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Abstract

Remote sensing has proven its usefulness in various applications. For mapping, land-
use classification and forest monitoring optical satellite and airborne images are used
operationally. However, this is not the case with snow monitoring. Currently only
ground-based in situ and weather measurements are used operationaly for snow
monitoring in Finland. Ground measurements are conducted once a month on special
snow courses. These measurements are used to update the hydrological model that
simulates the runoff. Recently optical images (NOAA AVHRR) have been tested to
derive a map of the areal extent of snow. However, during the snow melt, which is
the most important period for hydrology, there are few cloudless days and, therefore,
the availability of optical dataislimited. That is why microwave remote sensing can
play an important role in snow melt monitoring due to its unique capability to
provide data independent of sun light and in almost all weather conditions. The
synthetic aperture radar (SAR) data may make a significant contribution to satellite
observations of snow by bridging the period between the on-set and end of snow
melt. Microwave radiometers can be used to retrieve the snow water equivalent of
dry snow, but they cannot be used to distinguish wet snow and wet ground during the
melting period. The results of the thesis indicate that, even in the presence of forest
canopies, (1) wet snow can be distinguished from dry snow and bare ground, (2)
snow-free areas can be identified, (3) seasonal evolution of snow cover can be
monitored and (4) snow-melt maps showing the fraction of snow-free ground (wet
ground) and snow (wet snow) can be derived from SAR images.

Keywords. Remote sensing, SAR, snow monitoring, microwave backscattering
modeling
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1. Introduction

In remote sensing satellite and airborne instruments are used to measure the
properties of land, sea and atmosphere. Remote sensing offers a possibility to cover
large areas quickly and often with a low cost compared to the more traditional
methods. Remote sensing is mainly used to monitor the state of the environment, to
map natural resources and to improve process understanding and integration of data
with those from complementary sources in modeling of our environmental processes.

In remote sensing the measurement is conducted using el ectromagnetic waves. Most
remote sensing instruments operate in the optical, near infrared, infrared or
microwave band. The response depends both on the parameters of the instrument and
on the properties of the target.

The presence of snow on the ground has a significant influence on the radiative
balance of the Earth surface and on the heat exchange between the surface and the
atmosphere. The feedback mechanism between snow extent and atmospheric
temperature tends to amplify climatic anomalies. Representation of the snow cover in
present climate models is not satisfactory, because the models do not yet account for
the feedback mechanism between the global snow cover and the atmosphere
(Guyenne 1995). The seasonal snow cover is mostly limited to the Northern
hemisphere, where the average snow extent during the winter months ranges from 30
to 40 million km?. The water equivalent volume of this snow mass ranges from 2000
to 3000 km®. In northern Europe snowfall is a substantial part of the overall
precipitation; e.g. in Finland 27% of the annual average total precipitation of 621 mm
is snow (Perdla et al. 1990). Snow is a vital water resource also in many other
regions of the world and estimation of the snow water content and prediction of the
expected run-off rate of snow are major inputs for hydrology and the management of
water and hydro-electric power schemes (Guyenne and Bernards 1995). In northern
regions, the snow may represent more than half of the annual runoff, setting specific
demands on the models employed in managing water resources. The lack of aredl
values for hydrological variables is one of the most important challenges in
hydrologic modeling (Solberg et al. 1997).

The topic of this thesis is snow monitoring in Northern Finland. However, Paper A
basically discusses the seasonal behavior of backscatter for various land-use
categories and, therefore, describes the effect of land-use and vegetation to snow
monitoring. The SAR derived land-use information can be combined with SAR-
based snow melt monitoring to increase the confidence of the snow extent estimates.

The objectives of thethesis are
» development of radar-based snow mapping techniques,
» combination of airborne and spaceborne radar in remote sensing of snow,

» combination of optical and SAR datain snow extent mapping, and
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» theoretical evaluation of the accuracy of radar-based snow melt
monitoring.

Chapter 2 introduces the basic aspects of remote sensing of snow with emphasis on
active microwave sensors. Also the effect of vegetation to remote sensing of snow is
considered. This chapter describes the development of the methodology used in the
thesis and compares it to the methodology reported in literature.

In Chapter 3 the methodology used in the thesis is discussed in details and the test
results are presented. Also comments on the results and suggestions for future
research are given.

Chapter 4 summarizes the contents of the appended papers.
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2. Radar Remote Sensing of Snow

Remote sensing provides regional characteristics of the snow cover. These values are
not affected by interpolation errors as opposed to values that are estimated from
ground-based gauging networks. In addition, several important hydrological
variables, including snow layer wetness, are difficult to measure on site. This
potentially improves the appraisal of hydrological conditions in remote areas. Remote
sensing instruments provide the means for continuous monitoring of the snow cover,
as successfully demonstrated (Kuittinen 1992, Solberg et al. 1994, Paper B, Paper
D). In the future, remote sensing may have an important role in retrieving
information on the snow cover. Optical and near infrared sensors are mostly used to
detect snow cover. These sensors can be used under cloudless clear sky conditions. A
fair estimate to the thickness of snow layer can be obtained if the snow layer is thin,
but these sensors cannot provide direct knowledge of snow water equivalent or
temperature (Table 1) (Rango 1986). Passive microwave sensors have a long history
in snow monitoring. Several investigations have demonstrated the capability of
multi-frequency microwave radiometer systems to locally map snow extent, snow
depth and snow water equivalent (Table 1) (Hallikainen and Jolma 1992, Mazler
1994). Spaceborne microwave radiometers have poor spatial resolution and they
cannot discriminate wet snow from bare ground. Experiments with Seasat SAR and
ERS-1 SAR data have demonstrated the capability of spaceborne SAR in snow
monitoring (Rott 1984, Koskinen et al. 1994, Piesbergen et al. 1995, Guneriussen et
al. 1996, Paper B, Paper D, Nagler and Rott 1998). A very potential application for
microwave radar is snow melt monitoring because of its good capability to
distinguish wet snow from bare ground (Table 1)(Paper B, Paper D).

Table 1. Comparison of various frequency bands for snow monitoring (Rango 1986).

Property Optical/ Infrared Microwaves
near infrared
Snow extent Yes yes yes
Snow depth fair poor fair

(for shallow snow
only)
Snow water content fair poor fair
(for shallow snow
only)

Albedo yes no no

The amount of liquid water in poor poor yes

snow

Temperature no yes poor

All weather capability no no yes

Spatial resolution ~10m ~100m Passive sensors 20-150 km

Active sensors~30m
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2.1 Backscattering from snow-covered terrain

2.1.1 The scattering mechanisms and effective snow parameters

In general, the backscattering coefficient of snow-covered terrain consists of
contributions resulting from (Ulaby et. al 1986, Fung 1994):

A) backscattering from the snow-air interface,
B) volume scattering from the snow layer and
C) backscattering from the underlying ground surface.

Additionally the backscattering is affected by multiple scattering/reflection resulting
from snow volume and either one or both boundaries of the snow layer. Scattering
from an inhomogeneous layer above a homogeneous half space (air-snow-ground
system) is shown in Figure 1.

Air

Figure 1. Scattering mechanisms A, B and C for snow-covered terrain (see text).

The observed backscattering coefficient is affected by several physical parameters of
the snow layer. These parameters are (Ulaby et al 1986, Pulliainen et al. 1996a):

 volumetric liquid water content,

» snow layer thickness,

 surface roughness (air-snow boundary and snow-ground boundary),
* snow grain size and shape (or correlation lengths),

» snow layer temperature profile,

» snow layer density profile and

 layer structure.

A commonly employed snow cover characteristic is the snow water equivalent
(SWE) which is directly related to the snow layer thickness and density. The
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correlation length is a parameter relevant for theoretical continuous media modeling
approaches. It is related to the snow grain size and volumetric distribution of snow
grains. Typically, three-dimensional correlation length information is required. In
addition to characteristics mentioned above also information on the properties of
vegetation characteristics (forest canopy) isrequired (Pulliainen et al. 1996a).

2.1.2 Backscattering model for snow-covered terrain

Backscattering from snow layer can be modeled by using theoretical or semi-
empirical models. In theoretica backscattering model discussed here each of
components A to C is approximated separately and the observed backscattering
coefficient is the sum of these components. The model presented here and in Paper E
is based on backscattering model introduced in (Fung 1994). However, this
combination of the independent models has not been reported before. The terms A to
C are approximated using the following backscattering models:

Term A:  |EM surface scattering model (Fung 1994),

Term B:  Volume scattering model for layers with small dielectric constant (Fung
1994),

Term C:  Michigan Empirical Surface Scattering Model (Oh et al. 1992).

Additionally, a formulation to estimate the indirect contributions to the
backscattering coefficient is applied (Fung 1994). However, the effect of indirect
contributions is relatively small compared to the other backscattering contributions
and, therefore, it can be neglected in most cases (Fung 1994).

The backscattering model is based on two major assumptions (Fung 1994):
» only single scattering is important,

* transmission across the top boundary can be accounted for by using the
Fresnel power transmission coefficient and

 reflection at the lower boundary for the surface-volume interaction term
can be calculated using the Fresnel power reflection coefficient.

More complex and accurate models that do not employ these simplifications have
been introduced in the literature (Tsang et al. 1985, Ulaby and Stiles 1986a, Fung
1994). The main modifications in these models are the inclusion of multiple
scatterers in the model and ellipsoidal and other nonspherical scatterers in the
medium. However, most of these advanced models are very complicated and include
parameters, which are difficult to obtain or measure.

Term A: air-snow surface backscattering

The air-snow boundary backscattering is approximated using the IEM surface
scattering model (Fung 1994):
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In Equations (1) - (3)
k =  wave number,
K = normalized wave number,
ke« = kecosé,
K, = ksino,
pp = transmit and receive polarization,
os = snow surface rms height,
lw =  phasefunction,
Jy =  zero-order Bessel function,
L = surface correlation length,
0 = incidenceangle,
8s = reflection angle,
Hs =  magnetic permeability,
¢ =  horizontal deviation,
p = correlation coefficient,
@ = azimuthangle.

Equation (3) can aso be approximated with Gaussian or other exponential functions;
however, according to (Fung 1994) this correlation function is widely used. The
Gaussian function always leads to a bell-shaped correlation curve that decreases very
fast for larger angles, while the exponential correlation function tends to level off
(Fung 1994).

For the monostatic case the equations for fy, Fn(kx,0) and F(-kx,0) can be found in
(Fung 1994). These parameters are related to the dielectric properties of snow. The
dielectric properties of snow have been widely reported in the literature (Hallikainen
et al. 1986, Matzer 1987, Denoth 1989, Matzler 1996).
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Term B: snow volume scattering

The volume scattering portion is approximated using a volume scattering model
developed for layers with a small dielectric constant (Fung 1994). This model applies
only to point scatterers (Fung 1994).

0 0 2r _
08 =0.5wI, T, cosf1—exp oo (cosé?t ,—C0s6,; r[) , (4)
0 coso,
where
w =  snow volume scattering albedo,
T = optical depth,
Pwo =  phasefunction of volume scattering,
T =  Fresnel power transmission coefficient,
6 = transmission angle.

The snow volume scattering albedo (w) is defined as (Ulaby et al. 1981b)
W= KdKe, (5)
and the optical depth (1) isdefined as (Ulaby et al. 1981b)

T=Ked, (6)
where
Ks =  scattering coefficient, Ks = KeKq,
Ke =  extinction coefficient,
Ka =~ absorption coefficient, kK, =2K (‘I m\/z ),
& =  relative permittivity,
d =  snow depth.

Extinction coefficient Ke can be modeled using MIE solution (Ulaby et al. 1986) or
applying strong fluctuation theory (Wang et al. 1999).

The magnitude of the scattering coefficient ks depends on the size of the scatterer i.e.
snow crystal size. However, it has been previously reported that when discrete
particle backscattering model is used at C-band, the effective crystal size is larger
than the observed mean crystal size (Zurk et al. 1994, Kendra et al. 1998). In this
case the behavior of the target cannot be explained in terms of the particles of which
the snowpack was observed. The particles must be considered as “sticky” particles,
where the particles come together to form an aggregate particle, effectively much
larger than the individua particles (Zurk et al. 1994). The authors (Kendra et al.
1998) found that the effective crystal size was six times larger than the observed
mean crystal size at C-band.
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Term C: snow-ground surface backscattering

The third term is dominated by noncoherent scattering from the bottom boundary
surface attenuated by the snow layer. It is approximated by using the Michigan
Empirical Surface Scattering Model (Oh et al. 1992) and by accounting for crossing
of the top surface boundary and attenuation due to propagation loss through the layer.

0% =coslf) T,(6.6,) T,(6..6) exp% coZSTH E iog;(fjt)) , 7)

where

o _ gleos®6,
L 6,)+ 6,)l . 8
o, T IR, 6,) + R, 6 8)

01 0

Jp=1- %gﬁg [exp(-k,0,), 9)

g =0.7*|L-exp(- 0.650(k.0,)**)| , (10)

T =  Fresnel power transmission coefficient,
Rp =  Fresnel power reflection coefficient,
Ks = Wave number in snow
Og = Ground surface rms-height,
2
Ro =  Fresnd reflectivity of the surface at nadir, R, = ! \/; :
L+,

Indirect contributions

The indirect contribution to the backscattering coefficient is caused by the interaction
between volume inhomogeneities and the lower snow-ground boundary of the layer
(Fung 1994):

o ende) (L JLR0 LT a

[Ppp (_ COS(H),— 005(9), a.~a ) +Py (005(9), COS(Q)’ @4 )] exp% ﬁé

where
L = Lossfactor.
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Figure 2 shows the behavior of the predicted backscattering components A, B and C
for the backscattering model and the total backscattering coefficient at 5.3 GHz and
vertical polarization as a function of snow wetness. The snow parameters used in the
simulation are selected to represent the typical cases in Finland. However, the snow
crystal size represents the effective snow crystal size not the observed mean crystal
size. The derivation of effective snow crystal sizeisexplained in (Kendra et al. 1998,
Paper E).

Snow depth = 1.0 m

Snow density = 0.25 g/cm3
Crystal size = 2.8 mm .
Incidence angle = 23 deg

-25

Backscattering Coefficient (dB)

-30

-35

_40 “‘I 1 1 1 1 1 1 i
0 1 2 3 4 5 6 7 8 9 10

Snow Wetness (%)

Figure 2. Computed contribution of the components (A) snow surface
backscattering, (B) snow volume scattering and (C) ground backscattering of the
backscattering model and the total backscattering coefficient as a function of snow
wethess (snow surface rms height (o) = 0.4 cm, snow surface correlation length (1)
= 5.0 cm, ground surface rms height (gg) = 1.2 cm and & rozen ground = 6-j). The snow
parameters are selected to represent the typical cases in Finland. However, both
snow and ground surface roughness characteristics represent the average values
reported in the literature (Fung 1994, Shi and Dozier 1995, Kendra et al. 1998) and
snow crystal size represents the effective snow crystal size (Kendra et al. 1998,
Paper E).

2.2 Backscattering from dry snow-covered terrain

Due to the fact that the dielectric contrast at the air-snow boundary is small for dry
snow, the reflection coefficient is aso quite small which means that the contribution

9
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from the snow surface to the total backscattering coefficient is very small and can be
neglected in most cases. Also the contributions from multiple reflections involving
the upper and lower boundaries are much smaller than direct contributions. Because
of the small dielectric contrast the roughness of the dry snow layer is not so important
and the snow layer can be modeled as an inhomogeneous layer with a plane top
boundary and a rough bottom boundary. The dry snow layer consists of air and
randomly located ice particles of various sizes. Therefore the volume scattering in the
snow layer is governed primarily by the size of the ice crystals compared to the
wavelength. The ground contribution decreases as the snow depth (attenuation)
increases (Ulaby et al. 1986).

Based on the observations, modeling and results reported in the literature the
following conclusions can be drawn concerning the backscattering from dry snow at
5 GHz:

» the backscattering coefficient increases as a function of snow water
equivalent due to the growing effect of volume scattering (the magnitude
depends on the size of ice particles and used frequency) (see Figure 3)
(Ulaby et al. 1986, Shi et al. 1993, Paper E, Shi and Dozier 1999h),

» the backscattering coefficient decreases with incresing incidence angle,
due to the decreasing backscatter from the underlying ground (see Figure
3) (Métzer and Schanda 1984, Ulaby et al. 1986, Paper E),

* the surface roughness of the dry snow layer has almost no contribution to
the backscattering. Most of the backscattering comes from the snow layer
and the snow-ground interface (see Figure 2) (Ulaby et al. 1986, Shi et al.
1993, Paper E, Shi and Dozier 1999Db).

Backscattering Coefficient (dB)

-16 Frequency: 5.3 GHz
Polarization: VV 3
18 Snow density: 0.24 g/cmi
Crystal size: 2.8 mm

0 10 20 30 40 50 60 70 80
Incidence Angle (deg)

Figure 3. Computed effect of snow depth to backscattering coefficient as a function
of incidence angle (snow surface rms height (os) = 0.4 cm, snow surface correlation
length (I) = 5.0 cm, ground surface rms height (gy) = 1.2 cm and &+rozen ground = 6-J).
The computation is based on the backscattering model introduced in Chapter 2.1.2.

10



2. Radar Remote Sensing of Show

2.3 Backscattering from wet snow-covered terrain

While in the case of dry snow the roughness of the snow surface has an almost
negligible effect on backscattering the effect is very strong in the case of wet snow.
This effect is related to the change in the permittivity of snow. Due to the increase of
permittivity the reflectivity of wet snow is higher than that of dry snow. Therefore,
the surface roughness of wet snow is important and the snow-air interface has to be
modeled as a rough surface in contrast to the dry snow case. As the dielectric loss
factor of snow increases with increasing snow wetness (Hallikainen et al. 1986), the
absorption of wet snow layer becomes high and, consequently, the contribution from
the ground decreases. Therefore, the increase of snow wetness causes a decrease in
total backscattering as shown in Figure 4. In Figure 4 the backscattering coefficient in
dB scale decreases quite linearly up to about 2 percent of volumetric wetness. The
increase of incidence angle causes a general decrease in the absolute backscattering
level but the behavior as a function of snow wetness is similar for incidence angles
from 20 to 60 degrees (Ulaby et al. 1986, Paper E). In Figure 5 the diurna behavior
of the backscattering coefficient at various frequencies is plotted along with the snow
wetness as a function of time.

0
Frequency: 5.3 GHz
Polarization: VV
Snow density: 0.25 g/ent
o Crystal size: 2.8 mm
g - Snow depth: 1.0 m
=
s
2
& -10
Q
O
(o))
=
% 15
X H .
g Incidence angle: 40 deg.
m
-20
Incidence angle: 60 deg.
-25

0 1 2 3 4 5 6 7 8 9 10
Snow Wetness (%)

Figure 4. The effect of snow volumetric wetness to the backscattering coefficient at
various incidence angles (snow surface rms height (o) = 0.4 cm, snow surface
correlation length (I) = 5.0 cm, ground surface rms height (gz) = 1.2 cm and & frozen
graund = 6-]). The computation is based on the backscattering model introduced in
Chapter 2.1.2.

11
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Figure 5. Observed diurnal patterns of liquid water content, and backscattering
coefficient at several microwave frequencies (Stiles et al. 1980).

Based on the observations, modeling and results reported in the literature the
following conclusions can be drawn concerning the backscattering from wet snow at
5 GHz:

» the level of backscatter from wet snow is generally lower than that from
dry snow (depending on the surface roughness and incidence angle) due to
the increase of absorption. The ¢° decreases amost linearly with
increasing snow wetness (up to about 2 percent) as indicated by Figures 4
and 5 (Stiles et al. 1980, Ulaby et al. 1986, Fung 1994, Paper E),

» the difference between backscattering from dry snow and wet snow
increases with increasing incidence angle when the snow surface layer is
smooth (see Figure 3) (Ulaby et al. 1986, Guneriussen et al. 1996, Paper
E), and

* the backscattering coefficient of wet snow does not depend on the snow
water equivalent but it is highly dependent on the snow layer wetness and
roughness of the snow cover because the major contribution of backscatter
is caused by the air-snow interface (Ulaby et al. 1986, Fung 1994, Shi and
Dozer 1995, Paper E).

12
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2.4 Backscattering from forested terrain in snow-free and
snow-covered conditions

24.1 General behavior of backscattering coefficient in forest

In the case of non-forested bare ground the backscattering coefficient generally
increases with increasing soil moisture. The magnitude of increase is dependent on
soil type but not so much on the used frequency. For small incidence angles (6<10°)
the increase of surface roughness decreases the backscattering coefficient, whereas
for larger incidence angles (6 >15°) the effect is opposite (Ulaby et al. 1986).

Due to the scattering and absorption by vegetation the contribution from the ground
is smaller. At 1.2 GHz (L-band) most of the backscattering from vegetation comes
from the trunks and big branches. At higher frequencies the main backscattering
contribution comes from leaves and small branches. Increasing canopy moisture also
increases the backscattering coefficient and, generally, after rain the tota
backscattering from forest is higher than before precipitation. Due to the volume
scattering caused by canopy the effect of incidence angle for forested terrain is much
smaller than for bare ground (Ulaby et al. 1986).

2.4.2 Backscattering contribution from canopy and ground

The backscattering coefficient can be divided into four components in the case of
forested terrain (see Figure 6). The backscattered signal measured by the radar is the
sum of signal contributions from:

A) thecrown layer,
B) ground,
C) trunk, and
D) trunk-ground reflections.
All these contributions are also affected by forest canopy transmissivity.

An example of the magnitude of the backscattering contributions at C-band is shown
in Figure 7. This figure was obtained by simulating the backscattering contributions
with the HUT boreal forest semi-empirical backscattering model (Pulliainen 1994).
The trunk-ground reflection is very small due to the Brewster angle effect; the
vertically polarized wave does not reflect from the trunk but; rather, it totally
penetrates the woody tissue (Attema et al. 1978, Ulaby et al. 1982, Oh et. al. 1992,
Pulliainen et al. 1994, Pulliainen et al. 1996b).
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NN

Figure 6. Backscattering mechanisms of forest canopies. The total observed
backscattering coefficient is the sum of contributions from (A) crown layer of the
forest, (B) ground, (C) trunk and (D) trunk-ground reflections.
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Figure 7. Computed backscattering contributions at 5.3 GHz, VV polarization and
23° incidence angle in wet snow conditions: (1) total backscattering coefficient, (2)
canopy backscattering contribution, (3) soil backscattering contribution and (4)
trunk-ground corner reflection (Pulliainen et al. 1994).
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2.5 Methods to retrieve snow information from
backscattering signature

The capability of single-polarization and single-frequency SAR such as ERS SAR is
limited in snow applications (Koskinen et al. 1994, Piesbergen et al. 1995, Paper B,
Guneriussen et al. 1997). A theoretical relation between the snow thermal resistance
(which is a function of the thickness and density of snow) and backscattering
coefficient has been reported previously, suggesting a possibility to estimate the snow
water equivalent from the backscattering) (Bernier and Fortin 1993). However, no
experimental proof of this has been published. Although the ERS SAR system cannot
differentiate dry snow and bare ground, it can discriminate wet snow from other
snow/ground conditions (Koskinen et al. 1994, Paper B). This has led to the
development of a method that employs multi-temporal SAR images to monitor snow
melt (Paper B, Piesbergen et al. 1995, Paper D). Based on these results the fraction
of snow-free ground in a SAR image can be estimated by comparing it with two other
images, one acquired at the beginning of the melt period (wet snow) and the other
acquired after the melt period (thawed snow-free ground) (Paper B).

The following conclusions can be stated concerning active microwave remote sensing
of snow by using a single-band and single-polarization (C-band, VV) radar and a
small angle of incidence (23°):

* in most cases wet snow can be discriminated from snow-free ground
(Koskinen et al. 1994, Paper B, Paper D, Paper E). The discrimination
accuracy is highly dependant on the snow wetness (see Figures 4 and 9)
(Paper E),

» dry snow cannot be discriminated from snow-free ground (see Figure 9)
(Koskinen et al. 1994, Paper B),

* the backscattering coefficient depends on the snow layer wetness, not so
much on the thickness, or density of the snow layer (see Figures 3 and 4).
However, for shallow dry snow layer the ground contribution dominates
and the backscattering is lower than for thicker snow layers as shown in
Figure 3 (Stiles and Ulaby 1980, Paper E),

» the level of backscattering from wet snow depends on the surface
roughness, because most of the backscattering is due to the air/snow
interface. Rougher surfaces cause higher backscattering while often the wet
snow surface is smooth and the backscattering is low due to the mirror-like
reflection on the surface of the snow layer (MazZler and Schanda 1983,
Stilesand Ulaby 1980, Paper E),

* the backscattering level for snow-free ground is dependent on the soil and
canopy moisture (Pulliainen et al. 1994, Pulliainen et al. 1996b). The
backscattering from dry ground is low and it increases as the soil and
canopy moisture increase,
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* the backscattering coefficient has a positive correlation with forest stem
volume in the case of wet snow or dry soil and canopy. However, for moist
soil and canopy the correlation is negative (Paper C, Paper E),

* by employing theoretical and semi-empirical models the backscattering
coefficient for forested terrain can be divided into contributions from the
canopy and forest floor and, therefore, information on the snow layer can
be retrieved even in the presence of forest canopies (Paper C, Paper E),

* in mountainous terrain, geocoded SAR data is required; correction due to
the local incidence angle will improve the contrast between wet snow and
bare ground (see Figure 4) (Guneriussen et al. 1997),

e progress in snow melt can be monitored by comparing SAR images
acquired during the melt season with two reference images (SAR images
acquired before and after the melt season). Snow melt maps indicating the
fractions of bare ground and melting (wet) snow can be derived from the
comparison (Paper B, Paper D). However, forest canopy moisture
variations and thawing cause some uncertainty to the estimation (Paper C,
Paper E).

Multi-parameter SAR provides information on various layers of the snow-covered
terrain. High frequencies (X band) respond to small changes in the snow wetness and
cause the backscattering to be dominated by the snow-air interface, while low
frequencies penetrate the snow layer and most of the backscattering is due to
increased volume scattering and the snow-ground interface (Stiles and Ulaby 1980).

Shi and Dozier have studied the relation between polarimetric C-band signatures
versus snow wetness (Shi and Dozier 1995) and L-, C- and X-band signatures versus
snow water equivalent (Shi et al. 1993). The studies were conducted using SIR-C/X
data from the Mammoth Mountains in California. They employed the ratio between
like polarizations (6°,/c%) to retrieve snow wetness, while for snow water
equivalent retrieval they used multiple frequencies. However, these results included
few samples and, therefore, it is very difficult to verify the retrieval accuracy for these
methods.

By using a combination of multiple bands and polarizations

 dry snow can be discriminated from bare ground using X-band data. The
best classification results of different snow/ground categories (dry snow,
wet snow and frozen ground) are obtained using a combination of C- and
X-band (Jaaskeldinen 1993),

» arough estimate for snow wetness (ratio between C-band VV and HH
polarizations) and snow water equivalent (combination of L, C and X band
polarimetric backscattering signatures) can be derived (Shi et al. 1993, Shi
and Dozier 1995) and
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 information on the structure (particle size, density and layers) of snow can
be obtained. Lower frequencies (L- and C- band) penetrate the snow layer,
while the backscattering at higher frequencies (X-band) is due to the air-
snow boundary. Lower frequencies are less sensitive to changes in the
snow layer (density, depth, wetness and layering), while higher frequencies
react to smaller anomalies in the snow layer. L-band can be used to
estimate snow density and subsurface properties (roughness) due to small
volume scattering and extinction in snow layer (Shi and Dozier 1999a),
while X-band can be employed to retrieve an estimate to the particle size
(Shi and Dozier 1999b).

Based on recent radar studies only snow extent mapping during the snow melt season
seems feasible, because al SAR satellites employ single-frequency and single-
polarization radar. However, an operational application would also need a regular
revisit time (once a week) and fast processing services (few hours from the satellite
pass). In the near future the launch of ENVISAT (C-band, VV, VH and HH -
polarization) and possibly USSAR (former LightSAR, L-band VV- and HH-
polarization and possible X-band) will provide more multi-channel SAR data.
However, the operationa hydrological application would need multiple frequencies
in the same satellite radar in order to obtain simultaneously information on the air-
snow interface, the snow layer and on the snow-ground interface.

17



3. Results and Discussion

3. Results and Discussion

3.1 Seasonal radar response to land-use categories

Backscattering is strongly affected by the soil and canopy moisture and surface
roughness. The potential of microwave radar in land-use classification is related to
the possibility to discriminate land-use classes, which differ from each other with
respect to these characteristics (Ulaby et al. 1986, Guyenne 1995, Guyenne and
Bernards 1995). As several parameters contribute to the level of backscattering it is
difficult to discriminate land-use classes using a single SAR image. However, by
studying the seasona variations of backscattering some land-use classes can be
discriminated (Paper A). In Finland seasonal snow cover adds an extra feature to the
seasonal behavior. As explained in Chapter 2 dry snow dlightly attenuates the radar
signal and causes volume scattering at C-band, but wet snow cover masks out short
vegetation and small soil roughness and, therefore, increases correlation with the
forest stem volume (Pulliainen et al. 1996b, Paper A, Paper B). For snow-free
terrain the correlation between the backscattering coefficient and stem volume may
be negative, while in the case of wet snow it is positive as shown in Figure 8.

-5.5

-6 ERS-1 results for the Sodankyla test area

Backscattering Coefficient (dB)
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Figure 8. ERS-1 SAR results for the Sodankyla test area under summer and winter
conditions. Curves (a)-(c) show the summer time responses and the curves €) and d)
show the winter time responses. (a) 24 June 1992 (no snow), (c) 29 July 1992 (no
snow), (e) 1 May 1992 (wet snow), (b) 18 September 1992 (no snow) and (d) 20
January 1993 (dry snow). The results are presented for clear-cut areas (0 m*/ha) and
four stem volume classes: 0-50 m*ha, 50-100 m*ha, 100-150 m*ha and 150-200
m°/ha (Paper A).
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By comparing the first three principal components of 16 SAR images and a land-use
map from the Sodankyl& test site (40 km by 40 km) significant correspondences were
noticed which suggests the possibility to use multi-temporal ERS-1 SAR images for
land-use classification. Especially moist land-use classes (bogs and mires) were
visible (Paper A). Based on visual observations and the analysis conducted using the
boreal forest semi-empirical backscattering model six land-use classes were chosen
to represent the whole test area (Paper A). These classes are shown in Table 2.

The results obtained by using supervised classification and the first three principal
components are summarized in a confusion matrix in Table 2. The total classification
accuracy was 43 % for the six classes employed. The best results were obtained for
the classification of (1) land vs. water, and (2) mineral soil vs. peat land (mires and
bogs). The results suggest that water, peat land and mineral soil areas can be
discriminated. The accuracy of stem volume classification was below the average
classification accuracy. An obvious reason to this is that there were actually three
different categories of vegetation (mire and two forest stem volume classes) in the
classification. If the two stem volume classes had been combined to a single class
(forest on mineral soil), accuracy would obviously have been higher. The most
difficult task for the algorithm was to identify open areas. This is due to the large
variability (clear-cut, field, gravel) within this class (Paper A).

Table 2. Confusion matrix for supervised land use classification. The classification
was made by employing multi-temporal ERS-1 SAR data from Sodankyla test site
during years 1991-1993 (Paper A). The rows present the results of classification in
percent. The classes on the columns are from the reference land-use map, which is
based on classification made using optical (Landsat and Spot) images. The reference
map has a reported accuracy of 65 to 100 % depending on the land-use class
(Paavilainen et al. 1992)

Class Water Forest Forest Open  Open Mire Classification
below above area bog accuracy %

100m*ha 100m%ha

Water 82 1 - - 2 - 82

Forest

i 0 42 36 29 8 21 42

100m°/ha

Forest

. 0 23 38 1 3 9 38

100m°/ha

Open area 15 7 7 18 3 4 18

Open bog 3 6 4 7 54 10 54

Mire 0 21 15 35 30 56 56

Total of 51207 1103531 257755 240604 283462 180552 43

samples
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3.2 Mapping of snow/ground condition and snow extent

The seasonal SAR data of 21 images acquired during years 1991 to 1993 was divided
into four categories (wet snow, dry snow, thawed snow-free ground, frozen snow-free
ground) by using weather information. The mean backscattering coefficients of SAR
data was calculated for each land-use class in different seasonal conditions. Figure 9
shows that the mean backscattering values for wet snow conditions are clearly
different from those for other categories. This suggests that the potentia of ERS-1
SAR in discriminating snow from soil categories is limited to wet snow detection
(Paper B). The difference between the mean value of the backscattering coefficients
for wet snow and the other categories is about 3 dB for open areas. The difference
decreases with increasing biomass in the test site shown in Figure 9. In case the
ground is covered by wet snow layer the backscattering coefficient increases as a
function of stem volume. The backscattering portion caused by the snow layer
decreases as the stem volume increases, since the absorption and scattering by the
forest canopy increases. Forest canopy causes higher backscattering than wet snow
and as a result the total backscattering coefficient increases as shown in Figure 8
(curvee).

x Pine -

Clear-cut

Backscattering Coefficient (dB)

-11

Thawed Snow-  Frozen Snow- Wet Snow Dry Snow
Free Ground Free Ground

Figure 9. ERS'1 SAR derived average backscattering coefficients for clear-cut and
forested areas (stem volume 50-100 m*/ha) in different snow conditions in Sodankyla
test site. The data was collected during years 1991 to 1993 (Paper B).

The fact that wet snow can be discriminated from snow-free ground suggested the
possibility to develop a method for mapping the snow extent during the snow melt
period. The algorithm developed in Paper B observes the pixel-wise backscattering
coefficient of an image acquired during the snow melt period relative to those of the
two images acquired at the beginning and after the melt period (Paper B). The idea of
the algorithm is shown in Figure 10.
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The functionality of the algorithm was tested by producing snow melt maps for the
River Kemi drainage area. These maps were compared with daily visual observations
of the snow/ground condition at each weather station. As indicated in Table 3, the
SAR-derived snow extent percentage behaves logically when compared with
observations at the weather stations, i.e. when the weather station observation
changes from the total snow cover towards snow-free condition also the SAR-derived
snow extent percentage decreases. However, the SAR-derived snow extent
percentage decreases within the same weather station observation class during the
three sample dates. The main reason for this behavior is that al ground observations
are made only near the weather station and so the spatial coverage is poor compared
to SAR-derived estimates (Paper D).

o0
A Tonfree

Time

Figure 10. Sketch of the evolution of backscattering coefficient (¢°) as a function of
time during snow the melt period. The ®w« sow Value is the backscattering
coefficient at the time when the whole pixel is covered by wet snow, the &%, value is
related to the investigated situation and the @’siow-free Value is the backscattering
coefficient at the time when all snow has melted within the pixel.

Table 3. Comparison of SAR-derived snow extent and ground data collected from the
weather stations. The SAR derived value represents the mean and standard deviation
of pixel-wise snow extent estimates within the weather station observation area
(Paper D).

Weather station based observation for snow extent (%) SAR-derived estimate for
snow extent (%)

May 25, May 28, June4,

1997 1997 1997
Totally covered by snow (100%)
More than half of the area covered by snow (>50%) 76+ 20 73+£13
Lessthan half of the area covered by snow (<50%) 68 + 23 48 + 27 23+10
Snow exists only in forest 49 + 20 31+18 14+ 13
Snow-free (0%) - 29+ 15 0
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3.3 Application of the HUT boreal forest backscattering
model for snow monitoring

The boreal forest backscattering model (Pulliainen 1994) was used in Paper A and
Paper B to simulate the effect of ground and forest canopy moisture to the
backscattering coefficient. The model provides important information on the
backscattering behavior in varying seasonal conditions as a function of stem volume.
In Paper C that is based on the simultaneous measurements of HUTSCAT ranging
scatterometer and ERS-1 SAR, the model was used to estimate the magnitude of
various backscattering mechanisms in spaceborne SAR observations. The model
simulations were conducted in various seasona conditions in order to determine how
the backscattering contributions from the forest canopy and forest floor, as well as
the total backscatter, change, and to determine the instrument response to the
biomass. By employing the ranging capability of HUTSCAT scatterometer the
measurement spectrum from forest area can be divided into (a) backscattering portion
caused by top of the canopy and (b) portion caused by ground and multiple scattering.
Statistical analysis of HUTSCAT and ERS-1 SAR measurements verifies the similar
behavior of these data sets and, therefore, justifies the use of borea forest
backscattering model in the analysis of various scattering contributions of ERS-1
SAR measurements. Figure 11 shows the ERS-1 SAR backscattering coefficient
divided into ground and canopy contributions in wet snow conditions.

1 May 1992: Wet Snow Conditions
_4 T T T

-10r +

=12 %

_14 -

Soil moisture estimate: 11.24 %
Canopy moisture estimate: 53.25 %

Backscattering Coefficient (dB)

Dotted line: ERS-1 response
Solid line: Modeled response
HUTSCAT-observations:

% : total backscatter

O : canopy backscatter

) X _: ground backscatter

0 50 100 150
Stem Volume (m”3/ha)

Figure 11. Observed behavior of ERS1 SAR and HUTSCAT-derived total
backscattering coefficients and modeled backscattering contributions obtained by
fitting the semi-empirical backscattering model into HUTSCAT observations in wet
snow conditions. The estimated effective soil moisture value (11.24%) corresponds to
the dry/frozen ground, which has similar backscattering magnitude as wet snow
(Paper C).
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The results indicate that the use of the semi-empirical model and HUTSCAT data
allow quantitative clarification of how various scattering mechanisms affect ERS-1
SAR results under different seasonal conditions and for different types of forest
canopies. The novel features introduced in Paper C include the possibility to extract
the backscattering contribution from the forest canopy and analyze the forest ground
layer backscattering contribution. Therefore, by using the model together with ERS
SAR measurements we can better analyze the backscattering from the snow layer in
forested area by extracting the backscattering caused by the forest canopy and thus
monitor more closely the behavior of snow layer in forested area as verified in Paper
E.

3.4 Effect of various snow parameters to the accuracy of
HUT snow melt algorithm

The HUT snow melt algorithm has been developed using ERS-1 SAR measurements.
The main principle of the HUT snow melt agorithm is that the fraction of snow
cover in every pixel is estimated by comparing a SAR image acquired during the
snow melt period with the reference images acquired at the beginning of the snow
melt period (the whole area is covered by wet snow) and after the snow melt period
(the whole area is snow-free wet ground). By applying the backscattering model
presented in Paper E and discussed in Chapter 2.1.2 we can investigate the effect of
various snow parameters to the total backscattering coefficient of snow-covered
terrain. This information can be used to compare the accuracy characteristics of the
snow melt algorithm. Figure 12 shows the modeled ratio of o for wet ground to o°
for wet snow with various combinations of physical snow characteristics. In the
simulation of Figure 12 the following ranges of parameter values were used:

» snow depth: 20 to 200 cm,

« snow density: 0.2 to 0.5 g/cm’,

* snow crystal size: 2.0 to0 4.0 mm,

 snow surface roughness. rms 0.4 cm , correlation length 5.0 cm
» snow-free ground moisture: 25 to 30 %,

» ground surface roughness: rms 1.2 cm,

 radar: C-band, VV-polarization and incidence angle 23 degrees.

The variation ranges are selected to represent the typical cases in Finland. However,
both snow and ground surface roughness characteristics represent the average values
reported in the literature (Fung 1994, Shi and Dozier 1995, Kendra et al. 1998) and
snow crystal size represents the effective snow crystal size (Kendra et al. 1998,
Paper E). The results are presented as a function of snow wetness. The vertical bars
indicate the variation caused by the above parameters within their respective ranges.
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In Figure 12 the results of the simulations of the HUT snow melt algorithm show that
the standard deviation of backscattering difference decreases as the snow wetness
increases. Most of the variation in the case of low snow wetness is due to the
variation of volume scattering in the snow layer. For thin snow layers (0.5 m) the
effect of ground scattering dominates and, therefore, the total backscattering is lower
than that for thicker snow layers where the volume effect dominates. The smallest
variation is obtained when snow wetness is above 2 %. In this case the standard
deviation of the snow melt agorithm is less than 2 dB (the mean difference varies
from 6.5 to 7.4 dB). In principle the level of snow-free ground backscattering in the
HUT snow melt algorithm also depends on the surface roughness, but because the
comparison is always done pixel-wise this effect can be eliminated (Paper E).

Snow-Free Ground - Wet Snow

Difference (dB)
(6]

0.5 1.0 1.5 2.0 25 3.0 35 4.0
Snow Wetness (%)

Figure 12. The behavior of backscattering coefficient difference between wet snow
and snow-free ground as a function of snow wetness. The calculation is based on
various snow depths (20-200 cm), snow densities (0.2-0.5 g/cm®) and snow crystal
Sizes (2.0-4.0 mm). The vertical bars indicate the standard deviation of the mean
backscattering differences (Paper E).

3.5 Combined use of optical and SAR data

Optical satellite datais used operationally in snow extent monitoring (Solberg 1997);
however, the availability of optical datais very limited due to the clouds and weather
conditions especialy in spring. Therefore, the need for microwave data is obvious.
The results in Paper D show that the surface reflectance obtained from NOAA
AVHRR observations agrees with the snow cover percentage derived from SAR data.
The comparison was carried out for asingle SAR and AVHRR image acquired at the
begining of June 1997. The correlation of AVHRR and SAR results were analyzed
for various landcover / vegetation classes. In Figure 13 AVHRR reflectances (visible
channel) are plotted against SAR-derived proportions of snow-free ground. The
correlation between AVHRR-derived reflectance and SAR-derived proportion of
snow-free ground for non-forested terrain in mineral soil is good (R = 0.82).
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However, for forested terrain the correlation between NOAA and SAR observation
decreases (R = 0.63). This is mainly because the visible and near infrared waves
cannot penetrate the forest canopy, while microwave frequencies provide information
also on the forest ground layer. The worst correlation (R = 0.37) was obtained for a
class, which was a combination of mire and sparse forest on mineral land. The poor
correlation is most likely due to the different properties of these classes. Especially
the SAR-derived results can be affected by the large water content in mires after the
snow melt; some of the mires can have ponds which strongly effect the
backscattering coefficient measured by SAR and, therefore, lead to poor estimation
of snow cover percentage.

The good correlation between SAR- and NOAA-derived values will benefit the
operational snow cover mapping methods; when optical datais not available it can be
replaced with SAR data.
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Figure 13. SAR-derived proportion of snow-free ground against AVHRR visible
frequency channel-derived reflectances in non-forested areas (Paper D).
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4. Summary of Appended Papers

All papers concentrate in remote sensing of snow and the emphasisin all papersisin
active microwave sensors.

In Paper A seasonal radar response to land-use is observed with ERS-1 SAR. In the
study atotal of 16 SAR images in various seasonal conditions are employed. In order
to compress the data set and decrease the effect of speckle principal component
analysis is used. Both supervised and unsupervised classification experiments are
done using the first three principal components. The results are compared with a
land-use map, which is produced by National Land Survey of Finland using optical
satellite data and ground surveys. Both supervised and unsupervised land-use
classification conducted using radar data show results similar to the classification
based on optical data.

Paper B describes the general backscattering behavior of different snow types (dry
and wet snow) and snow-free ground in northern Finland. Based on the observations
anovel pixel-wise snow cover classifier is developed. As aresult of the classification
a map showing the proportion of snow-covered ground versus snow-free ground is
obtained. The results have been compared with model simulations and visual
interpretation based on airborne video.

In Paper C a comparison of airborne ranging scatterometer and spaceborne SAR data
is presented. The emphasis is on combined use of airborne and spaceborne radar in
boreal forest and snow monitoring. The measurements are compared in five different
seasonal conditions and for various land-use categories. Based on statistical analysis
the behavior of airborne ranging scatterometer and spaceborne SAR datais similar in
various seasona conditions and for various land-use categories. By applying the
HUT boreal forest backscattering model and the statistical comparison of HUTSCAT
and ERS-1 SAR the backscattering coefficient of ERS-1 SAR in forest areas can be
divided into two contributions: (1) contribution from forest canopy and (2)
contribution from ground. This information helps us to monitor the backscattering
behavior of underlying soil/snow for forested terrain.

Paper D can be regarded as a follow-up study for Paper B. In this study the
classification algorithm developed in Paper B is further verified with a larger SAR
data set. The SAR-derived results are also compared with optical NOAA AVHRR-
derived reflectances and operationally used in situ surveys. The results show that the
algorithm developed in Paper B works well and the snow melt maps correlate with
the optical data set. According to these results the remotely sensed data would benefit
the operational snow melt forecasts by providing a larger spatial coverage than
ground surveys made on snow courses. Also more frequent information can be
obtained by using remotely sensed data instead of in situ surveys which are done only
once amonth.

Paper E presents a backscattering model for snow. By applying this model the effect
of various snow properties to the backscattering at C-band, VV-polarization is
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simulated. Based on the results obtained in Paper C the snow model is combined
with the HUT borea forest backscattering model so that it is possible to analyze
snow cover also in forested areas. The model is verified using HUTSCAT- and ERS-
measurements conducted in Sodankyld. The model is used to theoretically anayze
the effect of various snow parameters to the snow melt algorithm presented in Papers
B and D. Based on the model simulations theoretical accuracy values are derived for
the snow melt algorithm.
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