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ABSTRACT

The emerging �eld of text mining applies methods from data mining and exploratory data
analysis to analyzing text collections and to conveying information to the user in an intu-
itive manner. Visual, map-like displays provide a powerful and fast medium for portraying
information about large collections of text. Relationships between text items and collec-
tions, such as similarity, clusters, gaps and outliers can be communicated naturally using
spatial relationships, shading, and colors.

In the WEBSOM method the self-organizing map (SOM) algorithm is used to au-
tomatically organize very large and high-dimensional collections of text documents onto
two-dimensional map displays. The map forms a document landscape where similar doc-
uments appear close to each other at points of the regular map grid. The landscape can
be labeled with automatically identi�ed descriptive words that convey properties of each
area and also act as landmarks during exploration. With the help of an HTML-based in-
teractive tool the ordered landscape can be used in browsing the document collection and
in performing searches on the map.

An organized map o�ers an overview of an unknown document collection helping the
user in familiarizing herself with the domain. Map displays that are already familiar can be
used as visual frames of reference for conveying properties of unknown text items. Static,
thematically arranged document landscapes provide meaningful backgrounds for dynamic
visualizations of for example time-related properties of the data. Search results can be
visualized in the context of related documents.

Experiments on document collections of various sizes, text types, and languages show
that the WEBSOM method is scalable and generally applicable. Preliminary results in
a text retrieval experiment indicate that even when the additional value provided by the
visualization is disregarded the document maps perform at least comparably with more
conventional retrieval methods.

c© All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.
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1 INTRODUCTION

Large quantities of textual data available for example on the Internet pose a continuing
challenge to applications that help users in making sense of the data. Search engines
specialize in locating speci�c documents in answer to well-de�ned information requests.
However, ful�lling a vague information need regarding an unknown domain, or obtaining
an overview of a topic or a domain is very hard. Furthermore, when the answers sought
relate to a set of documents instead of a single document, or when unexpected patterns or
trends should be identi�ed, the information need is better served by methods enabling a
combination of visualization and interactive exploration.

In data exploration the purpose is to assist the user in familiarizing herself with a large
collection of data, for example, by visualizing aspects of the data collection and by enabling
browsing and navigation in the data space in some meaningful way. The di�erence between
searching and exploration is much like the one between having to ask in a store for the
items from a salesperson, as opposed to walking among the shelves, and picking up whatever
seems desirable. Naturally, these means of �nding interesting items are complementary:
sometimes one wishes to browse, and at other occasions to ask the shop personnel for help.

In recent years neural networks have been successfully applied to a variety of data
analysis problems on complex data sets. However, a large portion of the research has
concentrated on small or medium sized data sets consisting of numerical data or natural
signals. Consequently the methods have been well-studied and developed especially for
small-scale problems dealing with low-dimensional data. However, as the computing power
has increased it has become possible to tackle much larger problems.

This thesis describes work that has been carried out to develop an automatic method
called WEBSOM ([40], [41], [42], [37], [39], [43], [55], [51], [52], [53], [59], [54], [67], [64],
[65], [68], [73], [72], Publications 1�8) that enables easy exploration of very large collections
of text documents. In WEBSOM an unsupervised neural network algorithm, namely the
self-organizing map (SOM), developed by T. Kohonen [61, 62], is applied to automatically
organize large collections of text documents onto a two-dimensional display called the
map. The method places documents on regularly spaced map grid points where similar
documents are generally found near each other. The resulting map can be browsed with
a WWW-based exploration interface. Zoom operations can be used to focus on a detailed
view of a sub-collection, and further zooming brings to view individual documents. Label
words positioned on the map display portray properties of the underlying map area. In
addition, a search facility provides a means for describing a speci�c interesting topic and
for �nding a suitable starting point for exploration.

The thesis contains a detailed treatment of the visualization and user interaction aspect
of the WEBSOM as well as examines the possible ways of utilizing document maps to
provide an intuitive user interface for accessing collections of textual data. Furthermore,
an overview of the WEBSOM method and the project is presented and an attempt is made
to give an introduction to the more general research context of the work, namely the �eld
of text mining, with an emphasis on visual methods.

1.1 Contributions and structure of this thesis

Following are the main contributions of this thesis:

• An overview is presented of the research context of the WEBSOM method, namely
text mining, with an emphasis on the visual and exploratory aspects that have
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received less attention in the mainstream of research, focused on the searching
paradigm. It is argued that WEBSOM and similar visual approaches are indeed
an improvement over the search-centered mainstream approaches, since they provide
a natural framework for all the major text mining tasks by o�ering a combination of
visualization, exploration, and searching.

• The visual text exploration paradigm, especially the map metaphor, is very recent.
As a result, neither the possibilities nor the di�culties in navigation of vast text
collections using visual landscapes have been fully explored. By discussing choices
made in an implemented system various challenges regarding visualization of and
navigation in document landscapes can be introduced. Furthermore, the demonstra-
tion interfaces provide a common framework for conveying and discussing additional
ideas regarding map-based visualization and navigation.

• A method is introduced for utilizing document maps in information retrieval. It is
shown with a standard test material that not only can the document maps be used
for exploration and visualization, but also for successfully speeding up information
retrieval, and for improving retrieval results compared to standard methods on noisy
data.

The structure of this thesis is as follows: In Section 2 the �eld of text mining, including
the central tasks and paradigms, is introduced. Section 3 �rst overviews the adaptive
learning approach, then discusses properties of natural language that a�ect the problem
of representing text, and �nally presents various document representations used in text
mining approaches, with an emphasis on distance-based methods. Section 4 provides a
concise overview of the WEBSOM method including its evolution since the start of the
project. Section 5 explores the various possible uses of document maps in tasks related to
text mining.

1.2 List of publications and the author's contributions

1. Lagus, K., Kaski, S., Honkela, T., and Kohonen, T. (1996). Browsing digital libraries
with the aid of self-organizing maps. Proceedings of the Fifth International World
Wide Web Conference WWW5, May 6�10 , Paris, France, pp. 71�79.

2. Lagus, K., Honkela, T., Kaski, S., and Kohonen, T. (1996). Self-organizing maps of
document collections: a new approach to interactive exploration. In Simoudis, E.,
Han, J., and Fayyad, U., editors, Proceedings of the Second International Conference
on Knowledge Discovery & Data Mining (KDD'96) , pp. 238�243. AAAI Press, Menlo
Park, CA.

3. Lagus, K. (1998) Generalizability of the WEBSOM method to document collections
of various types. In Proceedings of 6th European Congress on Intelligent Techniques
& Soft Computing (EUFIT'98) , vol. 1, pp. 210�214, Verlag Mainz, Aachen, Germany.

4. Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. (1998). WEBSOM�self-
organizing maps of document collections. Neurocomputing , vol. 21, pp. 101�117.

5. Lagus, K. and Kaski, S. (1999) Keyword selection method for characterizing text
document maps. In Proceedings of the Ninth International Conference on Arti�cial
Neural Networks (ICANN'99) , vol. 1, pp. 371�376. IEE Press, London.
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6. Lagus, K., Honkela, T., Kaski, S., and Kohonen, T. (1999). WEBSOM for textual
data mining. Arti�cial Intelligence Review . vol. 13, issue 5/6, pp. 345�364. Kluwer
Academic Publishers.

7. Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., and Saarela,
A. (2000). Self organization of a massive text document collection. IEEE Transac-
tions on Neural Networks, Special Issue on Neural Networks for Data Mining and
Knowledge Discovery , vol. 11, pp. 574�585.

8. Lagus, K. (2000). Text retrieval using self-organized document maps. Technical
Report A61, Helsinki University of Technology, Laboratory of Computer and Infor-
mation Science. ISBN 951-22-5145-0.

The WEBSOM method has been developed by a team of several people since the onset of
the project in 1995. In particular, two doctoral theses have been published that partially
consist of research on the method [37, 52].

The original idea of using a two-stage SOM architecture for organizing document collec-
tions was due to Prof. Timo Honkela. Later it became evident that more suitable solutions
could be discovered for large collections. The project for developing the new methods
was led by Academician Teuvo Kohonen and the software development was supervised by
Prof. Samuel Kaski. In particular, the speedups that allowed the application of the method
to very large collections are due to T. Kohonen and to S. Kaski. The ideas mainly due
to the current author concern the design and implementation of the exploration interface
and the public demonstrations, the labeling method described in Publication 5, and the
application to information retrieval in Publication 8. Many other ideas and details, the
implementation, and the experiments were developed as a team, and it is not possible to
give a full account of the detailed contribution of each team member.

Publication 1 presents the exploration interface in detail. The initial form of the WEB-
SOM method is described in Publication 2 and applied to organizing and exploring a
collection of articles from a Usenet discussion group. The current author designed and
implemented the exploration interfaces.

The applications of the method to various types of documents and to collections of
di�erent sizes are discussed in Publication 3. The experiments regarding the collection of
patent abstracts and of the Finnish news articles, as well as creation of the demonstrations
were due to the current author.

Publication 4 describes the state-of-the-art of the WEBSOM in 1998, including some
speedup methods. The current author carried out the experiments and programming re-
lated to the magni�cation of the maps and the user interface.

Publication 5 introduces an automatic method for characterizing clusters of text and
document map areas with descriptive words. An early version of the method was developed
jointly with S. Kaski, whereas the �nal version as well as the experiments were designed
and implemented by the current author.

Publication 6 explores the various ways of utilizing document maps in text data mining.
The current author created the document map shown in the exploration and search exam-
ple, implemented the search facility, and designed and carried out the �ltering experiment.

Publication 7 describes the results of a team e�ort on speeding up the methods and
programs in order to construct a very large document map of seven million patent abstracts.
The speedups in SOM processing were developed by T. Kohonen and S. Kaski. Principal
responsibility areas of the current author were the design and creation of the e�cient and
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scalable exploration interface, as well as the design and supervision of the implementation
of fast versions of the labeling method, implemented by Antti Saarela, and of the keyword
search engine, implemented by Vesa Paatero.

In Publication 8 a method is proposed for using document maps for text retrieval. When
comparing retrieval performance on the CISI reference collection the proposed method is
found to perform better than either the standard vector space model or the LSI.

2 TEXT MINING

With technological advances our possibilities to collect, generate, distribute and store text
data have grown fast. Nowadays virtually anyone or any institution within the technolog-
ically developed world can easily and with little cost become an information provider for
an unlimited audience. Consequently, instead of rare pieces of valuable texts, we are faced
with a vast amount of textual data of unknown value.

As a result, the former methods of managing the texts, such as libraries and hierarchies
organized and cataloged by human e�ort, have become both inadequate and too expensive
to perform and to maintain for the majority of the available data. The use of automatic
methods, algorithms, and tools for dealing with large amounts of data, especially of textual
data, has become necessary. Attempts to solve particular aspects of this general problem
can be loosely described as e�orts in text mining.

Text mining can be viewed as a speci�c �eld of data mining: �Data mining is the analysis
of (often large) observed data sets to �nd unsuspected relationships and to summarize the
data in novel ways which are both understandable and useful to the database owner [28]�.
General overview of the �eld can be found in [18, 28]. The data mining �eld is closely
related to exploratory data analysis ([112], for a recent account related to the present work
see [52]) and to knowledge discovery in databases 1.

Tasks that a data mining system should help with include

• organizing, clustering and classifying data,

• creating overviews and summaries,

• identifying trends and changes across time,

• identifying dependencies and unsuspected relationships in the data,

• providing other tools and indicators for speci�c decision-making tasks, and

• visualizing properties of individual data items, of collections of data, and of relation-
ships between data items and collections.

2.1 Information needs and tasks related to texts

The goal of a text mining system is to aid the user in ful�lling his/her information need .
In some cases, a speci�c question needs to be answered, or a certain document to be found,
whereas in other cases an overview of a topic is desired. At other times, the need is just
to merely �nd �something interesting�, or to obtain a general understanding of �what is

1Some view data mining as the modeling step of the more comprehensive KDD process (e.g. [18]),
whereas others use the terms more or less as synonyms.



11

out there�, or to �nd unexpected patterns or other new information. Furthermore, the
need may be only vaguely understood by the user, and in some cases di�cult to express in
natural language.

The major tasks related to various information needs could be described as searching,
browsing and visualization.

Searching. In the searching approach the user speci�es an information request in terms
of a query and asks the system to locate individual documents that correspond to the query.
The Internet search engines [74] are a familiar example of tools that specialize in this task.

In the search paradigm a very modest form of text mining is performed, namely in-
formation access . It is supposed that the user already knows rather clearly what is to be
found, and is well versed in expressing her information need. However, the need may be
vague, the domain unknown, and the appropriate, specialized vocabulary hard to come
by2.

Browsing. In browsing, the user navigates in the collection of text, e.g. via links between
individual documents like in the WWW (browsing a hypertext or a sparsely connected
graph), or via some hierarchical structure such as the contents section of a book or the
Yahoo! which is a hierarchical, manually constructed directory of WWW sites (structure
guided browsing), or via a �at organization such as a points on the display that represent
documents (�at browsing).

The browsing approach allows for the information need to be more vague or uncon-
scious, since no explicit description of the need is required. Instead, the need is implicitly
communicated via the choices made in browsing, such as the links followed.

In both searching and browsing the background assumption is that the information need
of the user can be addressed by individual documents that the user should read. However,
when the need is either very vague, or very general, providing access to even the most
appropriate individual documents might not ful�ll the need. In such cases, summary-like
information might be more appropriate and useful.

Visualization. In visualization of information something familiar is used as a means for
illustrating something yet unfamiliar. As pointed out, there exist information needs that
require assessing and conveying similarities, di�erences, overlaps, and other relationships
between collections of documents . As an example, one might wish to �nd out what is the
relationship between a familiar set of documents, e.g. personal �les or familiar mailing list,
to a yet unfamiliar collection, e.g. a Usenet discussion group. Using suitable visualizations
intricate relationships between large collections of items can be communicated fast and
intuitively.

Shneiderman identi�es the following seven major tasks that a visual and interactive
information exploration system should address [108]:

• Gain an overview of the entire collection

• Zoom in on items of interest

• Filter out uninteresting items

2This is often called the vocabulary problem .
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• Select an item or group and get details when needed

• View relationships among items

• Keep a history of actions to support undo, redo and progressive re�nement

• Allow extraction of sub-collections and the study of their properties

It is likely that the most useful tools for text mining will in the future encompass all of the
above aspects, providing a variety of means to explore large collections of text by enabling
a seamless alternation between visualization, browsing, and searching.

2.2 Information retrieval

The oldest and most established sub-�eld of text mining is information retrieval (IR)
[101, 104, 3] which deals with �the representation, storage, organization, and access of
information items� [3]. The research in the �eld focuses on the search problem, i.e. on the
situation where it is assumed that the information need can be described explicitly and
adequately.

The core tasks performed by any information retrieval system are indexing text and pro-
viding means to search for relevant documents from the text collection. Indexing consists
usually of the identi�cation of index keys (e.g. terms) and the construction of a data struc-
ture called the index that points from the index keys to speci�c locations in the running
text. A typical search consists of formulation of a query based on information obtained
from the user after which the IR system attempts to �nd documents that are relevant
to the query, and returns them to the user. The query may be simply the set of words
written by the user, or concept-space techniques or relevance feedback may be utilized for
query expansion and re�nement (the process of query construction and expansion has been
studied e.g. in [60]).

2.2.1 Classical retrieval models

An overview of retrieval models can be found, e.g., in [3]. The three classical models are
brie�y described below.

Boolean model. In Boolean retrieval a document is represented by a set of index terms
that appear in the document. A query consists of a set of index terms combined with Boole's
operators. The model is binary, i.e. the frequency of a term has no e�ect. In this model the
semantics of the query is well-de�ned�each document either ful�lls the Boolean expression
or does not3. Due to its uncomplicated semantics and the straightforward calculation of
results using set operations, the Boolean model is widely used e.g. in commercial search
tools.

However, also the problems of the Boolean model are well-understood: (1) Formulating
a suitable query, i.e., the selection of appropriate query terms is di�cult, especially if the
domain is not well known. (2) The size of the output cannot be controlled: the result set
may as easily contain zero or thousands of hits. Furthermore, without a concept of �partial
match�, one cannot know what was left out of the query de�nition. (3) Since there is no
gradedness of matching, ordering results according to relevance is not possible.

3The boolean retrieval model is also called the exact match approach.
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Vector space model. The vector space model or VSM, introduced by Salton (see
e.g. [105, 102]), encodes documents in a way suitable for fast distance calculations. In
short, each document is represented as a vector in a t-dimensional space, where t is equal
to the number of terms in the vocabulary. In this model the problem of �nding suitable
documents to a query becomes that of �nding the closest document vectors for a query
vector, either in terms of distance or of angle. Furthermore, the model allows straightfor-
ward application of a number of general data processing methods and algorithms. Variants
of the VSM, or more generally the family of distance- or projection-based models underlie
the research in many modern information retrieval systems.

Probabilistic models. The probabilistic retrieval model makes explicit the Probability
Ranking Principle that can be seen underlying most of the current IR research [80]: For
a given query, estimate the probability that a document d belongs to the set of relevant
documents and return documents in the order of decreasing probability of relevance 4.
The key question is, how to obtain the estimates regarding which documents are relevant
to a given query. One may e.g. start with an initial guess for the sets of relevant and
irrelevant documents, and recursively improve this estimate by use of some simplifying
assumptions and local optimization. In the original, Binary Independence Retrieval model ,
term occurrences are considered binary and terms are assumed independent. Given these
assumptions a probabilistic weighting can be derived for index terms, and utilized similarly
as the weighting schemes in the vector space model.

Recently, other kinds of probabilistic models, such as Bayesian Inference Networks have
been utilized for information retrieval [7, 1]. In such models, the relationships between
documents and queries are described as Bayesian nets. The Bayesian approach enables
principled combination of information from various sources during the retrieval process.

2.2.2 Evaluation of retrieval performance

The performance evaluation of an IR system is based on the notion of relevance: if a
document matches the information need of the user, it is considered to be relevant to the
query produced by the user. The quality of retrieval of an IR system can be measured if
there is, for some text collection, a set of queries and their respective relevant documents,
preferably chosen manually by experts. The basic evaluation measures are the following:

precision =
number of relevant items retrieved
total number of items retrieved

(1)

recall =
number of relevant items retrieved

number of relevant items in collection
(2)

It is not immediately clear what the relationship between a natural language query and a
document should be. In some cases, the user would like to ask speci�c questions such as
�What was the lowest price of raw oil last week?�, in other cases, specifying an interesting
topic, such as �Nokia cellular phones�, might be enough. The IR system should therefore
determine the user's underlying information need and represent it as a query.

4The relevance of a document is considered independent of previously returned documents.
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2.2.3 A critique of the search approach

In the search paradigm a very modest form of text mining is performed, namely information
access. It is supposed that the user already knows rather clearly what is to be found, and is
well versed in expressing his/her information need. However, the domain may be unknown,
and the appropriate, specialized vocabulary hard to come by.

When the information need is only vaguely understood, even providing access to the
most appropriate individual documents might not ful�ll the need. Presenting summary-like
information as well as displaying relationships between sets of documents might then be
more appropriate.

The lists of results provided by many IR engines allow displaying only one-dimensional
information, e.g. the estimated relevance of each document. As a consequence, thematically
similar items may be far apart, making it di�cult for the user to form a summary of the
results and to discard irrelevant ones. In addition, the lists do not in any way support
relating the set of results to the rest of the available collection, or to any other meaningful
framework.

Finally, as Hearst [33] points out, information retrieval does not attempt to conclude or
summarize existing information, nor to discover unsuspected information � it only provides
access to an existing piece of text. Obtaining either more general information such as an
overview of a �eld or surprising information such as unsuspected trends and patterns is
better achieved by other approaches, such as text visualization and exploration.

2.3 Text visualization and exploration

In the past years graphical operating systems and color displays have become standard
equipment, and programming tools and technologies for building highly graphical and
interactive applications, even virtual reality technologies, have been created. Also research
on data visualization and exploratory data analysis methods has �ourished, providing
methods and tools capable of illustrating properties and relationships of complex data sets
graphically (e.g. [114]). Moreover, the statistical approach to representing text items has
brought text mining problems within the reach of standard data exploration methodology.

The need has been identi�ed for more intuitive and cognitively less demanding methods
of dealing with the so-called information overload. Furthermore, the research in cognitive
science on the processes of perception in humans has increased our knowledge of the human
perceptual apparatus. Although text is read and often also written in a linear fashion,
in principle much more information could be communicated rapidly using a more visual
medium in which parallel processes automatically group features and select or suppress
items. The obvious reason for this is that people are used to interacting with the visuo-
spatial world in real time even much before they learn to read and write. Naturally, traits
that evolution has enabled humans with should be taken full advantage of in presenting
information. The so-called ecological approach to text visualization (see e.g. [117])�part of
the more general ecological paradigm�takes an even more extreme position by suggesting
that the task of visualization should be turned around: one should start from the visual and
spatial metaphors that are natural to the human perceptual system (natural landscapes,
stars in the night sky, rivers, etc.) and then try to �nd out how these metaphors can be
used to communicate interesting properties of texts and other data to the user.

Quantitative information has for long been presented using graphical means (see
e.g. [111]). Information can be conveyed visually using a combination of points, lines,
symbols, words, colors, and intensity of shading. In particular, the use of graphics can
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help make sense of large and complex data sets that cannot be managed in any other way.
If spatial proximity is used to convey similarity of items (e.g. using scatter plots), infor-
mation regarding clusters, gaps, outliers and patterns is communicated at a glance, and
summary-like information is derived automatically by the the perceiver.

2.3.1 Methods and tools

More recently, a paradigm shift has begun in text mining from the search-oriented ap-
proach towards a spatial presentation of and interaction with textual information (see
e.g. [77, 9, 32], and Publication 6). Properties of large sets of textual items, e.g., words,
concepts, topics or documents, can be visualized using one-, two- or three-dimensional
spaces, or networks and trees of interconnected objects [108]. Time-related and other dy-
namic properties may be conveyed using time-lines5 or dynamical changes on the display.
Intensity of a property can be depicted e.g. with intensity of shading or with the size of
marker signs. Furthermore, in the spatial domain interactive operations such as selection
of a subset or a single item for detailed view become cognitively simple tasks that can be
performed e.g. by pointing, clicking and dragging with the mouse.

Semantic similarity and other semantic relationships between large numbers of text
items have been portrayed using proximity e.g. in visualizations based on the Spire text
engine [117, 110], and in document maps organized with the SOM (cf. Sections 4 and
4.5), using colored arcs in Rainbows [29], with color coordination of themes in the ET-map
[11, 92] and in colored time-lines of themes in ThemeRiver [110]. The visual metaphor
of natural terrain has been used in visualizing document density and clustering e.g. in
ThemeView [117], in WEBSOM (Sec. 4), and in a map of astronomical texts [75, 95].

A �sh-eye projection6 has been used for viewing and browsing large graphs with a
detailed view of the focus of interest, and simultaneously a less detailed overall view [106].

WWW connectivity has been visualized in Narcissus [34] using clusters connected by
lines that form visual graph structures, and as a relief landscape visualization in [26] where
the organization of the landscape was obtained with the SOM algorithm (cf. Section 4.1).

In�uence diagrams between scienti�c articles have been constructed based on ci-
tations and subsequently visualized as trees or graphs in BibRelEx [6]. Citeseer [5]
(www.citeseer.com) o�ers a browsing tool for exploring networks of scienti�c articles
through citations as well as both citation- and text-based similarity between individual
articles. Searching is used to obtain a suitable starting-point for browsing.

Term distributions within documents retrieved by a search engine have been visualized
using TileBars [31].

2.3.2 Specialized application domains.

An individual user usually does not wish to simultaneously interface with all the available
information in the world. Most users have at least a vague idea of the potential thematic
domain (e.g. sports vs. politics) or of the information type or style (scienti�c articles
vs. news stories vs. recreational material) that they are interested in at a speci�c time.
The information needs may also vary according to the type of material. Providing tools,
interfaces and applications for accessing specialized collections is thus a feasible way to

5In a time-line visualization time is depicted by one axis, and the other is used for conveying some other
property, e.g. volume of articles in a certain topical category appearing at di�erent times.

6A �sh-eye camera lens magni�es the focus of interest while objects further away appear smaller.
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attack the information �ood problem in a modular fashion. It is also viable from the point
of view of information providers, who may for many reasons naturally specialize in a certain
domain or type of information. Examples of application areas to which systems have been
speci�cally designed include bibliographical data mining and search (e.g. [6, 5]) and mining
of medical texts (e.g. [46, 33]).

3 REPRESENTING TEXT DOCUMENTS

Most problems with text, or with any data, can be stated as that of �nding a suitable
representation, or a model, for the available data using the existing resources for a limited
time, so that the subsequent performance of the model meets the requirements of both
quality and speed.

3.1 Statistical learning from data

Obtaining a model by learning or estimation from data includes the following steps:

1. Encoding�an initial data encoding is chosen, either based on the intuitions of an
expert or by maximizing some objective criteria that re�ect interesting properties of
the data with regard to the purpose of modeling. This step may contain stages such
as feature selection , i.e. the selection of a small number of informative features from
a large set of possible ones, weighting or scaling of features to better re�ect estimated
importance or �natural scaling� of some measured properties, and dimensionality
reduction, the application of some preliminary method to reduce the dimensionality
of the data encoding. If relevant information is discarded at this stage, it cannot be
re-invented later. On the other hand, if the initial data encoding contains too much
irrelevant information or noise the later search for a good model becomes di�cult or
time consuming, and interesting properties of the data may be lost amidst the noise.

2. Estimation�a learning algorithm or an estimation method is applied to obtain a
model for the data, usually by maximizing some objective criteria. This stage can
be viewed as the search for a suitable model from a large family of possible models,
called the model space. Various learning algorithms di�er in the space of models
they consider, the search strategy employed, as well as their resource allocation. The
success of particular model estimation algorithm is considerably a�ected by the data
encoding used, and vice versa, what is the most suitable encoding may depend on
the modeling algorithm.

3. Evaluation�the model is interpreted or evaluated for example by representing pre-
viously unseen data or by measuring how well some speci�c task, such as prediction
or classi�cation, can be performed with the model.

A profound textbook account of the statistical and adaptive learning (including neural
networks) and statistical learning theory is given in [12]. Various neural networks models
in particular are considered e.g. in [30].

3.2 Natural language texts

In natural language understanding and generation at least the following types of knowledge
are relevant (see e.g. [2, 8]): (1) morphological knowledge�knowledge of word structure,
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word forms, and in�ections, (2) syntactic knowledge�the structural knowledge of the roles
of words and how words can be combined to produce sentences, (3) semantic knowledge�
what words mean irrespective of context, and how more complex meanings are construed
by combinations of words, (4) pragmatic knowledge�the knowledge of language use in
di�erent contexts, and how the meaning and interpretation is a�ected by context, (5)
discourse knowledge�how the immediately preceding sentences a�ect the interpretation of
the next sentence, and (6) world knowledge�the general knowledge of the domain or the
world that the natural language communication relates to.

As Allen points out, these levels are more appropriately viewed as characterizations
of knowledge rather than separate, distinct classes of knowledge. Solving a single task in
natural language understanding or generation often requires knowledge of several di�erent
types [2].

Traditional approaches to implementing language representations in computers include
rule-based models created manually by experts, and based on theories of linguistics and
of arti�cial intelligence. A famous example in this respect is the so-called �Blocks world�
system developed in 1972 by Terry Winograd (described e.g. in [116]). In these approaches
not only the model space is de�ned by a human, but also the particular model is selected
manually, based on the expert's intuitions of the data and the problem.

Although the work in this thesis is mainly motivated by applicability of the developed
methods to practical problems regarding text mining, it may be interesting and instructive
to consider, for a moment, language acquisition also from the cognitive modeling viewpoint.
It has been suggested by Noam Chomsky, and to some degree later advocated e.g. by
Pinker [94], that humans generate language based on a �universal grammar�, an innate
mental model for producing an unlimited number of sentences based on a limited set
of rules. Moreover, an argument defending a nativist and atomistic view of concepts 7 has
been recently described by Fodor [20]. From the point of view of learning systems research,
strict claims for one or the other extreme do not seem to be supported by study of human
language learning on one hand and on research in adaptive systems on the other.

In all learning systems and their practical implementations the structure of the model
space, the search algorithm, and the available data together determine the outcome. In
practice, the model space considered is never the space of all imaginable models 8. The
model space available within each human is determined by evolution, de�ned by the exact
genetic makeup, and implemented, among other things, by the limits on neural connectivity
and plasticity in the developing brain. The kinds of data available within the environment
of the child direct the search for models 9. It remains the domain of empirical research
in computational neuroscience and in child behavior and learning to narrow down the
speci�c mechanisms and the extent to which language is learned in humans. However,
adaptive systems research and especially the theories that are developed may o�er some
useful conceptual tools for addressing the problem.

7A concept can be described by analogy as a term in the vocabulary of thought .
8Finding the best model from such a space given a �nite amount of data and �nite time simply could

not be performed, regardless of whether it is possible in principle.
9It should be noted that an infant, by being able to also generate language, at �rst as mere sounds, and

gradually also communication more extensively understood by others, is able to actively test the developing
models, and also to obtain ample feedback on the success of such models. This testing, in turn, is directed
by the needs and motives of the child, including the desperate need to communicate that Pinker views as
underlying �the language instinct�[94].
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3.2.1 Levels of natural language analysis

The following table illustrates some possible levels of representation of language data or
the kinds of tasks that presumably become possible with features from that level:

Feature level Task or target of representation
visual/auditory signals =⇒ speaker identi�cation

phonemes, characters,
and n-grams of them =⇒ language identi�cation

morphemes, words, word n-grams =⇒ concepts, topics

phrases, sentences =⇒ propositions, events

strings of phrases,
document structure

=⇒ stories, arguments

several documents =⇒ thematic domains, text types

For example, character trigrams can be used to quite reliably identify the language of a
piece of text, whereas word-level estimates may perform poorer [27]. On the other hand,
if semantic content is to be represented, it appears appropriate to start from the level of
words (or possibly morphemes).

3.2.2 Natural language phenomena

Several phenomena particular to natural language have an impact on the modeling task
that text representation systems are faced with. These phenomena may a�ect the amount
of noise to be expected, as well as the dimensionality and the complexity of the learning
task. Understanding of the phenomena may aid in considering appropriate features and
data encoding as well as in choosing the appropriate model family to be searched by the
learning algorithm.

Separation of symbol and meaning. In natural language texts symbols are used as
signs that refer to meanings. In general, the relationship between a sign and its meaning
cannot be determined by the apparent properties of the sign�the relationships must be
learned. Consequently, words with similar meaning often do not resemble each other in
appearance, and the semantic similarities between words must therefore be learned from
their contexts of use.

Discrete symbols vs. continuous representations. Although words themselves can
be viewed as discrete symbols, many sets of words have a natural and compact representa-
tion in some continuous space that encodes directly the similarities between the concepts:
consider, for example color words that denote properties that are very naturally expressed
in a 3-dimensional continuous space. This discrepancy is likely to have arisen because
discretization is useful in communication for protecting the content from corruption by
noise. Unfortunately the discretization also results in losing information about the related-
ness of the words. Re-inventing such information from observing only the communicated
discretized signal, i.e. words and their contexts, remains a challenging task.

Variation in form. Many di�erent expressions can be used to describe or induce ap-
proximately the same idea in the mind of the listener. Examples of such variation are
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synonymy10, in�ections or word forms11, shortenings, acronyms, nicknames and varying
writing styles12, and plain spelling errors. An overview of textual variation found in real
world documents is given, e.g., in [80], ch. 4. The problems caused by the variation in form
and the �uidity of meaning are often referred to as the vocabulary problem [10].

Ambiguity or �uidity of meaning. When used by di�erent people, at di�erent times,
or in di�erent contexts the same word can �exibly refer to di�erent meanings called senses
of the word. Consider, for example, bank as a �nancial institution, or referring to river bank.
The phenomenon is commonly called polysemy and dictionaries list numerous examples of
di�erent meanings of a single word. However, more often the senses are not totally distinct
(e.g. the senses of open in opening a door and in opening an exhibition), but rather form
a continuum in the space of meanings (for general remarks regarding polysemy from the
computational point of view see [8, 3]; a detailed treatment of the polysemy of the word
�get� can be found in [96]). The �uidity and contextuality of meaning has been modeled
e.g. using the self-organizing map in [45]. Polysemy is not a marginal phenomenon of the
language, but rather ingrained into it�since a single word may be used �exibly for various
purposes depending on the textual or the non-textual context, fewer words are needed for
communicating a larger amount of possible messages. Some forms of communication even
seem to purposefully utilize the aspect of ambiguity and multiplicity of interpretations, for
example, poems and humor that plays on the sudden shifts of interpretation.

Uncertainty of meaning can be caused also by homography, where two unrelated words
may have some overlapping morphological forms, e.g. saw can be either the past these of
the verb see or the name of a tool. In communication between humans the ambiguities are
probably resolved based on structural and semantic cues in the context of the utterance
and based on prior knowledge of the world.

Seriality and structure. In speech and in text words appear in serial order, constrained
by some implicit structure. The ordering of words also carries meaning: in some languages
even the same set of words can be arranged di�erently to convey very di�erent meanings
(e.g. dog bit man or man bit dog; the �rst is not surprising but the second would be an
item for news). Moreover, knowledge of syntactic constraints and relationships may help in
word sense disambiguation , i.e. in identifying the particular sense of a given lexical item 13.
Also more complex structural relationships both on the syntactic or sentence level and on
the discourse or story level have an e�ect on the meaning that is construed by an utterance
or a longer text.

A variety of relationship types. Words, concepts, documents and topics can be related
to each other in many di�erent ways. The various types of relationships between words

10Di�erent words that can have approximately the same meaning, at least in some context
11In Finnish a single verb root may have over 18,000 di�erent in�ected forms and a noun some 2,000

forms [79].
12For example, the SOM has in the literature been referred with numerous ways, including self-organizing

map, self-organising map, self organising map, self organised map, Kohonen map, Kohonen network, Ko-
honen net, SOM or SOFM.

13The general idea holds regardless of whether the senses are considered to exist in a discrete or in a
continuous space: in a continuous space the disambiguation would correspond to narrowing and heightening
of the probability density distribution in some area of the sense space, while in other areas the density
would diminish correspondingly.
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have been studied in the WordNet project. Human labor has been used to construct a
consistent, machine-readable lexical database of English [91] where 95,000 words and their
relationships are presented in a psycho-linguistically motivated manner. Relationships
between word forms include synonymy and antonymy 14 and between concepts there are
part-whole relationship (meronymy/holonymy) and subset/superset relationship 15

Languages evolve. As societies change, old words are forgotten or adopted to new
purposes and new ones are invented. Specialized �elds may evolve their own terminology
and particular meanings for commonly used terms, or a special term may be adopted for
a somewhat di�erent use by the general public. A model based on the self-organizing map
of the development of language through interaction in a community has been considered
in [35].

Computational challenges. The richness of textual data, the complexity of problems
related to language, and the sparsity of data together pose serious challenges for modeling.
Even in collecting data on the level of individual words, problems arise: a truly repre-
sentative sample has never been seen of all words, and due to unrepresentative samples,
over-�tting and incorrect generalizations are possible [8].

In some cases, human labor can be utilized for encoding some of the relevant information
such as grammar rules, in�ections of words, etc. However, it is generally agreed that the
approach is not su�cient as a general solution, for the lack of resources. The approach
su�ers also from the well-known problem in arti�cial intelligence: how to extract knowledge
from experts of the �eld and convert it into any machine-usable form. Di�erences between
experts are typical, and even the same person can at di�erent times give a di�erent answer
to the same question.

3.3 Document representation models

Currently, in most research in mining of text document collections the documents are
viewed as containers for words 16. This approach, often called the bag of words encoding,
ignores the order of the words as well as any punctuation or structural information, but
retains the number of times each word appears 17.

Based on the discussion of natural language in Section 3.2.2 it is obvious that the bag-
of-words encoding is a gross simpli�cation of the wealth of information communicated by a
document, merely a �ngerprint rather than a faithful description of the content. Develop-
ing richer models that are nevertheless computationally feasible and possible to estimate
from actual data remains a challenging problem. Facing the challenge will eventually be
necessary if harder tasks related e.g. to language understanding and generation are to be
tackled seriously.

Although not intricate enough for generating language, the bag-of-words-encoding nev-
ertheless provides a considerable amount of information about associations between words
and documents, which is su�cient e.g. for thematic or topical clustering and for information
retrieval from large collections.

14Antonymy�(partial) opposition of meaning, e.g. rich and poor are antonyms.
15Hyponymy/hypernymy, also called ISA-relationship. For example, tree is a hyponym of plant.
16Also collocations, pairs of words that occur together more often enough for them to seem connected,

are sometimes utilized as features.
17A simpler version of the bag-of-words encoding only retains binary information of word appearance.



21

The following discussion of document representation methods concentrates on mod-
els that can be estimated automatically and e�ciently based on very large quantities of
data at high speeds. They are designed to provide computationally feasible engineering
solutions for tasks in which utilizing human labor would be expensive, too slow, or even
impossible due to large amounts of data. Typical tasks that the methods are used for in
text mining are: accessing a piece of text based on partial or noisy information (e.g. in IR),
ordering items based on similarity, summarizing the content of documents or collections,
contrasting items and sub-collections, and extracting properties of individual textual items
or collections of them.

3.3.1 Vector space model

A straightforward numeric representation for the bag of words -model is to represent doc-
uments as points (or vectors) in a t-dimensional Euclidean space where each dimension
corresponds to a word (term) of the vocabulary [105, 102]. The i:th component di of
the document vector expresses the number of times the word with index i occurs in the
document, or a function of it. Furthermore, each word may have an associated weight to
describe its signi�cance. The similarity between two documents is de�ned either as the
distance between the points or as the angle between the vectors (to disregard document
length).

Despite its simplicity, the vector space model (VSM) and its variants are currently the
most common way to represent text documents in mining text document collections. One
explanation for this is that vector operations can be performed very fast, and e�cient
standard algorithms exist for performing model selection, dimension reduction and visual-
ization in vector spaces. In part for these reasons the vector space model and its variants
have persisted in evaluations of quality e.g. in the �eld of information retrieval [3].

An obvious problem with the vector space model is the high dimensionality: the num-
ber of di�erent words (word types) in a document collection easily rises to hundreds of
thousands. The problem is compounded by varying writing styles, spelling errors, etc.
Furthermore, in VSM any two words are by de�nition considered unrelated. However, it
is hard to obtain accurate information of semantic relatedness automatically from textual
information only.

If one could base the model on some kind of latent variables or conceptual dimensions
instead of words, a considerably more concise representation might ensue. In fact, it has
been suggested that on the cognitive level of representation the meanings of words are points
in some low-dimensional concept spaces , which consist of a number of quality dimensions
each with certain topological or metric properties [23, 24]. Some of the quality dimensions
may be grounded rather directly in our perceptual system (e.g. color words) while others
may be more abstract. Miikkulainen describes a mental model of the lexicon that utilizes
interconnected SOMs for orthographic, phonological and semantic representation levels[89,
90]. When various kinds of damage to the network is simulated, the lexical model is shown
to exhibit similar category-speci�c aphasic impairments as observed in human patients. A
model of building a connection between the sensory and the word level in an anticipatory
system utilizing SOMs is proposed in [36]. In Gallant's Context vector method [21, 22]
a set of feature words are used as the grounding or feature dimensions, and other words
are encoded in terms of their distances to the feature dimensions. However, the method
requires manual insertion of a considerable amount of distance information, and is sensitive
to the entered distances and the selected feature words.

Several attempts have been made to obtain a suitable lower-dimensional representation
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for text in a data-directed manner often starting with the standard vector space model.
Some of these methods are brie�y discussed next.

3.3.2 Latent Semantic Indexing

Relationships between words can be deduced from their occurrence patterns across doc-
uments. This notion is utilized in a method called Latent Semantic Indexing (LSI) [16]
which applies singular-value decomposition (SVD) to the document-by-word matrix to ob-
tain a projection of both documents and words into a space referred to as the latent space.
Dimensionality reduction is achieved by retaining only the latent variables (projection di-
mensions) with the largest variance (largest eigenvalues). Subsequent distance calculations
between documents or terms are then performed in the reduced-dimensional latent space.

The original LSI algorithms had a high computational complexity, O(N3), which was
problematic for use with large data sets. The computational complexity of the LSI is
known to be O(Nld), where N is the number of documents, l is the average number of
di�erent words in each document, and d is the resulting dimensionality. It has recently
been suggested that the Random Projection [17] or similar methods [93] could be used for
reducing the computational complexity of the LSI as well.

3.3.3 Random Projection

For many applications and methods, the central aspect in document representation is the
distance between documents. It has turned out that an initially high-dimensional but sparse
data space can be projected onto a randomly selected, much lower-dimensional space so
that the original distances are nearly preserved [53]. In e�ect, the exactly orthogonal basis
vectors of the original space are replaced by vectors that are with high probability nearly
orthogonal, even with randomly chosen directions if the �nal dimensionality is su�ciently
high. An intuitive reason for this perhaps surprising �nding is that in very high-dimensional
spaces the number of nearly orthogonal vectors is much larger than the dimensionality of
the space.

The advantage of random projection is that it is extremely fast: in an e�cient imple-
mentation of random projection by pointers, introduced in Publication 7 the computational
complexity is only O(Nl) + O(n), where N is the number of documents, l is the average
number of di�erent words in each document, and n is the original dimensionality of the
input space.

Furthermore, it can be applied to any high-dimensional vector representation, and any
algorithm that relies merely on vector distances, can in principle be applied after the
random projection and therefore in a much lower dimensional space. Random projection
has been used, e.g., for representing words before averaging in [97], for document encoding
in text exploration prior to the application of SOM (see e.g. [52], Publications 4 and 7), as
a preprocessing for LSI in document representation [93], and as a preprocessing for SOM
in retrieval of spoken documents [71].

3.3.4 Independent Component Analysis

Recently, there have been attempts to apply a method called Independent Component
Analysis (ICA) [4] to representing text documents. In the ICA model the data is assumed
to be generated as some, typically linear, mixture of a set of independent random variables,
also called sources (see e.g. [47, 48]): x = As, where x is the known data, A is the unknown
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mixing matrix and s the unknown sources. Various ICA algorithms attempt to estimate
the sources as well as the mixing matrix by maximizing a measure of independence of the
sources. While PCA (or SVD) look for merely uncorrelated latent variables with maximal
variance, ICA searches for independent variables .

In [49] ICA was utilized for information retrieval; a document was assumed to be
generated by a set of independent topics. In the model a single document was represented
as a linear combination of the active topics, several of which could be active for a single
document. The topics are assumed to di�er in their probability density distributions for
words.

3.3.5 Word clusters

Clustering methods can be used e.g. for reducing the number of data by grouping together
similar items [50]. In document representation clustering methods can be applied to group
together similar words, and then represent documents in terms of word clusters rather
than individual words. A clustering that is well suited for document representation should
reduce the variation of form (cf. Sec. 3.2.2) while losing as little information as possible
regarding the semantic content, especially the topics discussed in a document.

An overview of various methods for collecting information of words with the purpose of
categorizing or clustering them automatically is presented in [8]. In languages with strict
restrictions on word order, such as English, the distribution of words in the immediate
context of a word contains considerable amounts of information regarding the syntactic
category of the word, and, mostly within the syntactic categories, information about the
semantic category as well [19, 44, 120].

Word category map (WCM) English words have been clustered in an unsupervised
manner based on the distributions of words in their immediate contexts using the self-
organizing map (SOM) by [97, 19, 44, 37] and the subsequent categories have been used for
representing documents (see e.g. [41]). Applications of word category maps are considered
in [38] and in [37].

3.3.6 Term weighting

In considering the meaning of a piece of text, it seems that some words carry more meaning
than others. In addition to a basic division to function words (e.g. which, of, and and) and
content words (e.g. table, sun-burned, and to shout) some content words seem to target the
theme of discussion much more precisely than others. Consider, for example, the words
astronomer and book.

Regardless of which method is used for dimension reduction or for deducing latent
dimensions, it is possible to assign weights to the words which attempt to describe how im-
portant the word is for the document representation. The weights may be based on a word
distribution model, e.g., the Poisson distribution [13], or an estimate of informativeness
such as entropy across topics (Publications 4 and 7 and [115]).

A commonly used weighting scheme is the tf × idf -family [103], where tf stands for
term frequency within the document, and idf stands for the inverse of the number of
documents in which the term appears. The scheme is based on the notion that words
that occur frequently in documents are often less signi�cant for meaning, and rare words
probably carry more meaning. Many variations of the general scheme exist. For example,
the weight Wij of a word wi occurring in document dj can be calculated as follows: Wi,j =
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(1 + log tfi,j) log N
dfi

where tfi,j is the frequency of the term i in document j, and dfi is
the document frequency, i.e. the number of documents in which the term i appears. The
weighting assigns maximum weight to words that appear only in a single document. Since
in the vector space model term weights directly a�ect the distances between documents,
the results greatly depend on the weighting of terms.

The above global weighting schemes attempt to describe the importance of a word
irrespective of its particular context, such as nearby words, or the location of the word
in the document structure. Prior information about the structure of documents may be
utilized as well, for example to emphasize title words or words that appear in the beginning
of the document.

3.3.7 Probabilistic modeling

Probabilistic modeling allows answering questions in terms of probabilities, e.g. �how prob-
able is this document in this model� or, if the model has been constructed for document
classi�cation, �what is the most probable class for this document�. Furthermore, if appro-
priate prior information about the task or the data exists it can be encoded explicitly using
a rigorous mathematical framework. Two models that employ the assumption of indepen-
dence between words in a document are brie�y described below (for a detailed description
of their usage with text see [81] or in general [25]).

The binary encoding of documents that disregards word occurrence counts in a docu-
ment is captured by the Multivariate Bernoulli Independence model 18. In other words, a
document is assumed to be generated by a collection of discrete, independent random vari-
ables, one for each word in the vocabulary. If a certain word appears in the document, the
value of the respective random variable is 1, otherwise 0, thus disregarding the frequency
of occurrence.

The bag-of-words representation is captured by the Multinomial model , in which each
word in a document is assumed to be drawn from a multinomial distribution of words with
as many independent trials as the length of the document counted in words [81].

4 WEBSOM DOCUMENT MAPS

In the WEBSOM method, the self-organizing map algorithm (see Sec. 4.1) is used for
projecting documents from an initially very high-dimensional space onto a two-dimensional
map grid, so that nearby locations on the map contain similar documents. Subsequently
the map can be used for visually conveying information about the document collection, for
exploring the collection, and for performing searches on the documents.

4.1 Self-organizing map (SOM) algorithm

The self-organizing map (SOM) [61, 62, 66] is an unsupervised neural network [30] algo-
rithm that is able to arrange complex and high-dimensional data so that alike inputs are
in general found close to each other on the map. The organized map avails itself readily
to visualization, and thus the properties of the data set can be illustrated in a meaningful
manner.

18also called the Binary Independence model .
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The SOM algorithm places a set of reference vectors�also called model vectors�into
the input data space so that the data set is approximated by the model vectors. The model
vectors are constrained to a (usually two-dimensional) regular grid that in e�ect forms an
�elastic network� which, by virtue of the learning algorithm, follows the distribution of
the data in a nonlinear fashion. The SOM algorithm obtains simultaneously a clustering
of the data onto the model vectors and a nonlinear projection of the data from the high-
dimensional input space onto the two-dimensional, ordered lattice formed by the model
vectors.

In the original, stochastic version of the SOM the data samples are presented to the
algorithm in random order, possibly several times. At each step the best-matching model
(winner, also called best-matching unit or BMU) for the current data sample is searched.
Subsequently, the winner model and its neighbors on the lattice are updated. Given a data
sample x(t) at iteration step t the model vector mi(t) with index i is adapted as follows:

mi(t+ 1) = mi(t) + hc(x),i(t)[x(t)−mi(t)] , (3)

where the index of the �winner� model for the current data, c(x), is

c(x) = arg min
i
{‖x−mi‖} . (4)

hc(x),i(t) is called the neighborhood function , which acts like a smoothing kernel over the
grid, centered at the �winner� model mc(x)(t) of the current data sample. The neighborhood
function is often taken as the Gaussian

hc(x),i(t) = α(t) exp
(
−
‖ri − rc(x)‖2

2σ2(t)

)
, (5)

where 0 < α(t) < 1 is the learning-rate factor which decreases monotonically with the
iterations. A �nite-width approximation of the Gaussian can be used for reducing the
number of calculations. The width r of the neighborhood function is decreased monotoni-
cally during the learning process. In e�ect, initially a large number of models are updated
for each data sample, and later only few models are slightly adjusted. In the �nal stage
the distribution of the SOM reference vectors in the input space roughly approximates the
density of the input data [62]. Note that the density approximation and the ordering of the
data are competing goals between which the algorithm makes a compromise that depends
e.g. on the �nal width of the neighborhood function.

The model vectors perform an implicit clustering of the data where each data point
belongs to the cluster of the closest map vector. The clustering is said to be implicit
because the number of clusters need not be the same as the number of map units�several
neighboring units may form a cluster. In a stable state, each model vector expresses a
weighted average of the data points in that map region, particularly of data points mapped
to the unit associated with the reference vector. The neighborhood function de�nes the size
and the shape of the weighting function. If the neighborhood width is zero the algorithm
is equal to the so-called K-means clustering algorithm.

A faster convergence is often obtained by the batch computation of the map (Batch
Map), similar to the batch version of the K-means algorithm (e.g. [50]). In Batch Map the
changes to the models are collected over the whole data set before the models are updated.
For large maps a fast parallelized implementation can be utilized (Publication 7).
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4.1.1 Applications of the SOM

The SOM is one of the most widely used neural network algorithms. Studies in which the
SOM has been used or analyzed have been reported in over 4000 scienti�c articles (for an
older collection, see [56]). Most of the early applications were in the �elds of engineering
but nowadays a very diverse range of applications is covered, from medicine and biology
to economics and natural language analysis. Overviews of the applications are given in
[62, 69]. A collection of recent works has been published in [118].

The usefulness of the SOM stems from its two properties: (1) It creates models or
abstractions of di�erent types of data in the data set, and (2) it organizes the abstractions
onto a usually two-dimensional lattice which can be used to generate an illustrative graphi-
cal display of the data set. The latter property makes the SOM especially suitable for data
mining and exploratory data analysis (for a detailed treatment, see e.g. [52]). Some exam-
ples of such applications of the SOM include construction of overviews of socio-economic
data sets [57] and �nancial analyses [15].

4.1.2 Accelerated computation of the SOM

Each iteration step of the original SOM algorithm consists of winner search and updating
a neighborhood of the winner. The complexity of the winner search is O(dN) where d is
the dimension of the vectors, and N the number of map units within the neighborhood.
The updating step is always of at most the same complexity. The number of iterations
should be a multiple of N to ensure su�cient statistical accuracy. To sum up, an upper
limit of the complexity of the traditional iterative SOM algorithm is given by O(dN2).

When very large maps are created of high-dimensional data such as documents, the
requirements on main memory space, disk space and CPU time in the SOM teaching are
considerable, and the standard algorithm is not feasible. However, by introduction of
various computational tricks and a careful implementation, the requirements of both space
and processing time can be considerably reduced. Initial speedups were described in [63];
for a detailed description of the latest methods and of experimental results, see Publication
7. In brief, the major speedups consist of the following:

• Rough initial ordering of the map. Faster convergence is achieved if an approximate
initial ordering of the models is obtained e.g. by applying PCA [66].

• Estimation of larger maps based on carefully constructed smaller ones.

• Parallelized Batch Map. A parallelized implementation of the Batch Map can be
used by dividing data among di�erent processors in a shared-memory computer. As
the map is changed only between epochs, the map can be shared read-only during
the BMU search.

• Local search of best-matching units. Instead of full search of the BMUs for each data
point at each epoch, the previous winner can be used as a starting-point and a local
search performed in the neighborhood.

By using the speedup methods for the winner search and for the estimation of large maps
based on smaller ones the complexity can be reduced considerably, to O(dM2) +O(dN) +
O(N2), where M is the number of units in the smaller map.
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4.2 Creation of large document maps

An overview of the creation and use of large document maps in the current WEBSOM
system is depicted in Fig. 1. In the following section the various processing stages are
brie�y described. For a complete description, see Publication 7.

4.2.1 Document encoding

Preprocessing. The document headers, signatures, and all non-textual information is
removed. Mathematical symbols, numbers, URLs, and email addresses are replaced with
one of the special dummy tokens. Common, uninformative words that are listed as stop
words are discarded. Also the rarest words are removed (with large collections a cuto�
frequency of 50 has been used). In our later experiments with both English and Finnish
the morphological variation has been reduced by replacing words with their base forms
using the TWOL analysis package [70] of Lingsoft Inc.

Weighting. For weighting of words two methods have been applied, a tf × idf weighting
(see Section 3.3.6) and an entropy-based weighting (see e.g. Publication 4). The latter can
be utilized whenever some topical categorization of the material is available.

Dimensionality reduction. Although the preprocessing stage reduces the initial vo-
cabulary, with large collections the remaining number of words is still very high, say in
tens or hundreds of thousands of words. In experiments described e.g. in [41] and Publi-
cation 2 dimension reduction was achieved by categorizing words based on their contexts
using word category maps (see Sec. 3.3.5), and encoding documents as word histograms. In
Publications 4 and 7 random projection (Sec. 3.3.3) was used to reduce the dimensionality
of the document vectors.

4.2.2 Fast creation of an organized document map

Large SOMs of very large document collections can be created rather fast with the methods
described in Sec. 4.1.2. With textual data, further speedup is achieved due to the sparsity
of the document vectors. If the vectors are normalized to unity and distances are measured
using inner products, distance computations can be performed very e�ciently by skipping
components with zero values.

It is estimated that taking into account the speedup obtained by random projection of
document vectors, the total speedup factor in construction of very large document maps
is of the order of the dimensionality of the original input vectors (for details, see Publica-
tion 7).

4.2.3 Adding new documents

New documents can be inserted onto an existing map simply by locating the best-matching
map unit for each document. However, in a non-stationary document collection where
new topic areas and terms are introduced, after a while the map may not be such a
good representation of the collection. An intuitive reason for this is that in a very high-
dimensional and very sparse space an unseen document will not be near any area of the two-
dimensional map unless its own topical domain is discussed by documents that contributed
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3. Construction of user interface

− Select labels automatically to characterize map regions
− Create necessary parts for the operation of the interface
   (e.g. map images, HTML files, databases)

1. Document encoding

− Preprocess text
− Construct document vector as weighted word histogram
− Reduce dimensionality by random mapping

Text documents

4. Alternative operations of user interface

− Browsing the nodes

− Content−addressable search:
     − create document vector of search document in the
        same way as at stage 1. above
     − return best−matching map locations, visualize results
− Keyword search:  visualize results of an indexed search
    on the map

2. Construction of large map
− Initialize models of smallest SOM
− Teach small map
− Repeat until desired map size:
       − estimate larger map based on smaller one
       − initialize pointers from data to models
       − fine−tune map with parallel Batch Map algorithm

Document vectors

Largest map

User interface and map

Figure 1: Overview of the construction and operation of the WEBSOM system as described
in Publication 7.
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to the map construction. In a non-stationary collection the map should therefore either be
incrementally adapted or fully re-calculated after a time 19.

4.2.4 Evaluation of document maps

Good evaluation methods for measuring the quality of visualization, exploration and nav-
igation are very di�cult to de�ne. Ultimately user studies are required, but also more
direct, automatically applicable measures are clearly needed�without such measures, im-
provement of methods is extremely di�cult and the research is bound to be constructive
rather than analytic.

For evaluating document maps we have utilized an indirect measure that is based on
an external topical classi�cation of documents, best described as the purity of map nodes,
de�ned as the proportion of documents that fall into a map unit where their own class
forms a majority. The measure can be utilized when comparing methods using an single
document collection (see e.g. Publication 7). However, the absolute values obtained are
collection dependent, since the number of topic categories a�ects the results. Moreover,
the measure evaluates only the local coherence of the individual map units, not the overall
organization of the map.

The overall organization has been studied by observing visually the displays of the dis-
tributions of various topics on the document map (see Fig. 2). The measure is subjective,
but nevertheless useful in practical situations. Furthermore, the visualized class distribu-
tions o�er more information regarding the organization of a map, e.g. in the presence of
prior information concerning dependencies between topics, than could be achieved with a
straightforward automatic measure.

A fundamental problem with evaluating maps according to an existing categorization
is that the categorization itself may not be accurate, for example, the categories may be
overlapping, the borders fuzzy, or the same article should perhaps belong to several cate-
gories. It is even possible that the automatic methods could produce better categorizations
than the original one, but a relative measure can never identify such a situation.

An additional, subjective means of evaluation is obtained by providing an interface by
which the organization obtained by the maps can be explored. Although no quantitative
comparisons are achieved this way, the experiences obtained from browsing the maps have
throughout the project guided research intuitions and suggested hypotheses for further
rigorous study. The fact that the models are visual and explorable thus not only aids in
the eventual user tasks but also in researching the models as well.

4.3 User interface for document maps

The practical purpose of developing the WEBSOM document map interface was to set
up public demonstrations of document maps that anyone could conveniently explore. The
visualization was to o�er a view of the collection that would help in forming a general
understanding of the domain, as well as to guide exploration towards potentially interesting
particular areas. In addition, a convenient and e�cient strategy of moving from general
view to speci�c details and back had to be designed, including methods of interaction and a
strategy for providing the user with a sense of location and of context. Suitable visual and
textual means for conveying information about the content of the map had to be developed
as well.

19The matter is similar to the so-called folding-in of new documents in LSI.
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Chemistry Engines or pumps

Figure 2: Distribution of two sample subsections of the IPO patent classi�cation system
on the document map of 7 million patent abstracts. The gray level indicates the logarithm
of the number of patents in each node.

For the implementation of an exploration interface to be used in a public demonstration
the following goals were identi�ed: (1) to make use over long distances and slow Internet
connections su�ciently comfortable, (2) to enable use regardless of user's software or hard-
ware, and (3) to conserve CPU time, disk space, and main memory at the WWW server
side. To ful�ll these goals various optimizations were necessary, including minimizing the
sizes of transmitted material by reducing the number of colors in images. In addition, user
interaction strategies that were considered either too expensive for the WWW server of
a popular demonstration, or too costly for the user in terms of transmission time, were
discarded20.

4.3.1 Navigation interface

While navigating in an information space the user is constantly faced with the following
problems: Where do I want to go next and how do I get there? , Where am I? and Where
have I been already? A good navigation tool aids the user in making informed decisions
about future actions and in bookkeeping the information needed for making the decisions.

The WEBSOM navigation interface (see Fig. 3) consists of an image of the whole
document map, a hierarchy of zoomed pieces of the map at various zooming levels, and a
set of HTML pages, imagemap �les, and CGI scripts. Zooming in is achieved by pointing
and clicking with the mouse at the desired location on the map image. Horizontal movement
to nearby areas as well as panning out is carried out by clicking on a compass image. On
the more detailed zoom levels white dots mark units of the regular, hexagonal map grid
(see Fig. 5). By clicking near a dot the list of documents associated with the map unit is
accessed. From the list, individual documents can be selected for reading by clicking on
the title.

20It is likely that as the WWW environment develops, at least some operations previously considered
too costly or awkward to implement could be implemented e�ciently and elegantly.
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Figure 3: The images of the navigation interface form a hierarchy of zoom levels with
increasing magni�cations with respect to the original image. Clicking a map image performs
a �zoom in� operation. For horizontal movement a �compass� is provided: clicking on a black
arrow causes movement to the neighboring area with a half overlap between neighboring
images (the arrows leading out of the edge of the map turn grey). A click on the center of
the compass performs a �pan out� operation.

The initial exploration interface was designed and applied for small collections of 5,000�
20,000 documents. However, in scaling to larger collections it soon became apparent that in
addition to the computational aspect of scalability also the cognitive support of navigation
in large spaces had to be considered. For example, with large information spaces the zoom
operation is necessarily more than just an image transformation: additional details such as
more speci�c labels and a detailed view of the landscape should appear at lower zoom levels.
However, a balance is required between increasing the amount of detail and maintaining a
sense of continuity across zooms. In horizontal movement the sense of continuity is endorsed
by an overlap of half an image across movements to each direction (see Fig. 3). Another
balancing is necessary between adding more zoom levels for the sake of continuity and
keeping the number of levels at a minimum in order to provide e�ciency and convenience
of exploration.

The following properties of a system o�ering spatial navigation were identi�ed as useful:

• Continuity. Providing continuity across movements helps the user in maintaining
an internal sense of location and in keeping track of history.

• Context. O�ering explicit information of the user's location with reference to the
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overall information space and to nearby areas at all times reduces the cognitive load
of the user.

• Navigation history. Keeping track of navigation history for the user and visualizing
it as needed may be very helpful. For example, in browsing the WWW the visited
links appear in a di�erent color than unvisited ones.

Implementation details. A maximum zoom ratio of 1:4 between consecutive levels has
been used on the largest map, but generally a smaller zoom is found more comfortable.
Furthermore, on the lowest zoom level the dots marking map units should be separated by
a su�cient distance so that selection of individual units is possible�we have used distances
between 13�50 pixels. Given these constraints, the largest map of 7 million documents and
one million units required two zoom levels between the overall view and the level of map
units. The map images were created in advance and stored as static �les to minimize
calculations while using the interface. In the current implementation both the articles
and the contents of the map units are stored in databases, accessed at request by CGI
scripts that also generate the HTML layout. The clickable map images are operated using
server-side and client-side imagemaps.

Additional ideas for improving navigation. Currently the context of browsing can
be viewed by panning out, then zooming back in. However, visualizing current location
and context in a straightforward manner could be implemented e.g. by showing at each
page an additional miniature image of the whole map and the current location on it. This
resembles the use of the �sh-eye view, where a detailed image of the focus of interest is
shown, and an overall image visualizes the context of the focus point at a less detailed
scale. Recent navigation history could be visualized on map displays as sequential paths
marking locations already visited. Such facility could be implemented using HTTP cookies
and dynamic visual overlays on the static map images.

4.3.2 Visualized document map

The WEBSOM document maps have been visualized using two methods, a smoothed ver-
sion of the U-matrix [113], and a smoothed document density diagram. In the U-matrix
visualization dark color corresponds to a considerable di�erence between the model vectors
of neighboring map units, whereas a bright color signals similarity between neighbors. In
contrast, in the density diagram light color denotes a large number of similar documents
and dark color an emptier area. Due to the relationship in SOM between density of model
vectors and density of documents, both methods visualize the cluster structure to some
degree, although U-matrix more faithfully. The density visualization was �nally chosen
because (1) it was faster to compute and did not require the original document vectors,
(2) the visualizations obtained are su�ciently similar, and (3) explaining the signi�cance
of the colors to users of the demonstrations is considerably easier in terms of numbers of
documents than of the more abstract similarities between map areas.

Smoothing is applied in either visualization to achieve a pleasant, varying display with
little detail, resembling a landscape with hills and valleys. The landscape can then be used
as a background for presenting various details and dynamic information.

As pointed out e.g. by [111] the use of multi-functioning graphical elements can make
visualizations more compact and informative. The smoothed document map landscape
carries out the following functions: (1) it describes the document density at each area and
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(2) it provides texture that can help maintaining a sense of location and context across
movements and across dynamic visualizations.

4.3.3 Labeling the map display

Interpretation of a document map display can be aided by labeling the display with a
selection of descriptive words that characterize regions of the map. The labels can be
utilized for multiple functions: (1) to describe the underlying area , contrasting it against the
rest of the map, (2) collectively to summarize aspects of the collection , (3) and in navigation
to act as landmarks or anchor points that help orientation by providing reference points
during transitions across views that have di�erent resolutions.

An automatic method has been introduced in Publication 5 for selecting descriptive
terms suitable for characterizing textual clusters, individual map units, and document
map regions. The method was validated against human-assigned descriptors on a map
of 10,000 INSPEC articles. The method has been applied for labeling several WEBSOM
demonstration maps since 1997 21. A speeded-up approximation was used for labeling the
map of 7 million patent abstracts described in Publication 7.

Characterizing textual clusters and map units. A good descriptor of a cluster can
be said to characterize some outstanding property of the cluster in relation to the rest of
the data set. This can be formalized in the following way: in a measure that compares
the word's frequency to other word frequencies in the cluster, and also to its own relative
frequency generally in the collection. The measure of goodness G(w, j) for a word w to
characterize cluster j is de�ned as

G(w, j) = Fj(w)
Fj(w)∑
i Fi(w)

, (6)

where Fj(w) is the proportion of the word w in cluster j.
Sometimes cluster borders are not known exactly. In such cases, a neutral zone can be

left between the cluster and the rest of the collection, which does not a�ect the measure
for word w (see �gure 4). Furthermore, instead of individual map units j, the measure
can be de�ned for groups of neighboring units. The measure for the goodness of word w
for labeling the map area Aj0 centered at map unit j thus becomes

G2(w, j) = [
∑
k∈Aj0

Fk(w)]

∑
k∈Aj0

Fk(w)∑
i 6∈Aj1

Fi(w)
, (7)

where k ∈ Aj0 if d(j, k) < r0, and

i ∈ Aj1 if r0 < d(j, i) < r1,

where r0 is the inner radius of the area and r1 the outer radius, and the �neutral zone� in
between is disregarded.

Labels for map areas. With large maps it is neither possible nor desirable to label every
map unit on the display. Often there is not enough space on the graphical map display,

21Demonstrations are available at http://websom.hut.fi/websom/ .
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Figure 4: Determining the goodness value G2 for words in map unit j. The shaded area
(Aj1) is disregarded when calculating the goodness values for each word in the area centered
around unit j.

and even if there were, cramming the display with masses of words should not be called
visualization. Therefore, to obtain the �nal labeling of a map, we need to place labels on
a subset of the map units so that the resulting labeling is as good as possible. If the total
goodness of the labeling is de�ned as sum of the goodnesses of all labels, there are

(
N
M

)
possible combinations of N labels out of M candidates. Obviously all combinations cannot
be evaluated in most practical situations. Fortunately, in this type of selection problems a
greedy approach usually produces a near-optimal approximation.

With WEBSOM document maps that have several zooming levels, we have used the
following procedure for selecting labels for each level l, starting with the topmost level.
First, decide for each display level l the desired labeling density expressed in terms of
minimum distance on map grid between two labeled units i and j, dl(i, j). Then, perform
the following steps for each level:

1. Order map units according to goodness of the best word in the unit.

2. Repeat: accept the best word from the best unit on the map if it is separated at least
by distance dl from all already accepted labels.

3. When no more labels can be added for level l, increment l.

We have obtained good results by choosing the radius parameters r0 and r1 used in calcu-
lating G2 so that half of the desired labeling density, d/2, lies between r0 and r1.

It should be noted that the method assumes that labels on the display are independent.
Naturally, such an assumption is not strictly correct, and it should be possible to de�ne a
method that takes into account this dependence. However, the independence assumption
allows for a faster selection.

Comparison with other labeling methods. In [78] each map unit is labeled with the
word that is most similar to the model vector. This results in consecutive areas labeled with
the same word. However, some of the cluster areas achieved in this way are relatively large,
and a further description of the large areas seems important, as was con�rmed in a user
study in [9]. Roussinov[98] o�ers a solution by letting users dynamically change the labeling
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used. Despite the possible usefulness of user-controlled modi�cations, obtaining an initial
labeling that is as good as possible remains important. Merkl and Rauber have proposed
a method called LabelSOM [87] for labeling individual SOM units. The method analyzes
the components of SOM model vectors and selects as labels the terms corresponding to
components that show smallest deviation. The method has only been de�ned for providing
labels for individual map units, not for larger map areas.

4.3.4 Search facility

Especially when browsing large document maps it may be di�cult to decide where to start
browsing the map. A search facility has been implemented by which suitable starting
points for exploration can be located. The description of interest written by the user�
either a whole document or a few words�is encoded as a document (see Section 4.2.1), and
a number of best-matching map units are marked on the display with circles the radius of
which conveys the goodness of the match (see Figure 5). It should be noted that this facility
does not perform document retrieval , i.e. return the best-matching documents, but only
returns the best-matching map units (however, the facility could be extended to perform
document retrieval as described in 5.1.1).

The facility is implemented using a client-server architecture: A search server holds the
map reference vectors in memory, and when a search is initiated, a client program encodes
the query as a document vector, passes it to the server, and asks for a number of the
best-matching map units. Upon receiving the results the client draws them on existing
static map images, constructs an appropriate HTML page and returns it to the WWW
browser. HTTP Cookies are used for keeping track of users and the performed searches so
that the zoomed images can be marked with appropriate search results upon requests for
browsing. It is feasible to use the search facility�in the current implementation performing
a search takes 4�10 seconds on the largest map of 7 million documents, and considerably
less on smaller maps. In exploration of the results there is no noticeable delay compared
to browsing without a search.

4.4 Evolution of the WEBSOM project

The initial experiments and public demonstrations on the WEBSOM consisted of maps
of articles in Usenet discussion groups (see e.g. [41, 40, 67, 55], Publications 2, 1 and 4).
Further experiments with various materials included maps of scienti�c abstracts (in [72]
and in Publication 5), a map and a public demonstration on Finnish news articles (Publi-
cation 3) including a search facility, and maps of patent abstracts (a small experiment in
Publication 3; a very large map in [68] and in Publication 7). Table 1 provides an overview
of sizes of the largest collections handled each year. Experiments with the various data sets

Table 1: Sizes of document collections organized by the WEBSOM method at each year.
Year Num. of documents Num. of SOM units
1996 5,000-131,000 768-50,000
1997 1,000,000 100,000
1999 7,000,000 1,000,000

show that the method can be successfully applied to organizing both very small and very
large collections, to colloquial discussions and to carefully written scienti�c documents, as
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Figure 5: The user was interested in the �nancial situation of the Merita bank and typed in
the query �Meritan tulos� (approximate translation: Merita's �nancial status). Three main
clusters of results appear on the map: one containing news about the �nancial status of
Merita and other banks, another discussing Merita buying and selling other companies, and
a third cluster where announcements of �nancial results of many large companies appear.
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well as to texts both in Finnish (see Publication 3) and in English. Various applications
of the document maps were described in [39] and [43] and the di�erent kinds of user tasks
were explored further in Publication 6.

The methodological improvements were developed as follows: the word category map
was used for document encoding in all of the earlier articles, including [41, 40, 67, 55, 73],
Publications 2, 1. The word category map was examined in detail in [37]. The vector space
model was used for document encoding in [72]. Various speedups for larger collections have
been described in [67], [64], [51], [59], and Publication 4. Random projection was studied
for dimensionality reduction in document encoding in [53] and applied to projecting word
categories e.g. in [65] and in Publication 4 and to projecting document vectors e.g. in
Publication 7. The entropy-based weighting was described in [67] and in Publication 4.
The labeling method was �rst described in Publication 5 and applied to labeling several
maps reported e.g. in Publication 6, Publication 3, [68], and Publication 7. The speeded
winner search was described in [54]. The search facility for locating starting-points for
exploration has been utilized since 1997, for a description, see e.g. Publication 7. The
method for utilizing document maps for performing speeded document retrieval and the
experiments were reported in Publication 8.

4.5 Related work on document maps

In an early study Lin formed a small map of scienti�c documents based on the words
that occurred in the titles [78, 76] and later extended the method to full-text documents
[77]. Scholtes has utilized the SOM in constructing a neural document �lter and a neural
interest map [107]. Merkl has organized software library components [82, 83, 84] and
studied hierarchical document map formation [85, 86, 88]. Document maps have also been
created by Zavrel [119]. A system rather similar in appearance to the WEBSOM has
been used to organize collections of scienti�c articles in the �eld of astronomy [75, 95].
The Arizona AI group has utilized the SOM for categorizing Internet documents to aid in
searching and exploration in a system called the ET-Map [11, 92], for adaptive visualization
of search results [100, 99], and as part of a specialized application for medical data mining
on the Internet [46]. Recently a commercial system was described in [109] that applies the
SOM for creating document maps.

Hierarchical maps versus a single, large map. Instead of constructing a single, large
map, the document collection may be organized on a hierarchy of layers that consist of
distinct, smaller SOM:s, as has been done e.g. in [11, 85, 86, 88]. The hierarchical approach
can be used to reduce computational complexity compared to the standard SOM algorithm
(however, on large, continuous maps such reductions can be achieved with various speedups
as described in Sec. 4.1.2). It may also be argued that the hierarchical directory structure is
easier and more intuitive for users that are used to such structures. On the other hand, since
in the hierarchical approach the data is partitioned into distinct clusters, the connections
between documents found on di�erent maps are lost. The impact of such partitioning
is likely to depend on the amount of relevant, lost connections across partitions in the
document collection. Finally, when moving across the di�erent levels the lack of continuity
might be confusing to the user. In any case, these are topics that require further study
using controlled experiments as well as the design of appropriate evaluation criteria that
are suitable for the visual exploration task.
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5 USING DOCUMENT MAPS IN TEXT MINING

The possible uses of document maps are discussed below in terms of the three major tasks
in text mining that were introduced in section 2: searching, browsing , and visualization.

5.1 Performing searches

5.1.1 Clustering documents for improving retrieval

It is important to develop methods that can speed up the search process while maintain-
ing high perceived quality. In Section 4.3.4 a search facility was described for locating
suitable starting-points for exploration of the document map. Moreover, a recent experi-
ment described in Publication 8 shows that document maps can be utilized successfully for
speeding up information retrieval, and even improved precision may be obtained on some
collections.

Users typically look at only a small number of best documents returned by a search
engine. The range of high precision and low recall is therefore most important in the
evaluation and design of information retrieval methods. If the task is to �nd a small
number of best hits, and to return them in ranked order, the document maps can be
utilized for searching as follows: (1) pre-select: locate the best-matching model vectors for
a query, and (2) re�ne: perform a full search among the K �rst documents found in the
units corresponding to the best-matching models.

The retrieval performance of the method was evaluated on the CISI reference collection
[14] of 1460 documents and 76 queries using average precision , a measure which takes into
account the order of relevant and non-relevant documents in ranked result lists. The results
indicate an equal or improved retrieval performance when compared to VSM and to LSI.

As pointed out in Section 4.1 the SOM model vectors form an approximate model of the
data distribution density in the input space, performing a clustering of the document space,
that acts as a smoothing on the documents: the initial search does not locate individual
documents but topical clusters . The clusters may contain relevant documents that would
not rank very high if compared directly with the query, but may nevertheless be relevant,
and after the pruning carried out by pre-selection, these documents may rank rather high
on the result lists. It is likely that this property of the document map improves searches
especially when the queries share only few words with some of the desired documents, i.e.,
in the presence of noise.

Moreover, a speedup is achieved, since the total number of vector comparisons is always
considerably smaller than the number of documents. Furthermore, with large collections
it may be possible to keep the model vectors in main memory even when the full collection
of document vectors could not �t in memory, causing even larger actual speedups than
the di�erences in the complexity suggest. However, in the preliminary experiment the test
collection was very small, and various speedups, including random projection of document
vectors and magni�cation of maps, were not applied. The retrieval performance of the
suggested search method should therefore be con�rmed and the actual speedups in compu-
tation be measured in experiments on large collections. Alternative ways of performing the
search could be studied as well. In a related study Kurimo [71] utilized SOM for smoothing
of document vectors in retrieval of spoken documents.

It is claimed that still further improvement, perceived by a user but not readily mea-
surable within the IR framework, would be achieved by visualizing the locations of the
best hits on the document map display and by enabling exploration of the document map.
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Figure 6: The retrieval performance of the document map method is compared to that of
the VSM and the LSI. LSI was calculated using 150 latent dimensions. The size of the
document set requested at the pre-selection stage was 300; the number was chosen based
on prior comparison of di�erent values using random selection of half of the queries from
the test set of 76 queries. The rest of the queries were used to compare the methods.
The methods were compared using non-interpolated average precision (AP) and plotted
for several amounts of retrieved documents.

In such an environment the user may visually con�rm the results and interactively re�ne
the search further by concentrating on some hit, and by locating similar documents on the
document map. This re�nement operation is of complexity O(1) only, since the map and
the exploration interface have been created o� line, independent of a particular search.

5.1.2 Maps of search results

Often the hits of Internet search engines fall into several domains, e.g. according to various
meanings of each polysemous word, or according to various types of data, e.g. personal
home pages, institutional pages, company advertisements, scienti�c articles, etc. However,
the various categories are not readily apparent from the result lists organized by relevance.

Results of searches performed on Internet search engines can be organized dynamically
using the SOM onto a document map. In this way, results falling in various domains or
styles may be clustered together, making browsing easier. Furthermore, the visualization
can aid in forming an overall view of the topic.

Roussinov has applied SOM for organizing document maps of search results: several
hundreds of search results are obtained from an Internet search engine, the texts are en-
coded as vectors, and the SOM is applied to construct a document map [100, 99]. Dynamic
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and adaptive operations are included by which users can control the map creation, e.g. by
removal of individual terms from the document representations. Each interactive operation
results in re-building the map.

In principle, this approach is feasible, and potentially very valuable for the user. How-
ever, when the results of external search servers are mapped, obtaining and transmitting
the result lists takes considerable time (several minutes for 400 documents in Roussinov's
example) although the subsequent map construction itself is fast. Possible solutions could
be (1) the construction of the maps at the search server site, or (2) the formation and
visualization of an initial map based on the �rst set of results and an incremental re�ne-
ment of the map as subsequent results are obtained from the search server. However, these
strategies have not been explored in detail.

5.2 Text exploration

Document maps of large collections could be utilized by owners of large, public databases
for o�ering world-wide access to their collections. Databases with large amounts of poten-
tially valuable data which is di�cult to make sense of using o�-the-shelf methods include
articles in the medical sciences and patent abstracts. An exploration example of the map
of 7 million patent abstracts is presented in Figure 7. As shown in the �gure, a suitable
starting-point for exploration can be searched using the document search facility described
in Section 4.3.4.

Alternatively, any search engine can be used for information retrieval, and the results
can be depicted on the map. By visualizing the distribution of the search results in a
topically ordered display, the map o�ers additional information regarding the results that
cannot be conveyed by the one-dimensional list of results. An example of visualizing the
results of an external search engine on the map is presented in Figure 8.

5.3 Visual domain models

In visualization of information something familiar is used to illustrate something yet unfa-
miliar. With a document map of an unknown collection the source of familiar information
are the label words and the visual metaphor of portraying landscape with a map. Also
locating map areas related to an individual query or a document fall into this category.

However, if the map is already known intimately, properties of new items and collections
can be illustrated a bit like in the scatter-plot, by dots marking individual items on the
map display (for an example, see Fig. 9). In the ordinary scatter-plot the two or three
axes o�er meaningful information against which the new data is portrayed. However, on
the map display, instead of a small number of meaningful dimensions there may be several
meaningful clusters which form a basis for interpreting the new data.

5.3.1 Depicting new information on a familiar map

Publication 6 describes a small experiment of utilizing a familiar topical map to studying
visually the properties of an incoming stream of email from a similar subject area. The
map was based on a collection of discussion articles from the Usenet discussion group
comp.ai.neural-nets 22 and the emails were taken from the connectionists email list.

22The map can be explored at
http://websom.hut.fi/websom/comp.ai.neural-nets_new/html/root.html .
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Figure 7: Content addressable search was utilized to �nd information on laser surgery on
the cornea of the eye. The best-matching locations are marked with circles. Zooming on
the area reveals a small cluster of map units that contains patent abstracts mostly about
the cornea of the eye, and of surgical operations on it. Several abstracts concerned with
the description of interest, i.e. laser surgery on the cornea, are found in the best-matching
units.
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Figure 8: The keyword search mode was utilized to �nd information on color displays. 30
best-matching units were marked on the display with circles the size of which indicates
the goodness of the match. As seen from the map display, the matches are distributed
into several tight �clusters� found in di�erent regions of the map. From two of these
clusters the partial contents of a matching unit are shown in the insets. Closer inspection
of the units reveals di�erent aspects of color and displays. Unit a features a considerable
number of abstracts about color �lters used in building LCD displays, whereas in b one
�nds technology related to displaying colors when printing documents (the �Descriptive
words� lists were found for each map unit using the automatic keyword selection method
described in 4.3.3). The user, who probably did not have printing in mind when formulating
the query, can then concentrate on the other clusters.
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Figure 9: A sketch of an interactive, visual tool for constructing �lters for handling streams
of incoming documents. First the user selects the document map areas to be used as the
�lter (large white ellipses) and next new documents are projected on the map (small white
circles). Finally, either the system explicitly �lters out documents located outside the
speci�ed areas, or a quick visual �ltering is performed by the user looking at the map
display. In the latter case the �lter borders can be tentative, and the user may choose to
read a new document outside a �lter area after all, for example, if no documents appear
inside the �lter borders.

It was known before that the topical domains of the collections were similar. However, by
visualizing the emails on the familiar document map a more detailed idea of the similarities
and di�erences could be obtained: for example, conference announcements seemed to be
prominent in the email list whereas in the discussion newsgroup they have a smaller role.
In contrast, the map of the Usenet group has an area of philosophical discussions on neural
networks and arti�cial intelligence, but only a few documents from the email list excerpt
were found to fall near this area.

5.3.2 Visual �lter construction

A familiar document map display could also be used as a tool for constructing graphical
�lters. As depicted in Figure 9, interesting (or uninteresting) map areas can be selected,
and new incoming documents such as new emails can be added on the map with further
processing dictated by the �ltering need. The document map can either be used as an easy
interface for constructing �lters, after which the �ltering is performed automatically, or the
map can act as an implicit �lter by visualizing the similarity of the incoming articles with
the interesting (or non-interesting) map areas 23.

23The interactive �lter construction capability is currently not included in the WEBSOM browsing tool.
However, the documents were positioned on the map display using standard WEBSOM programs.
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5.3.3 Personal interest maps

The documents accumulated by an individual provide a description of the person's interests
that is extremely familiar and relevant to the individual. A visual model of personal
interests could be used as an utterly familiar frame of reference on which large amounts of
new information can be rapidly conveyed to the individual.

Such compact and abstract models of interest could be utilized as user pro�les e.g. for
identifying similarly inclined people, as well for detailed evaluation of similarities and dis-
similarities between the interests of two people (the similarity of the models could be
compared e.g. using a method described in [58]). Unlike the often sensitive text material in
the texts themselves, the more abstract and compact interest pro�les formed by the maps
could be more freely distributed by the individual. The level of abstraction achieved with
a document map can be controlled by the map size.

Lin [77] has utilized the SOM for arranging a personal document collection onto a
document map to provide a convenient exploration interface to the collections, and to
explore the interests.

5.4 Comparison of document maps with other approaches

5.4.1 Comparison to similar visualization tools

In Galaxies (project SPIRE; for an overview, see e.g.[117]) the documents are expressed
in terms of distances to a small number of cluster centroids, and then PCA is applied
to project the documents onto two dimensions. The visualization of individual documents
thus places each document on the display so that the position re�ects its similarity to every
cluster centroid on the display), not to each other document. The method thus attempts to
preserve the global distances rather than the local ones. In contrast, the document maps
organized with the SOM attempt to preserve local distances between similar documents,
which in part accounts for the promising results obtained in utilizing document maps for
information retrieval (see Sec. 5.1.1).

5.4.2 Comparison to manually organized hierarchies

Chen et al. [9] performed a usability study comparing browsing the entertainment sub-
category of the hierarchical Yahoo! organized by manual e�ort, or the same document
collection organized automatically with the SOM (the ET-map containing 110,000 docu-
ments [11]). The 34 subjects were asked to browse for �something of interest to you�, the
task was described as �window shopping�, and the users were advised to start without a
speci�c goal in mind. The users were asked to think out loud, describing the reasoning be-
hind their choices. The authors found that the document map was best suited to browsing
tasks that were very broad, and to situations in which subjects liked to skip between topic
categories. In particular many subjects especially liked the visual and graphical aspects of
the map. The unfamiliar associative mental model of the SOM was troubling to some sub-
jects, especially to those who started with Yahoo! and then proceeded to the ET-map�on
the other hand some other subjects found the di�ering model interesting or useful. Based
on success rates in browsing and a detailed analysis of user feedback the authors conclude
that their SOM-based browsing prototype compares rather favorably with browsing the
hierarchical, manually organized Yahoo!. The fact that an automatic organization such as
a document map can o�er even nearly as good results as an organization obtained with
considerable utilization of manual labor is indeed noteworthy.



45

5.4.3 Comparison to search-oriented approaches

Implementation of a text mining tool can be viewed as a compromise in how limited
resources are allocated between searching, browsing, and visualization. Previously it has
been argued why considerable allocation of resources to the visualization and exploration
aspects is indeed useful (cf. Section 2), and how the usefulness manifests itself speci�cally
in document maps (cf. Section 5). In particular, it has been demonstrated that also in the
search task a WEBSOM document map performs at least comparably to other state-of-the
art search approaches, even when the visualization ability of the map is not utilized.

Especially with very large collections that push the limits of computer systems in every
way, it is an advantage if a single set of data structures or indices can be utilized for all
of the identi�ed tasks related to text mining. In the WEBSOM method, visualization,
exploration and search are all implemented using the same framework.

When compared to tools exhibiting only search capability the combination of visualiza-
tion, exploration and search o�ered by WEBSOM provides most help in an environment
where the system is expected to service both vague and clearly de�ned information needs,
as well as both speci�c and broader needs. In information needs that are very speci�c and
well-understood the best methods that specialize in the search problem alone may outper-
form the general-purpose document map approach. In contrast, the most additional utility
from document maps is likely to be experienced in the vague and broader information
needs.

6 CONCLUSION

It has been shown that document maps can be utilized for visualization and exploration
of text collections of various sizes, various text types, di�erent languages, as well as many
di�erent kinds of user tasks in text mining. Subjective evaluation of the maps indicates that
the WEBSOM method is able to uncover a kind of topical organization of the text material
in an unsupervised manner. Based on the experiments described in this thesis and related
research it can be concluded that the method is scalable and can be successfully used for
visualizing and exploring very large document collections. In addition, its performance in
the search task has been evaluated using a small, standard document collection, and found
to be comparable with the performance of state of the art search approaches.

The visual metaphor of maps and landscapes seems to o�er an intuitive framework for
performing the major tasks studied in the �eld of text mining, namely searching, explo-
ration, and visualization. Furthermore, the visual landscapes can be utilized for tasks that
have not received much attention before, possibly for lack of suitable methods. Examples
of such tasks are: relating collections of text to other collections, and visualizing various
kinds of unfamiliar information on familiar landscapes. However, the possible uses of doc-
ument maps have so far only been touched on and even less research has been carried out
with actual users in real situations.

Directions for future research include the development of suitable evaluation principles
for the various user tasks described in this thesis, as well as the application of such princi-
ples in evaluating document maps and text visualization models in general. A continuing
challenge is to develop richer and yet practically computable models for representing the
content of natural language utterances.
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