as the Kondo resonance

and it enhances the conductance through the dot. If �L 6= �R, there is one resonance

located at each �r, see Fig. 14a. For an increasing bias voltage eV , these resonances are

diminished and consequently the di�erential conductance is reduced. The conductance

displays a sharp zero-bias maximum with a characteristic temperature dependence: the

peak conductance increases logarithmically with decreasing temperature. Figure 15a

shows an example of the resulting conductance with the zero-bias anomaly between two

broader peaks; these re
ect the actual charge state and correspond to the Coulomb

oscillations in Fig. 4b. The temperature dependence is displayed in the inset. Note that

the metal structures considered above were related with the multi-channel Kondo model

and G was found to decrease with decreasing temperature.

Two Levels in a Single Quantum Dot

In some experiments, the estimated level broadenings exceed the level spacing. This

indicates that also other dot states ought to play a role in the electron transport. Paper

II together with Refs. [84] �rst considered the e�ect of an additional level on the Kondo

physics; these ideas were later extended in Refs. [92, 93] to cover several electrons and
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Figure 15: a) Di�erential conductance G through a quantum dot

with one spin-degenerate level at "i� = �3�; kBT = �=100. For

a left-right symmetric system, the conductance is symmetric with

respect to eV = 0. The logarithmic temperature dependence of the

zero-bias maximum, shown in the inset, is characteristic to the Kondo

e�ect. b) G through a dot with two spin-degenerate levels. The solid

and dashed curves correspond to di�erent level separations: �" =

"2� � "1� = 0 and 0:2�, respectively.

levels in the dot and in Papers III and V to a more detailed picture of the two-level

model. In these models, the degeneracy of two or more states is crucial for the Kondo

e�ect. Analogies between di�erent models [85, 87, 92{94] as well as recent experimental

results [95{98] show that the degeneracy need not be related with the electronic spin.

In Papers II, III, and V, two spin-degenerate orbital states at "1� and "2� are considered.

If these states are degenerate, the level index i can act as a pseudospin and the dot may

exhibit Kondo physics even in the absence of the real spin degree of freedom [85, 95]. A

prerequisite for this phenomenon is the conservation of i in the tunneling. In this work,

the level index is always assumed to be conserved, whereas it is shown in Refs. [47, 99]

that the opposite case leads to markedly di�erent physics.

The spectral densities Ai�(!) exhibit one Kondo-like resonance for each one of the other

states { if some of the states are degenerate, the corresponding resonances are enhanced

in magnitude. This result holds for nondegenerate orbital states as well as for Zeeman-

split spin states. Figure 14b shows an example of A1�(!) for one dot state when there is

another level at "2� > "1�. The spectral density of the lower level displays an additional

resonance located at "2� � "1� � ��". This resonance is re
ected in the di�erential

conductance as two satellite peaks occurring symmetrically around the zero-bias anomaly

at �nite bias voltages. These are shown in Fig. 15b (dashed line). If the level spacing is

zero, there is e�ectively one fourfold degenerate state in the dot and a pronounced zero-

bias maximum appears in the di�erential conductance. Also this is shown in Fig. 15b

(solid line).
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Double Dots

The degeneracy of states may lead to the Kondo e�ect also in double quantum dots.

This is considered in Papers II-IV. Tunneling-coupled double dots, see Fig. 12a, have

been theoretically studied in Refs. [100{106], where only an on-site interaction has been

considered. In contrast to this and motivated by experimental facts, we assume a strong

interdot Coulomb interaction throughout this work. It was noted above that this facili-

tates the mapping of certain double-dot models onto that of a single two-level dot with

either a conserved or nonconserved orbital index i { in this dissertation i is assumed

conserved. The calculations are carried out only for certain charge con�gurations but

the validity range of the results may be extended due to particle-hole symmetry.

In Papers III and IV, the model of two capacitively coupled quantum dots is studied,

see Fig. 12b; this model was realized in experiments only quite recently [95]. The level

spacing in the dots is assumed large and just one level per dot is considered. Furthermore,

only the charge states n = n1 + n2 = 0; 1 are taken into account. The resulting model

is equivalent with a two-level dot with a conserved level index i and the above results

obtained for this system apply.

The capacitively coupled double-dot system contains more controllable parameters than

its single-dot counterpart, and it opens new possibilities for manipulating the Kondo

physics in the system. For example, the transport through one of the dots can be

measured, while the parameters of the other dot are altered. Figure 16 shows an example

of the resulting rich structure in the linear conductance G1 through dot 1 when the bias

and gate voltages coupled to dot 2 are varied (the picture on the front cover is a bird's eye

view of this �gure). The plateau with an almost constant conductance corresponds to the

top of the zero-bias maximum in the conductance through a single quantum dot in the

Kondo regime. For "2� < "1�, the electric transport through dot 1 becomes blocked by

an electron in dot 2 { the blockade is lifted once eV2 > 2�". The sharp peak in the center

of the �gure arises when the levels in the two dots are at resonance and reinforce the

mutual Kondo e�ect. The ridge-like structures behind the peak are due to coincidence of

two resonances in A1�(!), see Paper III. It is also to be noted that the whole parameter

range shown in this �gure actually corresponds to the Coulomb-blockade regime.
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3 Molecular Magnets { Mn12

The novel magnetic material Mn12-acetate (Mn12) { with the related materials Fe8 and

V15 { has recently been the subject of an extensive experimental [18{20, 107{110] and

theoretical research [21,111{121]. The interest in this molecular magnet stems from the

experimental indications of macroscopic quantum tunneling (MQT) of magnetization,

i.e., quantum mechanical tunneling at a macroscopic level.

One characteristic quantity describing the magnetization dynamics is the relaxation time

� , which characterizes the process of magnetization reversal in an external magnetic �eld.

In the experiments, the relaxation time has been found to display a periodically peaked

structure, see Fig. 17b, that is attributed to MQT. Understanding this and other related

results is the subject of Paper VI.

In the �rst subsection below, we introduce a microscopic description of magnetization in

Mn12 based on molecular spins. In the second subsection, we outline the results obtained

for the magnetization dynamics in the regime of thermally activated tunneling.

3.1 Model for the Magnetization

Unlike the SED models whose properties largely derive from the electronic structure of

bulk materials, the magnetic properties of Mn12 can only be understood by starting from

the intramolecular level. Typical experimental samples of Mn12 consist of single crystals

of identical Mn12 molecules. Each molecule has eight Mn3+ and four Mn4+ ions, which

at low temperatures acquire the ferrimagnetic ground state illustrated in Fig. 17a. In

the ground state, the molecule behaves as a single spin S = 10 with 21 eigenstates of

Sz. The magnetic cores of the Mn12 molecules are separated by such a thick layer of

nonmagnetic matter that, in the �rst approximation, we may assume the molecular spins

independent of each other.

Due to a strong anisotropy along one of the crystalline axes (z-direction), there is a

high potential barrier between the opposite orientations of the spin (Sz = �10). The

Hamiltonian for a single Mn12 molecule may be written as HS = Hz +HT with the �rst

(second) term describing the part that commutes (does not commute) with Sz, the spin

component along the easy axis (here the z-direction). The molecular symmetry requires

that

Hz = �AS2
z
� BS4

z
� g�BHzSz +O(S6

z
): (20)

This expression consists of the potential barrier and a Zeeman term which enables ex-

ternal biasing of the energies { note that, for the nearly perfect crystals used in the

experiments, the easy axis is the same for all the molecules [122, 123]. Experimental

estimates for the anisotropy constants A and B, as well as for all the other parameters

to follow, can be found in Paper VI. Figure 18 shows a schematic of the energy levels

Em (for the eigenstates of Szjmi = mjmi) together with the potential barrier (�60 K);
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Figure 17: a) Magnetic core of a Mn12-molecule. The large (small)

circles denote manganese (oxygen) ions. The arrows correspond to

the magnetic moment of the manganese ions in the S = 10 ground

state. The �gure is cited from Ref. [111]. b) Relaxation time of Mn12,

see text, as a function of the longitudinal magnetic �eld Hz; reprinted

by permission from Nature (Ref. [20]) copyright (1996) Macmillan

Magazines Ltd. The inset displays the measured temperature depen-

dence of the relaxation times in di�erent magnetic �elds.

the potential has been drawn as a double well to emphasize the analogy of the model to

that of a single electron in a double quantum dot.

The leading-order contributions to the second term in the Hamiltonian (allowed by sym-

metry) are of the form

HT = �

1

2
B4

�
S4
+ + S4

�

�
� g�B(HxSx +HySy): (21)

These do not commute with Sz and give rise to tunneling. The B4 term arises from

crystalline anisotropy, while the second term is the Zeeman term corresponding to a

transverse magnetic �eldH? = H sin � (in spherical coordinates, � is the polar angle away

from the z-axis; the azimuth angle is denoted �: Hx = H? cos� and Hy = H? sin�).

Similar to the molecular states in double quantum dots (see the previous section) one can

solve for the eigenstates jdi of the full spin Hamiltonian HS. If a pair of states, jmi and

jm0
i, from di�erent sides of the barrier are on resonance, the corresponding eigenstates

extend through the barrier; the o�-resonant states, on the other hand, are localized into

one of the wells. Due to the Zeeman term in Eq. (20), an external magnetic �eld Hz can

be used to tune pairs of states on and o� resonance and thereby to control the tunneling

coupling. In the absence of the smaller quartic term in Eq. (20) (B � A), the resonant

�elds are given by Hn

z
= nA=g�B � n �0:42T (n is an integer) which is in good agreement

with the peak positions in Fig. 17b. This suggests that the resonances can be due to the

tunneling of identical molecular spins, which is quite remarkable due to the macroscopic

number of molecules in the experimental samples. However, the tunneling rates obtained

from HS are much faster than the observed relaxation rates, and the latter also display a
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Figure 18: Energy diagram of the 21 eigenstates jmi of Sz. The

arrows illustrate the thermally activated tunneling; the magnetization

relaxation proceeds as a combination of (1) thermal activation, (2)

tunneling, and (3) relaxation.

strong temperature dependence absent in the single-spin model. In the next subsection,

these discrepancies are attributed to the spin-phonon interaction.

In the absence of the transverse �eld, H?, there is a selection rule to HT: only states jmi

and jm0
i that are a multiple of four apart are coupled. This would have the immediate

consequence that only every second peak in Fig. 17b would be observable. The large

peaks in the experimental data do not lend support to such a rule and it turns out that

already a tiny transverse �eld in Eq. (21) is suÆcient to reproduce all the peaks [21,

116,119]. Such a �eld may arise due to the intermolecular and/or hyper�ne interactions

within the sample, see below, as well as due to the uncertainty in the precise angle

between the external �eld and the easy axis of the sample. In Paper VI, we assume a

constant misalignment angle � = 1Æ of the external magnetic �eld.

3.2 Magnetization Dynamics

In practise, the Mn12 is a far more complicated system than that suggested by the

Hamiltonian HS: the spins interact with each other via the dipolar interaction, with

the nuclear spins via the hyper�ne interaction, and with the phonons of the surround-

ing lattice. Experimental evidence shows unequivocally that, in the temperature regime

2{6 K considered here, the spin-phonon interaction plays a key role in understanding

the magnetization dynamics [18{20, 108]; the other forms of interaction only a�ect cer-

tain details of the resonances [123]. In this temperature regime, spin relaxation occurs

predominantly via thermally activated tunneling: the tunneling takes place between

thermally populated and more strongly coupled higher levels.

The theoretical description of the spin dynamics in Mn12 range from \minimal" models,

assuming as simple a spin Hamiltonian HS and a model of the surroundings as possible

[21, 111, 113, 114, 116, 119, 120] to more speci�c models for investigating the role of the
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dipolar and/or hyper�ne interactions [117, 121, 124], and combinations of these [21, 113,

114, 125]. In many papers and also in Paper VI, the time evolution of the molecular

spins is described in terms of a master-equation approach [21, 111, 113, 114, 116, 119,

120, 126]. These theories are suÆcient in explaining the general features observed in

the experiments. Paper VI extends the existing theories in the following respects: spin

dynamics is investigated in the presence of strong transverse magnetic �elds and the

susceptibility, which has previously only been treated within a phenomenological model

[108, 127], is calculated starting from the microscopic Hamiltonian. In this section, we

discuss the main results obtained.

Spin-Phonon Interaction and Thermally Activated Tunneling

The spin-phonon interaction is mediated by variations in the local magnetic �eld induced

by lattice vibrations and distortions. A detailed model for the interaction depends on

molecular symmetries as well as on the details of the phonon spectrum. Here we adopt

the interaction Hamiltonian Hsp of Ref. [119], Eq. (4) in Paper VI, consistent with the

tetragonal symmetry of the molecules. To the leading order in the spin-phonon coupling

constants, Hsp produces transitions between the di�erent states jmi such that �m = �1

or�2. The phonons themselves are described as a bath of noninteracting bosons; they are

assumed to be plane waves with a linear spectrum and with three modes, two transverse

and one longitudinal one.

The magnetization of the whole sample relaxes via inter-well relaxation of the individ-

ual molecular spins. The phonon-induced transitions activate and relax the spin along

the potential shown in Fig. 18b and lead to a competition between two mechanisms:

thermally-activated relaxation over and quantum tunneling through the barrier. The

former is strongly temperature dependent, whereas the latter depends on the longitudi-

nal magnetic �eld and is suppressed away from the resonances. Figure 19a displays an

example of the relaxation rates ��1(Hz) obtained (� is the relaxation time).

The rich structure revealed in Fig. 19a can be elucidated in terms of the eigenenergies

Ed of HS; these are shown in Fig. 19b. The vertical arrows in the �gure re
ect the

e�ective barrier height U for the relaxing spin. An increasing magnetic �eld reduces U

and thus accelerates the relaxation process. This results in the overall increasing trend

of ��1(Hz) in Fig. 19a (the dashed curve denotes the rate in the absence of HT). The

inset in Fig. 19b { a magni�cation of the upper left corner of the larger �gure { illustrates

a few avoided crossings of the eigenenergies. These correspond to the tunnel splittings

�m;m0 between resonant pairs of states; there are similar although smaller splittings at

each crossing. [The tunnel splittings are found by �rst identifying the corresponding

states in the two bases, jmi � jdi and jm0
i � jd0i, for o�-resonant conditions, and then

de�ning �m;m0 � minHz
jEd�Ed0 j.] The tunneling accelerates the relaxation process and

is re
ected in ��1(Hz) as a series of sharp peaks. The height of the peaks is determined

by the phonon-induced activation rate for reaching the resonant states, while the peak

widths are determined by the tunnel splittings.
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Figure 19: a) Relaxation rate of a single spin S = 10 as a function

of the longitudinal magnetic �eld. b) The eigenenergies Ed of the

21 states as functions of Hz. Because of the Zeeman term in Hz,

the states corresponding to m < 0 and m > 0 move up and down,

respectively, with increasing Hz thereby reducing the e�ective barrier

height. The inset shows a magni�cation of the higher energies at low

�elds { the magnitude of the splittings at the avoided level crossings

re
ects the tunneling rate.

The sharp peaks correspond to weak tunneling rendering them sensitive to all the possible

perturbations in the system. Quantum mechanical tunneling is a coherent process and it

may be suppressed by any source of decoherence { even the weak spin-phonon interaction

is suÆcient for suppressing the sharpest resonances. Another e�ect, which in the actual

samples gives rise to decoherence, is the hyper�ne interaction between the molecular spin

and the nuclear spins of the Mn atoms. The hyper�ne interaction is predicted to broaden

the resonance peaks and, simultaneously, to reduce their magnitude [113, 114, 117, 125].

As the net e�ect, only the broadest of the peaks are manifest in typical experimental

results, see e.g. Fig. 17b.

The coupling between the molecular spin and the phonon bath could in principle modify

the spin states similar to what was found for the quantum dots coupled to electron

reservoirs. However, in the present case coupling turns out to be too weak for any

signi�cant changes in the spin states, and the most interesting phenomena are found to

stem directly from the spin Hamiltonian HS.

Interference E�ects in the Magnetization Tunneling

In Paper VI, a set of experiments is proposed for observing the sharp peaks and, on the

other hand, for selective suppression of the visible peaks. These ideas are based on the

controllability of HT by means of an applied transverse magnetic �eld H?.

Figure 20a shows an example of the tunnel splittings as a function of H? for a �xed

Hz. The four curves correspond to di�erent angles � in the x-y plane. In contrast to
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the simple expectation of monotonically increasing splittings, these are found to exhibit

strong oscillations close to the special angles � = �(2n+ 1)=4 (all features are repeated

every �=2 and we only consider 0 � � � �=4); below we denote these directions as the

hard axes of the molecules [125, 128]. A similar phenomenon is known from the related

molecular magnet Fe8: the oscillations are interpreted in terms of a geometrical or Berry

phase and the alternating constructive and destructive interference of di�erent tunneling

paths [125,128{131]. Figure 20b illustrates the �-dependence of the relaxation rate. The

perpendicular �eld is chosen to be H? = H�

?
= 0:4311 T such that the tunnel splitting,

and thus also the peak in ��1(Hz), vanishes for � = 45Æ. The value of H�

?
is found to be

di�erent for each resonance and, since �m;m0 is less sensitive to H? away from H�

?
, the

resonances can be manipulated separately.

The main results of Paper VI are concerned with the dynamic susceptibility �(!) of the

Mn12-spins. On the level of a single spin coupled to the phonon bath

�(!; ~H) �
�0( ~H)

1� !�1( ~H)
; (22)

just re
ecting the structure found in the relaxation time. This is exempli�ed in Fig. 20c.

Here �0 = @M=@Hz denotes the stationary susceptibility, ~H is a stationary magnetic

�eld, and ! is the frequency of a weak ac �eld applied in the z-direction. In the more

elaborate case, involving the other spins and the nuclei, we propose susceptibility mea-

surements which would reduce the role of the dipolar interactions { in some cases these

induce additional time dependence to the magnetization relaxation. This would facilitate

probing the role of the hyper�ne interaction in the magnetization dynamics.



{ 29 {

0.44 0.46 0.48

10
−3

10
−2

10
−1

10
0

0.44 0.48

10
−2

10
−1

10
0

0.0 0.5 1.0
10

−5

10
−3

10
−1

(T)z

χ

χ

τ

H (T) (T)

χ

H

∆

∆ 4,-5

H*

*

ω2

−1(s  )−1

ω

(K)

zH

Hz

’’

1

’

b)

c)

a)

Figure 20: a) Tunnel splittings �4;�5 as functions of the transverse

magnetic �eld H?; Hz = H�

z
= 0:4581 T. The curves correspond to

di�erent angles �: 0Æ { dot-dashed, 40Æ { dotted, 43Æ { dashed, and

45Æ { solid. b) Relaxation rate ��1 as a function of the longitudinal

�eld Hz for a constant transverse �eld H�

?
= 0:4311 T. The four

line types correspond to the same four angles as in a). c) Real and

imaginary parts of the susceptibility (� = �0 + i�00) for the same

parameters as in b), but with the angle �xed to � = 40Æ; the two pairs

of curves correspond to the frequencies !1 = 0:02 Hz and !2 = 0:5

Hz.
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4 Real-Time Transport Theory

All the systems discussed in the previous two sections may be considered as realizations

of a single class of models: in each of them, there is a small system with a discrete set of

states linearly coupled to particle or heat reservoirs. Depending on the speci�c model, the

discrete states may be either single-particle states (quantum dots), many-body charge

states (metal islands), or the eigenstates of a spin (Mn12).

In this section, we outline a general theory of such discrete systems based on a real-

time diagrammatic technique [22, 23, 27] and the reduced density matrix of the discrete

system, see e.g. [132]. The real-time formulation enables the description of systems out

of equilibrium and it is closely related to the methods used in the context of dissipation

[133{135]. This theory forms the basis for all the Papers I-VI, but it also applies to

numerous other systems such as an atom irradiated with a laser beam or the spin-boson

model, where a spin S = 1
2
is coupled to a bath of harmonic oscillators.

4.1 Reduced Density Matrix

All the quantities of interest studied in the preceding sections, such as the current, charge,

or magnetization, are essentially determined by the states of the discrete system. Due to

the coupling, they also depend on all the reservoir degrees of freedom. In this subsection,

we derive an e�ective low-dimensional theory of the system that fully accounts for the

coupling but that is expressed in terms of the states j�i.

Let us consider the generic Hamiltonian H = HD + Hres + Hcp. The discrete system

is described by HD =
P

�
"�j�ih�j, where j�i are the eigenstates of the system. The

second term, Hres =
P

r
Hr =

P
rk
"
rk
c
y

rk
c
rk
, corresponds to the noninteracting degrees

of freedom in the reservoirs r, while the third term, Hcp, describes the linear coupling

between the discrete system and the reservoirs. The coupling term consists of combi-

nations of c
(y)

rk
and j�ih�0j, and thus induces transitions between the discrete states (for

concrete examples of Hcp, see Eqs. (8) and (16) in Sec. 2 and Eq.(4) in Paper VI).

The quantum-statistical expectation value of an arbitrary operator A(t) can be expressed

as

hA(t)i = Tr[�tot(t)A] = Tr[�tot0
~Te

+i
R
t

t0
dt

0
H(t0)

A Te
�i

R
t

t0
dt

0
H(t0)

]; (23)

where �tot(t) is the density matrix of the whole system. Here we assume that the coupling

to the environment is switched on at some initial time t0. At this time, the discrete

system is described by the density matrix p(t0), which is assumed to be diagonal in

the eigenbasis j�i: p(t0) =
P

�
p�
�
(t0)j�ih�j with

P
�
p�
�
(t0) = 1. The reservoirs are not

a�ected by the discrete system and they are for all times described by the equilibrium

density matrices �eq
r
= exp[��(Hr � �rnr)]=Z

r (�r is the chemical potential and nr the

total particle number in reservoir r; Zr is the partition function). For t � t0, the total

density matrix decouples into �tot0 = p0
Q

r
�eq
r
.
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Figure 21: Diagrammatic representation of hA(t)i a) before and

b) after the expansion in Hcp(ti). In b), Hcp(ti) are represented as

vertices and the indices �i denote the state of the discrete system. In

all the diagrams, the trace over all states is implicitly assumed.

The desired description of the system in terms of the discrete degrees of freedom is

attained by �rst performing the traces over the reservoirs. This is possible due to the

factorizability of the initial density matrix. As a result, the states of the discrete system

are governed by the reduced density matrix p(t) � Trres[�
tot(t)]. In particular, the

expectation value hA(t)i of any quantity that only depends on the states j�i can be

expressed in terms of p(t) as

hA(t)i = Tr[�tot(t)A] =
X
�;�0

p�
�0(t)h�

0
jAj�i: (24)

Here h�0jAj�i denotes a matrix element of the operator A. Note that after turning on

Hcp, it is in general not possible to �nd a basis j�i, where p(t) would be diagonal; hence,

all the elements p�
�0(t) need to be taken into account.

Diagrammatic Technique

The actual evaluation of Eq. (24) and the description of the dynamics of p(t) can be

visualized in terms of a diagrammatic language. The starting point is Eq. (23) and its

diagrammatic representation in Fig. 21a; the upper (lower) line denotes the propagator

directed forward (backward) in time. The coupling part of the Hamiltonian can be

separated from the rest of H in Eq. (23) by adopting the interaction picture with respect

to H0 = HD +Hres (indicated with the subscript I)

hA(t)i = Tr
h
�tot0

~Te
+i

R
t

t0
dt

0
Hcp(t

0)IA(t)I Te
�i

R
t

t0
dt

0
Hcp(t

0)I
i
; (25)

where ( ~T ) T is the (anti-)time-ordering operator. Time ordering along the closed Keldysh-

contour in Fig. 21a is expressed compactly as TK and the trace may be written separately

for p0 and �res0 :

Tr[�tot(t)A] =
X
�

h
p0
�
Trres�

res
0 TK

�
e�i

R
K
dt

0
Hcp(t

0)IA(t)I

�i
: (26)
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Figure 22: a) Tracing out of the reservoir degrees of freedom couples
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j�i of the discrete system are indicated. b) Irreducible diagrams are

denoted by �.

The exponential, expanded in powers of Hcp, yields

TK

�
e�i

R
K
dt

0
Hcp(t

0)IA(t)I

�
= (27)

1X
m=0

(�i)m �

Z
K

dt1

Z
K

dt2:::

Z
K

dtmTK

�
Hcp(t1)I Hcp(t2)I ::: Hcp(tm)IA(t)I

�
;

with t1 > t2 > ::: > tm. Each Hcp(ti)I is represented as a vertex on the Keldysh contour,

see Fig. 21b. The state of the discrete system changes at the vertices and we keep track

of this by explicitly assigning states j�i to each part of the propagators.

Since Hr are bilinear in the reservoir operators and the reservoirs are described by

equilibrium density matrices, we may use Wick's theorem and contract the reservoir

operators in Hcp(t) in pairs of creation and annihilation operators: hcy
rk
(t)c

rk
(t0)ir and

hc
rk
(t0)cy

rk
(t)ir. These are the fermionic/bosonic equilibrium correlation functions and

they are related to the distribution functions by Fourier transformation. In the diagram-

matic representation, the contractions couple pairs of vertices and give rise to interaction

lines { the dashed lines in Fig. 22a. The precise functional form of these lines depends

on the system under consideration. The sum of all the resulting diagrams describes the

time evolution of the reduced density matrix from the initial value p(t0) = p0 to p(t) at

time t.

In the diagrams, one can distinguish between two kinds of time segments based on the

criterium of whether a vertical cut through the diagram intersects interaction lines or

not. The segments with no interaction lines correspond to free time evolution of the

discrete system, while the segments with interaction lines describe interaction processes

between the discrete system and the reservoirs. During the interaction segments, the

total density matrix is not diagonal with respect to the reservoirs; this means that a

coherent process takes place during which the excited quasiparticles do not relax to

their equilibrium state. The sum of all irreducible interaction segments with the earliest

and latest times t0 and t, respectively, is denoted by the self-energy �(t; t0). The time

evolution of the reduced density matrix is then governed by the alternating periods of

free evolution and �(t; t0), shown in Fig. 22b.

The procedure outlined in this subsection is quite general and can be used in deriving a
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set of diagrammatic rules for any of the considered systems { the detailed rules can be

found in Refs. [27, 47, 136] for the quantum dots, Ref. [23, 47] for the metal islands, and

Ref. [137] for Mn12. Once these rules have been laid down, they can be used in evaluating

an arbitrary diagram and, in particular, in calculating �(t; t0). Before discussing this

calculation any further, let us �rst establish a more concrete connection between p(t),

�(t; t0), and the dynamical properties of the discrete system.

4.2 Dynamical Quantities

According to Eq. (24), all physical quantities can be expressed in terms of the reduced

density matrix p(t). It can be shown that the time evolution of p(t) is governed by the

kinetic equation [47, 136]

d

dt
p
�1

�
0

1
(t) + i("�1 � "�0

1
) p

�1

�
0

1
(t) =

X
�2;�

0

2

Z
t

t0

dt0 �
�1;�2

�
0

1;�
0

2
(t; t0)p

�2

�
0

2
(t0): (28)

The second term on the left-hand side of Eq. (28) describes the coherent free time

evolution of the discrete system, while the integral on the right-hand side describes

the dissipative interaction between the discrete system and its environment. These

correspond to the two kinds of time segments found in the diagrams. In this subsection,

we analyze the kinetic equation assuming that �(t; t0) can be calculated.

In most cases, the integral in Eq. (28) cannot be solved exactly and one has to �nd

some convenient approximation scheme for its evaluation. This procedure can be greatly

simpli�ed by two physically motivated assumptions. Firstly, if the Hamiltonian H is

time independent { as is the case in Secs. 2 and 3 and all the Papers I-VI { the kernel

only depends on the relative time di�erence, i.e., �(t; t��) = �(�). Secondly, the kernel

corresponds to coherent processes in the reservoirs; these typically decay rapidly { on

some short time scale �� { rendering �(�) a fast-decaying function of � . The reduced

density matrix p(t), on the other hand, describes a probability distribution and varies

on a longer time scale �p. For �p � ��, p(t
0) remains essentially constant on the scale ��,

i.e., p(t0) � p(t) in Eq. (28), and it may be taken out of the integral. This is equivalent

to neglecting the memory e�ects in the interaction, a procedure known as the Markov

approximation. The fast decay of the kernel also allows letting t0 ! �1.

Assuming that we may make the Markov approximation, the integral in Eq. (28) yields

just a time-independent �. Consequently, the kinetic equation can be written as _p(t) =
@p(t)

@t
= �i[HD; p(t)] + �p(t) = Wp(t) and solved for the eigenmodes,

_p(i)(t) = Wp(i)(t) = �
i
p(i)(t) =) p(i)(t) = p(i)(0)e�it: (29)

For a system of m states j�i, there are m2 eigenmodes. For the systems considered here

and for a time-independent Hamiltonian, there is always one mode with p(0)(t) = p(0)

and �0 = 0. This corresponds to the stationary state of the system, de�ned by _p(t) = 0.
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The stationary state is described by the master equation

�i("�1 � "�0

1
) p

�1

�
0

1
+
X
�2;�

0

2

�
�1;�2

�
0

1;�
0

2
p
�2

�
0

2
=
X
�2;�

0

2

W
�1;�2

�
0

1;�
0

2
p
�2

�
0

2
(30)

=
X

f�2;�
0

2g6=f�1;�
0

1g

[W
�1;�2

�
0

1;�
0

2
p
�2

�
0

2
�W

�2;�1

�
0

2;�
0

1
p
�1

�
0

1
] = 0 for all �1; �

0

1:

The other modes correspond to deviations from the stationary state and decay at the

rate ��1
i

= �Re(�i) (�
�1
i

> 0 for all i 6= 0). The eigenmodes and relaxation times allow

us to describe the full time evolution of the system from an initial out-of-equilibrium

state p(ti) =
P

i
ci p

(i) to the stationary state.

After these general considerations, let us be more speci�c and relate the above results to a

few physical quantities relevant to the SED's and Mn12. For example, the average charge

in the former and the magnetization in the latter can be written in terms of the diagonal

elements p�(t) = p�
�
(t) as hn(t)i =

P
�
p�(t)n� and M(t) � hm(t)i =

P
�
p�(t)m�,

respectively. For a time-independent Hamiltonian, the time dependences are solely due

to the relaxation of p(t) towards the stationary distribution p(0). The eigensolutions of

the kinetic equation fully describe the transient period and, in particular in the case

of Mn12, are suÆcient for the description of the relaxation behaviour observed in the

experiments. Furthermore, in Paper VI the dynamical susceptibility of the Mn12-spin,

�(!), is related to the slowest mode with the longest relaxation time �1 by Eq. (22).

Equation (24) indicates that the description of an arbitrary physical quantity requires

the use of all the matrix elements p�
�0(t). However, the conservation of charge, spin,

or the tunneling-channel index restricts the system dynamics to the diagonal states

p�(t) = p�
�
(t). This is the case in all the SED's considered in this Thesis. The tunneling

current through the SED's can be written in the general form, i.e., without the Markov

approximation, as

Ir(t) = �e
X
�;�0

Z
t

t0

dt0 �r

�;�0(t; t0) p�0(t0): (31)

The current rate �r

�;�0(t; t0) is a subset of the full kernel ��;�0(t; t0) consisting of those

terms where the number of electrons in the reservoir r is changed [27]. In Papers I{V, the

emphasis is on the transport properties in the stationary limit t0 ! �1 and p�(t) = p�.

In this case, the density matrix can be taken in front of the integral in Eq. (31) and

Ir = �e
X
�;�0

�r

�;�0p�0; (32)

where �r

�;�0 denotes the integral over t0.

Equations (28){(32) are to demonstrate that all the quantities of interest can be calcu-

lated from the knowledge of �(t; t0). In some cases, it can be more convenient to proceed

di�erently. In Papers II{V, for example, the current through the quantum dots is �rst

related to the spectral functions Ai�(!), which in turn are evaluated by means of the

diagrams.



{ 35 {

4.3 Quantum Fluctuations

The foregoing analysis shows that the dynamical properties of the discrete system in-

teracting with its surroundings are determined by the integration kernel �(t; t0). The

evaluation of this kernel for the di�erent systems and coupling strengths constitutes a

major part of This thesis, and is the subject of the present subsection.

In the following, we �rst consider a systematic perturbation theory (in the reservoir

coupling g) as an extension to the golden-rule rates in the weak-coupling regime. For

stronger coupling various higher-order e�ects become important, rendering the pertur-

bative expansions cumbersome. Below, we discuss two nonperturbative approaches { the

resonant-tunneling approximation and the real-time renormalization group technique {

better suited for the strong-coupling regime.

Perturbation Theory

A consistent perturbative description of the system dynamics can be formulated by

expanding all quantities in powers of the coupling constant g. It turns out that only

even powers of g occur in the expansions and, in what follows, the order i actually stands

for O(g2i). For example, the probabilities and rates become

p = p(0) + p(1) + p(2) + � � � (33)

W = W (1) +W (2) +W (3) + � � � : (34)

The prerequisite for this procedure is the convergence of the series, i.e., that g < 0.

Furthermore, for g � 1,
P

1

i=0A
(i)
�

P
j

i=0A
(i) for some j. The actual expansion

parameters in Papers I-VI are �0 for the metal SED's, � for the quantum dots, and A2

for the Mn12-spin [from Eq. (20); this is related to the spin-phonon coupling constant].

The kinetic equation, Eq. (28), and the master equation, Eq. (30), can also be expanded

and they have to hold separately in every order of the expansion. In particular, in the

stationary case

p W = p(0)W (1) + (p(0)W (2) + p(1)W (1)) + � � � = 0 (35)

)

i�1X
j=0

p(j)W (i�j) = 0 for all i: (36)

In addition, Tr[p] = Tr[p(0)] + Tr[p(1)] + � � � = 1 leading to Tr[p(0)] = 1 and Tr[p(i)] = 0

for i � 1. The rates � can be evaluated in all orders in terms of the diagrams, and the

terms W (j) and p(i) can be solved iteratively from the knowledge of �(j), for j � i, and

p(k), for k < i. All the observables can be expanded in a similar fashion.

In the lowest order, O(g2), only diagrams with one line contribute to �; Fig. 23a shows

an example of such a diagram. The sum of these terms makes up �(1) and reproduces

the golden-rule rates, e.g., Eqs. (4) and (18) in Sec. 2. The lowest-order terms are

characterized by the requirement of energy conservation and, at low temperatures and
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χ ...

...

χ

Figure 23: Diagram a) represents a contribution to �(1) and b)-d)

contributions to �(2). The diagrams c) and d) give rise to renormal-

ization of the levels and the coupling constants, respectively. The

vertical dotted lines are guides for the eye in distinguishing the irre-

ducible diagrams a)-d).

away from points of degeneracy, they may be exponentially suppressed. This leads, e.g.,

to the Coulomb-blockade e�ects. In such regimes, the quantum corrections arising from

the higher-order terms may become dominant; for small g's, the second-order, or O(g4),

term is the most prominent since the higher powers are diminished for g � 1. The

higher-order terms are particularly important for SED's considered, whereas in Mn12

these turn out negligible and the lowest-order terms are suÆcient for explaining the

experiments.

In the second order, there are three kinds of contributions to the transition rates; exam-

ples of the respective diagrams are shown in Figs. 23b-d.

(i) Firstly, transitions suppressed in the lowest order can take place via virtual interme-

diate states j�0i. Figures 5b and 10b illustrate such processes in the SED's. The rates

for these second-order processes are similar to the rates �i!f obtained in the standard

perturbation theory in O(g4) for transitions between between the initial and �nal states,

jii and jfi, respectively:

�i!f =
2�

~

�����
X
�0
6=i

h�f jHcpj�
0
ih�0jHcpj�ii

"�0 � "i

�����
2

Æ("i � "f) (37)

(in the general case, the delta function is replaced by an integral expression with both real

and imaginary parts). These correspond to the \classical" rates calculated in Refs. [42{

44] for the cotunneling through SED's. Similar to Eq. (37), these rates diverge for

"�0 ! "i, i.e., when approaching resonances. This de�ciency is only remedied by the

systematic account of all contributions to �(2), see below, as well as the corrections p(1)

in Eqs. (33) and (35) [45, 46].

The other two second-order contributions correspond to renormalization terms. In terms

of the diagrams, these contain bubble diagrams, which start and end on the same prop-

agator, see Figs. 23c and d. (ii) The bubbles, which do not enclose vertices, lead to

propagator/energy renormalization: "� ! ~"� = "� + Æ"�. The possible imaginary part

of the energy ~"� corresponds to the broadening of the corresponding state. (iii) On the
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other hand, the bubbles that do enclose one of the vertices lead to renormalization of that

vertex and, consequently, the coupling constants: g ! ~g = g + Æg. The renormalization

terms can be expressed in terms of lower-order rates with the bare parameters replaced

by the renormalized ones. In the present case, the renormalization contributions to �(2)

are found by inserting ~g and ~"� to the golden-rule rates. A systematic second-order

calculation of the electron transport through two metal islands is presented in Paper I.

An advantage of the systematic perturbative approach is that it accounts for all the

diagrams in each order. Each diagram corresponds to a speci�c transition process or

renormalization term, and one can easily keep track of the processes included in the

theory. However, the number of contributions to �(i) increases rapidly in higher orders

and, for increasing g's, it becomes more convenient to consider some nonperturbative

approaches.

Resonant Tunneling Approximation

The description of a strong reservoir coupling requires diagrams up to high orders in g.

In this subsection, we introduce the so-called resonant-tunneling approximation [22,23],

which accounts for certain classes of diagrams up to all orders in g. This is achieved

in terms of a partial resummation of diagrams in the spirit of the Dyson equation.

The resonant-tunneling approximation has been employed in Papers II-V to describe

electron tunneling through quantum dots but, despite its suggestive name, it can be

applied to other kinds of couplings as well (the name stems from Refs. [22, 23], where

this approximation was �rst used in describing on-resonance electron transport through

SED's).

The resonant-tunneling approximation is formally de�ned by the following requirement

when selecting the diagrams to be included in the self-energy �(t; t0): at any time,

a vertical cut through the diagram may cut at most two interaction lines. In more

physical terms, all those processes are accounted for where there is at most one particle-

hole excitation present in the reservoirs. The calculations presented in Papers II{V are

based on a set of auxiliary functions which have been found convenient in calculating

�(t; t0). In particular, �(t; t0) can always be expressed in terms of the diagrams/functions

�(t; t0) de�ned as the sum of all the irreducible diagrams, where the rightmost interaction

line is left uncoupled, see Fig. 24. In what follows, we discuss two ways of calculating

�(t; t0).

+Σ ΦΦ=

Figure 24: Self-energy can always be expressed in terms of the

auxiliary functions �(t; t0).

Let us start with the simpler one of the two and assume that the rightmost interaction
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line extends through the whole diagram to the initial time t0. Other processes may take

place between the times t0 and t but, within the resonant-tunneling approximation, only

in a sequence of single interaction lines. This approximation is illustrated in Figs. 25

and 26, which de�ne two further functions/diagrams, �(t; t0) and �(t; t0), which can be

evaluated analytically within the resonant-tunneling approximation. The former consists

of all the possible time segments where there is a second interaction line, while the latter

is the sum of all sequences of �(t; t0). For convenience, in what follows we assume that

all the expressions only depend on the relative time coordinate t� t0 and change into the

energy representation obtained via Fourier transformation.

+

σ

σ σ σ

π π

σσΦ = + + + ...

...++++

=

Figure 25: One possible approximation for �(t; t0) that includes an

in�nite number of diagrams. In each diagram, one interaction line

runs from t0 on the left to t on the right; the time segments with two

interaction lines are denoted by �(t; t0).

+σ = + +

Figure 26: Within the resonant-tunneling approximation, the func-

tion �(t; t0) is given by four terms. This function is used in Fig. 25

for constructing �(t; t0).

The above approximation scheme for calculating �(!) and � is equivalent to the equation-

of-motion method, see e.g. Ref. [138], and it extends the notion of the propagator/energy

renormalization to all orders in g. Let us illustrate the consequences with an example

from Papers II and III, and consider a single quantum dot with two levels and at most

one electron in it. In this case, the interaction lines correspond to tunneling electrons,

and �, obtained from �(!), yields the transition rates between the states j0i (empty

dot), j1 "i, j1 #i, j2 "i, and j2 #i. Let us further specify that the tunneling line running
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...

π π π

π

Φ = + + ...

= Φ +

Figure 27: All diagrams compatible with the resonant-tunneling

approximation can be accounted for by solving a self-consistent group

of equations for �(t; t0).

through the diagrams in Fig. 25 corresponds to the tunneling of an electron from the

reservoir r into the dot state ji�i; the line is then given by the function 
+
ri�
(!) intro-

duced in the context of golden-rule rates in Subsec. 2.3. The whole series of terms in

Fig. 25 can be expressed in terms of 
+
ri�
(!) and �ri�(!) and we obtain

�r

i�;0 = 2i Im

Z
1

�1

d!

+
ri�
(!)

! � "i� � �ri�(!)
: (38)

In the weak-coupling limit, �ri�(!) ! �i� (at the end we let � ! 0+) leading to a

delta function located at the pole of the denominator, Æ(! � "i�). In this limit, the

result is just the golden-rule rate: �r

i�;0 = 2�
+
ri�
("i�). The poles in the denominator in

Eq. (38) correspond to the states of the discrete system also in the more general case

where the reservoir coupling gives rise to nontrivial self-energies �ri�(!): the real part of

�ri�(!) shifts or renormalizes the level "i� entering the above delta function, whereas its

imaginary part broadens the delta function itself. The magnitude of the broadening is

found to be proportional to the reservoir coupling strength � and it corresponds to the

inverse lifetime of the dot states. The energy dependence of the self-energies may lead to

further nontrivial e�ects: for some "i�, there may be more than just one pole indicating

the emergence of new many-body states. The Kondo resonance is an example of such a

state.

Comparison of Figs. 23b and 25 shows that the above approximation does not include

even all the second-order terms. In Refs. [22{27,136] and Papers II-V, another scheme is

employed, which accounts for all the diagrams compatible with the resonant-tunneling

approximation. The idea underlying these calculations is illustrated in Fig. 27. In the

spirit of the Dyson equation, �(!) is solved from a self-consistent group of equations.

This procedure includes further classes of diagrams [not included in �(!) and �(!)] and

improves the quantitative results obtained.

The resonant-tunneling approximation is the main approach used in this thesis in the

context of quantum dots and the Kondo e�ect. It is best suited for systems with a small

number of states and not too strong couplings. In some systems, an increasing coupling
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strength increases the number of relevant states deteriorating the quantitative prediction

power of the resonant-tunneling approximation for large g's. This is the case, e.g., in the

double-island system studied in Paper I. This problem can be solved by the real-time

renormalization-group technique to be introduced next.

Real-Time Renormalization Group Theory

All the foregoing approximations are based on selecting the most relevant diagrams for

a given system and parameter regime. In this subsection, a renormalization-group (RG)

technique is outlined, which ideally accounts for all the states and transition processes;

for an introduction see Ref. [139]. Unlike the previous RG approaches applied to, e.g.,

the single-electron box [49,50], the present theory is formulated on the Keldysh contour

and it accounts for nonequilibrium e�ects as well as �nite lifetime broadening of the

states [140, 141].

The objective in the real-time RG is to �nd an e�ective low-energy description that

accounts for all the processes corresponding to the energy scales below some high-energy

cuto� Ec. In the real-time representation adopted in the following, this corresponds to

time scales above the temporal cuto� tc � 1=Ec. This is achieved by considering the

propagator T exp[�i
R
dtH(t)]jtc and requiring that it remains invariant upon the change

tc ! tc + Ætc:

Te�i
R
dtH(t)

���
tc

! Te�i
R
dtH

0(t)
���
tc+Ætc

: (39)

The change in tc is accounted for by the modi�cations occurring in the Hamiltonian

H
0. The possible changes include parameter renormalizations and the generation of new

terms. The cuto� tc is increased in in�nitesimal steps from an initial ti
c
to some �nal tf

c
,

and the e�ect is incorporated into the Hamiltonian. Once tc > 1="� for some high-energy

state j�i, the in
uence of j�i is already contained in the parameters describing the lower

states. Therefore, the high-energy states can be systematically omitted, or integrated

out, from the Hamiltonian. At the �nal stage, when tc reaches t
f

c
, the full dynamics of

the system is described by the remaining low-dimensional Hamiltonian.

Examples of the parameter renormalization have already been encountered in the pre-

ceding subsections as the renormalization of the energies, "� ! ~"�, and the coupling

constants, g ! ~g. In the parameter regimes considered in Papers I, IV, and V, the

emergence of any new terms can be neglected and only tc-dependent system parameters

are obtained. This dependence can be formulated as a set of di�erential equations (
ow

equations)

@"�

@tc
= F (f"�; gg; tc) (40)

and

@g

@tc
= G(f"�; gg; tc); (41)
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where F and G are functions of all the system parameters and the cuto� tc. In practice,

the RG procedure corresponds to the integration of the 
ow equations from ti
c
to tf

c
.

The RG equations (40) and (41) are system speci�c and need to be derived separately

for each system. This derivation involves evaluation of real-time diagrams and, in so

doing, some approximation procedure usually needs to be employed. Consequently, the

approach presented in Refs. [140,141] is suitable for some systems, but it fails to describe,

e.g., the Kondo e�ect in quantum dots. In Papers I and IV, two simpli�ed versions of the

general RG have been employed in describing electron transport through metal islands

and quantum dots, respectively. Both versions are based on equilibrium conditions and,

for small bias voltages and strong tunneling couplings, they yield far better results than

any of the other approaches discussed in this section.
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5 Discussion

This dissertation focuses on the quantum dynamics of three mesoscopic systems: (i)

metallic and (ii) semiconductor single-electron devices (SED's), and (iii) the molecular

magnet manganese acetate (Mn12).

In the �rst and major part of the Thesis (Papers I-V), the focus is on various SED

con�gurations. The concepts underlying all existing SED applications are based on

the orthodox theory of Coulomb blockade which neglects all the higher-order tunneling

processes beyond sequential tunneling. In the recent experiments, this level of description

has proved inadequate and a thorough investigation of quantum 
uctuations in SED's

has been called for. Such an investigation constitutes the subject of Papers I-V.

In Paper I, metallic double-island structures with very strong tunneling conductances

were considered. Quantum 
uctuations of the charge in the islands were found to renor-

malize all the characteristic quantities: the charging energies and tunneling couplings. As

a result, the peaks observed in the linear conductance were found to shift and change in

shape as the dimensionless tunneling conductances increase. Moreover, the peak heights

were found to decrease logarithmically with decreasing temperature; this behaviour bears

close resemblance to the multi-channel Kondo model.

In ultrasmall semiconductor quantum dots considered in Papers II-V, the level spac-

ings were assumed so large that only one or at most two single-particle energy levels

contribute to the electronic transport through the dots. A number of di�erent con�gura-

tions consisting of single and double quantum dots were considered. At low temperature,

each one of them was found to exhibit Kondo-like resonances in the spectral functions

(the density of states) and also in the di�erential conductance through the dot(s). The

most important contributions of this part of the Thesis are the additional features arising

from a second level in a single quantum dot and the Kondo physics in two capacitively

coupled quantum dots.

The second part of the Thesis (Paper VI) elucidates the magnetization dynamics of

Mn12. The almost ideal crystalline structure of the experimental samples together with

the coupling of the individual spins to lattice vibrations results to a set of intriguing

phenomena. In particular, owing to thermally activated tunneling of single molecular

spins a series of resonant peaks is revealed in the relaxation rates of magnetization. In

this work, it was found that the tunneling at a given resonance may be enhanced or

pinched o� by a proper direction and magnitude of the external magnetic �eld. The

main results of this part of the Thesis are concerned with the dynamic susceptibility

which provides certain advantages over the conventional relaxation-rate measurements in

studying thermally activated tunneling. In particular, the nonequilibrium and transient

e�ects which sometimes plague other kinds of experiments are diminished due to the

weakness of the ac excitation �elds employed.

A third aspect emphasized throughout the Thesis is concerned with the development

of a nonequilibrium transport theory applicable to all systems with a set of discrete
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electronic or spin states coupled to bosonic and/or fermionic environments. The variety

of systems and phenomena investigated in Papers I through VI serves as an ample test

bed for various aspects of the theory, ranging from stationary nonequilibrium situations

to transient phenomena.

In all the systems considered, one can identify one of the paradigms of quantum me-

chanics: a two-level system coupled to particle and/or heat reservoirs. Depending on

the particular system, the two levels correspond to the following: the two lowest charge

states in metal SED's; either the charge or the spin states in single quantum dots; the

extended symmetric and antisymmetric superposition states in double quantum dots;

and the tunneling-coupled degenerate ground states of a Mn12 spin. In all these models,

also other states exist but only at higher energies. Hence at low enough temperatures,

these may be neglected and we are left with an e�ective two-level system.

The interest in the two-level systems has recently been revived because of the thriving

activity in the �eld of quantum computing. The key element in the notion of a quantum

computer is the quantum bit, or qubit, which is just a coherent tunable two-level system.

The main concerns for any realization of a qubit are the decoherence and quantum


uctuations induced by the surroundings of the system, and the actual presence of other

states at higher energies. Further investigation of the SED and spin models introduced

in this Thesis can provide invaluable information on the feasibility and limitations of the

various proposed realizations of a qubit.

Finally, let us place this work into a broader scope by considering two strong trends in

nanoelectronics. Firstly, the rapid progress of fabrication technologies towards cleaner

materials and increasingly accurate patterning is likely to continue. Consequently, more

and more of basic quantum-mechanical models are to be realized { many of which can

be described within the theoretical framework developed in this Thesis. On the other

hand, increasingly complex structures are being built and studied. On this front, the

double-island and double-dot models investigated in this work may be seen as initial

steps towards more complicated and larger scale applications.
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Abstracts of Publications I-VI

I. We study the electron transport through a system of two low-capacitance metal is-

lands connected in series between two electrodes. The work is motivated in part by

experiments on semiconducting double-dots, which show intriguing e�ects arising

from coherent tunneling of electrons and mixing of the single-electron states across

tunneling barriers. In this article, we show how coherent tunneling a�ects metallic

systems and leads to a mixing of the macroscopic charge states across the barriers.

We apply a recently formulated RG approach to examine the linear response of the

system with high tunnel conductances (up to 8e2=h). In addition we calculate the

(second order) cotunneling contributions to the non-linear conductance. Our main

results are that the peaks in the linear and nonlinear conductance as a function

of the gate voltage are reduced and broadened in an asymmetric way, as well as

shifted in their positions. In the limit where the two islands are coupled weakly to

the electrodes, we compare to theoretical results obtained by Golden and Halperin

and Matveev et al.. In the opposite case when the two islands are coupled more

strongly to the leads than to each other, the peaks are found to shift, in qualita-

tive agreement with the recent prediction of Andrei et al. for a similar double-dot

system which exhibits a phase transition.

II. We study resonant tunneling through quantum-dot systems in the presence of

strong Coulomb repulsion and coupling to the metallic leads. Motivated by recent

experiments we concentrate on (i) a single dot with two energy levels and (ii)

a double dot with one level in each dot. Each level is twofold spin-degenerate.

Depending on the level spacing these systems are physical realizations of di�erent

Kondo-type models. Using a real-time diagrammatic formulation we evaluate the

spectral density and the non-linear conductance. The latter shows a novel triple-

peak resonant structure.

III. We study electron transport through single and double quantum dots with large

level spacing and charging energy. Motivated by recent experiments we focus on

linear and nonlinear response of two model systems: a single dot with two levels

and a capacitively coupled double dot. At low temperature and strong coupling

to the leads, quantum 
uctuations and Kondo-like many-body e�ects become im-

portant and show up, e.g., as resonances in the current-voltage characteristics.

In particular, we propose a way to observe the splitting of the Kondo peak as a

function of the applied bias voltage.
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IV. Motivated by recent experiments, we study electron transport through a system

consisting of two ultrasmall capacitively-coupled quantum dots with a large level

spacing and charging energy. At low temperature and strong coupling to the leads,

quantum 
uctuations of the charge and spin degrees of freedom strongly modify

the conductance through the system and Kondo-like resonant e�ects arise. In this

system, the Kondo e�ect has two possible origins, the spin and orbital degeneracies,

and it is maximized when the two degeneracies occur simultaneously. Conductance

is calculated for linear and nonlinear response and the temperature dependence of

the resonant peak heights is quanti�ed with poor man's scaling. For comparison,

the cotunneling conductance in the Coulomb blockade regime is calculated.

V. Transport through quantum dots with large level spacing and charging energy

is considered. At low temperature and strong coupling to the leads, quantum


uctuations and the Kondo e�ect become important. They show up, e.g., as zero-

bias anomalies in the current-voltage characteristics. We use a recently developed

diagrammatic technique as well as a new real-time renormalization-group approach

to describe charge and spin 
uctuations. Both approaches cover the linear as well as

the nonlinear response regime. The spin 
uctuations give rise to a Kondo-assisted

enhancement of the current through the dot as seen in experiments.

VI. In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of

thermally assisted tunneling. In particular, we describe the system in the presence

of a strong transverse magnetic �eld. Similar to recent experiments, the relaxation

time/rate is found to display a series of resonances; their Lorentzian shape is found

to stem from the tunneling. The dynamic susceptibility �(!) is calculated starting

from the microscopic Hamiltonian and the resonant structure manifests itself also

in �(!). Similar to recent results reported on another molecular magnet, Fe8, we

�nd oscillations of the relaxation rate as a function of the transverse magnetic �eld

when the �eld is directed along a hard axis of the molecules. This phenomenon

is attributed to the interference of the geometrical or Berry phase. We propose

susceptibility experiments to be carried out for strong transverse magnetic �elds

to study these oscillations and for a better resolution of the sharp satellite peaks

in the relaxation rates.
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